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ABSTRACT
Gaussian Approximation Potentials (GAPs) are a class of Machine Learned Interatomic Potentials routinely used to model materials and
molecular systems on the atomic scale. The software implementation provides the means for both fitting models using ab initio data and
using the resulting potentials in atomic simulations. Details of the GAP theory, algorithms and software are presented, together with detailed
usage examples to help new and existing users. We review some recent developments to the GAP framework, including Message Passing
Interface parallelisation of the fitting code enabling its use on thousands of central processing unit cores and compression of descriptors to
eliminate the poor scaling with the number of different chemical elements.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0160898

I. INTRODUCTION

Machine Learned Interatomic Potentials (MLIPs) have revolu-
tionised atomic simulations by offering predictive and computation-
ally inexpensive force fields.1–4 While their implementations differ,
these models approximate the Potential Energy Surface (PES) of
atomic systems based on a database of atomic configurations with
corresponding high-accuracy properties calculated with ab initio
quantum mechanical methods.

Among the numerous related methods and their soft-
ware implementations,1,2,5–9 the Gaussian Approximation Potential
(GAP) approach follows a Bayesian approach, which allows the
formulation of prior knowledge about the atomic system and inter-
actions as hyperparameters, as well as uncertainty estimation. A
further advantage of using Gaussian Process Regression (GPR) is
that fitting the model is a convex optimisation problem10 equivalent

to the solution of a linear system, therefore many problems associ-
ated with minimising the loss function of neural networks11 do not
occur.

The GAP framework, originally proposed by Bartók et al.,3 uses
GPR to infer local atomic properties via a set of descriptors that
map Cartesian atomic coordinates to invariant representations. GAP
models have been used successfully to model silicon,3,12 carbon,13

tungsten,14 phosphorus,15 water,16 iron,17 gold and platinum,18,19

hafnia20 and gallia,21 among others.
Similarly to other MLIP frameworks, the GAP package can

utilise reference atomic databases produced with arbitrary ab initio
methods and software packages. Total energies and derivative quan-
tities (forces and stresses) are used to fit the PES, although models for
local atomic properties, such as nuclear magnetic resonance (NMR)
shieldings or Hirshfeld volumes may also be generated using our
software. Recently, GAP was used to accelerate ab initio molecu-
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lar dynamics simulations within the CASTEP22 package, utilising
an adaptive scheme that produces an evolving and improving GAP
model during the dynamics.23

In this paper, we present the current status of the GAP frame-
work, discussing the particular adaptation of the sparse GPR that
enables a performant implementation suitable to fit energetic prop-
erties of atomic systems. GAP, as implemented within the Quantum
and Interatomic Potentials (QUIP)24 software package, is intro-
duced, emphasising the flexibility and extensibility of the code. We
also discuss recent developments, such as parallelisation and com-
pression of descriptors, making connections between the theory
and practical usage. Finally, we present some examples, which are
intended to illustrate a selection of features enabled by the GAP
package.

By documenting implementation details for the available
options, this paper is not only intended for practitioners fitting GAP
models, but also for those developing other MLIP frameworks.

II. THEORY
The GAP framework utilises sparse GPR which is customised

to fit PESs as well as local properties of atomic systems. A detailed
introduction to GPR can be found elsewhere10,25 and background
on the GAP framework is presented in the review article by Deringer
et al.26 Here we revise only the formulae necessary for discussing the
software implementation.

A central assumption in fitting the PES of atomic systems is that
the total quantum mechanical energy may be decomposed into local
contributions ε which depend on descriptors x:

E =
descriptors

∑

d

Nd

∑

i=1
εd(xi), (1)

where Nd is the number of descriptors of type d. Descriptors may
be the arguments to two-body energy terms, based on the inter-
atomic distance, optionally augmented by the symmetrised atomic
coordinations, or three-body terms, based on the bond angle and
the symmetrised bond distances, optionally including the coordina-
tion of the central atom. The greatest advantage of the non-linear
regression techniques enabled by machine learning methods is the
ability to parameterise the highly complex many-body energy terms.
The descriptors forming the arguments to these functions may be n-
body terms, based on the interatomic distances within a cluster of n
atoms, or flexible many-body terms, based on the Smooth Overlap
of Atomic Positions (SOAP)27 descriptor, the bispectrum3,28 or the
Behler–Parrinello symmetry functions.1 Finally, GAP implements
customised descriptors, to represent molecules, dimers and trimers.

In GAP, each energy term εd is written as an independent sparse
Gaussian Process, in the form

εd(x) =
Md

∑

m=1
cmkd(x, xm), (2)

where Md is the number of sparse or representative points of
descriptor d, kd is the kernel, covariance or similarity function and
cm are the fitting coefficients.

The coefficients in (2) are fitted using a database of atomic
configurations, where corresponding total energies and derivative

quantities, such as forces and virial stresses, have been determined
using ab initio quantum mechanical calculations. The target prop-
erties, denoted by y, of the fitting procedure are therefore the sum
of local energy contributions in the form of total energies, or the
sum of the partial derivatives of local energy terms in the form of
forces or virial stresses. The differentiation operator with respect to
a Cartesian coordinate riα is propagated through the kernel function,
resulting in partial derivatives

∂ε
∂riα
=

Md

∑

m=1
cm∇xk(x, xm)

∂x
∂riα

. (3)

The sparse GPR adapted to our case26 becomes

c = [KMM + (L̂KNM)
⊺Σ−1L̂KNM]

−1
(L̂KNM)

⊺Σ−1y. (4)

The kernel or covariance matrices KMM and KNM contain the func-
tion values k(xm, xm′) and k(xn, xm) respectively, where m and m′

denote sparse points and n denote descriptors of the database con-
figurations. In case of KNM , kernel functions may be the derivative
values, −∇xk(xn, xm)

∂xn
∂riα

, if the corresponding target observation in
y is a force quantity. The diagonal Σ matrix contains the regulari-
sation strength parameters (σenergy, σforce and σvirial, which may be
specified individually), encoding the prior assumption regarding the
accuracy of target values. Finally, the operator L̂ is a shorthand for
the summation that accumulates the local terms composing each
target value in y.

Foster et al. have shown29 that solving Eq. (4) directly can lead
to numerically unstable results, in which uncertainties in the input
lead to disproportionate errors in the output. Instead, we first define

A =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

Σ−1/2L̂KNM

UMM

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (5)

where the Cholesky decomposition of KMM results in the upper
triangular matrix UMM such that KMM = UT

MMUMM . While KMM is
positive semidefinite, depending on the database configurations and
descriptor types, the sparse points may be highly correlated, leading
to an ill-conditioned KMM matrix, preventing the Cholesky decom-
position we use to obtain UMM . To regularise the sparse covariance
matrix KMM , we add a small constant to the diagonal, informally
called the jitter, which is typically 8–10 orders of magnitude less than
the elements of KMM . The jitter has a similar effect on the resulting
sparse model as the noise hyperparameter in a full GPR. As both the
aleatoric and epistemic uncertainty is controlled by Σ, the error in
the local energy term introduced by the use of jitter is a small broad-
ening, which is expected to be on the order of the square root of the
jitter.

Padding the vector of target properties y by an M-long vector
of zeros,

b =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

y

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (6)

we rewrite Eq. (4) as the solution of the least-squares problem

min
c
(Ac − b)T

(Ac − b), (7)
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leading to the solution in the form of

c = (ATA)−1ATb. (8)

A numerically stable solution can be obtained by first carrying out
a QR factorisation of A = QR where Q is orthogonal, namely, it
is formed by orthonormal column vectors, while R is an upper
triangular matrix. Substituting the factorised form of A into Eq. (8)
results in

c = (RTQTQR)−1RTQTb = R−1QTb, (9)

as QTQ = I.

III. IMPLEMENTATION
We develop and maintain a collection of software tools called

QUIP30 to carry out molecular dynamics simulations. Part of this
suite is an implementation of GAP, including the gap_fit program,
implementing the sparse GPR. The majority of QUIP is written in
modern Fortran, utilising many object-oriented features, although
not fully exploiting the most recent Fortran standards due to lack of
compiler support at the time of the original development of the code,
which started in 2005. QUIP features a Python interface, quippy,31

allowing access to various functionalities and casting all atomic
potentials as Atomic Simulation Environment (ASE) calculators.32

There also exist generic C and LAMMPS-specific C++ interfaces,
that allow GAP models to be used in external simulation packages.
The source code can be found on GitHub.24

A. The GAP submodule
Similarly to other MLIPs, the main components of GAP are

the calculation of descriptors, mapping Cartesian coordinates into
invariant representations, and a regression method, in this case GPR.

1. Representations
The descriptors.f95 file implements the mapping from the

Cartesian coordinates of the atoms to invariant representations. In
the package we provide a number of descriptors, but it is straightfor-
ward to implement new ones. While the user fitting GAP models
does not have to interact with the source code, in the following
we give an overview of what is necessary to implement or adapt a
descriptor.

