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4.3.1 Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Lamperti transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Cameron-Martin-Girsanov’s theorem . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.4 Transition density of a diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Simulating diffusion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Path-space rejection sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Unbiased estimator construction for path-space rejection sampling . . . . . . 64

4.4.3 Poisson Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 5 Fusion methodologies 70

5.1 Monte Carlo Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Brownian bridge approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.2 Ornstein-Uhlenbeck bridges approach . . . . . . . . . . . . . . . . . . . . . . 76

5.1.3 Illustrative toy examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Bayesian Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.3 Implementational guidance for Bayesian Fusion . . . . . . . . . . . . . . . . . 88

II Methodology 94

Chapter 6 Divide-and-Conquer Generalised Monte Carlo Fusion 95

ii



6.1 A generalisation of Monte Carlo Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 A divide-and-conquer approach to Fusion . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Illustrative comparisons with Monte Carlo Fusion . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Effect of correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.2 Effect of hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.3 Dealing with conflicting sub-posteriors . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Simulated data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.2 Credit-card data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 7 Divide-and-Conquer Generalised Bayesian Fusion 117

7.1 A generalisation of Bayesian Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Divide-and-Conquer Generalised Bayesian Fusion . . . . . . . . . . . . . . . . . . . . 132

7.3 Implementational guidance for Generalised Bayesian Fusion . . . . . . . . . . . . . . 134

7.3.1 Guidance for choosing T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.2 Guidance for choosing P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3.3 Practical implementational considerations . . . . . . . . . . . . . . . . . . . . 147

7.4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4.1 Sub-posterior Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.2 Sub-posterior Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4.3 Dimension study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.5.1 Robust regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.5.2 Negative Binomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5.3 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Chapter 8 Concluding Remarks 169

III Appendices 172

Chapter A Implementational details for examples 173

A.1 Credit card data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.2 Power plant data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.3 Bike sharing data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.4 Smart grid stability data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.5 NYC flights data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

iii



Chapter B Calculations for examples 176

B.1 Univariate distribution with light tails . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.2 Univariate mixture Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.3 Univariate Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.4 Multivariate Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.5 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.5.1 Computing the bounds of φc . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

B.6 Robust Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.6.1 Computing the bounds of φc . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.7 Negative Binomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.7.1 Computing the bounds of φc . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

iv



List of Algorithms

2.1.1 Inversion sampling to generate N random samples from π(x) [Devroye, 1986, Part

III, Chapter 3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Rejection sampling to generate N random samples from π(x) [Von Neumann, 1951]. 18

2.3.1 Importance sampling to generate N random samples to approximate π(x) [Kahn,

1949; Goertzel, 1949]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Series sampling to generate N random samples from π(x) [Devroye, 1986, Part IV,

Chapter 5], [Devroye, 1980]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Retrospective Bernoulli sampling to simulate unbiasedly an event of probability p

[Beskos et al., 2008]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Time-homogeneous Poisson process simulation [Kingman, 1992]. . . . . . . . . . . . 25

2.6.2 Time-inhomogeneous Poisson process simulation [Kingman, 1992]. . . . . . . . . . . 25

3.1.1 Sequential importance sampling to generate N random samples to approximate

πn(x0:n) [Gordon et al., 1993]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Sequential importance resampling to generate N random samples to approximate

πn(x0:n) [Gordon et al., 1993]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Sequential Monte Carlo (with adaptive resampling) to generate N random samples

to approximate πn(x0:n) [Gordon et al., 1993; Kong, 1992; Kong et al., 1994]. . . . . 33

3.4.1 Divide-and-Conquer SMC [Lindsten et al., 2017, Algorithm 2]: dc smc(v). . . . . . . 36

4.1.1 Brownian motion simulation at times T := {q1, . . . , qn}. . . . . . . . . . . . . . . . . 38

4.1.2 Brownian bridge simulation at times {q1, . . . , qn} given the process at times {s, q1, . . . , qn, t}. 40

4.1.3 Brownian bridge simulation at its minimum point (constrained to the interval [a1, a2],

where a1 < a2 ≤ (x ∧ y) and conditional on Ws = x and Wt = y) [Pollock et al.,

2016, Algorithm 12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.4 Brownian bridge simulation at its maximum point (constrained to the interval [a1, a2],

where (x ∧ y) ≤ a1 < a2 and conditional on Ws = x and Wt = y). . . . . . . . . . . . 42

4.1.5 (Minimum) Bessel bridge simulation at time q ∈ (s, t) conditioned on Ws = x,Wt =

y,Wτ = m̂ [Asmussen et al., 1995; Beskos et al., 2006a], [Pollock et al., 2016, Algo-

rithm 13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.6 (Maximum) Bessel bridge simulation at time q ∈ (s, t) conditioned on Ws = x,Wt =

y,Wτ = m̌. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



4.2.1 Simulating an event of probability γl,vs,t(x, y) [Beskos et al., 2008], [Pollock et al., 2016]. 46

4.2.2 Simulating an event of probability δm̂,vs,t (x, y) [Pollock et al., 2016]. . . . . . . . . . . 48

4.2.3 Simulating an event of probability δl,m̌s,t (x, y). . . . . . . . . . . . . . . . . . . . . . . 48

4.2.4 Brownian bridge Bessel layer simulation [Pollock et al., 2016, Algorithm 14]. . . . . . 49

4.2.5 Layered Brownian bridge simulation (Bessel approach): SamplingX at times ξ1, . . . , ξκ

[Pollock et al., 2016, Algorithm 15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Outline of path-space rejection sampling to simulate sample paths X ∼ Qx
0,T [Beskos

and Roberts, 2005]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Idealised path-space rejection sampler to simulate sample paths X ∼ Qx
0,T [Beskos

and Roberts, 2005]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.3 Path-space rejection sampling to simulate paths X ∼ Qx
0,T [Beskos et al., 2008;

Pollock et al., 2016]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.4 Generalised Poisson Estimator (GPE) for unbiasedly estimating ψ(X) in (4.73)

[Fearnhead et al., 2008]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Perfect Fusion algorithm for generating N random samples from (1.1). . . . . . . . . 71

5.1.2 Simulating the unbiased estimator for Qbm (5.9). . . . . . . . . . . . . . . . . . . . . 75

5.1.3 Monte Carlo Fusion (Brownian bridge approach) [Dai et al., 2019, Algorithm 1]. . . 75

5.2.1 Simulating ρ̃bmj (5.23) [Dai et al., 2021, Algorithm 4]. . . . . . . . . . . . . . . . . . . 86

5.2.2 Bayesian Fusion [Dai et al., 2021, Algorithm 1]. . . . . . . . . . . . . . . . . . . . . . 87

5.2.3 Particle set initialisation modification (to replace Algorithm 5.2.2 Step 1b). [Dai

et al., 2021, Algorithm 2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.4 Particle set propagation modification (to replace Algorithm 5.2.2 Step 2(b)i). [Dai

et al., 2021, Algorithm 3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 Simulating ρ̃1 [Chan et al., 2021, Algorithm 3]. . . . . . . . . . . . . . . . . . . . . . 104

6.1.2 gmcf(C, {{x(c)
0,i , w

(c)
i }Mi=1,Λc}c∈C , N, T ): Generalised Monte Carlo Fusion (GMCF)

[Chan et al., 2021, Algorithm 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 d&c.gmcf(v,N, T ): Divide-and-Conquer Generalised Monte Carlo Fusion (D&C-

GMCF) [Chan et al., 2021, Algorithm 2]. . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.1 Simulating ρ̃j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1.2 gbf(C, {{x(c)
0,i , w

(c)
i }Mi=1,Λc}c∈C , N,P): Generalised Bayesian Fusion (GBF). . . . . . . 131

7.2.1 d&c.gbf(v,N,P): Divide-and-Conquer Generalised Bayesian Fusion (D&C-GBF). . 134

7.3.1 Computing regular mesh P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.2 Computing adaptive mesh P (computing ∆j at iteration j immediately after Algo-

rithm 7.1.2 Step 2a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3.3 Particle set initialisation modification (to replace Algorithm 7.1.2 Step 1b). . . . . . 149

7.3.4 Particle set propagation modification (to replace Algorithm 7.1.2 Step 2(b)i). . . . . 149

B.7.1Computing the local bounds of Gr(z) given in (B.42) for z ∈ R(z). . . . . . . . . . . 189

vi



List of Figures

1.1 The Fusion Dance from Dragon Ball Z (1989). . . . . . . . . . . . . . . . . . . . . . 1

2.1 An illustration of the simulation of X ∼ Beta(4, 2) (solid line) via rejection sampling

using a uniform distribution as the proposal (dotted line) with M = 2.5. Empty

circles denote rejected samples and filled circles denote accepted proposals. . . . . . 19

2.2 An illustration of the simulation of X ∼ Beta(4, 2) (solid line) via importance sam-

pling using a uniform distribution as the proposal (dotted line). Crosses denote the

proposed samples and the associated weights are plotted with filled dots with their

size proportional to their weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Illustrative comparison of classical SMC sampler and a D&C-SMC sampler. . . . . . 35

4.1 Brownian motion sample path trajectories, W ∼ W0
0,1, simulated as per Algorithm

4.1.1 on a fine time mesh T = {0, 0.01, . . . , 0.98, 0.99, 1}. . . . . . . . . . . . . . . . . 39

4.2 Brownian bridge sample path trajectories, W ∼ W0,0
0,1, simulated as per Algorithm

4.1.2 on a fine time mesh T = {0, 0.01, . . . , 0.98, 0.99, 1}. . . . . . . . . . . . . . . . . 40

4.3 An illustration of 10000 minimum and maximum points of Brownian bridge sample

path trajectories simulated as per Algorithm 4.1.3 and Algorithm 4.1.4. . . . . . . . 42

4.4 Bessel bridge sample path trajectories simulated as per Algorithm 4.1.5 and Algo-

rithm 4.1.6 on a fine time mesh T = {0, 0.01, . . . , 0.98, 0.99, 1}. . . . . . . . . . . . . 44

4.5 An illustration of a simulated Bessel layer for a path W ∼W0,1
−0.4,0.2, where {ai}i≥0 =

{0, 0.2, 0.4, . . . }. The solid lines denotes the interval which constrains the path en-

tirely. The dashed lines indicate the interval which does not constrain the path, as

the path at some point will fall outside these dotted lines. . . . . . . . . . . . . . . . 49

5.1 Illustrative plots for intuition for Fusion methodology. . . . . . . . . . . . . . . . . . 72

5.2 Computational cost of Monte Carlo Fusion using different values for T with fixed

C = 5 in Algorithm 5.1.3, as per the example in Section 5.1.3.1. . . . . . . . . . . . . 78

5.3 Kernel density fitting with bandwidth 0.1 for density f(x) ∝ e−
x4

2 based on different

Monte Carlo methods for unifying sub-posterior samples. . . . . . . . . . . . . . . . 78

vii



5.4 Computational cost of Monte Carlo Fusion with T = 1 in Algorithm 5.1.3 with

varying C, as per the example in Section 5.1.3.1. . . . . . . . . . . . . . . . . . . . . 79

5.5 Computational cost of Monte Carlo Fusion using different values for T with fixed

C = 4 in Algorithm 5.1.3 as per the example in Section 5.1.3.2. . . . . . . . . . . . . 80

5.6 Kernel density fitting with bandwidth 0.1 for density based on different Monte Carlo

methods for unifying sub-posterior samples. . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Illustration of the (nC + 1)d-dimensional density (for d = 1) corresponding to a

typical realisation of X at the time marginals in P. . . . . . . . . . . . . . . . . . . . 84

6.1 A tree representation of the fork-and-join approach for the fusion problem of (1.1). . 107

6.2 Illustrative hierarchies for the fusion problem of (1.1). . . . . . . . . . . . . . . . . . 108

6.3 ESS per second (averaged over 50 runs) when contrasting Monte Carlo Fusion and

Generalised Monte Carlo Fusion, along with increasing sub-posterior correlation, as

per the example in Section 6.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Illustrative comparison of the effect of using different hierarchies in Section 6.3.2

(averaged over 50 runs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Illustrative tree approach for the fusion problem in the case of conflicting sub-

posteriors as in Section 6.3.3. 1/β copies of the C tempered (and over-lapping)

sub-posteriors represent the leaves of the tree, which are unified into 1/β tempered

versions of f (using a suitable tree and D&C-GMCF as in Section 6.2), and then

unified again (using another tree, and D&C-GMCF) to recover f . . . . . . . . . . . . 113

6.6 Illustrative comparison of using no tempering (solid line), and tempering at 4 dif-

ferent levels together with D&C-GMCF, to combat conflicting sub-posteriors as per

Section 6.3.3 (averaged over 50 runs). . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.7 Comparison of competing methodologies to Divide-and-Conquer Generalised Monte

Carlo Fusion (D&C-GMCF) applied to a logistic regression problem with simulated

data (in the setting of Section 6.4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8 Comparison of competing methodologies to Divide-and-Conquer Generalised Monte

Carlo Fusion (D&C-GMCF) applied to a logistic regression problem with real data

(in the setting of Section 6.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Bivariate Gaussian example in SH(λ) setting with increasing data size. In Figures

7.1a, 7.1b, 7.1c, 7.1d solid lines denote initial CESS (CESS0), and dotted lines denote

averaged CESS in subsequent iterations ( 1
n

∑n
j=1 CESSj), and crosses denote CESSj

for each j = 1, . . . , n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2 Bivariate Gaussian example in SSH(γ) setting with increasing data size. In Figures

7.2a, 7.2b, 7.2c, 7.2d solid lines denote initial CESS (CESS0), and dotted lines denote

averaged CESS in subsequent iterations ( 1
n

∑n
j=1 CESSj), and crosses denote CESSj

for each j = 1, . . . , n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

viii



7.3 Comparison of Fusion methodologies with increasing dimensionality (in the setting

of Section 7.4.3). In Figure 7.3a, lines connect the mean IAD (averaged over ten

runs) while the points denote the individual IAD achieved on each run. . . . . . . . 161

7.4 Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian

Fusion (D&C-GBF) applied to a robust regression problem with power plant dataset

(in the setting of Section 7.5.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5 Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian

Fusion (D&C-GBF) applied to a Negative Binomial regression problem with bike

sharing dataset (in the setting of Section 7.5.2). . . . . . . . . . . . . . . . . . . . . . 164

7.6 Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian

Fusion (D&C-GBF) applied to a logistic regression problem with simulated data (in

the setting of Section 7.5.3.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.7 Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian

Fusion (D&C-GBF) applied to a logistic regression problem with smart grid dataset

(in the setting of Section 7.5.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.8 Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian

Fusion (D&C-GBF) applied to a logistic regression problem with nycflights13

dataset (in the setting of Section 7.5.3.3). . . . . . . . . . . . . . . . . . . . . . . . . 167

7.9 Integrated absolute distance against computational budget for competing method-

ologies to Divide-and-Conquer Generalised Bayesian Fusion (D&C-GBF) applied to

a logistic regression problem with nycflight with fixing C = 64 (in the setting of

Section 7.5.3.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

ix



Acknowledgments

I would like to express my unbounded gratitude to my supervisors, Gareth Roberts and Murray

Pollock, for their continued support, encouragement and unfailing patience throughout my PhD. I

am extremely grateful for their guidance over the last four years and consider myself lucky to have

been given the opportunity to work with them.

I would also like to thank Adam Johansen and Hongsheng Dai for many stimulating discussions

around the work in this thesis and their assistance throughout my PhD. I owe a special thanks to

Petros Dellaportas for his support early in my PhD. A further thanks to Adam Johansen, Gechun
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Abstract

Combining several (sample approximations of) distributions, which we term sub-posteriors, into a

single distribution proportional to their product, is a common challenge in statistics and data sci-

ence. For instance, this can occur in distributed ‘big data’ problems, tempering problems, or when

working under multi-party privacy constraints. Many existing approaches resort to approximating

the individual sub-posteriors for practical necessity, then finding either an analytical approximation

or sample approximation of the resulting (product-pooled) posterior. The quality of the posterior

approximation for these approaches is poor when the sub-posteriors fall out-with a narrow range of

distributional form, such as being approximately Gaussian. Recently, a Fusion approach has been

proposed which finds a direct and exact Monte Carlo approximation of the posterior (as opposed

to the sub-posteriors), circumventing the drawbacks of approximate approaches. Unfortunately,

existing Fusion approaches have a number of computational limitations, particularly when unify-

ing a large number of sub-posteriors or when the sub-posteriors exhibit large correlation. In this

thesis, we generalise the theory underpinning existing Fusion approaches, and embed the resulting

methodology within a recursive divide-and-conquer sequential Monte Carlo paradigm. This ulti-

mately leads to a competitive Fusion approach, which is appreciably more robust and scalable in a

variety of practical settings.
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Chapter 1

Introduction

Figure 1.1: The Fusion Dance from Dragon Ball Z (1989).

1.1 The Fusion problem

Combining several (sample approximations of) distributions, which we term sub-posteriors, into

a single distribution proportional to their product, is a common challenge which arises in various

settings within statistics. Consider the following d-dimensional (product-pooled) target density

(which we term the fusion density),

f(x) ∝ f1(x) · · · fC(x) =

C∏
c=1

fc(x), (1.1)

where x ∈ Rd, fc(x) for c = 1, . . . , C, represent the individual densities which we wish to unify,

and C represents the total number of distributions to be unified. Typically, there is no closed

form analytical approach to unifying the sub-posterior densities, and so a Monte Carlo approach
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is proposed. For convenience, and common to many existing approaches, we typically assume that

we have access to independent samples from each sub-posterior. However, in practice, this is often

an unrealistic scenario and more commonly we will have access to samples from a Markov chain

Monte Carlo (MCMC) algorithm, which will only have a distribution approximately from each sub-

posterior. However, we will see that this assumption is not a limiting factor of the methodology

developed in this thesis.

The need to unify several (sample approximations of) distributions, over a common parameter

space into a single sample approximation of the distribution in the manner of (1.1) is surprisingly

common. For instance, it is a problem which classically arises in expert elicitation [Albert et al.,

2012; Berger, 1980; Genest and Zidek, 1986], where the distributional views of multiple experts

on a topic are pooled into a single view and in meta-analysis [Fleiss, 1993], where the goal is to

systematically merge the findings of several independent studies.

The majority of the recent methodological developments for representing or sampling from (1.1)

have been focused on tackling distributed ‘big data’ problems (see for instance, Scott et al. [2016];

Neiswanger et al. [2014]; Wang and Dunson [2013]; Minsker et al. [2014]; Srivastava et al. [2015];

Entezari et al. [2018]; Rabinovich et al. [2015]; Nemeth and Sherlock [2018]; Rendell et al. [2020]). As

the amount of data stored by individuals and organisations grow, statistical models have advanced

in complexity and size. This is a particular problem in statistical inference since the computational

cost of typical MCMC algorithms for parametric inference, such as Metropolis-Hastings (Metropolis

et al. [1953], Hastings [1970]), scale poorly with increasing amounts of data since they usually require

access to the full dataset at each iteration Bardenet et al. [2017]. One possible solution to this

problem is to use a fork-and-join approach, in which the data is split across a number of cores (say

C cores) and inference is separately conducted on each core (often using MCMC). The respective

methodologies then attempt to unify the sample approximations from each sub-posterior as per

(1.1). An advantage of this approach is that inference on each subset of the data can be conducted

independently and in parallel. In practice, if one had access to a large cluster of computing cores,

then the computational cost of sampling from our target density could be significantly reduced. The

main difficulty of these methods is in recombining the individual analyses into a single inference on

the full dataset that is both accurate and computationally efficient.

We note here that there are alternative approaches proposed in the literature around improving the

scalability of MCMC algorithms for Bayesian inference. For instance there are several sub-sampling

approaches (e.g. Welling and Teh [2011]; Maclaurin and Adams [2014]; Ma et al. [2015]; Quiroz et al.

[2018]; Bouchard-Côté et al. [2018]; Bierkens et al. [2019, 2020]; Pollock et al. [2020]) which aim to

reduce the number of data point likelihood evaluations necessary at each iteration of the algorithm.

Alternatively, variational inference (VI) [Jordan et al., 1999; Wainwright and Jordan, 2008] is a

widely used method from the machine learning literature for approximating Bayesian posterior

densities which tends to be faster than MCMC and easier to scale to large datasets [Blei et al.,
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2017]. Rather than approximating the target posterior distribution with samples from a Markov

chain (whose stationary distribution coincides with the target distribution), VI approximates the

posterior with the result of an optimisation algorithm (e.g. stochastic optimisation; see for instance

Robbins and Monro [1951]; Hoffman et al. [2013]). As Blei et al. [2017] notes, MCMC methods tend

to be more computationally intensive but provides guarantees of producing (asymptotically) exact

samples from the target posterior, whereas VI does not enjoy such guarantees. Moreover, Monte

Carlo approaches are typically preferable in applications where precise uncertainty quantification

is required. Consequently, we focus on developing a Monte Carlo approach in this thesis rather

than looking at developing VI methods. Furthermore, in this thesis, we are not solely focused

on improving the scalability of methods for Bayesian inference and hence will not be focusing on

the sub-sampling MCMC methodologies mentioned above either. We are instead mainly focused

on developing robust methodology to tackle the general fusion problem outlined by (1.1) which

subsequently can be used as an approach for performing Bayesian inference with large datasets.

The fusion problem can also arise in settings where the target distribution exhibits multi-modality.

In particular, MCMC algorithms typically use localised proposal mechanisms which can exacerbate

the difficulties of moving between modes. This localisation can result in the Markov chain becoming

trapped in a subset of the state space, despite the Markov chain satisfying all ergodicity properties.

With finite computation, the Markov chain can fail to explore all regions of significant probability

mass which can lead to biased samples (e.g. see Geyer [1991]; Geyer and Thompson [1995]; Tawn and

Roberts [2019]). In such settings, we consider the power-tempered target distribution which is the

target distribution, π, at some inverse temperature level β, for β ∈ (0, 1], denoted πβ(x) ∝ [π(x)]β.

Tempering the target distribution effectively flattens the distribution so that MCMC sampling for

πβ is simpler. Forming a fusion problem for this problem consists of choosing β such that 1
β ∈ N+

and Markov chain sampling from πβ can mix well across the entire sample space, and by noting

π(x) = π(x)
1
β
·β ∝

1
β∏
i=1

πβ(x). (1.2)

The fusion problem has also proven to be challenging methodologically in a number of modern set-

tings due to problem specific constraints. These include when dealing with the privacy constraints

of the individual sources [Yıldırım and Ermiş, 2019], in cases where the sheer number of sources

is overwhelming, or if the networking constraints of the sources are truly distributed [Scott et al.,

2016]. In particular, fork-and-join methodologies will typically have additional hardware constraints

such as minimising or removing communications between computation cores to reduce the effect of

latency [Scott et al., 2016; Dai et al., 2019]. This in turn has motivated a range of problem specific

and pragmatic approximations. These approximations are invariably distributional, and typically

imposed on each of the sub-posterior distributions (for instance, the sub-posteriors being approxi-

mately Gaussian). Such approximations limit the applicability of these methodological approaches
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to particular settings, and the unified results can be poorly understood, and even misleading. Al-

ternatively, the Fusion approach [Dai et al., 2019, 2021] constructs a direct sample approximation

of (1.1), rather than seeking to obtain an ad hoc approximation of f by combining approximations

of the sub-posteriors. In this thesis, we focus on developing methodology for an exact Monte Carlo

approximation of (1.1)—one which provides robust inference in a wide range of practical problems,

and yet is amenable to use alongside any problem specific constraints.

The remainder of this introductory chapter is organised as follows: In Section 1.2, we review the

existing approaches for the fusion problem of (1.1) and discuss their advantages and disadvantages.

In Section 1.3, we provide a summary of the key contributions of this thesis. Lastly, Section 1.4

provides a summary of the structure of this thesis.

1.2 Existing approaches to the fusion problem

As noted above, the majority of methodological developments for tacking the fusion problem has

been motivated by performing Bayesian inference with big data. In particular, suppose that we

wish to perform inference on a set of parameters x given some conditionally independent data

y. The fork-and-join approach to performing inference for x begins by splitting the data into C

disjoint subsets, y1, . . . ,yC , and noting that the Bayesian posterior density can be written as

p(x|y) ∝

[
C∏
c=1

p(yc|x)

]
· p(x), (1.3)

where p(yc|x) denotes the likelihood function of yc given x and the prior distribution is given by

p(x). In this thesis, we typically have p(x) =
∏C
c=1 p(x)

1
C to ensure the amount of total amount

prior information in the posterior is preserved [Scott et al., 2016]. This formulation is therefore

linked to the general fusion problem given in (1.1) by setting the target density f(x) ∝ p(x|y) and

setting the sub-posteriors as fc(x) ∝ p(yc|x) · p(x)
1
C . Wang and Dunson [2013, Section 2] provides

intuition for splitting the prior distribution in this way by noting:

p(x|y) ∝

[
C∏
c=1

p(yc|x)

]
· p(x)

∝

[
C∏
c=1

p(x|yc)

]
·

[
p(x)∏C
c=1 pc(x)

]
, (1.4)

where p(x) represents the prior distribution for the full dataset and pc(x) represents the prior

distribution for subset c = 1, . . . , C. This formulation gives flexibility in the choice of pc(x), but if

we require that p(x) =
∏C
c=1 pc(x), then (1.4) can be written as

p(x|y) ∝
C∏
c=1

p(x|yc). (1.5)
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Wang and Dunson [2013] refers to (1.5) as the independent product equation (also termed product

density equation (PDE) in Wang et al. [2015]), which indicates under the independence assumption

of the data, the posterior density of the full dataset can be represented by the product of sub-

posterior densities if the subsets of the data together form the original dataset. In this section, we

will review a number of existing approaches to combining samples from sub-posterior distributions.

In particular, we focus on three approximate methodologies for the fusion problem in this thesis:

Consensus Monte Carlo [Scott et al., 2016; Scott, 2017], a method based on using combining

kernel density estimates of the sub-posteriors (which we term Kernel Density Estimate Monte

Carlo) [Neiswanger et al., 2014] and the Weierstrass sampler [Wang and Dunson, 2013]. These

methodologies were the earliest methods for tacking the fusion problem and often the most widely

used in this literature. We will detail these in Section 1.2.1. We will discuss other approximate

approaches in this literature and the weakness of these methods in Section 1.2.2.

1.2.1 Main approximate approaches to the fusion problem

One avenue to recombine sub-posterior samples is to use these samples to first impose an approxima-

tion to the sub-posterior distributions, and then combine those approximations. Perhaps the sim-

plest method to combine the sub-posterior draws is to use a Gaussian approximation. In particular,

the samples can be used to estimate the mean and variance of each sub-posterior. Since the product

of Gaussian distributions is well known, then we can analytically calculate a Gaussian approxima-

tion to the fusion target posterior (1.3). This idea was first proposed by Neiswanger et al. [2014,

Section 3.1] and the motivation is that as the number of data points grows larger, then Bernstein-

von Mises theorem states that the Bayesian posterior will be approximately Gaussian [Le Cam,

1986]. Scott et al. [2016] develops this intuition further with the Consensus Monte Carlo (CMC)

approach which represents (1.3) by means of a weighted average of sub-posterior samples. In partic-

ular, suppose we have N draws from each sub-posterior, {x(c)
i }Ni=1 where x

(c)
i ∼ fc ∝ p(yc|x)·p(x)

1
C ,

and each sub-posterior is assigned a weight represented by the matrix Wc, then the ith Consensus

Monte Carlo posterior draw is obtained by computing

x̂i =

(
C∑
c=1

Wc

)−1 C∑
c=1

Wcx
(c)
i , (1.6)

for i = 1, . . . , N . CMC is exact when each sub-posterior is Gaussian (by setting the weights as

Wc = Σ−1
c where Σc is the covariance matrix for sub-posterior c = 1, . . . , C). In practice, Scott

et al. [2016] suggests to use the sample covariance matrix Σ̂c of each sub-posterior c. The central

idea of CMC is that even when the sub-posteriors are non-Gaussian, the draw x̂i will still be a close

approximation to the posterior if the sub-posteriors are approximately Gaussian, which is often the

case in big data settings [Le Cam, 1986]. Although this approach is simple and computationally

efficient, the CMC method has been shown to exhibit large bias in other settings [Wang and Dunson,

2013], (e.g. if skewness or multi-modality are present in the sub-posterior distributions).
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Neiswanger et al. [2014] suggests a strategy (which we term the Kernel Density Estimate Monte

Carlo (KDEMC) approach) based on using kernel density estimates (KDE) (see for instance Silver-

man [1986]; Scott [1992]) to approximate the sub-posterior densities. Given N samples from each

sub-posterior x
(c)
i ∼ fc for i = 1, . . . , N , then kernel density estimation is a method for providing

an estimate f̂c of fc, defined as

f̂c(x) =
1

N

N∑
i=1

KH

(
x− x(c)

i

)
, (1.7)

where KH(x) = |H|−
1
2K(H−

1
2x), H is a d × d symmetric positive-define matrix known as the

bandwidth and K is the kernel function which is a symmetric d-dimensional multivariate density.

