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Detection of insecticide resistance 
markers in Anopheles funestus 
from the Democratic Republic 
of the Congo using a targeted 
amplicon sequencing panel
Holly Acford‑Palmer 1, Monica Campos 1, Janvier Bandibabone 2, Sévérin N’Do 3,4, 
Chimanuka Bantuzeko 2,5, Bertin Zawadi 2, Thomas Walker 6, Jody E. Phelan 1, 
Louisa A. Messenger 1,7, Taane G. Clark 1,8 & Susana Campino 1*

Vector control strategies have been successful in reducing the number of malaria cases and deaths 
globally, but the spread of insecticide resistance represents a significant threat to disease control. 
Insecticide resistance has been reported across Anopheles (An.) vector populations, including species 
within the An. funestus group. These mosquitoes are responsible for intense malaria transmission 
across sub‑Saharan Africa, including in the Democratic Republic of the Congo (DRC), a country 
contributing > 12% of global malaria infections and mortality events. To support the continuous 
efficacy of vector control strategies, it is essential to monitor insecticide resistance using molecular 
surveillance tools. In this study, we developed an amplicon sequencing (“Amp‑seq”) approach 
targeting An. funestus, and using multiplex PCR, dual index barcoding, and next‑generation 
sequencing for high throughput and low‑cost applications. Using our Amp‑seq approach, we screened 
80 An. funestus field isolates from the DRC across a panel of nine genes with mutations linked to 
insecticide resistance (ace-1, CYP6P4, CYP6P9a, GSTe2, vgsc, and rdl) and mosquito speciation (cox-1, 
mtND5, and ITS2). Amongst the 18 non‑synonymous mutations detected, was N485I, in the ace-1 
gene associated with carbamate resistance. Overall, our panel represents an extendable and much‑
needed method for the molecular surveillance of insecticide resistance in An. funestus populations.

Malaria, caused by Plasmodium parasites and transmitted by Anopheles spp. mosquitoes, is a major public health 
problem contributing to substantial global morbidity and  mortality1. The prevention of malaria relies on vector 
control measures, particularly the distribution of long-lasting insecticidal nets (LLINs)1,2. Whilst LLINs have 
contributed to significant drops in malaria burden since year 2000, there has been a plateauing in improvements 
in case reductions, coinciding with the spread of insecticide resistance across many Anopheles spp.3,4.

Species of the Anopheles gambiae (An. gambiae) group are the dominant malaria vectors across most of 
sub-Saharan Africa, but other species from the An. funestus group (An. funestus sensu stricto, An. parensis, An. 
vandeeni, and An. rivulorum) are also vectors and contribute to malaria  transmission5–7. An. funestus s.s. mosqui-
tos make up the largest population in the complex and have the widest geographical  distribution8. This vector can 
thrive in varying climate conditions, is highly anthropophilic, and has night-time biting and endophilic resting 
 behaviour3,9. These behaviours make An. funestus highly susceptible to traditional vector control methods, but 
resistance to insecticides has  emerged3,10–12.
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The Democratic Republic of Congo (DRC) is a malaria hotspot, with > 25 million cases (12% of global total), 
and transmission caused by both An. gambiae and An. funestus complex  species1. Since 2015, there has been a 
15% increase in malaria cases in  DRC1,13, with in-country vector control relying on mass distribution of LLINs, 
complemented by smaller-scale indoor and outdoors (ORS) residual spraying (IRS) in focal areas, by private min-
ing enterprises. However, resistance to the four major classes of insecticides (carbamates, cyclodienes, organo-
phosphates, pyrethroids) has emerged in An. gambiae, and An. funestus s.s.13,14.

The underlying mechanisms of insecticide resistance across several mosquito species include target site muta-
tions and metabolic-based, but alterations in microbiome composition and cuticles, as well as behavioural modi-
fications, have been found to alter vector  susceptibility15–18. Target site resistance results from single nucleotide 
polymorphisms (SNPs) that cause changes to the amino acid sequence in proteins involved in insecticide binding. 
The most well-known are the kdr (knock-down resistance) mutations in the voltage-gated sodium channel (vgsc), 
including kdr L1014F/S, V410L, F1508C, N1549Y, and  D1763Y19–22, which result in resistance to pyrethroids and 
 DDT23,24. None of these mutations have been described in An. funestus populations despite extensive  studies9,25–28. 
Other commonly observed mutations in Anopheles spp., including the G119S mutation in the acetylcholinest-
erase-1 (ace-1) gene, leading to resistance to organophosphates and carbamates, but has not been observed in 
An. funestus  populations29–31. However, the ace-1 N485I mutation was identified in An. funestus samples from 
Malawi and linked to bendiocarb (carbamate)  resistance32. Similarly, the A296S mutation in the gaba receptor, 
also known as the rdl (resistant to dieldrin) mutation, has been observed in An. funestus populationsand linked 
to several insecticides, including cyclodienes, a subgroup of  organochlorides31,33,34.

