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Abstract
We introduce and compare computational techniques for sharp extreme event probability estimates in stochastic differential
equations with small additive Gaussian noise. In particular, we focus on strategies that are scalable, i.e. their efficiency does
not degrade upon temporal and possibly spatial refinement. For that purpose, we extend algorithms based on the Laplace
method for estimating the probability of an extreme event to infinite dimensional path space. Themethod estimates the limiting
exponential scaling using a single realization of the random variable, the large deviation minimizer. Finding this minimizer
amounts to solving an optimization problem governed by a differential equation. The probability estimate becomes sharpwhen
it additionally includes prefactor information, which necessitates computing the determinant of a second derivative operator
to evaluate a Gaussian integral around the minimizer. We present an approach in infinite dimensions based on Fredholm
determinants, and develop numerical algorithms to compute these determinants efficiently for the high-dimensional systems
that arise upon discretization.We also give an interpretation of this approach usingGaussian process covariances and transition
tubes. An example model problem, for which we provide an open-source python implementation, is used throughout the paper
to illustrate all methods discussed. To study the performance of the methods, we consider examples of stochastic differential
and stochastic partial differential equations, including the randomly forced incompressible three-dimensional Navier–Stokes
equations.
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1 Introduction

The estimation of extreme event probabilities in complex
stochastic systems is an important problem in applied sci-
ences and engineering, and is difficult as soon as these events
are too rare to be easily observable, but at the same time too
impactful to be ignored. Examples of such events studied in
the recent literature include rogue waves (Dematteis et al.
2018) and wave impacts on an offshore platform (Mohamad
and Sapsis 2018), heat waves and cold spells (Ragone et al.
2018; Gálfi et al. 2019), intermittent fluctuations in turbulent
flows (Fuchs et al. 2022) and derivative pricing fluctuations
in mathematical finance (Friz et al. 2015). A broad perspec-
tive on extreme event prediction can be found in Farazmand
and Sapsis (2019). Methods to estimate extreme events typi-
cally rely onMonte Carlo simulations, including importance
sampling (Bucklew 2013), subset simulation (Au and Beck
2001) or multilevel splitting methods (Budhiraja and Dupuis
2019).

A possible theoretical framework to assess extreme event
probabilities, which we will follow in this work, is given
by large deviation theory (LDT) (Varadhan 1984; Dembo
and Zeitouni 1998). This approach allows to estimate the
dominant, exponential scaling of the probabilities in question
through the solution of a deterministic optimization problem,
namely finding the most relevant realization of the stochastic
process for a given outcome. This realization is sometimes
called instanton, inspired by theoretical physics. For stochas-
tic processes described by stochastic differential equations
(SDEs), the relevant theory has been formulated by Freidlin
and Wentzell (2012), and can be extended to many stochas-
tic partial differential equations (SPDEs). The computational
potential of this formulation has been reviewed byGrafke and
Vanden-Eijnden (2019).

In addition to the exponential scaling provided by LDT,
it is often desirable to obtain asymptotically sharp, i.e.
asymptotically exact probability estimates. This requires the
evaluation of a pre-exponential factor in addition to the
usual leading-order large deviation result, when interpret-
ing LDT as a Laplace approximation. On the theoretical
side, there exist multiple results for such precise Laplace
asymptotics for general SDEs (Ellis and Rosen 1982; Azen-
cott 1982; Ben Arous 1988; Piterbarg and Fatalov 1995;
Deuschel et al. 2014) and certain SPDEs requiring renormal-
ization (Berglund et al. 2017; Friz and Klose 2022), which,
however, typically do not include an actual evaluation of the

abstract objects in terms of which they are formulated. We
concentrate on the case of SDEs or well-posed SPDEs with
additive noise here, where computing the leading-order pref-
actor amounts to evaluating a Fredholm determinant of an
integral operator.

Approach. In this paper, we present a sharp and com-
putable probability estimate for tail probabilities
P [ f (XT ) ≥ z], i.e. a real-valued function f of a diffusion
process (Xt )t∈[0,T ] with state space Rn and

{
dXt = b(Xt )dt + σdBt ,

X0 = x ∈ R
n,

(1)

exceeding a given threshold z at final time T (see Fig. 1 for
an example of this setup). We demonstrate that

P [ f (XT ) ≥ z] ≈ (2π)−1/2C(z) exp {−I (z)} , (2)

in a way to be made precise later on, with real-valued func-
tionsC , called the (leading-order) prefactor, and I , called the
rate function. The latter is determined through the solution
of a constrained optimization problem:

I (z) = min
η∈L2([0,T ],Rn)
s.t. f (XT [η])=z

1

2
‖η‖2L2 , (3)

where formally η = dBt/dt is the time derivative of
the Brownian motion (Bt )t∈[0,T ], and XT depends on η

through (1). The prefactor C is then expressed as a Fred-
holm determinant of a linear operator which contains the
solution of the minimization problem (3), the instanton ηz ,
as a background field and acts on paths δη : [0, T ] → R

n .
We show how to evaluate this operator determinant numeri-
cally for general SDEs and SPDEs, and demonstrate through
multiple examples that it is possible to do so even for very
high-dimensional systems with n � 1 arising, for instance,
after spatial discretization of an SPDE.Our approach is based
on computing the dominant eigenvalues of the trace-class
integral operator entering the Fredholm determinant.

Related literature. In the physics literature, the leading-order
prefactor computation corresponds to the evaluation ofGaus-
sian path integrals, which is a classical topic in quantum and
statistical field theory (Zinn-Justin 2021). There are multi-
ple references dealing with the evaluation of such integrals
for the class of differential operators that is necessary for
SDEs, such as Papadopoulos (1975), Nickelsen and Engel
(2011), Corazza and Fadel (2020). In accordance with these
approaches, in the last years, numerical leading order pref-
actor computation methods for general SDEs and SPDEs
via the solution of Riccati matrix differential equations have
been established (Schorlepp et al. 2021; Ferré and Grafke
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Fig. 1 Visualization of extreme event set (red), a sample path that, from
a given initial condition, ends in the extreme event set at final time T
(orange) and two typical sample paths that do not end in the event set
(blue and green). The gray lines are field lines of the drift vector field b.
This is the reason why paths that end in the event set are rare, since
the noise must act against the flow of the deterministic vector field b
to push the system into the extreme event set. Details of this example
problem, which is used throughout the paper as illustration, will be
given in Sect. 1.2 and more rare event paths and the instanton are shown
in Fig. 2. The implementation of this example is available from a public
GitHub repository (Schorlepp et al. 2023)

2021; Grafke et al. 2021; Bouchet and Reygner 2022; Schor-
lepp et al. 2023). An early example using a similar method
is given by Maier and Stein (1996). All of these papers
have in common that the leading order prefactor can be
evaluated in a closed form by solving a single matrix val-
ued initial or final value problem, thereby bypassing the
need to compute large operator determinants directly. We
briefly introduce this method in this paper, relate it to the—in
some sense complementary—Fredholm determinant prefac-
tor evaluation based on dominant eigenvalues, and discuss
possible advantages and disadvantages. We note that for
SDEs with low-dimensional state space, it can also be feasi-
ble to compute the differential operator determinants, that are
otherwise evaluated through the Riccati matrices, directly by
discretizing the operator into a large matrix and numerically
calculating its determinant, which has been carried out e.g.
by Psaros and Kougioumtzoglou (2020), Zhao et al. (2022).

Another perspective on the precise Laplace approximation
used in this paper is provided by the so-called second-order
reliability method (SORM), which is used in the engineer-
ing literature to estimate failure probabilities, as reviewed
e.g. by Rackwitz (2001); Breitung (2006). For example, the
asymptotic form of the extreme event probabilities in this
paper corresponds to the standard form stated by Breitung
(1984). In this sense, the method proposed in this paper can
be regarded as a path space SORM, carried over to infi-

nite dimensions for the case of additive noise SDEs. The
connection of precise LDT estimates to SORM for finite-
dimensional parameter spaces has also been pointed out by
Tong et al. (2021).

In studies of rare and extreme event estimation, Monte
Carlo simulations are commonly used, and various sam-
pling schemes have been designed, some of which have
beenmodified and adapted to systems involving SDEs. These
include various importance sampling estimators which can
be associated e.g. with the solution to deterministic optimal
control problems along random trajectories (Vanden-Eijnden
and Weare 2012), with the instanton in LDT (Ebener et al.
2019), or build on stochastic Koopman operator eigenfunc-
tions (Zhang et al. 2022). The method we propose takes a
different perspective from these sampling methods—it does
not involve sampling, and is only asymptotically exact.

Contributions and limitations. The main contributions of
this paper are as follows: (i) Generalizing SORM to infinite
dimensions, we introduce a sampling-free method to approx-
imate extreme event probabilities for SDEs (andSPDEs)with
additive noise. The method is based on the Laplace approx-
imation in path space and uses second-order information to
compute the probability prefactor. (ii) While such precise
Laplace asymptotics for SDEs are known on a theoretical
level, we show how to evaluate them numerically in a man-
ner that is straightforward to implement and is scalable, i.e.
it does not degrade with increasing discretization dimension.
We illustrate the method on a high-dimensional nonlinear
example, namely estimating the probability of high strain
rate events in a three-dimensional stochastic Navier–Stokes
flow. (iii) On the theoretical level, we explore the relation-
ship between the proposed eigenvalue-based approach for
calculating the prefactor andRiccatimethods from stochastic
analysis and stochastic field theory. We examine the advan-
tages of each method and provide an interpretation of the
involved Gaussian process using transition tubes towards the
extreme event, i.e. the expected magnitude and direction of
fluctuations on the way to an extreme outcome.

The approach taken in this paper also has some limitations:
(i) While we find the probability estimates including the
leading-order prefactor to be quite accurate when compared
to direct Monte Carlo simulations when these are feasible,
these estimates are approximations and only asymptotically
exact in the limit as z → ∞. To obtain unbiased estimates,
one can e.g. use importance sampling. The instanton and
the second variation eigenvalues and eigenvectors can be
used as input for such extreme event importance sampling
algorithms (Ebener et al. 2019; Tong et al. 2021; Tong and
Stadler 2022). (ii) We limit ourselves to SDEs with addi-
tive Gaussian noise. For SDEs with multiplicative noise (or
singular SPDEs), the leading-order prefactor is more com-
plicated, as the direct analogy to the finite-dimensional case
gets lost (Ben Arous 1988). Nevertheless, extensions of the
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eigenvalue-based prefactor computation proposed here can
likely be made, but are beyond the scope of this paper.
(iii) The proposed approach assumes that the differential
equation-optimization (3) has a unique solution that can be
computed. For non-convex constraints, uniqueness may be
difficult to prove or may not hold. However, in the examples
we consider, we seem to be able to identify the global mini-
mizer reliably by using several different initializations in the
minimization algorithm and, if we find different minimizers,
by choosing the one corresponding to the smallest objective
value. The proposed approach can also be generalized tomul-
tiple isolated and continuous families of minimizers (Ellis
and Rosen 1981; Schorlepp et al. 2023).

Notation. We use the following notations throughout the
paper: The state space dimension is always written as n, a
possible time discretization dimension of the interval [0, T ]
as nt , and N is exclusively used in section 1.1 for the moti-
vation of our results via random variables in RN . We denote
the Euclidean norm and inner product in R

N by ‖·‖N and
〈·, ·〉N , respectively, and the L2 norm and scalar product for
R
n-valued functions defined on [0, T ] by ‖·‖L2([0,T ],Rn) and

〈·, ·〉L2([0,T ],Rn), respectively. The outer product is denoted by
⊗, with v ⊗ w = vw� and v⊗2:=v ⊗ v for v,w ∈ R

N and
( f ⊗ g)(t, t ′) = f (t)g(t ′)� for f , g ∈ L2([0, T ],Rn) and
t, t ′ ∈ [0, T ]. Convolutions are written as ∗. The subscript
or argument z ∈ R always represents the dependency on the
observable value e.g. of the minimizer ηz , Lagrange multi-
plier λz and projected second variation operator Az , as well
as the observable rate function IF (z) and prefactor CF (z).
The identity map is in general denoted by Id, and the identity
matrix and zeromatrix inRN arewritten as 1N×N and 0N×N .
The superscript ⊥ always denotes the orthogonal comple-
ment, with v⊥:=(span({v}))⊥. Functional derivatives with
respect to η ∈ L2([0, T ],Rn) are denoted by δ/δη. Determi-
nants in R

N , as well as Fredholm determinants, are written
as det,whereas regularized differential operator determinants
are written as Det with the boundary conditions of the oper-
ator as a subscript. For two real functions g and h, we write

g(ε)
ε↓0∼ h(ε) ⇐⇒ lim

ε↓0
g(ε)

h(ε)
= 1 , (4)

if the functions g and h are asymptotically equivalent as
ε ↓ 0. By an abuse of terminology, we use the term
“instanton” in this paper to refer to the large deviation
minimizer ηz for finite-dimensional parameter spaces, and
also to both the instanton noise trajectory (ηz(t))t∈[0,T ] and
the instanton state variable trajectory (φz(t))t∈[0,T ] in the
infinite-dimensional setup.

We start with a more precise explanation of the concepts
described in this introduction in Sects. 1.1 and 1.2, before
summarizing the structure of the rest of the paper at the end
of Sect. 1.2.