While there are several choices for the kernel K, Neiswanger et al. [2014] suggest to use a Gaussian

kernel with diagonal bandwidth matrix h2Id, where Id is the d-dimensional identity matrix. The

approximation f̂c of fc is then given by

f̂c(x) =
1

N

N∑
i=1

Nd
(
x
∣∣∣x(c)
i , h2Id

)
, (1.8)

where Nd(·|µ,Σ) denotes a d-dimensional Gaussian density with mean µ and variance Σ. While

Neiswanger et al. [2014] uses a common variance h2Id for each kernel, there may some performance

benefits to consider a diagonal matrix Λc for each sub-posterior since different parameters may

differ considerably in variance for each sub-posterior. Nevertheless, the KDEMC method then

approximates the fusion posterior by the product of the KDEs for each sub-posterior,

f̂(x) =
C∏
c=1

f̂c(x) =
1

NC

C∏
c=1

[
N∑
i=1

Nd
(
x
∣∣∣x(c)
i , h2Id

)]
, (1.9)

which is a product of Gaussian mixtures. KDEMC effectively approximates (1.3) by implicitly

sampling from the product of non-parametric density estimates. The methodology outlined by

Neiswanger et al. [2014, Section 3.2] samples from (1.9) by means of a Metropolis-within-Gibbs

approach (see Neiswanger et al. [2014, Algorithm 1]) which we do not detail here. While this

approach may improve upon CMC when models move away from the Gaussian setting, kernel

density estimation is known to perform poorly in high dimensions, meaning that the performance

of KDEMC will degrade as the dimensionality of x increases. Nemeth and Sherlock [2018] further

notes that the upper bounds on the mean squared error given in Neiswanger et al. [2014] grows

exponentially with the number of sub-posteriors, C, which is a limiting factor in the big data settings

where the computational benefit of parallelisation is proportional to the number of available cores.

Wang and Dunson [2013] and Bardenet et al. [2017] notes that the KDEMC method provides a poor

approximation to the fusion target density if the supports of the sub-posteriors are almost disjoint.

To improve the amount of overlap between the approximations, Wang and Dunson [2013] considers
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the product of Weierstrass transforms for each sub-posterior, which are simply convolutions of

the density with a kernel. While the original Weierstrass transform first introduced in Weierstrass

[1885] was stated with the Gaussian kernel, Wang and Dunson [2013] provide a generalisation and

approximate each sub-posterior density with

f̂Wc (x) = WK
H fc(x) =

∫
KH(x− t) · fc(t) dt, (1.10)

for c = 1, . . . , C. However, the authors do subsequently focus on the Gaussian kernel for conve-

nience. This method approximates (1.3) by the product of Weierstrass transforms, which is sampled

by means of a rejection sampler (see Section 2.2) [Wang and Dunson, 2013, Algorithm 1]. Wang and

Dunson [2013] call this approach the Weierstrass Rejection Sampler (WRS) and claim that using

a Weierstrass transform approximation rather than a KDE has a number of better properties such

as improvement in performance when the sub-posteriors have little overlapping support, and better

scaling with dimensionality. However, these kernel-based approaches can be incredibly sensitive to

bandwidth choice as one bandwidth is applied to the whole space [Wang et al., 2015].

In this thesis, we will compare the Fusion methodologies with the three approximate methodologies

discussed in this section (CMC [Scott et al., 2016], KDEMC [Neiswanger et al., 2014] and WRS

[Wang and Dunson, 2013]). We focus on these three methodologies since these are currently the

most well known methods for this problem and we can utilise existing code to implement these

methods (see Appendix A for full implementational details of these approaches). We note however

that there exists several other approximate methods for the fusion problem outlined in (1.3) which

we briefly discuss in the following section.

1.2.2 Alternative approximate approaches to the fusion problem

Whilst the methods discussed in Section 1.2.1 are the most popular and widely used methods

for the combination of sub-posterior samples to approximate the full-data posterior density given

in (1.3), there has been significant interest in developing alternative approximate approaches for

scaling up Monte Carlo sampling for Bayesian inference using a distributed approach. One avenue

of research are methods that have been inspired by recent developments in optimal transport

theory (see for instance Villani [2009]; Peyré and Cuturi [2019] and references therein). These

methods introduce a suitable metric on the space of probability measures (such as the Wasserstein

metric) and then replace the full posterior density by a geometric combination of the sub-posteriors.

Minsker et al. [2014, 2017] focused on creating a method to provide an approach for Bayesian

inference which is robust to outliers or corruption in the data. The method targets a ‘robust’

version of the Bayesian posterior which they define in their paper. In this approach, the authors

propose a method based on computing the geometric median of a collection of sub-posteriors (which

they term the M -posterior). However as Bardenet et al. [2017] and Li et al. [2017] note, the

robustness of the median posterior estimate advocated here may also be a drawback, as in some
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circumstances, valuable information contained in each subset of data may be lost. Srivastava et al.

[2015]; Li et al. [2017]; Srivastava et al. [2018] proposed an alternative approach which looked

to compute the Wasserstein barycenter of sub-posterior distributions (termed the Wasserstein

Posterior (WASP) by the authors) which can be computed efficiently in practice using techniques

developed by Cuturi and Doucet [2014]. A key difference in these approaches is that whereas Scott

et al. [2016]; Neiswanger et al. [2014]; Wang and Dunson [2013] proposed to run MCMC over

fc(x) ∝ p(yc|x) · p(x)
1
C , (1.11)

for c = 1, . . . , C, Minsker et al. [2014, 2017]; Srivastava et al. [2015]; Li et al. [2017]; Srivastava

et al. [2018] proposed to combine samples from sub-posteriors of the form,

fc(x) ∝ p(yc|x)C · p(x). (1.12)

We term these boosted sub-posteriors since this corresponds to replicating (or boosting) the data in

the cth dataset C times to produce pseudo datasets which have the same size as the full dataset and

should have the same scale in variance as the full posterior. Indeed, the main difference here is that

the likelihood contribution is boosted or inflated by a power C, so that they can be seen as ‘noisy’

versions of the target full-data posterior, and thus can be treated as a group of estimators of the

true posterior. The M -posterior and WASP approaches then consequently attempt to find either

the geometric median or the barycenter of these boosted sub-posteriors as an approximation to the

target posterior. Whilst these methods can be computationally scalable, the statistical meaning of

these median and mean measures is unclear [Bardenet et al., 2017]. Furthermore, these approaches

are still fundamentally approximating the target posterior with an alternative measure and thus

are not directly sampling from the target posterior.

The Likelihood Inflating Sampling Algorithm (LISA) proposed by Entezari et al. [2018] also consider

the boosted (or likelihood inflated) sub-posterior densities in (1.12) by similarly arguing that these

sub-posteriors would be a closer representation of the full-data posterior. Like the Consensus Monte

Carlo approach of [Scott et al., 2016], the LISA approach takes a weighted average of sub-posterior

samples, and showed that for certain models, it is possible to derive weights that would make

their approach lead to a good approximation to the target posterior. For example, it is possible

to construct an exact algorithm for Beta-Bernouill models, and to have good approximations for

Bayesian linear regression and Bayesian Additive Regression Tree (BART) models. A key drawback

of this method is that there currently is no general procedure for combining the sub-posterior

samples that will make LISA easy to adapt to a wide variety of models. Indeed, each of these

weights for the Beta-Bernoulli, Bayesian linear regression and BART models considered by the

authors were derived from the specific model and modified accordingly to give accurate results.

Furthermore, as with the CMC approach, taking a simple weighted average of sub-posterior samples

will often be too crude of an approximation in many cases.

8



The Variational CMC (V-CMC) approach was introduced by Rabinovich et al. [2015] which views

the aggregation of the sub-posterior samples as a variational inference (VI) problem (see for in-

stance Blei et al. [2017] for a review of VI). In contrast, CMC aggregates the sub-posterior samples

via weighted averaging. In particular, given N draws from each sub-posterior {x(c)
i ∼ fc}Ni=1 for c =

1, . . . , C, the ith CMC sample is given by x̂i = F (x
(1)
i , . . . ,x

(C)
i ) =

(∑C
c=1 Wc

)−1∑C
c=1 Wcx

(c)
i .

Rabinovich et al. [2015] notes that the fundamental goal of approximate methods is to choose an

aggregation function F such that the induced distribution on x is as close as possible to the target

posterior. To this end, V-CMC considers a wider range of aggregation functions and constructs

a variational inference problem (i.e. optimisation problem) in order to choose the function with

which to aggregate the sub-posterior samples. As with all variational inference methods, the per-

formance of this approach critically depends on choosing a family of distributions which adequately

describes the target posterior well but at the same time being simple enough for optimisation to be

computationally efficient [Blei et al., 2017; Rabinovich et al., 2015]. In practice, it can be difficult

to know how complex your family of distributions needs to be for a given problem.

The Global CMC (G-CMC) approach of Rendell et al. [2020] introduces a hierarchical framework

to associate an auxiliary parameter with each likelihood contribution for the full-data Bayesian

posterior. Given the variable of interest x and C disjoint subsets of data y1, . . . ,yC , the G-CMC

approach introduces C auxiliary variables, Z1, . . . , ZC and defines the probability density function

p̄λ(x, z1, . . . , zC) ∝
C∏
c=1

[
K(λ)
c (x, zc) · p(zc|yc)

]
· p(x), (1.13)

where {K(λ)
c : λ ∈ R+} is a family of Markov transition densities for each c = 1, . . . , C. Defining

p(λ)(x|yc) :=

∫
K(λ)
c (x, zc) · p(zc|yc) dzc, (1.14)

then the density of the x-marginal of pλ(x, z1, . . . , zC) is given by

pλ(x) :=

∫
p̄λ(x, z1, . . . , zC) dz1:C ∝

C∏
c=1

[
p(λ)(x|yc)

]
· p(x). (1.15)

Rendell et al. [2020] note that if for each c = 1, . . . , C, we have that p(λ)(x|yc) is bounded for all

λ > 0 and p(λ)(x|yc)→ p(x|yc) pointwise as λ→ 0, then pλ → p, where p is the full-data posterior

given by (1.3), in total variation. Rendell et al. [2020, Section 4] considers a sequential Monte

Carlo (see Chapter 3) to approximate a sequence of distributions with densities p̄λ0 , p̄λ1 , . . . , where

λ0, . . . , λn is a decreasing sequence since the methodology requires for λ to be sufficiently small

such that pλ is a good approximation of the target posterior p (1.3).

Nemeth and Sherlock [2018] proposed a method which created a Gaussian-process (GP) (see for

instance Rasmussen [2003]; Rasmussen and Williams [2006]) approximation for each of the log-sub-
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posterior densities and approximating the full log-posterior as a sum of Gaussian processes. In this

approach, the authors noted that previous approaches for combining sub-posterior samples have

solely relied on the sub-posterior samples outputted from each MCMC algorithm, but have ignored

the values of the sub-posterior densities at the samples which are calculated when evaluating the

Metropolis-Hastings ratio. The proposed approach places GP priors on the evaluated log-density

values of each sub-posterior. The idea here is that the GP on the log-sub-posterior densities provides

an estimate of uncertainty in the log-sub-posterior at points where it has not been evaluated at.

The resulting approximation (constructed by comining the individual GPs) to the log-posterior

density is a sum of GPs which itself is a GP. The success of this method relied on the individual

GPs providing a good approximation to the individual log-sub-posterior densities. The method by

Nemeth and Sherlock [2018] is therefore an approximate method which avoids directly targeting

the target density and combines approximations to the sub-posterior densities.

The Double Parallel Monte Carlo (DP-MC) approach of Xue and Liang [2019] first obtains impor-

tance weighted samples (see Section 2.3) from the inflated/boosted sub-posteriors given in (1.12).

Let µ(1), . . . ,µ(C) denote the (estimated) mean vectors of the respective sub-posterior distributions,

and let µ̂ = 1
C

∑C
c=1µ

(c) be the simple average, then the method proposes to re-centre the sub-

posteriors to µ̂ and considers the following mixture to approximate the full-data posterior p(x|y):

p̃(x|y) ∝ 1

C

C∑
c=1

p
(
x− µ̂+ µ(c)

∣∣∣yc) . (1.16)

A drawback with this method is noted by Dai et al. [2021] who states that this methodology relies

on the convergence of the posterior to a Gaussian and so performs poorly in scenarios where this

is not the case. Further, Dai et al. [2021, Section 5] highlight several example cases (with a logistic

regression example) where this method fails to approximate the full-data posterior appropriately.

Other approaches to sampling from (1.3) by combining sub-posterior draws include Wang et al.

[2015], which estimates the target posterior by partitioning the space of sub-posterior samples using

step functions, and Changye and Robert [2021], which uses random forests to learn approximations

to the sub-posteriors and combines them to approximate the full posterior. In the random forests

approach of Changye and Robert [2021], they consider combining sub-posteriors of the form:

fc(x) ∝
[
p(yc|x) · p(x)1/C

]λ
, (1.17)

where λ is not necessarily restricted to 1 (as done in Scott et al. [2016]; Neiswanger et al. [2014];

Wang and Dunson [2013]; Rabinovich et al. [2015]; Nemeth and Sherlock [2018]), or C (as done in

Minsker et al. [2014]; Srivastava et al. [2015]; Entezari et al. [2018]). However this method suffers

from a curse of dimensionality in the random forest training and consequently needs more sample

points to train each random forest learner. Further, Changye and Robert [2021] also note that there

currently does not exist any generic method to tune the scale factor λ in the scaled sub-posteriors.
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A common theme amongst all these methods discussed so far is that they have been proposed

in particular to improve the scalability of Monte Carlo approaches for Bayesian inference and

take an approximation approach to combine the sub-posterior samples. Consequently, the theory

of these methods are typically asymptotic in the number of data points and usually appeal to

the Bernstein-von Mesis theorem. In particular, for these asymptotic regimes, the posterior will

tend to a Gaussian distribution (see for instance [Johnson, 1970; Le Cam, 1986]), and therefore is

questionable whether many of these approaches offer a significant advantage over simple approaches

such as a Laplace approximation to the posterior (as argued by Pollock et al. [2020] and Bardenet

et al. [2017]). This therefore motivates a more general approach to the fusion problem as in (1.1)

(rather than focusing on the Bayesian inference problem in (1.3)) which avoids any approximation to

the sub-posteriors and returns a direct sample approximation to the target fusion density. Indeed,

the primary weakness of all these methods discussed thus far is that the recombination of the

separately conducted inferences is inexact and involves some approximation of the sub-posteriors.

We end this section by acknowledging that there has been considerable interest in combining ma-

chine learning and deep learning models (often referred to as model fusion [Claici et al., 2020; Singh

and Jaggi, 2020]), whereby the task is to learn from a global machine learning model from a col-

lection of pre-trained local models. This provides an approach to federated learning (FL) problems

[McMahan et al., 2017; Kairouz et al., 2021; Li et al., 2020] which is a machine learning setting

where many clients (e.g. mobile devices or organisations/institutes) collaboratively train a model

using a coordinated central server whilst keeping the training data distributed and decentralised.

Whilst these methods share the similarity of combining models, we note that these algorithms are

tackling a significantly different problem than the one stated here. The fundamental difference

being that we are focusing develop Monte Carlo methodology for combining probability distribu-

tions (which can represent Bayesian posterior distributions for instance) as per (1.1) using Monte

Carlo samples from the sub-posterior distributions. In contrast, these methods look to combine

machine learning/deep learning models which are typically trained using stochastic optimisation

approaches. For example, McMahan et al. [2017] presented the first of these methods to learn deep

neural networks based on model averaging and combining local (stochastic) gradient information

to update model parameters. As such, we will not be discussing such methods from the machine

learning literature in this thesis.

1.2.3 The Fusion approach

In contrast to these approaches above, the Fusion approach [Dai et al., 2019, 2021] constructs a

sample approximation of f itself, rather than seeking to obtain an ad hoc approximation to f by

combining approximations of the sub-posteriors, f1, . . . , fC . Underpinning the Fusion approach

is the simple observation that if we sampled (independently) x(c) ∼ fc for c = 1, . . . , C, then

conditional on the event that x(1) = · · · = x(C), we have that x(1) has density f given in (1.1).

Clearly the difficulty with exploiting this observation is that we are conditioning on an event of
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probability 0. The Monte Carlo Fusion (MCF) approach of Dai et al. [2019] provides a framework

for practically enforcing this conditioning. This is achieved by initialising C stochastic processes

(independently from one another) using a single realisation from each sub-posterior (i.e. X
(c)
0 ∼ fc

for c = 1, . . . , C, where the subscript is a temporal index, noting that X
(1)
0 6= . . . 6= X

(C)
0 ), evolving

the processes in such a manner that (i) these processes coalesce at some fixed future time (i.e.

X
(1)
T = · · · = X

(C)
T ); and (ii), the common marginal distribution at the coalescence time, T , is

f . In particular, MCF is a rejection sampling approach to sample f by means of sampling from

the individual sub-posteriors and a density on an extended space, and so returns independent,

identically distributed (i.i.d.) draws from f .

The Bayesian Fusion (BF) approach of Dai et al. [2021] re-examined the theoretical underpinnings

of MCF by introducing a stochastic differential equation (SDE) describing the coalescence of the

C stochastic processes, and exploited this theory together with methodology for sequential Monte

Carlo (SMC) to gradually coalesce the stochastic processes. The resulting output of the BF ap-

proach is a number of correlated and weighted draws from f . BF is a far more practical and robust

algorithm than MCF. A key advantage of BF over MCF is that it is possible to give considerable

user guidance in its implementation.

Since the Fusion approaches consider the wider fusion problem set out by (1.1), we will see that

the theory for these approaches do not rely on asymptotic arguments with respect to the number

of data points available. We will cover these Fusion methodologies in more detail in Chapter 5.

Clearly, the Fusion methods fill a gap in this literature by being the first approach which attempts

to provide sample approximations which can directly approximate f (as opposed to sampling from

an approximation f̂ of f). However, both existing Fusion approaches are computationally expensive

to carry out and have key limitations in practice. For instance, the complexity of the methodology

is still limited by factors including: (i) the numbers of sub-posteriors being combined; (ii) the

level of sub-posterior correlation; (iii) the dimensionality of the sub-posteriors; and (iv) the degree

to which the sub-posteriors conflict. In this thesis, our main goal will be to develop the Fusion

methodology further which consequently is more practical and scalable in practice.

In this thesis, we make two key contributions to address the limitations of MCF and BF: (i) we

significantly improve upon the computational efficiency of MCF and BF by allowing the user to

incorporate global information about each sub-posterior within the approach, and unify sub-sets of

the sub-posteriors at any one time; (ii) using the flexibility given by (i) in which sub-posteriors can

be partially unified, we embed our improved methodologies within the divide-and-conquer paradigm

of Lindsten et al. [2017], allowing the user to combine sub-posteriors in stages to recover the fusion

density f given in (1.1).
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1.3 Novel contributions

This thesis will further develop the existing Fusion approaches, so the methodology can be applied

to a wider range of applications and problems. We will see that the new Fusion methodologies

introduced in this thesis provide greater robustness and scalability in many settings; namely a

greater robustness with regards to increasing sub-posterior correlation, increasing number of sub-

posteriors, increasing dimensionality, or when combining sub-posteriors which conflict with each

other (i.e. sub-posteriors with little overlapping support).

In summary, the main contributions of this thesis are as follows:

• Reformulate the theory underpinning existing Fusion approaches of Dai et al. [2019] and Dai

et al. [2021], introducing Generalised Monte Carlo Fusion (GMCF) and Generalised Bayesian

Fusion (GBF) approaches in Chapter 6 and Chapter 7 respectively.

• We embed the resulting GMCF and GBF methodologies within a divide-and-conquer paradigm

[Lindsten et al., 2017] (leading to the Divide-and-Conquer Generalised Monte Carlo Fu-

sion (D&C-GMCF) and Divide-and-Conquer Generalised Bayesian Fusion (D&C-GBF) ap-

proaches) by combining the sub-posteriors in stages to recover the fusion density f in (1.1).

• Practical implementational guidance is supplied for our GBF and D&C-GBF approaches to

aid practitioners in implementing the methodology.

• We provide extensive simulation studies to illustrate the improvement in the Fusion method-

ologies in several practical settings.

• Real-data applications are supplied to contrast our methodologies with other competing ap-

proaches for combining sub-posterior samples.

1.4 Thesis structure

This thesis in broken into two key parts: Part I is a review of relevant existing literature which

is required for the understanding of the methodology developed in this thesis and in Part II, we

present our novel contributions to the Fusion methodologies (as previously discussed above).

We begin Part I by reviewing a number of elementary Monte Carlo methods in Chapter 2 which are

of particular relevance to the methodology developed in this thesis. Chapter 3 reviews sequential

Monte Carlo (SMC) methods and in particular we present the divide-and-conquer SMC approach

of Lindsten et al. [2017] in Section 3.4. We provide an introductory level overview of methods and

theory relating to the path-space simulation of Brownian motion, diffusions and related processes in

Chapter 4 as required for Fusion. Lastly, we introduce the existing Fusion methodologies (namely

Monte Carlo Fusion [Dai et al., 2019] and Bayesian Fusion [Dai et al., 2021]) in Chapter 5.
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Part II consists of two chapters which comprises the main contributions of this thesis. In Chapter 6,

we reformulate the theory underpinning the Monte Carlo Fusion approach of Dai et al. [2019] and

introduce the Generalised Monte Carlo Fusion (GMCF) algorithm. In this chapter, we also embed

our GMCF methodology within a divide-and-conquer paradigm by combining the sub-posteriors in

stages to recover the correct fusion density f , in an approach we term Divide-and-Conquer Gener-

alised Monte Carlo Fusion (D&C-GMCF). In Chapter 7, we present the Generalised Bayesian Fu-

sion (GBF) and Divide-and-Conquer Generalised Bayesian Fusion (D&C-GBF) approaches which

builds upon these existing Fusion methodologies. In each of these sections, we demonstrate that

our newly developed Fusion methodologies offers significant improvements on existing approaches

and can be applied in a number of practical settings.

Finally in Chapter 8, we conclude this thesis and provide a summary along with several possible

future directions for this work.
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Preliminaries
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Chapter 2

Monte Carlo Methods

Monte Carlo methods are a class of statistical algorithms which use the simulation of random

processes to draw inference on quantities of interest. We note that many practical problems can

be reduced to the computation of an integral. While direct approaches to evaluating integrals

analytically can be cumbersome and tedious, Monte Carlo methods are able to utilise advances

in modern computing power by constructing a stochastic algorithm in order to provide consistent

estimates of integrals. For instance, consider expectations of the following form

Eπ[h(X)] :=

∫
R
h(x) · π(x) dx, (2.1)

where h is some test function, π is some probability density and X denotes a random variable

with law π. By applying the Strong Law of Large Numbers (SLLN), if we were able to draw N

independent, identically distributed (i.i.d.) samples X1, . . . , XN from π, we can unbiasedly estimate

the expectation Eπ[h(X)] using the sample average

̂Eπ[h(X)] =
1

N

N∑
i=1

h(Xi), (2.2)

since we have

lim
N→∞

1

N

N∑
i=1

h(Xi) = Eπ[h(X)]. (2.3)

While this is provides an elegant algorithm to estimate integrals with respect to π, it is not entirely

clear how to simulate i.i.d. random samples from the density π. This is the key complication

in Monte Carlo methods and in this chapter, we review a number of fundamental Monte Carlo

methods which are instrumental in the development of the Fusion methodology presented in this

thesis. In particular, we discuss some sampling techniques such as rejection sampling, importance
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sampling, series sampling, retrospective Bernoulli sampling and methods to simulate from Poisson

processes. A detailed account of these methods can be found in a number of texts (see for instance

Robert and Casella [2013]; Devroye [1986]; Kingman [1992]).

2.1 Inversion Sampling

One of the simplest methods for generating random samples from a distribution X with density

π and cumulative distribution function (CDF), Fπ(x) := P(X ≤ x), is based on the inverse of

the CDF. Inversion sampling [Devroye, 1986, Part III, Chapter 2] is a method of sampling from a

density of π by inverting a random sample from a standard uniform random variable, u ∼ U [0, 1].

While the CDF is an increasing function, it is not necessarily continuous and hence we define the

generalised inverse CDF :

F−1
π (u) := inf

x
{Fπ(x) ≥ u}. (2.4)

Since Fπ(x) ∈ [0, 1] for all x ∈ R, it is possible to draw random samples from π by generating and

transforming a uniform random variable u ∈ U [0, 1]. The key idea behind inversion sampling is

given by the following identity:

P
(
F−1
π (u) ≤ x

)
= P (u ≤ Fπ(x)) = Fπ(x), (2.5)

and so Fπ is the CDF of X = F−1
π (u). This argument is summarised in Algorithm 2.1.1.

Algorithm 2.1.1 Inversion sampling to generate N random samples from π(x) [Devroye, 1986,
Part III, Chapter 3].

1. For i in 1 to N ,
(a) Simulate ui ∼ U [0, 1].
(b) Set Xi = F−1

π (ui).
2. Return samples {Xi}Ni=1.

A key drawback of inversion sampling is that few distributions have a CDF whose (generalised) in-

verse can be evaluated efficiently. However, the generalised inverse of the CDF is just one possible

transformation and there exist other transformation methods that yield samples from distribu-

tions. For instance, the Box-Muller method [Box and Muller, 1958] is a transformation method for

sampling from the standard Normal distribution.

2.2 Rejection Sampling

Rejection sampling [Von Neumann, 1951; Robert and Casella, 2013] is a general Monte Carlo

sampling technique for sampling from some target density π by means of an accessible dominating

density q. The main idea is to sample from a proposal distribution, q, which is easy to sample from

and to reject samples that are “unlikely” to have occurred under the target distribution in some
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principled way. The choice of q is made such that π is absolutely continuous with respect to q with

bounded Radon-Nikodým derivative. More formally, if we can find a bound M such that

sup
x∈R

dπ

dq
(x) ≤M <∞, (2.6)

then if we sample X ∼ q and accept the sample (I = 1) with probability Pq(X) := 1
M

dπ
dq (X) ∈ [0, 1],

then (X|I = 1) ∼ π. This argument is summarised in Algorithm 2.2.1.

Algorithm 2.2.1 Rejection sampling to generate N random samples from π(x) [Von Neumann,
1951].

1. For i in 1 to N ,
(a) Simulate Xi ∼ q and u ∈ U [0, 1].

(b) If u ≤ π(Xi)
M ·q(Xi) then accept Xi, else reject and return to Step 1a.

2. Return samples {Xi}Ni=1.

Rejection sampling is a powerful technique as it allows us to sample from some inaccessible target

density π by sampling from an appropriate proposal density q and applying a correction in the

form of only accepting a sample X with probability given by Pq(X). This underlying idea given by

the following identity:

π(x) =

∫ π(x)

0
1 du =

∫ ∞
0

10<u<π(x)︸ ︷︷ ︸
=:π(x,u)

du. (2.7)

Therefore, π(x) can be interpreted as the marginal density of a uniform distribution on the area

under the density π, {(x, u) : 0 ≤ u ≤ π(x)}. Hence we can generate samples from π by sampling

the area under the curve. The difficulty is that it is not always clear how to sample uniformly from

this area due to the inaccessibility of π. An intuitive way to understand rejection sampling is to

consider the univariate setting. From (2.7), the simulation of N random points {xi}Ni=1 from π can

be thought as the simulation of N bivariate points {(xi, yi)}Ni=1 under the graph π, where we retain

only {xi}Ni=1. Since π is inaccessible, the idea is to choose another density q to simulate the locations

on the x-axis, X1, . . . , XN ∼ q, and then the location on the y-axis, u1, . . . , uN ∼ U [0,M · q(Xi)].

A point Xi for can be retained if ui lies under π. An example of this is illustrated in Figure 2.1.

Consider the conditional distribution of {X ≤ x} given {U ≤ π(X)
M ·q(X)} where U ∼ U [0, 1], we have

P
(
X ≤ x

∣∣∣∣u ≤ π(X)

M · q(X)

)
=

∫ x
−∞

∫ π(z)
M·q(z)

0 q(z) du dz∫∞
−∞

∫ π(z)
M·q(z)

0 q(z) du dz

=

∫ x
−∞

π(z)
M ·q(z) · q(z) dz∫∞

−∞
π(z)
M ·q(z) · q(z) dz
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Figure 2.1: An illustration of the simulation of X ∼ Beta(4, 2) (solid line) via rejection sampling
using a uniform distribution as the proposal (dotted line) with M = 2.5. Empty circles denote
rejected samples and filled circles denote accepted proposals.

=
1
M · Pπ(X ≤ x)

1
M · 1

= Fπ(x), (2.8)

where Fπ is the cumulative distribution of π. Furthermore, the probability of acceptance of a

proposed sample X is given by

Eq
[

π(X)

M · q(X)

]
=

1

M
. (2.9)

This means that the number of draws from q required to obtain a draw from π is Geometrically

distributed with mean M . Consequently, rejection sampling can be made computationally more

efficient by making M as small as possible by choosing q to be well matched to π.

A key benefit of rejection sampling is that it can still be carried out if we only know π up to a

multiplicative constant, i.e. we only know f(x) where π(x) = C ·f(x), provided that f(x) < M ·q(x)

for all x, and by accepting a proposal X ∼ q with probability

Pq(X) =
f(X)

M · q(X)
.

