
Algorithmica
https://doi.org/10.1007/s00453-023-01151-x

Deterministic Dynamic Matching in Worst-Case Update
Time

Peter Kiss1

Received: 8 July 2022 / Accepted: 27 June 2023
© The Author(s) 2023

Abstract
We present deterministic algorithms for maintaining a (3/2 + ε) and (2 + ε)-
approximate maximum matching in a fully dynamic graph with worst-case update
times Ô(

√
n) and Õ(1) respectively. The fastest known deterministic worst-case

update time algorithms for achieving approximation ratio (2 − δ) (for any δ > 0)
and (2 + ε) were both shown by Roghani et al. (Beating the folklore algorithm for
dynamic matching, 2021) with update times O(n3/4) and Oε(

√
n) respectively. We

close the gap between worst-case and amortized algorithms for the two approxi-
mation ratios as the best deterministic amortized update times for the problem are
Oε(

√
n) and Õ(1) which were shown in Bernstein and Stein (in: Proceedings of the

twenty-seventh annual ACM-SIAM symposium on discrete algorithms, 2016) and
Bhattacharya and Kiss (in: 48th international colloquium on automata, languages, and
programming, ICALP 2021, 12–16 July, Glasgow, 2021) respectively. The algorithm
achieving (3/2 + ε) approximation builds on the EDCS concept introduced by the
influential paper of Bernstein and Stein (in: International colloquium on automata, lan-
guages, and programming, Springer, Berlin, 2015). Say that H is a (α, δ)-approximate
matching sparsifier if at all times H satisfies that μ(H) · α + δ · n ≥ μ(G) (define
(α, δ)-approximation similarly for matchings). We show how to maintain a locally
damaged version of the EDCS which is a (3/2 + ε, δ)-approximate matching sparsi-
fier. We further show how to reduce the maintenance of an α-approximate maximum
matching to the maintenance of an (α, δ)-approximate maximum matching build-
ing based on an observation of Assadi et al. (in: Proceedings of the twenty-seventh

Independent Work: Independently and concurrently to our work Grandoni et al. [arXiv’2021] has
presented a fully dynamic algorithm for maintaining a (3/2 + ε)-approximate maximum matching with
deterministic worst-case update time Oε(

√
n).

This work is supported by Engineering and Physical Sciences Research Council, UK (EPSRC)
GrantEP/S03353X/1.

B Peter Kiss
peter.kiss@warwick.ac.uk

1 Department of Computer Science, University of Warwick, Coventry, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01151-x&domain=pdf

Algorithmica

annual (ACM-SIAM) symposium on discrete algorithms, (SODA) 2016, Arlington,
VA, USA, January 10–12, 2016). Our reduction requires an update time blow-up of
Ô(1) or Õ(1) and is deterministic or randomized against an adaptive adversary respec-
tively. To achieve (2+ ε)-approximation we improve on the update time guarantee of
an algorithm of Bhattacharya andKiss (in: 48th International colloquium on automata,
languages, and programming, ICALP 2021, 12–16 July, Glasgow, 2021). In order to
achieve both results we explicitly state a method implicitly used in Nanongkai and
Saranurak (in: Proceedings of the twenty-seventh annual ACM symposium on theory
of computing, 2017) and Bernstein et al. (Fully-dynamic graph sparsifiers against an
adaptive adversary, 2020) which allows to transform dynamic algorithms capable of
processing the input in batches to a dynamic algorithms with worst-case update time.

Keywords Dynamic algorithms · Matching · Approximate matching · EDCS

1 Introduction

In the dynamic setting our task is tomaintain a ’good’ solution for some computational
problem as the input undergoes updates [1–6]. Our goal is to minimize the update time
we need to spend in order to update the output when the input undergoes updates. One
of the most extensively studied computational problems in the dynamic setting is
approximate maximummatching. Our task is to maintain an α-approximate matching
M in G, which is a matching which satisfies that |M | · α ≥ μ(G) (where μ(G)

represent the size of a maximum size matching of graph G). Due to the conditional
lower bound of [7] the maintenance of an exact maximummatching (a 1-approximate
maximum matching) requires at least O(poly(n)) update time. Hence, a long line
of papers were focused on the possible approximation ratio-update time trade-offs
achievable for α > 1 [8–15].1

If a dynamic algorithm computes the updated output after at most O(T) time
following any single change in the input we say that its update time is worst-case
O(T). A slight relaxation of this bound is that the algorithm takes at most O(T · k)
total time to maintain the output over k > 0 consecutive updates to the input, for any
k, in this case the update time of the algorithm is amortized O(T).

A number of dynamic algorithms in literature utilize different levels of randomiza-
tion [16–21]. However, currently all known techniques for proving update time lower
bounds fail to differentiate between randomized and deterministic dynamic algorithms
[7, 22–25]. Hence, understanding the power of randomization in the dynamic setting
is an important research agenda. In the case of dynamic matching getting rid of ran-
domization has proven to be difficult within the realm of Õ(1) update time. While as
early as the influential work of Onak and Rubinfield [26] a randomized algorithmwith
Õ(1) update time has been found the first deterministic algorithmwith the same update
time was first shown by Bhattacharya et al. [27]. For achieving (2+ ε)-approximation
with worst-case update time there is still an O(poly(n)) factor difference between the
fastest randomized and deterministic implementations ([17, 18] and [28] respectively).

1 Throughout the paper Õ hides poly(log n, 1/ε) factors and Ô hides poly(no(1), 1/ε) factors.

123

Algorithmica

While amortized update time bounds don’t tell us anything about worst-case update
time some problems in the dynamic setting have proven to be difficult to solve effi-
ciently without amortization. Notably, for the dynamic connectivity problem the first
deterministic amortized update time solution by Holm et al. [29] has long preceded
the first worst-case update time implementation of Kapron et al. [30] which required
randomization.

Both of the algorithms presented by this paper carry the best of both worlds as they
are deterministic and provide new worst-case update-time bounds.

Many dynamic algorithms such as [31, 32] rely on the robustness of the output of
the output. To consider this in a context of matching as an example observe that if
a matching M is α-approximate it remains (α · (1 + O(ε)))-approximate even after
ε · |M | edge updates. Hence, if we are to rebuild M after the updates we can amortize
its reconstruction cost over ε · |M | time steps. However, such an approach initially
inherently results in amortized update time bound. In some cases with additional
technical effort de-amortization was shown to be achievable for these algorithms [31,
33]. A natural question to ask is weather an amortized update time bound is always
avoidable for amortized rebuild based dynamic algorithms.

To answer this question we explicitly present a versatile framework for improving
the update time bounds of amortized rebuild based algorithms to worst-case while
incurring only a Õ(1) blowup in update time. Our framework was implicitly shown in
Bernstein et al. [33] andNanongkai and Saranurak [34]. To demonstrate the framework
we present two new results:

Theorem 1 There is a deterministic algorithm for maintaining a (2+ ε)-approximate
matching in a fully dynamic graph with worst-case update time Oε(log7(n)) = Õ(1)
(where Oε hides O(poly(1/ε) factors).

For the approximation ratio of (2 + ε) the best known worst-case update time
algorithm of Õ(

√
n) was show recently in [28]. However, Õ(1) amortized update

time algorithms were previously shown by [27, 32]. We show that an O(poly(n))

blowup in update time is not necessary to improve these bounds to worst-case.

Theorem 2 There is a fully dynamic algorithm for maintaining a (3/2 + ε)-

approximate maximum matching in worst-case deterministic Ô
(

m
n·β + β

)
(for our

choice of β) or Ô(
√
n) update time (where Ô hides O(poly(no(1), 1/ε)) factors).

For achieving better than than 2-approximation the fastest knownworst-case update
time of Õ(

√
n 8
√
m) was shown in [28]. Similar to the case of (2 + ε)-approximation

there is an Õ(poly(n)) faster algorithm achieving the same approximation ratio shown
in [14] using amortization. We again show that such a large blowup is not necessary
in order to achieve worst-case update times.

In order to derive the later result we first show an amortized rebuild based algorithm
for maintaining the widely utilized [14, 35–41] matching sparsifier EDCS introduced
by Bernstein and Stein [35]. At the core of amortized rebuild based algorithms there
is a static algorithm for efficiently recomputing the underlying data-structure. As the
EDCS matching sparsifier (as far as we are aware) doesn’t admit a deterministic near-
linear time static algorithm, we introduce a relaxed version of the EDCS we refer to as

123

Algorithmica

’damaged EDCS’. For constructing a damaged EDCS we show a deterministic Õ(m)

static algorithm. Say that matching sparsifier (or matching) H is (α, δ)-approximate
if μ(H) · α + n · δ ≥ μ(G). A damaged EDCS is a (3/2 + ε, δ)-approximate match-
ing sparsifier as opposed to the EDCS which is (3/2 + ε)-approximate. To counter
this we show new reductions from (α + ε) to (α, δ)-approximate dynamic matching
algorithms based on ideas of [42, 43]. Previous such reductions relied on the oblivious
adversary assumption that the input sequence is independent from the choices of the
algorithm and is fixed beforehand. Our reductions work against an adaptive adversary
whose decisions may depend on the decisions and random bits of the algorithm. The
update time blowup required by the reductions is Õ(1) or Ô(1) if the reduction step
is randomized or deterministic respectively. These reductions and the static algorithm
for constructing a damaged EDCS might be of independent research interest. Using
the randomized reduction we receive the following corollary:

Corollary 3 The update time bound of Theorem 2 can be improved to Õ
(

m
n·β + β

)

(or Õ(
√
n)) if we allow for randomization against an adaptive adversary (where Õ

hides O(poly(log(n), 1/ε)) factors).