A set of standardised interfaces are used for each descrip-
tor, which are overloaded, therefore adding new descriptors is
straightforward and does not require any further modifications
elsewhere. The initialise interface interprets the parameters
of the descriptor, which are provided by the user as key-value
pairs, and stores these in a descriptor object. The query func-
tion cutoff returns the spatial cutoff of a descriptor, whereas
finalise resets the descriptor object and deallocates all stor-
age. The descriptor_sizes function takes an Atoms object and
determines how many descriptors and partial derivatives will be cal-
culated based on the cutoff and the connectivity of the particles.
Finally, the calc function returns descriptors calculated based on
an Atoms and a descriptor object, and optionally, their partial
derivatives with respect to atomic coordinates in a generic con-
tainer object. All of this functionality is exposed in quippy, ensuring
interoperability with ASE.

2. Regression
GPR is implemented in the file gp_predict.f95, with some

fitting-specific features in gap_fit_module.f95 and sparse point
selection in clustering.f95. For a pair of descriptors x and x′ of
dimensions D, whose distance r is defined as

r =

¿

Á
ÁÀ

D

∑

i=1

(xi − x′i)
2

2θ2
i

, (10)

we have implemented the squared exponential kernel

kSE(x, x′) ≡ kSE(r) = exp (−r2
), (11)

and the piece-wise polynomial kernel with compact support

kPP(x, x′) ≡ kPP(r) = (1 − ∣x − x′∣)j+1
[(j + 1)∣x − x′∣ + 1], (12)

where j = ⌊D
2 ⌋ + 2. The SOAP descriptors should be used with the

dot-product or, more generally, polynomial kernel

kDP(x, x′) = (x ⋅ x′)ζ. (13)

The hyperparameters, such as θ or ζ, and the coefficients c are
stored in a Fortran object which is used by the function gp_predict
to evaluate (2) as well as the partial derivatives with respect to
descriptor components and variances predicted from GPR.

During the training procedure, all descriptors x and their par-
tial derivatives are calculated and stored. Pointers are used to denote
which descriptors and derivatives contribute to target properties,
thereby avoiding the need to store repetitive information. The kernel
matrices KNM used in the fitting procedure in (4) are not calculated
explicitly, only the accumulated terms in L̂KNM corresponding to
quantum mechanical observable quantities.

B. GPR using gap_fit

Finding the coefficients used in GAP models can be accom-
plished using the gap_fit command line program, where para-
meters are set as arguments or a configuration file. The input
to the fitting procedure consists of the fitting data, model defini-
tions, and additional options. The database of atomic configurations,
together with the quantum mechanical properties are read in from
an extended XYZ33 file. The extended XYZ contains information of
the lattice, atomic numbers and Cartesian coordinates, and may pro-
vide the total energy, forces and virial stress, or any combination of
these for each individual configuration.

Each individual atomic configuration may optionally have a
type specification, given within the extended XYZ file using the
config_type keyword. The configuration type may be used for
fine-grain control, such as selecting a specific number of sparse
points from those configurations.

The particulars of the model are provided using the gap argu-
ment as a form of colon-separated list of descriptor definitions.
These include hyperparameters, such as the spatial cutoff or the
desired number of sparse points per descriptor. Other hyperpa-
rameters, such as the regularisation, can be provided either in the
command line, or specifically for each individual frame within the
extended XYZ file, allowing fine-grained control and the use of inho-
mogeneous accuracy of target quantities. Additional options can be
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used to adjust the processing, tune technical parameters, or enable
additional features like more verbose output. Details about the cur-
rently available arguments can be found later in Sec. V, or running
gap_fit–help for up-to-date information.

1. Program structure
After initialisation and reading of the input, the extended XYZ

frames, where each frame consists of an atomic structure, are parsed
for the number of target properties and descriptors. Storage for
the descriptor arrays are allocated accordingly, and descriptors are
calculated during a second pass over the atomic configurations.

For each set of N descriptors, M ≪ N points are chosen as a
representative, or sparse, set. Options include random selection, k-
means clustering, a uniform grid spanning the range of descriptors
and CUR decomposition.34 It is also possible to provide the sparse
points via text files. As the sparse points need to form a linearly inde-
pendent covariance matrix, duplicates within a given tolerance are
removed and only considered once. This may result in fewer sparse
points used than specified by the user, particularly if the atomic
environments in the database are highly correlated.

With the specified sparse points, the covariance matrices KMN
and KMM are calculated, and matrix A constructed. The coefficients
are determined via QR decomposition using (Sca)LAPACK35,36

routines.
The memory requirement for the gap_fit program depends

on the atomic structures, the number of target properties and sparse
points, and descriptor definitions. In particular, the two main data
components with significant memory requirements are the descrip-
tors and their partial derivatives and the kernel matrix L̂KNM . The
memory associated with storing descriptor derivatives scales linearly
with the number of atomic environments and the dimensionality of
the descriptor, as well as the number of neighbours within the spa-
tial cutoff. Efforts directed at developing compact descriptors, using
compression techniques, therefore significantly reduce the memory
requirements of the fitting procedure, as well as the computational
complexity of evaluating the descriptors. The size of the kernel
matrix scales linearly with the number of target values and the total
number of sparse points.

Recently, we have implemented domain decomposition in
gap_fit that aims to utilise massively parallel computer architec-
tures.37 The implementation relies on Message Passing Interface
(MPI) and is illustrated on Fig. 1.

After determining the number of atoms and, consequently, the
number of target data values in each configuration of the database,
configurations are assigned to individual MPI tasks. Descriptors are
computed locally, and the covariance matrix KMN is constructed in
a distributed fashion. This approach allows the memory require-
ments of the program to be distributed over many computational
nodes, therefore larger databases can be easily fitted without the need
of specialised, high-memory servers. The linear algebra step makes
use of the ScaLAPACK library, carrying out the QR decomposition
and subsequent back-substitution steps in parallel, thereby reducing
the computational time. We demonstrate the benefits of the par-
allel fitting approach by studying two fitting problems that would
require significant amounts of wall-time and memory using a sin-
gle node. One of the training databases consists of the high-entropy
alloy configurations by Byggmästar et al.,38 and the other is a data
set of silicon carbide configurations from Ref. 37. The dependence

FIG. 1. MPI gap_fit workflow. If run in serial, the tasks are not distributed and n
is used instead of n∗.

of computational speedup and total memory use is presented on
Fig. 2, showing that we have achieved excellent parallel performance,
and we can utilise the aggregate memory of multiple computational
nodes, thereby largely eliminating any limitations. We note that the
dependence of the memory usage on the number of cores is due to
overheads associated with repeated data allocations that are private
to a process. Given the typical amount of memory, on the order
of hundred GBs, available on commodity computing nodes, this is
not likely to be a significant barrier to large-scale parallel fitting
calculations. For more information, we refer the user to our prior
work,37 where we explored hybrid OpenMP-MPI parallel strategies
that optimise overall memory use and runtime.

FIG. 2. Speedup (main panel) and memory (inset) requirements for fitting a high-
entropy alloy (HEA) and silicon carbide (SiC) training set using a varying number
of nodes.
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2. Sparse point selection
The program gap_fit implements several methods for the

sparse point selection, controlled by the sparse_method com-
mand line argument. Within the definition of each descriptor, the
n_sparse argument controls the number of sparse points. Alterna-
tively, config_type_n_sparse allows the user to specify a given
number of sparse points from labelled configurations, to ensure
adequate representation. Given none, no sparsification is applied,
apart from the removal of duplicate descriptors, and all points are
selected. The points may be chosen directly with either the file or
index_file option, in conjunction with the sparse_file argu-
ment to specify the filename containing the descriptors or the indices
of descriptors. The indices are 1-based and refer to descriptors as
calculated in the database file.

Recommended choices are uniform for a distance_2b
descriptor and cur_points for a soap descriptor. For complete-
ness, we list all currently implemented options in the Appendix.

C. Descriptors
The choice of invariant representation of atomic environments

has a profound effect on the quality of the resulting interatomic
potential. QUIP, being a test bed for methodological develop-
ments of MLIPs, implements numerous descriptors, of which some
frequently used ones are presented in this section.

In the gap_fit program, descriptors are specified in the gap
command line argument, using the syntax gap={descriptor1
key=value . . .: descriptor2 key=value . . .}. The descriptor
definitions are, by default, treated as templates by gap_fit, and after
parsing the database configurations, each descriptor is expanded
with element (chemical species) information. If add_species=F is
added to the descriptor definition, the descriptor is not modified in
this step.

Most descriptors implement the cutoff keyword, specifying
the spatial cutoff within atomic connectivities are considered. The
cutoff_transition_width keyword provides a smooth transi-
tion ensuring a numerically well behaved characteristic when the
descriptor is used to build an interatomic potential.