Again considering the conditional distribution of {X ≤ x} given {U ≤ f(X)
M ·q(X)}, we have

P
(
X ≤ x

∣∣∣∣u ≤ f(X)

M · q(X)

)
=

∫ x
−∞

∫ f(z)
M·q(z)

0 q(z) du dz∫∞
−∞

∫ f(z)
M·q(z)

0 q(z) du dz

=

∫ x
−∞

f(z)
M ·q(z) · q(z) dz∫∞

−∞
f(z)
M ·q(z) · q(z) dz
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=

∫ x
−∞

π(z)
C·M dz∫∞

−∞
π(z)
C·M dz

=
1

C·M · Pπ(X ≤ x)
1

C·M · 1
= Fπ(x). (2.10)

2.3 Importance Sampling

In the previous section, we described the rejection sampling approach to sampling from a distri-

bution with density π. However, a rejection sampling algorithm can be wasteful and inefficient in

settings where a large number of proposed samples are rejected, which typically occurs when the

probability of acceptance is too low. In addition, some useful information about the density is lost

upon evaluation whether to accept or reject a particular sample. In rejection sampling, we com-

pensate for the fact that we sampled from a proposal distribution q(x) instead of our target π(x)

by rejecting some of the proposed values. With importance sampling [Kahn, 1949; Goertzel, 1949],

we use weights to correct for the fact that we sample from the proposal distribution q(x) instead of

the target distribution π(x). In particular, let w(X) = π(X)
q(X) denote the importance sample weight,

then considering the expectation Eπ[h(X)] for some function h, we have

Eπ[h(X)] =

∫ ∞
−∞

h(x) · π(x) dx

=

∫ ∞
−∞

h(x) · π(x)

q(x)︸ ︷︷ ︸
=:w(X)

· q(x) dx

= Eq [h(X) · w(X)] . (2.11)

This suggests that if we can sample X1, . . . , XN ∼ q independently, we can construct a Monte Carlo

estimate of Eπ[h(X)] by applying the strong law of large numbers using

lim
N→N

1

N

N∑
i=1

h(Xi) · w(Xi) = Eπ[h(X)], (2.12)

where Xi ∼ q for i = 1, . . . , N .

Similarly to the rejection sampling method discussed in Section 2.2, we can construct an asymp-

totically unbiased estimator of Eπ[h(X)] even if we only know π up to a multiplicative constant,

i.e. if we only know π(x) = C · f(x). In particular, let w′(X) := f(X)/q(X), then we have

Eq[h(X) · w′(X)]

Eq[w′(X)]
:=

∫∞
−∞ h(x) · f(x)

q(x) · q(x) dx∫∞
−∞

f(x)
q(x) · q(x) dx
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=
1
C

∫∞
−∞ h(x) · π(x) dx
1
C

∫∞
−∞ π(x) dx

= Eπ[h(X)]. (2.13)

If we can sample X1, . . . , XN ∼ q independently, let w(Xi) := w′(Xi)/
∑N

j=1w
′(Xj) denote the

normalised importance weights, then consider the following asymptotically unbiased estimator:

lim
N→∞

1

N

N∑
i=1

h(Xi) · w′(Xi)∑N
j=1w

′(Xj)
= lim

N→∞

N∑
i=1

h(Xi) · w(Xi) = Eπ[h(X)]. (2.14)

This version of importance sampling is called the self-normalised importance sampling and the

algorithm for this approach is presented in Algorithm 2.3.1.

Algorithm 2.3.1 Importance sampling to generate N random samples to approximate π(x) [Kahn,
1949; Goertzel, 1949].

1. For i in 1 to N , simulate Xi ∼ q and set w′(Xi) = f(Xi)
q(Xi)

.

2. For i in 1 to N , set w(Xi) = w′(Xi)/
∑N

j=1w
′(Xj).

3. Return weighted samples {Xi, wi}Ni=1.

Unlike rejection sampling, importance sampling does not obtain independent samples from the

target π. Instead, we obtain a weighted sample approximation to approximate the target and

integrals with respect to it. An illustration of this technique is shown in Figure 2.2. In this figure,

we can see that the proposals that are in regions of low probability density of the target are given

very low weight in comparison to the proposals that fall near the mode of the distribution.
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Figure 2.2: An illustration of the simulation of X ∼ Beta(4, 2) (solid line) via importance sampling
using a uniform distribution as the proposal (dotted line). Crosses denote the proposed samples
and the associated weights are plotted with filled dots with their size proportional to their weights.
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2.4 Series Sampling

With rejection sampling (see Section 2.2) and importance sampling (see Section 2.3), it is assumed

that pointwise evaluations of the target density π are available. However, there are many cases

where we are interested in sampling from a density π which cannot be evaluated exactly at any

point. Series sampling ([Devroye, 1986, Part IV, Chapter 5], [Devroye, 1980]) is a method to draw

random samples from a target density π without the need to exactly evaluate π. As with rejection

sampling, we assume that there exists an accessible dominating density q. However, we now assume

that π can be approximated from above and below by sequences of functions π↑n and π↓n respectively:

1. π(x) ≤M · q(x), where M is a constant, for all x,

2. limn→∞ π
↑
n = π and limn→∞ π

↓
n = π such that π↑n ≤ π ≤ π↓n for all n.

Under these conditions, a series sampler can be implemented. The series sampler is similar to

rejection sampling in that we first draw a proposal sample from the dominating density, X ∼ q.

However, in this setting, since we cannot evaluate π(X) to determine directly whether or not to

accept the sample (with probability Pq(X) := π(X)
M ·q(X)), we employ a similar approach as in inversion

sampling (see Section 2.1) to simulate unbiasedly an event of probability Pq(X). In particular, for

any X ∼ q, we have upper (π↑n(X)) and lower (π↓n(X)) convergent bounding series that we can

iteratively evaluate until a uniform random variable u ∼ U [0, 1] lies below π↓n(X)
M ·q(X) (hence lies under

Pq(X) and we accept the sample) or above π↑n(X)
M ·q(X) (hence lies above Pq(X) so we reject the sample).

We can use this to unbiasedly estimate an event of probability Pq(X) in order to determine whether

to accept or reject a proposal sample X ∼ q as per Algorithm 2.4.1.

Algorithm 2.4.1 Series sampling to generate N random samples from π(x) [Devroye, 1986, Part
IV, Chapter 5], [Devroye, 1980].

1. For i in 1 to N ,
(a) Simulate Xi ∼ q and u ∈ U [0, 1].

(b) While u ∈
(
π↓n(Xi)
M ·q(Xi) ,

π↑n(Xi)
M ·q(Xi)

)
, set n = n+ 1.

(c) If u ≤ π↓n(Xi)
M ·q(Xi) , accept else return to Step 1a.

2. Return samples {Xi}Ni=1.

2.5 Retrospective Bernoulli Sampling

Retrospective Bernoulli Sampling [Beskos et al., 2008] is a method to simulate unbiasedly an event

of some unknown probability p, where p can be expressed as the limit of an alternating Cauchy

sequence (Sk : k ∈ Z≥0). In particular, we assume that p can be expressed as the limit of the

following series of over and under-estimations:

0 < S2 < S4 < S6 < · · · < p < · · · < S5 < S3 < S1 ≤ 1. (2.15)
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Without loss of generality, throughout this thesis (unless otherwise stated), we assume that the

alternating Cauchy sequence have even terms of the sequence, (S2k : k ∈ Z ≥ 0), converging from

below and the odd terms of the sequence, (S2k+1 : k ∈ Z ≥ 0), converging from above. Since

the upper (odd) sub-sequence will be monotonically decreasing and the lower (even) sub-sequence

will be monotonically increasing, we can utilise the series sampling (see Section 2.4) and inversion

sampling (see Section 2.1) approaches to simulate an event of probability p. In particular, we can

draw from a uniform random variable u ∼ U [0, 1] and evaluate the upper and lower sub-sequences

until u /∈ (S2k, S2k+1) and subsequently determine whether u lies above or below p. This argument

is summarised in Algorithm 2.5.1.

Algorithm 2.5.1 Retrospective Bernoulli sampling to simulate unbiasedly an event of probability
p [Beskos et al., 2008].

1. Simulate u ∼ U [0, 1] and set k = 1.
2. While u ∈ (S2k, S2k+1), set k = k + 1.
3. If u ≤ S2k, then return 1, else return 0.

This approach can be extended to cases where p can be represented as the limit of some more general

sequences as long as it is possible to find an alternating Cauchy sequence with which to extract

upper and lower sub-sequences which monotonically converge to p. In particular, there are instances

in this thesis where we require the unbiased simulation of an event of probability p, where p can be

represented as a linear transformation of a number of alternating Cauchy sequences. More formally,

let p := f(p1, . . . , pm) for some linear function f and p1, . . . , pm can be represented as the limit of

alternating Cauchy sequences (S1
k , . . . , S

m
k , where k ∈ Z≥0 respectively). Retrospective Bernoulli

sampling can also be employed in this setting since p can itself be represented as the limit of an

alternating Cauchy sequence by aligning the indices of the Cauchy sequences (Sik : i = 1, . . . ,m) to

ensure that the under and over estimations of p occur on alternating indices. This alignment might

require some of the alternating Cauchy sequences to increase their index by 1. Furthermore, it is

also possible to extend this approach if it is possible to find a sequence that eventually becomes an

alternating Cauchy sequence after the inclusion of the first k̂ terms, say. In this setting, Algorithm

2.5.1 can be directly applied by modifying Step 1 such that k is initially set to be greater than k̂.

2.6 Simulating Poisson processes

This section outlines Monte Carlo methods for simulating Poisson processes which are key in the

construction of the methodology discussed in this thesis.

Definition 2.6.1. Poisson process. A continuous time stochastic process {N(t) : t ≥ 0} is a

Poisson process parametrised with intensity (or rate function) λ(t) if it satisfies the following:

Property 2.6.1. Initial value. N(0) = 0.
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Property 2.6.2. Poisson distributed number of events. The number of events in a time

interval follows a Poisson distribution:

N(t+ s)−N(t) ∼ Poi

(∫ t+s

t
λ(u) du

)
. (2.16)

Property 2.6.3. Independent increments. The number of events occuring in any two disjoint

time intervals are independent: If r < r+s ≤ t < t+s, then [N(t+s)−N(t)] ⊥⊥ [N(r+s)−N(s)].

In this section, we focus on how to simulate Poisson process sample paths. A detailed account

of Poisson processes can be found in a number of texts (see for instance [Cox and Isham, 1980],

[Devroye, 1986, Chapter VI], [Kingman, 1992], [Daley and Vere-Jones, 2003, 2008]).

2.6.1 Time-Homogeneous Poisson process

To simulate sample paths of Poisson processes, it is sufficient to simulate the sample path event

times. A Poisson process is time-homogeneous Poisson process if it also has the following property:

Property 2.6.4. Independent and identically distributed increments. If s ≤ r < r + s ≤
t < t+ s then [N(t+ s)−N(t)] ⊥⊥ [N(r + s)−N(r)] ⊥⊥ N(s) ∼ Poi(λs).

In this section, we outline a method for simulating paths of time-homogeneous Poisson processes

with constant intensity λ (i.e. λ(t) = λ for all t). Using Property 2.6.4, for any given sample path,

we can directly simulate the number of events that occur in the interval [0, t] since N(t) ∼ Poi(λt).

Further, it can be shown that conditional on the number events that occur in [0, t], the event times

are uniformly distributed on the interval [Kingman, 1992, Chapter 2.4]: Suppose n is the total

number of events that occur in [0, t] (N(t) = n), and we are interested in how many of those n

events occur in the sub-interval [0, r] ⊂ [0, t]. Since at most k ≤ n events could occur in [0, r] and

using Property 2.6.4, we have

P(N(r) = k|N(t) = n) =
P(N(r) = k) · P(N(t)−N(r) = n− k)

P(N(t) = n)

=
n!

(n− k)!k!
· [exp(−λr)(λr)k] · [exp(−λ(t− r))(λ(t− r))n−k]

exp(−λt)(λt)n

=
n!

(n− k)!k!
· r

k(t− r)n−k

tn

=

(
n

k

)
pk(1− p)n−k, (2.17)

where p = r
t . Therefore, P(N(r) = k|N(t) = n) is the probability that k out of n independent

U [0, t] random variables fall in the interval [0, r]. This gives a possible algorithm to simulate a

time-homogeneous Poisson process which is presented in Algorithm 2.6.1.
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Algorithm 2.6.1 Time-homogeneous Poisson process simulation [Kingman, 1992].

1. Simulate n ∼ Poi(λt).
2. If n 6= 0,

(a) Simulate u1, . . . , un
iid∼ U [0, t].

(b) Set q1, . . . , qn to be the order statistics of the set {u1, . . . , un}.
3. Return event times {qi}ni=1.

2.6.2 Time-Inhomogeneous Poisson process

If the intensity of the Poisson process λ(t) does depend on time t, then the Poisson process is

said to be time-inhomogeneous. We can simulate from a time-inhomogeneous Poisson processes

with intensity λ(t) by simulating a dominating time-homogeneous Poisson process with constant

intensity Λ (such that for all t, λ(t) ≤ Λ) and conduct Poisson Thinning (or colouring [Kingman,

1992, Chapter 5.1]).

Consider a time-homogeneous Poisson process {N(t) : t ≥ 0} with intensity Λ where each event

is classified either as a ‘Type 1’ event (with probability p) or a ‘Type 2’ event (with probability

(1− p)). Note that the number of ‘Type 1’ events, N1(t), given the total number of events, N(t),

follows a binomial distribution. Let N1(t) and N2(t) denote the number of events classified as ‘Type

1’ and ‘Type 2’ respectively and noting N(t) = N1(t) +N2(t), we have

P(N1(t) = n,N2(t) = m) =
∞∑
k=0

P(N1(t) = n,N2(t) = m|N(t) = k) · P(N(t) = k)

= P(N1(t) = n,N2(t) = m|N(t) = n+m) · P(N(t) = n+m)

=

(
(n+m)!

n!m!
pn(1− p)m

)
· exp(−Λt)(Λt)n+m

(n+m)!

=
exp(−Λpt)(Λpt)n

n!
· exp(−Λ(1− p)t)(Λ(1− p)t)m

m!
, (2.18)

and hence {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are two independent Poisson processes. We can view

the time-homogeneous Poisson process with intensity Λ as arising from the superposition of a target

time-inhomogeneous Poisson process with intensity λ(t) and another with intensity (Λ−λ(t)). Any

event arising at time q can be assigned to the target Poisson process (with intensity λ(t)) with

probability λ(q)
Λ . This argument is summarised in Algorithm 2.6.2.

Algorithm 2.6.2 Time-inhomogeneous Poisson process simulation [Kingman, 1992].

1. Simulate proposal event times (p1, . . . , pn) of a time-homogeneous Poisson process with in-
tensity Λ as per Algorithm 2.6.1.

2. If n 6= 0, set j = 0 and for i in 1 to n,
(a) With probability λ(pi)

Λ , set j = j + 1 and qj = pi.
3. Return event times {qi}ni=1.
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Chapter 3

Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC) methods are a class of Monte Carlo methods that sample sequentially

from a sequence of target probability densities {πn(x0:n)} of increasing dimension, where x0:n =

(x0, . . . ,xn) and each density is defined on a product space X n+1 with

πn(x0:n) =
γn(x0:n)

Zn
, (3.1)

where γn : X n → R+ is known pointwise and the normalising constant,

Zn =

∫
γn(x0:n) dx0:n, (3.2)

might be unknown. SMC methodology provides an approximation of πn(x0:n) and an estimate

of Zn sequentially for each n, whereby the approach first approximates π0(x0) and estimates Z0

at time 0, and then an approximation of π1(x0:1) and an estimate of Z1 in obtained at time

1, and so on. Naturally, this methodology is often used for estimating unknown quantities where

observations arrive sequentially in time where it is possible to perform on-line inference by updating

the posterior distribution based on incoming data. As such, SMC has a wide variety of applications

including signal processing and target tracking [Gordon et al., 1993; Arulampalam et al., 2002],

audio enhancement [Godsill et al., 2002; Vermaak et al., 2002], financial modelling [Lopes and Tsay,

2011; Creal, 2012], genetics [Bouchard-Côté et al., 2012] among many others.

In Part II of this thesis, we develop a Fusion methodology for combining sample approximations of

distributions that is subsequently embedded within a SMC algorithm. In this chapter, we provide

a brief overview of this background material. A number of detailed tutorials and texts of SMC

can be found, such as Doucet et al. [2001]; Liu [2001]; Maskell and Gordon [2002]; Chopin [2002];

Doucet and Johansen [2011]; Chopin and Papaspiliopoulos [2020]. In this chapter, we follow the

standard SMC notation as used in Doucet and Johansen [2011].
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Consider approximating the probability density πn(x0:n) for some fixed n. Suppose we have N

samples from independent random variables, Xi
0:n ∼ πn(x0:n) for i = 1, . . . , N , then the Monte

Carlo method (see Chapter 2) approximates the target distribution (with density πn(x0:n)) by the

empirical measure,

π̂n(x0:n) =
1

N

N∑
i=1

δXi
0:n

(x0:n), (3.3)

where δy(x) denotes the Dirac delta mass located at y. Furthermore, we can approximate any

marginal distribution, xk for k = 0, . . . , n, using

π̂n(xk) =
1

N

N∑
i=1

δXi
k
(xk). (3.4)

As discussed in Chapter 2, given N independent samples, Xi
0:n ∼ πn(x0:n) for i = 1, . . . , N ,

expectations of any test function hn : X n+1 → R, given by

In(hn) := Eπn [hn(X0:n)]

=

∫
hn(x0:n) · πn(x0:n) dx0:n, (3.5)

can be unbiasedly estimated using the Monte Carlo estimate,

ÎMC
n (hn) :=

∫
hn(x0:n) · π̂n(x0:n) dx0:n

=
1

N

N∑
i=1

hn(Xi
0:n). (3.6)

The variance of this estimator is given by

V
[
ÎMC
n

]
=

1

N

(∫
h2(x0:n) · πn(x0:n) dx0:n − I2

n(hn)

)
, (3.7)

and hence the variance of the Monte Carlo estimator decreases at a rate of O(1/N) regardless of

the dimension of the space X n+1. However, the method can be difficult to implement if πn(x0:n) is

high dimensional. Further, the cost of sampling exactly from πn(x0:n) sequentially for each value of

n is typically at least linear. We can address these problems with importance sampling (see Section

2.3) and sequential importance sampling which we discuss in Section 3.1. In Section 3.2, we look

at the problem of importance weight degeneracy which sequential importance sampling approaches

will suffer from, and standard resampling techniques that can be employed to remedy this problem.

Having introduced the main ideas within SMC, we present a generic SMC algorithm in Section

3.3. Finally, we briefly overview the Divide-and-Conquer Sequential Monte Carlo (D&C-SMC)

framework of Lindsten et al. [2017] which generalises the classical SMC framework from sequences

to trees (like the ones illustrated in Figures 6.1 and 6.2) in Section 3.4.

27



3.1 Sequential importance sampling

3.1.1 Importance sampling

We first start this section by discussing how importance sampling (see Section 2.3) can be applied

in this setting to approximate πn(x0:n) in (3.1). To implement an importance sampler, we first

introduce a joint proposal density, qn(x0:n), such that πn(x0:n) > 0 =⇒ qn(x0:n) > 0, so we can

write the target as

πn(x0:n) =
γn(x0:n)

Zn

=

γn(x0:n)
qn(x0:n) · qn(x0:n)

Zn

=
w′n(x0:n) · qn(x0:n)

Zn
, (3.8)

where

Zn =

∫
w′n(x0:n) · qn(x0:n) dx0:n, (3.9)

and w′n(x0:n) denotes the un-normalised importance weight function,

w′n(x0:n) =
γn(x0:n)

qn(x0:n)
. (3.10)

This suggests that if we can sample X
(1)
0:n, . . . , X

(1)
0:n ∼ qn(x0:n) independently and assign the samples

normalised importance weights, w
(i)
n := w′n(X

(i)
0:n)/

∑N
j=1w

′
n(X

(j)
0:n) for i = 1, . . . , N , then we can

construct the following empirical Monte Carlo measure,

π̂n(x0:n) =
N∑
i=1

w(i)
n · δX(i)

0:n

(x0:n), (3.11)

and approximate the normalising constant using

Ẑn =
1

N

N∑
i=1

w′n(X
(i)
0:n). (3.12)

Further, if we are interested in estimating In(hn) in (3.5) for some test function h, then by applying

the same argument as in (2.13), we can use the importance sampling estimate,

ÎISn (hn) :=

∫
hn(x0:n) · π̂n(x0:n) dx0:n

=

N∑
i=1

w(i)
n · hn(X

(i)
0:n). (3.13)
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Doucet and Johansen [2011, Section 3.2] notes that unlike ÎMC
n in (3.6), ÎISn is biased for finite

sample size N . However, it is consistent and is asymptotically unbiased. Further, if the normalising

constant is known analytically, then it is possible to obtain an unbiased importance sampling

estimate of In(hn) but this estimator will generally have higher variance.

3.1.2 Sequential importance sampling

For sequential importance sampling, we select a proposal distribution which is chosen such that it

allows for recursive updates and has the following structure:

qn(x0:n) = qn−1(x0:n−1) · qn(xn|x0:n−1)

= q0(x0)
n∏
k=1

qk(xk|x1:k−1). (3.14)

In practice, we draw a sample particle X0:n ∼ qn(x0:n) at time n by first sampling X0 ∼ q0(x0)

at time 0, and then Xk ∼ qk(xk|X1:k−1) at time k for k = 1, . . . , n. The associated un-normalised

importance weights also have a recursive form given by the following decomposition

w′n(x0:n) =
γn(x0:n)

qn(x0:n)

=
γn−1(x0:n−1)

qn−1(x0:n−1)
· γn(x0:n)

γn−1(x0:n−1) · qn(xn|x0:n−1)

= w′n−1(x0:n−1) · α(x0:n)

= w′0(x0)
n∏
k=1

αk(x0:k), (3.15)

where we denote αn(x0:n) as the incremental importance weight function given by

αn(x0:n) =
γn(x0:n)

γn−1(x0:n−1) · qn(xn|x0:n−1)
. (3.16)

Applying a similar argument to Section 2.3, we present a general sequential importance sampling

algorithm to approximate from πn(x0:n) in Algorithm 3.1.1. At any time, n, we can obtain estimates

π̂n(x0:n) (using (3.11)) and Ẑn (using (3.12)) for πn(x0:n) and Zn, respectively.

3.2 Sequential importance resampling

A key drawback of the sequential importance sampling approach detailed in Section 3.1 and Algo-

rithm 3.1.1 is that is suffers from weight degeneracy, which is the phenomenon whereby the particle

set on average becomes increasingly dominated by heavily weighted particles. The variance of

resulting estimates increase exponentially with n [Kong et al., 1994]. To combat this, resampling

techniques are commonly employed.
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Algorithm 3.1.1 Sequential importance sampling to generate N random samples to approximate
πn(x0:n) [Gordon et al., 1993].

1. Initialisation Step (k = 0):
(a) For i = 1, . . . , N ,

i. Simulate X
(i)
0 ∼ q0(x0).

ii. Set w′0(X
(i)
0 ) = π0(X

(i)
0 )/q0(X

(i)
0 ).

(b) For i = 1, . . . , N ,

i. Set w
(i)
0 := w′0(X

(i)
0 )/

∑N
j=1w

′
0(X

(j)
0 ).

2. Iterative Update Steps (For k = 1, . . . , n):
(a) For i = 1, . . . , N ,

i. Simulate X
(i)
k ∼ qk(xk|X

(i)
1:k−1).

ii. Set X
(i)
0:k =

(
X

(i)
0:k−1, X

(i)
k

)
.

iii. Set w′k(X
(i)
0:k) = w

(i)
k−1 · αk(X

(i)
0:k) as per (3.16).

(b) For i = 1, . . . , N ,

i. Set w
(i)
k := w′k(X

(i)
0:k)/

∑N
j=1w

′
k(X

(j)
0:k).

3. Return weighted samples
{
X

(i)
0:n, w

(i)
n

}N
i=1

.

Recall from Sections 2.3 and 3.1, the importance sampling approximation, π̂n(x0:n), of the tar-

get distribution, πn(x0:n) in (3.11), is constructed by proposing samples from a density qn(x0:n)

and weighting those samples appropriately. Consequently, importance sampling (and sequential

importance sampling) approaches do not provide samples approximately distributed according to

πn(x0:n). To obtain approximate samples from πn(x0:n), we can sample from the importance

sampling approximation π̂n(x0:n). This is called resampling, where we sample from the empirical

distribution π̂n(x0:n), which itself was obtained by sampling. As a result of resampling, we obtain

equally weighted samples, {X̌(i)
0:n,

1
N }

N
i=1, which can be used to approximate the target distribution

using the resampled empirical measure, denoted

π̌(x0:n) =
N∑
i=1

N
(i)
n

N
· δ
X

(i)
0:n

(x0:n) =
1

N

N∑
i=1

δX̌i
0:n

(x0:n), (3.17)

where {X̌(i)
0:n}Ni=1 denote the resampled particles, and N

(i)
n denotes the number of offspring of each

particle X
(i)
0:n (i.e. the number of times each particle is resampled) for i = 1, . . . , N .

The simplest resampling method is multinomial resampling (first introduced by Gordon et al.

[1993]), where we select the ith particle, Xi
0:n, with probability w

(i)
n (the normalised weight for par-

ticle i). The importance weights are then reset after to have equal weighting. If we wanted to obtain

N samples, we would simply resample N times from π̂n(x0:n) according to the normalised weights

{w(i)
n }ni=1. Consider the number of offspring, N

(i)
n , of each particle X

(i)
0:n, then with multinomial

resampling, (N
(1)
n , . . . , N

(N)
n ) follows a multinomial distribution parameterised with N trials with

probabilities given by the weights, (w
(i)
n , . . . , w

(N)
n ). Other popular resampling methods include
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systematic resampling [Carpenter et al., 1999; Fearnhead, 1998], stratified resampling [Kitagawa,

1996] and residual resampling [Higuchi, 1997; Liu and Chen, 1998; Whitley, 1994]. More details

on resampling methods, and comparisons between them, can be found in a number of texts, such

as Doucet et al. [2001]; Douc et al. [2005]; Gerber et al. [2019]. With any resampling method, we

wish to ensure that it is unbiased (i.e. E[N
(i)
n |w(i)

n ] = N ·w(i)
n for all i = 1, . . . , N) while minimising

the additional variance, V[N
(i)
n |w(i)

n ], which is consequently introduced as a result of resampling.

By resampling, we are able to obtain samples distributed approximately according to πn(x0:n).

However, if we are interested in estimating integrals with respect to πn(x0:n), for instance In(hn) in

(3.13), we obtain an estimate with lower variance using π̂n(x0:n) than that which we would obtain

by using the resampled empirical measure, π̌n(x0:n), since resampling introduces additional variance

[Chopin, 2004]. The key advantage of resampling is that we are able to remove particles with low

weights with a high probability. In a sequential framework, this can be have computational benefits

since we do not carry forward particles with low weights and instead focus our computational efforts

on regions of high probability mass. Intuitively, resampling can be seen to be a tool which provides

stability of the algorithm in the future at the cost of increase in immediate Monte Carlo variance.

Incorporating resampling methodologies within Algorithm 3.1.1 leads to the sequential importance

resampling (SIR) (sometimes referred to as sequential importance sampling / resampling (SISR))

algorithm which is presented in Algorithm 3.2.1.

3.3 A generic sequential Monte Carlo algorithm

Resampling has the effect of removing particles with low weights and multiplying particles with

higher weights. However, as noted in the previous section, this comes with the cost of immediately

adding variance. In practice, it is more sensible to only resample when we observe weight degeneracy

as resampling may be unnecessary otherwise. As proposed by Kong et al. [1994], we can monitor

weight degeneracy by computing the effective sample size (ESS). The ESS of a particle set is defined

as the equivalent number of independent samples generated directly form the target distribution,

which yields the same efficiency in the estimation obtained by importance sampling. Kong [1992]

provides a possible mathematical definition which considers the ESS as a function proportional to

the ratio between the variance of the Monte Carlo estimator in (3.6) (obtained by drawing samples

directly from the target) over the variance of the importance sampling estimate in (3.13) (obtained

using any importance sampling approach including sequential algorithms). This heuristic cannot

be readily evaluated, however, Kong et al. [1994] proposed an approximation given by

ÊSS :=

(
N∑
i=1

(
w(i)
n

)2
)−1

∈ [1, N ]. (3.18)

The interpretation is that inference based on theN weighted samples is approximately equivalent (in

terms of estimator variance) to inference based on ESS direct samples from the target distribution.
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Algorithm 3.2.1 Sequential importance resampling to generate N random samples to approximate
πn(x0:n) [Gordon et al., 1993].

1. Initialisation Step:
(a) For i = 1, . . . , N ,

i. Simulate X
(i)
0 ∼ q0(x0).

ii. Set w′0(X
(i)
0 ) = π0(X

(i)
0 )/q0(X

(i)
0 ).

(b) For i = 1, . . . , N ,

i. Set w
(i)
0 := w′0(X

(i)
0 )/

∑N
j=1w

′
0(X

(j)
0 ).

(c) For i = 1, . . . , N ,

i. Resample X̌
(i)
0 ∼ π̂0(x0) and set w

(i)
0 = 1

N to obtain weights to obtain N equally

weighted particles,
{
X̌

(i)
0 , 1

N

}N
i=1

.

2. Iterative Update Steps (For k = 1, . . . , n):
(a) For i = 1, . . . , N ,

i. Simulate X
(i)
k ∼ qk(xk|X̌

(i)
1:k−1).

ii. Set X
(i)
0:k =

(
X̌

(i)
0:k−1, X

(i)
k

)
.

iii. Set w′k(X
(i)
0:k) = w

(i)
k−1 · αk(X

(i)
0:k) as per (3.16).

(b) For i = 1, . . . , N ,

i. Set w
(i)
k := w′k(X

(i)
0:k)/

∑N
j=1w

′
k(X

(j)
0:k).

(c) For i = 1, . . . , N ,

i. Resample X̌
(i)
0:k ∼ π̂0(x0:k) and set w

(i)
0 = 1

N to obtain weights to obtain N equally

weighted particles,
{
X̌

(i)
0:k,

1
N

}N
i=1

.

3. Return weighted samples
{
X

(i)
0:n, w

(i)
n

}N
i=1

or resampled particles
{
X̌

(i)
0:n,

1
N

}N
i=1

.

