Approximation Guarantees for Shortest
Superstrings: Simpler and Better

Matthias Englert &
University of Warwick, Coventry, UK

Nicolaos Matsakis &
Charles University, Prague, Czech Republic

Pavel Vesely &
Charles University, Prague, Czech Republic

—— Abstract

The Shortest Superstring problem is an NP-hard problem, in which given as input a set of strings,

we are looking for a string of minimum length that contains all input strings as substrings. The
Greedy Conjecture (Tarhio and Ukkonen, 1988) states that the GREEDY algorithm, which repeatedly
merges the two strings of maximum overlap, is 2-approximate. We have recently shown (STOC 2022)
that the approximation guarantee of GREEDY is at most % ~ 3.425. Before that, the best
established upper bound for this was 3.5 by Kaplan and Shafrir (IPL 2005), which improved upon
the upper bound of 4 by Blum et al. (STOC 1991). To derive our previous result, we established
two incomparable upper bounds on the overlap sum of all cycle-closing edges in an optimal cycle
cover and utilized lemmas of Blum et al.

We improve the more involved one of the two bounds and, at the same time, make its proof
more straightforward. This results in an improved approximation guarantee of @ ~ 3.396
for GREEDY. Additionally, our result implies an algorithm for the Shortest Superstring problem
having an approximation guarantee of @ ~ 2.466, improving slightly upon the previously best

guarantee of @ ~ 2.475 (STOC 2022).

2012 ACM Subject Classification Theory of computation — Approximation algorithms analysis
Keywords and phrases Shortest Superstring problem, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.29

Funding Nicolaos Matsakis: Supported by GA CR project 22-22997S.
Pavel Vesely: Partially supported by GA CR project 22-22997S and by Center for Foundations of
Modern Computer Science (Charles University project UNCE/SCI/004).

1 Introduction

The shortest superstring problem naturally models a scenario when we have a set of overlap-
ping strings which we need to represent in a compressed form. However, unlike in typical
lossless data compression such as Lempel-Ziv schemes, we would like the input strings to
be human-readable in the result. That is, the compressed representation of input strings
should be a string over the same alphabet that contains all of the strings as substrings. This
viewpoint of superstrings as compressed representations has been the crux of their very recent
application for representing k-mers, which are k-long substrings of a genomic sequence [19].
These k-mers are typically highly overlapping and in such cases, the shortest superstring of
k-mers has length close to the theoretical minimum of the number of distinct k-mers.
Formally, we define the Shortest Superstring problem (SSP) as follows: For a given set of
strings S (over a fixed alphabet), compute a minimum-length common superstring for the
input strings, i.e., a string that contains any s € S as a substring. SSP is a classical and
well-studied problem mentioned in several algorithmic textbooks, e.g., [25, 18, 9, 5]. SSP

© Matthias Englert, Nicolaos Matsakis, and Pavel Vesely;
37 licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 29; pp.29:1-29:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:m.englert@warwick.ac.uk
https://orcid.org/0000-0002-8859-7731
mailto:nickmatsakis@gmail.com
https://orcid.org/0000-0002-0386-749X
mailto:vesely@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-1169-7934
https://doi.org/10.4230/LIPIcs.ISAAC.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2

Approximation Guarantees for Shortest Superstrings: Simpler and Better

is APX-hard (i.e., it is NP-hard to obtain a (1 + €)-approximation for some ¢ > 0) and
remains so even when restricted to binary alphabets or input strings having the same length
r > 3 [24].

Therefore, assuming P £ NP, the best we can hope for are constant-guarantee approxima-
tion algorithms. However, determining the best possible constant guarantee is a long-standing
open problem, studied for more than three decades. First, Blum et al. [3] designed an al-
gorithm for which they proved an upper bound of 3 on its approximation ratio. Several papers
subsequently obtained better approximations using various algorithms [22, 6, 13, 1, 2, 4, 20, 16]
and the currently best approximation guarantee is 3%;7%/5 ~ 2.475 [7]. In contrast, the
hardness result only rules out a 1.003-approximation [12].

Perhaps the most well-known approximation algorithm for SSP is GREEDY which it-
eratively merges two strings of maximum overlap until only one string remains (if there
are more pairs of strings with maximum overlap, we choose arbitrarily). GREEDY is an
appealing choice to implement in practice due to its simplicity and close-to-optimal results
in experiments [8, 14, 19]. However, the worst-case behavior of GREEDY is far from un-
derstood. Blum et al. [3] showed that GREEDY is 4-approximate, an upper bound which
was improved to 3.5 by Kaplan and Shafrir [11] and recently, in our previous work, to
Lﬁ‘/ﬁ /2 3.425 [7]. It is easy to see that GREEDY is at least 2-approximate by considering
the input {c(ab)¥, (ba)*, (ab)*c} for k — oo [21]. The Greedy Conjecture states that this
lower bound is tight [21]. Despite an extensive effort to prove or disprove this, the three
works [3, 11, 7] comprise the only improvements to the approximation guarantee of GREEDY
since the conjecture was first made.

Our results. We make progress on determining the optimal approximation guarantees of
GREEDY and of another, more involved algorithm; the latter one improves the best proven
approximation guarantee for SSP. In particular, we show the following theorems.

» Theorem 1. The approzimation guarantee of GREEDY is at most @ ~ 3.396.

» Theorem 2. An algorithm from the literature that combines GREEDY and a Max-ATSP
approzimation algorithm (outlined in Appendiz A.2) computes a superstring of length at most
@ ~ 2.466 times the optimal.

Furthermore, our result implies improved approximation guarantees for two algorithms
which are variants of GREEDY established in [3], namely TGREEDY and MGREEDY (outlined
in Appendix A.2).

As in previous work, all our improved approximation bounds follow from a better inequality
that relates certain overlaps between strings to the cost of the optimal solution.

2 The General Setting and Our Technical Contribution

Preliminaries. The set of input strings is denoted by S = {s1, ..., s|g|}. Without loss of
generality, it is assumed that no string of S is a substring of another string of S. The length
of a string s is the number of its characters and we denote it by |s| € Z*. The concatenation
of two strings s and ¢ is denoted by st. A substring of s starting at character ¢ and ending at
character j > ¢ of s is denoted by s[i, j].

By ov(s,t) we denote the maximum overlap to merge a string s to the left of a string
t # s, i.e., the longest suffix of s that is a prefix of ¢. By ov(s, s) we denote the maximum
self-overlap of string s with itself, which is smaller than |s|. By pref(s,¢) we denote the
prefix of s that remains after removing the overlap with ¢; thus, s = pref(s,t)ov(s,t) and
|pref(s, t)] = |s| — |ov(s, 2)].

M. Englert, N. Matsakis, and P. Vesely

2.1 Overlap Graph, Cycle-Closing Edges, and Overlap Inequalities

The overlap graph G, plays a central role in SSP approximation, including the analysis of
GREEDY. It is a complete directed graph with self-loops in which vertices correspond to the
input strings, and the weight of each edge (s,t) equals the overlap length |ov(s,t)].