1.1 Laplacemethod for normal random variables
inRN

Westartwith thefinite dimensional setting, followingDemat-
teis et al. (2019), Tong et al. (2021): We consider a collection
of N random parameters η ∈ R

N that are standard nor-
mally distributed, and are interested in a physical observable,
described by a function F : RN → R, that describes the
outcome of an experiment under these random parameters.
Note that restricting ourselves to independent standard nor-
mal variables is not a major limitation as F may include a
map that transforms a standard normal to another distribu-
tion. To give an example that fits into this setting, η could
be all parameters entering a weather prediction model, and
F then constitutes the mapping of the parameters to some
final prediction, such as the temperature at a given location
in the future. Note that the map F may be complicated and
expensive to evaluate, e.g. requiring the solution of a PDE.

We are interested in the probability that the outcome
of the experiment exceeds some threshold z, i.e. P(z) =
P[F(η) ≥ z]. Since here z is assumed large compared to
typically expected values of F(η), we call P(z) the extreme
event probability. To be able to control the rareness of the
event, we introduce a formal scaling parameter ε > 0 and
consider ε � 1 to make the event extreme by defining
Pε
F (z) = P[F(

√
εη) ≥ z]. This allows us to treat terms

of different orders in ε perturbatively in the rareness of the
event and is more amenable to analysis than rareness due to
z → ∞. In the following, we will thus consider z as a fixed
constant, while discussing the limit ε → 0. Since η is nor-
mally distributed, the extreme event probability is available
as an integral,

Pε
F (z) = (2πε)−N/2

∫
RN

1{F(η)≥z}(η) exp

{
− 1

2ε
‖η‖2N

}
dNη,

(5)

by integrating all possible η that lead to an exceedance of the
observable threshold (as identified by the indicator function
1), weighed by their respective probabilities given by the
Gaussian densities. Directly evaluating the integral in (5) is
typically infeasible for complicated sets {η ∈ R

N | F(η) ≥
z} and large N .

The central notion of this paper is the fact that in the limit
ε ↓ 0, the integral in (5) can be approximated via the Laplace
method, which replaces the integrandwith its extremal value,
times higher ordermultiplicative corrections. The corrections
at leading order in ε amount to a Gaussian integral that can
be solved exactly. In effect, the integral (5) is approximated
by the probability of the most likely event that exceeds the
threshold, multiplied by a factor that takes into account the
event’s neighborhood.
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To make things concrete, we make the following assump-
tions on F ∈ C2(RN ,R) for given z > F(0):

1. There is a unique ηz ∈ R
N\{0}, called the instanton, that

minimizes the function 1
2 ‖·‖2N in F−1([z,∞)). Neces-

sarily, ηz ∈ F−1({z}) lies on the boundary, F(ηz) = z,
and there exists a Lagrange multiplier λz ≥ 0 with
ηz = λz∇F(ηz) as a first-order necessary condition. We
define the large deviation rate function of the family of
real-valued random variables

(
F(

√
εη)

)
ε>0 at z via

IF : R → R , IF (z) := 1
2 ‖ηz‖2N . (6)

2. 1N×N − λz∇2F(ηz) is positive definite on the (N − 1)-
dimensional subspace η⊥z ⊂ R

N orthogonal to the
instanton, i.e. we assume a second-order sufficient con-
dition for ηz holds.

Then, there is a sharp estimate, in the sense of (4), for the
extreme event probability (5) via

Pε
F (z)

ε↓0∼ ε1/2(2π)−1/2 CF (z) exp

{
−1

ε
IF (z)

}
, (7)

where the rate function IF determines the exponential scal-
ing, and CF (z) is the z-dependent leading order prefactor
contribution that accounts for the local properties around
the instanton. Note that the prefactor is essential to get a
sharp estimate, which cannot be obtained from mere log-
asymptotics using only the rate function. The prefactorCF (z)
can explicitly be computed via

CF (z) =
[
2IF (z) det

(
1N×N − λz prη⊥z ∇2F(ηz) prη⊥z

)]−1/2
,

(8)

where prη⊥z = 1N×N − ηz ⊗ ηz/ ‖ηz‖2N is the orthogonal

projection onto η⊥z . A brief derivation of this result, analo-
gous to the computations of Tong et al. (2021), is included in
“Appendix A1” for completeness. It is also directly equiv-
alent to the standard form of the second order reliability
method, as derived e.g. by Breitung (1984). Geometrically,
it corresponds to replacing the extreme event set {η ∈ R

N |
F(η) ≥ z} by a set bounded by the paraboloid with vertex
at the instanton ηz , the axis of symmetry in the direction of
∇F(ηz) and curvatures adjusted to be the eigenvalues of the
−‖∇F‖−1-weighted Hessian of F at ηz .

For the weather prediction example, Eqs. (7) and (8) mean
the following: We could estimate (5) by performing a large
number of simulations of the weather model with a random
choice of parameters to obtain statistics on an extremely high
temperature event. Instead, we solve an optimization prob-
lem over parameters to compute only the single most likely

route to that large temperature.When the desired event is very
extreme, such a situation can only be realized when all simu-
lated physical processes conspire in exactly the right way to
make the extreme temperature event possible. Consequently,
only a narrow choice ofmodel parameters and corresponding
sequence of events remains that can contribute to the extreme
event probability: precisely the instanton singled out by the
optimization procedure. The probability of the extreme event
is thenwell approximated by perturbations around that single
most likely extreme outcome.

Next, we generalize the statement (7) to the infinite-
dimensional setting encountered in continuous time stochas-
tic systems. Intuitively, for temporally evolving systems
with stochastic noise, there is randomness at every single
instance in time, which implies an infinite number of ran-
dom parameters to optimize over. We generalize the above
strategy to the important case of SDEs inRn driven by small
additive Gaussian noise, and assemble and compare compu-
tational methods to compute IF and CF numerically, even
for very large spatial dimensions n stemming from semi-
discretizations of multi-dimensional SPDEs.

1.2 Generalization to infinite dimensions for SDEs
with additive noise

As a stochastic model problem, we consider the SDE

{
dXε

t = b(Xε
t )dt +

√
εσdBt ,

Xε
0 = x ∈ R

n,
(9)

on the time interval [0, T ] with a deterministic initial condi-
tion and n ∈ N, ε > 0. The drift vector field b : Rn → R

n ,
assumed to be smooth, may be nonlinear and non-gradient.
The constant matrix σ ∈ R

n×n is not required to be diagonal
or invertible. The SDE is driven by a standard n-dimensional
Brownian motion B = (Bt )t∈[0,T ]. We limit ourselves to the
estimation of extreme event probabilities (due to small noise
ε) of the random variable f (Xε

T ), where f : Rn → R is a
smooth, possibly nonlinear observable of the process Xε at
final time t = T .

A concrete example of this type of system, already alluded
to in the first section, is shown in Fig. 2. It is given by the
SDE{
dX = (−X − XY ) dt +√

ε dBX ,

dY = (−4Y + X2) dt + 1
2

√
ε dBY ,

with (X(0),Y (0)) = (0, 0) . (10)

The streamlines in the figure show themotion taken by deter-
ministic trajectories of the model at ε = 0. Small magnitude
stochasticity in the form of Brownian noise is added, and we
ask the question: What is the probability Pε

F (z), as defined
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Fig. 2 Visualization of five different sample paths (light orange) and
the mean of 100 such paths (orange with black outline) of the model
SDE (10) that satisfy f (X(T ), Y (T )) ≥ z with z = 3 (red set) and
ε = 0.5. Using Euler-Maruyama steps with an integrating factor with
step size 
t = 5 · 10−4, we repeatedly simulated (10) until 100 such
rare trajectories were found. The dashed blue line is the state variable
instanton trajectory φz , solution of (19) with the optimal ηz as forcing.
As in Fig. 1, the gray lines are field lines of the drift vector field b

below in (13), that the system ends up, at time T = 1,
in the red shaded area in the top right corner, given by
f (x, y) = x + 2y ≥ z = 3? After approximately 1.2 · 107
simulations, 100 such trajectories are found, with some of
them shown in light orange in Fig. 2. These can be consid-
ered typical realizations for this extreme outcome, and allow
us to estimate Pε

F (z) ∈ [6.71 · 10−6, 9.97 · 10−6
]
as a 95%

confidence interval. While in principle the same approach
could be applied to much more complicated stochastic mod-
els, such as SPDEs arising in atmosphere or ocean dynamics,
it quickly becomes infeasible due to the cost of performing
such a large number of simulations.

Instead,we generalize the strategy outlined in the previous
section. For the derivation, wemake the following, compared
to the finite-dimensional case stronger assumptions for tech-
nical reasons. To formulate them, we introduce the solution
map

F : L2([0, T ],Rn) → R , F[η] = f (φ(T )),

for

{
φ̇ = b(φ) + ση ,

φ(0) = x .
(11)

Then, we assume for all z ∈ R:

1. There is a unique instanton on the z-levelset of F , ηz ∈
F−1({z}) ⊂ L2([0, T ],Rn), that minimizes the func-
tion 1

2 ‖·‖2L2([0,T ],Rn)
. There exists a Lagrange multiplier

λz ∈ R with ηz = λz
δF
δη

∣∣∣
ηz

as a first-order necessary

condition. We define the large deviation rate function for
the observable f as

IF : R → R , IF (z) := 1
2 ‖ηz‖2L2([0,T ],Rn)

. (12)

2. The map from observable value to minimizer z �→ ηz
is C1. In particular I ′F (z) = 〈ηz, dηz/dz〉L2([0,T ],Rn) =
λz〈 δF

δη

∣∣∣
ηz

,
dηz
dz 〉L2([0,T ],Rn) = λz .

3. Id−λz
δ2F
δη2

∣∣∣
ηz

is positive definite.

4. The rate function IF is twice continuously differentiable
and strictly convex, i.e. I ′′F > 0.

Under these assumptions and using existing theoretical
results on precise Laplace asymptotics for small-noise SDEs,
in “Appendix A2” we sketch a derivation of the following
result: For the extreme event probability

Pε
F (z) = P

[
F[√εη] ≥ z

]
= P

[
f (Xε

T ) ≥ z
]

(13)

with z > F(0), the asymptotically sharp estimate (7) holds
in the sameway as before. The leading order prefactor is now
given by

CF (z) =
[
2IF (z) det

(
Id−λz prη⊥z

δ2F

δη2

∣∣∣∣
ηz

prη⊥z

)]−1/2

,

(14)

where det is now a Fredholm determinant, the second vari-
ation δ2F/δη2 of the solution map F at η = ηz is a
linear trace-class operator on L2([0, T ],Rn), and pr denotes
orthogonal projection in L2([0, T ],Rn).

Applied to the model SDE (10), we must first compute
the optimal noise realization ηz = (ηz(t))t∈[0,T ], which has a
corresponding optimal system trajectoryφz = (φz(t))t∈[0,T ].
This optimal trajectory, shown blue dashed in Fig. 2,
describes the most likely evolution of the SDE (10) from the
initial condition (0, 0) into the shaded region in the upper
right corner, thus leading to an event f (X(T ),Y (T )) ≥ z.
Second, through equation (14), we can compute the prefac-
tor correction for this optimal noise realization. Inserted into
Eq. (7), we obtain Pε=0.5

F (z = 3) ≈ 8.94 ·10−6 as an asymp-
totic, sampling-free estimate, which falls into the estimated
interval obtained with direct sampling. The source code to
reproduce all results for this example is available in a public
GitHub repository (Schorlepp et al. 2023).

We add some remarks on the setting:

1. We focus on SDEs with additive noise (9) for simplicity.
For themore general case of ordinary Itô SDEswithmul-
tiplicative noise σ = σ(Xε

t ), the leading order prefactor
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can still be computed explicitly, but involves a regularized
Carleman-Fredholm determinant det2 (see Simon (1977)
for a definition) instead of a Fredholm determinant det,
because the second variation of F is no longer guaranteed
to be trace-class (Ben Arous 1988). The direct analogy to
the finite-dimensional case is only possible for additive
noise.

2. We state the theoretical result and computational strat-
egy for ordinary stochastic differential equations, but will
also apply themnumerically to SPDEswith additive, spa-
tially smooth Gaussian forcing. In this case, we expect a
direct generalization of the results for SDEs to hold.

3. Without any additional work, we also obtain a sharp
estimate, in the sense of (4), for the probability density
function ρε

F of f (Xε
T ) at z via

ρε
F (z)

ε↓0∼ (2πε)−1/2λzCF (z) exp

{
−1

ε
IF (z)

}
. (15)

From a practical point of view, the remaining question is
how to evaluate (12) and (14), given a general and possibly
high-dimensional SDE (9).

Main questions and paper outline. In the remainder of this
paper, we will specifically answer the following questions:

• How to find the minimizer ηz to the differential equation
constrained optimization problem (12) numerically?This
question has been treated in detail in the literature for the
setup at hand, and we give a brief summary of relevant
references in Sect. 2.1.

• How to evaluate the Fredholmdeterminant in (14) numer-
ically? We show in Sect. 2.2 how to use second-order
adjoints to compute the application of the projected sec-
ond variation operator

Az := λz prη⊥z
δ2F

δη2

∣∣∣∣
ηz

prη⊥z (16)

to functions (or, upon discretization, to vectors), which
is the basis for iterative eigenvalue solvers. In Sect. 2.4,
we discuss how this allows us to treat very large system
dimensions n as long as the rank of σ remains small.