Metabolically mediated resistance mutations include the L119F mutation in the glutathione-S-transferase 
epsilon 2 (GSTe2) gene, which is linked to DDT resistance, and has been found in An. funestus35,36. Other work 
in this vector has sought to identify resistance associated alleles in cytochrome P450 genes (e.g., CYP6P9a and 
CYP6P4), with pyrethroid resistance linked to overexpression of the CYP6P9a gene in isolates from Southern 
Africa, driven by cis-regulatory  polymorphisms32,37–39.

The increasing resistance to insecticides in An. funestus highlights the need for rapid molecular surveil-
lance techniques to identify underlying mutations, and thereby inform National Malaria Control Program for 
appropriate decisions about insecticide usage. Whole genome sequencing is limited by a need for high DNA 
concentrations and the large size of mosquito genomes (~ 350 Mbp) results in a high cost per sample. Amplicon 
sequencing (“amp-seq”), which can simultaneously target many genomic regions (each ~ 500 bp) across candidate 
genes, has previously been applied to other vectors such as An. gambiae, An. stephensi and Aedes aegypti40–43. 
Amplicon primers designed for An. gambiae were tested in silico to check whether they were suitable for use on 
An. funestus, however the number of mismatches (n ≥ 4) per primer, when compared to the reference sequence, 
meant they were unlikely to work efficiently on field specimens. Here we developed a targeted An. funestus 
amp-seq assay and applied it to 80 wild caught mosquitoes from the DRC to screen for molecular markers of 
insecticide resistance. The 17-amplicon panel covers regions in vgsc, ace-1, CY9P6a, CYP9P4, GSTe2 and rdl 
loci for insecticide resistance profiling, as well as mitochondrial genes (cytochrome oxidase 1 (cox-1), NADH 
dehydrogenase 5 (mt-ND5)) and the ribosomal locus ITS2 (internally transcribed spacer 2) for speciation and 
phylogenetic analysis. The amp-seq assay uses a dual index barcoding system to facilitate the pooling of amplicons 
across many samples, thereby increasing throughput and decreasing costs. Our assay represents a promising 
strategy to support An. funestus vector control surveillance.

Materials and methods
Sample collection
Adult Anopheles were collected from households in two sites in Sud-Kivu province (Tchonka; 2° 19′ 18″ S, 27° 32′ 
24″ E and Tushunguti; 1° 48′ 19″ S, 28° 45′ 00.5″ E) using Centers for Disease Control (CDC) light traps during 
the rainy seasons (Tchonka: April–June 2018; Tushunguti December 2017–February 2018). Mosquitoes were 
identified morphologically as members of the An. funestus s.l.  group44. A total of 80 isolates were used for this 
study (Tchonka 70; Tushunguti 10). Individual mosquitoes were homogenized in a Qiagen TissueLyser II with 
sterilized 5 mm stainless steel beads for 5 min at 30 Hz and incubated overnight at 56 °C. DNA was extracted 
using a Qiagen DNeasy 96 blood and tissue kit (Qiagen, UK), according to the manufacturer’s protocol.

Primer design
Amplicon primers were designed with Primer3 software, using sequences from the An. funestus FUMOZ refer-
ence strain downloaded from  VectorBase45,46. The primers were designed to amplify a region of around 500bp, 
typically around a SNP previously reported as associated with insecticide resistance in Anopheles, Aedes, or Culex 
mosquitoes. Where possible, these primers were designed to bind to exons. This panel comprised of 17 primer 
pairs (amplicons) targeting nine genes, including vgsc (6 amplicons), gaba (2), ace-1 (3), GSTe2 (1), CYP6P4 (1), 
CYP6P9a (1) for insecticide resistance, and the cox1 (1 amplicon), ITS2 (1), and mt-ND5 (1) for species identi-
fication or phylogenetic analysis (Supplementary Table 1). Primers for the CYP6P9a amplicon were taken from 
Weedall et al.39. Each primer was concatenated with one of ten unique 8bp barcodes at the 5′ end. Each sample 
was assigned a barcode combination to be used throughout amplicon generation. This allowed for amplicons 
from samples with different barcodes to be pooled. To assess their suitability for multiplexing, samples were 
checked for potential dimer formation using ThermoFisher Scientific Multiple Primer Analyser software with 
sensitivity set to one.