In practice, we use (3.18) to determine if resampling is necessary and resample only when ÊSS

falls below some user-specified threshold, Nthr; typically Nthr = N
2 . This leads to the extension

of the SIR algorithm (Algorithm 3.2.1) and gives us a generic SMC algorithm which incorporates

adaptive resampling. We summarise these arguments in Algorithm 3.3.1.

Although resampling mitigates some of the effects of weight degeneracy, it can cause sample degen-

eracy which is the phenomenon whereby after sufficiently many time steps, every resampling step

reduces the number of unique values representing the variables at the start of the sequence, i.e.

x0, x1, etc. For this reason, any SMC algorithm that relies on the distribution of full paths, x0:n,

will fail for large enough n for any finite sample size. However, as noted by Doucet and Johansen

[2011], this problem is a manifestation of a deeper problem which resampling actually mitigates. It

is inherently impossible to accurately represent a distribution on a space of arbitrarily high dimen-

sion with a sample of fixed, finite sample size. Sample impoverishment is a term which is used to

describe the situation in which very few different particles have significant weight. This problem

can occur if resampling is not utilised since taking the product of many incremental importance

weights over many time steps will ultimately lead to high variance in the importance weights.
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Algorithm 3.3.1 Sequential Monte Carlo (with adaptive resampling) to generate N random sam-
ples to approximate πn(x0:n) [Gordon et al., 1993; Kong, 1992; Kong et al., 1994].

1. Initialisation Step:
(a) For i = 1, . . . , N ,

i. Simulate X
(i)
0 ∼ q0(x0).

ii. Set w′0(X
(i)
0 ) = π0(X

(i)
0 )/q0(X

(i)
0 ).

(b) For i = 1, . . . , N ,

i. Set w
(i)
0 := w′0(X

(i)
0 )/

∑N
j=1w

′
0(X

(j)
0 ).

(c) Compute effective sample size ÊSS as per 3.18

i. If ÊSS ≤ Nthr, for i = 1, . . . , N , resample X̄
(i)
0 ∼ π̂0(x0) and set w̄

(i)
0 = 1

N .

ii. If ÊSS > Nthr, for i = 1, . . . , N , let X̄
(i)
0 = X

(i)
0 and w̄

(i)
0 = w

(i)
0 .

2. Iterative Update Steps (For k = 1, . . . , n):
(a) For i = 1, . . . , N ,

i. Simulate X
(i)
k ∼ qk(xk|X̄

(i)
1:k−1).

ii. Set X
(i)
0:k =

(
X̄

(i)
0:k−1, X

(i)
k

)
.

iii. Set w′k(X
(i)
0:k) = w

(i)
k−1 · αk(X

(i)
0:k) as per (3.16).

(b) For i = 1, . . . , N ,

i. Set w
(i)
k := w′k(X

(i)
0:k)/

∑N
j=1w

′
k(X

(j)
0:k).

(c) Compute effective sample size ÊSS as per 3.18

i. If ÊSS ≤ Nthr, for i = 1, . . . , N , resample X̄
(i)
0:k ∼ π̂0:k(x0:k) and set w̄

(i)
0:k = 1

N .

ii. If ÊSS > Nthr, for i = 1, . . . , N , let X̄
(i)
0:k = X

(i)
0:k and w̄

(i)
0:k = w

(i)
0:k.

3. Return weighted samples
{
X

(i)
0:n, w

(i)
n

}N
i=1

or resampled particles
{
X̌

(i)
0:n,

1
N

}N
i=1

.

It is not possible to circumvent these problems by increasing the number of samples at every

iteration to maintain a constant effective sample size, as this would lead to an exponential growth

in the number of samples required. Doucet and Johansen [2011] views resampling as ‘resetting the

system’, as its representation of final time marginals remain well behaved at the expense of further

diminishing the quality of the path samples. By focusing on fixed-dimensional time marginals, we

can circumvent the problem of increasing dimensionality.

3.4 Divide-and-Conquer Sequential Monte Carlo

The SMC algorithms discussed so far approximate some sequence of probability distributions of

interest, {πk(xk) : k = 0, . . . , n}. This is achieved by simulating a collection of N normalised

weighted particles {X(i)
k , w

(i)
k }

N
i=1 such that the kth marginal distribution can be approximated by

the weighted empirical distribution

π̂k(xk) =
N∑
i=1

w
(i)
k δX(i)

k

(xk). (3.19)
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For SMC methods, the weighted particles are generated sequentially whereby the particles simulated

at iteration k depends on the particles generated up to iteration (k−1). Lindsten et al. [2017] notes

that for many statistical models, a sequential decomposition (illustrated in Figure 3.1a) might not be

the most natural, nor computationally efficient, way of approaching a particular inference problem.

Instead, Lindsten et al. [2017] introduced a recursive divide-and-conquer approach based upon an

auxiliary tree-structured decomposition of the inference problem, in which multiple independent

populations of weighted particles are resampled, merged and propagated as the method progresses.

In the Divide-and-Conquer Sequential Monte Carlo (D&C-SMC) approach [Lindsten et al., 2017],

inference on a multivariate distribution is performed by first splitting the collection of variables

into disjoint sets and defining suitable auxiliary target distributions for each of these sets. This

can have computational benefits since sampling from these distributions is typically easier than

sampling from the original distribution and can be done in parallel. The resulting samples are

then merged to provide an approximation to the original multivariate distribution of interest. For

example, one model class which Lindsten et al. [2017] suggest D&C-SMC can potentially be useful

are Bayesian hierarchical models. Essentially, D&C-SMC splits the overall inferential task into a

collection of simpler distributions to sample from. At any intermediate iteration of the D&C-SMC

algorithm, multiple independent sets of weighted particles are obtained to approximate the inter-

mediate auxiliary target distributions. These are then subsequently merged and propagated as the

algorithm progresses towards obtaining a weighted particle set to approximate the original distri-

bution of interest. Standard SMC methodology is employed to propagate the weighted particles

at each step of the algorithm. In this section, we describe the D&C-SMC approach outlined in

Lindsten et al. [2017].

The D&C-SMC methodology generalises the classical SMC framework from sequences/chains to

trees. To illustrate this difference, graph notation is used to describe the execution flow of the al-

gorithm. In Figure 3.1a, a sequence of distributions are organised along a chain, where subsequent

distribution are associated with neighbouring nodes on a chain. Each node corresponds to a sequen-

tial importance sampling step (which can include resampling steps if necessary), which are labelled

by the corresponding target distribution at that step. Arrows illustrate the recursive dependencies

of the SMC algorithm. In contrast, a general divide-and-conquer approach, the distributions are

organised by a tree denoted T = (V, E) with vertices V and (directed) edge set E . We assume that

we have a collection of auxiliary distributions {πk : k ∈ V}. Whilst a classical SMC algorithm

would have a chain of distributions and V = {0, 1, . . . , n}, we now generalise V = {v0, v1, . . . } to be

nodes in a tree. Let v0 = Root(T) denote the root of the tree (which represents the distribution or

density of interest, i.e. πv0 corresponds to the target density), Leaf(T) denote the leaves of the tree

and Ch(v) denote the children of vertex v ∈ V where Ch(t) = ∅ if t is a leaf. The directed edges in

the tree are used to illustrate the computational flow of D&C-SMC and an example is provided in

Figure 3.1b. Here, each node corresponds to a target distribution {πv : v ∈ V}, which are sampled

by merging and propagating samples from the children of each vertex, Ch(v) = (c1, . . . , cC).
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(a) Classical SMC sampler.
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88
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(b) D&C-SMC [Lindsten et al., 2017].

Figure 3.1: Illustrative comparison of classical SMC sampler and a D&C-SMC sampler.

In D&C-SMC, weighted sample approximations of auxiliary densities obtained at a particular vertex

of a tree are constructed by merging and propagating sample approximations from the children of

the vertex. The spaces on which the vertex distributions are defined are constructed recursively,

Xv =
(
⊗u∈Ch(v)Xc

)
× X̃v, (3.20)

where the incremental set X̃v can be chosen arbitrarily. In the case where X̃v = ∅, Xv is simply

the joint distribution of the variables defined by the children of vertex v. SMC methodology is

iteratively applied to work through the vertices of the tree from the leaves of the tree to the root,

using at each stage the output of one step as the input for the subsequent steps in the algorithm. The

D&C-SMC approach takes a “bottom-up” approach where auxiliary target distributions defined

by the vertices of the tree are approximated by weighted samples by repeated application of SMC

methodology. The algorithm is described by Lindsten et al. [2017] by specifying the operations

that are carried out at each vertex of the tree which leads to a recursive definition of the method.

For each vertex v ∈ V, a procedure dc smc(v) (as given in Algorithm 3.4.1) which returns a

weighted particle population {X(i)
v , w

(i)
v }Ni=1 to approximate πv, the normalising constant Zv (such

that πv(xv) = γv(xv)/Zv) and any expectations with respect to πv.

D&C-SMC begins by obtaining a particle approximation of πc for each child note u ∈ Ch(v) by a

recursive call. Jointly these particle populations provide an approximation of the product measure

⊗u∈Ch(v)πc(dxc) ≈ ⊗u∈Ch(v)π̂
N
c (dxc). (3.22)

This point-mass approximation has support on N |Ch(v)| points, although these points are implic-

itly given by the N · |Ch(v)| unique particles (assuming no duplicates among the particles in the

individual child populations). Composing all possible permutations of the samples of the children

distributions can be performed at the expense of a computational cost of O(N |Ch(v)|). Lindsten

et al. [2017] termed this approach mixture resampling but noted that in order to obtain a more

computationally manageable approximation of the product measure, we can alternatively generate

N samples from the approximation in (3.22). This is equivalent to resampling each child particle
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Algorithm 3.4.1 Divide-and-Conquer SMC [Lindsten et al., 2017, Algorithm 2]: dc smc(v).

1. For u ∈ Ch(v),

(a)
{
X

(i)
u , w

(i)
u

}N
i=1
← dc smc(c).

(b) Resample
{
X

(i)
u , w

(i)
u

}N
i=1

to obtain an equally weighted particle population
{
X̌

(i)
u , 1

}N
i=1

.

2. For i = 1, . . . , N ,

(a) If X̃v 6= ∅, simulate X̃
(i)
v ∼ qv

(
·
∣∣∣X̌(i)

c1 , . . . , X̌
(i)
cC

)
where Ch(v) := (c1, c2, . . . , cC). Other-

wise, set X̃
(i)
v ← ∅.

(b) Set X
(i)
v =

(
X̌

(i)
c1 , . . . , X̌

(i)
cC , X̃

(i)
v

)
.

(c) Set

w′v

(
X(i)
v

)
=

γv

(
X

(i)
v

)
∏
u∈Ch(v) γu

(
X̌

(i)
u

) · 1

qv

(
X̃

(i)
v

∣∣∣X̌(i)
c1 , . . . , X̌

(i)
cC

) . (3.21)

3. For i = 1, . . . , N , set w
(i)
v := w′v(X

(i)
v )/

∑N
j=1w

′
k(X

(i)
v ).

4. Return weighted samples
{
X

(i)
v , w

(i)
v

}N
i=1

.

population and creating N equally weighted tuples {(X̌i
c1 , . . . , X̌

i
cC

), 1}Ni=1. We would expect this

basic merging strategy to perform worse than mixture resampling but this approach can be done

in O(N) cost. Alternatively, Lindsten et al. [2017, Section 4.1] also detailed a lightweight mixture

resampling strategy in which more than one permutation, but not all possible permutations, are

used and found it to work well; as noted by Kuntz et al. [2021a] such a strategy can be connected

directly with the theory of incomplete U -statistics and consequently one might hope to realise much

of the benefit of mixture resampling at a much reduced cost (see e.g. Kong and Zheng [2021]).

The proposal sampling in Step 2a is based on user-provided proposal densities qv(·|X̌(i)
c1 , . . . , X̌

(i)
cC )

and has access to the state of all the children Ch(v) := (c1, c2, . . . , cC) of vertex v. For each

i = 1, . . . , N , the particle tuple (X̌i
c1 , . . . , X̌

i
cC

) is generated in the resampling stage, and we then

sample a incremental variables for vertex v successor state X̃i
v ∼ qv(·|X̌

(i)
c1 , . . . , X̌

(i)
cC ). In some cases,

parts of the tree structured decomposition do not require this proposal sampling step namely when

X̃v = ∅. The ith sample at node v of the tree is then constructed in Step 2b by concatenating

the tuple of the resampled child particles (X̌i
c1 , . . . , X̌

i
cC

) and the proposed incremental state X̃i
v

(if it is non-empty). These samples are then importance weighted according to (3.21), where

the weights are given by the ratio of the un-normalised target densities divided by the proposal

density to account for the discrepancy between the target and the proposal with the convention

that
∏
c∈∅(·) = 1 to allow for the importance sampling steps at the leaves of the tree.

Lindsten et al. [2017, Section 3.3] and Kuntz et al. [2021b] provide theoretical results on D&C-

SMC which include the unbiasedness of normalising constants estimates (which are inherited from

standard SMC algorithms [Moral, 2004, Proposition 7.4.1]), strong law of large numbers, finite

sample Lp errors bounds as well as a
√
N -central limit theorem under mild conditions.
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Chapter 4

Path-space simulation of Brownian

motion and diffusions

This chapter reviews several Monte Carlo methods for simulating sample path trajectories of dif-

fusion processes which are relevant to the methodology developed in this thesis. In particular, the

Fusion methodologies discussed in this thesis rely on the computation of unbiased estimators which

arise in the simulation of finite dimensional subsets of diffusion sample paths. We begin the chap-

ter with a brief introduction to Brownian motion and related processes, along with algorithms to

simulate sample path trajectories of those processes in Section 4.1 and Section 4.2. In Section 4.3,

we provide a discussion of diffusions and elements of stochastic calculus which are useful for this

thesis. This is followed by an introduction to algorithms for simulating sample path trajectories of

a class of diffusions in Section 4.4.

4.1 Simulating Brownian Motion and related processes

Brownian Motion (or a Wiener Process) is a continuous time stochastic process which forms the

key building block for simulating sample path trajectories for diffusion processes. The study of

Brownian motion dates back to 1827 when Scottish botanist Robert Brown used a microscope

to observe grains of pollen in water and found that the floating particles were behaving in an

erratic fashion. Although Brown did not provide theory for this phenomenon, it became known

as “Brownian motion”. In 1905, Einstein provided physical theory of Brownian Motion [Einstein,

1905]. A detailed mathematical account of Brownian motion can be found in a number of texts

(see for instance Kloeden and Platen [1992, Section 1.8], Øksendal [2007, Section 2.2], Karatzas

and Shreve [1991, Chapter 2], Revuz and Yor [1991, Chapter 1]).

Definition 4.1.1. Brownian motion. A stochastic process W := {Wt : t ≥ 0} is called

(standard) Brownian Motion (or a Wiener Process) if it satisfies the following properties:
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Property 4.1.1. Initial Value. W0 = 0.

Property 4.1.2. Independent increments. Wt−Ws and Wu−Wv are independent for t > s ≥
u > v.

Property 4.1.3. Normally distributed increments. Wt −Ws ∼ N1(0, |t− s|) for s < t.

Property 4.1.4. Continuous paths. Wt is a continuous function of t (with probability 1).

In addition, Brownian motion satisfies several self-similarity properties which mean some transfor-

mations of the process leaves its properties invariant:

Property 4.1.5. Self-similarity Properties. Let Wt be Brownian motion, then the following

processes are also Brownian motion processes:

1. Scaling. Bt = 1
cWc2t where c > 0 is a constant.

2. Symmetry. Bt = −Wt.

3. Increments. Bt = Wt+s −Ws where s is a fixed constant.

4. Time Inversion. Bt = tW1/t where B0 = 0.

4.1.1 Simulating Brownian motion paths

Brownian motion sample paths are continuous and are infinite-dimensional random variables, and

hence it is not possible to simulate and store entire sample path trajectories. However, we can

simulate Brownian motion at any finite number of time points exactly by direct application of

Definition 4.1.1. In particular, it is not possible to simulate W ∼Wx
s,t where Wx

s,t denotes the law

of Brownian motion over time [s, t] with Ws = x (sometimes referred to as the Wiener measure).

Instead, we can attempt to simulate a finite dimensional subset of the sample path (i.e. a skeleton)

which we can use to characterise a Brownian motion sample path. In particular, since W has

independent and normally distributed increments (due to Properties 4.1.2 and 4.1.3), the transition

density of a Brownian motion process is known over any finite interval. We can use these properties

to simulate a sample path of this process over any finite collection of time points, T := {q1, . . . , qn},
via Algorithm 4.1.1. In Figure 4.1, we present an illustration of Brownian motion sample paths

which are simulated on a fine time mesh given by a collection of time points.

Algorithm 4.1.1 Brownian motion simulation at times T := {q1, . . . , qn}.
1. For i in 1 to n,

(a) Simulate Wqi ∼ N1(Wqi−1 , qi − qi−1).
2. Return {Wqi}ni=1.
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Figure 4.1: Brownian motion sample path trajectories, W ∼ W0
0,1, simulated as per Algorithm

4.1.1 on a fine time mesh T = {0, 0.01, . . . , 0.98, 0.99, 1}.

4.1.2 Simulating Brownian bridges paths

Whilst Algorithm 4.1.1 allows us to simulate a Brownian motion sample path at a finite collection

of points, it does not tell us how to further simulate the path between any two consecutive points.

However, as a consequence of Properties 4.1.2, 4.1.3 and the Markov property, the law of the process

between any two consecutive points are conditionally independent of the other simulated points.

Definition 4.1.2. Brownian Bridge. A Brownian Bridge is a Brownian motion conditioned to

have a start point (s,Ws = x) and end point (t,Wt = y), and its law is denoted by Wx,y
s,t .

Suppose we are interested in simulating the position of Brownian motion at an intermediate point

q ∈ (s, t) given the positions Ws and Wt at times s and t respectively. By the Markov property,

P(Wq = w|Ws = x,Wt = y) ∝ P(Wt = y|Wq = w,Ws = x) · P(Wq = w|Ws = x)

= P(Wt = y|Wq = w) · P(Wq = w|Ws = x)

∝ exp

{
−1

2

(y − w)2

(t− q)

}
· exp

{
−1

2

(w − x)2

(q − s)

}
∼ N1

(
(t− q)x+ (q − s)y

(t− s)
,
(t− q)(q − s)

(t− s)

)
. (4.1)

As mentioned in Section 4.1.1, whilst it is not possible to simulate and store entire Brownian

motion sample path trajectories, we can form skeletons of a Brownian motion sample path and can

characterise the sample path using a only finite dimensional subset of the sample path. By using

(4.1), we can now simulate Brownian motion at any desired time point even if the sample path has

already been partially simulated via Algorithm 4.1.2.
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Algorithm 4.1.2 Brownian bridge simulation at times {q1, . . . , qn} given the process at times
{s, q1, . . . , qn, t}.

1. Set S := {(s,Xs), (qi, Xqi)
n
i=1, (t,Xt)}.

2. For i in 1 to n,
(a) Set l := sup{S : S ≤ qi} and r := inf{S : S ≥ qi}.
(b) Simulate Wqi ∼ N1

(
Wl + (qi−l)(Wr−Wl)

r−l , (r−qi)(qi−l)
r−l

)
.

(c) Set S := S ∪ {(qi,Wqi)}.
3. Return {Wqi}ni=1.

By using just the values of sample path at a finite collection of time points, we are able to bypass the

computational and mathematical restrictions that come with the task of simulating entire Brownian

motion sample path trajectories (i.e. required computation is finite and skeleton simulation at any

required time point is exact). This idea of being able to characterise a sample path through a

finite dimensional subset of the path is fundamental to simulating diffusion sample paths later in

Section 4.3 and Section 4.4. We will provide a formal definition of a skeleton of a diffusion sample

path later in Section 4.3 (see Definition 4.3.2), but for now this means being able to characterise a

sample path by only using a finite dimensional subset of the path which can be simulated without

error. Figure 4.2 illustrates several Brownian bridge sample path trajectories.

Time
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Figure 4.2: Brownian bridge sample path trajectories, W ∼W0,0
0,1, simulated as per Algorithm 4.1.2

on a fine time mesh T = {0, 0.01, . . . , 0.98, 0.99, 1}.

4.1.3 Simulating minimum and maximum points of a Brownian bridge

The joint distribution of the minimum value of a Brownian bridge, m̂ := inf{Wq : q ∈ [s, t]}, and

the time at which is attained, τ := sup{q ∈ [s, t] : Wq = m̂} is given in [Karatzas and Shreve, 1991]:

P(m̂ ∈ dw, τ ∈ dq|Ws = x,Wt = y)
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∝ (w − x)(w − y)√
(t− q)3(q − s)3

exp

{
−(w − x)2

2(q − s)
− (w − y)2

2(t− q)

}
dw dq. (4.2)

Beskos et al. [2006a, Section 3.1] showed that it is possible to simulate (τ, µ̂) from (4.2) by first

simulating u1, u2 ∼ U [0, 1] and setting

m̂ = x− 1

2

[√
(y − x)2 − 2(t− s) log(u1)− (y − x)

]
, (4.3)

and

V =

ξ1, where ξ1 ∼ IG
(
y−m̂
x−m̂ ,

(y−m̂)2

t−s

)
if u2 <

x−m̂
x+y−2m̂ ,

1
ξ2
, where ξ2 ∼ IG

(
x−m̂
y−m̂ ,

(x−m̂)2

t−s

)
if u2 ≥ x−m̂

x+y−2m̂ ,
(4.4)

where IG(µ, λ) denotes the inverse Gaussian distribution with density

IG(u;µ, λ) =

√
λ

2πu3
exp

{
−λ(u− µ)2

2µ2u

}
, u > 0. (4.5)

Furthermore, it is also possible to simulate the Brownian bridge sample path minimum conditional

on it occuring within a particular interval m̂ ∈ [a1, a2] where a1 < a2 ≤ (x ∧ y). For instance, we

can simply achieve this via rejection sampling (see Section 2.2) by simulating sample path minima

until one falls within the interval [a1, a2] [Beskos et al., 2006a]. However, as noted in [Pollock et al.,

2016], it is more computationally efficient to simulate the minimum by inversion sampling (see

Section 2.1). In this setting, we modify how the uniform random variable u1 is simulated:

u1 ∼ U [M(a1),M(a2)], where M(a) := exp

{
−2(a− x)(a− y)

(t− s)

}
. (4.6)

Algorithm 4.1.3 provides a summary of the above arguments.

Algorithm 4.1.3 Brownian bridge simulation at its minimum point (constrained to the interval
[a1, a2], where a1 < a2 ≤ (x ∧ y) and conditional on Ws = x and Wt = y) [Pollock et al., 2016,
Algorithm 12].

1. Simulate u1 ∼ U [M(a1),M(a2)], where M(a) := exp
{
−2(a−x)(a−y)

(t−s)

}
and u2 ∼ U [0, 1].

2. Set m̂ = x− 1
2

[√
(y − x)2 − 2(t− s) log(u1)− (y − x)

]
.

3. Set V =

ξ1, where ξ1 ∼ IG
(
y−m̂
x−m̂ ,

(y−m̂)2

t−s

)
if u2 <

x−m̂
x+y−2m̂ ,

1
ξ2
, where ξ2 ∼ IG

(
x−m̂
y−m̂ ,

(x−m̂)2

t−s

)
if u2 ≥ x−m̂

x+y−2m̂ .

4. Set τ := sV+t
1+V .

5. Return (τ, m̂).

We can similarly simulate the maximum of a Brownian bridge sample path, (τ, m̌) where m̌ :=

sup{Wq : q ∈ [s, t]}, by a reflection argument. In particular, by the self-similarity properties of
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Brownian motion (Property 4.1.5), we know that if W is Brownian motion then so is Bt = −Wt. As

a consequence, if we were to reflect the Brownian bridge, W ′ ∼W−x,−ys,t and simulate the minimum

point of this reflected Brownian bridge using Algorithm 4.1.3, then the reflection of the minimum

point is required simulated maximum of W ∼Wx,y
s,t . An algorithm to simulate the maximum point

of a Brownian bridge sample path trajectory is given in Algorithm 4.1.4. Figure 4.3 provides an

illustration of simulated minima and maxima of a Brownian bridge sample path.

Algorithm 4.1.4 Brownian bridge simulation at its maximum point (constrained to the interval
[a1, a2], where (x ∧ y) ≤ a1 < a2 and conditional on Ws = x and Wt = y).

1. Simulate a minimum point (m̂, τ) in the interval [−a2,−a1] conditional on Ws = −x and
Wt = −y, as per Algorithm 4.1.3.

2. Set m̌ = −m̂.
3. Return (τ, m̌).
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(a) Minimum and maximum point simulation of
W ∼W0,1

0,0 without restriction.

Time
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(b) Minimum point simulation of W ∼ W0,0
0,1|m̂ ∈

[−1.5,−0.5] and maximum point simulation of W ∼
W0,0

0,1|m̌ ∈ [1.0, 1.5].

Figure 4.3: An illustration of 10000 minimum and maximum points of Brownian bridge sample
path trajectories simulated as per Algorithm 4.1.3 and Algorithm 4.1.4.

4.1.4 Simulating Bessel bridges

It transpires later in this thesis that it is necessary to simulate a value of a Brownian bridge path

at some time q conditional on a minimum, (τ, m̂), or maximum, (τ, m̌), point of the path. The law

of the remainder of the trajectory of a Brownian bridge path given its minimum or maximum point

is called a Bessel Bridge. Asmussen et al. [1995, Proposition 2] proved that a Bessel bridge can be

constructed using a three-dimensional Brownian bridge of unit length conditioned to start and end

at zero.
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First consider the case that we are interested in simulating the Bessel bridge sample path at some

intermediate time q ∈ (τ, t). We are effectively simulating the value of a Brownian bridge path at

time q, conditioned to some start point (τ, m̂), end point (t, y) and for the path to remain above

m̂ (since it is the minimum of the sample path). By re-scaling location and time and using the

self-similarity properties of Brownian motion (Property 4.1.5), this is equivalent to simulating the

value of the unit length Brownian bridge sample path at time q′ := q−τ
t−τ with start point (0, 0) and

end point (1, y′ = y − m̂) conditioned to remain above 0. The simulated value must then also be

appropriately re-scaled again, so w = Wq′ + m̂. Beskos et al. [2006a, Theorem 2] used this as a

means of simulating intermediate points of a Bessel bridge by first simulating three independent

realisations of a Brownian bridge of unit length conditioned on the start and end points of zero at

time q′, denoted {b1, b2, b3}. We then re-scale the simulated point to obtain

w = m̂+

√√√√(t− τ)

[
(y − m̂)(q − τ)

(t− τ)(t− τ)
1
2

+ b1

]2

+ (t− τ)b22 + (t− τ)b23. (4.7)

If we are interested in simulating the sample path at time q ∈ (s, τ), then we can simply reverse

time and apply similar arguments: consider a Brownian bridge path at a time q with start point

(s, x) and end at (τ, m̂) conditioned to remain above m̂. This is equivalent to simulating at time

q′ = q−s
τ−s with start point at (0, 0) and to end at (1, m̂ − x) and conditioned to remain above 0.

Similarly, we must re-scale the simulated value, w = Wq′ + x.

w = m̂+

√√√√(τ − s)

[
(x− m̂)(τ − q)
(τ − s)(τ − s)

1
2

+ b1

]2

+ (τ − s)b22 + (τ − s)b23 (4.8)

To summarise, the algorithm to simulate a Bessel Bridge at some time q ∈ (s, t) given the minimum

point is given in Algorithm 4.1.5. We can use this algorithm repeatedly to obtain a skeleton to

characterise the sample path.

Algorithm 4.1.5 (Minimum) Bessel bridge simulation at time q ∈ (s, t) conditioned on Ws =
x,Wt = y,Wτ = m̂ [Asmussen et al., 1995; Beskos et al., 2006a], [Pollock et al., 2016, Algorithm
13].

1. If q < τ , then r = s, else r = t.

2. Simulate b1, b2, b3 ∼ N1

(
0, |τ−q|·|q−r|

(τ−r)2

)
.

3. Return Wq := m̂+
√
|τ − r| ·

√(
(Wr−m̂)·|τ−q|
|τ−r|3/2 + b1

)2
+ b22 + b23.

In order to simulate a Bessel bridge given a maximum point m̌, by the Property 4.1.5, we can note

that the maximum of W ∼ Wx,y
s,t is simply minus the minimum of −W ∼ W−x,−ys,t , and hence we

can just apply a reflection argument. In particular, we can apply Algorithm 4.1.5 to simulate an

intermediate point of a reflected Bessel bridge conditional on W ′s = −x, W ′t = −y with minimum
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m̂′ = −m̌ at time τ and then reflect the resulting simulated point along the x-axis. An algorithm

to simulate a Bessel bridge at an intermediate time q ∈ (s, t) given a sample path maximum (m̌, τ)

is given in Algorithm 4.1.6. Figure 4.4 illustrates several Bessel bridge sample path trajectories.

Algorithm 4.1.6 (Maximum) Bessel bridge simulation at time q ∈ (s, t) conditioned on Ws =
x,Wt = y,Wτ = m̌.

1. Simulate intermediate point, W ′q, of a Bessel bridge at time q given W ′s = −x, W ′t = −y and
minimum point W ′τ = −m̌.

2. Set Wq := −W ′q.
3. Return Wq.
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(a) W ∼W0,0
0,1|(τ = 0.5, m̂ = −2).
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(b) W ∼W0,0
0,1|(τ = 0.75, m̌ = 2.5).