1. Descriptors based on interatomic distances
Based on the idea of the cluster expansion of the total energy

E =∑
i

E(1)i +∑

i<j
E(2)i j + ∑

i<j<k
E(3)ijk + ⋅ ⋅ ⋅ + E(N), (14)

the n-body terms may be fitted using GPR or other regression meth-
ods. The cluster of n atoms, representing the input variable of each
term, is well defined by a monotonic function, which could be just
the identity, of interatomic distances r = [r12, r13, . . .].

In case of the two-body descriptor, GAP implements a poly-
nomial transformation that generates a descriptor from the pair
distance r in the form of [rp1 , rp2 , . . .], where {pi}

n
i=1 are a set of expo-

nents. When using this descriptor in conjunction with a dot-product
kernel, the generalised form of a pair potential

V(r) =
n

∑

i=1
cirpi (15)

may be recovered.

However, for three- or higher body energy terms the descrip-
tor formed as a list of interatomic distances is not invariant with
respect to the permutation of indices of the same elements within
the cluster, therefore cannot be directly used for regression. Permu-
tational invariance is achieved by symmetrising, then normalising,
the kernel:

k′(r, r′) =∑
P̂

k(r, P̂r′), (16)

k′′(r, r′) =
k′(r, r′)

√

k′(r, r)k′(r′, r′)
, (17)

where P̂ represents the permutation of the order of atoms, and k′′ is
used in the GPR.

In GAP, we implemented the distance_nb descriptor,
where the body order is defined using the order keyword. The
compact_cluster keyword specifies the topology of the cluster.
If compact_cluster=T, each atom in an atomic configuration
is considered as a central atom, and clusters are formed with
its n − 1 neighbours that are within the spatial cutoff. With the
compact_cluster=F, all possible graphs where the graph edge has
a distance less than the cutoff are formed, allowing, for example,
linear chains.

The special cases corresponding to two- and three-body terms
are implemented as distance_2b and angle_3b, respectively. In
case of angle_3b, the trimer of atoms formed by the central atom i
and its two neighbours j, k is represented by the invariant descriptors
[ri j + rik, (ri j − rik)

2, r jk].
As the interatomic distances are used in the kernel directly in

these descriptor classes, the implementation of a smoothly varying
spatial cutoff must be implemented in the kernel function. We mod-
ify the kernel by multiplying it by a cutoff function which smoothly
interpolates between zero, where any of the interatomic distances
are greater than the spatial cutoff, and one. The elementary cutoff
function

fcut(r) =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

1 if r < rcut − d
0 if r ≥ rcut
1
2
[cos(π

r − rcut + d
d

) + 1] otherwise

, (18)

where rcut is the spatial cutoff and d is a transition width, is evaluated
for each pairwise distance. The final cutoff function is obtained as a
product of elementary cutoff functions, ensuring that each energy
term vanishes smoothly.

GAP also allows further adjustment of the tail behaviour of the
two-body descriptor, in order to approximate the polynomial decay
of some interaction types. This is achieved by further multiplying the
cutoff function by ( erf(αr)

r )

q
, where α is a range parameter and q is

an exponent.

2. SOAP descriptors
The SOAP descriptors were proposed a decade ago28 as invari-

ant descriptors of atomic environments, and have been used success-
fully to develop interatomic potentials,12,13,38,39 clustering40 as well
as other machine learning tasks, such as the ShiftML model used to
predict Nuclear Magnetic Resonance chemical shifts.41 For details
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on the theory, the review by Musil et al.27 may be consulted. Here we
only repeat what is necessary to explain the implementation options.

To construct the SOAP descriptor, the atomic environment is
first written as a neighbourhood density function, where atoms of
element α are represented by Gaussians:

ρα
(r) =∑

i
δαzi exp [

−∣r − ri∣
2

2σ2 ] fcut(∣ri∣), (19)

where the sum over i includes all neighbouring atoms with position
vector ri, zi is the corresponding atomic number and σ is a length
scale hyperparameter. The element density ρα is expanded in a basis
set consisting of the products of orthonormal radial basis functions
gn and the spherical harmonics Y lm,

ρα
(r) =∑

nlm
cα

nlmYlm(r̂)gn(r), (20)

resulting in the coefficients cα
nlm. In the following, we often refer

to grouping of certain indices in the basis expansions as channels,
a term borrowed from signal processing. Therefore, the element
indices α are the element channels and the radial basis indices n are
the radial channels. The spherical harmonics indices l, together with
the corresponding m indices, form the angular channels.

An invariant kernel or similarity function of two atomic envi-
ronments is obtained by calculating the overlap of the densities,
which has to be integrated over all rotations:

k(ρ, ρ′) = ∫ dR̂∣∑
α
∫ drρα

(r)ρ′α(R̂r)∣
ν

. (21)

For the choice of ν = 2, the SOAP kernel can be analytically
evaluated in the form of a dot-product kernel

k(ρ, ρ′) =∑
αβ
∑

nn′ l
pαβ

nn′ lp
′αβ
nn′ l = p ⋅ p′, (22)

pαβ
nn′ l =∑

m
cα∗

nlmcβ
n′ lm = cα∗

nl ⋅ c
β
n′ l, (23)

due to the properties of the Wigner D-matrices representing
the rotational transformation of the coefficients. To ensure that
k̄(ρ, ρ) = 1 for any ρ, we normalise the kernel as

k̄(ρ, ρ′) =
k(ρ, ρ′)

√

k(ρ, ρ)
√

k(ρ′, ρ′)
. (24)

The dimension of p scales as O(n2
maxlmaxS2

) where nmax, lmax
and S are the number of radial basis functions, spherical harmonics
and elements, respectively. Apart from the original implementation
of SOAP, a more efficient variant introduced by Caro42 is available
as soap_turbo. This descriptor is further described in Sec. III C 4.
and a comparison with regular SOAP is provided in Sec. IV B.

Increasing nmax and lmax improves the resolution of the basis set
expansion, and are therefore convergence parameters of the SOAP
kernel. Optimal values are strongly dependent of the typical num-
ber of neighbours and the Gaussian broadening parameter σ. In
many applications, the user has the choice to adjust nmax and lmax
to achieve the desired balance of accuracy and computational speed.

However, the length of p has a quadratic dependence on the number
of elements, thereby the computational cost of both the components
of p and the k(ρ, ρ′) as a dot product are impacted. Various strate-
gies to reduce this scaling have been proposed, which are discussed
below.

3. SOAP compression
The O(lmaxn2

maxS2
) scaling of the number of descriptor com-

ponents in SOAP is often limiting as it makes studying chemi-
cally diverse systems, such as multi-component alloys or proteins,
very computationally demanding. A widely used approach2,43–46 to
reduce this scaling is to embed the elements (and optionally radial)
channels into a fixed K-dimensional space as ck

nlm = ∑α w
k
αcα

nlm (or
ck

lm = ∑nα w
k
nαcα

nlm) and then form a compressed descriptor as

pkk′
nn′ l =∑

m
c

k
nlmc

k′
n′ lm. (25)

(or pkk′
l = ∑m ck

lmc
k′
lm) which reduces the scaling to O(lmaxn2

maxK2
)

[or O(lmaxK2
)]. To achieve good performance for K < S47 the

embedding weights are typically optimised during fitting and,
following Willatt et al., they are interpretable as encoding sim-
ilarity between different elements via the alchemical kernel43

καβ = ∑k w
k
αw

k
β = wα

⋅wβ.
This idea was extended by Darby et al.,48 where it was shown

that it is sufficient to couple the embedding channels to themselves
only, rather than taking a full tensor product across the embedded
index k, thus making the scaling linear in K, rather than quadratic.
Two flavours of these tensor-reduced descriptors were proposed.
The first is motivated by considering fitting a linear model as

φ = ∑
αβnn′ l

al
(α,n),(β,n′)p

αβ
nn′ l, (26)

where the a are the model coefficients and the element and
radial indices have been grouped together. For each value of l
the matrix of coefficients al can be approximated using symmetric
eigen-decomposition as

al
(αn),(βn′) =

K

∑

k=1
λl

kw
k
(α,n)w

k
(β,n′) (27)

This decomposition is exact for K = nmaxS with w the eigen-
vectors of al and is systematically improvable with random w.
Substituting this approximation into Eq. (26) results in

φ = ∑
αβnn′ l

∑

k
λl

kw
k
(α,n)w

k
(β,n′)p

αβ
nn′ l (28)

=∑

k,l
λl

k(∑
αn

wk
(α,n)c

α
nl) ⋅
⎛

⎝
∑

βn′
wk
(β,n′)c

β
n′ l

⎞

⎠

(29)

=∑

kl
λl

kck
l ⋅ c

k
l =∑

kl
λl

kp̃k
l , (30)

where p̃k
l are the new features. As the approximation in Eq. (27) is

systematic, any function that can be fit as a linear function of pαβ
nn′ l

can also be fit using a linear function of p̃k
l .
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An alternative and complementary view motivated by using
random mixing weights wk

(αn) is to “sketch” the power spectrum as

p̂k
l = (∑

αn
wk

αncα
nl) ⋅
⎛

⎝
∑

βn′
uk

βn′c
β
n′ l

⎞

⎠

(31)

so that

E[p̂ ⋅ p̂ ′] =∑
kl
∑

αβnn′

δγqq′

E[wk
αnuk

βn′w
k
δquk

γq′]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

σ4δ(α,n),(δ,q)δ(β,n′),(γ,q′)

cα
nlc

β
n′ lc
′δ
ql c
′γ
q′ l (32)

= σ4
∑

k
∑

αβnn′ l
(cα

nl ⋅ c
β
n′ l)(c

′α
nl ⋅ c

′β
n′ l) (33)

= Kσ4p ⋅ p′, (34)

where we have used the fact that E[wk
i w

k
j] = σ2δi j if the wk

i are
symmetric random variables with zero mean and that u and w are
independent. This is a form of tensor-sketching49 and is also system-
atic with the expected error in approximating the kernel decreasing
as K−

1
2 .