Amplicon generation
Using NEB Q5 hot start polymerase (New England BioLabs, UK), amplicons (500 bp) were generated in 25 μl 
reactions. Sample volume of 1 μl (~ 2 ng/μl) was used, with an average final primer concentration of 0.5 μM in 
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each PCR. The amplification was conducted as follows: hot-start polymerase activation for 3 min at 95 °C, fol-
lowed by 30 cycles of 95 °C for 10 s, 60 °C for 30 s and 72 °C for 45 s, followed by a final elongation step of 72 
°C for 2 min. Post-multiplex PCR reaction, amplicons were visualised on a 1% agarose gel to confirm band size. 
Multiplexed PCR amplicons were first pooled by sample, and then with other samples with different 5ʹ barcode 
combinations. Sample pools were purified using Roche Kapa beads following manufacturer’s instructions. A bead 
to sample ratio of 0.7:1 was used to remove excess primers and PCR reagents. The Qubit 2.0 fluorimeter HS DNA 
kit was used to quantify the pool concentration. Illumina adaptors and barcodes were ligated to the sample pool 
as a part of the Illumina-based Amplicon-EZ service (Genewiz, UK). The indexed pool was then sequenced using 
a 2 × 250 bp paired end configuration on an Illumina MiSeq. A minimum of 50,000 reads were attained per pool, 
equating to at least 290 reads per amplicon in a pool of 170 amplicons (at a low cost of < US$0.5 per amplicon).

Amplicon analysis
The multi-sample fastq files were first demultiplexed using an in-house python script (https:// github. com/ LSHTM 
Patho genSe qLab/ ampli con- seq) into individual sample fastq files, through the unique barcode combination 
previously assigned. The reads were trimmed using the Trimmomatic package, then mapped to the reference 
sequence with bwa-mem and mapped reads clipped using the Samclip  package47–49. Using the alignments, GATK 
HaplotypeCaller (v4.1.4.1, default parameters) and Freebayes (v1.3.5, –haplotype-length -1) software were applied 
for variant  calling50,51. Any identified SNPs or insertions/deletions (INDELS) were filtered using bcftools for a 
minimum allele depth of 20 reads. The Phred score was also used for filtering, where a score of > 30 per base 
was required to pass quality control checks. To determine the consequence of variants at an amino acid level, 
the SnpEff tool was applied with a database built from the FUMOZ reference  genome52. The available reference 
genomes, at the time of analysis, either had no information about insecticide susceptibility, or were the pyrethroid 
resistant FUMOZ strain. Variants were genotyped using the proportion of alternate allele reads to total position 
reads for each sample. Samples were genotyped as homozygous reference (< 20% alternate allele), heterozygous 
(20–80% alternate allele) or homozygous alternate (> 80% alternate allele)40,41,43.

Phylogenetic analysis
For the ITS2, cox1 and mt-ND5 amplicons, each sample bam file was converted into fasta format using an 
in-house script (https:// github. com/ LSHTM Patho genSe qLab/ fastq 2matr ix). This analysis required a depth of 
at least 20-fold in each position, and if samples had a large proportion (> 90%) of uncalled bases, they were 
excluded from this analysis. For each gene, sequences were aligned using MAFFT software, along with publicly 
available sequences of An. funestus specimens from other  countries53. For ITS2, this included 35 samples from 
Cameroon, DRC, Ethiopia, Kenya, Madagascar, Malawi, Mozambique, and Zambia. The cox1 alignment included 
111 sequences from Cameroon, Central African Republic, DRC, Gabon, Ghana, Kenya, Madagascar, Malawi, 
Mozambique, Tanzania, Uganda, and Zambia. For mt-ND5, 66 sequences from DRC, Ghana, Kenya, Malawi, 
Mozambique, Tanzania, Uganda, and Zambia were used. The alignments were then viewed and trimmed in 
 Aliview54. RAxML software was used to construct maximum likelihood phylogenetic trees, with a bootstrap 
value of 1000, and gamma model of heterogeneity and GTR model of nucleotide substitution  assumed55. The 
resulting tree model was visualised using iTOL  software56.

