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diabetes mellitus

Durga Parkhi,1 Nishanthi Periyathambi,1,2 Yonas Ghebremichael-Weldeselassie,1,3 Vinod Patel,2

Nithya Sukumar,1,2 Rahul Siddharthan,4 Leelavati Narlikar,5 and Ponnusamy Saravanan1,2,6,*
SUMMARY

Early onset of type 2 diabetes and cardiovascular disease are common complications for women diag-
nosedwith gestational diabetes. Prediabetes refers to a condition inwhich blood glucose levels are higher
than normal, but not yet high enough to be diagnosed as type 2 diabetes. Currently, there is no accurate
way of knowing which women with gestational diabetes are likely to develop postpartum prediabetes.
This study aims to predict the risk of postpartum prediabetes in women diagnosed with gestational dia-
betes. Our sparse logistic regression approach selects only two variables – antenatal fasting glucose at
OGTT andHbA1c soon after the diagnosis of GDM– as relevant, but gives an area under the receiver oper-
ating characteristic curve of 0.72, outperforming all other methods. We envision this to be a practical so-
lution, which coupled with a targeted follow-up of high-risk women, could yield better cardiometabolic
outcomes in women with a history of GDM.

INTRODUCTION

Gestational diabetes mellitus (GDM) is defined as any degree of prediabetes with onset or first recognition during pregnancy. Women diag-

nosed with GDM have up to 10-fold higher risk of Type 2 diabetes mellitus (T2DM) compared to those without GDM1 and their lifetime risk is

around 60% for developing T2DM.2 In addition to T2DM, GDMwomen have a 2-fold higher risk of cardiovascular disease (CVD), at a younger

age, and independent of intercurrent T2DM.3–6 GDM is associated with an increased risk of cardiovascular dysfunction, including rise in car-

diovascular risk factors like blood pressure, and adverse changes in cholesterol and triglycerides.7 However, this risk is not the same for all

women diagnosed with GDM.

There is some evidence that glucose levels during pregnancy are predictive of prediabetes.8,9 Retnakaran et al.10 have shown that the risk

of dysglycamia at 12 weeks postpartum increases across the groups from normal glucose challenge test (GCT) andNormalGlucose Tolerance

(NGT), to abnormal GCT and NGT, to gestational impaired glucose tolerance (GIGT), to GDM. This has been supported by other studies.11,12

Higher fasting glucose shows a high tendency of conversion to T2DM in the postpartumperiod7,13 and antenatal fasting glucose > 5.7mmol/L

is considered to be an important antenatal variable for the prediction of postpartum abnormal glucose metabolism.14

Along with glucose values in pregnancy, many studies have proposed the significance of gestational age at the time of diagnosis of GDM

in predicting postpartum prediabetes.15,16 Specifically, women diagnosed at 24 weeks of gestation or earlier are at higher risk of having post-

partum prediabetes.17 Similarly, the requirement of insulin therapy during pregnancy, ethnicity, gravidity, BMI, weight at the time of delivery,

and neonatal weight are other factors that have been shown to be associated with the risk of prediabetes.18 While there is ample evidence of

multiple factors being associated with T2DM onset in GDM-diagnosed women in general, there is no personalized risk score that can predict

whether a specific GDM-diagnosed woman is likely to develop prediabetes or T2DM. Indeed, identifying women who are especially at high

risk can help in implementing targeted, personalized interventions to delay and prevent the onset of T2DM and its future complications.

Artificial intelligence has begun to play a dominant role in healthcare, facilitating optimal decision-making as well as personalized treat-

ment. Although Kumar et al.19 andMuche et al.20 have shown evidence of usingmachine learning for predicting progression of GDM to post-

partum Type 2 diabetes, its use in the development of predictivemodels for T2DMonset is still in its nascent stages. Accurate prediabetes risk

stratification at or before delivery for GDM women could assist policymakers and clinicians in specifically targeting those at the highest risk,

especially in resource-constrained settings.
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Figure 1. Consort diagram of early postpartum glucose tolerance

The flow chart displays the proportion of GDMwomenwith and without prediabetes. The diagnosis of prediabetes wasmade if: FPGR5.6 or 2-h glucoseR7.8 at

postpartum OGTT or HbA1c R 40 mmol/mol.
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Postpartum screening is poor inmany parts of the world as women havemany competing interests on their time during this period.21,22We

and others have shown that women whomiss postpartum screening had higher cardiometabolic risk factors.23,24 While dedicated healthcare

administrators can improve the screening, this is still suboptimal. Therefore, a strategy that is personalized by identifying who is at risk of

developing postpartum prediabetes/diabetes could help healthcare professionals for targeted education on the importance of screening

for prediabetes/diabetes following a GDM pregnancy.

The primary aim of this paper is to investigate the predictive ability of the antenatal variables and derive a model for personalized predic-

tion of prediabetes. We explored the use of logistic regression (LR) and tree-based machine learning algorithms for developing the prog-

nostic model. We report our findings on a multi-ethnic retrospective cohort in the UK.
METHODS

Data acquisition

A retrospective audit of electronic database records of postpartum screening at 6 to 13 weeks of women diagnosed with GDM, from January

2016 to December 2019, was conducted at an NHS trust hospital in the UK. GDM was diagnosed using NICE 2015 criteria.25 Complete data

are available for 607 women for the following variables: age, height, weight, BMI, systolic and diastolic BP at booking, ethnicity, gravida, parity,

smoking status, married status, employment status, gestational age at delivery, mode of delivery, birth weight, breastfeeding status, and

biochemical variables such as antenatal fasting glucose (A-FG), antenatal postprandial glucose (A-PG), antenatal HbA1c (A-HbA1c), post-

partum fasting glucose (P-FG), postpartum postprandial glucose (P-PG), and postpartum HbA1c (P-HbA1c). Postpartum oral glucose toler-

ance test (OGTT) was carried out at 6 weeks, and following the change in the NICE guidelines, postpartum HbA1c was carried out at 12–