1.1 Techniques

We base our approach for improving an amortized rebuild based algorithm to worst-
case update time on an observation implicitly stated in Bernstein et al. [33] (Lemma
6.1). Take an arbitrary input sequence of changes I for a dynamic problem and arbi-
trarily partition it into k continuous sub-sequences Ii : i ∈ [k]. If a dynamic algorithm
with update time O(T) is such that (knowing the partitionings) it can process the input
sequence and the total time of processing sub-sequence Ii is O(|Ii | · T) then call it k
batch-dynamic. Note that the update time guarantee of a batch-dynamic algorithm is
stronger then of an amortized update time algorithm but it is weaker than a worst-case
update time bound.

Building on the framework of [33] we show that an O(log(n)) batch-dynamic
algorithm Alg can be used to maintain Õ(1) parallel output tapes with worst-case
update time such that at all times at least one output tape contains a valid output of
Alg while only incurring a blowup of Õ(1) in update-time. If Alg is an α-approximate
dynamic matching algorithm then each of the O(log(n)) output tapes each contain
a matching. Therefore, the union of the output tapes is an α-approximate matching
sparsifier with maximum degree O(log(n)) on which we can run the algorithm of
Gupta and Peng [31] to maintain an (α + ε)-approximate matching.

Therefore, in order to find new worst-case update time dynamic matching algo-
rithmswe only have to find batch-dynamic algorithms.We showa framework (building
on [33]) for transforming amortized rebuild based dynamic algorithms to batch-
dynamic algorithms. On a high level an amortized rebuild based algorithm allows
for a slack of ε factor damage to its underlying data-structure before commencing a
rebuild. To turn such an algorithm k batch-dynamic during the progressing of the i-th
batch we ensure a slack of i ·ε

k instead. This way once the algorithm finishes process-
ing a batch it has ε

k factor of slack it is allowed to take before commencing a rebuild

123

Algorithmica

meaning that the next rebuild operation is expected to happen well into the proceeding
batch.

With this general method and some technical effort we show a batch-dynamic
version of the (2 + ε)-approximate dynamic matching algorithm of [32] and prove
Theorem 1.

In order to generate a batch-dynamic algorithm for maintaining a (3/2 + ε)-
approximate maximum matching more work is required as algorithms currently
present in literature for this approximation ratio are not conveniently amortized rebuild
based. We introduce a relaxed version of the matching sparsifier EDCS (initially
appeared in [35]) called ’damaged EDCS’. We further show that a damaged EDCS
can be found in Õ(m) time. We show that a damaged EDCS is robust against Õ(n ·β)

edge updates and hasmaximum degree β for our choice of β. Thismeanswe canmain-

tain the damaged EDCS in Õ
(

m
n·β

)
amortized update time with periodic rebuilds. We

can then run the algorithm of [31] to maintain a matching in the damaged EDCS in
Õ(β) update time.

1.2 IndependentWork

Independently from our work Grandoni et al. [36] presented a dynamic algorithm for
maintaining a (3/2 + ε)-approximate matching with deterministic worst-case update
time Oε(m1/4), where Oε is hiding O(poly(1/ε)) dependency.

2 Notations and Preliminaries

Throughout this paper, we let G = (V , E) denote the input graph and n will stand for
|V | and m will stand for the maximum of |E | as the graph undergoes edge updates.
degE (v) will stand for the degree of vertex v in edge set E while NE (v) stand for the
set of neighbouring vertices of v in edge set E . We will sometimes refer to degE (u)+
degE (v) as the degree of edge (u, v) in E . A matching M of graph G is a subset of
vertex disjoint edges of E .μ(G) refers to the size of a maximum cardinality matching
of G. A matching M is an α-approximate maximum matching if α · |M | ≥ μ(G).
Define a matching to be (α, δ)-approximate if |M | · α + δ · n ≥ μ(G).

In themaximumdynamicmatching problem the task is tomaintain a largematching
while the graph undergoes edge updates. In this paper we will be focusing on the
fully dynamic setting where the graph undergoes both edge insertions and deletions
over time. An algorithm is said to be a dynamic α (or (α, δ))-approximate maximum
matching algorithm if it maintains an α (or (α, δ))-approximate matching at all times.
A sub-graph H ⊆ E is said to be an α (or (α, δ))-approximate matching sparsifier if
it contains an α (or (α, δ))-approximate matching. We will regularly be referring to
the following influential result from literature:

Lemma 4 Gupta and Peng [31]: There is a (1 + ε)-approximate maximum match-
ing algorithm for fully dynamic graph G with deterministic worst-case update time
O(�/ε2) given the maximum degree of G is at most � at all times.

123

Algorithmica

Throughout the paper thenotations Õ(), Ô() andOε()will be hidingO(poly(log(n),

ε)), O(poly(no(1), ε)) and O(poly(1
ε
)) factors from running times respectively.

The update time of a dynamic algorithm is worst-case O(T) if it takes at most O(T)

time for it to update the output each time the input undergoes a change. An algorithm
update time is said to be amortized O(T) if there is some integer k > 0 such that over
k consecutive changes to the input the algorithm takes O(k · T) time steps to maintain
the output. The recourse of a dynamic algorithm measures the changes the algorithm
makes to its output per change to the input. Similarly to update time recourse can be
amortized and worst-case.

We call a dynamic algorithm k batch-dynamic with update time O(T) if for any
partitioning of the input sequence I into k sub-sequences Ii : i ∈ [k] during the pro-
cessing of I the algorithm can process input sub-sequence Ii in O(T · |Ii |) total update
time. Note that this implies that the worst-case update time during the progressing of
Ii is O(T ·|Ii |). The definition is based on [33]. A k-batch dynamic algorithm provides
slightly better update time bounds then an amortized update time algorithm as we can
select k sub-sequences to amortize the update time over.

We will furthermore be referring to the following recent result from Solomon and
Solomon [44]:

Lemma 5 Theorem 1.3 of Solomon and Solomon [44] (slightly phrased differently
and trivially generalized for (α, δ)-approximate matchings): Any fully dynamic α

(or (α, δ))-approximate maximum matching algorithm with update time O(T) can be
transformed into an (α+ε) (or (α+ε, δ))-approximate maximummatching algorithm
with O(T + α

ε
) update time and worst-case recourse of O(α

ε
) per update. The update

time of the new algorithm is worst-case if so is the underlying matching algorithm.

Definition 6 Random variables X1, . . . , Xn are said to be negatively associated if for
any non-decreasing functions g, f and disjoint subsets I , J ⊆ [n] we have that:

Cov(g(Xi : i ∈ I), h(X j : j ∈ J)) ≤ 0

We will make use of the following influential result bounding the probability of a
sum of negatively associated random variables falling far from their expectation.

Lemma 7 (Chernoff bound for negatively associated random variables [45]): Let X̄ =∑
i∈[n] Xi where Xi : i ∈ [n] are negatively associated and ∀i ∈ [n] : Xi ∈ [0, 1].

Then for all δ ∈ (0, 1):

Pr[X̄ ≤ (1 − δ) · E[X̄]] ≤ exp

(
−E[X̄] · δ2

2

)

3 Batch Dynamic toWorst Case Update Time

3.1 Improving a Batch-Dynamic Algorithm to Amortized Update Time

Lemma 8 Given an α approximate (or (α, ε)-approximate) dynamic matching algo-
rithm Alg is O(log(n)) batch-dynamic with update time O(T (n)) and dynamic graph

123

Algorithmica

G undergoing edge insertions and deletions. There is an algorithm Alg′ which main-
tains O(log(n)) matchings of G such that at all times during progressing an input
sequence of arbitrarily large polynomial length one of the matchings is α approxi-
mate (or (α, ε)-approximate). The update time of Alg′ is worst-case O(T (n) · log3(n))

and it is deterministic if Alg is deterministic.

As this lemma was implicitly stated in [33] and [34] in a less general setting we
defer the proof to Appendix A.

Corollary 9 If there exists an α (or (α, δ))-approximate dynamic matching algorithm
(where α = O(1)) Alg which is O(log(n)) batch-dynamic with update time O(T (n))

then there is an (α + ε) (or (α + ε, δ))-approximate matching algorithm Alg′ with
worst case update time O

(
T (n)·log3(n)

ε3

)
. If Alg is deterministic so is Alg′.

Proof Maintain O(log(n)) parallel matchings ofG using the algorithm fromLemma 8
in O(T (n) · log3(n)) worst case update time. Their union, say H , is a a graph with
maximum degree O(log(n)) and is an α (or (α, δ))-approximate matching sparsifier
and is a union of the output of O(log(n)) dynamic matching algorithms with worst-
case update time O(T · log2(n)). By Lemma 5 ([44]) these approximate matching
algorithms can be transformed into (α +ε/2) (or (α +ε/2, δ))-approximate matching
algorithms with O(T · log2(n) + α

ε
) update time and O(α

ε
) worst-case recourse.