Figure 4.4: Bessel bridge sample path trajectories simulated as per Algorithm 4.1.5 and Algorithm
4.1.6 on a fine time mesh T = {0, 0.01, . . . , 0.98, 0.99, 1}.

4.2 Brownian bridge path-space constructions

In the subsequent methodology discussed in this thesis, we require the ability to simulate layered

Brownian bridge sample path skeletons, which are Brownian bridge sample paths with the restric-

tion that they are constrained within a particular interval. In this section, we review methodology

for simulating quantities relating to various Brownian bridge path-space constructions. In Section

4.2.1, we discuss methods for simulating the probability that Brownian and Bessel bridge sample

paths are constrained within particular intervals. Next, in Section 4.2.2, we introduce algorithms

for simulating layered Brownian bridge sample path (in particular, simulating finite dimensional

sample paths, or skeletons, of layered Brownian bridges). These algorithms are detailed in a num-

ber of texts including (but not limited to) Beskos et al. [2008], Beskos et al. [2012], Wang and

Pötzelberger [1997], Pötzelberger and Wang [2001], Chen and Huang [2013], Giesecke and Smelov

[2013], Pollock [2013, Chapter 6] and Pollock et al. [2016, Section 6 and 7]. Here, we follow the

notation of Pollock et al. [2016, Section 6 and 7] to introduce this methodology.
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4.2.1 Simulating Brownian bridge path-space probabilties

The task of simulating events with the probability that a Brownian or Bessel bridge sample path

is constrained within a particular interval is difficult since these probabilities typically can only be

represented as the limit of alternating Cauchy sequences (see Section 2.5) [Wang and Pötzelberger,

1997; Pollock et al., 2016]. We cannot naively approximate these probabilities by truncating the

alternating Cauchy sequences since this ultimately results in bias. However, Beskos et al. [2008]

noted that we can use the Cauchy sequence representations and employ a retrospective Bernoulli

sampling approach (see Section 2.5) to simulate unbiasedly events of these unknown probabilities.

In this section, we outline some results from Pötzelberger and Wang [2001]; Beskos et al. [2008];

Pollock [2013]; Pollock et al. [2016] and methods to (unbiasedly) simulate events with probabilities

that a Brownian or Bessel bridge sample path is contained within a particular interval. Proofs are

not reproduced here but can be found in Pollock [2013, Chapter 6] and references therein.

We begin by considering the probability that {Wu : s ≤ u ≤ t} ∈ [l, v] for some sample path

W ∼ Wx,y
s,t . Following the notation of Pollock et al. [2016], we slightly abuse notation and write

{W ∈ [l, v]} to mean {Wu : s ≤ u ≤ t} ⊆ [l, v]. We denote the probability that a Brownian bridge

sample path W ∼Wx,y
s,t remains in the interval [l, v] as γl,vs,t(x, y).

Theorem 4.2.1. ([Pötzelberger and Wang, 2001, Theorem 3], [Pollock et al., 2016, Theorem 3]).

The probability that a Brownian bridge sample path W ∼ Wx,y
s,t remains in the interval [l, v], i.e.

Wu ∈ [l, v] for all u ∈ [s, t], can be represented by the following infinite series

γl,vs,t(x, y) := P (W ∈ [l, v])

= 1−
∞∑
j=1

{
ς l,vs,t (j;x, y)− ϕl,vs,t(j;x, y)

}
, (4.9)

where

ς l,vs,t (j;x, y) := ς̄ l,vs,t (j;x, y) + ς̄−l,−vs,t (j;−x,−y), (4.10)

ϕl,vs,t(j;x, y) := ϕ̄l,vs,t(j;x, y) + ϕ̄−l,−vs,t (j;−x,−y), (4.11)

and

ς̄ l,vs,t (j;x, y) := exp

{
− 2

t− s
(|v − l|j + (l ∧ v)− x) · (|v − l|j + (l ∧ v)− y)

}
, (4.12)

ϕ̄l,vs,t(j;x, y) := exp

{
− 2j

t− s

(
|v − l|2j + |v − l|(x− y)

)}
. (4.13)

Corollary 4.2.1. ([Beskos et al., 2008, Proposition 2], [Pollock et al., 2016, Corollary 3]) Events

of probability γl,vs,t(x, y) can be simulated by retrospective Bernoulli sampling with the following al-
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ternating Cauchy sequence,

Sγ2k := 1−
k∑
j=1

{
ς l,vs,t (j;x, y)− ϕl,vs,t(j;x, y)

}
, (4.14)

Sγ2k+1 := S2k − ς l,vs,t (k + 1;x, y). (4.15)

As a consequence, events of probability γl,vs,t(x, y) can be simulated unbiasedly by retrospective

Bernoulli sampling as per Algorithm 4.2.1.

Algorithm 4.2.1 Simulating an event of probability γl,vs,t(x, y) [Beskos et al., 2008], [Pollock et al.,
2016].

1. Simulate u ∼ U [0, 1] and set k = 1.

2. While u ∈ (Sγ2k+1, S
γ
2k), where Sγ2k := 1 −

∑k
j=1{ς

l,v
s,t (j;x, y) − ϕl,vs,t(j;x, y)} and Sγ2k+1 :=

Sγ2k − ς
l,v
s,t (k + 1;x, y), then k = k + 1.

3. If u ≤ Sγ2k+1, then u < p so return to 1, or return 0.

We can consider simulating events of probability that a Bessel bridge sample path with known

minimum (or maximum) stays within a particular interval. We begin by focusing on Bessel bridges

with known sample path minimum m̂ and note that we can consider the probability that a Bessel

bridge sample path given the sample path maximum m̌ can be computed by a reflection argument.

Let δm̂,vs,t (x, y) to denote the probability that a Bessel bridge sample path W ∼ Wx,y
s,t |m̂ with

minimum m̂ remains in the interval [m̂, v]. We consider the two possible cases: (i) neither of the

end points are equal to the minimum; and (ii) either one of the end points of the sample path is

equal to the sample path minimum,

δm̂,vs,t (1;x, y) := P (W ∈ [m̂, v]|W ≥ m̂, (x ∧ y) > m̂) , (4.16)

δm̂,vs,t (2;x, y) := P (W ∈ [m̂, v]|W ≥ m̂, (x ∧ y) = m̂) , (4.17)

and note that δm̂,vs,t (x, y) = 1{(x∧y)>m̂} · δ
m̂,v
s,t (1;x, y) + 1{m̂=(x∧y)} · δ

m̂,v
s,t (2;x, y). Firstly, consider

case (i) where neither end points of the sample path attains the Bessel bridge minimum.

Theorem 4.2.2. [Beskos et al., 2008, Proposition 3], [Pollock et al., 2016, Theorem 4]. The

probability that a Bessel bridge sample path W ∼ Wx,y
s,t |m̂ with minimum m̂ < (x ∧ y) remains in

the interval [m̂, v], i.e. Wu ∈ [m̂, v], for all u ∈ [s, t], can be represented as the following infinite

series

δm̂,vs,t (1;x, y) := P(W ∈ [m̂, v]|W ≥ m̂, (x ∧ y) > m̂)

=
γm̂,vs,t (x, y)

1− exp
{
−2 (x−m̂)·(y−m̂)

t−s

} . (4.18)
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Corollary 4.2.2. [Beskos et al., 2008, Proposition 3], [Pollock et al., 2016, Corollary 4]. Events

of probability δm̂,vs,t (1;x, y) can be represented as the limit as k → ∞ of the following alternating

Cauchy sequence,

Sδ,1k :=
Sγk

1− exp
{
−2 (x−m̂)(y−m̂)

t−s

} , (4.19)

i.e. limk→∞ S
δ,1
k = δm̂,vs,t (1;x, y).

Since Sγk is an alternating Cauchy sequence and
(

1− exp
{
−2 (x−m̂)(y−m̂)

t−s

})
is just a constant, then

Sδ,1k is a linear transformation of an alternating Cauchy sequence and therefore Sδ,1k is an alternating

Cauchy sequence itself. This can be used to unbiasedly simulate events of probability δm̂,vs,t (1;x, y).

Now consider case (ii) where either one of the end points attains the Bessel bridge minimum.

Theorem 4.2.3. [Beskos et al., 2008, Proposition 3], [Pollock et al., 2016, Theorem 5]. The

probability that a Bessel bridge sample path W ∼Wx,y
s,t |m̂ with minimum m̂ = x < y remains in the

interval [m̂, v], i.e. Wu ∈ [m̂, v], for all u ∈ [s, t], can be represented as the following infinite series

δm̂,vs,t (2;x, y) := P(W ∈ [m̂, v]|W ≥ m̂, (x ∧ y) = m̂)

= 1− 1

(y − m̂)

∞∑
j=1

{
ψm̂,vs,t (j; y)− χm̂,vs,t (j; y)

}
, (4.20)

where we denote

ψm̂,vs,t (j; y) := (2|v − m̂|j − (y − m̂)) exp

{
−2|v − m̂|j

t− s
(|v − m̂|j − (y − m̂))

}
, (4.21)

χm̂,vs,t (j; y) := (2|v − m̂|j + (y − m̂)) exp

{
−2|v − m̂|j

t− s
(|v − m̂|j + (y − m̂))

}
. (4.22)

Corollary 4.2.3. [Pollock et al., 2016, Corollary 5]. After inclusion of the first k̂ :=

√
(t−s)+|v−m̂|2

2|v−m̂|

terms, δm̂,ys,t (2;x, y) can be represented as the limit as k → ∞ of the following alternating Cauchy

sequence (where k ∈ N such that k ≥ k̂),

Sδ,22k := 1− 1

|x− y|

k∑
j=1

{
ψm̂,vs,t (j; (x ∨ y))− χm̂,vs,t (j; (x ∨ y))

}
, (4.23)

Sδ,22k+1 := Sδ,22k −
1

|x− y|
ψm̂,vs,t (k + 1; (x ∨ y)). (4.24)

Since we can unbiasedly simulate events of probability δm̂,vs,t (1;x, y) and δm̂,vs,t (2;x, y), then events

of probability δm̂,vs,t (x, y) can be simulated as per Algorithm 4.2.2. Further, events of probability

δl,m̌s,t (x, y) can be simulated unbiasedly by applying a reflection argument as per Algorithm 4.2.3.
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Algorithm 4.2.2 Simulating an event of probability δm̂,vs,t (x, y) [Pollock et al., 2016].

1. Simulate u ∼ U [0, 1].
2. If (x ∧ y) > m̂:

(a) Set k = 1.

(b) While u ∈ (Sδ,12k+1, S
δ,1
2k ), where Sδ,1k is defined in (4.19), then k = k + 1.

(c) If u ≤ Sδ,12k+1, then u < p so return to 1, else u > p so return 0.
3. If (x ∧ y) = m̂:

(a) Set k =

√
(t−s)+|v−m̂|2

2|v−m̂| .

(b) While u ∈ (Sδ,22k+1, S
δ,2
2k ), where Sδ,22k and Sδ,22k+1 are defined in (4.23) and (4.24) respec-

tively, then k = k + 1.
(c) If u ≤ Sδ,22k+1, then u < p so return 1, else u > p so return 0.

Algorithm 4.2.3 Simulating an event of probability δl,m̌s,t (x, y).

1. Set x′ = −x, y′ = −y, m̂′ = −m̌ and v′ = −l.
2. Simulate event probability δm̂

′,v′

s,t (x′, y′) as per Algorithm 4.2.2.

4.2.2 Layered Brownian bridge constructions

We now focus on how to construct and simulate finite dimensional skeletons of layered Brownian

bridges which will be instrumental in the development of the methodology in the later sections.

Although there are several different ways to construct layer information of a Brownian bridge sam-

ple path, we focus on the Bessel layer approach [Beskos et al., 2008], [Pollock, 2013, Section 6.2.1],

[Pollock et al., 2016, Section 7.1] in this thesis. Alternative approaches such as the localised ap-

proach [Chen and Huang, 2013; Giesecke and Smelov, 2013; Pollock et al., 2016] or the intermediate

layer approach [Pollock et al., 2016, Section 8] are not discussed here.

The key idea of the Bessel approach to construct layer information for Brownian bridge sample

paths is that finite dimensional subsets of Brownian bridge sample paths can be simulated jointly

with information regarding the interval in which its constrained by partitioning the path-space

with an arbitrary increasing sequence {ai}i≥0, a0 = 0 which radiates outwards from the interval

[(x ∧ y), (x ∨ y)]. Specifically, the ith Bessel layer is defined as

Ii = [(x ∧ y)− ai, (x ∨ y) + ai] . (4.25)

Let Sγk (s, t, x, y, l, v) denote the alternating Cauchy sequence whose limit as k →∞ is γl,vs,t(x, y), then

the smallest Bessel layer, I = l, in which a particular Brownian bridge sample path is constrained

can be simulated unbiasedly by retrospective Bernoulli sampling as per Algorithm 4.2.4. Intuitively,

in Algorithm 4.2.4, we keep extending the Bessel layer and pushing it outwards until an event of

probability γl,vs,t(x, y) occurs (which we simulate through retrospective Bernoulli sampling). In Step

3, we are essentially checking if this event occurs and return the current layer if it does, or extend

the Bessel layer if it does not. An example simulation of a Bessel layer is provided in Figure 4.5.
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Algorithm 4.2.4 Brownian bridge Bessel layer simulation [Pollock et al., 2016, Algorithm 14].

1. Simulate u ∼ U [0, 1] and set l = 1, k = 0.
2. While u ∈

(
Sγ2k+1(s, t, x, y, (x ∧ y)− al, (x ∨ y) + al), S

γ
2k(s, t, x, y, (x ∧ y)− al, (x ∨ y) + al)

)
,

then k = k + 1.
3. If u ≥ Sγ2k, set l = l + 1 and return to Step 2, else set I = l and end.
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Figure 4.5: An illustration of a simulated Bessel layer for a path W ∼ W0,1
−0.4,0.2, where {ai}i≥0 =

{0, 0.2, 0.4, . . . }. The solid lines denotes the interval which constrains the path entirely. The dashed
lines indicate the interval which does not constrain the path, as the path at some point will fall
outside these dotted lines.

After simulating the Bessel layer, we require a method of simulating intermediate points from the

Brownian bridge sample path that is restricted to remain within the Bessel layer simulated. Let

Dl be the set of sample paths which are contained in the lth Bessel layer, we have

Dl = Ll ∪ Ul, (4.26)

where

Ll := {W : m̂s,t ∈ [(x ∧ y)− al, (x ∧ y)− al−1)}
⋂
{W : m̌s,t ∈ [(x ∨ y), (x ∨ y) + al]} , (4.27)

Ul := {W : m̂s,t ∈ [(x ∧ y)− al, (x ∧ y)]}
⋂
{W : m̌s,t ∈ ((x ∨ y) + al−1, (x ∨ y) + al]} . (4.28)

The derivation of this result can be found in Pollock [2013, Section 6.2.1]. Intuitively, Ll is the set

of sample paths where the minimum is on the ‘edge’ of the Bessel layer, and Ul is the set of sample

paths where the maximum is on the ‘edge’ of the Bessel layer. Directly simulating intermediate

points from a sample path with law Dl, denoted Dl, is not possible. However, if we denote

M̂l = {W : m̂s,t ∈ [(x ∧ y)− al, (x ∧ y)− al−1]} ,

M̌l = {W : m̌s,t ∈ [(x ∨ y) + al−1, (x ∨ y) + al]} ,
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we can propose sample paths from the mixture measure Bl := M̂l
2 + M̌l

2 , where M̂l and M̌l are the

law induced by the restricting Wx,y
s,t to M̂l and M̌l, respectively, and accept them with probability

given by the Radon-Nikodým derivative of Dl with respect to Bl given by Beskos et al. [2008]:

dDl
dBl

(x) ∝ 1(W ∈ Dl)

1 + 1(W ∈ (M̂l ∩ M̌l))
. (4.29)

Therefore, sample paths can be drawn from Dl by proposing from Bl := M̂l
2 + M̌l

2 and then accepting

the path with probability (4.29). In particular, with probability 1/2, we sample from M̂l (or M̌l)

and accept with probability 1 if the sample path is contained within the (l−1)th Bessel layer since,

dDl
dBl

(x) ∝ 1(W ∈ Dl)

1 + 1(W ∈ (M̂l ∩ M̌l))
=

1

1 + 0
= 1, (4.30)

or we accept the sample path with probability 1/2 if the maximum is contained between the (l−1)th

and lth Bessel layer since

dDl
dBl

(x) ∝ 1(W ∈ Dl)

1 + 1(W ∈ (M̂l ∩ M̌l))
=

1

1 + 1
=

1

2
, (4.31)

and 0 otherwise and reject the sample path.

As noted by Beskos et al. [2008] and Pollock et al. [2016], we are not able to directly evaluate

(4.29). However, we are able to obtain an unbiased estimate using results stated in Section 4.2.1.

In particular, with probability 1/2, we simulate the sample path minimum Wτ := m̂s,t as per

Algorithm 4.1.3. We can then simulate any required intermediate points ξ1, . . . , ξκ from the Bessel

bridge conditional on the minimum as per Algorithm 4.1.5. Let χ1, . . . , χκ+3 be the order statistics

of {ξ1, . . . , ξκ, s, τ, t}, then

PM̂l
(X ∈ Dl) = P

(
X ∈ [(x ∧ y)− al, (x ∨ y) + al)

∣∣Xχ1 , . . . Xχκ+3

)
=

κ+2∏
i=1

δm̂,(x∨y)+al
χi,χi+1

(
Xχi , Xχi+1

)
, (4.32)

and

PM̂l

(
X ∈ (M̂l ∩ M̌l)

)
= PM̂l

(X ∈ Dl)−
κ+2∏
i=1

δ
m̂,(x∨y)+al−1
χi,χi+1

(
Xχi , Xχi+1

)
. (4.33)

Since these probabilities in (4.32) and (4.33) can be represented as a linear function of δ probabilities

(recalling from Section 4.2, δm̂,vs,t (x, y) denotes the probability that a Bessel bridge with minimum

m̂ < (x ∧ y) remains in the interval [m̂, v]), then events of this probability can be simulated

unbiasedly by retrospective Bernoulli sampling (see Section 2.5). In the case that we sample M̌l,

we can simply amend the arguments above. The algorithm for simulating a layered Brownian

bridge conditional on a Bessel layer is given in Algorithm 4.2.5.
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Algorithm 4.2.5 Layered Brownian bridge simulation (Bessel approach): Sampling X at times
ξ1, . . . , ξκ [Pollock et al., 2016, Algorithm 15].

1. Simulate u1, u2, ∼ U [0, 1] and set j = k = 0.
2. Simulate auxiliary information, conditional on Bessel bridge, I = l,

(a) If u1 < 1/2, simulate minimum point (τ, m̂s,t) and set: l1 = l2 = m̂s,t; v1 = (x∨y)+al−1;
v2 = (x ∨ y) + al.

(b) If u1 > 1/2, simulate maximum point (τ, m̌s,t) and set l1 = (x∧y)−al−1; l2 = (x∧y)−al;
v1 = v2 = m̌s,t.

3. Simulate intermediate times Xξ1 , . . . , Xξκ from a Bessel bridge conditional on Xτ .
4. While u2 ∈ (

∏κ+2
i=1 S

δ
2j+1(l1, v1),

∏κ+2
i=1 S

δ
2j(l1, v1)), set j = j + 1.

(a) If u2 ≤
∏κ+2
i=1 S

δ
2j+1(l1, v1), then accept sample path.

(b) If u2 ≥
∏κ+2
i=1 S

δ
2j(l1, v1), while u2 ∈ (

∏κ+2
i=1 S

δ
2k+1(l2, v2),

∏κ+2
i=1 S

δ
2k(l2, v2)), k = k + 1.

i. If u2 ≤
∏κ+2
i=1 S

δ
2k+1(l2, v2), then with probability 1/2, accept sample path, else

return to Step 1.
ii. If u2 ≥

∏κ+2
i=1 S

δ
2k+1(l2, v2), then reject sample path and return to Step 1.

After accepting a proposed sample path skeleton, simulating the process at further intermediate

times conditional on the sample path skeleton is difficult since the information regarding the sample

path minimum and maximum induces a dependency between the sub-intervals in which we want to

simulate an intermediate point and all other sub-intervals. Further, we know precisely the minimum

(or maximum) of the sample path, so the law we need to simulate further points from is a Bessel

bridge, contained in some interval. In other words, if we wanted to simulate the process at further

times conditional on the accepted sample path, there is a dependency on whether or not the other

points in other sub-intervals have achieved this minimum or maximum yet. To remove the induced

dependency between the sub-intervals of time, an interval of path-space in which the sample path

minimum and maximum is constrained is constructed by dissecting an intersection layer. Further

points can be simulated later by layered Brownian bridge simulated via intersection layer approach

(see Pollock [2013, Section 6.3] and Pollock et al. [2016, Section 8]). As the methodology that we

develop in this thesis does not require us to simulate the layered Brownian bridge path at further

intermediate points, we will not discuss intersection layer constructions here.

4.3 Diffusion Processes

Diffusion processes are widely used across a number of application areas across the natural and

social sciences. In finance, they are employed to model stock prices, options, exchange rates, interest

rates and many other financial instruments [Black and Scholes, 1973; Merton, 1973, 1976; Chan

et al., 1992; Karatzas and Shreve, 1998]. Other applications can be found within biology [McAdams

and Arkin, 1997; Golightly and Wilkinson, 2006], genetics [Kimura and Ohta, 1971] and chemistry

[Gillespie, 1976, 1977], to name a few. We define a (one-dimensional) diffusion process as:
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Definition 4.3.1. Diffusion process. A diffusion process X : R→ R is a Markov process which

satisfies the stochastic differential equation (SDE) of the form:

dVt = β(Vt) dt+ σ(Vt) dWt with V0 = v ∈ R, t ∈ [0, T ], (4.34)

where β : R → R and σ : R → R+ denote the drift and diffusion coefficients respectively, and Wt

is a standard Brownian motion (see Definition 4.1.1).

Regularity conditions are assumed to ensure the existence of the solution of the SDE in (4.34)

(see for instance Yamada and Watanabe [1971]; Kloeden and Platen [1992, 1995], Øksendal [2007,

Chapter 5] Rogers and Williams [2000, Chapter V, Section 6]). Several works such as Beskos and

Roberts [2005]; Beskos et al. [2006b,a, 2008] have proposed novel methods for the exact simulation

of diffusion bridges driven by a class of SDEs with the following conditions:

Condition 4.3.1. Solutions. The coefficients β(x) and σ(x) of (4.34) are sufficiently regular to

ensure the existence of a unique, non-explosive, weak solution.

Condition 4.3.2. Continuity. The drift coefficient β ∈ C1 and the volatility coefficient σ ∈ C2

and is strictly positive.

Condition 4.3.3. Growth Bound. There exists K > 0 such that |β(x)|2 + |σ(x)|2 ≤ K(1+ |x|2)

for all x ∈ R.

We are interested in the measure TV0,T of V on the sample path induced by (4.34). The problem

here is that TV0,T is typically unknown and hence a Monte Carlo estimator can be used to estimate

expected values ETV0,T
[h(V )] for test functions h : R → R. Following the Monte Carlo method

discussed in Chapter 2, if N independent draws V (1), . . . , V (N) ∼ TV0,T could be obtained, then by

the strong law of large numbers, we can construct an estimator for the expectation,

lim
N→∞

1

N

N∑
i=1

h
(
V (i)

)
= ETV0,T

[h(V )]. (4.35)

As with Brownian motion (see Section 4.1) and layered Brownian bridges (see Section 4.2.2),

diffusion sample paths are infinite dimensional random variables and hence it is not possible to draw

entire sample paths from TV0,T . Alternatively, we can simulate a finite dimensional subset of the

sample path (a skeleton). Given these constraints, we must consider the form of h so that it may be

evaluated given a finite dimensional subset of a sample path and that any numerical approximation

will impact the unbiasedness and convergence of the resulting Monte Carlo estimator.

Diffusion sample paths can be approximately simulated at a finite collection of time points by

noting that Brownian motion has a Gaussian transition density (by Property 4.1.3) and thus the

transition density of (4.34) can be approximated by that of an SDE with fixed coefficients over
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short intervals. This approximation approach is known as discretisation [Jacod and Protter, 2012;

Kloeden and Platen, 1992]. The most common discretisation scheme for simulating diffusions is the

Euler-Maruyama scheme [Maruyama, 1955], where a sample path is approximated at each point

in time on a fine mesh (of size ∆t) by means of the following recursion,

Vt+∆t = Vt + β(Vt)∆t+ σ(Vt)ξ, where ξ ∼ N1(0,∆t). (4.36)

Discretisation methods have the property that the approximation error can be minimised by de-

creasing the size of the fine mesh (i.e. as ∆t → 0) but this comes at the expense of increased

computational cost. Although useful in visualising diffusion sample paths, discretisation techniques

are fundamentally approximations and hence result in a loss of unbiasedness of the Monte Carlo

estimator in (4.35). Furthermore, for some test functions h, mesh based discretisation schemes

do not sufficiently characterise simulated sample paths for the evaluation of h. An example of

such case noted in Pollock et al. [2016, Section 1] by considering the case where we are inter-

ested whether a simulate sample path V ∼ TV0,T crosses some barrier (i.e. for some set A, we have

h(V ) := 1(V ∈ A)). We will also see later in this thesis that we require methods to simulation dif-

fusion bridge paths (i.e. simulating diffusions conditional on an end point VT = y), which numerical

methods, such as the Euler-Maruyama scheme, are not suitable for.

To circumvent these drawbacks, there has been significant development of methodologies, referred

to as path-space rejection sampling or Exact Algorithms, which do not introduce approximation

error when simulating sample paths at a finite collection of time points [Beskos and Roberts, 2005;

Beskos et al., 2006b,a, 2008]. These are rejection sampling (see Section 2.2) based methods on a

diffusion path-space, where sample paths are drawn from a proposal measure PV0,T which are then

accepted (or rejected) with a probability proportional to the Radon-Nikodým derivative of TV0,T
with respect to PV0,T . Central to this approach is the notion of simulating skeletons.

Definition 4.3.2. Skeleton (of a diffusion sample path). [Pollock et al., 2016, Defintion 1].

A skeleton, S, is a finite dimensional representation of a diffusion sample path, V ∼ TV0,T , that can

be simulated without any approximation error by means of a proposal sample path drawn from an

equivalent proposal measure, PV0,T , and accepted with probability proportional to
dTV0,T
dPV0,T

(V ), which

is sufficient to restore the sample path at any finite collection of time points exactly with finite

computation where V |S ∼ PV0,T |S. A skeleton typically comprises information regarding the sample

path at a finite collection of time points and path-space information which ensures the sample path

is almost surely constrained to some compact interval.

To introduce the methodology to simulate sample paths from (4.34), we first review some elements of

stochastic calculus and state some key results which are of particular relevance to this methodology.

A deeper investigation of stochastic calculus theory can be found in a number of texts: Karatzas

and Shreve [1991]; Revuz and Yor [1991]; Kloeden and Platen [1992]; Rogers and Williams [2000];

Øksendal [2007]; Cohen and Elliott [2015]. The remainder of this section is organised as follows:
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in Section 4.3.1, we introduce Itô’s calculus and Itô’s integral before introducing the Lamperti

Transformation and Cameron-Martin-Girsanov’s Theorem in Sections 4.3.2 and 4.3.3, respectively.

Lastly, we look at a representation of the transition density for a class of diffusions in Section 4.3.4.

4.3.1 Itô calculus

The SDE in (4.34) can be interpreted in integrated form,

VT = V0 +

∫ T

0
β(Vt) dt+

∫ T

0
σ(Vt) dWt. (4.37)

where Wt is standard Brownian motion (see Definition 4.1.1). In this section, we look to provide a

definition for integrals of the following form,

I[f ] :=

∫ T

0
f(t) dWt, (4.38)

for some suitable function f (which may be parameterised by some other stochastic process). First,

we provide an informal proof of the existence of such integrals in the style of Øksendal [2007,

Chapter 3.1]: In general, to evaluate an integral of a function f : R → R with respect to another

function g : R → R over an interval [0, T ], we can partition the interval [0, T ] into a fine mesh

T := {ti := iT/N : i = 1, . . . , N}, provided that g has bounded variation on compact time intervals

(which is a necessary condition [Banach and Steinhaus, 1927]),

V[0,T ](g) := lim
N→∞

N∑
i=1

|g(ti)− g(ti−1)| <∞, (4.39)

then we can define the integral in the Riemann–Stieltjes sense [Stieltjes, 1894],

∫ T

0
f(t) dg(t) := lim

N→∞

N∑
i=1

f(si) · [g(ti)− g(ti−1)] , where si ∈ [ti−1, ti]. (4.40)

However, as Øksendal [2007, Chapter 3.1] notes, the variations of the paths of Brownian motion are

too large for us to define the integral (4.38) in the Riemann-Stieltjes sense. In particular, the total

variation of Brownian motion is infinite (i.e. V[0,T ](W ) =∞). Further, unlike the Riemann-Stieltjes

integral, evaluating the function f in the integral (4.38) at different points will produce different

answers. For example, consider the expectation of (4.38) with respect to the measure W0
0,T in the

case where f(t) := Wt and si := ti−1 (evaluating at the left end point),

E

[
N∑
i=1

Wti−1 · [Wti −Wti−1 ]

]
=

N∑
i=1

E
[
Wti−1 · [Wti −Wti−1 ]

]
=

N∑
i=1

E[Wti−1] · E[Wti −Wti−1 ] = 0. (4.41)
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Consider now we choose a different evaluation point, si = ti (evaluating at the right end point),

E

[
N∑
i=1

Wti · [Wti −Wti−1 ]

]
=

N∑
i=1

E
[
W 2
ti − [Wti ·Wti−1 ]

]
=

N∑
i=1

(ti − ti−1) = T. (4.42)

The choice of evaluating at the left end points (i.e. the approximation in (4.41) to (4.40)) leads to

the Itô integral which we consider in the remainder of this thesis, as this preserves the martingale

property [Øksendal, 2007, Section 3.1]. By using the approximation in (4.41), we can make use of

the property of Brownian motion that it has independent increments (Property 4.1.2). Evaluating

at the mid points, si := (ti−1 + ti)/2, and approximating (4.40) as above leads to the Stratonovich

integral Øksendal [2007, Example 3.1.1] which we do not cover in this thesis (see Øksendal [2007,

Section 3.3] for a comparison of Itô and Stratonovich integrals).