The different flavours of element-embedding and tensor-
reduction listed above are all accessible via specifying various com-
binations of R_mix, Z_mix, sym_mix and K, which specify how the
initial channels should be mixed, and the coupling keyword which
specifies how the resulting channels should be coupled together.
Note that optimisation of the embedding weights w is not avail-
able in gap_fit with normallly distributed random weights used
instead. Please see the keyword glossary for more details.

An alternative compression strategy proposed by Darby et al.50

simply involves summing over one (or more) of the α, β, n or n′

indices in Eq. (23). It is efficient to perform this summation at the
level of the density expansion coefficients cα

nl where it can also be
most easily understood; summing over a radial index n is equivalent
to projecting the 3D density onto the surface of the unit sphere whilst
summing over the element index α corresponds to forming the
total, element-agnostic density. The power-spectrum is a generalised
3-body descriptor where each term in the following sum

pαβ
nn′ l =∑

ij
cα

i,nl ⋅ c
β
j,n′ l (35)

corresponds to a triangle formed by the central atom and the neigh-
bour atoms i and j. As such, the various possible effects of this
compression scheme on an individual 3-body (correlation order 2)
term in this summation can be visualised as in Fig. 3. The differ-
ent options are labelled according to the element-sensitive νS and
radially-sensitive νR correlation orders where each summation over
an element (or radial) index lowers the respective correlation order
by one, e.g., νS = 1, νR = 1 specifies pα

nl = ∑βn′ pαβ
nn′ l.

Finally, it is also possible to achieve compression through the
experimental Z_map keyword, which allows the user to group differ-
ent elements together; equivalent to element embedding with wk

α = 1
if element α is in group k or 0 if it is not. As two densities are cou-
pled, two distinct sets of groups may be specified if desired. Please
see the keyword glossary for more details.

FIG. 3. Different SOAP compression strategies. Neighbour atoms around the
central atom (black) may be represented as element-agnostic (grey) or element-
specific (red or blue). To eliminate the radial dependence, neighbours may be
projected on the unit sphere (dashed circle) around the central atom. Reprinted
with permission from, npj Comput. Mater. 8, 166 (2022). Copyright 2015 Author(s),
licensed under a Creative Commons Attribution 4.0 License.

4. soap_turbo descriptors
The soap_turbo descriptor is a variant of SOAP optimised

for computational efficiency. A detailed account of this descrip-
tor has been given in Ref. 42. Here, we briefly describe its main
features while giving a more in-depth description of the features
that have been introduced since the publication of the original
paper, namely multispecies support and compression. A compari-
son between the soap and soap_turbo implementations of SOAP
is given in Sec. IV B.

The representation of the atomic density field in the local neigh-
borhood, that is, within a cutoff sphere of radius rcut of atom i,
is carried out in an explicitly separable form of radial and angular
channels. Therefore the expansion coefficients can also be split into
components that depend exclusively on the radial index n or angular
indices l, m:

ρi(r) = ∑

j∈Si(rcut)
∑

nlm
ci, j

nlmgn(r)Ylm(θ, ϕ), (36)

ci, j
nlm = bi, j

n ai, j
lm, (37)

where bi, j
n are the radial expansion coefficients, ai, j

lm are the angular
expansion coefficients and j runs over all neighbours of i within
the cutoff sphere. A number of smoothing and scaling functions
are introduced, to make the width of the atom-centered smooth
functions depend on the distance from the center of the SOAP
sphere. The main implementation differences between soap and
soap_turbo are the use of smoother polynomial radial basis func-
tions and several numerical tricks that allow to express the radial and
angular expansion coefficients as recursive series. There are also dif-
ferences in how multispecies support and compression are handled,
described below.
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Support in soap_turbo for multiple chemical elements is
provided by augmenting the radial basis set via a direct sum:

{g(r)} =
Ns

⊕

s=1
{g(r)}s, (38)

where s runs over the number of elements. The only advantage of
this approach compared to the regular SOAP multielement sup-
port is that each element can be represented with a different radial
basis set, including a different number of radial basis functions. One
instance where this feature may be useful is when one of the ele-
ments can be represented with fewer radial basis functions than
another, reducing the dimensionality of the descriptor and thus its
computational cost. In principle, this approach also allows for using
different cutoff radii for different elements within the same descrip-
tor although, in practice, the GAP interface currently restricts the
cutoff to be the same for all elements. The angular basis, on the other
hand, is the same for all elements.

Compression is also supported by soap_turbo through three
different approaches. The first compression scheme is a heuris-
tic recipe, that we refer to as “trivial,” which retains only the
SOAP elements that run over n = 1 for single element and the
first radial component of the element-specific basis for multiple
elements:

{p̃} ≡⊕
nn′ l
{pnn′ l}, (39)

with n = 1, N l
r + 1, . . . ,

Ns−1

∑

i=1
N i

r + 1,

n′ = 1, . . . ,
Ns

∑

i=1
N i

r , and l = 0, . . . , lmax,

where the tilde indicates the compressed descriptor and N1
r is the

number of radial basis functions for the first element, and the direct
sum continues until the last element in the descriptor has been
considered. Thus, only components with n = 1, n = N1

r + 1, etc., are
retained. Trivial compression affords of the order of a factor of 5
in dimensionality reduction without significant loss in accuracy for
most production GAP models that we have fitted so far.

The second compression scheme in soap_turbo provides a
quasiequivalence with the radial- and element-sensitive correla-
tion orders offered in regular SOAP compression introduced in
Sec. III C 3. Numerical comparisons of these compression recipes
are given in the local property example in Sec. IV.

The third compression scheme has no predefined recipe.
Instead, the user can provide an arbitrary linear transformation (via
an input text file) that projects the SOAP vector from its origi-
nal N-dimensional space to a reduced M-dimensional space, where
M < N:

p̃ = Pp, P ∈ MM×N. (40)

In all cases, the descriptor is renormalized after compression.
Finally, we remark that due to the overlap properties of the

polynomial radial basis sets and related instabilities in the numer-
ical approach employed to construct the orthonormal radial basis
used to construct soap_turbo descriptors, there is a practical limi-
tation of nmax ≈ 10. For most practical purposes (e.g., in constructing

accurate GAP force fields), there is no need to increase the size of the
radial basis set beyond ≈8 basis functions.

IV. PRACTICAL EXAMPLES
A. Si interatomic potential

Among the first successful applications of GAP was a general-
purpose interatomic potential for silicon.39 We have used the
database of atomic configurations to train a series of GAP models
to demonstrate the effect of the most crucial descriptor and ker-
nel hyperparameter choices on the performance and computational
cost of the resulting potential. The extended XYZ file, containing the
database and shared in the supplementary material of Ref. 39, was
randomly split into a training and a test set, containing 80% and
20% of the original configurations, respectively. We list the para-
meters used in the gap_fit command line in Table I with a detailed
explanation for each.

While keeping all other parameters constant, we individually
varied the SOAP parameters nmax, lmax, rcutoff and σ, as well as the
polynomial kernel exponent ζ and the number of sparse points
M. Based on the original Si GAP model, the parameters, nmax = 6,
lmax = 6, rcutoff = 5 Å, σ = 0.5 Å, ζ = 4 and M = 8000 were used.

We have evaluated the interaction energies, forces and virial
stresses of all atomic configurations in the test set with the result-
ing models, and calculated the RMSE with respect to the ab initio
energies.

To illustrate how the choice of the parameters affects the com-
putational cost of each model, we have also determined the average
calculation time per atom, using a desktop computer utilising a sin-
gle core of an Intel® CoreTM i5-9600K central processing unit (CPU)
at 3.70 GHz.

Trends are presented in Fig. 4, generally showing that more
complex models, i.e., those with higher lmax, nmax, ζ and M val-
ues, are more accurate. Thanks to the regularisation term in
the GPR, higher complexity does not result in overfitting. How-
ever, the computational cost of models with higher lmax, nmax
and sparse points is increased due to the larger number of
terms. Even though the polynomial kernel at higher orders results
in more terms, these are not calculated explicitly, therefore the
computational cost remains approximately constant at different
ζ values.