This bounds the total recourse of the sparsifier at O
(
log(n)·α

ε

)
. Therefore, with slack

parameter ε
2·α we can run the algorithm of Lemma 4 ([31]) to maintain an (α + ε)

(or (α + ε, δ))-approximate matching in the sparsifier with worst-case update time

O
(
T · log3(n) + log(n)·α

ε
+ log2(n)·α2

ε3

)
= O

(
T ·log3(n)

ε3

)
. 	

Observe that the framework outlined by Lemma 8 has not exploited any property
of the underlying batch-dynamic algorithm other than the nature of it’s running time.
This allows for a more general formulation of Lemma 8.

Corollary 10 If there is a O(log(n)) batch-dynamic algorithm Alg with deterministic
(randomized) update time O(T (n)) and poly(n) length input update sequence I then
there is an algorithm Alg′ such that

• Theupdate timeof Alg′ isworst-case deterministic (randomized) O(T (n)·log3(n))

• Alg′ maintains log(n) parallel outputs and after processing update sequence
I [0, τ) one of Alg′-s maintained outputs is equivalent to the output of Alg after
processing I [0, τ) partitioned into at most log(n) batches

4 Vertex Set Sparsification

An (α, δ)-approximate matching sparsifier satisfies that μ(H) · α + n · δ ≥ μ(G).
Selecting δ = ε·μ(H)

n results in a (α + ε)-approximate sparsifier. The algorithm we
present in this paper has a polynomial dependence on 1/δ therefore we can’t select
the required δ value to receive an (α + ε)-approximate sparsifier assuming μ(H) is

123

Algorithmica

significantly lower then μ(G). To get around this problem we sparsify the vertex set
to a size of Ô(μ(H)) while ensuring that the sparsified graph contains a matching of
size (1 − O(ε)) · μ(G).

Let V k be a partitioning of the vertices ofG = (V , E) into k sets vi : i ∈ [k]. Define
the concatenation of G based on V k to be graph GVk on k vertices corresponding to
vertex subsets vi where there is an edge between vertices vi and v j if and only if there
is u ∈ vi and w ∈ v j such that (u, w) ∈ E . Note that maintaining V k as G undergoes
edge changes can be done in constant time. Also note that given a matching MVk

of GVk is maintained under edge changes to GVk in constant update time per edge
changes to MVk we can maintain a matching of the same size in G.

4.1 Vertex Sparsification Against an Oblivious Adversary

Assume we are aware ofμ(G) (note we can guessμ(G)within an 1+ε multiplicative
factor through running O(

log(n)
ε

) parallel copies of the algorithm). Choose a partition-
ing of G-s vertices into O(μ(G)/ε) vertex subsets V ′ uniformly at random. Define
G ′ to be the concatenation of G based on V ′.

Consider a maximum matching M∗ of G. It’s edges have 2 ·μ(G) endpoints. Fix a

specific endpoint v. With probability
(
1 − 2·μ(G)

μ(G)/ε

)2·μ(G)−1 ∼ (1 − o(ε)) it falls in a

vertex set ofV ′ noother endpoint ofM∗ does.Hence, in expectation2·μ(G)·(1−O(ε))

endpoints of M∗ fall into unique vertex subsets of V ′ with respect to other endpoints.
This also implies thatμ(G) · (1−O(ε)) edges of M∗ will have both of their endpoints
falling into uniquevertex sets ofV ′, henceμ(G ′) ≥ μ(G)·(1−O(ε)). This observation
motivates the following lemma which can be concluded from [31] and [42, 43].

Lemma 11 Assume there is a dynamic algorithm Alg which maintains an (α, δ)-
approximate maximum matching where α = O(1) in graph G = (V , E) with update
time O(T (n, δ)). Then there is a randomized dynamic algorithm Alg′ whichmaintains
an (α+ε)-approximatemaximummatching in update time time O

(
T (n, ε2) · log2(n)

ε4

)
.

If the running time of Alg is worst-case (amortized) so will be the running time of
Alg′.

(Stated without proof as it concludes from [31, 42, 43])

4.2 Vertex Set Sparsification Using (k,�)Matching Preserving Partitionings

A slight disadvantage of the method described above is that if the adversary is aware
of our selection of V ′ they might insert a maximum matching within the vertices of
a single subset in V ′ which would be completely lost after concatenation. In order to
counter this we will do the following: we will choose some L different partitionings
of the vertices in such a way that for any matching M of G most of M-s vertices fall
into unique subsets in at least one partitioning.

Definition 12 Call a set of partitionings V of the vertices of graph G = (V , E) into d
vertex subsets is (k, ε) matching preserving if for any matching of size k in G there

123

Algorithmica

is a partitioning V d
i in V such that if G ′ is a concatenation of G based on V ′ then G ′

satisfies that μ(G ′) ≥ (1 − ε) · k.
We will show that using randomization we can generate a (k, ε) matching preserv-

ing set of partitionings of size O
(
log(n)

ε2

)
into O(k/ε) vertex subsets in polynomial

time. Furthermore, wewill show how to find an (k, ε)matching preserving set of parti-
tionings of size O(n(1)) into O(k ·no(1)) vertex subsets deterministically in polynomial
time.

Lemma 13 Assume there exists a dynamic matching algorithm AlgM maintaining an
(α, δ)-approximate matching in update time O(T (n, δ)) for α = O(1) as well as an
algorithm AlgS generating an (k, ε) matching preserving set of vertex partitionings
into O(k ·C) vertex subsets of size L. Then there exists an algorithm Alg maintaining

an (α+ε)-approximate matching with update time O
(
T (n, ε/C) · L2·log2(n)

ε4

)
. If both

AlgS and AlgM are deterministic then so is Alg. If AlgM is randomized against an
adaptive adversary then so is Alg. If the update time of AlgM is worst-case then so is
of Alg. Alg makes a single call to AlgS.

The proof of the lemma is deferred to Appendix C.2. The intuition is as follows:

through running O
(
log(n)

ε

)
parallel copies of the algorithm guessμ(G)within a 1+ε

factor. In the knowledge of μ(G) run AlgM on the L concatenations of G we generate
with AlgS . Each of these concatenated sub-graphs are of size O(μ(G) · C) and have
maximummatching size (1−O(ε)) ·μ(G). Therefore running AlgM with δ parameter
�(ε/C) yields an (α + O(ε))-approximate matching in on of these L graphs. Using
the algorithm of [31] find an approximate maximum matching in the union of the
Oε(L · log(n)) concatenated graphs. Note that with an application of Lemma 5 ([44])

the update time can be changed into O
(
T (n,ε/C)·L·log(n)

ε
+ L2·log2(n)

ε5

)
as shown in the

appendix.

4.3 GeneratingMatching Preserving Partitionings Through Random Sampling

Lemma 14 There is a randomized algorithm succeeding with 1 − 1/poly(n) proba-
bility for generating a (k, ε) matching preserving set of partitionings of graph G into

O(k/ε) vertex subsets of size O
(
log(n)

ε2

)
running in polynomial time.

We defer the proof to Appendix C.2. Essentially, O
(
log(n)

ε2

)
random chosen vertex

partitionings into O(k/ε) vertex subsets are (k, ε) matching preserving. Note, that in
unbounded time we can find an appropriate set of partitionings deterministically as
we can iterate through all possible sets of partitionings and test each separately.

4.4 GeneratingMatching Preserving Partitionings Using Expanders

We will define expander graphs as follows. Such expanders are sometimes called
unbalanced or lossless expanders in literature.

123

Algorithmica

Definition 15 Define a (k, d, ε)-expander graph as a bipartite graph G = ((L, R), E)

such that ∀v ∈ L : degE (v) = d and for any S ⊆ L such that |S| ≤ k we have that
|NE (S)| ≥ (1 − ε) · d · |S|.

Graph expanders are extensively researched and have found a number of different
applications. We will now show how an expander graph can be used to be the bases
of an (k, ε) preserving set of partitionings.

Lemma 16 Assume there exists an algorithm Alg which outputs a (k, d, ε)-expander
Gexp = ((L, R), E) in O(T (k, d, ε)) time. There is an algorithm Alg′ which outputs
a set of (k, ε) matching preserving vertex partitionings of a vertex set of size |L| into
|R| subsets of size d with running time O(T (k, d, ε)). Alg′ is deterministic if Alg is
deterministic.

Proof Take graph G = (V , E) and bipartite (2 · k, d, ε/2) expander graph GExp =
((V , R), E ′) such that vertices of the left partition of GExp correspond to vertices of
V . For each v ∈ V define an arbitrary ordering of it’s neighbours in R according to
E ′ and let NE ′(v)i be it’s i-th neighbour according to this ordering (i ∈ [d]). For each
i ∈ [d] and v ∈ R define Vi,v ⊆ V to be the set of vertices in V whose i-th neighbour
is v (or Vi,v = {v′ ∈ V : NE ′(v′)i = v}).