• How does this prefactor computation based on the
dominant eigenvalues of the projected second variation
operator theoretically relate to the alternative approach
using symmetric matrix Riccati differential equations
mentioned in the introduction? What are the advantages
and disadvantages of the different approaches? We com-
ment on these points in Sects. 2.3 and 2.4.

• What is the probabilistic interpretation of the quantities
encountered when evaluating (12) and (14)? In how far
can they be observed in direct Monte Carlo simulations
of the SDE (9)? This is the content of Sect. 3.

After these theoretical sections, illustrated throughout via
the model SDE (10), we present two challenging examples
in Sect. 4: The probability of high waves in the stochastic
Korteweg–De Vries equation in Sect. 4.1, and the probabil-
ity of high strain events in the stochastic three-dimensional
incompressible Navier–Stokes equations in Sect. 4.2. All
technical derivations can be found in “Appendix A”.

2 Numerical rate function and prefactor
evaluation

In this section, we show how the instanton and prefactor for
the evaluation of the asymptotic tail probability estimate (7)
can be computed in practice for a general, possibly high-
dimensional SDE (9), and illustrate the procedure for the
model SDE (10). Both finding the instanton (Sect. 2.1) and
the prefactor (Sect. 2.2) require the solutions of differen-
tial equations of a complexity comparable to the original
SDE.They therefore become realistic to evaluate numerically
even for fairly large problems, provided tailored methods are
used, as summarized in Sect. 2.4. Additionally, we compare
the adjoint-based Fredholm determinant computation to the
approach based on matrix Riccati differential equations in
Sects. 2.3 and 2.4.

2.1 First variations and finding the instanton

Here, we discuss the differential equation-constrained opti-
mization problem

ηz = argmin
η∈L2([0,T ],Rn)

s.t. F[η]=z

1

2
‖η‖2L2([0,T ],Rn)

, (17)

that determines the instanton noise ηz , and briefly reviewhow
it can be solved numerically. We reformulate the first-order
optimality condition

ηz = λz
δF

δη

∣∣∣∣
ηz

(18)

by evaluating the first variation using an adjoint variable as
reviewed by Plessix (2006), Hinze et al. (2009). For any η ∈
L2([0, T ],Rn), we find δ(λF)

δη
= σ�θ , where the adjoint

variable θ (also called conjugate momentum) is found via
solving

{
φ̇ = b(φ) + ση , φ(0) = x ,

θ̇ = −∇b�(φ)θ , θ(T ) = λ∇ f (φ(T )) .
(19)

With a = σσ�, we recover from (18) the well-known instan-
ton equations, formulated only in term of the state variable

123



137 Page 8 of 29 Statistics and Computing (2023) 33 :137

φz and its adjoint variable θz with optimal noise ηz = σ�θz :{
φ̇z = b(φz) + aθz , φz(0) = x , f (φz(T )) = z,

θ̇z = −∇b�(φz)θz , θz(T ) = λz∇ f (φz(T )) .
(20)

The rate function is given by IF (z) = 1
2 〈θz, aθz〉L2([0,T ],Rn).

When formulating the optimization problem in the state vari-
able φ instead of the noise η, the instanton equations (20) are
directly obtained as the first-order necessary condition for
a minimizer of the Freidlin-Wentzell (Freidlin and Wentzell
2012) action functional S with

S[φ] = 1

2

∫ T

0

〈
φ̇ − b(φ), a−1 [φ̇ − b(φ)

]〉
n
dt . (21)

The numerical minimization of this functional for both
ordinary and partial stochastic differential equations is dis-
cussed e.g. by E et al. (2004), Grafke et al. (2015), Grafke
et al. (2015), Grafke and Vanden-Eijnden (2019), Schorlepp
et al. (2022). Conceptually, the minimization problem (17)
is a deterministic distributed optimal control problem on
a finite time horizon with a final time constraint on the
state variable (Lewis et al. 2012; Herzog and Kunisch
2010). The final-time constraint can be eliminated e.g. using
penalty methods. Alternatively, for a convex rate function, a
primal-dual strategy (Boyd and Vandenberghe 2004) with
minimization of 1

2 ‖·‖2 − λF at fixed λ can be used. If
estimates for a range of z are desired, one can solve the
dual problem for various λ, which effectively computes the
Legendre-Fenchel transform I ∗F (λ), and invert afterwards.
If the rate function is not convex, the observable f can be
reparameterized to make this possible (Alqahtani and Grafke
2021). To solve the unconstrained problems of the general
form min 1

2 ‖·‖2 − λ(F − z) + μ
2 (F − z)2, gradient-based

methods with an adjoint evaluation (19) can be used, e.g.
Schorlepp et al. (2022) use an L-BFGS solver. Simonnet
(2022) used a deep learning approach instead. For high-
dimensional problems such as multi-dimensional fluids, it
may be necessary to use checkpointing for the gradient eval-
uation, and to use rank σ � n if applicable to reducememory
costs (Grafke et al. 2015). We comment on this point in more
detail in Sect. 2.4. Using second order adjoints as in the next
section would also make it possible to implement a Newton
solver, cf. Hinze and Kunisch (2001), Hinze et al. (2006),
Sternberg and Hinze (2010), Cioaca et al. (2012).

For the model SDE (10), the instanton equations (20) read

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dt

(
φ1

φ2

)
=
(

−φ1

−4φ2

)
+
(
−φ1φ2

φ2
1

)
+
(

θ1
1
4θ2

)
,

d
dt

(
θ1

θ2

)
=
(

+θ1

+4θ2

)
+
(

φ2θ1 − 2φ1θ2

φ1θ1

)
,

with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
φ1(0)

φ2(0)

)
=
(
0

0

)
, φ1(T ) + 2φ2(T ) = z,(

θ1(T )

θ2(T )

)
= λz

(
1

2

)
.

(22)

We implemented a simple gradient descent (preconditioned
with a−1) using adjoint evaluations of the gradient and
an Armijo line search (available in the GitHub repository
(Schorlepp et al. 2023)) to find the instanton for the model
SDE (10). The state equation is discretized using explicit
Euler steps with an integrating factor, and the gradient is
computed exactly on a discrete level, i.e. “discretize, then
optimize”. To find the instanton for a given z, we use the
augmented Lagrangian method. For each subproblem at
fixed Lagrange multiplier λ and penalty parameter μ, gra-
dient descent is performed until the gradient norm has been
reduced by a given factor compared to its initial value. All
of these aspects are summarized in more detail by Schorlepp
et al. (2022). The resulting optimal state variable trajectory
φz for z = 3 for the model SDE (10) is shown in Fig. 2.

2.2 Second variations and prefactor computation
via dominant eigenvalues

Similarly to the previous section, the second variation is
also readily evaluated in the adjoint formalism. With this
prerequisite, we are able to use iterative eigenvalue solvers
to approximate the Fredholm determinant det(Id−Az). For
a comprehensive introduction to the numerical computa-
tion of Fredholm determinants, as well as theoretical results
on approximate evaluations using integral quadratures, see
Bornemann (2010). However, in contrast to Bornemann
(2010), we deal with possibly spatially high-dimensional
problems, such as the example in Sect. 4.2. Hence, we use
iterative algorithms to compute the dominant eigenvalues to
keep the number of operator evaluations manageable.

Another application of the adjoint statemethod shows that
applying the second functional derivative of the solutionmap
F at η : [0, T ] → R

n to a fluctuation δη : [0, T ] → R
n

results in δ2(λF)

δη2
δη = σ�ζ , where ζ is found via solving
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{
γ̇ = ∇b(φ)γ + σδη ,

ζ̇ = − 〈∇2b(φ), θ
〉
n γ −∇b�(φ)ζ ,

with

{
γ (0) = 0 ,

ζ(T ) = λ∇2 f (φ(T ))γ (T ) .
(23)

Here, we use the short-hand notation
[〈∇2b(φ), θ

〉
n

]
i j

=∑n
k=1 ∂i∂ j bk(φ)θk . The trajectories φ and θ in (23) are

determined via (19) from η. Note that the second order equa-
tions (23) are simply the linearization of (19). Together with
the projection operator prη⊥z acting as

(prη⊥z δη)(t) = δη(t) − 〈ηz, δη〉L2([0,T ],Rn)

‖ηz‖2L2([0,T ],Rn)

ηz(t) (24)

for t ∈ [0, T ], we are now in a position to evaluate the
application of the operator Az , as defined in (16), to any
function δη : [0, T ] → R

n . Denoting the eigenvalues of the
trace-class operator Az by μ

(i)
z ∈ (−∞, 1), the Fredholm

determinant in the prefactor (14) is given by det(Id−Az) =∏∞
i=1(1 − μ

(i)
z ), with

∣∣∣μ(i)
z

∣∣∣ i→∞−−−→ 0 in such a way that

the product converges. An iterative eigenvalue solver rely-
ing solely on matrix–vector multiplication, thus avoiding the
explicit storage of the possibly large discretized operator Az

as an (nt · n)× (nt · n) matrix, can now be used numerically
to find a finite number of dominant eigenvalues of Az with
absolute value larger than some thresholds, and approximate
det(Id−Az) using these.

For the model example SDE (10), linearizing the state and
first order adjoint equations (19), the second order adjoint
equations for (10) become

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dt

(
γ1

γ2

)
= −

(
γ1

4γ2

)
+
(
−γ1φ2 − φ1γ2

2φ1γ1

)
+
(

δη1
1
2 δη2

)
,

d
dt

(
ζ1

ζ2

)
=
(

ζ1

4ζ2

)
+
(

γ2θ1 + φ2ζ1 − 2γ1θ2 − 2φ1ζ2
γ1θ1 + φ1ζ1

)
,

with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
γ1(0)

γ2(0)

)
=
(
0

0

)
,(

ζ1(T )

ζ2(T )

)
=
(
0

0

)
.

(25)

We implemented a simple Euler solver for these equa-
tions for a given discretized input vector δη ∈ R

2(nt+1)

in the python code (Schorlepp et al. 2023) as a subclass
of scipy.sparse.linalg.LinearOperator. To set up this opera-
tor, we supply the instanton data (φz, θz, λz) ∈ R

2(nt+1) ×
R
2(nt+1) × R as found using the methods of the previous

Sect. 2.1. The LinearOperator class, for which we only need
to supply a matrix vector multiplication method instead of
having to store the full matrix ∈ R

2(nt+1)×2(nt+1), can then
be used with any iterative eigenvalue solver. Here, we use the

Fig. 3 Result of numerically computing 200 eigenvalues μ
(i)
z with

largest absolute value of Az for the example SDE (10) with z = 3.
Discretization of (25) was done with step size 
t = 5 · 10−4, hence
the dimension of the discretized path space variables is 4000 here.
Main figure: absolute value of the eigenvaluesμ

(i)
z . Inset: Finite product∏m

i=1

(
1− μ

(i)
z

)
for different m as an approximation for the Fredholm

determinant det(Id−Az). We see that the eigenvalues rapidly decay
to zero in this example, that similarly, the cumulative product in the
inset quickly converges, and that the final estimate det(Id−Az) ≈∏200

i=1

(
1− μ

(i)
z

)
≈ 1.0397 is in fact close to 1 in this example

implicitly restarted Arnoldi method of ARPACK (Lehoucq
et al. 1998), wrapped as scipy.sparse.linalg.eigs in python.
Note that in this example, storing the full matrix would be
feasible, and the Riccati method discussed in the next section
is faster to compute the prefactor. However, we are interested
in a scalable approach for large n, where, as discussed in
Sect. 2.4 and shown in Sect. 4, the Riccati approach becomes
infeasible.We show the results of computing 200 eigenvalues
with largest absolute value of the projected second variation
operator Az for z = 3 in Fig. 3.

2.3 Alternative: prefactor computation via matrix
Riccati differential equations

In “AppendixA3”,wemotivate via formalmanipulations that
the prefactor (14) can also be expressed via the following
ratio of zeta-regularized functional determinants (Ray and
Singer 1971) of second order differential operators, instead
of a Fredholm determinant of an integral operator. This pref-
actor expression is more natural from the statistical physics
point of view, where path integrals in the field variable φ

instead of the noise η are typically considered, cf. Zinn-Justin
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(2021). We obtain

CF (z) =
√
I ′′F (z)λ−1

z

(
DetAλz

(�[φz])
DetA0 (�[φ0])

)−1/2

×

× exp

{
− 1

2

∫ T

0
(∇ · b(φz) − ∇ · b(φ0)) dt

}
,

(26)

in accordance with Schorlepp et al. (2023), where it was
derived directly through path integral computations. Here,�
is the Jacobi operator of the Freidlin-Wentzell action func-
tional as defined in the “Appendix A3”, and the subscript of
the zeta-regularized determinants Det denotes the boundary
conditions under which the determinants of the differential
operators are computed. Naively evaluating the determinant
ratio in (26) by numerically finding the eigenvalues of the
appearing differential operators is typically not feasible. This
is due to the fact that both operators posses unbounded spec-
tra with the same asymptotic behavior of the eigenvalues,
which requires computing the smallest eigenvalues of both
operators. A threshold for this computation is difficult to
set, and while the eigenvalues of both operators should con-
verge to each other as they increase, numerical inaccuracies
tend to increase for the larger eigenvalues. Fortunately, there
exists theoretical results regarding the computation of such
determinant ratios exactly and in a closed form by solving
initial value problems (Gel’fand and Yaglom 1960; Levit and
Smilansky 1977; Forman 1987; Kirsten and McKane 2003).
Using the results of Forman (1987), the prefactor (26) can be
computed by solving the symmetric matrix Riccati differen-
tial equation

{
Q̇z = a + Qz∇b (φz)

� + ∇b (φz) Qz + Qz

〈
∇2b(φz), θz

〉
n
Qz ,

Qz(0) = 0n×n ∈ R
n×n .