13 weeks following delivery. We define prediabetes as: P-FG R 5. mmol/L OR P-PG R 7.8 mmol/L OR P-HbA1c R 40 mmol/mol ppIFG

was defined as P-FG R 5.6 mmol/L and ppIGT was defined as P-PG R 7.8 mmol/L, respectively. We define T2DM as: P-FG R 7.0 mmol/L

or P-PGR 11.1 mmol/L or P-HbA1cR 48 mmol/mol.26 NGT is considered otherwise. We provide the definitions of Normalcy, Prediabetes,

and Incident diabetes based on the different measures in Table 1.
Statistical power analysis

We did a power analysis to determine if the available sample size was sufficient to identify the difference in effect between the normal and

prediabetes-diagnosedGDMwomen.We used the statsmodels library and the TTestInd-Power class in Python to calculate the power analysis

for Student’s t test for independent samples. For a statistical power of 90%, a minimum sample size of 130 (99 normal and 31 prediabetes) is

required for the observed effect size calculated using Cohen’s d statistic. We provide the details of power analysis in the supplementary

material.
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Table 1. Definitions of Normalcy, Prediabetes, and Incident diabetes based on the different measures

Definition Normal Prediabetes Incident diabetes

NICE FPG<5.6 mmol/L (101 mg/dL) OR

2hPG<7.8 mmol/L (141 mg/dL)

OR HbA1c < 40 mmol/L

FPG 5.6–6.9 mmol/L (101–126 mg/dL) OR

2hPG 7.8–11.1 mmol/L (141–200 mg/dL) OR

HbA1c 40 mmol/mol.

FPGR7.0 mmol/L (126 mg/dL) OR

2hPGR11.1 mmol/L (200 mg/dL) OR

HbA1c R 6.5% (48 mmol/mol)

WHO FPG<6.1 mmol/L (110 mg/dL) OR

2hPG<7.8 mmol/L (141 mg/dL)

FPG 6.1–6.9 mmol/L (110–125 mg/dL) OR

2hPG 7.8–11.0 mmol/L (141–198 mg/dL)

Same as NICE

ADA FPG<5.6 mmol/L (101 mg/dL) OR

2hPG<7.8 mmol/L (141 mg/dL) OR

HbA1c<5.7% (39 mmol/mol)

FPG 5.6–6.9 mmol/L (101–125 mg/dL) OR

2hPG 7.8–11.0 mmol/L (141–198 mg/dL) OR

HbA1c 5.7%–6.4% (39–47 mmol/mol)

Same as NICE
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Machine learning

We perform machine learning (ML) in Python version 3.7. We compare LR with tree-based methods to build the prognostic model for the

prediction of early prediabetes in GDM women. These algorithms inherently address the imbalance in the representation for each of the bi-

nary classes of prediabetes outcome using the ‘balanced’ parameter. The ‘balanced’ mode uses the values of y to automatically adjust

weights inversely proportional to class frequencies in the input data, as the ratio of the total number of samples to the product of the number

of classes and the number of occurrences in each class. Mathematically, the class weight is calculated as 1/(23 fraction of women in the class).

We build the tree-based model using a simple decision tree algorithm, whose performance improves using ensemble methods such as

bagging and boosting. All these algorithms use hyperparameters that can significantly affect the performance of thesemethods on an unseen

set. We determine the optimal values of these hyperparameters using nested cross-validation. More specifically, we make the entire data

undergo leave-one-out cross-validation (CV1) for model evaluation and we perform an internal stratified 4-fold cross-validation (CV2) on

the training folds of CV1 for hyperparameter optimization. We impute the missing values with the Multivariate Imputation by Chained Equa-

tions (MICE) technique, using the other non-missing covariates. We scale the training data in CV1 using the StandardScaler function and use

the saga solver in the LR model. The saga solver is a variant of the stochastic average gradient (sag) solver that also supports the non-smooth

L1 penalty, which promotes feature selection. The tree-based algorithms perform feature selection inherently, governed by the optimized

hyperparameters in CV2. We perform hyperparameter optimization and model training only on the training folds (n � 1 samples) in CV1,

with an independent set (1 sample) exclusively held out for testing. We aggregate the model predictions on each held-out sample across

the n training folds of CV1 and plot the Receiver Operating Characteristic (ROC) curve for this aggregated set. We use the area under the

ROC curve as a measure of performance. Finally, we apply it in a similar fashion on the full data to obtain the final model for deployment

(Figure S3). We provide the details of the different tree-based methods employed in the supplementary materials.
Composite risk score calculation

Using the coefficients from the final fitted LRmodel on the full data, we develop a composite risk scoring system using the best selected ante-

natal variables to predict the probability of prediabetes in GDM-diagnosed women. We calculate the composite risk score as the probability

of class 1 obtained from the LR model. It is given by the expression 1/(1 + e�b), where b = b0 + b1 $ x1 + b2 $ x2 +. + bm $ xm where b0 is the

intercept and bm coefficient of mth variable (xm), respectively.

We compute specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and the F1 score at five predetermined

values of sensitivity (60%, 70%, 75%, 80%, and 90%) for the optimal selected model. We give the definition/formulae for all these in the sup-

plementary information section.
Kullback-Leibler (K-L) divergence and information graphs to evaluate and compare diagnostic tests and select optimal cut-

point

We use the information theory approach in Lee et al.,27 Samawi et al.,28 and Benish et al.,29 briefly summarized below, to select the optimal

probability threshold for accurate prediction of the binary outcome of prediabetes. An important approach followed inmedical diagnostics is

to predict the ‘rule-in and rule-out’ potential of the diagnostic test to safely include the patients in need of treatment and discard those not in

need, respectively. At a probability threshold c reported by the ML algorithm, suppose the proportion of the diseased population correctly

predicted as diseased is given by g1(c) and that of the non-diseased population correctly predicted as non-diseased is given by g2(c). Both

g1(c) and g2(c) are Bernoulli probability distributions and are simply the sensitivity and specificity, respectively at the threshold value of c. The

K-L divergence (or relative entropy) measures the separation between these two probability distributions and is given by:

Dðg1kg2Þ = g1ðcÞ 3 ln
g1ðcÞ

1 � g2ðcÞ + ð1 � g1ðcÞÞ3 ln
1 � g1ðcÞ

g2ðcÞ (Equation 1)
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Dðg2kg1Þ =
�
1� g2ðcÞ