Haplotype analysis
Specimen sequences were aligned using MAFFT software, and haplotype networks were constructed using the 
R package  Pegas57. Amplicon nucleotide diversity and haplotype diversity were also calculated using the Pegas 
package. The vcftools package was used to calculate nucleotide diversity per SNP, fixation index, and linkage 
disequilibrium metrics. Linkage disequilibrium output was visualised with the Gaston R  package58,59.

Results
Detection of SNP associated with insecticide resistance
Eighty An. funestus specimens were sequenced resulting in the identification of 377 variants (351 SNPs and 
26 INDELs not previously described) across the 17 amplicons (Supplementary Table 2). The average coverage 
of amplicons varied from 193- to 3684-fold. Of the 351 SNPs identified, 92% were either intronic variants or 
synonymous variants. A total of 18 missense SNPs were found, but no INDELs resulted in amino acid changes 
(Table 1). Of these 18 non-synonymous SNPs, only one had been previously reported—the N643I mutation 
in the ace-1 gene (N485I in Torpedo californica otherwise known as Pacific electric ray). The ace-1 N643I SNP 
occurred in samples from both Tchonka (7/70) and Tushunguti (1/10). The remaining 17 novel missense SNPs 
appeared in either the CYP6P4 (I288N, G289R, N291S/T, L294V, K295E, E297K, D404N, and I414L), GSTe2 
(G80A, V134M, and K146T) or vgsc gene (domain II) (F763L, I768L/M, L788F, and G793C). All SNPs were 
detected at low frequencies, with allelic frequencies varying from 0.7 to 13.6%. Also identified was a 2bp insertion 
in the CYP6P9a amplicon, which occurs in a non-coding region, thereby not resulting in an amino acid change, 
but has been identified previously as a marker for pyrethroid  resistance39. This insertion occurred in 91.3% of 
samples, with 73.9% of specimen’s genotyped as homozygous alternate (R/R), 17.4% as heterozygous (R/S), and 
8.7% as homozygous reference (S/S).

Linkage disequilibrium was calculated for each CYP6P4 and vgsc (domain II) amplicons due to the high 
number of non-synonymous SNPs present. For the VGSCIIa amplicon, perfect linkage disequilibrium (LD  r2 = 1) 
was present between the I768L and G793C mutations. High LD was observed in the VGSCIIa amplicons between 
other sets of SNP pairs (F763L, I768M; F763L, L788F; I768M, L788F; I768L, G793C; all  r2 > 0.75), suggesting 
a strong association between these mutations. In the CYP6P4 amplicons, perfect linkage  (r2 = 1) was observed 
between E297K and K295E, and L294V and N291T SNPs (Supplementary Fig. 1).

https://github.com/LSHTMPathogenSeqLab/amplicon-seq
https://github.com/LSHTMPathogenSeqLab/amplicon-seq
https://github.com/LSHTMPathogenSeqLab/fastq2matrix
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Genetic diversity of An. funestus in Eastern DRC
Low genetic diversity was observed at all three loci (Table 2). The cox-1 gene had the highest nucleotide diversity 
(0.011) and number of SNPs identified (64/351). This high number of SNPs resulted in high haplotype diversity, 
with 18 haplotypes identified and 50% being singletons. When 111 cox-1 sequences from 11 other countries were 
included, 54 haplotypes were identified, 32 (58%) of which were singletons. The mt-ND5 gene also exhibited high 
haplotype diversity, but from a smaller number of SNPs (n = 13), with 17 haplotypes identified (53% singletons). 
The number of haplotypes identified expanded to 53 (66% singleton) when including in the analysis 66 publicly 
available mt-ND5 sequences covering seven countries. For ITS2 sequences from DRC, four SNPs were identi-
fied, resulting in three haplotypes none of which had fewer than seven isolates present. When expanding these 
networks to include publicly available ITS2 sequences (n = 35; 8 countries), the number of haplotypes remained 
the same (n = 3), with > 20 isolates per haplotype. The haplotype networks for each gene (Fig. 1a–c), showed that 
most samples from the different countries shared a core haplotype, including the DRC samples. For the ND5 
sequences many DRC samples had haplotypes that were not present in the other countries (Fig. 1b).