(27)

for Qz : [0, T ] → R
n×n and then evaluating

CF (z) = λ−1
z exp

{
1

2

∫ T

0
tr
[〈
∇2b(φz), θz

〉
n
Qz

]
dt

}
×

×
[
det (Uz)

〈
∇ f (φz(T )), Qz(T )U−1

z ∇ f (φz(T ))
〉
n

]−1/2

(28)

with

Uz := 1n×n − λz∇2 f (φz(T )) Qz(T ) ∈ R
n×n . (29)

This result in terms of a Riccati matrix differential equation
is also natural from a stochastic analysis perspective (WKB
analysis of the Kolmogorov backward equation (Grafke et al.
2021)), or a time-discretization of the path integral perspec-
tive (recursive evaluation method (Schorlepp et al. 2021)).

To give intuition for the Riccati differential equation (27),
note that by letting Qz = γ ζ−1 with γ (0) = 0n×n and
ζ(0) = 1n×n , the approach amounts to solving

{
γ̇ = ∇b(φ)γ + aζ , γ (0) = 0n×n ,

ζ̇ = − 〈∇2b(φ), θ
〉
n γ −∇b�(φ)ζ , ζ(0) = 1n×n,

(30)

as an initial value problem, whereas the eigenvalue problem
δ2(λF)

δη2
δη = μδη corresponds to the boundary value problem

{
γ̇ = ∇b(φ)γ + μ−1aζ ,

ζ̇ = − 〈∇2b(φ), θ
〉
n γ − ∇b�(φ)ζ ,

with

{
γ (0) = 0 ,

ζ(T ) = λ∇2 f (φ(T ))γ (T ) .
(31)

This means that to evaluate the functional determinant pref-
actor via the Riccati approach, we consider functions in
the kernel of the operator Id−λδ2F/δη2, i.e. eigenfunc-
tions belonging to the eigenvalue 0, but under modified
boundary conditions of the operator. In practice, instead of
finding the dominant eigenvalues of the integral operator
Az of Sect. 2.2 that acts on functions δη : [0, T ] → R

n ,
we can integrate a single matrix-valued initial value prob-
lem for Qz : [0, T ] → R

n×n as presented in this section.
Even though the Riccati equation (27), in contrast to the
linear system (30), is a nonlinear differential equation, it is
nevertheless advisable to solve (27) instead of (30) numeri-
cally because the equation for ζ in (30) has to be integrated
in the unstable time direction for the right-hand side term
−∇b(φ)�ζ . Note also that, depending on the system and
observable at hand, the solution of the Riccati equation (27)
may pass through removable singularities in (0, T )whenever
ζ(t) in (30) becomes non-invertible, hence direct numerical
integration of (27) may require some care (see Schiff and
Shnider (1999) and references therein).

For the two-dimensional model SDE (10), the for-
ward Riccati equation for the symmetric matrix Q =
Qz : [0, T ] → R

2×2 along (φ, θ) = (φz, θz) becomes

d

dt

(
Q11 Q12

Q12 Q22

)
=
(
1 0
0 1

4

)
−
(
2Q11 5Q12

5Q12 8Q22

)

+
[(−φ2 −φ1

2φ1 0

)(
Q11 Q12

Q12 Q22

)]
+ [. . . ]�

+
(
Q11 Q12

Q12 Q22

)(
2θ2 −θ1
−θ1 0

)(
Q11 Q12

Q12 Q22

)
, (32)

where [. . . ] stands for a repetition of the preceding term. We
solve the Riccati equation with Euler steps with integrating
factor in Schorlepp et al. (2023), and use it to evaluate (28).
We do not encounter any numerical problems or singularities
in this example. The result for CF (z = 3) agrees with the
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Fredholm determinant computation using dominant eigen-
values in the previous Sect. 2.2.

2.4 Computational efficiency considerations

In this section, we compare the two prefactor computation
methods of Sects. 2.2 and 2.3 using either dominant eigen-
values of the trace-class operator Az evaluated via (23), or
the Riccati matrix differential equation (27), in terms of their
practical applicability as well as computational and memory
cost for large system dimensions n � 1.

For the eigenvalue-based approach, we know that
∏m

i=1(
1− μ

(i)
z

)
m→∞−−−−→ det(Id−Az) converges in theory, but

it is difficult to give bounds on the required number of
eigenvalues for an approximation of the Fredholm determi-
nant to a given accuracy. In all examples considered in this
paper, at most a few 100 eigenvalues turned out to be nec-
essary for accurate results, even for the three-dimensional
Navier–Stokes equations in Sect. 4.2 as a high-dimensional
(n = 3 · 1283 ≈ 6.3 · 106) and strongly nonlinear example.
The number of dominant eigenvalues of Az to be computed
to achieve a desired accuracy is robust with respect to the
temporal resolution and only depends on the (effective, see
below) dimension of the system and the level of nonlinearity
in the system. In any case, to obtainm eigenvalues of Az with
largest absolute value, iterative eigenvalue solvers, either
using Krylov subspace methods or randomized algorithms,
typically require a number of evaluations of the operator that
is equal to a constant timesm (Halko et al. 2011). Each eval-
uation of Az consists of solving twoODEs or PDEs (23) with
comparable computational complexity to the original SDE.
We comment on memory requirements below.

Compared to this, the Riccati approach requires the
numerical solution of a single n × n symmetric matrix dif-
ferential equation as an initial value problem. If n is small,
then this is clearly more efficient than computing m > n/2
eigenvalues. However, there may also be problems with the
Riccati approach: On the one hand, this approach requires a
strictly convex rate function with I ′′F (z) > 0 at z, as can be
seen from (26). If this is not satisfied, then a suitable con-
vexification via reparameterization needs to be carried out
on a case-by-case basis (Alqahtani and Grafke 2021). While
we assumed that the rate function is convex to derive the
prefactor (14) in terms of the Fredholm determinant, this
assumption is actually not necessary and the eigenvalue-
based approach remains feasible regardless of the convexity
of the observable rate function IF . Finally, the eigenvalue
approach is easier to interpret, while it is not always immedi-
ately clear why the Riccati solution may diverge (removable
singularities that can be remedied by a suitable choice of
integration scheme versus true singularities due to unstable
or flat directions of the second variation at the instanton).

We turn to thememory requirements of the prefactor com-
putations strategies, and in particular to their scaling with the
system dimension n. Informally, one can think of the Riccati
matrix as defined in the (squared) state space of the SDE,
in contrast to the eigenvectors of Az that are defined in the
noise space that is potentially lower-dimensional. The Ric-
cati equation then integrates a dense n × n array in time by
performing nt consecutive times steps of (27) and evaluat-
ing (28) along the way. This is difficult to achieve directly as
soon as (semi-discretizations of) multi-dimensional SPDEs
are considered, which are relevant e.g. for realistic fluid or
climate models. Usually, large Riccati matrix differential
equations, which also arise e.g. in linear-quadratic regulator
problems, are solved within some problem-specific low-
rank format, see e.g. Stillfjord (2018). In contrast to this,
the vectors on which iterative eigenvalue solvers for the
Fredholm-determinant based approach need to operate are
in general vectors of size nt × n.

As an important class of examples, we now consider sys-
temswith large spatial dimensionn � 1, forwhich, however,
only a few degrees of freedom are forced, such that the
diffusion matrix a = σσ� is singular and rank σ � n.
Examples for this include fluid and turbulence models with
energy injection only on a compactly supported set of either
high or low spatial Fourier modes, or climate models with a
limited number of random parameters in the model (Marga-
zoglou et al. 2021). In this case, it is straightforward to
exploit the small rank of σ within the eigenvalue-based
approach to decrease the memory requirements and apply
the method even to very high-dimensional models, which
we demonstrate for the randomly forced three-dimensional
Navier–Stokes equations in Sect. 4.2 in this paper. The idea is
that for the eigenvectors δη of Az , clearly only rank σ many
entries are relevant due to the composition with σ and σ�.
Eigenvalue solvers hence act on nt × rank σ vectors, which
should fit into memory. This is similar to the computation
of the instanton itself, where only the instanton noise ηz as
a nt × rank σ vector is computed and stored explicitly, as
discussed by Grafke et al. (2015), Schorlepp et al. (2022).
The remaining challenge is then to evaluate Azδη for given
δη ∈ R

nt×rank σ by solving the second order adjoint equa-
tions (23), without storing the full, prohibitively large nt × n
arrays needed for φz , γ and θz . Similar to the gradient itself,
evaluated via the first order adjoint approach (19), this is pos-
sible through (static) checkpointing (Griewank and Walther
2000), as illustrated in Fig. 4. At the cost of having to inte-
grate the first order adjoint equations repeatedly for each
noise vector δη to which Az is applied, and to recursively
solve the forward equations for φz and γ again and again,
the memory requirements for the spatially dense fields are
only O (log nt · n) this way. The same problem is encoun-
tered and solved similarly in implementations of Newton
solvers for high-dimensional PDE-constrained optimal con-

123



137 Page 12 of 29 Statistics and Computing (2023) 33 :137

Table 1 Overview of computational and memory costs for finding the
prefactor CF (z) either through solving the Riccati equation (27), or
through determining m dominant eigenvalues of Az .

Riccati Eigenvalues

Memory costs n2 n · log nt + nt · rank σ

Computational costs n · c m · log nt · c
The system’s spatial dimension is denoted by n � 1 and the noise
correlation has rank σ � n. In the table, c denotes the computational
costs of integrating the original S(P)DE once from t = 0 to t = T .
Any multiplicative constants were omitted for the costs listed in the
table, the eigenvalue-based approach is assumed to use checkpointing
as sketched in Fig. 4, the computational costs of evaluating the quadratic
term in (27) were ignored, and the complete instanton data is assumed to
be known. The table shows that the eigenvalue-based approach indeed
remains feasible for large n

trol problems (Hinze and Kunisch 2001; Hinze et al. 2006;
Sternberg and Hinze 2010; Cioaca et al. 2012). All in all,
in contrast to the Riccati formalism, this permits an easy
and controlled strategy that enables to treat very large spatial
dimensions within the Fredholm-based prefactor approach,
as long as the diffusion matrix possesses a comparably small
rank. Note, however, that it is still necessary that the number
of eigenvalues needed to approximate det(Id−Az) remains
small for this approach to be applicable in practice. We show
numerically in Sect. 4.2 that this is indeed the case for the
three-dimensional Navier–Stokes equations as an example.
The discussion of this paragraph, with all relevant scal-
ings of computational and memory costs for the different
approaches, is briefly summarized in Table 1.

In conclusion, we recommend using the Riccati equation
only in sufficiently “nice” situations for small to moderate
system dimensions n. For such systems and diffusion matri-
ces without low-rank properties, and as long as no additional
complications such as non-convex rate functions or remov-
able singularities of the Riccati solution are encountered, it is
faster than the eigenvalue-based approach, and better suited
to analytical computations or approximations since it only
involves the solution of initial value problems, in contrast to
the boundary value problems that need to be solved to find
eigenfunctions of the projected second variation operator Az .
On the other hand, the Fredholm determinant computation
through dominant eigenvalues is easier to use and imple-
ment, requiring only solvers for the original SDE, its adjoint,
as well as their linearizations. At the cost of introducing
numerical errors and a step size parameter h > 0 that needs
to be adjusted, one can also approximate the second variation
evaluations via

δ2 (λz F)

δη2

∣∣∣∣
ηz

δη ≈ 1

h

(
δ (λz F)

δη

∣∣∣∣
ηz+hδη

− δ (λz F)

δη

∣∣∣∣
ηz

)

(33)

or other finite difference approximations, which does not
require implementing any second order variations. In this
sense, both the numerical instanton and leading-order prefac-
tor computation can quickly be achieved in a black-box like,
non-intrusive way when solvers for the state equation and its
adjoint are available. Alternatively, the adjoint solver, as well
as solvers for the second order tangent and adjoint equation
can be obtained through automatic differentiation (Naumann
2011). We also note that in the context of the second order
reliability method, there exist further approximation meth-
ods that could be used here for the Fredholm determinant
prefactor, e.g. by extracting information from the gradient
based optimization method that has been used to find the
instanton or design point (Der Kiureghian and De Stefano
1991), or through constructing a non-infinitesimal parabolic
approximation to the extreme event set (Der Kiureghian et al.
1987).

In any case, for the scenario of possiblymulti-dimensional
SPDEs with low-rank forcing, we argue that the eigenvalue
approach is to be preferred as it leads to natural approxi-
mations and a simpler implementation. However, we remark
that in the case of SDEs with multiplicative noise, or SPDEs
with spatially white noise that need to be renormalized such
as the Kardar–Parisi–Zhang (KPZ) equation, the Riccati
approach remains structurally unchanged (Schorlepp et al.
2023), whereas the Fredholm determinant expression turns
into a Carleman-Fredholm determinant and an additional
operator trace (Ben Arous 1988), which could potentially
be more costly to evaluate.