Define set of vertex partitionings V = {V |R|
i : i ∈ [d]} where V |R|

i contain vertex
sets Vi,v : v ∈ R. Fix a matching M in G of size k and call it’s endpoints VM . By the
definition of the expander we have that |NE ′(VM)| ≥ (1− ε/2) · d · 2k. Hence by the
pigeonhole principle we have that |NE ′(VM∗)i | ≥ (1 − ε/2) · 2k for some i ∈ [d].
Define G ′ as the concatenation of G based on V |R|

i . By the definition of V |R|
i at least

(1− ε/2) · 2k endpoints of M are concatenated into vertices of G ′ containing exactly
one vertex of VM . Therefore, (1 − ε) · k edges of M will have both their endpoints
concatenated into unique vertices of G ′ within M . Hence, μ(G ′) ≥ (1 − ε) · k and V
is a (k, ε) matching preserving set of partitionings. 	

Lemma 17 (Theorem 7.3 of [46] and Proposition 7 of [47]): Given n ≥ k and ε > 0.
There exists a (k, d, ε)-expander graph Gexp = ((L, R), E) such that |L| = n, |R| =
k·2O(log3(log(n)/ε))

poly(ε) = Ô(k), d = 2O(log3(log(n)/ε)) = Ô(1) which can be deterministically

computed in Ô(n) time.

4.5 Black-Box Implications

The following statements are black-box statements which can be concluded based on
this section.

Corollary 18 [42, 43]: If there is a dynamic algorithm for maintaining an (α, δ)-
approximate maximum matching for dynamic graphs in update time O(T (n, δ)) then
there is a randomized algorithm (against oblivious adversaries) for maintaining an

(α + ε)-approximate maximum matching with update time O
(
T (n, ε2) · log2(n)

ε4

)
.

123

Algorithmica

Corollary 19 If there is a dynamic algorithm for maintaining an (α, δ)-approximate
maximum matching for dynamic graphs in update time O(T (n, δ)) then there is a
randomized algorithm for maintaining an (α + ε)-approximate maximum matching

with update time O
(
T (n, ε2) · log4(n)

ε8

)
which works against adaptive adversaries

given the underlying algorithm also does.

Proof Follows from Lemmas 13 and 14. 	

Corollary 20 If there is a dynamic algorithm for maintaining an (α, δ)-approximate
maximum matching for dynamic graphs in update time O(T (n, δ)) then there is a
deterministic algorithm for maintaining an (α + ε)-approximate maximum match-

ing with update time Ô
(
T

(
n,

poly(ε)
no(1)

))
which is deterministic given the underlying

matching algorithm is also deterministic.

Proof Follows from Lemmas 13, 17 and 16. 	

5 (3/2 + �)-Approximate Fully Dynamic Matching in Ô(
√
n)

Worst-Case Deterministic Update Time

5.1 AlgorithmOutline

In this section we present an amortized rebuild based algorithm for maintaining a
locally relaxed EDCS we refer to as ’damaged EDCS’. The following definition and
key-property originates from [35] and [38].

Definition 21 From Bernstein and Stein [35]:
Given graph G = (V , E), H ⊆ E is a (β, λ)-EDCS of G if it satisfies that:

• ∀e ∈ H : degH (e) ≤ β

• ∀e ∈ E \ H : degH (e) ≥ β · (1 − λ)

Lemma 22 From Assadi and Stein [38]:
If ε < 1/2, λ ≤ ε

32 , β ≥ 8 · λ2 · log(1/λ) and H is a (β, λ)-EDCS of G then
μ(G) ≤ μ(H) · (32 + ε)

The intuition behind the algorithm is as follows: take a (β, λ)-EDCS H . Relax it’s
parameter bounds slightly through observing that H is also a (β · (1+λ), 4λ)-EDCS.
As H is a (β, λ)-EDCS for every edge e in it’s local neighbourhood �(β · λ) edge
updates may occur in an arbitrary fashion before either of the two edge degree bounds
of a (β · (1 + λ), 4λ)-EDCS is violated on e.

Therefore, after �̃(n · β) edge updates the properties of a (β · (1 + λ), 4λ)-EDCS
should only be violated in the local neighbourhood of O(δ ·n) vertices for some small
δ of our choice. At this point the EDCS is locally ’damaged’ and it’s approximation
ratio as a matching sparsifier is reduced to (3/2 + O(ε), δ). However, the reductions
appearing in Sect. 4 allows us to improve this approximation ratio to (3/2+O(ε)). At
this point we commence a rebuild, the cost of which can be amortized over �̃(n · β)

edge updates.

123

Algorithmica

We thenproceed to turn this amortized rebuild based algorithm into a batch-dynamic
algorithm which we improve to worst-case update time using Lemma 8.

5.2 Definition and Properties of (ˇ,�,ı)Damaged EDCS

In order to base an amortized rebuild based dynamic algorithm on the EDCSmatching
sparsifier we need an efficient algorithm for constructing an EDCS. As far as we are
aware there is no known deterministic algorithm for constructing an EDCS in in Ô(n)

time. In order to get around this we introduce a locally relaxed version of EDCS.

Definition 23 For graph G = (V , E) a (β, λ, δ)-damaged EDCS is a subset of edges
H ⊆ E such that there is a subset of ’damaged’ vertices VD ⊆ V and the following
properties hold:

• |VD| ≤ δ · |V |
• ∀e ∈ H : degH (e) ≤ β

• All e ∈ E\H such that e ∩ VD = ∅ satisfies degH (e) ≥ β · (1 − λ)

Lemma 24 If ε < 1/2, λ ≤ ε
32 , β ≥ 8λ−2 log(1/λ) and H is a (β, λ, δ)-damaged

EDCSof graphG = (V , E) then H is an (3/2+ε, δ)-approximatematching sparsifier.

Proof Define the following edge-set: E ′ = {e ∈ E : e∩VD = ∅}. Observe, that H is a
(β, λ)-EDCS of E ′ ∪ H . Fix a maximum matching M∗ of G. At least μ(G)−|VD| =
μ(G) − δ · |V | edges of M∗ appear in E ′ as each vertex of VD can appear on at most
one edge of M∗. Therefore, μ((V , E ′)) ≥ μ(G) − |V | · δ. Now the lemma follows
from Lemma 22. 	

5.3 Constructing a Damaged EDCS in Near-linear Time

Lemma 25 Algorithm 1 returns H f in as a (β, λ, δ)-damaged EDCS of G.

The potential function
 used in proof of the following lemma is based on [14].

Lemma 26 Algorithm 1 runs in deterministic O
(

m
δ·λ2

)
time.

The proofs of the lemmas are deferred toAppendixB. The intuition is the following:
at the start of each iteration we add all edges of the graph to H which have degH (e) <

β · (1 − λ/2). If we fail to add at least O(λ · δ · β · n) such edges we terminate with
H stripped of some edges. At the end of each iteration we remove all edges such
that degH (e) > β. Consider what happens if we fail to add �(λ · δ · β · n) edges in
an iteration. That means that only in the local neighbourhood of �(δ · n) ’damaged’
vertices could we have added �(β · λ) edges in the last iteration. We strip away the
edges around damaged vertices to get H . The running time argument is based on a
potential function
 from [14]. Initially it is 0 and has an upper bound of O(n ·β2) and
grows by at least �(n · β2 · λ2 · δ) in each iteration bounding the number of iterations
by O(1

δ·λ2).

123

Algorithmica

Algorithm 1: StaticDamagedEDCS
Input: G = (V , E), β, λ, δ

Output: H f in ⊆ E :(β, λ, δ)-damaged EDCS of G
1 H = ∅
2 repeat
3 E ′ = ∅
4 for e ∈ E/H do
5 if degH (e) < β · (1 − λ/2) then
6 H ← H ∪ {e}
7 E ′ ← E ′ ∪ {e}

8 if |E ′| ≤ δ·λ·β·n
16 then

9 VD ← {v ∈ V : degE ′ (v) >
λ·β
8 }

10 ED ← {e ∈ E ′ : |e ∩ VD | > 0}
11 H f in ← H \ ED
12 Return H f in

13 for e ∈ H do
14 if degH (e) > β · (1 − λ/4) then
15 H ← H \ {e}

5.4 Maintaining a Damaged EDCS in Õ(m
n·ˇ)pdate Time with Amortized Rebuilds

Algorithm 2: DynamicDamagedEDCS
Input: G = (V , E), β, λ, δ

Output: H ⊆ E :(β, λ, δ) damaged-EDCS of G
1 α ← n·δ·λ·β

64
2 Initially and after every α edge updates
3 H ← StaticDamagedEDCS(G,

β
1+λ/4 , λ/4, δ/2)

4 ED ← ∅
5 EI ← ∅
6 Function InsertEdge((u,v)):
7 EI ← EI ∪ {(u, v)}
8 if max{degEI (u), degEI (v)} <

β·λ
16 − 1 and degH ((u, v)) ≤ β − 2 then

9 H ← H ∪ {(u, v)}
10 Function DeleteEdge(e):
11 ED ← ED ∪ {e}
12 H ← H \ {e}

Note that ED is defined for the purposes of the analysis.

Lemma 27 The sparsifier H maintained by Algorithm 2 is a (β, λ, δ)-damaged EDCS
of G whenever the algorithm halts.

123

Algorithmica

Lemma 28 The amortized update time of Algorithm 2 over a series of α updates is

O
(

m
n·β·λ3·δ2

)
and the sparsifier H undergoes O(1

λ·δ) amortized recourse.