Note that the optimal solution OPT for a fixed input corresponds to an optimal (maximum
overlap) Hamiltonian path in Goy; however, finding such a path is in general a hard problem.
On the other hand, finding an optimal cycle cover CC in G4, can be done efficiently. In
particular, in a variant of GREEDY, called MGREEDY, such a cycle cover is produced as a
by-product. Observe that the total overlap of edges in CC is only larger than that of the
optimal Hamiltonian path OPT; indeed, by adding the edge between the endpoints of OPT,
we obtain a Hamiltonian cycle, which is a particular cycle cover (not necessarily optimal).

The GREEDY algorithm can be stated as a heuristic for a Hamiltonian path in Ge,: Sort
the edges of G, by their overlap lengths non-increasingly, then go over the sorted list and
add the i-th edge e; to the path unless:

(i) there would be a vertex of indegree or outdegree more than one after adding e; (that is,
edge e; shares a head node or a tail node with an edge picked in a previous step), or

(ii) e; closes a cycle.

The crucial difference between GREEDY for computing an approximate superstring and
MGREEDY for the optimal cycle cover CC is the condition (ii), not present in the latter, i.e.,
MGREEDY is defined just by condition (i). Call an edge of CC cycle-closing if it is the last
edge of its cycle added by MGREEDY to CC (i.e., it has the smallest overlap on the cycle,
breaking ties arbitrarily).

To obtain a bound on the approximation guarantee of GREEDY, we intuitively need a
suitable upper bound on the total overlap of cycle-closing edges, denoted o (strictly speaking,
when analyzing GREEDY we consider only the optimal cycle cover of a certain subset of
nodes in Gy, but this does not make a difference for our technical contribution; we explain
these details in Appendix A.1). Furthermore, the overlap bound should be in terms of the
length (and not overlap) of OPT.

This intuition was formalized in [3], who proved that o < 3 -n, where n is the length
of the optimal solution OPT. Moreover, they show that such a bound is sufficient for a
constant upper bound on the approximation ratio of GREEDY. Later works improved the
inequality to 0 < 2.5-n [11] and to 0 < 2.425 - n [7]. Our technical contribution is to show
that o < 2.396 - n.

In fact, these overlap inequalities are proven and applied in a stronger form of 0 < n+ - w,
where w is a lower bound on n. To define w, we associate each edge (s,t) of the overlap
graph G, also with a length which equals the prefix length |pref(s,t)| = |s| — |ov(s, t)|. Then
w is the total length of all edges in the optimal cycle cover CC.

2.2 Main technical result

We now state our main technical contribution.

» Theorem 3. Let S be any input set of strings, and consider an optimal superstring of
length n and an optimal cycle cover CC of length w, computed using MGREEDY. Let o be the
sum of overlaps of all cycle-closing edges of CC. Then it holds that

o<n+pB-w forf=(V67T—4)/3~1.396

29:3

ISAAC 2023

29:4

Approximation Guarantees for Shortest Superstrings: Simpler and Better

The proofs of Theorems 1 and 2 using Theorem 3 are the same as in previous work, but we
provide an outline for completeness. In Appendix A.1 we describe how Theorem 3 implies the
improved upper bound on the approximation guarantees of GREEDY, using another inequality
from Blum et al. [3]. Then, in Appendix A.2, we show how to derive better approximation
guarantees for a family of SSP algorithms that are based on a Max-ATSP approximation
algorithm; the argument is the same as in previous work (e.g., see [4, 15, 16, 7]).

2.3 Overview of the proof of Theorem 3

We build on our previous work [7], where one of the conceptual contributions was in classifying
the cycles of CC into three main types. To define them, for a cycle ¢ of CC we let
o(c) = the overlap of the cycle-closing edge of ¢, i.e., the smallest overlap on cycle ¢, and
w(c) = the total length of edges on ¢, i.e., the sum of prefixes of the edges of c.
The classification is done according to the o(c)/w(c) ratio.

» Definition 4. For parameter 3 defined in Theorem 3, a cycle ¢ of CC is

extra large, if o(c) < 8- w(c),

large, if 5 - w(c) < o(c) < 2w(c), and

small, if 2w(c) < o(c).

The intuition behind the names is that short cycles contain highly periodic strings (e.g.,
abcabcabea), whereas strings in large cycles are not so periodic (e.g., abedeabed)

In order to prove that o < n + 8- w for = (V67 — 4)/3, we will assume, without loss
of generality, that CC contains no extra large cycle. This follows by the argument in [7,
Section 5.1], though for a different overlap to length ratio threshold between large and extra
large cycles (which was suitably chosen to match the upper bound o < n 4 1.425w). For
completeness, we repeat the proof in Appendix B.

Our analysis in [7] proceeds by showing two incomparable bounds: one better if large
cycles have much larger total length than small cycles, and another one for the other case.
Namely, letting w, be the sum of lengths of all small cycles and w, be the sum of lengths of
large cycles, the first upper bound is

o<n+ws+ 15w (1)
and the second upper bound is

31+3.¢57w

<
o< n-+wy+ 1

s ~n+ wy + 3.832w; . (2)
Using the better of (1) and (2) together with w = ws + wy, it follows that o < n + 1.425w
(recall that the extra large cycles are not taken into account here).

Our improvement and simplification comes from a better version of the second upper
bound. Specifically, we show

o< n4wi+ (y—1) ws ®n+ w; + 2.884w; , (3)

where v = (V67 + 19)/7 ~ 3.884. In [7], the bound was shown by first modifying the
input in such a way that the overlap graph G,, has the property that all short cycles in the
optimal cycle cover only consist of a single edge that is a self-loop. The analysis is then
done utilizing this somewhat simpler cycle cover. However, the modification of the input
introduces an additional loss that has to be accounted for in the bound. Our analysis is more
direct and works with the original optimal cycle cover, which eliminates the need for the

M. Englert, N. Matsakis, and P. Vesely

input modification and therefore the additional loss. This brings new technical complications
because certain properties no longer hold in these more general cycle covers. Nevertheless,
we are able to provide a slightly simpler and more straightforward analysis.

Choice of parameters. To combine the two incomparable bounds, o < n + ws + 1.5 - wy

and o <n+(y—1) ws + wp, we set A = 27%3 As long as v > 2, this means A € [0,1]. We

then multiply the first bound by (1 — A) and the second bound by A and add them together.

Using ws +wy = w we get 0o < n + (% — 47%6) -w. In Theorem 3, we want to show that
o<n+ f-w and so if

3 1

c < 4

2 4y—6" p (4)
we are done. We will also need

2

3-(B— m) > 1 (for Lemma 6) (5)

or equivalently
6
v>24 351 (for Lemma 12(b)). (6)

The maximum of these two lower bounds (4) and (5) on /3 is minimized for v = (v/67+19)/7
and at this point both bounds are equal to (v/67 — 4)/3, which is our choice for 3. Apart
from this, we will use a number of further inequalities that hold for this choice of parameters
(but are not tight). Namely,

b) 1

3 + m < 7 (for Lemma 12(c)) , (7)

B> ﬁ (for Lemma 12(d)) , and (8)

~v > 2 (for Lemma 12(d)) . 9)
3 Analysis

In this section we show our improved second bound o < n + wy + (7 — 1) - ws, following a
similar general strategy as in [7].