3 Probabilistic interpretation via fluctuation
covariances and transition tubes

In this section, we give an intuitive interpretation for some
of the quantities encountered in the previous sections. The
second variation quantifies the linearized dynamics of the
SDE (9) around the most likely realization. This implies
that dominating eigenfunctions of the second variation cor-
respond to fluctuation modes that are most easily observable.
Below, we confirm this with a simple numerical experiment
that relates the eigenfunction information with the transi-
tion tube along a rare trajectory. The basic object that we
consider in this section is the process (Xε

t )t∈[0,T ] as ε ↓ 0,
conditioned on the rare outcome f (Xε

T ) = z at final time.
In other words, we consider only transition paths between
the fixed initial state x ∈ R

n and any final state in the target
set f −1({z}) ⊂ R

n . The path on which the transition path
ensemble concentrates as ε ↓ 0 is given by the state vari-
able instanton trajectory φz , i.e. the most likely way for the
system to achieve f (Xε

T ) = z, since deviations from it are
suppressed exponentially (Freidlin and Wentzell 2012). One
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Fig. 4 Sketch of the checkpointing procedure used to evaluate the sec-
ond variation operator δ2(λF)/δη2 at ηz , applied to δη, for large system
dimensions n � 1 in a memory-efficient way. The instanton noise ηz ,
the input noise fluctuation δη, and the return vector σ�ζ are all stored
as dense (nt + 1, rank σ)-arrays for rank σ � n. Given the instanton
noise ηz and a noise fluctuation δη, the first step consists of solving the
state equation and linearized state equation for φz and γ simultaneously
forward in time from t = 0 to t = T , and storing the fields φz(ti ) ∈ R

n

and γ (ti ) ∈ R
n only at the logarithmically spaced instances ti = •.

Afterwards, the first and second order adjoint equations for θz and ζ

are simultaneously solved backwards in time from t = T to t = 0 and
σ�ζ(ti ) is stored for each ti . Whenever φz(t j ) and γ (t j ) are needed
for the time integration, but not available in storage already, the two
forward equations are solved again from the nearest preceding point
in time when they are available, and recursively stored at intermedi-
ate steps �, �, �, …All fields φz(ti ) ∈ R

n and γ (ti ) ∈ R
n that are

no longer needed during the backwards integration are deleted from
memory

thus has

lim
ε↓0 E

[
Xε
t | f (Xε

T ) = z
] = φz(t) (34)

for the mean of the conditioned process. In this sense, by tak-
ing conditional averages of direct Monte Carlo simulations
of (9) as ε tends to 0, the instanton trajectory φz is directly
observable, and the mean realization agrees with the most
likely one for ε ↓ 0. This procedure is sometimes called fil-
tering, and has been carried out e.g. for the one-dimensional
Burgers equation (Grafke et al. 2013), the three-dimensional
Navier–Stokes equations (Grafke et al. 2015; Schorlepp et al.
2022) and the one-dimensional KPZ equation (Hartmann
et al. 2021). Using the results of the previous sections, we
can, however, make this statement more precise and state a
central limit-type theorem for the conditioned fluctuations
at order

√
ε around the instanton: As ε ↓ 0, the process

(Xε
t − φz(t))/

√
ε, conditioned on f (Xε

T ) = z, becomes
centered Gaussian. It is hence fully characterized by its
covariance function Cz : [0, T ] × [0, T ] → R

n×n , given by

Cz(t, t ′) = lim
ε↓0E

[
(Xε

t − φz(t)) ⊗ (Xε
t ′ − φz(t ′))

ε

∣∣∣∣ f (Xε
T ) = z

]
.

(35)

We show in “Appendix A4” that Cz is fully determined
through the orthonormal eigenfunctions δη

(i)
z of the pro-

jected second variation operator Az with corresponding
eigenvalues μ

(i)
z and associated state variable fluctuations

γ
(i)
z , the solution of the linearized state equation

γ̇ (i)
z = ∇b(φz)γ

(i)
z + σδη(i)

z , γ (i)
z = 0 , (36)

via

Cz(t, t ′) =
∞∑
i=1

γ
(i)
z (t) ⊗ γ

(i)
z (t ′)

1− μ
(i)
z

. (37)

In particular, computing the eigenvalues and eigenfunctions
of Az yields a complete characterization of the conditioned
Gaussian fluctuations around the instanton. As detailed in
the example below, at small but finite ε, Cz can be used to
approximate the distribution of transition paths at any time
t ∈ [0, T ] as multivariate normalN (φz(t), εCz(t, t)). Effec-
tively, in addition to the mean transition path at small noise,
the instanton φz , we can also estimate the width and shape
of the transition tube around it at any t ∈ [0, T ] without
sampling within a Gaussian process approximation of the
conditioned SDE; see Vanden-Eijnden (2006) for a general
introduction to transition path theory, and Archambeau et al.
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(2007), Lu et al. (2017) for Gaussian process approximations
of SDEs based on minimizing the path space Kullback–
Leibler divergence, which, in the small-noise limit and for
transition paths, reduce to the Gaussian process considered
here. Furthermore, one can show that the forward Riccati
approach of Sect. 2.3 recovers the final-time state variable
fluctuation covariance via

Cz(T , T ) = Qz(T )U−1
z

−
(
Qz(T )U−1

z ∇ f (φz(T ))
)⊗2〈

∇ f (φz(T )), Qz(T )U−1
z ∇ f (φz(T ))

〉
n

.

(38)

This directly follows by adapting the forward Feynman-Kac
computation used in remark 4 of Schorlepp et al. (2021) to
the present calculation of the covariance function (35) at final
time t = t ′ = T . Note that both, directly from (38), as
well as from (37) after a short calculation, carried out in
“Appendix A5”, one can see that these results are consistent
with the additional final time boundary condition for the state
variable fluctuations

lim
ε↓0

〈
∇ f (φz(T )),

Xε
T − φz(T )√

ε

〉
n
= 0, (39)

almost surely, when conditioning on f (Xε
T ) = z. In

words, the conditioned Gaussian fluctuations at final time
are constrained to the tangent plane of the equi-observable
hypersurface f −1({z}) at the point φz(T ).

As in the previous sections, we use the model SDE (10)
with z = 3 and ε = 0.5 to illustrate these findings. To do
this, we compare the PDF of Xε

t at different times t , when
conditioning on f (Xε

T ) = z, as obtained via sampling, to the
Gaussian approximationN (φz(t), εCz(t, t)) thatwe evaluate
using the instanton as well as eigenvalues and eigenfunctions
of Az thatwere computed previously.We use instanton-based
importance sampling (Ebener et al. 2019) to generate 105

trajectories of (10) that satisfy f (Xε
T ) = z up to a given preci-

sion f ((Xε
T −φz(T ))/

√
ε) < 0.05; the corresponding code,

which again uses Euler steps with an integrating factor and a
step size of
t = 5 ·10−4, can be found in the GitHub repos-
itory (Schorlepp et al. 2023). Essentially, instead of using (9)
directly, we shift the system by the instanton (cf. Tong et al.
(2021) for a visualization and further analysis), solve

dY ε
t =

b
(
φz(t) +√

εY ε
t

)− b(φz(t))√
ε

dt + σdBt , Y ε
0 =0 ,

(40)

and reweight the samples by

exp

{
ε−1

∫ T

0

〈
b
(
φz(t) +√

εY ε
t

)− b(φz(t))

−√
ε∇b(φz(t))Y

ε
t , θz

〉
ndt + ε−1λ

(
f
(
φz(T ) +√

εY ε
T

)
− f (φz(T )) −√

ε∇ f (φz(T ))Y ε
T

)}
. (41)

The results are shown in Fig. 5, and we observe good agree-
ment between the sampled conditioned distributions at times
t ∈ {0.05, 0.25, 0.5, 0.75, 0.95} and the corresponding the-
oretical small-noise Gaussian approximations. In particular,
the deformation of the fluctuation PDF along the instanton
trajectory (φz(t))t∈[0,T ] is captured by the Gaussian approx-
imation. It is not surprising that the Gaussian approximation
works well for the parameters ε, z and T used here, since
the probability Pε

F (z) in Sect. 1.1 as approximated by the
Laplace method also matched the direct sampling estimate.

4 Computational examples

We now apply the numerical methods introduced in the pre-
vious section to two high-dimensional examples involving
SPDEs: In Sect. 4.1, we consider the Korteweg–De Vries
equation in one spatial dimension, subject to spatially smooth
Gaussian noise, and compute precise estimates for the prob-
ability to observe large wave heights at one instance in
space and time. We compare our asymptotically sharp esti-
mates to direct sampling, and also explicitly compare the
two different prefactor computation strategies. Then, we
focus on the stochastically forced three-dimensional incom-
pressible Navier–Stokes equations in Sect. 4.2. This is a
much higher-dimensional problem, and we demonstrate that
the eigenvalue-based prefactor computation indeed remains
applicable in practice for this example. Note that both SPDE
examples in this section have periodic boundary conditions
in space, but this is not a restriction of the method and has
merely been chosen for convenience.

4.1 Stochastic Korteweg–DeVries equation

To illustrate the instanton and prefactor computation,
we study the Korteweg–De Vries (KdV) equation subject
to large-scale smooth Gaussian noise. The KdV equation
can be considered as a model for shallow water waves, so
the problem we are interested in is to estimate the prob-
ability of observing large wave amplitudes. Since this is
the first PDE example we study and the general theory in
the previous sections has only been developed for ODEs,
we explicitly state the instanton equations, second order
adjoint equations and Riccati equation. We consider a field
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Fig. 5 Results of numerically computing 105 transition paths from
x = 0 to the target set f −1({z}) for the model SDE (10) with z = 3
and ε = 0.5 using instanton-based importance sampling (Ebener et al.
2019). We visualize the transition tube information obtained from the
eigenvalues and eigenfunctions of the projected second variation oper-
ator. The upper left subfigure shows the histogram of the full data set

for all times. The remaining subfigures show histograms of the tran-
sition paths at specific times t . The black lines, as a comparison, are
the level sets of the normal PDF with covariance εCz(t, t), found by
evaluating (37) numerically, and mean φz(t). Note that the deformation
of the distribution of Xε

t , conditioned on f (Xε
T ) = z, is captured quite

well using the quadratic, sampling-free approximation

uε : [0, l = 2π ] × [0, T = 1] → R with periodic boundary
conditions in space satisfying the SPDE

{
∂t uε + uε∂xuε − ν∂xxuε + κ∂xxxuε = √

εη ,

uε(·, 0) = 0 ,
(42)

with constants ν = κ = 4 ·10−2 and white-in-time, centered
and stationary Gaussian forcing

E
[
η(x, t)η(x ′, t ′)

] = χ(x − x ′)δ(t − t ′) . (43)

We choose χ̂k = δ|k|,1/(2π) as the spatial correlation func-
tion of the noise η in Fourier space, with ˆ denoting the
spatial Fourier transform. Concretely, η(x, t) is then given
by η(x, t) = π−1/2(Ḃ1(t) sin(x) + Ḃ2(t) cos(x)), where
B1, B2 are independent standard one-dimensional Brownian
motions. Hence, the forcing only acts on a single large scale

Fourier mode, and excitations of all other modes are due to
the nonlinearity of the SPDE. As our observable, we choose
the wave height at the origin

f (u(·, T )) = u(0, T ) , (44)

and we want to quantify the tail probability Pε
F (z) =

P [ f (uε(·, T )) ≥ z] for different z > 0. Note that the effec-
tive dimension of the system when formulated in terms of
the noise for our choice of noise correlation is small, and we
have rank σ = 2 � n = nx for typical spatial resolutions.
Unless otherwise specified, we use nx = 1024 for all numer-
ical results in this section, as well as nt = 4000 equidistant
points in time, and we expect the prefactor computation in
terms of eigenvalues of Az to be more efficient in this exam-
ple, even though the Riccati approach still remains feasible.
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Fig. 6 Left column: Rate function IF (top) and leading order prefactor
CF (bottom) for the KdV equation (42) with height observable (44),
as obtained from numerical instanton and prefactor computations. Note
that the prefactor depends strongly, almost exponentially, on the observ-
able value z in this example. Right: Comparison of LDT estimate (7)
for different noise levels ε ∈ {0.1, 1, 10} to direct sampling for the
SPDE (42). For each ε, we computed 4 · 104 samples of f (uε(·, T )) to
estimate the tail probabilities for various z. The shaded regions are 95%
Wilson score intervals (Brown et al. 2001) for the sampling estimate
of the tail probabilities. The solid lines show the asymptotically sharp

estimate (7) without adjustable parameters. In comparison to this, the
dashed lines show just the leading order LDT term exp {−IF (z)/ε}with
a constant prefactor (chosen such that the curvematches (7) for large z),
which shows that the prefactor CF is absolutely necessary to get useful
results in this example at ε > 0.1 and can be understood in regard to
the left column of the figure. Results use nx = 1024, nt = 4000 for the
instanton computations, pseudo-spectral code with integrating factor,
L-BFGS optimization with penalty term for observable; 80 eigenvalues
with largest absolute value for Fredholm determinant; stochastic Heun
steps with size 
t = 10−3 for direct sampling

We use a pseudo-spectral code and explicit second order
Runge-Kutta steps in time with an integrating factor for the
linear terms. The final-time constraint is treated with the
augmented Lagrangian method. Denoting the state space
instanton by uz with adjoint variable pz and Lagrange multi-
plierλz , thefirst-order necessary conditions at theminimizers
read {

∂t uz = −uz∂xuz + ν∂xxuz − κ∂xxxuz + χ ∗ pz ,

∂t pz = −uz∂x pz − ν∂xx pz − κ∂xxx pz ,

with

{
uz(·, 0) = 0 , f (uz(·, 1)) = z ,

pz(x, 1) = λzδ(x) .
(45)

Here, ∗ denotes spatial convolution, which appears due to the
stationarity of the forcing.