�
3 ln

1� g2ðcÞ
g1ðcÞ +g2ðcÞ3 ln

g2ðcÞ
1 � g1ðcÞ (Equation 2)

By definition, D(g1kg2)R 0, D(g2kg1) R 0. The KL divergence is close to 0 when there is little difference between the two distributions. A

highD(g1kg2) value indicates the increase in information of predicting disease onset.We calculateD(g1kg2) andD(g2kg1) for 1000 cut points at

an interval of 0.001 from 0 to 1. We chose Tin with cut-point cin corresponding to Dmax(g1kg2) as the diagnostic test with greatest rule-in po-

tential. We chose Tout with cut-point cout corresponding to Dmax(g2kg1) as the diagnostic test with greatest rule-out potential. We calculate

Pin = eD(g1kg2), which is the ratio of post-test odds to the pre-test odds of having the disease for a randomly selected diseased individual. We

also calculate Pout = e(D(g2kg1), which is the ratio of pre-test odds to the post-test odds of having the disease for a randomly selected non-

diseased individual. Pin, Pout R 1.

Next, we calculate the Information Distinguishability measure, ID(g1kg2) = 1 � e�D(g1kg2) and ID(g2kg1) = 1 � e�D(g2kg1), to study and

compare the separation provided by the diagnostic test between the diseased and the non-diseased distributions.We calculate the objective

function TKLdiscrete(c) =D(g1kg2) +D(g2kg1) and chose the optimal cut-point cin�out corresponding to max(T KLdiscrete(c)) to achievemaximum

information for Tin�out with high potential in both rule-in and rule-out situations. Further, we plot information graphs to characterize and

compare the performance of our diagnostic tests at different cut-points depending upon the rule-in or rule-out potential. The expected value

of the relative entropy provides a measure of the expected diagnostic information and plotting it as a function of the pre-test probabilities

yields an information graph. The equations used to plot the information graphs are given as follows: Let Di be the true status and Ti be the

diagnostic test result for the patient, respectively, (i = {0, 1}, 0: disease absent, & 1: disease present). If x = Pr(D1), then the diagnostic infor-

mation obtained from a +ve, and -ve test result (I+(x), I�(x), respectively) and the expected diagnostic information (IE(x)) are given as follows.

I+ðxÞ = x3g1ðcÞ3 lnðg1ðcÞ Þ
PrðT1Þ +

ð1 � xÞ3 ð1 � g2ðcÞ Þ3 lnð1 � g2ðcÞ Þ
PrðT1Þ � lnðPrðT1Þ Þ (Equation 3)
I�ðxÞ = x3 ð1 � g1ðcÞ Þ3 lnð1 � g1ðcÞ Þ
1 � PrðT1Þ +

ð1 � xÞ3g2ðcÞ3 lnðg2ðcÞ Þ
1 � PrðT1Þ � lnð1 � PrðT1Þ Þ (Equation 4)
IEðxÞ = x3g1ðcÞ3 lnðg1ðcÞÞ+ ð1 � xÞ3 ð1 � g2ðcÞÞ3 lnð1 � g2ðcÞÞ+
x3 ð1 � g1ðcÞÞ3 lnð1 � g1ðcÞÞ+ ð1 � xÞ3g2ðcÞ3 lnðg2ðcÞÞ�
PrðT1Þ3 lnðPrðT1ÞÞ � ð1 � PrðT1ÞÞ3 lnð1 � PrðT1ÞÞ

(Equation 5)
PrðT1Þ = x 3 PrðT1jD1Þ + ð1 � xÞ3PrðT1jD2Þ (Equation 6)
= x 3 g1ðcÞ + ð1 � xÞ3 ð1 � g2ðcÞÞ (Equation 7)

In addition, we also plot the information graph by representing the total K-L divergence as the discrete Bregman divergence, which is the

sum of the vertical distances between the negative Shannon entropy function (see supplementary material for details) and tangents to it at

probabilities p = g1(c) and p = 1 � g2(c).

Decision curve analysis

We carry out decision curve analysis (DCA) to evaluate and compare the performance of our model in comparison to the ‘treat all’ and ‘treat

none’ approaches. Finally, we compare the correctly identified non-attenders (sensitivity) vs. follow-ups avoided (the true negatives + false

negatives, obtained from the optimal selected model), to calculate the number of women requiring enhanced care, to maximize targeted

postpartum follow-up.

RESULTS

Postpartum glucose status was available for 394 (64.91%) out of the 607 women (Figure 1). 340 (56.01%) women underwent OGTT at 6 weeks

and 128 (21.09%) underwent the postpartumHbA1c around 13 weeks prediabetes is present in 92 (23.35%) women. Of these 47 (51.09%) were

abnormal by P-FG, 33 (35.87%) by P-PG, and 39 (42.39%) by P-HbA1c. We show the baseline characteristics of these 394 women in Table 2.

Machine learning analysis

The data are imbalanced (as expected), with a 23.35% representation of the positive prediabetes class. We compare simple LR with different

classification tree methods for predicting prediabetes from training on this small and imbalanced dataset. We use class-weight = balanced in

the LR algorithm and ‘balanced’ classification tree-based algorithms from the imbalanced-learn python package for developing the tree-

based prognostic models. The predictive performance of our proposed framework improves significantly by applying ensemble methods

of bagging and boosting to the base decision tree estimator but remains lower than LR. LR gives the area under the ROC curve of 0.7203

from aggregating the test predictions from the leave-one-out cross-validation (Figure 2A). The Brier score loss for calibration of the LRmodel
4 iScience 26, 107846, October 20, 2023



Table 2. Comparison of antenatal, delivery and postnatal characteristics of GDM women with presence and absence of prediabetes

Variable All attended N = 394 Prediabetes N = 92 ppNGT N = 302 Missing ppGT N = 213