3.1 Proof Qutline

Consider a directed Hamiltonian cycle CCy of maximum total overlap in Go,. This cycle is
in particular also a (not necessarily maximum) cycle cover. Therefore, the total overlap of
CCp must be bounded from above by the total overlap of CC. Our goal is to show something
stronger than this: that there is a gap between the total overlap of CCy and the total overlap
of CC that depends in a specific way on the properties of the cycles in CC. Specifically, let £
and S denote the sets of large and small cycles in CC, respectively, and let |CC;| denote the
total overlap of a cycle cover CC;. Then we want to show that the total overlap |CC| of CC
is by at least

> (ofe) =7+ w(e)) + D (o(e) = 2+ w(e)) (10)

ceS ceL

29:5

ISAAC 2023

29:6

Approximation Guarantees for Shortest Superstrings: Simpler and Better

larger than the total overlap |CCy| of CCy. Showing this is sufficient to establish o <
n+we + (v — 1) - ws because

|| |8
n>Z|s;|f|CCO\>Z|s;|f|CC|+Z)+ (o(c) = 2-w(c))
ceS ceL

3wl + SSule + 3ol () + Sfle) -2 ()

ceS ceL ceS cel
= (ole) = (y = 1) - w(e) + Y _(o(e) -

ceS ceL
:0—(7—1)-Zw(c)—2w(c):0—(7—1)~w3—w5.

ceS cel

Related cycles. Before proceeding to describe how we show (10), we borrow the following
definition of related cycles from [7] that is useful to improve our final bounds slightly. We
note that a simpler version of our proof could still be carried out without this additional
concept, but at the cost of a slightly weaker bound.

» Definition 5. We define a relation R between cycles as follows. A small cycle ¢ of CC is
related to a large cycle ¢ of CCif w(c) < (8/2—1/6) - w(c") and there exists an edge e in Goy
that has one endpoint in cycle ¢, the other endpoint in cycle ¢ and satisfies |ov(e)| > - w(c').
In this case, we write (c,c') € R.

In [7], the following lemma is shown. We use different values for 8 and ~, but the proof
of the lemma only requires that 3 - (8 — 2/(y — 2)) > 1 and this is still satisfied for our new
choice of 8 = (v/67 —4)/3 and v = (5 — 33)/(3 — 23).

» Lemma 6 (Lemma 7.3 in [7]). For every large cycle ¢ of CC, at most two different small
cycles of CC are related to c'.

Transforming cycle cover CCj into CC in small steps. We analyze the difference of the
total overlap between CCy and CC in small steps, gradually changing the Hamiltonian cycle
CCy into a sequence of cycle covers CCy, CCy, CCy, ... until we obtain CC. We modify a cycle
cover CC; by removing two edges f = (v/,v) and f' = (u,u’) from CC; \ CC and replace
them with the new edges e = (u,v) and €’ = (v/,u’). The resulting set of edges forms a (not
necessarily optimal) cycle cover again. Furthermore, if the edges are chosen such that e € CC
or ¢’ € CC (or both), then the resulting cycle cover is closer to the cycle cover CC in the sense
that the cardinality of the symmetric difference of the corresponding edge sets decreases.

For a cycle cover CC;, let M(CC;) be the set of small cycles ¢ in CC for which CC;
contains no edge with one endpoint in ¢ and the other endpoint being a string not in ¢. We
define

o(i) = Z <min{|ov(é)| | € € CC; connects two strings of ¢} — v - w(c)
cEM(CC,)

- > (-1

c’:(c,c’)ER

The idea is to perform such edge swaps to obtain a sequence CCy, CCy,CCy, ..., CC, = CC
of cycle covers, such that each cycle cover CC; is closer to CC than the previous one CC;_1
and such that |CC;| > |CCy| + ¢(i). Then this implies (10) since

M. Englert, N. Matsakis, and P. Vesely

|CC| = [CCo| = |CCx| — |CCo| = (k)
= Z (min{|ov(é)\ | € € CC connects two strings of ¢} — v - w(c)
ceM(CC)
- 3 (w023
c’:(c,c’)ER
= Z (min{|ov(é)| | € € CC connects two strings of ¢} — v - w(c)
ceS
- X (wo-23)
c:(c,c’)ER
= Z (0(0) —v-w(e) — Z (w(c’) — 0(26)>>
ceS c:(c,c’)ER
=Yy w@) - Y Y (we) - 49)
ceS ceES ¢':(e,¢')ER
> (o) =y -w(e) =Y _(2-w(e) = o(c) ,
ceS ceLl

where the last step follows from Lemma 6 and the fact that for large cycles ¢/, by definition,
2w(c’) > o(c).

We use induction to show that it is possible to construct the desired sequence of cycle
covers that satisfies |CC;| > |CCp| + ¢(7). The base case is i = 0 and we have ¢(i) = 0 because
M(CCqy) = 0. (Strictly speaking, it may happen that M(CCq) # 0; however, in such a case,
the optimal Hamiltonian cycle CCy is a small cycle of CC, thus CCy = CC. Moreover, in such
a case, (1) implies 0 < n + w.)

In the following, we assume that we have a cycle cover CC; with |CC;| > |CCo| + ¢(4)
and we show how to construct CC;;1 such that |[CC;q]| > |CCq| 4+ ¢(i + 1) and such that
the symmetric difference between CC;;1 and CC is smaller than the symmetric difference
between CC; and CC. Specifically, we will identify a swap of four edges as described above to
obtain CC;11 from CC; such that:

one of the edges that are swapped in belongs to CC, which implies that the symmetric

difference between CC;;; and CC will decrease, and

|CCita| — [CC| = @(i 4+ 1) — ().

This proves the claim due to the induction hypothesis.

3.2 Important Lemmas

We begin with the following bound on the overlap between two strings from different cycles
of CC.

» Lemma 7 (Lemma 9 in [3]). Let ¢ and ¢’ # ¢ be two cycles in CC. It holds that |ov(s, s")| <
w(c) +w(c') for any two strings s € ¢ and s’ € ¢.

When changing cycle cover CC; into CC,11, we identify an edge e = (u,v) € CC\ CC;
that we add into CC;y;. This triggers removal of edges f = (v/,v) and [’ = (u,u’) from
CC; and addition of one more edge ¢’ = (v',u’) that does not belong to CC; but may or
may not be in CC; see Figure 1. In the following, we provide several lower bounds on
lov(e)| + |ov(e")| — Jov(f)| — |ov(f’)|, which is the total overlap length difference between CC;
and CC;y;. The first lemma is the well-known Monge Condition.

29:7

ISAAC 2023

29:8

Approximation Guarantees for Shortest Superstrings: Simpler and Better

uE€CCNCC,
A

feCC\ CC feCC\CC

\J
oy ’
U € ¢ CCz v

Figure 1 Tllustration of the notation used in lemmas in Section 3.2.

» Lemma 8 (Lemma 7 in [3]). Let e = (u,v), f = (v',v), f' = (u,u), ¢ = (v',u') be edges
in Goy, such that max{|ov(e)|,ov(e')|} > max{|ov(f)|,|ov(f')|}. Then |ov(e)| + |ov(e’)| —
lov(f)] = lov(f)] = 0.

The following lemma is shown in [7, Lemma 7.5] for the special case of inputs where each
small cycle of CC consists of one string. Below, we generalize it for any input and cycle.

» Lemma 9. Let e = (u,v), f = (v,v), f/ = (u,v'), and & = (v',u') be edges in G, such
that e is an edge in cycle ¢ in CC. Then,

lov(e)| + [ov(e)] — |ov(£)] = [ov(f)] > |ov(e)| — max{|ov(f)], [ov(f')]} — w(c) .