The lemmas are proven in the appendix.On a high level, a (β, O(λ), O(δ))damaged
EDCS will gain O(n · δ) damaged vertices in the span of O(n · δ · λ · β) edge updates
as for a vertex to be damaged there has to be O(β · λ) edge updates in it’s local
neighbourhood. At this point we can call a rebuild of the EDCS in Õ(m) time to get

an amortized update time of Õ
(

m
β·n

)
.

5.5 k Batch-Dynamic Algorithm for Maintaining an Approximate EDCS

Lemma 29 Given fully dynamic graph G with n vertices and m edges. There is a k
batch-dynamic dynamic algorithm which maintains a (β, λ, δ)-damaged EDCS of this

graph with deterministic update time O
(

k·m
n·β·δ2·λ3

)
and recourse O

(k
δ·λ

)
.

Proof Define an alternative version of Algorithm 2 where α is simply set to αi = i · α
k

during the processing of the i-th batch. Observe that in the proof of Lemma 27 the
only detail which depends on the choice of α is the size of VED ∪ VEI . At any point
in this batch modified version of the algorithm αi ≤ α therefore the correctness of the
algorithm follows.

The running time of the algorithm will be affected by this change. As every edge
update is processed in constant time by the algorithm the running time is dominated
by calls to StaticDamagedEDCS. By definition for every batch at least α/k edge
updates will occur between the start of the batch and the first rebuild (if there is

one) yielding an amortized update time of at most O
(

k·m
n·β·δ2·λ3

)
over the first rebuild

(due to Lemma 28). After the first rebuild the algorithm simply proceeds to run with
α-parameter αi therefore the amortized update time for the remainder of batch i is

O
(

i ·m
n·β·δ2·λ3

)
= O

(
k·m

n·β·δ2·λ3
)
. 	

Corollary 30 For fully dynamic graph G there is a deterministic k batch-dynamic
algorithm for maintaining a (3/2+ε, δ)-approximate maximummatching with update

time Õ
(
k·m
n·β + k · β

)
.

Proof Set λ = ε
128 and β large enough to satisfy the requirements of Lemma 24

such that the resulting sparsifier is (3/2 + ε/4, δ)-approximate. Use the algorithm
of Lemma 29. The resulting damaged-EDCS sparsifier will have maximum degree

O(β), undergo Õ(k) recourse per update and will take Õ
(
k·m
n·β

)
time to maintain.

By Lemma 24 it will be a (3/2 + ε/4, δ)-approximate matching sparsifier. Hence, if
we apply the algorithm of Lemma 4 to maintain a (1 + ε/4)-approximate maximum
matching within the sparsifier we can maintain a (3/2 + ε, δ) approximate matching

in Õ
(
m·k
n·β + β · k

)
update time and recourse. 	

123

Algorithmica

5.6 Proof of Theorem 2

Proof Take the algorithm of Corollary 30. Set k = log(n) and apply Corollary 9 to
receive a deterministic (3/2 + ε, δ)-approximate dynamic matching algorithm with

worst-case update time Õ
(

m
n·β + β

)
. Finally, transform this algorithm into a (3/2+ε)-

approximate matching algorithm using either Corollary 19 or Corollary 20. 	

6 (2 + �)-Approximate Fully Dynamic MaximumMatching in Õ(1)
Worst-Case Update Time

In the appendix we present a deterministic worst-case O(poly(log(n), 1/ε))-update
time (2+ε)-approximate fully dynamicmatching algorithm. Currently, the only deter-
ministic O(poly(log(n), 1/ε))-update time algorithms [27, 32] have amortized update
time bounds, while the fastest wort-case algorithm runs in Õ(

√
n) update time from

[28]. We will first improve the running time bounds of the algorithm presented in [32]
to k batch-dynamic using the same technique as presented previously. [32] similarly
bases the algorithm on amortized rebuilds which are triggered when ε factor of change
occurs within the data-structure. In order to improve the update time to batch-dynamic
we define εi = i ·ε

k to be the slack parameter during the progressing of batch i . Firstly,
this ensures that εi ≤ ε during any of the batches progressed guaranteeing the approx-
imation ratio. Secondly, whenever a new batch begins the slack parameter increases
by ε

k which insures that there will be enough time steps before next rebuild occurs to
amortize the rebuild time over.

Lemma 31 There is a deterministic k batch amortized Oε(k · log4(n)) update time
(2 + ε)-approximate fully dynamic matching algorithm.

Proof The proof of this lemma is only available online due to length requirements. 	

Theorem 1 follows from Lemma 31 and Corollary 9.

7 Open Questions

Worst-Case Update Time Improvement Through Batch-Dynamization: We have
shown two applications on how batch-dynamization can be used to improve amor-
tized rebuild based algorithm update times to worst-case. As amortized rebuild is a
popular method for dynamizing a data-structure not just in the context of matching it
would be interesting to see if the batch-dynamization based framework has any more
applications.

(α, δ)-Approximate Dynamic Matching: In current dynamic matching literature
most algorithms focus on maintaining an α-approximate matching or matching spar-
sifier both for the integral and fractional version of the problem. However, a more
relaxed (α, δ)-approximate matching algorithm using the reductions presented in this
paper (or [42, 43]) allow for the general assumption that μ(G) = �(n) at all times.
This assumption has proven to be useful in other settings for the matching problem

123

https://arxiv.org/abs/2108.10461

Algorithmica

such as the stochastic setting ([42, 43]) but largely seems to be unexplored in the
dynamic setting.

Damaged EDCS: The EDCS matching sparsifier [35] has found use in a number
of different settings for the matching problem [14, 28, 37–41]. In contrast with the
EDCS (as far as we are aware) a damaged EDCS admits a deterministic near-linear
time static algorithm. This might lead to new results in related settings.

Acknowledgements We would like to thank Sayan Bhattacharya and Thatchaphol Saranurak for helpful
discussions. Further we would like to thank Thatchaphol Saranurak for suggesting to use lossless expanders
to deterministically generate ε-matching preserving partitionings.

Author Contributions PK is the sole author of the paper. Acknowledged researchers SB and TS supported
the development of the paper through pointing at relevant literature and advising on some aspects of the
presentation.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest The authors have no conflicts of interest to declare. All co-authors have seen and agree
with the contents of the manuscript and there is no financial interest to report. We certify that the submission
is original work and is not under review at any other publication.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proof of Lemma 8

We restate the lemma for the readers convenience:

Lemma 32 Given (α) approximate (or (α, ε)-approximate) dynamic matching algo-
rithm Alg is O(log(n)) batch-dynamic with update time O(T (n)) and dynamic graph
G undergoing edge insertions and deletions. There is an algorithm Alg′ which main-
tains O(log(n)) matchings of G such that at all times during processing an input
sequence of arbitrarily large polynomial length one of the matchings is (α) approxi-
mate (or (α, ε)-approximate). The update time of Alg′ is worst-case O(T (n) · log3(n))

and it is deterministic if Alg is deterministic.

Proof Fix some integer k = O(log(n)). Alg′ will be running k instances of Alg in
parallel on graph G, call them Ai : i ∈ {0, . . . , k − 1}. Assume that Alg’s running
time is k batch-dynamic. We will describe what state each instance of Alg will take
during processing specific parts of the input, then argue that at least one of them will
be outputting an α (or (α, δ))-approximate matching at all times.

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

Assume that the input sequence I is kk long. Let I [i] represent the i-th element of
the input sequence and I [i, j) represents elements i, i + 1, . . . , j − 1 for j > i . Let
I [i, j] represent I [i, j) ∪ I [j]. Fix a specific instance of Alg say Ai . Call the input
batches of Ai as B

j
i : j ∈ [k]. At a given point in time let |B j

i | refer to the number of
input elements instance Ai has progressed as it’s j-th batch. Note that we will assume
that in update time O(T (n) · |B j

i |) instance Ai can revert back to a state where input

batch B j
i was empty given the elements of B j

i where the last elements of I progressed
by Ai .

Represent the input elements of I as k-long k-airy strings starting from {0}k . Choose
I [λ] such that λ-s k-airy representation ends with an ′i ′ followed by γ > 0 ′0′-s and
contains a single i digit. We will now describe what instance Ai will be doing while
Alg′ is processing input elements I [λ, λ+kγ).Wewill call this process as the resetting
of batches Bλ

i , . . . , B1
i .

Resetting the Contents of Batches Bλ
i , . . . , B1

i :
With a slight overload of notation partition the input sub-sequence I [λ, λ + kγ)

into γ + 1 sub-sequences I j : j ∈ {0, . . . , γ }. Let λ j = λ + ∑γ−1
x= j k

j · (k − 1) for
γ ≥ j ≥ 0. Let I j = I [λ j , λ j−1) for γ ≥ j > 0 and I0 = I [λ0]. Observe that
|I j | = �(k j).

• While Alg′ is processing input elements Iλ instance Ai will revert to the state it was
in before processing the contents of the batches Bγ+1

i , . . . , B1
i . Then it proceeds

to place all these elements into batch Bγ+1
i a single batch.

• While Alg′ is processing input elements I j : γ > j > 0 instance Ai will progress

input elements I j+1 as batch B j+1
i .