Maternal characteristics

Age 32.21 G 5.40 32.38 G 5.46 32.16 G 5.39 30.45 G 6.22

Height (m) 1.64 G 0.07 1.64 G 0.07 1.64 G 0.07 1.64 G 0.07

Weight (kg) 79.78 G 19.80 84.32 G 22.82 78.36 G 18.58 85.58 G 21.27

BMI (kg/m^2) 29.76 G 6.81 31.21 G 7.40 29.30 G 6.56 31.79 G 7.54

Systolic BP (mmHg) 115.71 G 13.62 116.07 G 13.78 115.60 G 13.59 115.97 G 12.54

Diastolic BP (mmHg) 69.98 G 9.40 70.41 G 8.18 69.85 G 9.76 70.74 G 9.57

Parity

1 192 (48.98%) 43 (46.74%) 149 (49.67%) 73 (34.27%)

R2 200 (51.02%) 49 (53.26%) 151 (50.33%) 139 (65.26%)

Ethnicity

White European 303 (76.90%) 66 (71.74%) 237 (78.48%) 178 (83.57%)

South Asian 46 (11.68%) 13 (14.13%) 33 (10.93%) 21 (9.86%)

Others 45 (11.42%) 13 (14.13) 32 (10.60%) 14 (6.57%)

Smoking category

Never smoked 190 (50.94%) 43 (49.43%) 147 (51.40%) 80 (37.56%)

Ex-smoker 147 (39.41%) 34 (39.08%) 113 (39.51%) 69 (32.39%)

Smoker 36 (9.65%) 10 (11.49%) 26 (9.09%) 61 (28.64%)

Marrital Status

Single 21 (5.74%) 3 (3.45%) 18 (6.45%) 26 (12.21%)

Employment own/partner

Unemployed 9 (2.56%) 3 (3.53%) 6 (2.25%) 9 (4.23%)

At OGTT and Intrapartum

GA at antenatal OGTT (weeks) 28.16 G 4.21 27.50 G 4.08 28.37 G 4.23 27.53 G 4.74

A-FG (mmol/L) 4.95 G 0.87 5.38 G 0.91 4.82 G 0.81 5.09 G 0.81

A-PG (mmol/L) 8.55 G 1.75 8.90 G 1.75 8.44 G 1.74 8.13 G 1.75

A-HbA1c (mmol/mol) 35.52 G 4.69 38.13 G 4.61 34.72 G 4.42 36.17 G 5.70

GA birth (weeks) 37.91 G 1.27 37.65 G 1.28 37.99 G 1.26 37.95 G 1.40

Preterm (GA % 37 weeks) 53 (13.59%) 18 (20.00%) 35 (11.67%) 32 (15.02%)

Delivery mode

Spontaneous 197 (50.38%) 37 (40.66%) 160 (53.33%) 112 (52.58%)

Instrument assisted 32 (8.18%) 6 (6.59%) 26 (8.67%) 18 (8.45%)

Caesarean delivery 162 (41.43%) 48 (52.75%) 114 (38.00%) 79 (37.09%)

Neonatal characteristics

Birth weight (grams) 3211.95 G 467.75 3216.48 G 511.41 3210.57 G 454.58 3201.72 G 531.36

Birth Centile

AGA (10-90th centile) 267 (74.58%) 61 (72.62%) 206 (75.18%) 133 (62.44%)

SGA (<10 centile) 42 (11.73%) 10 (11.90%) 32 (11.68%) 38 (17.84%)

LGA (>90 centile) 49 (13.69%) 13 (15.48) 36 (13.14%) 27 (12.68%)

Male baby 183 (46.80%) 42 (46.15%) 141 (47.00%) 124 (58.22%)

Breastfeeding initiated 207 (58.31%) 45 (54.88%) 162 (59.34%) 86 (40.38%)

Postpartum maternal biochemical characteristics

P-FG (mmol/L) 4.99 G 0.62 5.64 G 0.79 4.78 G 0.38 –

P-PG (mmol/L) 5.59 G 1.62 7.10 G 2.08 5.12 G 1.07 –

P-HbA1c (mmol/mol) 37.53 G 4.84 42.22 G 4.56 34.99 G 2.55 –
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Figure 2. Estimated ROC for the prediction of postpartum prediabetes following a GDM pregnancy

(A) AUROC (Area under the receiver operating characteristic) was used to evaluate the performance of our machine learning-based method using the logistic

regression model on the validation cohort, n = 394 by aggregating the predictions from the test folds of CV1. The area under ROCwas 0.7203. The green dots on

the ROC curve represent Tin (cin = 0.381), Tin�out (cin�out = 0.260), and Tout (cout = 0.140), from left to right, respectively.

(B) The decision curve analysis (DCA) showed the net benefit obtained from theML (blue) predictionmodel. The net benefit of implementing ourmodel in a clinical

setting is larger when compared to the follow-up of all GDMwomen for prediabetes. DCAwas derived from the equation, Net benefit TP�FP3(pt/1�pt) = N, where TP

and FP are the true positives and false positives respectively, pt is the probability threshold, and N is the total number of participants in the validation cohort,

n = 607.
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is 0.1530 and the calibration plot is shown in Figure S9. The mean CV-accuracy as a function of the regularization constant ’C’ is shown in Fig-

ure S5. LR gives the area under the ROC curve of 0.6598 for postpartum fasting glucose prediction (Figure S6). Using the base decision tree

algorithm and leave-one-out cross-validation, the area under the ROC curve for the aggregated test predictions is 0.6210, bagging decision

trees improves it to 0.6883. Random forests further improve it to 0.6944 using 4-fold stratified cross-validation in CV1 and the maximum area

under the ROC curve from the tree-based algorithms is 0.6991 from balanced bagging using histogram-based gradient boosting tree clas-

sification algorithm using 4-fold stratified cross-validation (Figure S4). We use 4-fold stratified cross-validation in CV1 instead of leave-one-out

for random forests and the boosting algorithm due to the high time complexity of leave-one-out. Other boosting algorithms like XGBoost,

LightGBM, and CatBoost give the area under the ROC curve of 0.6427, 0.6646, and 0.6948 respectively. We conclude that the simplest pre-

diction algorithm for binary classification, LR, outperforms the advanced tree-basedmethods in the prediction of prediabetes. Our final com-

posite risk score using the LRmodel with A-FG and A-HbA1c is highly robust for the prediction of prediabetes in GDMwomen. Out of the n =