The data from the three genes demonstrated little population differentiation within the phylogenetic tree 
constructed (Figs. 2, 3; Supplementary Fig. 2). Both mitochondrial genes demonstrated an ability to speciate, with 
separate clades for each Anopheles spp. (Figs. 2, 3). The cox-1 gene was able to distinguish at a greater resolution, 
with samples likely to be incorrectly identified through morphology as An. funestus (Anfun01, Anfun13, Anfun27 
and Anfun71) appearing within the other Anopheles spp. clade. Anfun71 was in a cluster with the An. arabiensis 
and An. gambiae s.s. sequences, which was supported by a NCBI BLAST analysis that revealed it shares a 99.0% 
identity with An. gambiae cox-1 isolates, and a 98.5% identity with An. arabiensis cox-1 sequences. NCBI BLAST 
identified the remaining three samples (Anfun01, Anfun13, Anfun27) as An. coustani (identity > 97%). In com-
parison, the mt-ND5 gene did not speciate these samples as non-An. funestus but did reveal the clearest popula-
tion differentiation between the DRC isolates and the publicly available sequences from other countries (Fig. 3).

Discussion
The application of our amp-seq panel to An. funestus collected in Eastern DRC demonstrates its utility as a 
surveillance technique for genotypic-based insecticide resistance and species identification. Across the 80 DRC 
samples, we identified the ace-1 N643I SNP, alongside 17 other putatively novel non-synonymous SNPs in genes 
associated with insecticide susceptibility. The ace-1 N643I resistant allele, also known as N485I in Torpedo 

Table 1.  Location and frequencies of non-synonymous variants detected.

Amplicon Position Sample number Annotation

Allele frequencies

Nucleotide diversityReference Non-reference

ACE1III 19,555,221 68 Asn643Ile 91.9 8.1 0.25

CYP6P4

8,560,733 66 Ile414Leu 97.7 2.3 0.07

8,560,763 66 Asp404Asn 93.2 6.8 0.16

8,561,152 66 Glu297Lys 92.4 7.6 0.19

8,561,158 66 Lys295Glu 92.4 7.6 0.19

8,561,161 66 Leu294Val 96.2 3.8 0.14

8,561,169 66 Asn291Ser 97.8 2.2 0.07

8,561,169 66 Asn291Thr 94.7 5.3 0.14

8,561,176 66 Gly289Arg 98.5 1.5 0.06

8,561,178 66 Ile288Asn 91.7 8.3 0.18

GSTe2

75,252,570 70 Lys146Thr 93.6 6.4 0.18

75,252,607 70 Val134Met 99.3 0.7 0.03

75,252,839 70 Gly80Ala 86.4 13.6 0.27

VGSCIIa

42,339,660 71 Phe763Leu 99.3 0.7 0.14

42,339,675 71 Ile768Leu 97.9 2.1 0.11

42,339,677 71 Ile768Met 98.9 1.4 0.14

42,339,735 71 Leu788Phe 97.2 2.8 0.15

42,339,750 71 Gly793Cys 97.9 2.1 0.11

Table 2.  Haplotype and nucleotide diversity of genes in DRC.

Gene No. of haplotypes Haplotype diversity Nucleotide diversity

ITS2 3 0.60 0.002

Cox1 18 0.82 0.011

ND5 16 0.93 0.006
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Figure 1.  Haplotype or minimal-spanning network constructed using (a) cox-1, (b) mt-ND5, and (c) ITS2 
sequences generated in this study and publicly available samples. Each node represents a haplotype, each 
segment within the node represents a country, and is proportionally sized to the number of sequences present 
in the segment and node. The number of ticks between nodes represents the number of genetic differences 
between nodes.
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californica, was originally found in Southern African countries such as Mozambique and Malawi, but appears 
to have spread or emerged independently in  DRC32. This SNP has been associated with increased resistance to 
the carbamate,  bendiocarb32. Resistance to bendiocarb has also been reported in other An. funestus isolates from 
DRC collected in  Tchonka14. The original study in Southern Africa only found heterozygous (R/S) genotypes, 
but in Malawi homozygous (R/R) were also detected, demonstrating higher resistance to bendiocarb than R/S 
 genotypes60. In this study, the resistant allele appeared in 14.7% of samples, with only one sample classified as 
R/R. Since there has never been widespread use of carbamates or organophosphates in the DRC, it is possible 
that the N643I mutation is playing another role in resistance/cross-resistance to other insecticides or imparts 
a fitness advantage.