• While Alg′ is processing the input element I0 instance Ai will place input elements
I1 ∪ I0 into B1

i .

If Ai is not resetting batches it is processing single elements of the input string.
Processing Single Elements of The Input String:
If the first k−1 digits of the k-airy representation of λ don’t contain a single i digit

then while Alg is processing I [λ] instance Ai will extend it’s last batch B1
i with input

element I [λ].
These two instances describe the behaviour of Ai over the whole of I . If Ai is

processing a single input element at any point in time it’s output is an α (or (α, δ))-
approximate matching. Also observe, that for any λ there is a digit i ∈ [k] in it’s k-airy
representation which is not one of it’s first k − 1 digits. By definition, this implies that
Ai will be be processing I [λ] as a single input element. Hence, the output of Ai will
be an (α) (or (α, δ))-approximate matching for some i at all time steps.

Claim 33 At all times for all j ∈ [k] and i ∈ {0, . . . , k − 1} it holds that |B j
i | ≤

(j + 1) · k j .

Proof We will proof the claim through induction on j . Fix i . Whenever the contents
of B1

i are reset it will be set to contain exactly k input elements. If the contents of B1
i

are not reset while I [λ] is progressed by Alg′ then B1
i is extended by I [λ]. However,

over the course of k consecutive input elements being progressed by Alg′ batch B1
i

must be reset. Therefore, B1
i will never contain more than 2 · k − 1 elements.

123

Algorithmica

Assume that |B j
i | ≤ (j + 1) · (k j − k j−1) at all times as an inductive hypothesis.

Consider how many elements may B j+1
i contain. Whenever B j+1

i is reset it will be

set to contain exactly (k − 1) · k j elements. Furthermore, whenever B j
i is reset B j+1

i

is extended by the contents of B j
i , . . . , B1

i . These are the only cases when B j+1
i may

be extend by any input elements. B j
i is reset at most k−1 times between two resets of

B j+1
i . Therefore, at all times |B j+1

i | ≤ (k − 1) · (k j + ∑ j
x=1(x + 1) · (kx − kx−1)) ≤

(k − 1) · (j + 2) · k j = (j + 2) · (k j+1 − k j). This finishes the inductive argument. 	

Claim 34 The worst-case running time of Ai is O(T (n) ·k2) for all i ∈ {0, . . . , k−1}.

Proof To bound worst case running times differentiate two cases. Firstly, if I [λ] is
progressed as a single input element by Ai then Ai will extend it’s smallest batch B1

i
with I [λ]. As at all times |B1

i | ≤ 2 · k due to Claim 33 this can be done in worst-case
update time O(T (n) · k).

Fix λ as described previously, such that it’s k-airy representation contains a single i
digit followed by γ > 0 0-s so that Ai will be resetting batches B

γ

i , . . . , B1
i while Alg

′
is processing I [λ, λ+ kγ). Define I j : γ ≥ j ≥ 0 as before. While Alg′ is processing
Iγ instance Ai has to revert to the state before processing any of Bγ+1

i , . . . , B1
i and

progress their contents as a single batch into Bγ+1
i . This concerns the backtracking

and processing of O(kγ+1 · γ) input elements by Claim 33. The computational work
required to complete this can be distributed over the time period Alg′ is handling Iγ
evenly as this computation doesn’t require Ai to know the contents of Iγ . Hence, it
can be completed in O(T (n) · k · γ) = O(T (n) · k2) worst-case update time.

Similarly, over the course of Alg′ processing I j which consists of �(k j) elements

we can distribute the O(T (n) · k j+1) total work of processing I j+1 into batch B j+1
i

evenly resulting in O(T (n) · k) worst case update time. Finally, for instance Ai pro-
cessing I1 ∪ I0 while Alg′ progresses I0 will take O(T (n) · k) time. 	

Therefore, each instance Ai runs inO(T (n)·k2)worst-case update time.As there are
k instances of Alg running like as described in parallel, this takes a total of O(T (n)·k2)
worst case update time. It remains to select k = O(log(n)) so the algorithm can
progress an input of length O(loglog(n)(n)) = O(nlog(log(n))), that is of input sequences
of arbitrarily large polynomial length for large enough n. 	

BMissing Proofs of Section 5

B.1 Proof of Lemma 25

Proof Let E ′
f in represent the state of E ′ at termination. First let’s argue that ∀e ∈

H f in : degH f in ≤ β. At the end of the penultimate iteration of the outer loop H must
have maximum edge degree of β · (1 − λ/4). H then will be extended with edges of
E ′ \ ED which has a maximum degree of β ·λ/8. Therefore, maxe∈H f in degH f in (e) ≤
β · (1 − λ/4) + 2 · λ/8 ≤ β.

123

Algorithmica

As
∑

v∈V degE ′
f in

(v) ≤ δ·λ·β·n
8 it must hold that |VD| ≤ δ ·n = |V |·δ. Take an edge

e ∈ E\H f in which doesn’t intersect VD . As all such edgeswith lower thanβ ·(1−λ/2)
edge degree in E were added to E ′

f in it must hold that degH f in∪E ′
f in

(e) ≥ β ·(1−λ/2).

As neither endpoints of e are in VD it must hold that degED (e) ≤ λ ·β/4. This implies
that degH f in (e) ≥ degH f in∪E ′

f in
(e)−degED (e) ≥ β ·(1−λ/2)−λ ·β/4 ≥ β ·(1−λ).

Hence, H f in is a (β, λ, δ)-damaged EDCS of G. 	

B.2 Proof of Lemma 26

Proof Observe that every iterationof the repeat loop runs inO(m) time as each iteration
can be executed over a constant number of passes over the edge set. Define
(H) =

1(H)−
2(H) where
1(H) = ∑

v∈V degH (v) · (β − 1/2) = |E(H)| · (2 ·β − 1)
and
2(H) = ∑

e∈H degH (e). Initially
(H) = 0 and
(H) ≤ β2 ·n. We will show
that φ(H) monotonously increases over the run of the algorithm and each iteration of
the repeat loop (except for the last one) increases it by at least �(β2 · λ2 · δ · n) which
implies the lemma.

(H)may change at times when edges are added to or removed from H .Whenever
e is removed from H we know that degH (e) > β · (1 − λ/4) (before the deletion).
This means that
1(H) decreases by 2β · (1− λ/4) − 1 but
2(H) also decreases by
at least 2 · β · (1− λ/4). This is because degH (e) disappears from the sum of
2(H)

and degH (e) − 2 elements of the sum (degrees of edges neighbouring e) reduce by 1
and degH (e) ≥ β · (1 − λ/4) + 1. Hence,
(H) increases by at least 1.

Whenever an edge e is added to H we know that degH (e) < β · (1− λ/2) (before
the insertion). Due to the insertion
1(H) increases by exactly 2 · β − 1.
2(H)

increases by at most 2 ·β · (1−λ/2) as a term of at most β · (1−λ/2)+ 1 is added to
it’s sum and at most β · (1 − λ/2) − 1 elements of it’s sum increase by 1. Therefore,

(H) increases by at least λ · β. In every iteration but the last one of the repeat loop
at least λ·β·δ·n

16 edges were added to H . This means every iteration increases
(H) by

at least λ2·β2·δ·n
16 = �(λ2 · β2 · δ · n) finishing the lemma. 	

B.3 Proof of Lemma 27

Proof Every time H is reset rebuilt throughStaticDamagedEDCS the lemma statement
is satisfied (by Lemma 25) Focus on one period of α updates after a rebuild. Define
ED and EI to be the set of edges deleted and inserted over these updates respectively
(note that ED ∩ EI might not be empty). Define VED = {v ∈ V |degED (v) ≥ β·λ

16 }
and VEI = {v ∈ V |degEI (v) ≥ β·λ

16 }. Note, that |VED ∪ VEI | ≤ 2·α
β·λ
16

≤ δ·n
2 .

As after a call to Algorithm 1 the sparsifier H is a (
β

1+λ/4 , λ/4, δ/2)-damaged
EDCS (follows from Lemma 25) and the following holds for some VD ⊆ V with
|VD| ≤ |V | · δ/2:

• ∀e ∈ H : degH (e) ≤ β
1+λ/4

• All e ∈ E\H such that e ∩ VD = ∅ satsifies that degH (e) ≥ β·(1−λ/4)
1+λ/4

123

Algorithmica

Define V ′
D = VD ∪VED ∪VEI . Note that |V ′

D| ≤ |VD|+ |VED ∪VEI | ≤ n · δ. Also
note that after a rebuild maxe∈E degH (e) ≤ β

1+λ/4 . As edges will only be inserted

between vertices u and v if their degrees is at most β·λ
16 − 2 in H we can be certain

that at any point maxe∈E degH (e) ≤ β
1+λ/4 + β·λ

16 ≤ β (for small enough values of λ).
At any point during the phase take an arbitrary e ∈ E\H ∧ e ∩ V ′

D = ∅. If e ∈ EI

at the time of it’s (last) insertion one of its endpoints, say v had degEI (v) ≥ λ·β
16 or

degH (e) > β − 2. The former would imply v ∈ V ′
D . Therefore, we can assume that if

e /∈ H then either e ∈ EI and at time of it’s insertion degH (e) > β − 2 or e /∈ EI and
at the start of the phase degH (e) ≥ β

(1−λ/4)
1+λ/4 . Either way, during the phase the edge

degree of e may have reduced by at most β·λ
8 as none of it’s endpoints are in VED .