Before proving Lemma 9, we recall a few definitions from the literature. Consider a cycle
¢ of CC having k nodes s1, $2, ..., S;. Assuming that the cycle-closing edge of ¢ is (sg, $1),
we define s(c) as the string pref(sy, so)pref(sa, s3) ... pref(sg, s1).

A semi-infinite string is a string obtained by concatenating an infinite number of finite
strings. A semi-infinite string s is periodic if s = ts for a non-empty string ¢, that is, s = .

A string t is a factor of a string s if s = t'y for an integer i > 0, where y is a (possibly
empty) prefix y of . By factor(s) of s, we denote the shortest factor of s and we define
period(s) = |factor(s)|. Finally, we say that a string s has a periodicity of length ¢ for ¢ < |s|
if s is a prefix of the semi-infinite string *° for some string x of length q.

Next, we need a basic observation.

» Observation 10. Let s and t be two strings that are substrings of some string z. Then,
lov(s,t)| > min{|s|, |t|} — period(z).

Proof. We can assume without loss of generality (w.l.o.g.) that |s| < [¢t|. This is because,
otherwise, let sg, tr, and zr be the reverse of the strings s, t, and z, respectively. We
observe that ov(tgr,sr) = ov(s,t) and period(zg) = period(z). Clearly also |sg| = [s],
|tr| = |t|. Therefore, the inequality in the statement of the observation is equivalent to
lov(tr, sg)| > min{|sg|, |tr|} — period(zr). Hence, if |s| > |t| then |tg| < |sg| and we can
apply the arguments below to the strings tg, sgr, and zg instead of s, ¢, and z (in this order).
Since s and t are substrings of z we can write them as s = z[i,i + |s| — 1] and ¢t =
z[j,7+t|—1] for some i and j. Because of the period of z, we can assume that i € [1, period(z)]
and j € [1, period(z)].
If j > 4, we have ov(s,t) = z[j,i+|s| — 1] and hence |ov(s,t)| =i —j+|s| > |s| — period(z).
If j < i and j + period(z) > |z|, then j 4 period(z) > |z| > i + |s|] — 1 and hence,
lov(s,t)| > 0> j —i>|s| — period(z).
If j < i and j + period(z) < |z|, we observe that ¢ = z[j,j + |t| — 1] also has z[j +
period(z), min{j + |[t| — 1+ period(z), |z|}] as a prefix (indeed, if j+ [t| — 1 + period(z) < |z|
this is not just a prefix of ¢, but exactly t). Since i < j + period(z) and |s| < |¢|, we
have ov(s,t) = z[j + period(z),7 + |s| — 1] and hence, |ov(s,t)| =i — j + |s| — period(z) >
|s| — period(z). <

M. Englert, N. Matsakis, and P. Vesely 29:9

Proof of Lemma 9. Since ov(f) and ov(f’) are substrings of s(c)°°, we use Observation 10
to get

lov(e")| > [ov(ov(f),ov(f"))|
> min{lov(f)], [ov(f")|} — period(s(c)**) > min{[ov(f)], [ov(f")[} — w(c).
It follows that

lov(e)| + lov(e)] — lov(f)] — [ov(f")]
> lov(e)| +min{lov(f)], [ov(f)[} = w(e) = ov(f)[— lov(f)]
= lov(e)| — max{lov(f)], [ov(f)[} — w(c). <

The following lemma is, also, due to [7]. Here, we state it in a slightly different way, but
the proof is essentially the same and included in Appendix C for completeness.

» Lemma 11. Consider the edges e = (u,v), f = (v,v), [/ = (u,u’), and ¢/ = (v, o)
between (not necessarily different) nodes u,u',v,v" in Go,. Suppose v’ and v’ are strings in
the same cycle ¢’ of CC and that whichever of f or f’ has larger overlap connects a string
from cycle ¢ and a string from cycle ¢’ # ¢ (if |ov(f)| = |ov(f')] then it is sufficient if one of
them satisfies this). If |ov(e)] > w(c) + w(c'), then

lov(e)| + [ov(e)] — |ov(f)] — lov(f")| > |ov(e)| — w(c) .

The following lemma draws conclusions from the previous ones in a way that will be
useful later for our analysis.

» Lemma 12. Consider the edges e = (u,v), [= (V' ,v), f' = (u,v'), and ¢’ = (v',u')

between (not necessarily different) nodes u,u',v,v" in Goy,. Suppose e is an edge in a cycle ¢

of CC. Suppose further that |ov(e)| > max{|ov(f)|, |ov(f')|} and the edge of f and [’ that has

larger overlap connects a string of cycle ¢ and a string of cycle ¢ # ¢ (if |ov(f)| = |ov(f")],

then either one of f and [’ may satisfy this condition). All of the following statements hold:

(a) fov(e)] + lov(e")[— [ov(f)| — [ov(f")] = 0.

(b) Ifw(c) = (B/2—1/6) - w(c), then [ov(e)| + |ov(e’)] — [ov(f)| — |ov(f")] = |ov(e)| — yw(c).

(c) Ifw(c) = (B—1)-w(c), then |ov(e)| + |ov(e')] — |ov(f)] — |ov(f")] = |ov(e)| — yw(c) —
w(cd)/2 4+ w(c)/2.

(d) Furthermore, if v’ and u' are strings in the same cycle in CC, then also |ov(e)|+ |ov(e')| —
V()] — lov()] > mas{ov(e")| — yw(e’), |ov(e)] — yeu(e) + Jou(e)] — yule)}.

Proof. We show the relevant lower bounds on |ov(e)| 4 |ov(e’)| — |ov(f)| — |ov(f')| separately.

(a) Due to Lemma 8, we have |ov(e)| + |ov(e')| — Jov(f)| — |ov(f")| > 0.

(b) If w(c) > (8/2 —1/6) - w(c'), due to Lemma 9, we have

jov(e)| + ov(e")| — lov(f)] — lov(f")| = ov(e)] — max{lov(f), lov(f")[} - w(c)
> Jov(e)] — 2u(e) — w(c') fov(e)| — yu(e),

where the second step uses Lemma 7 and the last inequality follows from 2+6/(35—1) = ~.
(c) If w(c) > (8 —1)-w(c), we have due to Lemma 9 that

lov(e)| 4 Jov(e")] = lov(f)] = lov(f")] > |ov(e)| = max{|ov(f)], [ov(f")[} — w(c)
> |ov(e)| — 2w(c) — w(c)
= |ov(e)| — gw(C) —w(c)/2 = w(c)/2+w(c)/2
> Jov(e)| — yw(c) —w(c')/2 + w(c)/2,

where the second step uses Lemma 7 and the last inequality follows from 5/2 + 1/(2(8 —
1) <.

ISAAC 2023

29:10 Approximation Guarantees for Shortest Superstrings: Simpler and Better

v, ep € CC wy, el Vg
>A4
O
—
fheCc;\ CC 9 fi € CC;\ CC
W
g
Y. R4

Wy 6/2 Ut er € CC W

Figure 2 Illustration of the notation. Note that we also allow nodes to be equal to one another
here, e.g., it could be that w; = w,, in which case e; = €5, vy = vy, en = €}, and f] = f5.