In the CYP6P4 gene, the I288N, G289R, N291S/T, L294V, K295E, and E297K SNPs all occur within the vari-
able region of the protein, close to I236M, which is a mutation linked to pyrethroid resistance in An. gambiae 
s.s. and An. coluzzii37. Some of these SNPs appear in a block of high linkage, probably due to close proximity. 
Other genetic variants were detected in this gene, including in codon 414, where an isoleucine changes to a 
leucine. This change is unlikely to result in resistance to insecticides in An. funestus, as leucine is the reference 
amino acid for both An. gambiae s.s. and An. arabiensis. The other detected substitution D404N occurs in the 
conserved amino acid region, but is not proximal to the catalytic sites, so probably not involved in resistance. Our 
CYP6P4 amplicon was designed based on the identification of deltamethrin binding site described previously, 
and believed to bind around the  Pro376,  Leu380, and  Ser38161. However, additional, or modified amplicons can be 
included for CYP6P4 if other positions are found to be important.

Of the three missense SNPs (G80A, K146T, V134M) found in the GSTe2 amplicon, G80A is unlikely to have 
an impact on resistance, as other Anopheles spp. such as An. sinensis and An. atroparvus have alanine as the 
reference amino acid at this position. Similarly, the K146T alteration is present in other Anopheles spp. that have 
threonine as the reference amino acid at this position. For the V134M mutation, this position appears highly 
conserved across Anopheles spp. Codon position 134 exists within the H5 helix in the GSTe2 protein, however 
H5 does not appear to play a part in DDT binding to GSTe235. Mutations at nearby codon positions 131 and 139 
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Figure 2.  Maximum-likelihood tree constructed using cox-1 gene sequences generated in this study (n = 84), 
alongside other publicly available An. funestus cox-1 sequences (n = 111), (Cameroon = 2, Central African 
Republic = 3, DRC = 7, Gabon = 3, Ghana = 2, Kenya = 16, Madagascar = 2, Malawi = 11, Mozambique = 21, 
Tanzania = 10, Uganda = 4, Zambia = 30). This tree also has a group of Anopheles spp. (n = 7), including An. 
arabiensis, An. darlingi, An. dirus, An. gambiae s.s, An. minimus, An. sinensis and An. stephensi. The tree was 
built using the maximum-likelihood method assuming GTR model of nucleotide substitution, with the gamma 
model of heterogeneity rate.
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have been previously reported and are not believed to alter insecticide  susceptibility35,36. V134 was identified as 
a highly replaceable site across the GST family.

The five non-synonymous mutations found in the vgsc gene (F763L, I768L/M, L788F, and G793C) occur in 
the IIS1 domain of the VGSC protein. A T791M mutation has been previously reported in this region in An. 
gambiae, but no association with insecticide resistance was  established62. In our work, the F763L, I768L, and 
G793C mutations all result in changes to amino acids found in other species at that position. The I768M and 
L788F mutations have not been observed in other Anopheles spp. For the I768M mutation, there was variation 
observed between species at codon 768, but methionine was not present. Whilst the leucine at codon 788 was 
highly conserved across species with no phenylalanine being reported previously. Future studies involving the 
analysis of genotype–phenotype associations in An. funestus populations could identify the possible involvement 
of these SNPs in insecticide resistance.

The absence of previously reported vgsc-kdr mutations and the ace-1 G119S  SNP27,30 is not unexpected, as 
these have not yet been observed in An. funestus populations. Other molecular mechanisms are involved in 
resistance to pyrethroids in this vector species. However, the continued attempts to detect the classic kdr muta-
tions in An. funestus are necessary due the speed this highly favourable polymorphism can spread through the 
population, as seen with An. gambiae27,63. In DRC, An. funestus populations resistant to pyrethroid have been 
reported, likely due to the use of pyrethroid-only LLINs in the  country64. It is therefore essential to investigate 
the genetic variants involved in insecticide resistance in An. funestus, due to the speed with which some of these 
highly favourable polymorphisms can spread through a population, as observed previously with An. gambiae27,63.