Therefore, degH (E) ≥ β·(1−λ/4)
1+λ/4 − β·λ

8 ≥ β · (1 − λ). This concludes the proof. 	

B.4 Proof of Lemma 28

Proof Edge insertions and deletions are handled in O(1) time apart from the periodic

rebuilds. The rebuilds run in O
(

m
δ·λ2

)
deterministic time by Lemma 26 therefore over

α insertions the amortized update time is O
(

m
δ·λ2·α

)
= O

(
m

n·β·λ3·δ2
)
. The recourse

of the sparsifier is also constant apart from rebuild operations. When a rebuild occurs
the sparsifier goes under at most O (n · β) edge updates. Therefore, the amortized
recourse is O(

n·β
α

) = O
(1

λ·δ
)
. 	

CMissing Proofs from Section 4

C.1 Proof of Lemma 13

Claim 35 Algorithm 3 maintains an (α + ε)-approximate maximum matching.

Proof Fix i = �log1+ε/(8α)(μ(G))� and letμ1+ε/(8α)(G) = (1+ε/(8α))i . Note thatG
contains a matching of sizeμ1+ε/(8α)(G) (assume integrality for sake of convenience)
and μ(G) ≤ μ1+ε/(8α)(G) · (1 + ε/(8α)). By the definition of matching preserving
vertex partitionings there is a j ∈ [L] such that μ(Gi

j) ≥ (1 − ε/(8α))μ1+ε/8(G).

Hence,μ(Gi
j) ≥ μ(G)·(1−ε/(4α)). As the vertex set ofGi

j is of sizeC ·μ1+ε/8(G)

we have that |M j
i | · α + ε

8C · C · μ1+ε/(8/α)(G) ≥ μ(G j
i) ≥ μ(G) · (1 − ε/(4α)) as

Mi
j is an (α, ε

8C)-approximate maximum matching of Gi
j . This simplified states that

|Mi
j | · α

1− 3·ε
α·8

≥ μ(G).

As Mi
j ⊆ E ′ we have |M∗| · (1+ ε/(8α)) ≥ |Mi

j | and therefore |M∗| · α·(1+ ε
8α)

1− ε·3
8·α

≥
μ(G). This can be simplified to |M∗| · (α + ε) ≥ μ(G). 	

Claim 36 Algorithm 3 has an update time of O(T (n, ε/C) · L2·log2(n)

ε4
).

123

Algorithmica

Algorithm 3: Vertex Sparsification
Input: G = (V , E), AlgM , AlgS
Output: (α + ε)-approximate maximum matching of G

1 MMSize ← 1
2 i ← 1
3 while MMSize ≤ n do
4 i ← i + 1
5 MMSize ← MMSize · (1 + ε/(8α))

6 V i : V i
j : j ∈ [L] ← Set of (MMSize, ε/(8α)) matching preserving vertex partitionings of G

into C · MMSize vertex subsets of size L output by AlgS
7 Gi

j ← Vertex concatenation of G based on V i
j

8 Mi
j ← Maintain (α, ε

8C)-approximate matching of Gi
j with AlgM

9 GMi
j

← Maintain edges of Mi
j in G

10 E ′ ← ∪
i, j

GMi
j

11 M∗ ← Maintain a 1 + ε/(8α)-approximate maximum matching of (V , E ′) with Lemma 4

Proof The maintenance of Mi
j will take O(T (n, ε/C)) update time for specific values

of i, j . As α = O(1) i will range in
[
O

(
log(n)

ε

)]
. Therefore, the algorithm maintains

O
(
L·log(n)

ε

)
matchings in parallel using AlgM . This means E ′ has maximum degree

O
(
L·log(n)

ε

)
and can be maintained in update time O

(
T (n, ε/C) · L·log(n)

ε

)
and may

undergo the same amount of recourse. Hence, with the invocation of the algorithm

from Lemma 4 the total update time is O
(
T (n, ε/C) · L2·log2

ε4

)
.

The two claims conclude Lemma 13 	

Do note, that the update time can be slightly improved to

O
(
T

(
n, ε

C

) · L·log(n)
ε

+ L2·log2(n)

ε5

)
using Lemma 5 ([44]). The update time of the

sparsifier is O
(
T

(
n, ε

C

) · L·log(n)
ε

)
. Using the lemma it’s recourse can be bounded at

O
(
L·log(n)

ε

)
. Applying Lemma 4 ([31]) yields the slightly different update time.

C.2 Proof of Lemma 14

Proof For graph G = (V , E) generate L =
⌈
512·log(n)

ε2

⌉
vertex partitionings into

d =
⌈
4 · (2k)

ε

⌉
sets at random. Call the set of partitionings V = {V j : j ∈ [L]} and

let V j
i stand for the i-th vertex set of the j-th partitioning. Fix 2k vertices S of V

arbitrarily to represent the endpoints of a matching of size k in G and note that this
can be done

(n
2·k

) ≤ n2·k ≤ eln(n)·2·k ≤ e4·log2(n)·k number of ways.

Fix a specific vertex partitioning V j with vertex sets V j
i : i ∈ [d]. Let the random

variable X j
i : i ∈ [d] be an indicator variable of S ∩ V j

i �= ∅ and X̄ j = ∑
i∈[d] X

j
i .

123

Algorithmica

Claim 37 X j
i : i ∈ [d] are negatively associated random variables.

Proof Define Bl
i : i ∈ [d], l ∈ [2 · k] be the indicator variable of the l-th vertex of S

falling into the i-th subsetV j
i . This turns the randomvariables into thewell knownballs

and binds experiment. By [45] (this can also be considered a folklore fact) random
variables Bl

i : i ∈ [d], l ∈ [2 · k] are negatively associated. By definition X j
i =

maxl∈[2·k]{Bl
i }. By Theorem 2 of [48] monotonously increasing functions defined

on disjoint subsets of a set of negatively associated random variables are negatively
associated. As max is monotonously increasing this implies that X j

i : i ∈ [d] are also
negatively associated. 	

E[X j
i] = 1 − Pr[S ∩ V j

i = ∅] = 1 −
(
1 − 1

d

)2k

≥ 1 −
((

1 − 1

8 · k/ε
)8·k/ε)ε/4

≥ 1 − e−ε/4 ≥ ε · (1 − ε/8)

4

Therefore, E[X̄ j] ≥
⌈
8·k
ε

⌉
· ε·(1−ε/8)

4 ≥ 2k · (1 − ε/8). Now we apply Chernoff’s

inequality for negatively associated random variables to get that:

Pr[X̄ j ≤ 2k · (1 − ε/4)] ≤ Pr[X̄ j ≤ E[X̄ j] · (1 − ε/8)] ≤ exp

(
−E[X̄ j] · (ε

8)
2

2

)

≤ e
−2k·ε2
128

This implies that

Pr[min
j∈[L]{X̄

j } ≤ 2k · (1 − ε/4)] ≤ e−4·log(n)·2k

Further applying a union bound over the
(n
2k

)
possible choices of S yields that

regardless of the choice of S with probability 1− e−2·log(n)·2k ≥ 1− 1/poly(n) there
is a partitioning V j = V j

i : i ∈ [d]where at least 2k ·(1−ε/4) of the vertex sets of V j

contain a vertex of S. This implies that there can be at most 2k · (1− ε/2) vertices of
S sharing a vertex set of V j with an other vertex of S. Furthermore, if S represents the
endpoints of a matching of size k at least k · (1 − ε) of it’s edges will have both their
endpoints being assigned to unique vertex sets of V j with respect to S. This implies
that the concatenation of G based on V j will preserve a 1−ε fraction of any matching
of size k from G. Therefore, V is a (k, ε) matching preserving set of partitionings for
G.

Note that while we can simply sample the partitionings randomly in polynomial
time, we could also consider all possible sets of partitionings and check weather any
of them is (k, ε) matching preserving for all possible choice of S ⊆ V . From the fact
that a random sampling based approach succeeds with positive probability we know

123

Algorithmica

that there is a set of (k, ε) matching preserving partitionings therefore we will find
one one eventually deterministically. 	