(d) = Suppose v' and v’ are strings in the same cycle in CC. If |ov(e)| > w(c)+w(c’), we apply
Lemma 11 to get |ov(e)|+|ov(e')|—|ov(f)|—|ov(f")| > |ov(e)|—w(c) > Jov(e')|—yw(c).
Otherwise, we have |ov(e)| < w(c) + w(c¢’) and hence,

lov(f)] < w(c) +w(c) = w(c') +yw(c) = (v = Dw(e)
< w(c) + (v = Dole) — (v = Dw(c)
w(c) + (v = Dlov(e)] = (v = Dw(e) < yw(c),

since it holds 8 > ﬁ and o(c) > Pw(c) for any large or small cycle ¢ (recall that we
assume that CC contains no extra large cycle). We get |ov(e)| + |ov(e’)| — |ov(f)| —
lov(f)] = fov(e")] = [ov(f)[= |ov(e')] = yw(c).

Suppose v’ and u’ are strings in the same cycle in CC. Due to Lemma 7,

lov(e)| + Jov(e')] — ov(f)] — lov(f")| > |ov(e)| + [ov(e")| — 2max{lov(f)], ov(f")[}
> |ov(e)| — 2w(c) + |ov(e")| — 2w(c)
> lov(e)| = yw(c) + |ov(e’)| — yuw(c). <

3.3 The Induction Step

We specify how an edge swap is made at a fixed step ¢ in which we obtain cycle cover CC; 1
from CC;. We start by identifying the largest-overlap edge m = (v, wy,) in CC; \ CC, breaking
ties arbitrarily. Six further edges will be important. First, let e, = (vp, wp) and e; = (vg, wy)
be the edges in CC that share heads and tails with m, respectively. Further, let f{ = (vy, ws)
and f5 = (vp,w;) be the two edges in CC; \ CC that share heads with e; and tails with ey,
respectively. Lastly, define €} = (v, wy) and e}, = (v¢, wy). See Figure 2 for a summary of
this notation. It is important to note that the six strings vy, wp, V4, Wy, v¢, and w; are not
necessarily different.

With this, we can define two potential edge swaps. In the first one, we add e; and €} to
the cycle cover and instead remove m and f;. In the second one, we add ej, and €/, to the cycle
over and instead remove m and f5. Which one of these two swaps we will perform depends
on a few properties of the edges involved. First of all, we assume that |ov(ep)| > |ov(et)].
Otherwise, all the remaining arguments follow symmetrically by considering e; instead of ey,
and vice versa. Furthermore, we have that

lov(en)| = lov(m)], (11)

M. Englert, N. Matsakis, and P. Vesely

since otherwise |ov(m)| > |ov(ep)| > Jov(e;)| and m would be added to CC by the greedy

algorithm for the optimal cycle cover before e, and e;, contradicting the choice of m as an

edge of largest overlap in CC; \ CC.
We observe that there are two reasons why ¢(i + 1) may be larger than ¢(i).
The first potential reason is a difference between the sets M(CC;1) and M(CC;). We
know that M(CC;11) 2 M(CC;), because if a cycle ¢ is in M(CC;), then there is no edge
in CC; connecting a string of ¢ to a string of another cycle. That means that the edges f
and f’ that we remove from CC; in the process of constructing CC;; either have both
their endpoints in ¢ or both their endpoints not in c. If both endpoints of both edges f
and f’ are part of ¢, then also the two edges that are swapped in to obtain CC;y; from
CC; have their endpoints entirely in ¢. Therefore, ¢ would still be in M(CC;41) after the
swap. If both endpoints of both edges f and f’ are outside of ¢, then also the two edges
that are swapped in to obtain CC,;; from CC; have their endpoints entirely outside of
c. Again, ¢ would still be in M(CC;41) after the swap in this case. Finally, if one of f
and f’ has both endpoints in ¢ and the other one has both endpoints outside of ¢, then
the two edges that are swapped in both have one endpoint in ¢ and the other endpoint
outside of c¢. However, this is not possible because one of the edges we swap in is e}, or e;
and must therefore be part of the optimal cycle cover CC.
We can further observe that M(CC;41) \ M(CC;) must either be equal to 0, {c}, {¢'}, or
{c, '}, where ¢ and ¢ are the cycles that ej, and e; belong to in CC, respectively. (It is
possible that ¢ = ¢’.) To see this, observe that one edge being swapped out to obtain
CC;41 from CC; is m and that m has one endpoint (wy,) in ¢ and the other endpoint (v;)
in ¢/. However, for each cycle of CC, it is clear from a parity argument that the number
of edges of CC; connecting the cycle to other cycles must be even. Hence, for a cycle ¢” to
be in M(CC;41) \ M(CC;), each of the edges being swapped out must have a string from
cycle ¢’ as an endpoint. This can only be true for ¢ or ¢’ and not for any other cycle.
Overall, if this reason for the difference between ¢(i + 1) and ¢(i) applies, we have that

o(i+1) — (i) = Z <Inin{|ov(é)| | & € CC; connects two strings of ¢} — v - w(c)
CGM(CC1+1)\M(CCI)
_ n o)
> (w-75))
c:(c,c’)ER

The second potential reason why ¢(i + 1) may be larger than ¢(i) is that for a cycle

¢ € M(CC;) the term min{|ov(é)| | é € CC; connects two strings of ¢} could change.

However, this can only happen if M(CC;;1) \ M(CC;) = (0 and, furthermore, it can
only happen for a cycle ¢ when both edges f and f’ that are swapped out have both
their endpoints in cycle c. In this case, all four strings involved in the swap (either
Up, Wy, W, and vy Or vy, wi, wp, and v;), must be part of the same cycle in CC. If
the value min{jov(é)| | é € CC;41 connects two strings of ¢} is larger than the value
min{|ov(é)| | & € CC; connects two strings of ¢}, then an edge in argmin{|ov(é)| | é €
CC; connects two strings of ¢} must have been swapped out. This means, that if f
and f’ are the edges being swapped out to obtain CC;;1 from CC;, then min{|ov(é)] |
é € CC; connects two strings of ¢} = min{|ov(f)|, |ov(f')|}. If e and €’ are the two edges
being swapped in, the new value of min{|ov(é)| | é € CC,;11 connects two strings of ¢} can
be at most min{|ov(e)l,|ov(e’)|} because e and e’ are in CC;1; and satisfy the condition
that they connect two strings of ¢. So overall, in this situation,