Increasing the spatial cutoff of the atomic neighbourhood envi-
ronment results in more accurate models up to 5 Å, as further
neighbours may influence the local energy function. However, at
higher cutoff values the quality of the model deteriorates, which may
be regarded as a sign of underfitting, when the available data is not
sufficient to determine the dependence of the local energy terms on
further neighbours.

The cutoff radius of SOAP or other descriptors may also be cho-
sen by considering the force constant matrix of the atomic system,
using a criterion on the spatial decay of the elements.12

The smoothness parameter σ has a strong influence on the
accuracy of the model, which is related to how the neighbour-
ing atoms are represented. Narrow Gaussians lead to fewer sim-
ilar kernel values between two atomic environments, resulting in
overfitting, whereas with wide Gaussians the resolution of the
representation is lower.
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TABLE I. Command line parameters of gap_fit used to fit a GAP model for silicon.

Key Value Comments

atoms_filename train.xyz Extended XYZ file of training configurations
gap_file gp_c5.0_n6_l6_s0.5_z4_p8000.xml Filename of output XML of GAP model
energy_parameter_name dft_energy Target energy key in the extended XYZ file.

Default: energy

force_parameter_name dft_force Target force key in the extended XYZ file.
Default: force

virial_parameter_name dft_virial Target virial stress key in the extended XYZ file.
Default: virial

e0_offset 2.0 Shifts the baseline energy which is determined
from the isolated atom energy.

sparse_jitter 1e-8 Regularisation of KMM

default_kernel_regularisation {0.001 0.1 0.05 0.0} Kernel regularisation for target values. Format:
{energy force virial hessian}

config_type_kernel_regularisation { Override factors for tagged XYZ frames
liq:0.003:0.15:0.2:0.0: format:
amorph:0.01:0.2:0.4:0.0: {config_type:energies:forces:virials:hessians}
sp:0.01:0.2:0.4:0.0:
}

gap { soap SOAP descriptor, used as a template.
n_max=6 One per element is generated, based
l_max=6 on the configurations in the database.
atom_gaussian_width=0.5 Broadening of the atoms in the neighbour density (σ)
soap_exponent=4 Exponent of the polynomial soap kernel
n_sparse=8000 Many sparse points are needed due to
cutoff=5.0 the high dimensionality of the descriptor.
cutoff_transition_width=1.0 Length scale of radial cutoff in Å
sparse_method=cur_points Sparse points are chosen using the CUR method.
covariance_type=dot_product Form of the kernel
energy_scale=3.0 Prefactor of the kernel in eV
}

The kernel regularisation hyperparameters provide control
on the accuracy and smoothness of the resulting model. Lower
values bias the potential to fit the training data more accu-
rately, but may result in overfitting. For a given spatial cutoff in
the descriptors, the kernel regularisation on the forces may be
derived from the decay of the force constant matrix or by quan-
tifying the force uncertainty from ab initio calculations.12 Find-
ing appropriate figures for the kernel regularisation of energy
and virial stress values may require cross-validation, but a typ-
ical target energy error in condensed systems is 1 meV/atom,
therefore this is often a suitable starting figure. The choices of
kernel regularisation hyperparameters is discussed extensively in
Ref. 12.

To illustrate the effect of varying the kernel regularisation
hyperparameters, we fitted a series of silicon GAP models using the

same parameters, listed in Table I, and same training database as
previously, but varied the hyperparameters corresponding to energy
(σenergy), force (σforce) and virial stress (σvirial) independently. We
have utilised the test set to predict energy, force and virial stress
values using the resulting models, and evaluated RMSE figures for
each model and quantity.

These results are shown in Fig. 5, highlighting how different
choices of regularisation hyperparameters affect the quality of the
fit. For the RMSE of the predicted energies, there is an optimal value
of σenergy, while the RMSE of the predicted forces and virial stresses
decrease monotonically when increasing σenergy. Similar opposing
changes in the errors of predicted quantities may be observed when
σforce and σvirial are varied. We attribute these trends to the epis-
temic uncertainty of our models which is due to our assumptions,
such as the locality of the descriptor or the body-order representa-
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FIG. 4. Performance (blue squares) and computational cost (red circles) of different GAP models. The performance is quantified by the RMSE of the predicted energy,
evaluated on a test set. Comparisons with respect to changes in (a) the radial resolution nmax of SOAP; (b) the angular resolution lmax of SOAP; (c) the spatial cutoff rcutoff of
SOAP; (d) the power of the polynomial kernel ζ; (e) the width σ of Gaussians representing the atoms in SOAP; (f) the number of sparse points M.

tion. These assumptions limit the simultaneous accuracy the model
may achieve in energies, forces and virial stresses, and biasing the fit
towards reproducing a particular quantity causes a deterioration in
others.

These results are intended to provide a guide to fitting
GAP models and their adaptation is almost certainly necessary
when fitting potentials representing different atomic systems. While
an exhaustive hyperparameter search is not always feasible, the
recently parallelised gap_fit allows rapid creation and subsequent
evaluation of models.

B. Local property
While the local energies predicted by GAPs in cohesive energy

models are not physical observables, there are different local atomic
properties with physical significance amenable to direct learning
within the GAP framework. SOAP descriptors are particularly suited
for this task. Examples of such models that we have trained in the
past include adsorption energies,51 effective Hirshfeld volumes52 and
core-electron binding energies (CEBEs).53 Here, we revisit the CEBE

FIG. 5. Performance of GAP models as the function of regularisation hyper-
parameters. The RMSE of the predicted energies (blue squares), forces (red
triangles) and virial stresses (blue circles) are shown as the energy (panel a),
force (panel b) and virial (panel c) regularisation hyperparameters are varied
independently.
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database of Ref. 53 and use it as a test bed for the performance
of SOAP-based local property models as a function of different
convergence parameters.

First, let us briefly provide the context for the usefulness of
CEBEs in materials science. X-ray photoelectron spectroscopy (XPS)
uses monochromatic (fixed energy) X-ray light to excite the deep-
lying core electrons in materials and molecules. In oxygen- and
carbon-containing compounds these are the 1s states. When an
X-ray photon with sufficient energy is absorbed by one such core
electron the latter becomes photoejected, in such a way that its
kinetic energy can be measured by a detector. Since the energy
of the incident photons is fixed, the difference between the mea-
sured kinetic energy and the incident energy equals the CEBE. This
CEBE is characteristic of the chemical environment around the atom
whose core electron was excited, and so an XPS experiment pro-
vides a spectrum whose characteristic peaks give insight into the
atomic structure of the material or molecule being probed. Because
the core electron is strongly localized around the nucleus and only
feels the influence of the immediate surrounding medium, XPS is

particularly well suited to learning with local atomic descriptors such
as SOAP, as we showed in Ref. 53. One of the results presented
in that paper is a database of GW-level CEBEs for a subset of the
CHO-containing molecules in the QM9 dataset,54 a large dataset of
small stable organic molecules, containing up to nine non-hydrogen
atoms.

Reference 53 presented learning curves for C1s and O1s CEBE
models trained from the QM9-GW data using soap_turbo descrip-
tors without sparsification. Here we take a more detailed look at
the effect of different technical parameters on the quality of the fit:
cutoff radius for SOAP neighbours, sparsification scheme, soap vs
soap_turbo and the effect of different compression recipes on the
results. We start out by splitting the QM9-GW CEBE database of
Ref. 53 into a training set (80% of the structures) and a test set (20%
of the structures).

The gap_fit local property feature relies on the user providing
a per-atom local property array. In this case, an ASE-format XYZ
file is provided with a list of per-atom CEBEs. The following is an
example for a formaldehyde molecule:

4
Lattice="10.89392123 0.0 0.0 0.0 10.81307256 0.0 0.0 0.0 9.01510639" \
Properties=species:S:1:pos:R:3:GW_CEBE:R:1:local_property_mask:L:1 pbc="T T T"
C 5.45500662 5.70744485 4.50565078 294.52870000 T
O 5.47139525 4.50000000 4.50000000 538.69210000 T
H 6.39392123 6.31307256 4.50174003 0.00000000 F
H 4.50000000 6.28730276 4.51510639 0.00000000 F

The fifth column contains the 1s CEBE for the C and O atoms,
given in eV in this example. Since H atoms do not have a core, CEBEs
for these atoms are not available, and we pad the array with zeros. A
mask is provided to let gap_fit know these are to be ignored during
the fit.

In addition to the database of atomic structures
and observables (CEBEs here), one needs to provide
the name of the local property as specified in the
database (local_property_parameter_name=“GW_CEBE”
here), the default regularization parameter
(default_local_property_sigma = 0.01 here,
in the same units as the local property), and
possibly offsets for the properties to be learned
(local_property0={C:290.816456:O:537.946208:H:0} here).
In our case, the 0 offset is computed as the average CEBE of C1s and
O1s core electrons separately. It is important to provide these offsets
so that the ML model only needs to fit the (smooth) differences
in the local property values, and not the absolute numbers, which
are significantly harder to learn. Otherwise, the specification of the
atomic descriptors is done in the same way as for a regular GAP
model.