References

1. Abboud, A., Addanki, R., Grandoni, F., Panigrahi, D., Saha, B.: Dynamic set cover: improved algo-
rithms and lower bounds. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pp. 114–125 (2019)

2. Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Stein, C., Sudan, M.: Fully dynamic maximal inde-
pendent set with polylogarithmic update time. In: 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 382–405. IEEE (2019)

3. Bernstein, A., Forster, S., Henzinger,M.: A deamortization approach for dynamic spanner and dynamic
maximal matching. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1899–1918. SIAM (2019)

4. Bernstein, A., Gutenberg,M.P., Saranurak, T.: Deterministic decremental reachability, scc, and shortest
paths via directed expanders and congestion balancing. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 1123–1134. IEEE (2020)

5. Bhattacharya, S., Chakrabarty, D., Henzinger, M.: Deterministic fully dynamic approximate vertex
cover and fractional matching in o(1) amortized update time. In: International Conference on Integer
Programming and Combinatorial Optimization, pp. 86–98. Springer (2017)

6. Gupta, A., Krishnaswamy, R., Kumar, A., Panigrahi, D.: Online and dynamic algorithms for set cover.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 537–550
(2017)

7. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems. In:
2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 434–443. IEEE (2014)

8. Charikar, M., Solomon, S.: Fully dynamic almost-maximal matching: breaking the polynomial barrier
for worst-case time bounds. In: ICALP (2017)

9. Grandoni, F., Leonardi, S., Sankowski, P., Schwiegelshohn, C., Solomon, S.: (1 + ε)-approximate
incremental matching in constant deterministic amortized time. In: Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1886–1898. SIAM (2019)

10. Gupta, M.: Maintaining approximate maximummatching in an incremental bipartite graph in polylog-
arithmic update time. In: 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science (FSTTCS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2014)

11. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic maximal matching. ACM
Trans Algorithms (TALG) 12(1), 1–15 (2015)

12. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data structures for vertex
cover and matching. SIAM J. Comput. 47(3), 859–887 (2018)

13. Bhattacharya, S., Henzinger, M., Nanongkai, D.: Fully dynamic approximate maximum matching and
minimum vertex cover in o(log3(n)) worst case update time. In: Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 470–489. SIAM (2017)

14. Bernstein, A., Stein, C.: Faster fully dynamic matchings with small approximation ratios. In: Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 692–711.
SIAM (2016)

15. Solomon, S.: Fully dynamic maximal matching in constant update time. In: 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 325–334. IEEE (2016)

16. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 118–126 (2007)

17. Arar, M., Chechik, S., Cohen, S., Stein, C., Wajc, D.: Dynamic matching: reducing integral algorithms
to approximately-maximal fractional algorithms. In: 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, 9–13 July, 2018, Prague, Czech Republic, pp. 7:1–7:16
(2018)

18. Wajc, D.: Rounding dynamic matchings against an adaptive adversary. In: Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, 22–26
June, 2020, pp. 194–207. ACM (2020)

123

Algorithmica

19. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in o(log(n)) update time. SIAM J.
Comput. 44(1), 88–113 (2015)

20. Behnezhad, S., Lacki, J., Mirrokni, V.: Fully dynamic matching: Beating 2-approximation in δε update
time. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
2492–2508. SIAM (2020)

21. Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polylogarithmic time per
operation. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing,
pp. 519–527 (1995)

22. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness
for dynamic problems via the online matrix-vector multiplication conjecture. In: Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 21–30 (2015)

23. Amir, A., Pettie, S., Porat, E.: Higher lower bounds from the 3sum conjecture. In: Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1272–1287. SIAM
(2016)

24. Larsen, K.G.: The cell probe complexity of dynamic range counting. In: Proceedings of the Forty-
Fourth Annual ACM Symposium on Theory of Computing, pp. 85–94 (2012)

25. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the Forty-
Second ACM Symposium on Theory of Computing, pp. 603–610 (2010)

26. Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: Proceedings of
the Forty-Second ACM Symposium on Theory of Computing, pp. 457–464 (2010)

27. Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for
fully dynamic matching. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of
Computing, pp. 398–411 (2016)

28. Roghani, M., Saberi, A., Wajc, D.: Beating the folklore algorithm for dynamic matching (2021). arXiv
preprint arXiv:2106.10321

29. Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM (JACM) 48(4), 723–760
(2001)

30. Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case
time. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete algorithms,
pp. 1131–1142. SIAM (2013)

31. Gupta, M., Peng, R.: Fully dynamic 1 + ε-approximate matchings. In: 2013 IEEE 54th Annual Sym-
posium on Foundations of Computer Science, pp. 548–557. IEEE (2013)

32. Kiss, P., Bhattacharya, S.: Deterministic rounding of dynamic fractional matchings. In: 48th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021,
Glasgow (2021)

33. Bernstein, A., Brand, J.V.D., Gutenberg, M.P., Nanongkai, D., Saranurak, T., Sidford, A., Sun, H.:
Fully-dynamic graph sparsifiers against an adaptive adversary. CoRR. arXiv:2004.08432 (2020)

34. Nanongkai, D., Saranurak, T..: Dynamic spanning forest with worst-case update time: adaptive, las
vegas, and o(n1/2−ε)-time. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pp. 1122–1129 (2017)

35. Bernstein, A., Stein, C.: Fully dynamic matching in bipartite graphs. In: International Colloquium on
Automata, Languages, and Programming, pp. 167–179. Springer, Berlin (2015)

36. Grandoni, F., Schwiegelshohn, C., Solomon, S., Uzrad, A.: Maintaining an edcs in general graphs:
simpler, density-sensitive and with worst-case time bounds (2021). arXiv:2108.08825

37. Assadi, S., Bateni, M., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet edcs: algorithms for
matching and vertex cover on massive graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1616–1635. SIAM (2019)

38. Assadi, S., Behnezhad, S.: Towards a unified theory of sparsification for matching problems. In: 2nd
Symposium on Simplicity in Algorithms, SOSA 2019, 8–9 Jan, 2019, San Diego, CA, USA (2019)

39. Bernstein, A.: Improved bounds for matching in random-order streams. In: 47th International Col-
loquium on Automata, Languages, and Programming, ICALP 2020, 8–11 July, 2020, Saarbrücken,
Germany (Virtual Conference), pp. 12:1–12:13 (2020)

40. Bernstein, A., Dudeja, A., Langley, Z.: A framework for dynamic matching in weighted graphs. In:
STOC’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
21–15 June, 2021, pp. 668–681. ACM (2021)

123

http://arxiv.org/abs/2106.10321
http://arxiv.org/abs/2004.08432
http://arxiv.org/abs/2108.08825

Algorithmica

41. Assadi, S., Behnezhad, S.: Beating two-thirds for random-order streaming matching. In: 48th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2021, 12–16 July, 2021,
Glasgow, Scotland (Virtual Conference), pp. 19:1–19:13 (2021)

42. Behnezhad, S., Derakhshan, M., Hajiaghayi, M.: Stochastic matching with few queries:(1−ε) approx-
imation. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1111–1124 (2020)

43. Assadi, S., Khanna, S., Li, Y.: The stochastic matching problem with (very) few queries. ACM Trans.
Econ. Comput. (TEAC) 7(3), 1–19 (2019)

44. Solomon, N., Solomon, S.: A generalized matching reconfiguration problem. In: 12th Innovations in
Theoretical Computer Science Conference, ITCS 2021, 6–8 Jan, 2021, Virtual Conference, LIPIcs
(2021)

45. Dubhashi, D.P., Ranjan, D.: Balls and bins: a study in negative dependence. BRICS Rep. Ser. 3(25)
(1996)

46. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree
lossless expanders. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Com-
puting, pp. 659–668 (2002)

47. Berinde, R., Gilbert, A.C., Indyk, P., Karloff, H., Strauss, M.J.: Combining geometry and combina-
torics: a unified approach to sparse signal recovery. In: 2008 46th Annual Allerton Conference on
Communication, Control, and Computing, pp. 798–805. IEEE (2008)

48. Gerasimov, M., Kruglov, V., Volodin, A.: On negatively associated random variables. Lobachevskii J.
Math. 33(1), 47–55 (2012)

49. Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Maximum matchings in dynamic graph streams and
the simultaneous communication model. In: Krauthgamer R. (ed.), Proceedings of the Twenty-Seventh
Annual (ACM-SIAM) Symposium on Discrete Algorithms, SODA 2016, 10–12 Jan, Arlington, VA,
USA, pp. 1345–1364. SIAM (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Deterministic Dynamic Matching in Worst-Case Update Time
	Abstract
	1 Introduction
	1.1 Techniques
	1.2 Independent Work

	2 Notations and Preliminaries
	3 Batch Dynamic to Worst Case Update Time
	3.1 Improving a Batch-Dynamic Algorithm to Amortized Update Time

	4 Vertex Set Sparsification
	4.1 Vertex Sparsification Against an Oblivious Adversary
	4.2 Vertex Set Sparsification Using (k,ε) Matching Preserving Partitionings
	4.3 Generating Matching Preserving Partitionings Through Random Sampling
	4.4 Generating Matching Preserving Partitionings Using Expanders
	4.5 Black-Box Implications

	5 (3/2+ε)-Approximate Matching in (sqrtn) Update Time
	5.1 Algorithm Outline
	5.2 Definition and Properties of -Damaged EDCS
	5.3 Constructing a Damaged EDCS in Near-linear Time
	5.4 Maintaining a Damaged EDCS in Update Time with Amortized Rebuilds
	5.5 k Batch-Dynamic Algorithm for Maintaining an Approximate EDCS
	5.6 Proof of Theorem 2

	6 (2+ε)-Approximate Fully Dynamic Maximum Matching in tildeO(1) Worst-Case Update Time
	7 Open Questions
	Acknowledgements
	A Proof of Lemma 8
	B Missing Proofs of Section 5
	B.1 Proof of Lemma 25
	B.2 Proof of Lemma 26
	B.3 Proof of Lemma 27
	B.4 Proof of Lemma 28

	C Missing Proofs from Section 4
	C.1 Proof of Lemma 13
	C.2 Proof of Lemma 14

	References