¢(i+1) — ¢(i) < minflov(e)], [ov(e") [} — min{lov(f)], [ov(f)[} -

29:11

ISAAC 2023

29:12

Approximation Guarantees for Shortest Superstrings: Simpler and Better

In summary, we note that only one of the two reasons can apply for any fixed step . If there
is an increase of ¢(i + 1) over ¢(i) due to the first reason (a change in the set M(CC; 1)
compared to M(CC;)), then there is no increase due to the second reason and vice versa.
We are now ready to complete the proof by showing how to select one of the two identified
swap operations such that the total overlap increases by at least ¢(i + 1) — ¢(i).
If m connects two strings of the same cycle in CC, then observe that M(CC;41) = M(CG,;).
We swap in ej, and e}, and swap out f5 and m. Since |ov(es)| > |ov(m)| by (11), we can
apply Lemma 8 and establish that the total overlap does not decrease when this swap is
performed.
Furthermore, if vy, wp, v¢, and w, all belong to the same cycle of CC, then
the total overlap increases by [ov(ep)| + |ov(eh)| — |ov(f3)| — |ov(m)| > |ov(ey)| —
lov(f4)| > min{|ov(ep)|, lov(es)|} — min{|ov(f})], Jov(m)|}, where the second inequality
uses |ov(f4)| < |ov(m)| by the definition of m. This is the only case in which

min{|ov(e)| | e is edge of CC; connecting two strings of cycle ¢}

can change for a cycle in ¢ € M(CC;) and the increase is at least min{|ov(ep)|, |ov(eb)|} —
min{|ov(f3)[, lov(m)|} > ¢(i + 1) — ¢(i), as required.
If m connects strings of two different cycles in CC and |ov(e;)| > |ov(m)|. Let ¢ be the
cycle of e, and ¢ be the cycle of e;. If w(c) > w(c'), we swap in e = ej, and €’ = e}, and
swap out f/ = f} and m. Otherwise, we swap in e = e; and ¢’ = € and swap out f' = f]
and m.
We distinguish between these two cases:
Suppose w(c) > w(c).
Then, if ¢ € M(CC;11)\ M(CC,;), Lemma 12(d) applies and we know that the increase
in total overlap due to the swap is |ov(e)|+|ov(e)| — |ov(m)| — |ov(f")| > max{|ov(e')| —
~yw(c'), lov(e)|—yw(c)+|ov(e")|—yw(c')} > ¢(i+1)—d(7), as required since ¢p(i+1)—d(7)
is either equal to |ov(e’)|—yw(c’) or equal to |ov(e)| —yw(c)+]|ov(e’)|—~yw(c') depending
on whether M(CC; 1)\ M(CC;) = {c'} or M(CC;y1) \ M(CC;) = {,c}.
Otherwise, if ¢/ ¢ M(CC;41)\ M(CC;), Lemma 12(a) and (b) both apply and we know
that the increase in total overlap due to the swap is |ov(e)|+|ov(e’)|—|ov(m)|—|ov(f’)| >
max{0, lov(e)| — yw(c)} > ¢(i + 1) — ¢(i), as required since ¢(i + 1) — ¢(4) is either
equal to 0 or equal to |ov(e)| — yw(c) depending on whether M(CC;41) \ M(CC;) =0
or M(CCp1) \ M(CC;) = {c}.
Suppose w(c) < w(c).
Then, the same argument as above holds with the only difference being that the roles of e
and e’ and of ¢ and ¢’ are reversed. Specifically, if ¢ € M(CC;y1)\M(CC;), Lemma 12(d)
applies with the roles of e and €’ and the roles of ¢ and ¢’ reversed. It follows that
the increase in total overlap due to the swap is |ov(e)| + |ov(e’)| — |ov(m)| — |ov(f)| >
max{|ov(e)| —yw(c), lov(e")| —yw(c") + |ov(e)| —yw(c)} > ¢(i + 1) — ¢(¢), as required.
Otherwise, if ¢ ¢ M(CC;y1) \ M(CC;), Lemma 12(a) and (b) both apply (again with
the roles of e and ¢’ and ¢ and ¢’ reversed) and we know that the increase in total overlap
due to the swap is |ov(e)| + |ov(e’)| — |ov(m)| — |ov(f’)| > max{0, |ov(e')| — yw(c)} >
o(i + 1) — ¢(i), as required.
If m connects strings of two different cycles in CC and |ov(e;)| < |ov(m)|, then we swap
in e, and e} and swap out f4 and m. Let ¢ be the cycle of e, and ¢’ be the cycle of e;.
If M(CCit1) = M(CC;), then Lemma 12(a) shows that the total overlap does not
decrease, while the potential ¢(i) does not increase.

M. Englert, N. Matsakis, and P. Vesely

—— References

1

10

If ¢ € M(CCiq1) \ M(CC;), then w, and v; must both be strings in cycle ¢’ as
otherwise, v’ is a string of cycle ¢’ and w, is a string of a different cycle and thus
e}, which is an edge in CC,;;1, would connect a string of cycle ¢’ to a string of
another cycle. Thus, by Lemma 12(d), |ov(en)| + |ov(es)| — |ov(m)| — |ov(f5)] >
max{[ov(es)| — yw(c'), lov(en)| — yw(c) + fov(es)| — yw(c)} = ¢(i + 1) — (i), as
required.

If M(CCiy1) \ M(CC;) ={c} and (c,c’) € R, we first observe

w(e) = Jov(m)| —w(c') > Jov(es)| — w(c") > o(c") —w(c') = (B —1) - w(c),

where the third inequality follows from the fact that e; is an edge of the cycle ¢
and the last step follows because ¢’ is not extra large. Therefore, we can apply
Lemma 12(c) which is sufficient because w(c)/2—w(c)/2 = w(c)/2+w(d)/2—w(d) >
lov(m)|/2—w(c") > o(c")/2—w(c) and therefore, |ov(ep,)|+|ov(es)|—|ov(m)|—|ov(f3)| >
lov(e)| —yw(c) —w(c')/2+w(c)/2 = |ov(e)| —yw(c) —w(c) +o(') /2 = ¢(i+1) — ¢(i),
as required.
If M(CCiy1) \ M(CC;) ={c} and (¢, ') € R, there are two possibilities.
1. If ¢ is a small cycle, then w(c’) < o(¢/)—w(c') < Jov(er)|—w(c’) < Jov(m)|—w(c) <
w(c), where the first step uses the definition of a small cycle and the last step uses
Lemma 7.

2. If ¢ is a large cycle and (¢, ') ¢ R, then, because |ov(m)| > |ov(et)| > fw(c’) by

the definition of related cycles, w(c) > (8/2 —1/6) - w(c').
Either way w(c) > (8/2 — 1/6) - w(c¢’), which means that Lemma 12(b) implies
lov(en)| +|ov(ez)| — |ov(m)| = |ov(f3)| = |ov(en)| = yw(e) = ¢(i+1) — ¢(i), as required.

Chris Armen and Clifford Stein. Improved length bounds for the shortest superstring problem.
In Proceedings of the 4th International Workshop on Algorithms and Data Structures (WADS),
pages 494-505, 1995. doi:10.1007/3-540-60220-8_88.

Chris Armen and Clifford Stein. A 2 2/3 superstring approximation algorithm. Discret. Appl.
Math., 88(1—3):29*57, 1998. do0i:10.1016/50166-218X(98)00065-1.

Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. Linear approximation

of shortest superstrings. Journal of the ACM, 41(4):630—-647, 1994. doi:10.1145/179812.

179818.

Dany Breslauer, Tao Jiang, and Zhigen Jiang. Rotations of periodic strings and short
superstrings. J. Algorithms, 24(2):340-353, 1997. doi:10.1006/jagm.1997.0861.

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

Artur Czumaj, Leszek Gasieniec, Marek Piotréw, and Wojciech Rytter. Sequential and
parallel approximation of shortest superstrings. J. Algorithms, 23(1):74-100, 1997. doi:
10.1006/jagm.1996.0823.

Matthias Englert, Nicolaos Matsakis, and Pavel Vesely. Improved approximation guarantees
for shortest superstrings using cycle classification by overlap to length ratios. In Proceedings
of the 54th ACM Symposium on Theory of Computing (STOC), pages 317-330. ACM, 2022.
doi:10.1145/3519935.3520001.