All the results for this example are summarized in Fig. 6. In
panel (a) we show a comparison of models for C1s CEBEs fitted
using a soap_turbo descriptor with varying cutoff radii and varying

number of sparse points; the cutoff radius is the single most impor-
tant hyperparameter in SOAP-based models. Clearly, the accuracy
of the models can be systematically increased by increasing the
cutoff. However, the number of sparse points limits the expres-
sivity of the model, and models with less sparse points will not
benefit from further increasing the cutoff beyond a certain point.
E.g., with 50 sparse points a 3 Å model performs equal to a 7 Å
model. We observe that the statistical variation in the model perfor-
mance increases with the cutoff, due to the corresponding increase
in the size of configuration space covered by the descriptor (the error
bars are given as the standard deviation computed over ten dif-
ferent models obtained from ten different randomly chosen sparse
sets).

In Fig. 6(b) we show a comparison of C1s and O1s models fitted
using soap and soap_turbo descriptors of the same dimension-
ality (CHO-sensitive descriptors with 8 radial basis functions per
element and up to 8th degree spherical harmonics, the same basis
set as used for all the calculations in Fig. 6). soap_turbo models
perform slightly better than soap models, except for the C1s models
with maximum number (1000) of sparse points, where they perform
equally.

If Fig. 6(c) we assess the effect of using random sparse
point selection vs using CUR decomposition to select the
sparse set descriptors, as well as the possible effect of using
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FIG. 6. (a) RMSEs for a soap_turbo C1s model as a function of SOAP
cutoff and sparse set size with random selection. (b) Comparison between
soap and soap_turbo C1s and O1s models with random sparse set size
(fixed cutoff of 5 Å). (c) Effect of random and CUR sparsification strate-
gies, for a soap_turbo-based C1s model (fixed cutoff of 5 Å); the effect
of adding compression (soap_turbo’s “trivial” recipe) is also tested. (d)
Effect of different compression recipes on soap and soap_turbo C1s
model performance (fixed cutoff of 5 Å); the right axis gives the compres-
sion ratio of the descriptor as the number of dimensions of the full descriptor
(2700) divided by the number of dimensions of the compressed descriptor.
In all cases (a)–(d), error bars are estimated from the standard deviation of
the RMSEs calculated among ten different models with random sparse set
selection.

descriptor compression (soap_turbo’s “trivial” compression
recipe) on the results. For this numerical test, the perfor-
mance of all models is essentially the same for most practical
purposes.

Finally, in Fig. 6(d) we perform a thorough numerical test
of different compression recipes on the accuracy of the QM9-GW
models. The i_j labeling convention refers to the νR ≡ i and νS ≡ j
soap sensitivity parameters discussed above, and their quasiequiv-
alent recipes for soap_turbo. Additionally, soap_turbo can use
the “trivial” compression scheme as detailed above. In addition to

the root-mean-squared error (RMSE), the graph shows the compres-
sion ratio computed as the number of dimensions of the compressed
descriptor divided by those of the full descriptor. Unsurprisingly,
the errors increase with the compression ratio, with most com-
pression recipes providing better performance for soap_turbo,
except for 2_1, 1_2 and 1_1, where soap performs slightly
better. That is, the advantage of using soap_turbo increases with
the degree of compression, whereas soap performs equally or
slightly better than soap_turbo at low compression ratios. The
“trivial” compression recipe is only available for soap_turbo and
provides arguably the best compromise between accuracy and com-
pression ratio (a factor of 4.3 vs uncompressed SOAP) among the
tested schemes, at least for this particular test with the QM9-GW
database.

Although not shown here, the relative advantage of
soap_turbo vs soap increases when looking at the O1s models,
likely because the QM9-GW training database we used contains
significantly more C1s data (11.5k entries) than O1s data (1.5k
entries). This indicates better generalization and data efficiency for
soap_turbo, although it is important to note that the performance
of each descriptor is dataset specific.

C. High-entropy alloy
The Mo–Nb–Ta–V–W quinary high-entropy alloy studied by

Byggmästar et al.38 is a complex, multicomponent system. To
illustrate the generation of a GAP model, we provide the para-
meters, complete with explanations and comments, that were
used to test and benchmark the MPI-ScaLAPACK implementa-
tion of the gap_fit program.37 Here we highlight a recent fea-
ture which conveniently allows the fitting parameters to be stored
in a file, rather than provided as command line arguments. The
fitting parameters are entered in the file supplementary material
in a key=value format, with commentary on each provided
in Table II.

The fitting database is openly available as the supplementary
material of the article by Byggmästar et al.,38 which may
be downloaded from the Fairdata repository.55 The fitting
procedure can then be carried out by running the com-
mand gap_fit config_file=config with the database file
db_HEA_reduced.xyz and the configuration file config in the
same directory. For the parallel implementation, the command
line mpirun -np 2 gap_fit config_file=config executes the
process on two computational cores. Hybrid OpenMP-MPI execu-
tion is possible, for which the number of threads may be adjusted by
setting the environment variable as export OMP_NUM_THREADS=4.
For the specific queuing system available to the user, the documen-
tation should be consulted.

The resulting GAP model is stored in the gp_HEA.xml
file and a set of text files according to the naming pattern

from quippy.potential import Potential
p = Potential(param_filename="gp_HEA.xml")
...
a.calc = p
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TABLE II. Contents of file config used to fit a GAP model for the Mo–Nb–Ta–V–W quinary high-entropy alloy.

Key Value Comments

atoms_filename db_HEA_reduced.xyz Extended XYZ file of training configurations
do_copy_at_file F Do not copy XYZ data to output XML
gap_file gp_HEA.xml Filename of output XML of GAP model
sparse_jitter 1e-8 Regularisation of KMM

default_kernel_regularisation {0.002 0.1 0.5 0.0} Kernel regularisation for target values
format: {energy force virial hessian}

config_type_kernel_regularisation { Override factors for tagged XYZ frames
dimer:0.1:1.0:1.0:0.0: format:
hea_short_range:0.05:0.8:2.0:0.0: {config_type:energies:forces:virials:hessians}
hea_surface:0.01:0.4:1.0:0.0:
isolated_atom:0.0001:0.04:0.01:0.0:
liquid_composition:0.01:0.5:2.0:0.0:
liquid_hea:0.01:0.5:2.0:0.0:
short_range:0.05:0.8:0.8:0.0:
surf_liquid:0.01:0.4:0.2:0.0
}

gap { Two-body descriptor, used as a template.
distance_2b One per element pair is generated.
n_sparse=20 In one dimension few sparse points
sparse_method=uniform (uniformly spaced) are enough.
covariance_type=ard_se Kernel is squared exponential (se).
cutoff=5.0
cutoff_transition_width=1.0
energy_scale=10.0
lengthscale_uniform=1.0
:

soap SOAP descriptor, used as a template.
n_sparse=4000 One per element is generated, based
sparse_method=cur_points on the configurations in the database.

covariance_type=dot_product Many sparse points are needed due to
n_max=8 the high dimensionality of the descriptor.

l_max=4 Sparse points are chosen using the CUR method.
soap_exponent=2.0
atom_gaussian_width=0.5
cutoff=5.0
cutoff_transition_width=1.0
energy_scale=1.0
}

gp_HEA.xml.sparseX.GAP_∗. The interatomic potential may be
accessed as a Calculator in ASE as

Where the Python variable a indicates an ASE Atoms object.
Massively parallel simulations with GAP models are pos-

sible with LAMMPS. To use the high-entropy alloy potential,
the following lines should be added to the LAMMPS input
file:

Where the LAMMPS atom types 1, 2, 3, 4, and 5 are mapped to
Mo, Nb, Ta, V and W, respectively.

pair_style quip
pair_coeff∗∗gp_HEA.xml "" 42 41 73 23 74

V. CONCLUSION AND OUTLOOK
We have reviewed the GAP framework from an implemen-

tation point of view, highlighting how a generic sparse GPR for-
malism is adapted for the prediction of interatomic potentials and
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related quantities. An overview of the software package, coding prac-
tices and recent developments was provided, together with usage
examples and detailed explanations of adjustable parameters, with
references to the theory. The QUIP and GAP suite remains under
maintenance and in active development by the authors, and will
serve as a test bed for exploring ideas in the field of MLIPs. With
interfaces to Python and major simulation packages, GAP serves as
a useful tool for computational modelling.

Future developments will include the inclusion of more
descriptors, such as Atomic Cluster Expansion (ACE),2 rigorous
means for uncertainty quantification, utilising modern computing
architectures such as GPUs, and the implementation of more robust
and efficient solvers for the fitting procedure. With the availability
and popularity of more modern programming languages such as
Python or Julia, Fortran may appear as an outdated choice. How-
ever, its interoperability with MPI and related libraries such as
ScaLAPACK has proved to be an advantage in utilising the more
traditional, but still highly prevalent, high performance computing
facilities consisting of networked servers. As supercomputers and
programming skills change, the current framework might prove to
be too restrictive, but the practical insight documented here and the
software will remain valuable for future endeavours.