394 runs of leave-one-out cross-validation, antenatal fasting glucose and antenatal HbA1c are selected 318 (> 80%) times. The shap summary

plots generated using the tree explainer package in Python provide additional evidence supporting the finding that A-FG and A-HbA1c are

the sole significant predictors of postpartum prediabetes in women with GDM (Figures S7 and S8).
Composite risk score calculation

Based on our proposed final LR model, we calculate the composite risk score, c (or P(prediabetes)), as,

P
�
prediabetes

�
=

1

1+e�ð� 8:36+0:583A� FG+0:103A�HbA1cÞ (Equation 8)

The association results of the LR model between the risk predictors and pre-diabetes outcome are given in Table 3.
Kullback–Leibler (K-L) divergence and information graphs to evaluate and compare diagnostic tests and select optimal cut-

point

Tin withDmax(g1(c), g2(c)) = 0.30 and cin = 0.381 has high specificity of 92%, in concurrence with the ‘rule-in-specific-test’ principle and Tout with

Dmax(g2(c), g1(c)) = 0.28 and cout = 0.140 has high sensitivity of 92%, again in concurrence with the ‘r-out-sensitive-test’ principle. Pin = 1.35 and

Pout = 1.23 for Tin, and Pin = 1.21 and Pout = 1.33 for Tout, which is the increase (decrease) in disease odds after the test for a diseased (control)

individual. Tin�out with max(T KLdiscrete(c)) = 0.51 for cin�out = 0.260 has Pin = 1.31 and Pout = 1.27. Also, maximumof the Youden’s index, Jmax =

0.34 (J(c) = g1(c) + g2(c)� 1), andmaximum F1-score = 0.49 occurs at the same cin�out = 0.260. e(Tin(KLin)�Tout(KLin)) = e(0.30�0.19) = 1.12 > 1, which

implies that positive result obtained by Tin is more likely to be true than positive result obtained by Tout. In other words, Tin is more specific and

yields fewer false positives compared to Tout. Similarly, e(Tin(KLout)�Tout(KLout)) = e(0.21�0.28) = 0.93 < 1 shows that Tin is less sensitive with more

false negatives.
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Table 3. Factors associated with postpartum prediabetes by machine learning model

Variables B (SE) OR (95% CI) p value

A-FG (mmol/L) 0.5816 (0.207) 1.79 (0.175, 0.988) 0.005

A-HbA1c (mmol/mol) 0.0996 (0.038) 1.11 (0.025, 0.174) 0.009
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Wegenerated the information graphs using the equations for I+(x), I�(x), and IE(x) as a function of x= Pr(D1), as shown in Figures 3A–3C.We

can observe that Tin provides the most diagnostic information when the test result is positive, and the pre-test probability of a positive result

(Pr(D1)) is low. Tout provides the most diagnostic information when the test result is negative, and the pre-test probability of a positive result is

high. For Tin�out, we obtain more diagnostic information when the test yields a positive result than a negative one and we obtain maximum

information from a positive result at a lower pre-test probability than that from the negative result. In Figure 3D, we can see the information

gained using the discrete Bregman divergence representation of TKLdiscrete by adding the vertical distances from the negative Shannon En-

tropy function to the tangents drawn at probability p = g1(c) and 1 � g2(c).

Using the prognostic model with LR, 15 out of 100 women are above the optimal threshold of 0.381, and focusing on these women could

improve the early prediabetes diagnosis. 28 out of 100 women are below the optimal threshold of 0.140, and testing for early prediabetes

diagnosis can be safely avoided in this category. The model shows 92% sensitivity for the rule-in test and 92% specificity for the rule-out

test, Table 4 shows the sensitivity, specificity, PPV, NPV, F1 score, accuracy, and other measures related to K-L divergence at different prob-

ability thresholds.
Figure 3. Information graphs for comparing rule-in and rule-out test potentials for predicting a low and high risk of prediabetes post-GDM

Information graphs providemeans to distinguish between diagnostic test performance.We compared the diagnostic information obtained from Tout, Tin�out, and

Tin defined by the cut-points 0.140, 0.260, 0.381. A positive diagnosis made by the ‘rule-in-specific-test’ and a negative diagnosis made by the ‘rule-out-sensitive-

test’ gives us the most information, as expected.

(A–C) Maximum information from a positive test diagnosis (blue) is obtained at a lower pre-test probability than the maximum information from a negative test

diagnosis (red). The diagnostic test with a lower cut-point gives maximum information when the diagnosis is negative (i.e., the test is very sensitive andwe can rule

out the negative cases safely) and the diagnostic test with a higher cut-point gives maximum information when the diagnosis is positive (i.e., the test is very

specific to the disease and we can rule in the positive cases safely). IE is the expected information from the diagnostic test (x 3 I+ + (1 � x) 3 I�, where x is

the probability of a positive test diagnosis).

(D) The sum of the distances between the tangents to the negative Shannon entropy function at p = g1(c) and p = 1 � g2(c) is the discrete Bregman divergence,

which represents total K-L divergence.
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Table 4. Performance of the diagnostic test for postpartum prediabetes at various probability thresholds

Algo c g1(c) g2(c) PPV NPV F1 Accu J KLin KLout TKL Pin Pout IDin IDout TA

LR 0.145 0.9 0.36 0.3007 0.9237 0.4511 0.4873 0.2631 0.1833 0.2508 0.4342 1.2012 1.2851 0.1675 0.2219 30

0.169 0.8 0.48 0.3217 0.8902 0.4596 0.5584 0.2878 0.1792 0.2086 0.3878 1.1963 1.2319 0.1641 0.1883 42

0.193 0.75 0.57 0.3467 0.8821 0.4742 0.6117 0.3195 0.2106 0.2299 0.4405 1.2344 1.2585 0.1899 0.2054 49

0.201 0.7 0.62 0.3556 0.8692 0.4706 0.6345 0.3115 0.1986 0.206 0.4046 1.2197 1.2288 0.1801 0.1862 54