Alan M. Frieze and Wojciech Szpankowski. Greedy algorithms for the shortest common
superstring that are asymptotically optimal. Algorithmica, 21(1):21-36, 1998.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/CB09780511574931.

Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation
algorithms for asymmetric TSP by decomposing directed regular multigraphs. Journal of the
ACM, 52(4):602-626, 2005. doi:10.1145/1082036.1082041.

29:13

ISAAC 2023

https://doi.org/10.1007/3-540-60220-8_88
https://doi.org/10.1016/S0166-218X(98)00065-1
https://doi.org/10.1145/179812.179818
https://doi.org/10.1145/179812.179818
https://doi.org/10.1006/jagm.1997.0861
https://doi.org/10.1006/jagm.1996.0823
https://doi.org/10.1006/jagm.1996.0823
https://doi.org/10.1145/3519935.3520001
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1145/1082036.1082041

20:14

Approximation Guarantees for Shortest Superstrings: Simpler and Better

11 Haim Kaplan and Nira Shafrir. The greedy algorithm for shortest superstrings. Inf. Process.
Lett., 93(1):13-17, 2005. doi:10.1016/j.ipl.2004.09.012.

12 Marek Karpinski and Richard Schmied. Improved inapproximability results for the shortest
superstring and related problems. In Proceedings of the 19th Computing: The Australasian
Theory Symposium (CATS), pages 27-36, 2013.

13 S. Rao Kosaraju, James K. Park, and Clifford Stein. Long tours and short superstrings. In
Proceedings of the 35th IEEE Symposium on Foundations of Computer Science (FOCS), pages
166-177, 1994. doi:10.1109/SFCS.1994.365696.

14 Bin Ma. Why greed works for shortest common superstring problem. Theor. Comput. Sci.,
410(51):5374-5381, 2009. doi:10.1016/j.tcs.2009.09.014.

15 Marcin Mucha. A tutorial on shortest superstring approximation. https://www.mimuw.edu.
pl/~mucha/teaching/aa2008/ss.pdf, 2007. [Accessed 15-June-2023].

16 Marcin Mucha. Lyndon words and short superstrings. In Proceedings of the 24th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 958-972, 2013. doi:10.1137/1.
9781611973105.69.

17 Katarzyna Paluch, Khaled Elbassioni, and Anke van Zuylen. Simpler approximation of the
maximum asymmetric traveling salesman problem. In Proceedings of the 29th Symposium
on Theoretical Aspects of Computer Science (STACS), pages 501-506, 2012. doi:10.4230/
LIPIcs.STACS.2012.501.

18 Steven Skiena. The Algorithm Design Manual, Third Edition. Texts in Computer Science.
Springer, 2020.

19 Ondrej Sladky, Pavel Vesely, and Karel Bfinda. Masked superstrings as a unified framework
for textual k-mer set representations. bioRziv, 2023. doi:10.1101/2023.02.01.526717.

20 Z. Sweedyk. A 2%-approximation algorithm for shortest superstring. SIAM J. Comput.,
29(3):954-986, 1999. doi:10.1137/S0097539796324661.

21 Jorma Tarhio and Esko Ukkonen. A greedy approximation algorithm for constructing shortest
common superstrings. Theor. Comput. Sci., 57:131-145, 1988. doi:10.1016/0304-3975(88)
90167-3.

22 Shang-Hua Teng and Frances Yao. Approximating shortest superstrings. SIAM Journal on
Computing, 26(2):410-417, 1997. doi:10.1137/S0097539794286125.

23 Jonathan S. Turner. Approximation algorithms for the shortest common superstring problem.
Inf. Comput., 83(1):1-20, 1989. doi:10.1016/0890-5401(89)90044-8.

24 Virginia Vassilevska. Explicit inapproximability bounds for the shortest superstring problem.
In 30th International Symposium, MFCS, Gdansk, Poland, volume 3618 of Lecture Notes in
Computer Science, pages 793-800. Springer, 2005.

25 Vijay Vazirani. Approximation algorithms. Springer, 2001.

A Deriving Approximation Guarantees from Theorem 3

The technical contribution of the paper is proving Theorem 3 that shows an improved
inequality for overlaps of cycle-closing edges in terms of the optimal superstring length n
and the length w of the optimal cycle cover CC. In the next two subsections, we explain how
our improved approximation guarantees follow, using essentially the same arguments (and
algorithms) as in previous work.

A.1 The GREEDY Algorithm for SSP

The |S|? edges of the overlap graph G, are assumed to be ordered by non-increasing overlap
length. The GREEDY algorithm for SSP chooses edges from this order, unless an edge shares
an endpoint with an already chosen edge or closes a cycle. The edges corresponding to the
latter case are called bad back edges. As proven in [3], bad back edges do not intersect each
other, forming a laminar family of edges. Each inner-most bad back edge forms a cycle

https://doi.org/10.1016/j.ipl.2004.09.012
https://doi.org/10.1109/SFCS.1994.365696
https://doi.org/10.1016/j.tcs.2009.09.014
https://www.mimuw.edu.pl/~mucha/teaching/aa2008/ss.pdf
https://www.mimuw.edu.pl/~mucha/teaching/aa2008/ss.pdf
https://doi.org/10.1137/1.9781611973105.69
https://doi.org/10.1137/1.9781611973105.69
https://doi.org/10.4230/LIPIcs.STACS.2012.501
https://doi.org/10.4230/LIPIcs.STACS.2012.501
https://doi.org/10.1101/2023.02.01.526717
https://doi.org/10.1137/S0097539796324661
https://doi.org/10.1016/0304-3975(88)90167-3
https://doi.org/10.1016/0304-3975(88)90167-3
https://doi.org/10.1137/S0097539794286125
https://doi.org/10.1016/0890-5401(89)90044-8

M. Englert, N. Matsakis, and P. Vesely

in the output of GREEDY and each such cycle is called culprit. The sum of lengths of all
culprit cycles is denoted by w. and the sum of overlap lengths of the cycle-closing edges of
all culprits is denoted by o,.

Blum et al. have shown the following two inequalities (Section 5 in [3]):

|GREEDY(S)| < 2n 4+ o, — w, (12)
o<n+2w (13)

Moreover, the application of the GREEDY algorithm for the optimal cycle cover CC on
the set of strings comprising the culprit cycles only, outputs the exact same set of culprit
cycles (Lemma 15 in [3]). By this and (13) it follows that o. < n 4 2w,, which by (12) gives
|GREEDY(S)| < 4n, completing their proof.

Theorem 3 shows that o < n+ @w which implies that o, < n+ @wc using the same
syllogism (Lemma 15 in [3]). By this and (12), we have |GREEDY(S)| < @n ~ 3.396 - n,
completing our proof.

A.2 SSP Algorithms Based on Max-ATSP Approximations

Blum et al. proposed the following 4-approximate SSP algorithm, called MGREEDY:
1. Apply GREEDY to find an optimal cycle cover CC.

2. Open all cycle-closing edges in CC to obtain a set of strings called representatives.
3. Concatenate the representatives in an arbitrary order.