Continuing to follow the approach outlined in Øksendal [2007, Chapter 3.1], we can construct the

Itô integral by considering the integration of elementary functions of the following form,

φN (t) :=
N∑
i=1

ei · 1 [t ∈ [ti−1 − ti)] (4.43)

where 1[·] denotes the indicator function, N ∈ N and ei are Fti−1-measurable random variables

where Ft is the σ-algebra generated by the random variables {Ws}s∈[0,t].

Lemma 4.3.1. [Øksendal, 2007, Lemma 3.1.5]. Let φN (t) be bounded and given by (4.43), then

E

[(∫ T

0
φN (t) dWt

)2
]

= E
[∫ T

0
φN (t)2 dt

]
. (4.44)

Proof. Recalling that Brownian motion has independent increments (see Property 4.1.2) which are

normally distributed (see Property 4.1.3), then we have

E

[(∫ T

0
φN (t) dWt

)2
]

= E

( N∑
i=1

ei · [Wti −Wti−1 ]

)2


= E

 N∑
i=1

e2
i · [Wti −Wti−1 ]2 +

∑
i,j=1
j 6=i

ei · [Wti −Wti−1 ] · ej · [Wtj −Wtj−1 ]


=

N∑
i=1

E
[
e2
i

]
· E
[
[Wti −Wti−1 ]2

]
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=

N∑
i=1

E
[
e2
i

]
· (ti − ti−1)

= E
[∫ T

0
φ2
N (t) dt

]
. �

To construct Itô’s integral, after defining the integral I(φN ) for a simple class of functions φN for

a simple class of functions φN , Øksendal [2007, Chapter 3.1] showed that any continuous process

f(t) with E
[∫ T

0 f2(t)
]
<∞ can be approximated by a sequence of elementary processes, i.e. there

exists a sequence of processes {φN : N ∈ N} each defined as in (4.43) such that

lim
N→∞

E
[∫ T

0
|ft − φN (t)| dt

]
= 0.

Together with (4.44), we conclude there exists a limit I(T ) := limN→∞ I[φN ], such that

lim
N→∞

E

[∣∣∣∣∫ T

0
φN (t) dWt − I(T )

∣∣∣∣2
]

= 0.

Consequently, we define Itô’s integral to be this limit,∫ T

0
f(t) dWt := I(T ) = lim

N→∞

∫ T

0
φN (t) dWt. (4.45)

Further, we note that (4.44) also holds for this limit which is a property known as Itô’s isometry

[Øksendal, 2007, Corollary 3.1.7],

E

[(∫ T

0
f(t) dWt

)2
]

= E
[∫ T

0
f(t)2 dt

]
. (4.46)

The basic definition of Itô’s integral is often impractical when tasked with evaluating a given

integral. However, it is possible to establish an Itô integral version of the chain rule. Let F ∈ C2

(i.e. F is twice continuously differentiable on R) be the anti-derivative of f , then by considering a

Taylor series expansion of F , we have

F (T ) = F (0) + lim
N→∞

[
1

1!

N∑
i=1

f(ti) · [Wti −Wti−1 ] +
1

2!

N∑
i=1

f ′(ti) · [Wti −Wti−1 ]2 + . . .

]

= F (0) +

∫ T

0
f(t) dWt +

1

2

∫ T

0
f ′(t) dt+ 0. (4.47)

This result is known as Itô’s formula [Øksendal, 2007, Definition 4.1.1], which can also be given in

differential form,

dF (t) = f(t) dWt +
1

2
f ′(t) dt. (4.48)

The key to arriving at this result lies in noting that by considering the variation of Brownian motion
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over the time interval [0, T ], we have

lim
N→∞

N∑
i=1

∣∣Wti −Wti−1

∣∣p =


∞ if p = 1,

T if p = 2,

0 if p ≥ 3.

We can generalise this for diffusions given by (4.34) where E
[∫ T

0 σ2(Vt) dt
]
< ∞. Consider a

Taylor series expansion of Xt := g(t, Vt) where g ∈ C2([0,∞) × R) (i.e. g is twice continuously

differentiable on [0,∞)× R) and the derivatives of g are evaluated at (ti, Vti) for i = 1, . . . , N ,

XT = X0 +

[
N∑
i=1

∂g

∂t
[ti − ti−1] +

N∑
i=1

∂g

∂v
[Vti − Vti−1 ] +

1

2

N∑
i=1

∂2g

∂t2
[ti − ti−1]2

+
N∑
i=1

∂2g

∂t∂v
[ti − ti−1][Vti − Vti−1 ] +

1

2

N∑
i=1

∂2g

∂v2
[Vti − Vti−1 ]2 + . . .

]
. (4.49)

For small time intervals of size h > 0, Vt+h−Vt ≈ β(Vt)[(t+h)− t] +σ(Vt)[Wt+h−Wt], so we have,

lim
N→∞

[
N∑
i=1

∂g

∂v
(Vti − Vti−1)

]
= lim

N→∞

[
N∑
i=1

∂g

∂v
β(Vti)[ti − ti−1] +

N∑
i=1

∂g

∂v
σ(Vti)[Wti −Wti−1 ]

]

=

∫ T

0

∂g(t, Vt)

∂v
β(Vt) dt+

∫ T

0

∂g(t, Vt)

∂v
σ(Vt) dWt, (4.50)

and

lim
N→∞

[
N∑
i=1

∂g

∂v
(Vti − Vti−1)

]
= lim

N→∞

[
N∑
i=1

∂2g

∂v2
β2(Vti)[ti − ti−1]2 +

N∑
i=1

∂2g

∂v2
σ2(Vti)[Wti −Wti−1 ]2

+ 2

N∑
i=1

∂2g

∂v2
β(Vti)σ(Vti)[ti − ti−1][Wti −Wti−1 ]

]

= 0 +

∫ T

0

∂2g(t, Vt)

∂v2
σ2(Vt) dt+ 0, (4.51)

By substituting (4.50) and (4.51) into (4.49), we have

XT = X0 +

∫ T

0

(
∂g(t, Vt)

∂t
+
∂g(t, Vt)

∂v
β(Vt) +

1

2

∂2g(t, Vt)

∂v2
σ2(Vt)

)
dt

+

∫ T

0

∂g(t, Vt)

∂v
σ(Vt) dWt. (4.52)

This is Itô’s formula for diffusions [Øksendal, 2007, Theorem 4.1.2], and its differential form is

dXt =

(
∂g(t, Vt)

∂t
+
∂g(t, Vt)

∂v
β(Vt) +

1

2

∂2g(t, Vt)

∂v2
σ2(Vt)

)
dt+

∂g(t, Vt)

∂v
σ(Vt) dWt. (4.53)
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4.3.2 Lamperti transformation

The methodology discussed in the subsequent sections for the simulation of sample paths of dif-

fusions are for those which have unit volatility (i.e. σ(Vt) = 1 in (4.34)). However, this is not

restrictive, since we can also apply this methodology to a broader class of diffusions with non-unit

volatility (as in (4.34)) by means of first transforming the target diffusion in (4.34) into one with

unit volatility. The simulated sample paths are then transformed back using the inverse transfor-

mation. This transformation is obtained by using Itô’s formula (see Section 4.3.1) and by defining

a process Yt := g(t, Vt) such that ∂g(t,Vt)
∂v = 1

σ(Vt)
, then the differential form of Yt has unit volatility

[Beskos and Roberts, 2005, Section 1]. This is known as the Lamperti transform (see for instance

Kloeden and Platen [1992]; Aı̈t-Sahalia [2008]; Casella and Roberts [2011]),

Yt =

∫ Vt

v0

1

σ(u)
du (4.54)

where v0 is an arbitrary element of the state space of V . By applying Itô’s formula (4.53) to find

dYt, first note that,

∂g

∂v
=

1

σ(Vt)
,

∂g

∂t
=

∂

∂t

∫ Vt

v0

1

σ(u)
du = 0,

∂2g

∂v2
=
−σ′(Vt)
σ2(Vt)

.

where σ′(Vt) = ∂σ(Vt)
∂v . By substitution into (4.53), we can obtain,

dYt =
1

σ(Vt)
(β(Vt) dt+ σ(Vt) dWt) +

1

2

(
−σ′(Vt)
σ2(Vt)

)
σ2(Vt) dt

= α(Yt) dt+ dWt (4.55)

where α(Yt) =
(
β(g−1(Yt))
σ′(g−1(Yt))

− σ(g−1(Yt))
2

)
and let Vt = g−1(t, Yt) to be the inverse of the Lamperti

transformation. Condition 4.3.2 and Condition 4.3.3 are sufficient to allow us to transform any

non-unit volatility SDE into one with unit volatility as per the Lamperti transformation.

4.3.3 Cameron-Martin-Girsanov’s theorem

The Lamperti transformation discussed in Section 4.3.2 allows us to transform our SDE into one

with unit volatility. In this section, we restrict our attention to diffusions with the following SDE:

dXt = α(Xt) dt+ dWt with X0 = x ∈ R, t ∈ [0, T ]. (4.56)
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As discussed earlier in the section, the methodology for simulating skeletons of (4.56) (see Definition

4.3.2) is based on a rejection sampling idea (see Section 2.2). Consequently, we must find an

expression for the Radon-Nikodým derivative of our target measure with respect to a proposal

measure. Let Qx
0,T denote the target measure induced by (4.56) and let Wx

0,T be the proposal

measure induced by the driftless version of (4.56) (i.e. Wx
0,T is the Wiener measure):

dXt = dWt with X0 = x ∈ R, t ∈ [0, T ]. (4.57)

Since both (4.56) and (4.57) have unit volatility, Qx
0,T is absolutely continuous with respect to Wx

0,T .

Theorem 4.3.2. The Cameron-Martin-Girsanov theorem. (see for instance Cameron and

Martin [1944], Girsanov [1960], Rogers and Williams [2000, Chapter VI, Section 6.38], Beskos and

Roberts [2005, Proposition 2], Øksendal [2007, Chapter 8]). Assume that the drift coefficient α

satisfies Novikov’s condition,

EW

[
exp

{
1

2

∫ T

0
α2(Wt) dt

}]
<∞. (4.58)

Then the Radon-Nikodým derivative of Qx
0,T with respect to Wx

0,T exists and is given by the Cameron-

Martin-Girsanov’s formula as follows

dQx
0,T

dWx
0,T

(X) = exp

{∫ T

0
α(Xs) dWs −

1

2

∫ T

0
α2(Xs) ds

}
. (4.59)

Proof. See for instance, Øksendal [2007, Chapter 8]. �

The difficulty in using this result directly in a rejection sampling scheme is that the direct and

exact evaluation of (4.59) is not possible. Here, we first simplify (4.59) by using Itô’s formula to

remove the Itô integral term. Let

A(u) :=

∫ u

0
α(s) ds, (4.60)

then, under Conditions 4.3.1–4.3.3, we can apply Itô’s formula,

dA(Xs) = A′(Xs) dWs +
1

2
A′′(Xs) ds,

and so integrating between 0 and T ,

A(XT )−A(X0) =

∫ T

0
α(Xs) dWs +

1

2

∫ T

0
α′(Xs) ds.

By rearrangement, we obtain∫ T

0
α(Xs) dWs = A(XT )−A(X0)− 1

2

∫ T

0
α′(Xs) ds.
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If we substitute this into (4.59), and define

φ(Xs) :=
1

2

(
α2(Xs) + α′(Xs)

)
, (4.61)

then

dQx
0,T

dWx
0,T

(X) = exp

{
A(XT )−A(X0)− 1

2

∫ T

0
α′(Xs) ds− 1

2

∫ T

0
α2(Xs) ds

}
= exp

{
A(XT )−A(X0)−

∫ T

0
φ(Xs) ds

}
. (4.62)

In Section 4.4, we will see that we can use this result to carry out a rejection scheme for simulating

sample paths from our target diffusion (4.57) indirectly using this result.

4.3.4 Transition density of a diffusion

The transition density of the target diffusion given by (4.56) can be denoted as

pt−s(x, y) := P(Xt ∈ dy|Xs = x)/dy, where 0 ≤ s < t. (4.63)

We can obtain expressions for the transition density in the style of Dacunha-Castelle and Florens-

Zmirou [1986, Lemma 1] by considering its expectation with respect to a Wiener measure. Let Qx
0,T

and Wx
0,T be the measures induced by (4.56) and (4.57), respectively, with the additional constraint

that Xt = y. If wt−s is the transition density of Brownian motion from x to y over [s, t], then

dQx
s,t

dWx
s,t

(X) =
pt−s(x, y)

wt−s(x, y)
·

dQx,y
s,t

dWx,y
s,t

(X).

By taking expectations with respect to Wx,y
s,t , we have

EWx,y
s,t

[
dQx

s,t

dWx
s,t

(X)

]
= EWx,y

s,t

[
pt−s(x, y)

wt−s(x, y)
·

dQx,y
s,t

dWx,y
s,t

(X)

]

=
pt−s(x, y)

wt−s(x, y)
· 1,

and by rearrangement,

pt−s(x, y) = wt−s(x, y) · EWx,y
s,t

[
dQx

s,t

dWx
s,t

(X)

]

=
1√

2π(t− s)
exp

{
−(y − x)2

2(t− s)

}
· EWx,y

s,t

[
exp

{
A(y)−A(x)−

∫ t

s
φ(Xu) du

}]
=

1√
2π(t− s)

exp

{
A(y)−A(x)− (y − x)2

2(t− s)

}
· EWx,y

s,t

[
exp

{
−
∫ t

s
φ(Xu) du

}]
. (4.64)
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The difficulty with using this expression is that the expectation with respect to Brownian bridge

measure cannot be evaluated directly. However, the methodology discussed in Section 4.4 en-

ables us to simulate from the transition density exactly. This is particularly useful for the Fusion

methodology developed in this thesis since the mathematics underpinning the methodology includes

transition densities of a Langevin diffusion process (which we detail later in Section 5).

4.4 Simulating diffusion processes

The Fusion methodologies developed in this thesis rely on the computation of unbiased estimators

which arise in the simulation of finite dimensional subsets of diffusion sample paths. In Section 4.3,

we provided an overview of diffusions and introduced some elements of stochastic calculus which

underpin the methodology to simulate sample paths of diffusions. In this section, we introduce

the mathematical framework for simulating diffusion sample path skeletons (see Definition 4.3.2)

without approximation error. This methodology is referred to as path-space rejection sampling or

Exact Algorithms and can be found in a number of texts: Beskos and Roberts [2005]; Beskos et al.

[2006b,a, 2008, 2012]; Chen and Huang [2013]; Dai [2014]; Pollock [2013]; Pollock et al. [2016].

As a result of the Lamperti transformation (see Section 4.3.2), we will focus on diffusions with unit

volatility (4.56) (whilst noting the simulation of diffusions with non-unit volatility (4.34) can be

achieved via (4.54)). The underpinning aim of path-space rejection sampling is that to simulate

sample paths from the target measure Qx
0,T induced by (4.56) means of rejection sampling (see

Section 2.2). In this setting, sample paths from an accessible proposal measure can be accepted

as being paths from the target measure so long as we are able to find a bound, M , on the Radon-

Nikodým derivative of our target measure with respect to our proposal measure. Naturally, since

we are able to simulate Brownian motion exactly, we choose the Wiener measure Wx
0,T (induced

by the driftless SDE (4.57)) as the proposal measure. As noted previously, since (4.56) and (4.57)

both have unit volatility, then Qx
0,T is absolutely continuous with respect to Wx

0,T . Algorithm 4.4.1

provides an outline of a path-space rejection sampling approach.

Algorithm 4.4.1 Outline of path-space rejection sampling to simulate sample paths X ∼ Qx
0,T

[Beskos and Roberts, 2005].

1. Draw X ∼Wx
0,T .

2. Return X with probability

PWx
0,T

(X) :=
1

M

dQx
0,T

dWx
0,T

(X) ∈ [0, 1],

else reject and return to Step 1.

Unfortunately, Algorithm 4.4.1 cannot be directly implemented for two reasons. Firstly, recall from

Section 4.3.3, by using the Cameron-Martin-Girsanov theorem (see Theorem 4.3.2), we obtained an

expression for the Radon-Nikodým derivative in (4.62). In a rejection sampling algorithm, we must
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be able to find an appropriate upper bound M of the Radon-Nikodým derivative such that the

acceptance probability in Step 2 is bounded in [0, 1]. However, A(u) (4.60) in (4.62) is not bounded

since it only has a quadratic growth bound (as a result of Condition 4.3.3), and so typically no

appropriate bound M < ∞ exists. In Section 4.4.1, we show that this can be circumvented by

considering an alternative probability measure to propose sample paths from. Secondly, diffusion

sample paths are infinite dimensional random variables and so it is not possible to draw entire

proposal sample paths in Step 1. As such, it is not possible to evaluate the Radon-Nikodým

derivative in Step 2 directly. In particular, we are not able to evaluate expressions of the form,

exp

{
−
∫ t

s
φ(Xu) du

}
. (4.65)

We will see in Section 4.4.2 that it is possible to construct an unbiased estimator (which is bounded

above) for (4.65) only using a finite dimensional subset of the proposal sample path.

The methodology that we develop in Section 6 embeds the Fusion methodology within a Divide-

and-Conquer Sequential Monte Carlo (see Section 3.4) approach Lindsten et al. [2017]. In this

setting, since we move away from a rejection based scheme, we no longer require that the unbiased

estimator for (4.65) to be bounded above by a constant. In Section 4.4.3, we explore alternative

unbiased estimators for expressions of the form (4.65) which have better asymptotic properties.

4.4.1 Path-space rejection sampling

In order to implement Algorithm 4.4.1, we must be able to find an appropriate upper bound on the

Radon-Nikodým derivative in (4.62). As noted previously, the function A(u) (4.60) is not bounded

as it only has a quadratic growth bound (see Condition 4.3.3). To deal with this unbounded function

in the Radon-Nikodým derivative, an end point, y, must be specified which subsequently modifies

the acceptance probability. In this setting, the proposal measure becomes a Brownian bridge (see

Definition 4.1.2). To remove the unbounded function, we can use biased Brownian motion (as

introduced in Beskos and Roberts [2005]) to propose an end point y of the bridge.

Definition 4.4.1. Biased Brownian Motion (BBM). [Beskos and Roberts, 2005; Pollock et al.,

2016] Biased Brownian motion is the process Zt ∼ (Wt|W0 = x,WT := y ∼ h) with measure Zx0,T ,

where x, y ∈ R, t ∈ [0, T ] and h is defined as

h(y;x, T ) :=
1

c(x, T )
exp

{
A(y)− (y − x)2

2T

}
. (4.66)

Note that by Condition 4.3.3, A has quadratic growth bound, and so

c(x, T ) :=

∫
R

exp

{
A(u)− u2

2T

}
du <∞.
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Theorem 4.4.1. [Beskos and Roberts, 2005, Proposition 3]. Let Qx
0,T denote the measure induced

by (4.56) and Zx0,T denote the Biased Brownian bridge measure defined in Definition 4.4.1, then

dQx
0,T

dZx0,T
(X) ∝ exp

{
−
∫ T

0
φ(Xs) ds

}
. (4.67)

Proof. Denote Zx,y0,T be the measure induced by Z and Wx,y
0,T be the Wiener measure on [0, T ]

conditioned on X0 = x ∈ R and XT = y ∈ R. Then noting that Zx,y0,T = Wx,y
0,T , then

dZx0,T
dWx

0,T

(X) =
h(y;x, T )

1√
2πT

exp
{
− (y−x)2

2T

} · dZx,y0,T

dWx,y
0,T

(X) ∝ exp{A(XT )},

Now note that

dQx
0,T

dZx0,T
=

dQx
0,T

dWx
0,T

·
dWx

0,T

dZx0,T

∝ exp

{
A(XT )−A(X0)− 1

2

∫ T

0
φ(Xs) ds

}
· exp{−A(XT )}

∝ exp

{
−
∫ T

0
φ(Xs) ds

}
,

which gives the result as required. �

Sample paths can be drawn from Zx0,T in two steps: (i) simulate the end point XT := y ∼ h (which

can be simulated via a rejection sampler with Gaussian proposal), and (ii) simulate the remainder

of the sample path in (0, T ) from the law of a Brownian bridge, (X|X0 = x,XT = y) ∼ Wx,y
0,T

(which can be simulated as per Algorithm 4.1.2). Before discussing how to proceed in constructing

a rejection sampler to draw sample paths from Qx
0,T , we first introduce the following condition:

Condition 4.4.1. There exists a constant Φ > −∞ such that Φ ≤ φ(x) for all x ∈ R.

With this condition, we can bound the Radon-Nikodým derivative in (4.67) with M := exp{−ΦT},
and so we now construct an (idealised) rejection sampler (as outlined in Algorithm 4.4.2) to draw

sample paths from Qx
0,T by drawing proposal paths from Zx0,T and accepting such paths with

probability PZx0,T (X) = 1
M

dQx0,T
dZx0,T

= exp{ΦT} · exp
{
−
∫ T

0 φ(Xs) ds
}

.

However, implementing a rejection sampler is still not yet possible since, as previously noted, diffu-

sion sample paths (and Brownian bridge sample paths) are infinite dimensional random variables.

As a result, it is not possible to draw entire paths or evaluate the acceptance probability in Step

2 in Algorithm 4.4.2. To circumvent this problem, we can construct unbiased estimators for the

acceptance probability which can be evaluated using only a finite dimensional subset of the proposal

path [Pollock et al., 2016], the details of which are covered in the subsequent section.
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Algorithm 4.4.2 Idealised path-space rejection sampler to simulate sample paths X ∼ Qx
0,T

[Beskos and Roberts, 2005].

1. Draw X ∼ Zx0,T ,
(a) Simulate XT =: y ∼ h (4.66).
(b) Simulate X(0,T ) ∼Wx,y

0,T .
2. Return X with probability

PZx0,T (X) := exp{ΦT} · exp

{
−
∫ T

0
φ(Xs) ds

}
∈ [0, 1],

else reject and return to Step 1.

4.4.2 Unbiased estimator construction for path-space rejection sampling

In this section, we focus on constructing an implementable rejection sampler to simulate sample

paths X ∼ Qx
0,T which only require finite computation. As discussed in Section 4.4.1, Algorithm

4.4.2 cannot be implemented since Brownian bridge sample paths are infinite dimensional random

variables. Consequently, we are unable to compute the acceptance probability,

PZx0,T (X) = exp{ΦT} · exp

{
−
∫ T

0
φ(Xs) ds

}
. (4.68)

We can overcome this issue by noting that an auxiliary finite dimensional random variable F ∼ F
can be simulated in order to construct an unbiased estimator for the acceptance probability using

only a finite dimensional subset of the proposal path [Beskos and Roberts, 2005; Beskos et al.,

2008; Pollock et al., 2016]. We can use the simulation of F to provide the information about what

finite subset of Wx,y
0,T to simulate, Xfin ∼Wx,y

0,T |F , in order to evaluate the acceptance probability in

(4.68). The rest of the sample path can be simulated after the acceptance of the sample path from

the proposal measure conditioned on the simulations already performed, Xrem ∼ Wx,y
0,T |(Xfin, F ),

where X = Xfin∪Xrem. The key insight is that although we are not able to simulate entire sample

paths from the proposal, we are able to simulate exactly a finite dimensional subset of the sample

path, characterised by its skeleton, S(X) := {X0, X
fin, XT , F} (see Definition 4.3.2).

Beskos et al. [2006b] first noted that it is possible to construct an unbiased estimator for the

acceptance probability in (4.68) provided that φ(X[0,T ]) can be bounded above. However, Beskos

et al. [2008] removed this condition by noting that local bounds for φ(X[0,T ]) were sufficient in

obtaining an unbiased estimator. In particular, Beskos et al. [2008] noted that if the proposal

Brownian bridge sample path was constrained to an interval, then conditional on this interval,

φ(X[0,T ]) was bounded above and below and hence the random variable F can be simulated, as

required. This methodology is based on the notion that the path-space of the proposal measure

Px0,T (in the case of Biased Brownian motion, Px0,T = Zx0,T ) can be partitioned into a set of layers,

and that they layer to which any sample path belongs to can be simulated.
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Definition 4.4.2. Layer. [Pollock et al., 2016]. A layer R(V ) is a function of a diffusion sample

path V ∼ Px0,T which determines the compact interval to which the sample path is constrained.

The construction of path-space layers of Brownian bridge was discussed in Section 4.2.2 allow us to

partition the space of Zx,y0,T into disjoint layers and simulate the layer, R ∼ R, to which our sample

path belongs (as per Algorithm 4.2.4). Conditional on this layer information, upper and lower

bounds for φ(X[0,T ]) can always be found, denoted UX ∈ R and LX ∈ R, respectively. Further, as

noted in Section 4.2.2, we are able to simulate any finite collection of intermediate points of the

trajectory of the proposal layered Brownian bridge exactly (as per Algorithm 4.2.5).

Following in the style of Beskos et al. [2006b, 2008], we can construct construct a finite dimensional

unbiased estimator for (4.68) by considering a Taylor series expansion as follows,

PZx0,T (X) = e−(LX−Φ)T · e−(UX−LX)T · exp

{∫ T

0
UX − φ(Xs) ds

}

= e−(LX−Φ)T ·

 ∞∑
j=0

e−(UX−LX)T [(UX − LX)T ]j

j!

{∫ T

0

UX − φ(Xs)

(UX − LX)T
ds

}j , (4.69)

and letting K denote the law of κ ∼ Poi
(
(UX − LX)T

)
and U be the distribution of (ξ1, . . . , ξκ)

iid∼
U [0, T ] we have,

PZx0,T (X) = e−(LX−Φ)T · E

[
E

[
E

[(∫ T

0

UX − φ(Xs)

(UX − LX)T
ds

)κ∣∣∣∣∣{X,R}
]∣∣∣∣∣R

]]

= e−(LX−Φ)T · E

[
E

[
E

[
E

[
κ∏
i=1

(
UX − φ(Xξi)

UX − LX

)∣∣∣∣∣{κ,X,R}
]∣∣∣∣∣{X,R}

]∣∣∣∣∣R
]]

= e−(LX−Φ)T · EREZx0,T |REKEU

[
κ∏
i=1

(
UX − φ(Xξi)

UX − LX

)]
, (4.70)

where for readability, the subscripts for each expectation denotes the law with which we are taking

the expectation. From (4.70), we can evaluate the acceptance probability of a sample path X ∼
Zx0,T using just a finite dimensional realisation of the entire sample path. Simulating a finite

dimensional proposal and evaluating the acceptance probability as suggested in (4.70) results in an

implementable path-space rejection sampler for simulating sample paths X ∼ Qx
0,T and is presented

in Algorithm 4.4.3. Further, note that since we know that for a given simulated layer information,

φ(X[0,T ]) is bounded in [UX , LX ], it follows that the unbiased estimator in (4.70) lies in [0, 1].

Algorithm 4.4.3 summarises this argument and can be viewed as a two-step rejection sampler

whereby the acceptance probability is broken into a computationally inexpensive step (Step 3) and

a computationally expensive step (Step 5) which first requires the partial simulation of the proposed

path in Step 4.
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Algorithm 4.4.3 Path-space rejection sampling to simulate paths X ∼ Qx
0,T [Beskos et al., 2008;

Pollock et al., 2016].

1. Simulate XT =: y ∼ h.
2. Simulate layer information R ∼ R as per Algorithm 4.2.4.
3. With probability (1− exp{−(LX −Φ)T}) reject path and return to Step 1.
4. Simulate skeleton points (Xξ1 , . . . , Xξκ)|R :

(a) Simulate κ ∼ Poi
(
(UX − LX)T

)
and skeleton times ξ1, . . . , xκ

iid∼ U[0, T ].
(b) Simulate sample path at skeleton times Xξ1 , . . . , Xξκ ∼Wx,y

0,T |R as per Algorithm 4.2.5.
5. Return entire skeleton S(X) := {X0, {Xξi}κi=1, XT , R} with probability

κ∏
i=1

(
UX − φ(Xξi)

UX − LX

)
,

else reject and return to Step 1.

The skeleton that is (potentially) returned in Step 5 includes the layer information which is neces-

sary in any subsequent simulation. If we wish to simulate the sample path at further intermediate

points, then we require additional computation by augmenting the skeleton with sub-interval layer

information,

S ′(X) :=
{

(ξi, Xξi)
κ
i=1, R,

(
R

[ξi−1,ξi]
X

)κ
i=1

}
=
{

(ξi, Xξi)
κ
i=1,

(
R

[ξi−1,ξi]
X

)κ
i=1

}
, (4.71)

where R
[a,b]
X denotes the layer information for the sub-interval [a, b] ⊂ [0, T ]. This resulting skeleton

is thus decomposed into conditionally independent paths between each of the skeletal points. We

can then simulate the sample path at further times after the acceptance of the path directly,

Xrem ∼ Wx,y
0,T

∣∣∣S ′(X) = ⊗κi=1

(
W
Xξi−1

,Xξi
ξi−1,ξi

∣∣∣R[ξi−1,ξi]
X

)
. (4.72)

In the case that φ(X[0,T ]) is almost surely bounded, then it is not necessary to simulate layer

information in Algorithm 4.4.3 and hence the skeleton can be simulated from the law of a Brownian

bridge and any subsequent simulation can be done by sampling from the law of a Brownian bridge.