SUPPLEMENTARY MATERIAL

Please see the supplementary material for the fitting parameters
in a key=value format.

ACKNOWLEDGMENTS
This work was financially supported by the NOMAD Centre of

Excellence (European Commission Grant Agreement No. 951786)
and the Leverhulme Trust Research Project (Grant No. RPG-2017-
191). A.P.B. acknowledges support from the CASTEP-USER project,
funded by the Engineering and Physical Sciences Research Council
under the Grant Agreement No. EP/W030438/1. M.A.C. acknowl-
edges personal funding from the Academy of Finland under Grant
No. 330488. We acknowledge computational resources provided by
the Max Planck Computing and Data Facility provided through
the NOMAD CoE, the Scientific Computing Research Technology
Platform of the University of Warwick, the EPSRC-funded HPC
Midlands + consortium (Grant No. EP/T022108/1), ARCHER2
(https://www.archer2.ac.uk/) via the UK Car-Parinello consortium
(Grant No. EP/P022065/1), CSC-IT Center for Science, and the
Aalto University Science-IT project. We thank the technical staff at
each of these HPC centres for their support.

AUTHOR DECLARATIONS
Conflict of Interest

A.P.B. and G.C. are listed as inventors on a patent filed
by Cambridge Enterprise, Ltd. related to SOAP and GAP
(US patent 8843509, filed on 5 June 2009 and published on 23
September 2014). A.P.B., M.A.C., and G.C. benefit from licensing
the GAP software to industrial users. Not-for-profit use for academic
and educational purposes is granted under the Academic Software
License for no cost. The other authors have no conflicts to disclose.

Author Contributions

Sascha Klawohn: Data curation (lead); Formal analysis (equal);
Methodology (supporting); Validation (supporting); Visualization
(equal); Writing – original draft (supporting). James P. Darby: Data
curation (lead); Formal analysis (supporting); Methodology (sup-
porting); Validation (supporting); Writing – original draft (support-
ing). James R. Kermode: Funding acquisition (equal); Methodology
(supporting); Supervision (equal); Writing – original draft (support-
ing). Gábor Csányi: Conceptualization (equal); Funding acquisition
(equal); Methodology (equal); Supervision (equal); Writing – orig-
inal draft (supporting); Writing – review & editing (supporting).
Miguel A. Caro: Conceptualization (supporting); Formal analysis
(supporting); Methodology (equal); Visualization (equal); Writing –
original draft (equal); Writing – review & editing (support-
ing). Albert P. Bartók: Conceptualization (equal); Formal analysis
(equal); Funding acquisition (equal); Methodology (equal); Super-
vision (equal); Validation (equal); Writing – original draft (equal);
Writing – review & editing (equal).

DATA AVAILABILITY
All databases referred to this work are available in public data

repositories.

ARGUMENTS OF GAP_FIT

We provide a snapshot of the currently available command line
arguments of the GAP_FIT program for completeness. As the QUIP
and GAP packages are under constant development, this list may
change. It should also be noted that most of the parameters need
little adjustment, whereas those that pertain to the particular fitting
problem are mandatory, requiring the user to specify a value. Some
keywords have aliases, often less descriptive, but both of which are
acceptable. These are indicated as option (alias).

Common arguments

config_file File as alternative input to command line arguments.
Newlines are converted to spaces.

atoms_filename (at_file) extended XYZ file containing
database configurations in a concatenated form

gap Initialisation string for GAPs
e0 Atomic energy value to be subtracted from energies before fit-

ting, and added back on after prediction. Possible options
are: a single number, used for all species; or by species, e.g.:
{Ti:-150.0:O:-320.1}.

local_property0 Local property value to be subtracted from the
local property before fitting, and added back on after predic-
tion. Possible options are: a single number, used for all species;
or by species: e.g. {H:20. 0:Cl:35.0}.

e0_offset Offset of baseline. If zero, the offset is the average atomic
energy of the input data or the e0 specified manually.

e0_method Method to determine the constant energy base-
line e0, if not explicitly specified. Possible options:
isolated (default, each atom present in the XYZ needs
to have an isolated representative, with a valid energy);
average (e0 is the average of all total energies across
the XYZ).
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default_kernel_regularisation (default_sigma) Prior
assumption of error in (energies forces virials hessians)

default_kernel_regularisation_local_property
(default_local_property_sigma) Prior assumption
of error in local_property.

sparse_jitter Extra regulariser used to regularise the sparse
covariance matrix before it is passed to the linear solver. Use
something small, it really shouldn’t affect your results, if it does,
your sparse basis is still very ill-conditioned.

hessian_displacement (hessian_delta) Finite displacement
to use in numerical differentiation when obtaining second
derivative for the Hessian covariance.

baseline_param_filename (core_param_file) QUIP XML
file which contains a potential to subtract from data, and added
back after prediction.

baseline_ip_args (core_ip_args) QUIP initialisation string
for a potential to subtract from data, and added back after
prediction.

energy_parameter_name Name of energy property in the input
extended XYZ file that describes the data

local_property_parameter_name Name of local_property
as a column in the input XYZ file that describes the data.

local_property_mask_parameter_name Used to exclude local
properties on specific atoms from the fit. In the XYZ, it must
be a logical column.

force_parameter_name Name of force property, as three
columns, in the input XYZ file that describes the data.

virial_parameter_name Name of virial property in the input
XYZ file that describes the data.

stress_parameter_name Name of stress property (6-vector or 9-
vector) in the input XYZ file that describes the data - stress
values only used if virials are not available. Note the opposite
sign and standard Voigt order.

hessian_parameter_name Name of hessian property (column) in
the input XYZ file that describes the data

config_type_parameter_name Allows grouping on configura-
tions into. This option is the name of the key that indi-
cates the configuration type in the input XYZ file. With the
default, the key-value pair config_type=bcc would place that
configuration into the group bcc.

kernel_regularisation_parameter_name
(sigma_parameter_name) Kernel regularisation para-
meters for a given configuration in the database. Overrides
the command line values for both defaults and config-
type-specific values. In the input XYZ file, it must be
prepended by energy_, force_, virial_ or hessian_
keywords.

force_mask_parameter_name To exclude forces on specific
atoms from the fit. In the XYZ, it must be a logical column.

parameter_name_prefix Prefix that gets uniformly appended in
front of {energy,local_property,force,virial,. . .}

_parameter_name
config_type_kernel_regularisation

(config_type_sigma) The kernel regularisation
values to choose for each type of data, when the con-
figurations are grouped into config_types. Format:
{configtype1:energy:force:virial:hessian:

config_type2: energy:force:virial:hessian}
kernel_regularisation_is_per_atom (sigma_per_atom)

Interpretation of the energy and virial regularisation para-
meters specified in default_kernel_regularisation and
config_type_kernel_regularisation. If T, these are
interpreted as per-atom errors, and the variance will be scaled
according to the number of atoms in the configuration. If F,
they are treated as absolute errors and no scaling is performed.
NOTE: values specified on a per-configuration basis (see
kernel_regularisation_parameter_name) are always
absolute, not per-atom.

do_copy_atoms_file (do_copy_at_file) Copy the input XYZ
file into the GAP XML file (should be set to False for NetCDF
input).

sparse_separate_file Save sparse point data in separate file,
recommended for large number of sparse points.

sparse_use_actual_gpcov Use actual GP covariance for sparsi-
fication methods.

gap_file (gp_file) Name of output XML file that will contain
the fitted potential

verbosity Verbosity control. Options: NORMAL, VERBOSE, NERD,
ANALYSIS.

rnd_seed Random seed.
openmp_chunk_size Chunk size in OpenMP scheduling.
do_ip_timing To enable or not the timing of the interatomic

potential.
template_file Template XYZ file for initialising object.
sparsify_only_no_fit If true, sparsification is done, but no

fitting is performed. The sparse index is printed by adding
print_sparse_index=file.dat to the descriptor specifica-
tion string under the gap option.

dryrun If true, exits after memory estimate, before major
allocations.

condition_number_norm Norm for condition number of matrix
A of the linear system; O: 1-norm, I: inf-norm, <empty>: skip
calculation (default)

linear_system_dump_file Basename prefix of linear system
dump files. Skipped if <empty> (default).

mpi_blocksize_rows Blocksize of MPI distributed matrix rows.
Affects efficiency and memory usage slightly. Maximum if
specified as 0 (default).

mpi_blocksize_cols Blocksize of MPI distributed matrix
columns. Affects efficiency and memory usage considerably.
Maximum if 0. Default: 100.

mpi_print_all If true, each MPI processes will print its output.
Otherwise, only the first process does (default).