If instead of concatenating the representatives in the third step, we merge them using a
Max-ATSP approximation algorithm (executed on the overlap graph of the representatives),
then we will obtain an SSP approximation algorithm which, obviously, cannot perform
worse. This is the idea behind the 3-approximate TGREEDY algorithm [3]. The Max-ATSP
algorithm utilized as a black-box within TGREEDY is GREEDY, which had been already
shown [21, 23] to be a -approximate Max-ATSP algorithm for the overlap graphs.

We will need the following theorem from [7], which has already appeared in similar forms
in literature (e.g., [3, 4, 15]).

» Theorem 13. If MGREEDY is a (2 + ()-approzimate SSP algorithm and there exists a
d-approzimate algorithm for Maxz-ATSP then there exists a (24 (1 —9) - ¢)-approzimate SSP
algorithm.

Showing that o < n + (V67 — 4)w/3 ~ n + 1.396w implies that MGREEDY is a 3.396-
approximate SSP algorithm, since IMGREEDY(S)| = w+o0 < w+4n+ (V67 —4)w/3 < 3.396n.
Moreover, the currently best Max-ATSP approximation algorithms are %—approximate, due
to Kaplan et al. [10] or due to Paluch et al. [17]. Setting § = 2 and ¢ = (V67 — 4)/3 ~ 1.396

in Theorem 13, we obtain an SSP algorithm with approximation guarantee @ =~ 2.466.

Finally, regarding TGREEDY, setting 6 = % and ¢ = (V67 —4)/3 ~ 1.396 in Theorem 13,
we improve the approximation guarantee of TGREEDY to (v/67 + 8)/6 ~ 2.698, from
(25 + v/57)/12 ~ 2.712 as shown in [7].

B Dealing with extra large cycles (as in [7])

Let S C S be the subset of strings that belong to all small and large cycles of CC. Observa-
tion 5.1 in [7] implies that the optimal cycle cover for S (in short CC(S)) consists of all small
and large cycles of the optimal cycle cover for S (for simplicity denoted by CC(S) = CC),
while the optimal cycle cover for S — .S (in short CC(S —S)) consists of all extra large cycles
of CC(9).

29:15

ISAAC 2023

29:16

Approximation Guarantees for Shortest Superstrings: Simpler and Better

Let 1 denote the sum of lengths of the (extra large) cycles in CC(S — S) and let 6 be the

sum of overlap lengths of the cycle-closing edges of the cycles in CC(S — S). Similarly, let ©

be the sum of overlap lengths of the cycle-closing edges in CC(S) and let W be the sum of
lengths of the cycles in CC(S).
Proving o < n + 3 - w for input S implies that o < |OPT(S)| + 3 - w, and assuming this,

we show 0 < n+ - w. Indeed, we take the sum of inequality 5 < |OPT(S)| + - w with
inequality 6 < /8- (which holds by the definition of extra large cycles) and obtain:

0=04+06<|OPT(S)|+B8-w+pB-0=|0OPT(S)|+B-w<n+8 w

where the penultimate step uses w = w + @ and the last inequality uses |OPT(S)| <
|OPT(S)| = n, which follows from S C S. Therefore, for proving o < n + 3 - w, we assume
w.l.o.g. that CC(S) = CC has no extra large cycle.

C Lemma 11 (slightly modified from [7])

For completeness, we include a proof of Lemma 11. The proof is almost identical to the one
in [7] with only very minor changes to make it more general.

We start by stating a corollary, a version of which is already stated in [7] and in slight
variations has been known already before (e.g. see Lemma 9 in [3] and Lemma 7 in [15]).

» Corollary 14. Let ¢ and ¢’ be any two cycles of CC. Any string h, which is a substring of
both s(c)> and s(c')*°, satisfies |h| < w(c) + w(c’).

This enables us to restate the proof of Lemma 11.

Proof of Lemma 11. We show that |ov(e)| > |ov(f)| + |ov(f")] — w(c), which implies the
lemma. If min{|ov(f)], |ov(f’)|} < w(c’), this inequality holds because by using Lemma 7,
we get

lov(e)| = w(e) +w(c)
> max{ov(f)[, lov(f")I}
> max{Jov(f)|, lov(f")[} + min{Jov(f)], [ov(f")[} — w(c)
= lov(f)] + lov(f)| — w(c) .
Hence, for the remainder of the proof, we assume that we have min{|ov(f)[, lov(f')|} > w(¢).
Now, assume for contradiction that |ov(e)| < |ov(f)| + |ov(f’)| — w(c’). We claim that in
this case ov(e) has a periodicity of length w(c’), i.e., ov(e) is a prefix of 2°° for some string x
with |z| = w(c’). To show this, first recall that |ov(e)| > w(c)+w(c¢) > max{|ov(f’)], |ov(f)|}

by Lemma 7. Since ov(f) is a prefix of v and a suffix of v" and since ov(e) is a prefix of v,
the first |ov(f)| characters of ov(e) are also a suffix of ¢/, i.e.,

ov(e)[L, Jov(f)I] = ov(f) = v'[|v/| = ov(f)[+ 1, [V[].

Similarly, since ov(f’) is a prefix of v/ and a suffix of u and since ov(e) is a suffix of u, we get
that

ov(e)[lov(e)| = [ov(f")] + 1, lov(e)[] = ov(f’) = u'[L, |ov(f")]].

! The definitions of s(c) and s> appear below Lemma 9.

M. Englert, N. Matsakis, and P. Vesely

Observe that for all 1 < i < |ov(e)| —w(c), a character at position 4 of ov(e) must be the same
as the character at position ¢ + w(c’) of ov(e). Indeed, if i +w(c’) < Jov(f)], this is true as v’
has a periodicity of length w(c’). If i > |ov(e)| —|ov(f’)], it is true because «’ has a periodicity
of length w(c¢’). One of these two cases must apply because otherwise, i + w(c’) > |ov(f)|
and i < |ov(e)| — Jov(f”)|, which implies |ov(f)| — w(c¢') < i < |ov(e)| — Jov(f’)|, contradicting
our assumption that |ov(f’)| + |ov(f)| > |ov(e)| + w(c’). Hence, ov(e) has a periodicity of
length w(c') (in particular, period(ov(e)) < w(c')).

Next, we show that ov(e) is a substring of the semi-infinite string s(c)
ov(e) has a periodicity of length w(c’) and s(¢’)* has period w(c'), it is sufficient to argue
that the first w(c¢’) characters of ov(e) are a substring of s(¢)*°. This is indeed the case
since ov(e)[1, |ov(f)|] is a substring of v" which is a substring of s(¢’)*° and we assume that
lov(f) > w(c).

Since ov(e) is a substring of s(¢/)* as well as of s(¢)* (because ov(e) is a substring of a
string that is part of ¢), Corollary 14 implies |ov(e)| < w(c¢) + w(¢’) which contradicts the
assumption of the lemma. <

>, Because

29:17

ISAAC 2023

	1 Introduction
	2 The General Setting and Our Technical Contribution
	2.1 Overlap Graph, Cycle-Closing Edges, and Overlap Inequalities
	2.2 Main technical result
	2.3 Overview of the proof of Theorem 3

	3 Analysis
	3.1 Proof Outline
	3.2 Important Lemmas
	3.3 The Induction Step

	A Deriving Approximation Guarantees from Theorem 3
	A.1 The GREEDY Algorithm for SSP
	A.2 SSP Algorithms Based on Max-ATSP Approximations

	B Dealing with extra large cycles (as in [7])
	C Lemma 11 (slightly modified from[7])