0.239 0.62 0.71 0.3904 0.8589 0.479 0.6853 0.3249 0.2255 0.2164 0.4419 1.253 1.2416 0.2019 0.1946 63

Tout 0.14 0.92 0.34 0.2982 0.9358 0.4509 0.4746 0.2617 0.1942 0.2829 0.4771 1.2144 1.3269 0.1765 0.2464 28

Tin 0.381 0.36 0.92 0.569 0.8244 0.44 0.7868 0.2759 0.2965 0.2068 0.5033 1.3451 1.2298 0.2566 0.1868 85

Tin-out 0.26 0.58 0.76 0.4274 0.8556 0.4907 0.7208 0.341 0.2661 0.2407 0.5069 1.3049 1.2722 0.2337 0.214 69

DTC 0.113 0.64 0.52 0.1878 0.8934 0.2902 0.5406 0.1617 0.0528 0.0542 0.107 1.0542 1.0557 0.0515 0.0528 50

0.114 0.6 0.57 0.1934 0.892 0.2929 0.5711 0.1689 0.0575 0.058 0.1154 1.0591 1.0597 0.0558 0.0563 54

Tout 0.871 0.26 0.93 0.3947 0.8792 0.3125 0.8325 0.1902 0.1745 0.1217 0.2962 1.1906 1.1294 0.1601 0.1146 90

Tin 0.871 0.26 0.93 0.3947 0.8792 0.3125 0.8325 0.1902 0.1745 0.1217 0.2962 1.1906 1.1294 0.1601 0.1146 90

Tin-out 0.871 0.26 0.93 0.3947 0.8792 0.3125 0.8325 0.1902 0.1745 0.1217 0.2962 1.1906 1.1294 0.1601 0.1146 90

Bagging DTC 0.244 0.9 0.21 0.164 0.9221 0.2773 0.3122 0.1079 0.041 0.0498 0.0909 1.0419 1.0511 0.0402 0.0486 20

0.306 0.81 0.32 0.1703 0.9068 0.2814 0.3909 0.1288 0.042 0.0471 0.089 1.0429 1.0482 0.0411 0.046 30

0.349 0.76 0.45 0.1913 0.9146 0.3056 0.4924 0.205 0.0906 0.1001 0.1907 1.0949 1.1053 0.0866 0.0952 42

0.37 0.71 0.51 0.1981 0.9091 0.3094 0.5355 0.2128 0.0932 0.0992 0.1925 1.0977 1.1043 0.089 0.0945 47

0.468 0.6 0.76 0.307 0.9179 0.407 0.7411 0.3683 0.3083 0.2808 0.5891 1.3611 1.3242 0.2653 0.2449 71

Tout 0.468 0.6 0.76 0.307 0.9179 0.407 0.7411 0.3683 0.3083 0.2808 0.5891 1.3611 1.3242 0.2653 0.2449 71

Tin 0.564 0.45 0.89 0.4194 0.9036 0.4333 0.8274 0.3411 0.376 0.2765 0.6525 1.4565 1.3184 0.3134 0.2415 84

Tin-out 0.564 0.45 0.89 0.4194 0.9036 0.4333 0.8274 0.3411 0.376 0.2765 0.6525 1.4565 1.3184 0.3134 0.2415 84

RFC 0.371 0.9 0.29 0.1793 0.9423 0.2989 0.3807 0.1882 0.104 0.1354 0.2394 1.1096 1.145 0.0988 0.1266 26

0.431 0.81 0.47 0.208 0.9345 0.331 0.5178 0.2776 0.1689 0.1979 0.3667 1.184 1.2188 0.1554 0.1795 43

0.446 0.76 0.5 0.2085 0.9235 0.3271 0.5406 0.2616 0.1436 0.1591 0.3027 1.1544 1.1725 0.1337 0.1471 46

0.466 0.71 0.56 0.2158 0.9167 0.3306 0.5787 0.2634 0.1417 0.1501 0.2918 1.1522 1.1619 0.1321 0.1394 52

0.502 0.6 0.66 0.2365 0.9065 0.3398 0.6548 0.2671 0.1486 0.1452 0.2938 1.1602 1.1563 0.1381 0.1351 62

Tout 0.618 0.4 0.89 0.3833 0.8952 0.3898 0.8173 0.2864 0.2737 0.2046 0.4782 1.3148 1.227 0.2394 0.185 85

Tin 0.729 0.17 0.99 0.6667 0.8734 0.274 0.8655 0.1575 0.2782 0.1352 0.4134 1.3207 1.1448 0.2428 0.1265 96

Tin-out 0.618 0.4 0.89 0.3833 0.8952 0.3898 0.8173 0.2864 0.2737 0.2046 0.4782 1.3148 1.227 0.2394 0.185 85

Bagging HGBC 0.173 0.9 0.24 0.1699 0.9318 0.2857 0.3401 0.1406 0.0641 0.0805 0.1447 1.0662 1.0838 0.0621 0.0774 22

0.226 0.81 0.37 0.1808 0.9179 0.2956 0.4315 0.1764 0.0742 0.0851 0.1593 1.0771 1.0888 0.0715 0.0816 34

0.274 0.76 0.45 0.1921 0.9152 0.3066 0.4949 0.208 0.0931 0.1029 0.196 1.0976 1.1083 0.0889 0.0977 42

0.308 0.74 0.5 0.2028 0.9176 0.3185 0.533 0.2384 0.1187 0.1296 0.2482 1.126 1.1383 0.1119 0.1215 46

0.366 0.71 0.59 0.2303 0.9213 0.3475 0.6091 0.2992 0.1828 0.1922 0.375 1.2006 1.212 0.1671 0.1749 55

(Continued on next page)
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Table 4. Continued

Algo c g1(c) g2(c) PPV NPV F1 Accu J KLin KLout TKL Pin Pout IDin IDout TA

Tout 0.562 0.47 0.87 0.375 0.9037 0.4154 0.8071 0.3316 0.322 0.2512 0.5732 1.3799 1.2855 0.2753 0.2221 82

Tin 0.562 0.47 0.87 0.375 0.9037 0.4154 0.8071 0.3316 0.322 0.2512 0.5732 1.3799 1.2855 0.2753 0.2221 82