The cytochrome P450 genes were included in our panel because of their association with metabolic-based 
insecticide resistance. The previously described 2bp insertion within the CYP6P9a promoter region was detected 
in > 90% of our samples. This frequency is consistent with estimates based on applying a restriction fragment 
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Figure 3.  Maximum-likelihood tree constructed using mt-ND5 gene sequences generated in this study (n = 67), 
alongside other publicly available An. funestus mt-ND5 sequences (n = 66), (DRC = 6, Ghana = 2, Kenya = 1, 
Malawi = 7, Mozambique = 7, Tanzania = 10, Uganda = 3, Zambia = 30). This tree also has a group of Anopheles 
spp. (n = 7), including An. arabiensis, An. darlingi, An. dirus, An. gambiae s.s, An. minimus, An. sinensis and 
An. stephensi. The tree was built using the maximum-likelihood method assuming GTR model of nucleotide 
substitution, with the gamma model of heterogeneity rate.
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length polymorphism (RFLP) CYP6P9a diagnostic assay to a cohort of Tchonka and Tushunguti samples 
(82–98%)10,39. The 2bp insertion has been identified as a potential marker for pyrethroid resistance, being tightly 
linked with a resistant  phenotype39. Other cytochrome P450 genes, such as CYP6P9b, have also been involved 
in insecticide resistant phenotype, particularly associated with elevated gene  expression65. These loci can be 
integrated in the amplicon assay, particularly when genetic markers in these genes are uncovered to be involved 
in the resistance phenotype.

Of the phylogenetic markers included in the amplicon panel, those in ITS2 showed the least utility for inves-
tigations into genetic diversity or relatedness. In contrast, the mitochondrial genes, cox-1 and mt-ND5, showed 
more promise for speciation and population delineation. The cox-1 gene was able to identify four samples that 
had been misclassified as An. funestus. Visual identification of mosquito species requires skilled and experienced 
individuals, but such identification can often be of limited use due to sample degradation. The non-An. funestus 
isolates were found to be An. gambiae and An. coustani, both known vectors in the region. An. gambiae is the 
focus of many vector control strategies across Sub-Saharan Africa, due to its large contribution to malaria trans-
mission. Anopheles coustani is considered a secondary malaria vector across Central and Southern Africa. It is 
highly zoophilic and endophilic, differs sufficiently enough in behaviour to avoid many traditional vector control 
methods, and therefore its capacity for transmitting malaria is beginning to be taken more  seriously66,67. Also 
such ability to escape IRS and LLINs through its behaviour, might be the origin of a future epidemic resurgence 
of malaria after the main malaria vector An. gambiae has been controlled. Whilst the occurrence of these species 
in this study could be the result of incorrect morphological identification, it may also be an example of species 
 introgression68. BLAST analysis of the cox-1 sequences for these misclassified samples revealed a 91–94% identity 
to An. funestus, compared to the 97–98% identity to the other species. Introgression of genes in An. funestus has 
previously been reported, but to confirm it is occurring here would require whole genome sequencing combined 
with a comparative genomic  analysis69.

For both mitochondrial genes, high haplotype diversity was observed in the context of the very low nucleotide 
diversity. This suggests a high number of low frequency variants, which has been observed for other Anopheles 
spp.43. The smaller sample size tested here may contribute to the low frequencies observed, so increasing the num-
ber of specimens screened with this amplicon panel would provide greater insights into the population dynamics.

Our study has demonstrated the utility of an amp-seq panel as a viable screening technique for SNPs associ-
ated with insecticide resistance. The detection of previously unreported missense SNPs also demonstrates its 
potential usage for the identification of new SNPs that may be involved in insecticide resistance, if used in tandem 
with phenotypic studies. Currently the use of this panel in a field setting may be limited by access to sequencing 
platforms, and a lack of bioinformatics expertise, and as such could be of more use in a research setting. How-
ever the use of a portable sequencer such as the long-read MinION could help to overcome this, along with a 
graphical web interface platform for data analysis, as successfully implemented for malaria and  tuberculosis70,71.

Importantly, informed vector control methods are needed to meet the World Health Organization goals of 
reducing malaria mortality by 90% within the next 7 years. Whilst gains have been made since this target was 
established, in recent years the number of cases has stabilised. New impetus is needed for large-scale surveil-
lance studies with high throughput molecular tools to rapidly inform policy choices and reduce malaria cases. 
Our assay, which can be easily extended to other loci, represents a tool and opportunity to perform molecular 
surveillance in a vector heavily involved in malaria transmission across Africa.

Data availability
All raw sequence data is listed in the European Nucleotide Archive (Project ID: PRJEB61194, Accession numbers: 
ERR11507573–ERR11507628.
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