As a starting point, we compute instantons for a range of
equidistantly spaced observable values z ∈ [0, 30]. Knowl-
edge of the instanton for different z gives us access to the rate
function IF of the observable, which is shown on the left in
Fig. 6.

In the table in Fig. 8, we show for fixed z how the value of
IF (z) converges when increasing the spatio-temporal resolu-
tion, and in particular that the number of optimization steps
needed to find the instanton is robust under changes of the

numerical resolution, indicating scalability of the instanton
computation. The numerical details for these instanton com-
putations are as follows (cf. Schorlepp et al. (2022)): Initial
control p ≡ 0 and initial Lagrange multiplier λ = 0; pre-
cise target observable value z = 8.39125; 6 logarithmically
spaced penalty steps from1 to 300 for augmentedLagrangian
method; optimization is terminated upon reduction of gradi-
ent norm by 106; same (presumably) global minimizer was
found for each resolution; discretize-then-optimize; L-BFGS
solver with 4 updates stored; Armijo line search.

Two comments on the instanton computations for this
example are in order: Firstly, the observable rate function
is non-convex for some z in the interval [1.5, 5] (not visible
in the figure). This poses a problem for the dual problem
solved at fixed λ without penalty, but is not an issue for the
penalty or augmented Lagrangian strategy that we used. Fur-
thermore, this means that the Riccati prefactor computation
is not directly applicable in this region, but the Fredholm
expression remains valid. Secondly, since it is a priori unclear
whether the minimization problem for the instanton has a
unique solution (the target functional is quadratic, but the
constraint is nonlinear),we startedmultiple optimization runs
for the same z at different random initial conditions. In the
KdV system, we found multiple subdominant minima that
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consist of multiple large wave crests (as opposed to just one
for the dominant one, as shown in the top left of Fig. 9 for
one z), but only took the (presumably) global minimizer for
subsequent estimates.

To complete the asymptotic estimate of the wave height
probability via (7), we further need the prefactor CF (z) for
all z, which we compute by finding the dominant eigenvalues
of Az as before. We specify the input and output of the linear
operator Az only in terms of the two real Fourier modes of
the noise that are relevant for this, to remove the memory
cost of the eigenvalue solver. The second order adjoint equa-
tions (23) for noise fluctuations δη : [0, 2π ] × [0, 1] → R

for the KdV equation read

{
∂tδu = −∂x (uzδu) + ν∂xxδu − κ∂xxxδu + χ1/2 ∗ δη ,

∂tδ p = −δu∂x pz − uz∂xδ p − ν∂xxδ p − κ∂xxxδ p ,

with

{
δu(·, 0) = 0 ,

δ p(·, 1) = 0 ,
(46)

with Azδη = χ1/2 ∗ δ p. In our implementation, we sup-
ply the second variation operator with the two real Fourier
coefficients

(
Re δ̂η1(ti )

)
i=0,...,nt

and
(
Im δ̂η1(ti )

)
i=0,...,nt

,
assemble the full fluctuation vector δη from it, and return
χ1/2 ∗ δ p in the same format after solving (46). As the KdV
solutions fit into memory, checkpointing, as discussed in
Sect. 2.4, is not necessary. In Fig. 7, we show the conver-
gence of the determinant det(Id−Az) for some z’s based on
the found eigenvalues, thereby demonstrating that a handful
of eigenvalues suffices for an accurate approximation of the
prefactor. The number of necessary eigenvalues increases
only weakly with the observable value z in this example.
In addition, Fig. 8 shows the effect of varying the spatio-
temporal resolution (nx , nt ) on the determinant det(Id−Az)

for one particular observable value of z = 8.4 at a fixed
number of computed eigenvalues. We see that as long as the
physical problem is resolved, the eigenvalue spectrum does
not change much with the resolution, and the determinant
converges when increasing the spatio-temporal resolution.
This indicates that our methods are scalable, i.e., their cost
does not increase with the temporal (and also spatial) dis-
cretization beyond the increased cost of the PDE solution.
This is a crucial property of the eigenvalue-based prefactor
computation and is in contrast with the Riccati approach.

The result for the prefactor CF as a function of z is shown
on the bottom left of Fig. 6. Note that the vertical axis is
scaled logarithmically, i.e. the prefactor strongly depends on
the observable value. The importance of the prefactor is fur-
ther confirmed by the comparison of the complete asymptotic
estimate (7) to the results of direct Monte Carlo simulations
on the right in Fig. 6. For three values of ε ∈ {0.1, 1, 10},
we performed 4 · 104 respective simulations of the stochas-
tic KdV equation (42) to estimate the tail probability Pε

F (z)

Fig. 7 Result of numerically computing 80 eigenvalues μ
(i)
z with

largest absolute value of Az for the KdV equation (42) with z ∈
{1, 8.4, 19.9}. Main figure: absolute value of the eigenvalues μ

(i)
z

(dots: positive eigenvalues, crosses: negative eigenvalues). Inset: Finite

product
∏m

i=1

(
1− μ

(i)
z

)
for different m as an approximation for the

Fredholm determinant det(Id−Az). We see that the eigenvalues rapidly
decay to zero for all z. Similarly, the cumulative product in the inset
converges quickly, and the determinant is in fact well-approximated by
less than 10 eigenvalues for all z

without approximations. Using both the rate function and
prefactor, excellent agreement with the Monte Carlo simula-
tions is obtained. In contrast to this, only using the leading
order LDT term exp {−IF (z)/ε} with a constant prefactor
leads to a much worse agreement with simulations, and in
fact only works reasonably for ε = 0.1. Note also that
one can see from these comparisons that the actual effec-
tive smallness parameter for the asymptotic expression (7) to
be valid is ε/h(z) for some monotonically increasing func-
tion h, meaning that the estimate is also valid for large ε as
long as suitably large z → ∞ are considered. In this sense,
the estimate is truly an extreme event probability estimate,
but we chose to work in terms of the formal parameter ε to
have an explicit and general scaling parameter, in contrast to
the example-specific function h(z). For works on large devi-
ation principles directly in z → ∞, see e.g. Dematteis et al.
(2019), Tong et al. (2021)

In addition to the probability estimate itself, the instan-
ton, eigenvalues and eigenfunctions of ηz also carry physical
information about the system, as discussed in general in
Sect. 3. Figure9 shows the instanton uz , i.e. the most likely
field realization to reach a large wave height of z = 8.4, and
the dominant space-time fluctuations δu(i)

z around it.
We further computed the Gaussian fluctuations around the

instanton for z = 8.4 at the final instance t = T in Fig. 10.
First of all, we also solved the forward Riccati equation (27),
which is a PDE for Qz : [0, 2π ]2 × [0, 1] → R here and
reads
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Fig. 8 Performance of instanton and prefactor computations for KdV
problem with z = 8.4 for different spatio-temporal resolutions
(nx , nt ) ∈ {(32, 125), . . . , (1024, 4000)}. The table shows the num-
ber of optimization iterations required to compute the instanton, and
the value of the objective IF (z). The number of iterations does not
increase with the resolution (nx , nt ). The bottom figure shows 80 eigen-
values μ

(i)
z with largest absolute value of Az . The main figure shows

the absolute value of the eigenvalues μ
(i)
z (dots: positive eigenvalues,

crosses: negative eigenvalues). The inset shows
∏80

i=1

(
1− μ

(i)
z

)
for

the different resolutions (nx , nt ) as an approximation for the Fredholm
determinant det(Id−Az), which is seen to converge with increasing
resolution. Note that only for the lowest resolution, the eigenvalue
spectrum shows noticeable deviations from the results at (nx , nt ) =
(1024, 4000). The latter resolution has been used for all other numeri-
cal results on the KdV equation in this paper

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tQz(x, y, t) = χ(x − y)

− [∂x (uz(x)·) + ∂y (uz(y)·)
]
Qz(x, y, t)

+ν
[
∂xx + ∂yy

]
Qz(x, y, t)

−κ
[
∂xxx + ∂yyy

]
Qz(x, y, t)

+ ∫ 2π
0 Qz(x, x ′, t)∂x ′ pz(x ′, t)Qz(x ′, y, t)dx ′ ,

Qz(·, ·, t = 0) = 0 ,

(47)

using the same pseudospectral code and explicit second order
Runge-Kutta steps with integrating factor. The result for the
prefactor agrees with the one obtained using the Fredholm
determinant expression, with CF (z = 8.4) ≈ 1.0793 · 10−2

using the eigenvalues and CF (z = 8.4) ≈ 1.0794 · 10−2

from the Riccati approach with

CF (z) =
exp

{
1
2

∫ 1
0 dt

∫ 2π
0 dx ∂x pz(x, t)Qz(x, x, t)

}
λz
√
Qz(0, 0, 1)

.

(48)

For this particular observable value, the Riccati equation
could be integrated without numerical problems, but we
encountered a removable singularity for larger observable
values. The final-time covariance of the conditioned Gaus-
sian fluctuations around the instanton, as predicted using
either the Riccati solution (38) or the eigenfunctions and
eigenvalues (37), indeed coincides for both approaches and
is highly oscillatory (top row, center and right in Fig. 10).
Denoting the eigenvalues and normalized eigenfunctions of
the final-time covariance operator Cz(T , T ) by ν

(i)
z (T ) and

δv
(i)
z , we see that only a handful of fluctuation modes δv

(i)
z

are actually observable since the eigenvalues ν
(i)
z (T ) in the

bottom left of Fig. 10 quickly decay. Using the eigenvalues
and eigenfunctions, realizations of uε(·, T ) when condition-
ing on uε(0, T ) = z = 8.4 can now easily be sampled within
the Gaussian approximation as

uε(x, T ) ≈ uz(x, T ) +√
ε

∞∑
i=1

Zi

√
ν

(i)
z (T )δv(i)

z (x) (49)

with Zi independent and identically standard normally dis-
tributed. All in all, this example demonstrates the practical
relevance and ease of applicability of the asymptotically
sharp LDT estimate including the prefactor in a nonlinear,
one-dimensional SPDE.

4.2 Stochastically forced incompressible
three-dimensional Navier–Stokes equations

As a challenging, high-dimensional example, we consider
the estimation of the probability of a high strain event in
the stochastically forced incompressible three-dimensional
Navier–Stokes equations. Our main goal here is to demon-
strate that in addition to instantons for this problem, which
were computed by Schorlepp et al. (2022), it is also numer-
ically feasible to compute the leading order prefactor using
the Fredholm determinant approach (14). Our setup hence
follows the one treated by Schorlepp et al. (2022). A com-
prehensive analysis of the problem, including the behavior
of the prefactor in the vicinity of the critical points of the
dynamical phase transitions observed in this example, is
beyond the scope of this paper. For other works on instan-
tons and large deviations for the three-dimensional stochastic
Navier–Stokes equations, see Falkovich et al. (1996), Mori-
coni (2004), Grafke et al. (2015), Apolinário et al. (2022).We
consider a velocity fielduε : [0, l = 2π ]3×[0, T = 1] → R

3
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Fig. 9 Example instanton field uz in space and time for z = 8.4 (top
left) for the KdV equation (42) and height observable (44), and dom-
inant 5 normalized state variable eigenfunctions δu(i)

z of the projected
second variation operator Az . Due to the KdV nonlinearity and linear
wave dispersion, the large-scale forcing input is transformed into a large
wave with dominant peak at t = T , x = 0 for the instanton uz , i.e. the
most likely field realization to obtain a large wave height z = 8.4 at

t = T , x = 0. The strongest fluctuations around the instanton resemble
the instanton itself, but are necessarily centered around 0with final-time
height δu(0, T ) = 0 at the origin. Note that only two eigenvalues are
larger than 0.1 in modulus, reflecting the small effective dimension of
the system in the noise variable, and that δu(4)

z contains already higher
modes in time

with periodic boundary conditions in space that satisfies

⎧⎪⎨
⎪⎩

∂t uε + (uε · ∇) uε − 
uε +∇P = √
εη ,

∇ · uε = 0 ,

uε(·, 0) = 0 .