Tin-out 0.562 0.47 0.87 0.375 0.9037 0.4154 0.8071 0.3316 0.322 0.2512 0.5732 1.3799 1.2855 0.2753 0.2221 82
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Decision curve analysis

In the decision curve analysis by comparing the ‘treat all’ and ‘treat none’ approaches, theMLmodel obtains a higher standardized net benefit

as compared to the universal screening of all GDM women for early prediabetes (Figure 2B).
DISCUSSION

In this study, we try to predict at the time of delivery if the women diagnosed with GDM are at high risk of getting diagnosed with postpartum

prediabetes at 6–13 weeks postpartum. For this purpose, we employ a variety of machine learning techniques including both LR and

advanced tree-based algorithms and train the models using routinely collected antenatal and delivery variables as predictors. Our proposed

model using nested cross-validation and LR algorithm can effectively predict prediabetes in GDMwomen, using only the antenatal predictors

fasting glucose and HbA1c, with good sensitivity and specificity. The proposed model has the capability to serve as a valuable tool for pre-

diction and targeted screening for postpartum prediabetes in women with GDM during the antenatal period itself. By identifying individuals

at higher risk, healthcare providers can implement timely interventions to target postpartum weight retention, which has shown to be an in-

dependent predictor of future prediabetes/diabetes, through personalized lifestyle modifications. This proactive approach can help to pre-

vent or delay the onset of type 2 diabetes, improve long-term health outcomes, and reduce healthcare costs associated with managing dia-

betes-related complications.

The use ofmachine learning for predicting postpartumprediabetes inGDM-diagnosedwomenhas been rarely studied.We are aware of only

two studies that havemade use ofmachine learningalgorithms topredict the occurrenceof T2DMpost-GDM:Kumar et al.19 andKrishnan et al.30

Krishnan et al. proposed random forest and Gaussian naive Bayes algorithms to predict T2DM after GDM, and achieved a modest specificity of

23% at a sensitivity of 88%. It also lacked the use of advanced techniques todeal with imbalanceddata. Real-worldmedical data are scarce due to

the different challenges posed in its collection. To the best of our knowledge, there is no larger data collected for studying prediabetes in GDM

women than the data in the present study. In our study, we propose a more personalized approach to identifying postpartum prediabetes after

GDM, at the antenatal visit itself, by calculating a simple score based on only two easy-to-measure biochemical predictors, obtained using ma-

chine learning techniques and a LR algorithm, with good sensitivity and specificity (each of 92% for rule-out and rule-in tests, respectively).

Further, we suggest different cut-offs for classifying high-risk women depending upon resource availability.

The proposed prediction test needs only the antenatal fasting glucose (at the time of antenatal OGTT) and HbA1c, usually measured soon

after the diagnosis of GDM for clinical use. Thus, no additional tests/costs are involved, and is easy to use by healthcare professionals. The in-

formation theory analysis proposes different cut-offs for classification according to the requirement of ruling-in or ruling-out the prediabetes

condition in GDM-diagnosed women. All women diagnosed with GDM during pregnancy are recommended to have annual screening,25,31

although the compliance is currently poor.5,24 Therefore, we can allow for more false positives than false negatives and propose cout = 0.140

as the optimal cut-off for classification. However, in low-resource settings, we can primarily focus on women with P (prediabetes) R cin =

0.381 and then consider women with P (prediabetes)R cin�out = 0.260 in the following step. If resource constraint is not an issue, we can target

women with P (prediabetes)R cout = 0.140 as well. Targeting GDMwomen stepwise according to their risk of developing prediabetes is more

personalized than the blanket approach of targeting all women with GDM. This could be a pragmatic approach in settings with limited re-

sources. Thedesiredcut-off outof cin, cout, orcin�out canbechosendependingupon thepurposeandsetting inwhich thisdiagnostic test is used.

Postpartum weight loss has been shown to reduce the risk of incidence of T2DM and recurrent GDM in the subsequent pregnancy.32,33

However, initiating such lifestyle interventions can be difficult due to lack of personalization andmay not produce optimum results due to poor

adherence by the women.34 Our approach to identifying women with a high risk of prediabetes (using any ‘c’) can provide an improved un-

derstanding of individualized prediabetes risk which can be used to target women for interventions (diet and lifestyle, encourage breastfeed-

ing, etc) for postpartum weight loss. This can in turn improve their T2DM and CVD risk profile. Women are most conducive to interventions

during pregnancy and also maintain close contact with healthcare professionals. Identifying the high-risk women during the antenatal visits

will help the healthcare professionals to implement necessary interventions throughout the remaining pregnancy period, and also encourage

postpartum follow-up. These strategies can include personalizedmonitoring, education and support on lifestyle changes and early treatment,

if necessary, for high risk women. Inexpensive medications such as metformin have been shown to prevent type 2 diabetes in women with a

history of GDM and may provide added benefit in high risk women. In addition, empowering high risk women with knowledge about healthy

lifestyle choices, self-care practices, and potential risk factors can facilitate informed decision-making and sustained behavior change.

We believe that the results obtained are supportive for testing and validating our rule-in and rule-out composite risk score approach on a

larger prospective dataset. Also, real-world validation of machine learning models is an essential step in ensuring their effectiveness and reli-

ability. Real-world validation of trainedMLmodels requires an understanding of domain shift, continuous monitoring of model performance,

data collection for recalibration, and the application of techniques like active learning, transfer learning, and domain adaptation. As andwhen

we get access to more datasets of similar high quality from the field, themodel can certainly be updated, ensuring, as in this paper, that there

is no contamination of training data with test data during model updation. It would not be advisable to update MLmodels in real time on the

field, because of the need to ensure data quality as well as lack of contamination in training the model.
Strengths and limitations

The key strength of our study is the use of a variety of machine learning techniques and the comparison of the LR algorithm with tree-based

algorithms for developing the prognostic model for individualized risk prediction of prediabetes following GDM pregnancy. In addition, to
10 iScience 26, 107846, October 20, 2023
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the best of our knowledge, this is the first study that used K-L divergence and information graphs for evaluating and comparing different diag-

nostic tests at different cut-points and explaining their rule-in and rule-out potentials. However, our study has important limitations. First, this

is retrospective data and hence other potential variables that could influence the prediabetes status such as gestational weight gain and in-

sulin treatment were not electronically available. Second, postpartumglucose status data were only available in 65.0% of the cohort, although

this follow-up rate for postpartumglucose testing was higher than the national average. Finally, while the sample size is small (n = 394 and n =

92 for the prediabetes class) formachine learning analyses, this was adequate based on the substantial predictive performance and the power

calculations. In addition, the only available literature to our knowledge that looked at predicting the onset of T2DM followingGDMwas based

on only 77 patient records with 15 variables.30 Validation with future datasets will be useful, and our model opens avenues for other clinicians

to expand in the future.