The construction of the unbiased estimators in this section are crucial in the development of the

Fusion methodology discussed in this thesis. However, there are some settings where we do not

necessarily require our unbiased estimators to be bounded in [0, 1], for instance, in the case of

implementing an importance sampler (see Section 2.3) or a sequential Monte Carlo algorithm (see

Chapter 3). In those settings, it is more desirable to have estimators which have lower variance. In

Section 4.4.3, we look at a class of unbiased estimators for exp
{∫ t

s φ(Xu) du
}

.
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4.4.3 Poisson Estimators

We now restrict our attention to simulating positive unbiased estimators for functions of the form

ψ(X) := exp

{
−
∫ t

s
φ(Xu) du

}
, where X ∼Wx,y

s,t , (4.73)

which only require a finite dimensional subset of the proposal path. Since we will use these esti-

mators within a rejection sampling or an importance sampling context, then we require that the

estimators we construct to be positive (and bounded in the case of rejection sampling). If used

within an importance sampling setting, it is natural to favour estimators with lower variance. In

this section, we review a class of unbiased estimators for (4.73) proposed by Beskos et al. [2006a],

Fearnhead et al. [2008] and Fearnhead et al. [2010] named Poisson Estimators. The (Vanilla)

Poisson Estimator [Beskos et al., 2006a] provided an unbiased estimator for (4.73), however, it is

not necessarily positive and does not necessarily have finite variance, so we focus on reviewing the

positive and finite variance Generalised Poisson Estimators first introduced by Fearnhead et al.

[2008]. Details of such estimators have also been summarised in a number of texts, for instance Dai

et al. [2021, Appendix B] and Pollock [2013, Chapter 7].

As noted in Section 4.4.2, conditional on some layer information of a Brownian bridge path, upper

and lower bounds on φ(X) can be found, denoted UX and LX , respectively. In particular, we can

partition the path-space of Wx,y
s,t into disjoint layers and simulate the layer to which a proposal

sample path belongs (see Section 4.2). Denoting R := R(X) ∼ R as the simulated layer, we can

focus on finding unbiased estimators for functions of the form

ψ(X|R) := exp

{
−
∫ t

s
φ(Xu) du

}
, where X ∼Wx,y

s,t |R. (4.74)

Following a similar approach to Section 4.4.2, Fearnhead et al. [2008, Section 4] considers a Taylor

series expansion of the exponential function in (4.74),

ψ(X|R) = exp

{
−
∫ t

s
φ(Xu) du

}
= e−UX(t−s) · exp

{∫ t

s
UX − φ(Xu) du

}

= e−UX(t−s) ·

 ∞∑
j=0

(t− s)j

j!

{∫ t

s

UX − φ(Xu)

t− s
du

}j , (4.75)

then by denoting K to be the law of the discrete random variable κ = 0, 1, . . . , with probability

mass function p(κ|R), and U to be the distribution of (ξ1, . . . , ξκ) ∼ U [s, t], then

ψ(X|R) = e−UX(t−s)
∞∑
j=0

[
(t− s)j

j!

{∫ t

s

UX − φ(Xu)

t− s
du

}j]
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= EK

[
eUX(t−s) · (t− s)κ

κ! · p(κ|R)

{∫ t

s

UX − φ(Xu)

t− s
du

}κ∣∣∣∣X]
= EKEUκ

[
eUX(t−s) · (t− s)κ

κ! · p(κ|R)

κ∏
i=1

[UX − φ(Xξi)]

∣∣∣∣∣X
]

(4.76)

By uniformly scattering κ ∼ p(κ|R) points in [s, t], we can simulate a sample path X ∼Wx,y
s,t |R at

these points and define the Generalised Poisson Estimator (GPE) [Fearnhead et al., 2008]:

ψ̂(X|R) := eUX(t−s) · (t− s)κ

κ! · p(κ|R)
·
κ∏
i=1

[UX − φ(Xξi)] (4.77)

The algorithm for simulating unbiased estimators for (4.74) is summarised in Algorithm 4.4.4.

Algorithm 4.4.4 Generalised Poisson Estimator (GPE) for unbiasedly estimating ψ(X) in (4.73)
[Fearnhead et al., 2008].

1. Simulate R ∼ R as per Algorithm 4.2.4.
2. Simulate κ ∼ p(κ|R).
3. Simulate skeleton times ξ1, . . . , ξκ ∼ U [s, t].
4. Simulate sample path at skeleton times Xξ1 , . . . , Xξκ ∼Wx,y

s,t |R as per Algorithm 4.2.5.
5. Evaluate and return (4.77).

show that the variance of the unbiased estimator aj ρ̃j is minimised when p(κc|Rc) ∼ Poi(λc), where

Fearnhead et al. [2008] notes that we can derive various estimators for (4.73) by specifying different

discrete probability mass functions for κ, p(κ|R). The family of these estimators are referred to

as Generalised Poisson Estimators (GPEs). Fearnhead et al. [2008, Theorem 1] showed that the

optimal proposal (in the sense of lowest variance) is obtained by selecting p(κc|Rc) ∼ Poi(λc), where

λopt :=

(
(t− s)

∫ t

s
[UX − φ(Xu)]2 du

) 1
2

. (4.78)

Whilst this cannot be evaluated analytically, Fearnhead et al. [2008] uses this to obtain two esti-

mators. A natural choice is to choose a Poisson distribution with intensity λ which bounds λopt,

(
(t− s)

∫ t

s
[UX − φ(Xu)]2 du

) 1
2

≤
(

(t− s)
∫ t

s
[UX − LX ]2 du

) 1
2

= (UX − LX) · (t− s). (4.79)

By choosing p(κ|R) to be the Poisson with mean λ = (UX − LX) ·(t−s), then we obtain the GPE-1

unbiased estimator which is positive and defined as,

ψ̂GPE-1(X) = eUX(t−s) · (t− s)κ

κ! · p(κ|R)
·
κ∏
i=1

[UX − φ(Xξi)]
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:= e−LX(t−s) ·
κ∏
i=1

UX − φ(Xξi)

UX − LX
∈
[
0, e−LX(t−s)

]
, (4.80)

with second moment bounded above by E
[
e−2LX(t−s)] < ∞ [Fearnhead et al., 2008]. This is the

estimator that was constructed in Section 4.4.2 which has the benefit of being bounded so can be

used in a rejection sampling setting.

An alternative choice proposed by Fearnhead et al. [2008] was to choose a heavier tailed negative

binomial distribution parameterised with mean γ, set to be equal to an approximation of the

optimal intensity λopt,

γ := UX(t− s)−
∫ t

s
φ

(
x · t− u

t− s
+ y · u− s

t− s

)
du, (4.81)

and dispersion parameter β. This results in the GPE-2 unbiased estimator, given by

ψ̂GPE-2(X) = eUX(t−s) · (t− s)κ

κ! · p(κ|R)
·
κ∏
i=1

[UX − φ(Xξi)]

:= e−UX(t−s) · (t− s)κ · Γ(β) · (γ + β)γ+κ

Γ(β + κ) · γκ · ββ
·
κ∏
i=1

[UX − φ(Xξi)] . (4.82)

Fearnhead et al. [2008] noted that the GPE-2 estimator has finite variance and showed empirically

with simulations that GPE-2 typically outperforms GPE-1, and in some simulations had up to

several orders of magnitude smaller variance than GPE-1. Further, they showed that GPE-2 is

quite robust to the choice of the dispersion parameter β. However, since (4.82) is unbounded,

it cannot be used for a rejection sampling scheme directly, but is the favourable choice in any

importance sampling or sequential Monte Carlo scheme.
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Chapter 5

Fusion methodologies

In this thesis, we focus on developing methodology for an exact Monte Carlo approximation of the

fusion density, f(x) ∝
∏C
c=1 fc(x), where x ∈ Rd and fc denote the sub-posterior densities that

we wish to unify. As discussed in Chapter 1, the majority of existing approaches have relied upon

approximations of the sub-posterior densities. Whilst these methodologies are typically computa-

tionally efficient, the quality of the posterior approximation for these approaches is poor when the

sub-posteriors fall out-with a narrow range of distributional form. In contrast, the Fusion approach

to dealing with this problem is to construct an exact sample approximation of f , as opposed to

approximating f by combining approximations of the sub-posteriors.

In this chapter, we review the two existing Fusion methodologies. We start this chapter by intro-

ducing the Monte Carlo Fusion (MCF) approach of Dai et al. [2019] in Section 5.1, which was the

first general approach to the fusion problem that avoided any approximation error in sampling from

the fusion density (1.1). MCF provides a theoretical framework to sample independent draws from

(1.1) exactly, and achieves this by constructing a two-step rejection sampler (see Section 2.2) on an

extended state space. Within Dai et al. [2019], the authors introduce two Monte Carlo Fusion ap-

proaches, one based on Brownian bridges (BB) and one based on Ornstein-Uhlenbeck (OU) bridges.

We begin this section by describing the BB approach in Section 5.1.1. In Part II, we do not develop

the OU approach further and hence we only provide a short discussion of the OU approach and

its differences to the BB approach in Section 5.1.2 and refer the reader to Dai et al. [2019, Section

4] for further details. Bayesian Fusion (BF) [Dai et al., 2021] is an alternative sequential Monte

Carlo approach (see Chapter 3) developed to help mitigate some of the computational challenges

faced with the MCF approach. We provide an overview of BF in Section 5.2.

In this chapter, several results from Dai et al. [2019] and Dai et al. [2021] are stated without proof

since in Chapter 6 and Chapter 7, we will generalise both of these approaches and provide results

and algorithms which will admit these two methods as special cases.
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5.1 Monte Carlo Fusion

The Fusion methodologies are based on the simple intuition that if we have independent random

variables x(c) ∼ fc, for c = 1, . . . , C, with joint density
∏C
c=1 fc

(
x(c)

)
, then if we condition on the

event
(
x := x(1) = · · · = x(c)

)
, then we have x ∼ f , where f is the fusion density defined in (1.1).

This argument is summarised in Algorithm 5.1.1 to obtain N random samples from f .

Algorithm 5.1.1 Perfect Fusion algorithm for generating N random samples from (1.1).

1. For i in 1 to N ,
(a) For c = 1, . . . , C, simulate x(1) ∼ f1,x

(2) ∼ f2, . . . ,x
(c) ∼ fc .

(b) If x(1) = x(2) = · · · = x(c), set xi = x(1), else return to Step 1a.
2. Return samples {xi}Ni=1.

However, the conditioning event of the sub-posterior samples x(c) ∼ fc being equal for all c =

1, . . . , C, has probability zero if any of the sub-posteriors are continuous densities, so Algorithm

5.1.1 is not practical for simulating from (1.1). However, we could consider simulating C independent

stochastic processes with respective invariant densities fc for c = 1, . . . , C. The time point for which

the stochastic processes coincide would give us a sample from (1.1) (illustrated in Figure 5.1a for

C = 2). However, for C > 2, these events would be too rare and again have probability zero. To

circumvent this, we can construct a setting whereby we can force the C stochastic processes to

coalesce at a certain time (illustrated in Figure 5.1b). With this approach, however, it is unclear

how we propose the end point of these stochastic processes. Monte Carlo Fusion (MCF) [Dai

et al., 2019] is an implementable algorithm which provides a coalescence of C stochastic processes

at a fixed time T > 0, and consequently the distribution of this common value at the time T is

distributed according to f in (1.1). The key idea of MCF is given by the following proposition.

Proposition 5.1.1. [Dai et al., 2021, Proposition 1] Suppose that pc is the transition density of

a Markov chain on Rd with a stationary probability density proportional to f2
c . Then the (C + 1)d-

dimensional probability density proportional to the integrable function

g
(
x(1), . . . ,x(C),y

)
:=

C∏
c=1

[
f2
c

(
x(c)

)
· pc
(
y
∣∣∣x(c)

)
· 1

fc (y)

]
, (5.1)

admits marginal density f for y.

Proof. By integrating out x(1), . . . ,x(C), we have∫
Rd
· · ·
∫
Rd
g
(
x(1), . . . ,x(C),y

)
dx(1) · · · dx(C)

=

∫
Rd
f2

1

(
x(1)

)
· p1

(
y
∣∣∣x(1)

)
· 1

f1 (y)
dx(1) · · ·

∫
Rd
f2
C

(
x(C)

)
· pC

(
y
∣∣∣x(C)

)
· 1

fC (y)
dx(C)

∝ f2
1 (y)

f1(y)
· · ·

f2
C(y)

fC(y)
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X

(a) Illustration of C = 2 independent stochastic pro-
cesses with invariant density proportional to fc and
initialised at x(c) ∼ fc for c = 1, 2. The value where
these processes coincide (cross-over) is distributed

according to
∏C

c=1 fc.

0 T

x
(5)

x
(2)

x
(3)
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(1)
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(4)

y

Time

X

(b) Illustration of C = 5 independent stochastic pro-
cesses with invariant distribution proportional to fc
and initialised at x(c) ∼ fc for c = 1, . . . , 5, which
coalesce at y at time T . The common value at time
T is distributed according to

∏C
c=1 fc.

Figure 5.1: Illustrative plots for intuition for Fusion methodology.

= f1(y) · · · fC(y) = f(y). (5.2)

Hence, y has marginal density f . �

The key takeaway from Proposition 5.1.1 is that if it were possible to sample from the (C + 1)d-

dimensional extended target density g in (5.1), then we could obtain a draw from the fusion target

density f by simply taking the marginal samples y.

In the subsequent sections (and in Proposition 5.1.2) we will a consider Langevin diffusion with

invariant measure f2
c which we can sample from exactly using methodology from Chapter 4. The

transition density for such diffusion can be expressed using the Dacunha-Castelle representation

[Dacunha-Castelle and Florens-Zmirou, 1986] discussed in Section 4.3.4 which would include a
fc(y)

fc(x(c))
term and subsequently result in a cancelling of terms (see Proposition 6.1.2). From there, it

is easy to construct a proposal distribution, h, which is easy to sample from that results in a bounded

ratio of g/h to form a valid rejection sampler. However, although we do not explore it here in this

thesis, note that there may be variations of g which could lead to other valid Fusion methodologies

such as letting p(y|x(c)) be a fc invariant Markov process and letting galt(x(1), . . . ,x(C),y) :=∏C
c=1 fc(x

(c))pc(y|x(c)). Following a similar approach to Proposition 5.1.1, we see that galt also

admits marginal density f for y.

5.1.1 Brownian bridge approach

Let pc (y|x) = pdlT,c (y|x), the transition density of a double Langevin diffusion for fc (i.e. a Langevin

diffusion with invariant distribution f2
c ) from x to y over a pre-determined, user-specified, time

72



T > 0. In particular, pdlT,c (y|x) is the transition density of the d-dimensional (double) Langevin

(DL) diffusion processes X
(c)
t for c = 1, . . . , C, from x to y for time T > 0 given by

dX
(c)
t = ∇ log fc

(
X

(c)
t

)
dt+ dW

(c)
t , X

(c)
0 = x(c), t ∈ [0, T ], (5.3)

where W
(c)
t is the d-dimensional Brownian motion and ∇ is the gradient operator over x. In this

case, the (C + 1)d-dimensional fusion density is given by

gdl
(
x(1), . . . ,x(C),y

)
:=

C∏
c=1

[
f2
c

(
x(c)

)
· pdlT,c

(
y
∣∣∣x(c)

)
· 1

fc (y)

]
. (5.4)

To sample from gdl, Dai et al. [2019, Section 3] construct a rejection sampler for the extended target

density, and consider the following proposal density which is proportional to the function,

hbm
(
x(1), . . . ,x(C),y

)
:=

C∏
c=1

[
fc

(
x(c)

)]
· exp

{
−C · ‖y − x̄‖

2

2T

}
, (5.5)

where x̄ = 1
C

∑C
c=1 x

(c) and T > 0. Simulation from the proposal hbm can be achieved directly:

1. simulate x(c) ∼ fc independently for c = 1, . . . , C,

2. simulate y ∼ Nd
(
x̄, TC Id

)
, where Id is the identity matrix of dimension d.

Before obtaining an expression for gdl/hbm, which gives us the acceptance probability of a rejection

sampling scheme, Dai et al. [2019] imposes the following standard regularity conditions.

Condition 5.1.1. ∇ log fc(x) is at least once continuously differentiable.

Condition 5.1.2. Define

φdlc (x) :=
1

2

(
‖∇ log fc(x)‖2 + ∆ log fc(x)

)
, (5.6)

where ∇ is the gradient operator over x and ∆ is the Laplacian operator, then there exists a constant

Φbm
c > −∞ such that for all x and each c = 1, . . . , C, φdlc (x) ≥ Φbm

c .

Then we have the following proposition that gives the acceptance probability for a rejection sampling

algorithm for gdl (5.4) with a proposal given by hbm in (5.5).

Proposition 5.1.2. [Dai et al., 2019, Proposition 2] Under Condition 5.1.1 and Condition 5.1.2,

we can write

gdl
(
x(1), . . . ,x(C),y

)
hbm

(
x(1), . . . ,x(C),y

) =

[ √
C√

2πT

]C
· ρbm ·Qbm ·

C∏
c=1

e−TΦbm
c , (5.7)
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where

ρbm
(
x(1), . . . ,x(C)

)
= e−

Cσ2

2T , with σ2 =
1

C

C∑
c=1

∥∥∥x̄− x(c)
∥∥∥2
, (5.8)

and

Qbm
(
x(1), . . . ,x(C),y

)
=

C∏
c=1

EWc

[
exp

{
−
∫ T

0

(
φdlc

(
X

(c)
t

)
−Φbm

c

)
dt

}]
, (5.9)

where Wc denotes the law of a Brownian bridge {X(c)
t , t ∈ [0, T ]} with X

(c)
0 := x(c) and X

(c)
T := y

in the time interval [0, T ].

Proof. See Dai et al. [2019, Proposition 2]. This also follows directly from Proposition 6.1.2 by

setting Λc = Id for all c ∈ C := {1, . . . , C}. �

Both ρbm and Qbm are bounded by 1, and correspond to separate acceptance steps within a rejection

sampling framework. An event of probability ρbm can be simulated by directly computing (5.8)

using the sub-posterior samples. Although Qbm in (5.9) cannot be evaluated directly, we can

construct bounded unbiased estimators for Qbm, denoted Q̂bm. an event of probability Qbm can be

simulated using an auxiliary diffusion bridge path-space rejection sampler since Qbm is the product

of C path-space rejection sampling acceptance probabilities when simulating sample path skeletons

from (5.3) via Brownian bridge proposals (see for instance the similarity to (4.68)). Recall in Section

4.4.2, we constructed an unbiased estimator for the acceptance probability in (4.68), but the key

difference is that we do not need to use Biased Brownian Motion, Zx0,T (see Definition 4.4.1), since

the common end point of the C paths, y, is fixed here and is proposed from Nd
(
x̄, TC Id

)
.

Recall from Section 4.4, in order to find an unbiased estimator forQbm which is positive and bounded

(which is necessary for a rejection sampler), we require for a given sample path X
(c)
[0,T ] ∼Wc, that

upper and lower bounds for φc(X
(c)
[0,T ]), denoted U

(c)
X and L

(c)
X , are available. Typically, we cannot

find global bounds for φc, and so following the approach outlined in Section 4.4.2, we can use

layered Brownian bridge constructions (see Section 4.2.2) to partition the space of Wc into disjoint

layers. Let Rc := Rc(X
(c)
[0,T ]) define the compact subset of Rd for which X

(c)
t is constrained in time

t ∈ [0, T ], then we simulate a layer Rc ∼ Rc (as per Algorithm 4.2.4) which constrains a given path.

This allows us to find local bounds for φdlc (X
(c)
[0,T ]). An interpretation of the Qbm accept/reject

step is that we are driving the sub-posterior samples {x(c)}c=1,...,C to the proposed point y using

auxiliary Brownian bridge proposals, and if all of these bridges are accepted as a sample path from

the target diffusion in (5.3) for each c = 1, . . . , C, then we accept this step. To summarise, let

Q̂bm
(
x(1), . . . ,x(C),y

)
=

C∏
c=1

e−(L(c)
X −Φbm

c

)
T ·

κc∏
kc=1

[
U

(c)
X − φdlc (Xξc,kc)

U
(c)
X − L

(c)
X

] , (5.10)

74



then we have

Qbm = ER̄EW̄|R̄EK̄EŪ

[
ˆQbm
]
,

where for readability, the expectation subscripts denotes the law with which we are taking. R̄
denotes the law of {Rc ∼ Rc : c = 1, . . . , C}, W̄ denotes the law of {Wc : c = 1, . . . , C}, K̄
denotes the law of {κc : c = 1, . . . , C} with κc ∼ Poi

(
(U

(c)
X − L

(c)
X )T

)
and Ū denotes the law of

{ξc,1, . . . , ξc,κc : c = 1, . . . , C} iid∼ U [0, T ]. We can simulate Q̂bm as per Algorithm 5.1.2.

Algorithm 5.1.2 Simulating the unbiased estimator for Qbm (5.9).

1. For c = 1, . . . , C,
(a) Rc: Simulate Rc ∼ R as per Algorithm 4.2.4.

(b) L
(c)
X , U

(c)
X : Compute lower and upper bounds, L

(c)
X and U

(c)
X , of φdlc (x) for x ∈ Rc.

(c) pc: Choose p(·|Rc) to be Poisson distributed with mean λc =
(
U

(c)
X − L

(c)
X

)
T .

(d) κc, ξ: Simulate κc ∼ p(·|Rc), and simulate ξc,1, . . . , ξc,κc ∼ U [0, T ].

(e) X(c): Simulate X
(c)
ξc,1
, . . . ,X

(c)
ξc,κc
∼Wc|Rc as per Algorithm 4.2.5.

2. Output Q̂bm (5.10).

The fundamental idea behind MCF is that we can sample from f (1.1) by means of constructing a

rejection sampling for an extended target density g which admits f as a marginal. To summarise,

we can propose samples from hbm, where the proposed value y is generated from a Gaussian

distribution with mean x̄ and covariance matrix T
C Id. Using a rejection sampling approach, we

then accept the value of y as a sample from f with probability gdl(x(1),...,x(C),y)

hbm(x(1),...,x(C),y)
∝ ρbm · Qbm.

Viewing this approach as a two-step rejection sampler is advantageous since the computational

cost of simulating the diffusion bridge rejection sampling in Qbm is comparatively more expensive

than computing ρbm. Hence if a sample is rejected after an accept/reject step with ρbm, we can

avoid unnecessary computation of the unbiased estimator for Qbm. Dai et al. [2019] points out that

the algorithm indicates exactly how the simple average of these independent sub-posterior samples,

x̄, can be corrected to obtain a draw from f (1.1). This adjustment comes in the form of the

accept/reject step with acceptance probability ρbm ·Qbm. The Monte Carlo Fusion approach (with

Brownian bridge proposals) for sampling from f is presented in Algorithm 5.1.3.

Algorithm 5.1.3 Monte Carlo Fusion (Brownian bridge approach) [Dai et al., 2019, Algorithm 1].

1. For i in 1 to N ,
(a) For c = 1, . . . , C, simulate x(c) ∼ fc(x).
(b) Compute ρbm as per (5.8).
(c) Generate standard uniform random variable U1.
(d) If U1 ≤ ρbm,

i. Simulate from y ∼ Nd
(
x̄, TC Id

)
.

ii. Compute Q̂bm as per Algorithm 5.1.2.
iii. Generate standard uniform random variable U2.
iv. If U2 ≤ Q̂bm, set Yi = y, else return to Step 1a.

2. Return samples {Yi}Ni=1.
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Dai et al. [2019] remarks that for small T , ρbm will likely be small, while Qbm is large, and for

larger T , the opposite will be true. In practice, a small value of T is generally preferred since the

computational cost for simulating unbiased estimators for Qbm is comparatively more expensive.

Further, note that σ2 = 1
C

∑C
c=1

∥∥x(c) − x̄
∥∥2

is the sample variance of the simulated starting points

x(c). This implies that y has a reasonable probability of acceptance as a sample of f only when

the variance of the simulated sub-posterior realisations, x(c) for c = 1, . . . , C, is small enough.

Recalling the intuition of the Fusion approaches at the start of this section, consider the case where

T = 0, then the event U2 ≤ Qbm will definitely occur, but the event U1 ≤ ρbm only occurs if

x(1) = · · · = x(c) = y. Further, the proposal in this setting is

hbm
(
x(1), . . . ,x(C),y

)
:=

C∏
c=1

fc

(
x(c)

)
.

MCF with T = 0 is therefore equivalent to the idealised Fusion algorithm in Algorithm 5.1.1. As

noted at the start of this section, in practice, we have to choose T > 0, since the independent

sub-posterior samples x(c) have zero probability of coinciding with each other if any of them are

continuous, and generally have low probability if they are all discrete probability mass functions.

5.1.2 Ornstein-Uhlenbeck bridges approach

The proposal density hbm in (5.5) uses a simple average of the sub-posterior samples as the mean of

the proposal of y. To obtain a more tailored proposal for gdl (5.4), we could alternatively consider

a weighted average of the sub-posterior samples which incorporates global information for each

sub-posterior, which can often be obtained through sub-posterior mean and covariance estimates.

The methodology that we later develop in Chapter 6 does this by having the flexibility to weight

the contribution from each sub-posterior through a user-specified matrix Λc for c = 1, . . . , C.

Alternatively, Dai et al. [2019, Section 4] considers an underlying Ornstein-Uhlenbeck (OU) proposal

measure, which is approximately parameterised by obtaining estimates of the mean and covariance

of the sub-posteriors. The motivation is that if the sub-posterior densities were approximately

Gaussian, which is often a reasonable assumption in large data settings [Le Cam, 1986; Scott et al.,

2016; Dai et al., 2019], the proposal measure will be more closely matched to the target which

would lead to a more efficient algorithm. The approximations to parameterise the OU process does

not introduce any bias to the samples obtained for f .

As with the Brownian bridge approach described in Section 5.1.1, the OU approach is a rejection

sampling scheme for gdl. Since we will not develop this particular approach further, we will not

provide more details on the OU approach as this would require details on constructing an unbiased

estimator for an intractable acceptance probability, denoted Qou (in a similar fashion to unbiasedly

estimating Qbm) that involves simulating OU bridges which are not covered in this thesis.
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5.1.3 Illustrative toy examples

In this section, we implement the MCF methodology of Dai et al. [2019] and apply it to simple

toy examples for illustrative purposes. With each example, we contrast our implementation of

MCF against the Consensus Monte Carlo (CMC) [Scott et al., 2016], the kernel density averaging

approach of Neiswanger et al. [2014] (which we term KDEMC in this thesis), and the Weierstrass

Sampler (WRS) method [Wang and Dunson, 2013]. These approximate approaches were discussed

in Section 1.2.1. Details of the implementation of these examples (and details explaining where to

find the code for these examples) can be found in Appendix A.

5.1.3.1 Univariate distribution with light tails

We consider the univariate distribution with light tails example set out in Dai et al. [2019, Section

5.1], and consider the target density f(x) ∝ e−
x4

2 . The sub-posterior densities are given by fc(x) =

e−
x4

2C for c = 1, . . . , C, with C = 5. In this setting, Conditions 5.1.1–5.1.2 are satisfied and

φdlc (x) =
2x6

C2
− 3x2

C
, (5.11)

and Φc = 0 for each c = 1, . . . , C. See Appendix B.1 for the derivation of φdlc for this example.

As noted previously, the value T used in Algorithm 5.1.3 has a large effect on the efficiency of

the algorithm, which we show in Figure 5.2 by considering the computational cost of the MCF

algorithm for simulating N = 10000 draws from f using a range of different values for T . In Figure

5.2a, we plot the acceptance rates for the two accept/reject steps in MCF. We can observe the

trade-off between wanting to choose a small T to make ρbm in (5.8) larger, but this results in Qbm

in (5.9) (which we unbiasedly estimate as per Algorithm 5.1.2) to be smaller. The opposite is true

when T is chosen to be larger. We will see later that for more difficult problems (e.g. in higher

dimensions or when the sub-posteriors are more different), finding an optimal value for T which

results in sufficiently large acceptance probabilities can be incredibly difficult.

The density curve estimation results are provided in Figure 5.2. We can see here that the CMC and

KDEMC methods have very large biases whereas the WRS and MCF approaches are performing

well and provide samples very close to the target density. Of course, with the MCF approach (here

we have T = 1), we are providing direct i.i.d. samples from f .

Lastly, we consider a range of values for C to study how Algorithm 5.1.3 scales with the number

of sub-posteriors to combine. Here, we fix T = 1 and plot the acceptance rates and computational

run-times of Algorithm 5.1.3 in Figures 5.4a and 5.4b, respectively. Given the computational run-

times are plotted in log-scale, we can observe that there seems to be an exponential cost with C for

the MCF algorithm. In Chapter 6, we will develop the MCF approach further to be more scalable

with regards to combining more sub-posteriors.
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(b) Computational run-times.

Figure 5.2: Computational cost of Monte Carlo Fusion using different values for T with fixed C = 5
in Algorithm 5.1.3, as per the example in Section 5.1.3.1.
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Figure 5.3: Kernel density fitting with bandwidth 0.1 for density f(x) ∝ e−
x4

2 based on different
Monte Carlo methods for unifying sub-posterior samples.
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Figure 5.4: Computational cost of Monte Carlo Fusion with T = 1 in Algorithm 5.1.3 with varying
C, as per the example in Section 5.1.3.1.