Arguments of the GAP string

The following keywords are to be specified for each descriptor
within the gap command line argument.

energy_scale (delta) Set the typical scale of the function being
fitted, or the specific energy term if using multiple descriptors.
It is equivalent to the standard deviation of the Gaussian Pro-
cess in the probabilistic view, and typically this would be set to
the standard deviation (i.e. root mean square) of the function
that is approximated with the Gaussian Process.
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f0 Set the mean of the Gaussian Process. Defaults to 0.
n_sparse Number of sparse points to use in the sparsification of the

Gaussian Process
config_type_n_sparse Number of sparse points in each configu-

ration type. Format: type1:50:type2:100
sparse_method Sparsification method. Possible options:

RANDOM(default), PIVOT, CLUSTER, UNIFORM, KMEANS,
COVARIANCE, NONE, FUZZY, FILE, INDEX_FILE,
CUR_COVARIANCE, CUR_POINTS. For explanations, see
below.

lengthscale_factor (theta_fac) Set the width of Gaussians
for the Gaussian and piecewise polynomial kernel by multi-
plying the range of each descriptor by lengthscale_factor.
Can be a single number or different for each dimension. For
multiple numbers in lengthscale_factor, separate each
value by whitespaces.

lengthscale_uniform (theta_uniform) Set the width of
Gaussians for the Gaussian and piecewise polynomial kernel,
same in each dimension.

lengthscale_file (theta_file) Set the width of Gaussians for
the Gaussian kernel from a file. There should be as many real
numbers as the number of dimensions, in a single line.

sparse_file Sparse points from a file. If sparse_method=FILE,
descriptor values as real numbers listed in a text file, one ele-
ment per line. If sparse_method=INDEX_FILE, 1-based index
of sparse points, one per line.

mark_sparse_atoms If true, reprints the original extended XYZ file
after sparsification process, with a sparse_property column
added, which is true for atoms associated with a sparse point.

add_species If true (default), create species-specific descriptors,
using the descriptor string as a template.

covariance_type Type of covariance function to use. Available:
GAUSSIAN, DOT_PRODUCT, BOND_REAL_SPACE, PP (piecewise
polynomial).

soap_exponent (zeta) Exponent of soap type dot product
covariance kernel

print_sparse_index If given, after determining the sparse points,
their 1-based indices are appended to this file.

unique_hash_tolerance Hash tolerance when filtering out dupli-
cate data points.

unique_descriptor_tolerance Descriptor tolerance when fil-
tering out duplicate data points.

Options for sparse point selection

none No sparsification, selects all datapoints.
index_file Reads indices of sparse points from the file given by

sparse_file and selects those from the de-duplicated data.
file Reads sparse points from the file given by sparse_file.
random Selects n_sparse random descriptors with the same

probability.
uniform Computes a histogram of the data with n_sparse bins and

returns a data point from each bin. This option is only suitable
for low-dimensional descriptors.

kmeans The k-means clustering algorithm is performed on all
descriptors to generate n_sparse clusters, of which the
descriptors closest to the cluster means are selected as sparse
points.

fuzzy A fuzzy version of k-means clustering56 is used to generate
n_sparse clusters.

cluster A k-medoid clustering based on the full covariance matrix
of descriptors is performed, resulting in n_sparse clusters.
The medoid points are selected as sparse points.

pivot The n_sparse “pivot” indices of the full covariance matrix
are found, and used as the sparse points.

covariance Greedy data point selection based on the sparse
covariance matrix, to minimise the GPR variance of all
datapoints.

cur_points A CUR decomposition, based on the datapoints, is
carried out to find the most representative n_sparse points.

cur_covariance A CUR decomposition, based on the full covari-
ance matrix, is carried out to find the most representative
n_sparse points.

Descriptors

The GAP module implements over 30 descriptors, most
of which being experimental or unsupported. In the following,
we include those that are commonly used by practitioners and
supported by the GAP developers.

distance_2b arguments

cutoff Cutoff for distance_2b-type descriptors.
cutoff_transition_width Transition width of cutoff for

distance_2b-type descriptors.
Z1 Atom type #1 in bond. Any atom type if missing.
Z2 Atom type #2 in bond. Any atom type if missing.
resid_name Name of an integer property in the atoms object giv-

ing the residue identifier of the molecule to which the atom
belongs.

only_intra Only calculate bonds, i.e. intramolecular pairs with
equal residue identifiers

only_inter Only apply to non-bonded atom pairs, i.e.
intermolecular pairs with different residue identifiers.

n_exponents Number of exponents.
exponents Exponents in a list format, for example: {-12 -6}
tail_range Tail range.
tail_exponent Tail exponent.

soap arguments

cutoff Cutoff distance.
cutoff_transition_width Transition width of cutoff function.
cutoff_dexp Cutoff decay exponent.
cutoff_scale Cutoff decay scale.
cutoff_rate Inverse cutoff decay rate.
l_max lmax (spherical harmonics basis band limit) for soap-type

descriptors.
n_max nmax (number of radial basis functions) for soap-type

descriptors.
atom_gaussian_width (atom_sigma) Width of atomic Gaus-

sian functions for soap-type descriptors.
central_weight Weight of central atom in environment.
central_reference_all_species Place a Gaussian reference

for all atom species densities. By default (F) only consider when
neighbour is the same species as centre.
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average Whether to calculate averaged SOAP - one descriptor per
atoms object. If false (default), atomic SOAP is returned.

diagonal_radial Only return the n1 = n2 elements of the power
spectrum.

covariance_sigma0 σ0 parameter in polynomial covariance
function.

normalise (normalize) Normalise descriptor, so magnitude is 1.
In this case the kernel of two equivalent environments is 1.

basis_error_exponent 10−basis_error_exponent is the
max difference between the target and the expanded function.

n_Z How many different types of central atoms to consider.
n_species Number of species for the descriptor.
species_Z Atomic number of species.
xml_version Version of GAP the XML potential file was created.
Z Atomic number of central atom, 0 is the wild-card or Atomic

numbers to be considered for central atom, must be a list.

soap compression arguments

Z_mix Mix the element channels together if present.
R_mix Mix the radial channels together if present.
sym_mix Specifies whether a single set of mixing weights is

used or whether two sets are used. If sym_mix=T, tensor-
decomposition is enabled. If sym_mix=F tensor-sketching is
used.

K Integer specifying how many mixed channels to create. For
example, R_mix=T Z_mix=T K=5 will create 5 mixed chan-
nels whereas R_mix=F n_max=6 Z_mix=T K=5 will result in
K∗n_max = 30 channels.

coupling If coupling=T full tensor-product coupling is applied
across the resulting channels after mixing, whereas if
coupling=F element-wise coupling is applied instead. The
only exception to this rule occurs for Z_mix=T R_mix=F (or
similarly for Z_mix=F R_mix=T) with coupling=F. Here,
element-wise coupling is applied across the mixed-element
channels but tensor-product coupling is applied across the
unmixed radial channels, resulting in pk

nn′ l (or similarly pαβ
kl ).

mix_shift Integer specifying the shift to the default seed that is
used for the random number generator used to generate the
mixing weights.

nu_R radially sensitive correlation order. Allowed values are 0, 1 and
2 (default).

nu_S species sensitive correlation order. Allowed values are 0, 1 and
2 (default).

Z_map Commas separate groups within a density. A colon separates
the two densities if present. Otherwise the groups are taken to
be equal. Z_map = {1, 3, 22 23 24 } has a separate chan-
nel for H and Li but treats Ti, V and Cr as identical Z_map
= {1, 3, 22, 23, 24 : 1, 3, 22 23 24} has a separate
channel for each element in the first density. In the second den-
sity there is a separate channel for H and Li but Ti, V and Cr are
identical

soap_turbo arguments

rcut_hard Hard cutoff distance.
rcut_soft Soft cutoff distance.
n_species Number of species for the descriptor.

l_max lmax (spherical harmonics basis band limit) for soap-type
descriptors.

nf Sets the rate of decay of the atomic density in the region between
soft and hard cutoffs.

radial_enhancement Integer index (0, 1 or 2) that simulates the
effect of modulating the radial overlap integral with the radial
distance raised to this number.

basis Options: poly3 or poly3gauss chooses a 3rd and higher
degree polynomial radial basis set and augments it with a
Gaussian at the origin, respectively.

compress_file Optional user-provided file specifying the com-
pression recipe.

compress_mode Optionally provides a predefined compression
recipe.

central_index 1-based index of central atom species_Z in the
species array.

alpha_max Radial basis resolution for each species.
atom_sigma_r Width of atomic Gaussian functions for soap-type

descriptors in the radial direction.
atom_sigma_r_scaling Scaling rate of radial sigma: scaled as a

function of neighbour distance.
atom_sigma_t Width of atomic Gaussian functions for soap-type

descriptors in the angular direction.
atom_sigma_t_scaling Scaling rate of angular sigma: scaled as a

function of neighbour distance.
amplitude_scaling Scaling rate of amplitude: scaled as an inverse

function of neighbour distance.
central_weight Weight of central atom in environment.
species_Z Atomic number of species, including the central atom.
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