(50)

Here, P denotes the pressure which is determined through
the divergence constraint. The forcing η is centered Gaus-
sian, large-scale in space, white in time, and solenoidal with
covariance

E

[
η(x, t)η(x ′, t ′)�

]
= χ(x − x ′)δ(t − t ′) , (51)

where a Mexican hat correlation function with correlation
length 1

χ(x) =
[
13×3 − 1

2

(
‖x‖2 13×3 − x ⊗ x

)]
exp

{
−‖x‖2

2

}
,

(52)

is used. Note that this corresponds to the situation rank σ �
3n3x of Sect. 2.4, where only a small number of degrees of
freedom is forced due to the Fourier transform χ̂ decay-
ing exponentially. As our observable, we consider the strain
f (u) = ∂3u3(x = 0) at the origin. Denoting the Leray pro-
jection onto the divergence-free part of a vector field by P ,
the instanton equations for (uz, pz, λz) are given by

{
∂t uz = −P

[
(uz · ∇) uz

]+ 
uz + χ ∗ pz ,

∂t pz = −P
[
(uz · ∇) pz + (∇ pz)� uz

]− 
pz ,

with

⎧⎨
⎩
uz(·, 0) = 0 , f (uz(·, 1)) = z ,

pz(·, 1) = λzP
[

δ f
δu

∣∣∣
uz(·,1)

]
.

(53)

With the instantons computed, we are able to evaluate the
application of the second variation operator Az to noise fluc-
tuation vectors δη : [0, 2π ]3 × [0, 1] → R

3 by solving the
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Fig. 10 Information on the conditioned final timeGaussian fluctuations
around the KdV instanton for z = 8.4, calculated from the quanti-
ties used to evaluate the prefactor CF (z). Top, left: Riccati solution
Qz(·, ·, T = 1) at final time. Top, center: Projection of the Riccati solu-
tion, such that the constraint δu(0, T ) = 0 is satisfied. Thisway, the final
time covariance Cz(T , T ) as given in (38) is obtained. Top, right: The
same final time covariance Cz(T , T ) constructed from the eigenvalues
and eigenfunctions of Az instead as in (37). The result is visually indis-

tinguishable from the Riccati computations. Bottom, left: Eigenvalues
ν

(i)
z (T ) of the covariance Cz(T , T ). We see that the eigenvalues quickly
decay to zero, and less than 10 fluctuation modes are in fact relevant.
Bottom, center: Eigenfunctions δv

(i)
z for the 4 dominant eigenvalues

ν
(i)
z (T ), i ∈ {1, 2, 3, 4}, which all necessarily satisfy δv

(i)
z (x = 0) = 0.

Bottom, right: Instanton uz(·, T ) at final time (dashed line), and vari-
ance of conditioned Gaussian fluctuations around it for ε = 0.1 (shaded
area)

second order adjoint equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t (δu) = −P
[
(uz · ∇)δu + (δu · ∇)uz

]
+
(δu) + χ1/2 ∗ δη ,

∂t (δ p) = −P
[ (∇ pz + (∇ pz)�

)
δu + (uz · ∇) δ p

+ (∇(δ p))� uz
]− 
(δ p) ,

with

{
δu(·, 0) = 0 ,

δ p(·, 1) = 0 .
(54)

We focus on z = −25 here, where the unique instanton solu-
tion does not break rotational symmetry (Schorlepp et al.
2022). Numerically, we use a pseudo-spectral GPU code
with a spatial resolution nx = ny = nz = 128, a tempo-
ral resolution of nt = 512, a nonuniform grid in time with
smaller time steps close to T = 1, and second order explicit
Runge–Kutta steps with an integrating factor for the diffu-
sion term. We truncated χ in Fourier space by setting it to
0 for all k where

∣∣χ̂k
∣∣ < 10−14, leading to ‖k‖ ≤ 9 and

an effective real spatial dimension, independently of nx , of
approximately rank σ ≈ 2 · (2 · 9)3 = 11664 for the noise
(by taking a cube instead of sphere for the Fourier coeffi-
cients of the noise vectors that are stored, and noting that
χ̂k projects onto k⊥). The evaluation of the second order
adjoint equations is then possible with only a few GB of
VRAM for this resolution when exploiting double check-
pointing and low rank storage as described in Sect. 2.4. We
computed the 600 largest eigenvalues of operator Az , again
realized as a scipy.sparse.linalg.LinearOperator, by using
scipy.sparse.linalg.eigs as before. We transfer the data to the
GPU to evaluate the second variation applied to δη by solv-
ing (54) with PyCUDA (Klöckner et al. 2012), and transfer
back χ1/2∗δ p to the CPU afterwards. Computing 600 eigen-
values this way needs about 1200 operator evaluations, or
about 30 hours on a modern workstation with Intel Xeon
Gold 6342 CPUs at 2.80 GHz and an NVIDIA A100 80GB
GPU. The main limitation for computing more eigenvalues
is that the eigenvalue solver used stores all matrix vector
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products in RAM. This could be overcome by storing some
of them on a hard disk, or using different algorithms that
can be parallelized over multiple nodes such as randomized
SVD (Maulik et al. 2021).

The results for the eigenvalues of Az are shown in Fig. 11.
We see that the absolute value of the eigenvalues decays such

that the product
∏m

i=1

(
1− μ

(i)
z

)
converges as m increases,

but that even more than 600 eigenvalues would be needed
for a more accurate result. For smaller observable values
z, faster convergence is expected. Also, the spectrum of
Az shows a large number of doubly degenerate eigenval-
ues, which appear whenever the eigenfunctions break the
axial symmetry of the instanton. This feature of the spectrum
clearly depends on the domain and spatial boundary condi-
tions that were chosen here. From the instanton computation,
we obtain IF (z) ≈ 1900.7 for the rate function, and from the
600 eigenvalues of Az we estimateCF (z) ≈ 4.9 ·10−3. With
this, we can estimate that e.g. for ε = 250, the probability
to observe a strain event with ∂3u3(x = 0, T = 1) ≤ −25
is approximately 1.5 · 10−5, which matches the sampling
estimate of P250

F (−25) ∈ [1.3 · 10−5, 1.7 · 10−5] at 95%
asymptotic confidence, as obtained from 104 direct numeri-
cal simulations of (50) (data set fromSchorlepp et al. (2022)).
For smaller ε, the event becomes more rare, and it quickly
becomes unfeasible to estimate its probability via direct sam-
pling, whereas the quadratic estimate using the rate function
and prefactor can be computed for any ε and is known to
become more precise as the event becomes more difficult to
observe in direct simulations. In addition to these probability
estimates, we can also analyze the dominant Gaussian fluc-
tuations around the instanton now and easily sample high
strain events within the Gaussian approximation. Figure12
shows the instanton uz at final time, i.e. an axially sym-
metric pair of counter-rotating vortex rings, as well as the
dominant eigenfunctions of Cz(T , T ), corresponding to the
fluctuation modes that are most easily observed at final time
in conditioned direct numerical simulations. Note that the
Riccati equation (27) would be a PDE for a six-dimensional
matrix-valued field Qz(x1, x2, x3, y1, y2, y3, t) here without
obvious sparsity properties. Solvers for such a problem are
quite expensive, if feasible at all, and also not easy to scale
to higher spatial resolutions, whereas this is possible for the
dominant eigenvalue approach.

5 Summary and outlook

In this paper, we have presented an asymptotically sharp,
sampling-free probability estimation method for extreme
events of stochastic processes described by additive-noise
SDEs and SPDEs. The method can be regarded as a path-
space SORM approximation. We have introduced and com-

Fig. 11 Result of numerically computing 600 eigenvalues μ
(i)
z with

largest absolute value of Az for the three-dimensional Navier–Stokes
equations (50) with strain z = ∂3u3(x = 0, T ) = −25, where
the instanton is a rotationally symmetric pair of vortex rings. Main
figure: absolute value of the eigenvalues μ

(i)
z . Inset: Finite product∏m

i=1

(
1− μ

(i)
z

)
for different m as an approximation for the Fredholm

determinant det(Id−Az). We see in the main figure that the eigenval-
ues often appear in pairs, which happens whenever the eigenfunctions
break the rotational symmetry of the problem, such that, due to the
periodic box, there are two linearly independent eigenfunctions for the
same eigenvalue. The inset shows that det(Id−Az) is approximately 11
in this example, but that even more eigenvalues would be needed to get
an accurate result

pared two different conceptual and numerical strategies to
evaluate the pre-exponential factor appearing in these esti-
mates, either through dominant eigenvalues of the second
variation, corresponding to the standard formulation of pre-
cise Laplace asymptotics and SORM, or through the solution
of matrix Riccati differential equations, which is possible
for precise large deviations of continuous-time Markov pro-
cesses. Highlighting the scalability of the first approach, we
have shown that leading-order prefactors can be computed in
practice even for very high-dimensional SDEs, and explicitly
tested our methods in two SPDE examples. In all exam-
ples, the approximations showed good agreement with direct
Monte Carlo simulations or importance sampling. We hope
that the methods assembled in this paper are useful whenever
sample path large deviation theory is used to obtain proba-
bility estimates in real-world examples.

There are multiple possible extensions of the methods
presented in this paper. More general classes of SDEs and
SPDEs could possibly be treated numerically within the
eigenvalue-based approach, most notably SDEs with mul-
tiplicative Gaussian noise, but also SDEs driven by Levy
noise or singular SPDEs. Furthermore, one could try to
generalize the approach to include any additive Gaussian
noise that is colored in time instead of white. This would

123



137 Page 22 of 29 Statistics and Computing (2023) 33 :137

Fig. 12 Visualization of the instanton and dominant Gaussian fluctua-
tions around it at final time T = 1, for a strain event with z = ∂3u3(x =
0, T ) = −25 for the three-dimensional Navier–Stokes equations (50).
All three-dimensional images show isosurfaces of the vorticity or curl
of the respective field. Top, left: The unique instanton for this observ-
able value is a rotationally symmetric pair of vortex rings. Top, center:
Eigenvalues ν

(i)
z (T ) of the final-time covariance operator Cz(T , T ),

approximated as Cz(T , T ) ≈∑600
i=1[1−μ

(i)
z ]−1δu(i)

z (·, T )⊗δu(i)
z (·, T )

using 600 eigenvalues μ
(i)
z with largest absolute value of the projected

second variation operator Az , of the conditioned Gaussian fluctuations
around the instanton. Top right, and second/third row: Normalized
eigenfunctions δv

(i)
z of Cz(T , T ) for the largest eigenvalues of Cz(T , T ),

indicating the strongest fluctuation directions around the strain instan-
ton at final time t = T
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potentially lead to further dimensional reduction for the
instanton and prefactor computation for examples with a
slowly decaying temporal noise correlation. It would also be
interesting to apply the eigenvalue-based prefactor computa-
tion strategy to metastable non-gradient SDEs. Regarding
the numerical applicability of the Riccati method in case
of high-dimensional systems with low-rank forcing, there
is an alternative formulation of the prefactor in terms of
a backward-in-time Riccati equation (Grafke et al. 2021),
which could be better suited for controlled low-rank approx-
imations. In general, improvements of the quadratic approx-
imation used throughout this paper via loop expansions,
resummation techniques or non-perturbative methods from
theoretical physics could be investigated. In this regard, it
would be desirable to obtain simple criteria that indicate
whether the SORM approximation considered in this paper
can be expected to be accurate for given ε and z. Finally,
one could use the instanton and additional prefactor infor-
mation for efficient importance sampling of extreme events
for S(P)DEs.
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Appendix A: Derivations

1. Laplacemethod in finite dimensions

In this section, we give a more detailed explanation on how
the finite dimensional Laplace Method is used to estimate
extreme event probabilities in complex systems. It follows
arguments similar to Dematteis et al. (2019), Tong et al.
(2021).

In

Pε
F (z) = (2πε)−N/2

×
∫
RN

1{F≥z}(η) exp

{
− 1

2ε
‖η‖2N

}
dNη , (A1)

we expand

η = ηz + εη1 +√
εη2 (A2)

with η1, η2 ∈ R
N satisfying η1 ‖ ηz and η2 ∈ η⊥z , such that

1

2ε
‖η‖2N = ε

2
‖η1‖2N + 〈η1, ηz〉N + 1

ε
IF (z) + 1

2
‖η2‖2N

(A3)

and

F(η) − z

ε
= 1

λz
〈η1, ηz〉N

+ 1

2

〈
η2,∇2F(ηz)η2

〉
N
+O

(
ε1/2

)
. (A4)

To motivate the decomposition (A2), note that the natural
scaling for random fluctuations around the fixed state ηz is
clearly∝ √

ε, and we use this ansatz for all directions except
for the one parallel to the instanton. In this direction, due
to the restriction F ≥ z of the event set, we can expect a
different behavior, and the subsequent computations in this
section confirm that a decay with ε faster than

√
ε is indeed
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observed. We obtain, with η1 = sez for s ∈ R and ez :=
ηz/‖ηz‖N ,

Pε
F (z)

ε↓0∼ (2π)−N/2ε1/2 exp
{
−ε−1 IF (z)

}
×
∫
η⊥z

dN−1η2 exp

{
−1

2
‖η2‖2N

}

×
∫ ∞
− λz

2‖ηz‖N 〈η2,∇2F(ηz)η2〉N
ds exp

{−s ‖ηz‖N
}

= (2π)−N/2ε1/2 ‖ηz‖−1
N exp

{
−ε−1 IF (z)

}
×
∫
η⊥z

dN−1η2 exp

{
−1

2

〈
η2,

(
1N×N − λz∇2F(ηz)

)
η2

〉
N

}

= (2π)−1/2ε1/2 exp
{
−ε−1 IF (z)

}
×
[
2IF (z) det

(
1N×N − λz prη⊥z ∇2F(ηz) prη⊥z

)]−1/2
.