Conclusions

This study shows that our proposed model using a LR algorithm is effective for the prediction of prediabetes in GDM women by using the

already available antenatal fasting glucose and antenatal HbA1c. We believe that this approach is easy for practical use with no additional

cost and could be extremely effective for individualized risk stratification of GDM women. This approach could be used for targeted glucose

testing during the postpartum period in a resource-constrained setting.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Available upon request following the completion of a suitable confidentiality agreement.

Software and algorithms

Python version 3.7 Python Software Foundation https://www.python.org
RESOURCE AVAILABILITY

Lead contact

Further information and data will be available upon request following the completion of a suitable confidentiality agreement by lead contact,

P Saravanan (p.saravanan@warwick.ac.uk).

Materials availability

All materials are available upon request.

Data and code availability

The full dataset is available upon request following the completion of a suitable confidentiality agreement.

EXPERIMENTAL MODEL AND STUDY PARTICIPATION DETAILS

Not Applicable.

METHOD DETAILS

Details of the tree-based algorithms.

Balanced decision tree

A single decision rule is developed from learning from the training data in each iteration i of CV1 and is used tomake predictions on the held-

out test data. The number of features used in the decision rule, their order, the split-ting cut-offs at each node in the decision tree, etc. are

decided by optimizing the hyperparameters: [max leaf nodes, min samples split, min samples leaf, criterion] in CV2.

Balanced bagging using decision tree

When the training data is small, b different bootstrapped training datasets can be generated by sampling with replacement from the original

training data. The model is trained on each of these b training datasets to get fb(x) and the final classification model is obtained by averaging

all the b predictions,

fbagðxÞ =
1

B
B

b = 1f
bðxÞ:fbagðxÞ (Equation 9)

fbag(x) is used to make predictions on the held-out test data. The decision tree hyperparameters optimized are same as above.

Balanced random forest

Random forests are similar to bagged decision trees except for the number of features considered at each split in the decision tree-all features

are split candidates in bagged decision trees vs. a random sample of m predictors are the split candidates in random forests. The hyperpara-

meters for optimiza-tion are similar as for decision trees, except that criterion is replaced by m which is either sqrt or log2.

Balanced bagging using histogram-based gradient boosting tree

Boostingworks in a similar fashion to bagging, however the individual decision trees are grown sequentially using information frompreviously

grown trees, and on modified version of the original training dataset. The hyperparameters optimized in this method in CV2 are: [max leaf

nodes, min samples leaf, max depth, l2 regularization]. The LR model could predict ppIFG with an area under the ROC curve of 0.6598.
14 iScience 26, 107846, October 20, 2023
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QUANTIFICATION AND STATISTICAL ANALYSIS

In statistics, power analysis is used to determine the probability of finding a significant difference between two sample distributions, if it exists.

A statistical hypothesis test makes an assumption about the outcome. The null hypothesis in a statistical test is that there is no significant

difference between specified populations, any observed difference is due to sampling or experimental error. The statistical power is the prob-

ability of correctly rejecting the null hypothesis. Therefore, in mathematical terms, power can be defined as probability of True positives (TP).

For a predefined significance level and known effect size, we can either fix power and calculate minimum required sample size to obtain the

desired effect or calculate power for the available sample size. Antenatal fasting (ANF) and antenatal HbA1c (ANHbA1c) are the two selected

predictors for antenatal prediction of prediabetes in GDM diagnosed women. The sample distributions for ANF and ANHbA1c for the GDM

(class 1) and non-GDM (class 0) groups are as shown in Figures S1A and S1B, respectively. Let r be the ratio of the number of samples in the

second sample distribution to those in the first. Then r = Nobs2/Nobs1 = 92/302 = 0.305. Calculating effect sizeWe will use the Cohen’s d for

calculating the effect size. Let h1, and h2 be the number of samples in distribution 1 (class 0) and distribution 2 (class 1), respectively. Let m1, and

m2 be the means and s1, and s2 be the standard deviations of the two sample distributions. Then, the Cohen’s d statistic is given by (Cohen,

Jacob. Statistical power analysis for the behavioral sciences. Academic press, 2013.):

d =
m1 � m2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh1 � 1Þ,s2
1+ðh2 � 1Þ,s2

p
h1+h2 � 2

! (Equation 10)

Assuming the sample distributions of ANF and ANHbA1c for class 0 and class 1 are normal, we get dANF = 0.681 and dHbA1c = 0.781.

Calculating Sample size for fixed Power Let us fix significance level = 0.05 and statistical power p = 0.9. Using the Cohen’s d calculated above,

we get the minimum required sample size as 130 (99 class 0 + 31 class 1) for ANF and 99 (76 class 0 + 23 class 1) for ANHbA1c. Lastly, we

plotted power curves to see how the power of the test changes with the other parameters: sample size, effect size, and significance level.

In Figure S2, we can see how the power of the test increases with increasing sample size, for different fixed effect sizes. We can understand

that if the effect size is small (greater overlap between the two sample distributions), then greater number of observations are required to

identify the existing significant difference between the two sample distributions, and thus correctly reject the null hypothesis. Also, the power

of the test increases with increasing effect size. Basic formulae F1 score: 23 Precision3 Recall/(Precision + Recall) Negative Shannon entropy

function: h(p) = p 3 ln (p) + (1-p) 3 ln (1-p).
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