(A5)

With this computation, we have motivated (7) and (8). A
rigorous proof would consist of a more careful error analysis
for the Laplace method, as detailed e.g. by Bleistein and
Handelsman (1975).

2. Laplacemethod in infinite dimensions

It is a common strategy in large deviation theory to first
study expectations of the typeE

[
exp

{ 1
ε
F(φε)

}]
for a family

of random variables φε satisfying a large deviation prin-
ciple, and a real-valued function F . Only later will these
results be transformed onto probabilities or other probabilis-
tic quantities.We directly use the results of BenArous (1988)
to conclude that the asymptotic behavior of the moment-
generating function (MGF) Aε

F : R → [0,∞], Aε
F (λ) =

E
[
exp

{
λ
ε
f (Xε

T )
}]

of the observable f (Xε
T ) for the additive-

noise SDE (9) as ε ↓ 0 is given by

Aε
F (λ)

ε↓0∼ Rλ exp
{
ε−1 I ∗F (λ)

}
(A6)

with prefactor

Rλ =
[
det

(
Id− λ

δ2F

δη2

∣∣∣∣
ηλ

)]−1/2

. (A7)

Here, I ∗F denotes the Legendre transform of the rate func-
tion IF , det is a Fredholm determinant, the second variation

operator δ2Fλ

δη2

∣∣∣
ηλ

is trace class, and ηλ is short for ηzλ at the

Legendre dual zλ of λ via I ′F (zλ) = λ. Note that for mul-
tiplicative noise, the result would be different, which can
already be seen in the simple example of a one-dimensional
geometric Brownian motion and f (x) = 1

2 log
2 x . Fur-

thermore, Ben Arous (1988) also assumes that the vector

field b, the observable f , and their respective derivatives are
bounded. A remark by Deuschel et al. (2014) shows how one
could relax this assumption via localization.

Evaluating the inverseLaplace transform from theMGF(A6)
to the probability density function

ρε
F (z) = 1

2π iε

∫
C
Aε
F (λ) exp

{
−λz

ε

}
dλ

ε↓0∼ (2πε)−1/2 Rλz

√
I ′′F (z) exp

{
−ε−1 IF (z)

}
(A8)

via a saddlepoint approximation, as well as a further integra-
tion to get the tail probability via a Laplace approximation
yields the desired estimate with leading-order prefactor

CF (z) = Rλz

√
I ′′F (z)λ−1

z . (A9)

From the first-order necessary condition

ηz = λz
δF

δη

∣∣∣∣
ηz

(A10)

and λz = I ′F (z), we get via differentiation

λz

I ′′F (z)

dηz
dz

=
[
Id−λz

δ2F

δη2

∣∣∣∣
ηz

]−1

ηz , (A11)

so

CF (z) =
[〈

ηz,
λz

I ′′F (z)

dηz
dz

〉
L2

det

(
Id− λz

δ2F

δη2

∣∣∣∣
ηz

)]−1/2

=
⎡
⎣2IF (z)

〈
ηz

‖ηz‖ ,

[
Id−λz

δ2F

δη2

∣∣∣∣
ηz

]−1
ηz

‖ηz‖

〉
L2

×

× det

(
Id− λz

δ2F

δη2

∣∣∣∣
ηz

)]−1/2

=
[
2IF (z) det

(
Id−λz prη⊥z

δ2F

δη2

∣∣∣∣
ηz

prη⊥z

)]−1/2

(A12)

as claimed. The last equality is easy to see for finite-
dimensional matrices: For A ∈ R

N×N invertible and a unit
vector e ∈ R

N , the adjugate is adj(A) = det A · A−1, and
applying e from the left and right yields det A

〈
e, A−1e

〉
N =

〈e, adj(A)e〉N . The right-hand side is the (e, e) cofactor of
A, which is equal to the determinant of the (N−1)×(N−1)
matrix pre⊥ A pre⊥ with pre⊥ : RN → e⊥ denoting the
orthogonal projection. For the present infinite-dimensional
case, an analogue of this relation can be verified using the
series definition of the Fredholm determinant and adjugate as
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originally introduced by Fredholm himself (Fredholm 1903;
McKean 2011).

3. From Fredholm determinants to zeta-regularized
functional determinants

In this section, wemotivate (26) using purely formalmanipu-
lations, and only consider linear observables f for simplicity.
For rigorous results on the relation between Fredholm deter-
minants and zeta-regularized determinants for related classes
of operators, see e.g. Forman (1987), Hartmann and Lesch
(2022). We start with the expression (A9) for the prefac-
tor CF (z) in terms of the full second variation determinant
without projection operators.According to the adjoint formu-
lation of Sect. 2.2, we write the second variation δ2(λF)/δη2

as the composition of three linear operators

λz
δ2F

δη2

∣∣∣∣
ηz

=
[
L�
z,(T ,0)

]−1 ◦
〈
∇2b(φz), θz

〉
n
◦ [Lz,(0,0)

]−1
.

(A13)

Here, the operator in the middle simply denotes pointwise
multiplication with

〈∇2b(φz(t)), θz(t)
〉
n for each t ∈ [0, T ].

The rightmost operator, for a given argument δη, integrates

{
γ̇ = ∇b(φz)γ + σδη ,

γ (0) = 0
(A14)

and sets
[
Lz,(0,0)

]−1
δη = γ . Symbolically, we have

[
Lz,(0,0)

]−1 =
[
d

dt
−∇b(φz)

]−1

(0,0)
σ, (A15)

where the subscript denotes inversion under the boundary

condition γ (0) = 0. Similarly, we put
[
L�
z,(T ,0)

]−1
γ = ζ

with

[
L�
z,(T ,0)

]−1 = σ�
[
− d

dt
−∇b�(φz)

]−1

(T ,0)
, (A16)

under the boundary condition ζ(T ) = 0. Symbolically, we
then get

⎡
⎣det

⎛
⎝Id−λz

δ2F

δη2

∣∣∣∣∣
ηz

⎞
⎠
⎤
⎦
−1/2

=
[
det

(
Id−

[
L�z,(T ,0)

]−1 ◦
〈
∇2b(φz), θz

〉
n
◦ [Lz,(0,0)]−1

)]−1/2

=
⎡
⎢⎣Det

(
L�z,(T ,0)Lz,(0,0) −

〈
∇2b(φz), θz

〉
n

)
Det

(
L�z,(T ,0)Lz,(0,0)

)
⎤
⎥⎦
−1/2

=
⎡
⎢⎣Det

(
L�z,(T ,0)Lz,(0,0) −

〈
∇2b(φz), θz

〉
n

)
Det

(
L�0,(T ,0)L0,(0,0)

)
⎤
⎥⎦
−1/2

×

×
⎡
⎣Det

(
L�0,(T ,0)L0,(0,0)

)
Det

(
L�z,(T ,0)Lz,(0,0)

)
⎤
⎦
−1/2

. (A17)

Here, the critical step is in the second linewhere the operators
are moved out of the Fredholm determinant to get a frac-
tion of two zeta-regularized determinants, which is true for
finite-dimensional matrices but non-trivial for general oper-
ators. We see that the boundary conditions of all appearing
operators are

A0 :
{

γ (0) = 0 ,

ζ(T ) = 0 ,
(A18)

which is the correct special case of the general boundary
conditions

Aλz :
{

γ (0) = 0 ,

ζ(T ) = λz∇2 f (φz(T ))γ (T )
(A19)

from Schorlepp et al. (2023) for a linear observable f . More-
over, we have

L�
z,(T ,0)Lz,(0,0) −

〈
∇2b(φz), θz

〉
n

=
[
− d

dt
−∇b�(φz)

]
a−1

[
d

dt
−∇b(φz)

]
− 〈∇2b(φz), θz〉n

=: �[φz] , (A20)

which is the Jacobi operator, defined via δ2 S[φz][γ ] =
1
2

∫ T
0 〈γ,�[φz]γ 〉n dt , for the Freidlin-Wentzell action func-

tional S[φ] = 1
2

∫ T
0 〈φ̇ − b(φ), a−1(φ̇ − b(φ))〉n dt . We then

use Forman’s theorem (Forman 1987) to evaluate the second
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ratio of determinants in (A17)

⎡
⎣Det

(
L�
0,(T ,0)L0,(0,0)

)
Det

(
L�
z,(T ,0)Lz,(0,0)

)
⎤
⎦
−1/2

= exp

{
− 1

2

∫ T

0
(∇ · b(φz) −∇ · b(φ0)) dt

}
, (A21)

thereby finishing the motivation of the result (26).

4. Full covariance function via eigenvalues and
eigenfunctions

In this section, we formally derive (37). First, we introduce

the evaluation maps �t for t ∈ [0, T ] as (η(s))s∈[0,T ]
�t−→

φ(t) with

{
φ̇ = b(φ) + ση ,

φ(0) = x .
(A22)

Then

Cz(t, t ′)

= lim
ε↓0 E

[
(Xε

t − φz(t)) ⊗ (Xε
t ′ − φz(t ′))

ε

∣∣∣∣ f (Xε
T ) = z

]

= lim
ε↓0

(
εE
[
δ( f (�T [√εη]) − z)

])−1×
× (

E
[
(�t [√εη] − φz(t)) ⊗ (�t ′ [

√
εη] − φz(t

′)) ×
× δ( f (�T [√εη]) − z)

])
, (A23)

where δ denotes the Dirac delta function. The denominator
of (A23) is just the PDF ρε

F (z); we already know its asymp-
totic behavior from (15). In short, its asymptotics are obtained
as

E
[
δ( f (�T [√εη]) − z)

]
= 1

2π iε

∫ i∞

−i∞
dλ
∫

Dη exp

{
−1

ε

(
1

2
‖η‖2L2 − λ(F[η] − z)

)}
ε↓0∼ 1

2π iε1/2
exp {−IF (z)/ε}

∫ i∞

−i∞
dλ
∫

Dη×

× exp

{
−1

2

〈
η,

[
Id−λz

δ2F

δη2

∣∣∣∣
ηz

]
η

〉
L2

}
exp

{
λ

〈
δF

δη

∣∣∣∣
ηz︸ ︷︷ ︸

=ηz/λz

, η

〉
L2

}

= 1

ε1/2
exp {−IF (z)/ε} |λz |

‖ηz‖L2
×

×
∫

Dη exp

{
−1

2

〈
η,

[
Id−λz

δ2F

δη2

∣∣∣∣
ηz

]
η

〉
L2

}
δ
(〈ez, η〉L2

)
︸ ︷︷ ︸

=(2π)−1/2 det(Id−Az )
−1/2

.

(A24)

Here, in the first step, the PDF was written as the inverse
Laplace transform of the moment-generating function, and
the expectation over η was expressed as a functional inte-
gral. Then, in the second step, all integration variables were
expanded up to second order around the stationary point
(ηz, λz). Finally, in the last step, the λ integral was inter-
preted as a delta function again, restricting the functional
integration to the subspace orthogonal to ez = ηz/ ‖ηz‖L2 .
Hence, the Gaussian integral yields the determinant in the
subspace η⊥z , and the factor of (2π)−1/2 appears due to the
normalization of the functional integral. For the numerator
of (A23), we proceed similarly:

ε−1
E
[
(�t [√εη] − φz(t)) ⊗ (�t ′ [

√
εη] − φz(t

′))
× δ( f (�T [√εη]) − z)

]
ε↓0∼ 1

ε1/2
exp {−IF (z)/ε} |λz |

‖ηz‖L2

×
∫

Dη exp

{
−1

2

〈
η,

[
Id−λz

δ2F

δη2

∣∣∣∣
ηz

]
η

〉
L2

}

× δ
(〈ez, η〉L2

)
δ�t |ηz [η] ⊗ δ�t ′ |ηz [η] , (A25)

where δ�t |ηz denotes the first variation of�t . One can show,
by first using an adjoint variable and then proceeding similar
to the boundary condition computation in section A5, that

δ�t |ηz [η] = γ (t) (A26)

is the state space fluctuation from (23) around φz at time t
associated with η. Since this is a linear function of η, expand-
ing

η =
∞∑
i=1

αiδη
(i)
z (A27)

in terms of the orthonormal eigenfunctions of Az and per-
forming theGaussian integration in theα variables then leads
to (37).

5. Final time conditioned fluctuations boundary
condition

Here, we show that for the state variable fluctuations γ asso-
ciated with any δη ∈ η⊥z ⊂ L2([0, T ],Rn), the final time
boundary condition

〈λz∇ f (φz(T )), γ (T )〉n = 0 (A28)

holds, and hence the result (37) for the fluctuation covari-
ance in terms of the γ

(i)
z ’s is consistent with (39). Note that

the linearized state equation for γ in (23) can be formally

123



Statistics and Computing (2023) 33 :137 Page 27 of 29 137

integrated to get

γ (T ) =
∫ T

0
T
[
exp

{∫ T

t
∇b(φz(τ )) dτ

}]
σδη(t) dt ,

(A29)

where T is the time-ordering operator. Similarly, from the
first order adjoint equation in (19), we get

θz(t) = T
[
exp

{∫ T

t
∇b(φz(τ ))�dτ

}]
λz∇ f (φz(T )) ,

(A30)

and hence

〈λz∇ f (φz(T )), γ (T )〉n = 〈ηz, δη〉L2 = 0 (A31)

by transposing.
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