5.1.3.2 Univariate mixture Gaussian

We consider a univariate mixture Gaussian distribution with 3 components with density

f(x) = 0.35 · N1 (x|−3, 1) + 0.2 · N1

(
x
∣∣2, 1.52

)
+ 0.45 · N1

(
x
∣∣5, 0.52

)
, (5.12)

where N1(x|µ, σ2) denotes the density of a univariate Normal distribution with mean µ and variance

σ2. In this example, our target density exhibits multi-modality and has 3 modes. Although

the separation between the modes is not too extreme here, Markov chain Monte Carlo (MCMC)

methods which use localised proposal mechanisms can still struggle to sample from f effectively

and can face the difficulty of moving between modes as there is little probability mass (or bridging

mass) between the modes. Popular approaches to overcome this issue are simulated tempering

[Marinari and Parisi, 1992] and parallel tempering [Geyer, 1991; Geyer and Thompson, 1995; Tawn

and Roberts, 2019] approaches which consider a power-tempered target distribution, fβ(x) ∝ [f(x)]β,

for some inverse temperature level β ∈ (0, 1]. As β → 0, fβ approaches a uniform distribution over

the support of the target distribution. This essentially has the effect of flattening out the target

distribution by spreading out mass into the tails of the distribution and forming bridging mass

between modes [Tawn and Roberts, 2019], which means MCMC sampling is made much easier. In

such approaches, a wide range of inverse temperature levels are considered and MCMC is run on

an augmented space. As noted in Chapter 1, we can take an alternative approach by constructing

a fusion problem by choosing a single inverse temperature β such that 1
β ∈ N+ and Markov chain

sampling from fβ(x) can mix well across the entire sample space and by noting

f(x) ∝

1
β∏
i=1

fβ(x). (5.13)
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In this setting, we simply sample from each of the power-tempered target distributions (which can

be done in parallel) and combine those samples to recover the target f . Here, we let C = 4, and

sample from fc(x) = f
1
C (x) for c = 1, . . . , C (so β = 1

4). Derivations of φdlc and implementational

details for this example can be found in Appendix B.2.

We consider the computational cost of running Algorithm 5.1.3 for simulating N = 10000 draws

from f using a range of different values of T in Figure 5.5. As with the previous example, we

observe the effect of choosing T on each of the acceptance probabilities in Figure 5.5a; namely ρbm

increases as T increases while Qbm gets smaller. Comparing the computational run-times in Figure

5.5b to the run-times for the previous example in Figure 5.2b, we can see that this example was

much more expensive. One reason is that we struggled to find a value for T which resulted in good

acceptance rates for both steps in Algorithm 5.1.3. As we have noted above, this is a common

issue for Algorithm 5.1.3 and in the subsequent sections, we will see a number of alternative Fusion

methods which attempt to alleviate many of the computational problems that MCF faces while

still avoiding any approximations to the target f or the sub-posteriors fc.
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Figure 5.5: Computational cost of Monte Carlo Fusion using different values for T with fixed C = 4
in Algorithm 5.1.3 as per the example in Section 5.1.3.2.

Kernel density curve estimation results for this example are given in Figure 5.6. We noted in

Section 1.2.1 that CMC is exact if the sub-posteriors are Gaussian, but clearly in this case where

the sub-posteriors exhibit multi-modality, the method does not capture this structure well. The

KDEMC and WRS methods are performing better with the latter starting to capture the multi-

modality well but still exhibits bias in the samples. Since the MCF approach returns i.i.d. samples

from f , we can see that we are able to effectively recover the target distribution in this example.
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methods for unifying sub-posterior samples.

5.2 Bayesian Fusion

The Monte Carlo Fusion (MCF) approach of Dai et al. [2019] was the first general method in tack-

ling the fusion problem that avoided any approximation error in sampling from (1.1). However, as

we have seen and also pointed out in Dai et al. [2021], the MCF approach faces a variety of com-

putational difficulties, such as scalability with respect to number of sub-posteriors to combine and

robustness to conflicting (or heterogeneous) sub-posteriors. The Bayesian Fusion (BF) approach

was developed by Dai et al. [2021] to alleviate some of these problems. In this section, we will

provide an overview of this approach from Dai et al. [2021].

5.2.1 Theory

One of the central ideas from the MCF approach [Dai et al., 2019] was that sampling from f in (1.1)

(by means of sampling and evaluating functionals from sub-posterior densities fc for c = 1, . . . , C),

was possible by sampling from an extended target fusion measure on an extended state space, which

admitted f as a marginal. In particular, the MCF approach considered simulating C stochastic

processes in such a way that they coalesce at a fixed time T , and the marginal distribution at

the coalescence time T has the fusion density of (1.1). Sampling from this was achieved through

a rejection sampling algorithm. In the BF approach of Dai et al. [2021], this is replaced with a

sequential Monte Carlo (SMC) scheme which steps through a sequence of distributions between the

initial proposal distribution to the target fusion density. The sequence of distributions is the joint

distribution of our C dependent stochastic processes at times between 0 and the coalescence time

T . The key contribution in Dai et al. [2021] is the development of tractable dynamics for these C

stochastic processes which they term the proposal measure, denoted by P, which is then suitably

importance weighted to find the fusion measure F. We first define some notation and terminology

to define the Fusion measure.
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Let P denote the proposal measure given by the probability law induced by C interacting d-

dimensional parallel continuous-time Markov processes in [0, T ] where each process is given by

the stochastic differential equation (SDE),

dX
(c)
t =

X̄t −X(c)
t

T − t
dt+ dW

(c)
t , X

(c)
0 := x

(c)
0 ∼ fc, t ∈ [0, T ], (5.14)

where W
(c)
t for c = 1, . . . , C, are independent Brownian motions and X̄t = 1

C

∑C
c=1X

(c)
t . To

denote realisations from P, we use the notation X := {~xt, t ∈ [0, T ]}, where ~xt := x
(1:C)
t is the

Cd-dimensional vector of all processes at time t. The C processes interact through their average,

X̄t for t ∈ [0, T ] and most importantly, we have coalescence at time T , so x
(1)
T = · · · = x

(C)
T =: y.

The proof to show that the law of C independent Brownian motions initialised at the respective

sub-posteriors, x
(c)
0 ∼ fc for c = 1, . . . , C, and conditioned to coalesce at time T satisfies (5.14) is

given in Dai et al. [2021, Appendix A] which uses Doob h-transforms [Rogers and Williams, 2000,

Chapter IV, Section 6.39]. We will defer this proof for Chapter 7 in Part II when we generalise and

develop the Bayesian Fusion methodology further (see Theorem 7.1.1).

Given the proposal measure P, Dai et al. [2021] define the Fusion measure, denoted F, as the

probability measure induced by the following Radon-Nikodým derivative,

dF
dP

(X) ∝ ρbm0 (~x0) ·
C∏
c=1

[
exp

{
−
∫ T

0
φdlc

(
X

(c)
t

)
dt

}]
, (5.15)

where {X(c)
t , t ∈ [0, T ]} is a Brownian bridge from X

(c)
0 := x

(c)
0 ∼ fc to X

(c)
T := x

(c)
T , φdlc (x) is

defined in (5.6), and ρbm0 (~x0) := ρbm(x
(1)
0 , . . . ,x

(C)
0 ) from (5.8). Dai et al. [2021] establish (through

the following theorem) that its possible sample from f by means of the T temporal marginal of F.

As with MCF (detailed in Section 5.1), the regularity conditions 5.1.1–5.1.2 are imposed.

Theorem 5.2.1. [Dai et al., 2021, Theorem 1]. Under Condition 5.1.1 and Condition 5.1.2, with

probability 1, we have that under the Fusion measure, F, the end points of the C parallel processes

have a common value y := x
(1)
T = · · · = x

(C)
T and y ∼ f .

Proof. See Dai et al. [2021, Appendix A]. This also follows directly from Theorem 7.1.1 by setting

Λc = Id for c ∈ C := {1, . . . , C}. �

5.2.2 Methodology

Theorem 5.2.1 suggests that we can simulate from the fusion target density f in (1.1) by simu-

lating X ∼ F and retaining the T time marginal, y. Dai et al. [2019] notes that although direct

simulation from F is not generally available, we could construct a rejection sampler for F by means

of simulating proposals X ∼ P and accepting them with probability proportional to the Radon-
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Nikodým derivative in (5.15). Since paths X ∼ P are infinite dimensional random variables, we

cannot draw entire sample paths from P. However, we can simulate a finite dimensional subset

of the process at discrete time points without error. Consider the auxiliary temporal partition,

P = {t0, t1, . . . , tn : 0 =: t0 < t1 < · · · < tn := T} and let ∆j := tj − tj−1. For notational simplicity,

we suppress subscripts when considering the processes at times given in the temporal partition (i.e.

let x
(c)
j denote x

(c)
tj

, and let ~xj denote ~xtj ). The following theorem tells us how to simulate from P
without discretisation error.

Theorem 5.2.2. [Dai et al., 2021, Theorem 2] If X satisfies (5.14), then under the proposal

measure, P, we have

(a) For s < t,

~Xt

∣∣∣( ~Xs = ~xs

)
∼ NCd

(
~Ms,t,Vs,t

)
, (5.16)

where ~Ms,t :=
(
M

(1)
s,t , . . . ,M

(C)
s,t

)
, with

M
(c)
s,t =

T − t
T − s

x(c)
s +

t− s
T − s

x̄s, (5.17)

and Vs,t = Σ⊗ Id, where ⊗ denotes the Kronecker product, and Σ ∈ RC×C given by

Σii =
(t− s)(T − t)

T − s
+

(t− s)2

C(T − s)
, Σij =

(t− s)2

C(T − s)
. (5.18)

(b) For each c = 1, . . . , C, the distribution of {X(c)
q , s ≤ q ≤ t} given endpoints X

(c)
s = x

(c)
s and

X
(c)
t = x

(c)
t is a Brownian bridge, so

X(c)
u

∣∣∣(x(c)
s ,x

(c)
t

)
∼ Nd

(
(t− q)x(c)

s + (q − s)x(c)
t

t− s
,
(t− q)(q − s)

t− s
Id

)
. (5.19)

Proof. See Dai et al. [2021, Appendix B]. This also follows directly from Theorem 7.1.2 by setting

Λc = Id for c ∈ C := {1, . . . , C}. �

Using Theorem 5.2.1 and simplifying notation again by suppressing subscripts to set ~Mj := ~Mtj−1,tj

and Vj := Vtj−1,tj , the (nC + 1)d-dimensional density of the Markov processes at the (n+ 1) time

marginals given by the temporal partition, P, under the proposal measure P (illustrated in Figure

5.7, given by

hbf
(
~x0, . . . , ~xn−1,y

)
∝

C∏
c=1

[
fc

(
x

(c)
0

)]
·
n∏
j=1

NCd
(
~xj

∣∣∣ ~Mj ,Vj

)
, (5.20)

where Nd(x|µ,Σ) denotes the density of a d-dimensional Normal distribution (evaluated at x) with

mean µ and covariance Σ.
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Figure 5.7: Illustration of the (nC + 1)d-dimensional density (for d = 1) corresponding to a typical
realisation of X at the time marginals in P.

Simulating from hbf can be achieved by first simulating x
(c)
0 ∼ fc independently for c = 1, . . . , C,

and directly applying Theorem 5.2.2 iteratively for each time point in P. For simplicity, we typ-

ically that we have access to independent realisations from each sub-posterior, but as Dai et al.

[2021, Section 3.6] notes, we may naturally only have sample approximations of each sub-posterior

obtained by another Monte Carlo scheme (for instance Markov chain Monte Carlo). We discuss

the impact of using approximate samples of each sub-posterior in Section 5.2.3.1.

By factorising the Fusion measure in (5.15) according to the time marginals given by the temporal

partition P, the (nC + 1)d-dimensional target density is given by

gbf
(
~x0, . . . , ~xn−1,y

)
∝ hbf

(
~x0, . . . , ~xn−1,y

)
·
n∏
j=0

ρbmj , (5.21)

where ρbm0 := ρbm0 (~x0) = ρbm(x
(1)
0 , . . . ,x

(C)
0 ) from (5.8), and for j = 1, . . . , n,

ρbmj := ρbmj
(
~xj−1, ~xj

)
=

C∏
c=1

EWj,c

[
exp

{
−
∫ tj

tj−1

(
φdlc

(
X

(c)
t

)
−Φbm

c

)
dt

}]
∈ (0, 1], (5.22)

where for c = 1, . . . , C, Wj,c is the law of a Brownian bridge {X(c)
t , t ∈ (tj−1, tj)} from Xtj−1 :=

x
(c)
j−1 to Xtj := x

(c)
j , φdlc is defined in (5.6) and Φbm

c > −∞ is the constant such that for all x,

φdlc (x) ≥ Φbm
c imposed by Condition 5.1.2.

Following a similar approach to the MCF method in Section 5.1, rather than simulating X ∼ F,

we can simulate from the extended target density gbf and consider the T time marginal to obtain

samples from the fusion density f . From (5.21), we can simulate from gbf by means of rejection

sampling by proposing from the density hbf and accepting the proposal with probability
∏n
j=0 ρ

bm
j .
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However, Dai et al. [2021] notes that a rejection sampler can be inefficient in this setting since

the acceptance probability in (5.22) typically decays geometrically with increasing number of sub-

posteriors C, since each of the terms in the product is bounded by 1. An alternative approach

would be to construct an importance sampler (see Section 2.3) whereby importance weights given

by
∏n
j=0 ρ

bm
j are assigned to each proposal from hbf . However, this scheme would suffer from

similar inefficiencies as the rejection sampler but through the variance of the importance weights

instead. The main insight from the BF approach of Dai et al. [2021] is that we can utilise Theorem

5.2.2 to construct a SMC approach. A complication here is that whilst ρbm0 is readily computable,

direct computation of ρbm1 , . . . , ρbmn is not possible since this requires evaluation of path integrals

of functionals of Brownian motion. However, we can construct unbiased estimators for ρbmj for

j = 1, . . . , n, in a similar fashion as we did for Qbm (5.9) with Algorithm 5.1.2.

Recall from Section 4.2 and Section 5.1, to find an unbiased estimator for ρbmj , we need to find upper

and lower bounds for φdlc (X
(c)
t ) for t ∈ [tj−1, tj ]. To achieve this in general, we can bound a sample

pathX
(c)
[tj−1,tj ]

∼Wj,c, and conditional on these layers/bounds of the sample path, we can find upper

and lower bounds of φdlc denoted U
(c)
j and L

(c)
j , respectively, such that φdlc (X

(c)
t ) ∈ [L

(c)
j , U

(c)
j ] for

t ∈ [tj−1, tj ]. Here, let Rc := Rc(X[tj−1,tj ]) denote the compact region in which X
(c)
t is constrained

in time [tj−1, tj ]. We can use Bessel layers (4.25), for instance, to construct partitions of the space

of Wj,c into disjoint layers and simulate a layer Rc ∼ Rc using Algorithm 4.2.4. As discussed

in Section 4.2.2, it is then possible to further simulate the path at any required time marginals

conditional on the simulated layer, X
(c)
t ∼Wj,c|Rc as per Algorithm 4.2.5. Let

ρ̃bmj
(
~xj−1, ~xj

)
:=

C∏
c=1

∆κc
j · e−U

(c)
X ∆j

κc! · p (κc|Rc)
·
κc∏
kc=1

(
U

(c)
X − φ

dl
c

(
X

(c)
ξc,kc

)) , (5.23)

for j = 1, . . . , n, where κc in (5.23) denotes a non-negative, integer-valued, random variable with

probabilities conditional on Rc, denoted by p(·|Rc) and {ξc,1, . . . , ξc,κc} ∼ U [tj−1, tj ]. To find an

unbiased estimator of ρbmj for j = 1, . . . , n, we establish the following theorem.

Theorem 5.2.3. [Dai et al., 2021, Theorem 3]. Let aj := exp{
∑C

c=1 Φbm
c ∆j}, then for every

j = 1, . . . , n, aj ρ̃
bm
j is an unbiased estimator of ρbmj . In particular, we have

ρbmj = ER̄EW̄|R̄EK̄EŪ

[
aj ρ̃

bm
j

]
, (5.24)

where expectation subscripts denote the law with which they are taking; R denotes the law of {Rc ∼
Rc : c = 1, . . . , C}, W̄ denotes the law of the C Brownian bridges {Wj,c : c = 1, . . . , C}, K̄ denotes

the law of {κc : c = 1, . . . , C} and Ū denotes the law of {ξc,1, . . . , ξc,κc : c = 1, . . . , C} iid∼ U [tj−1, tj ].

Proof. See Dai et al. [2021, Appendix B]. This also follows directly from Theorem 7.1.3 by setting

Λc = Id for c ∈ C := {1, . . . , C}. �
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The problem of choosing an appropriate p(κc|Rc) is discussed in Section 4.4.3, and the two choices

we consider throughout this thesis are the GPE-1 and GPE-2 estimators:

Definition 5.2.1. (GPE-1 for ρbmj (5.22)): Choosing the law of κc ∼ Poi
(
(U

(c)
j − L

(c)
j )∆j

)
for

c = 1, . . . , C, leads to the following estimator:

ρ̃
bm,(a)
j

(
~xj−1, ~xj

)
:=

C∏
c=1

e−L(c)
j ∆j ·

κc∏
kc=1

U (c)
j − φdlc

(
X

(c)
ξc,kc

)
U

(c)
j − L

(c)
j

 , (5.25)

where exp{
∑C

c=1 Φbm
c ∆j} · ρ̃bm,(a)

j is an unbiased estimator for ρbmj .

Definition 5.2.2. (GPE-2 for ρbmj (5.22)): Choosing the law of κc ∼ NB(γc, βc) for c = 1, . . . , C,

with

γc := U
(c)
j ∆j −

∫ tj

tj−1

φdlc

(
x

(c)
j−1 ·

tj − s
∆j

+ x
(c)
j ·

s− tj−1

∆j

)
ds, (5.26)

leads to the following estimator:

ρ̃
bm,(b)
j

(
~xj−1, ~xj

)
:=

C∏
c=1

e−U(c)
j ∆j ·

∆κc
j · Γ(βc) · (βc + γc)

βc+κc

Γ(βc + κc)β
βc
c γ

κc
c

·
κc∏
kc=1

[
U

(c)
j − φ

dl
c

(
X

(c)
ξc,kc

)] ,

(5.27)

where exp{
∑C

c=1 Φbm
c ∆j} · ρ̃bm,(b)j is an unbiased estimator for ρbmj .

In MCF [Dai et al., 2019] (see Section 5.1), a Poisson distribution (GPE-1) was used for the

distribution of κc for c = 1, . . . , C, since this lead to a positive, bounded unbiased estimator, which

is required for a rejection sampler. However, as we noted above, a key development in BF was to

replace the rejection sampler with a SMC scheme. This motivates the use of GPE-2 since it has

been shown empirically to outperform GPE-1 in terms of having a lower variance [Fearnhead et al.,

2010, Section 5]. Dai et al. [2021, Section 3.5] also showed empirically that GPE-2 outperforms

GPE-1 with a number of simulation studies. A summary of the full construction of (5.23) can

be found in Dai et al. [2021, Appendix B], but it is essentially a combination of arguments and

algorithms that are presented in Chapter 4. We can simulate ρ̃bmj as per Algorithm 5.2.1.

Algorithm 5.2.1 Simulating ρ̃bmj (5.23) [Dai et al., 2021, Algorithm 4].

1. For c = 1, . . . , C,
(a) Rc: Simulate Rc ∼ R as per Algorithm 4.2.4.

(b) L
(c)
j , U

(c)
j : Compute lower and upper bounds, L

(c)
j and U

(c)
j , of φdlc (x) for x ∈ Rc.

(c) pc: Choose p(·|Rc) using either GPE-1 (Condition 5.2.1) or GPE-2 (Condition 5.2.2).
(d) κc, ξ: Simulate κc ∼ p(·|Rc), and simulate ξc,1, . . . , ξc,κc ∼ U [tj−1, tj ].

(e) X(c): Simulate X
(c)
ξc,1
, . . . ,X

(c)
ξc,κc
∼Wc|Rc as per Algorithm 4.2.5.

2. Output ρ̃
bm,(·)
j (5.23).
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Given unbiased estimators for ρbmj for each j = 1, . . . , n, then it is possible to implement a SMC

algorithm for sampling from from the extended target gbf in (5.21) with proposal hbf in (5.20).

This algorithm is termed Bayesian Fusion and is presented in Algorithm 5.2.2.

The algorithm is initialised by simulating N particles from the time 0 marginal of hbf (5.20),

denoted {~x0,i}Ni=1 (recalling that ~x0,i = x
(1:C)
0,i , where x

(c)
0,i ∼ fc for c = 1, . . . , C). Each particle

is then assigned an un-normalised importance weight w′0,i := ρbm0 (~x0,i) for i = 1, . . . , N and this

initial particle set can be used to approximate the time 0 marginal of gbf . The particles are then

iteratively propagated n times using Theorem 5.2.2, and the weights are updated by a factor of

aj ρ̃
bm
j (~xj−1,i, ~xj,i) for i = 1, . . . , N at each iteration j = 1, . . . , n. The weighted particle set obtained

at the final nth iteration of the algorithm gives an approximation of the time T marginal of gbf ,

which as noted above can be used as an approximation to the target fusion density f (established in

Theorem 5.2.1). At the end of each iteration, the importance weights are normalised. As such, we

can adopt the common approach for monitoring and combating weight degeneracy (see Section 3.2

and Section 3.3) by computing an estimate of the effective sample size (ESS) (given in (3.18)) and

introduce resampling steps if the estimated ESS falls below a user-specified threshold. Also note

that the normalisation of the importance weights removes the contributions from Φbm
1 , . . . ,Φbm

C

from aj ρ̃
bm
j (~xj−1,·, ~xj,·), since aj is a common constant which is cancelled out in normalisation.

As such, it is possible to avoid the computation of Φbm
c for all c = 1, . . . , C, and we only need to

evaluate ρ̃bmj as per Algorithm 5.2.1.

Algorithm 5.2.2 Bayesian Fusion [Dai et al., 2021, Algorithm 1].

1. Initialisation (j = 0):
(a) Input: Sub-posteriors f1, . . . , fC , number of particles N , time horizon T , and temporal

partition P := {t0, t1, . . . , tn : 0 := t0 < t1 < · · · < tn := T}.
(b) For i in 1 to N ,

i. ~x0,i: For c = 1, . . . , C, simulate x
(c)
0,i ∼ fc. Set ~x0,i := x

(1:C)
0,i .

ii. Compute un-normalised weight w′0,i := ρbm0 (~x0,i) as per (5.8).

(c) w0,i: For i in 1 to N , compute normalised weight w0,i = w′0,i/
∑N

k=1w
′
0,k.

(d) gN0 : Set gN0 (d~x) :=
∑N

i=1w0,i · δ~x0,i
(d~x).

2. Iterative updates. For j = 1, . . . , n:

(a) Resample: If the ESS :=
(∑N

i=1w
2
j−1,i

)−1
breaches the lower user-specified threshold,

then for i = 1, . . . , N , resample ~xj−1,i ∼ gNj−1 and set wj−1,i = 1
N .

(b) For i in 1 to N ,

i. ~xj,i: Simulate ~xj,i ∼ Nd
(
~Mj,i,Vj

)
as per Theorem 5.2.2.

ii. w′j,i: Compute un-normalised weight w′j,i = wj−1,i ·ρ̃bmj (~xj−1,i, ~xj,i) as per Algorithm
5.2.1.

(c) wj,i: For i in 1 to N , compute normalised weight wj,i = w′0,i/
∑N

k=1w
′
j,k.

(d) gNj : Set gNj (d~xj) :=
∑N

i=1wj,i · δ~xj,i(d~xj).

3. Output:
{
~x0,i, . . . , ~xn−1,i,yi, wn,i

}N
i=1

, where f̂(dy) :=
∑N

i=1wn,i · δyi(dy) ≈ f(dy).
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5.2.3 Implementational guidance for Bayesian Fusion

One of the key reasons why BF can be applied to a wider range of applications (when compared to

MCF) is that there is more flexibility in the hyperparameters. As noted in Section 5.1, with MCF

(Algorithm 5.1.3), if T is chosen to be small, then the first accept/reject acceptance probability,

ρbm, is smaller, while the second acceptance probability Qbm is larger. For larger values of T , the

opposite is true. A key drawback with the MCF approach is that in many practical settings, it is

difficult to choose a value of T which leads to sufficiently large acceptance probabilities. For many

practical problems, it is unrealistic to be able to find the optimal tuning parameter easily and even

if the optimal T is found, it is likely that the acceptance probabilities ρbm and Qbm are very small.

In contrast, BF introduces a temporal partition of time T , denoted P. This means that to achieve

a good initialisation of the algorithm, we have the flexibility to make T sufficiently large such that

the initial importance weights {ρbm0,i }Ni=1 have low variance. Further, to ensure that the subsequent

iterative steps of the algorithm are stable and the incremental importance weights {ρ̃bmj,i }Ni=1 have

low variance, we can simply impose a finer temporal mesh in P. Of course, this comes at the cost

of increasing the number of iterations in the algorithm, n, but this ultimately results in a more

scalable and robust approach over the MCF approach of Dai et al. [2019].

It is clear to see that the efficiency of Algorithm 5.2.2 depends on the user-specified time T > 0 and

the temporal partition P. Dai et al. [2021, Section 3.1–3.2] provides guidance on selecting these

hyperparameters along with additional practical guidance on implementation. However, we will not

discuss the guidance for selecting T and P for the BF approach provided in Dai et al. [2021, Section

3.1–3.2] since in Chapter 7, we will develop a Generalised Bayesian Fusion (GBF) approach which

admits the BF as a special case. We subsequently further develop the implementational guidance

for the GBF approach (see Section 7.3) which can be applied to the BF setting too.

The main motivation in the development of the BF approach was to develop a practical SMC

approach for inference in the fusion problem (i.e. providing a sample approximation for (1.1)).

The methodology discussed in Section 5.2 attempts to improve on the scalability of the MCF

approach (see Section 5.1) by helping to alleviate the problems of robustness with regards to

number of sub-posteriors and sub-posterior heterogeneity. However, as Dai et al. [2021, Section

3.6–3.7] notes, there could be applications of Fusion which come with several additional problem-

specific constraints that require some modification of Algorithm 5.2.2. For example, as noted in

Section 1.2, the development of approximate methods for the fusion problem have typically been

motivated by developing methodology for performing Bayesian inference with large datasets. In this

setting, latency in communication between cores may be of particular concern [Scott et al., 2016;

Dai et al., 2021]. Furthermore, we may also have the problem where there is a large amount of data

associated to each of the individual sub-posteriors, so it may not be computationally efficient to

evaluate certain quantities in Algorithm 5.2.2 (such as computing the weights in Step 2(b)ii) which

would need to be modified appropriately. In this section, we will summarise several modifications

of the BF methodology proposed by Dai et al. [2021, Section 3.6–3.7].
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5.2.3.1 Using approximate samples from the sub-posteriors

The Fusion methodologies typically assume that we have access to independent realisations from

each sub-posterior, however in many cases we will not be able to simulate i.i.d. draws from each

sub-posterior. More realistically, we may only have sample approximations of each sub-posterior

obtained by another Monte Carlo scheme (for instance Markov chain Monte Carlo). Dai et al.

[2021, Section 3.6] analyses the impact of using approximate sub-posteriors by denoting ψc the cth

normalised sub-posterior density and ψ
(N)
c denote the approximation of ψc using a Monte Carlo

sample of size N . Here, we naturally assume that
∥∥∥ψc(x(c))− ψ(N)

c (x(c))
∥∥∥ → 0 as N → ∞ and

Dai et al. [2021, Theorem 6] show that by substituting ψ
(N)
c for ψc in Algorithm 5.2.2 for large

enough N , this would still output y arbitrarily close to the target fusion density f . For notational

simplicity, Dai et al. [2021] take n = 1 and notes that in this setting, we simulate ~x0 and y from

gbf,(N)(~x0,y) ∝
C∏
c=1

[
ψ(N)
c

(
x

(c)
0

)]
· Nd

(
~M1,V1

)
· ρbm0 · ρbm1 , (5.28)

whilst noting that for general values of n, the proof is similar.

Theorem 5.2.4. [Dai et al., 2021, Theorem 6]. Suppose for ε > 0, there exists a N0 such that for

N > N0, ∣∣∣∣∣∣ψc (x(c)
)
− ψ(N)

c

(
x(c)

)∣∣∣∣∣∣ ≤ ε,
for all c = 1, . . . , C. Then for any ε∗, we can find a N ′ such that when N > N ′, we have∫ ∣∣∣∣∫ (gbf (~x0,y)− gbf,(N)(~x0,y)

)
d~x0

∣∣∣∣ d~x1 ≤ ε∗.

Proof. See Dai et al. [2021, Appendix F]. �

If ψ
(N)
c for c = 1, . . . , C, are obtained by some Monte Carlo approach (e.g. MCMC), then some care

must be taken if the approximate sub-posterior samples are serially correlated. Dai et al. [2021,

Section 3.6] notes that analysing theoretically the impact of such approximations is challenging,

but in practice, one could thin the MCMC output for each sub-posterior, or randomly sample from

the MCMC trajectories when initialising the particle set in Algorithm 5.2.2 Step 1(b)i.

5.2.3.2 Reducing communication between the cores

Dai et al. [2021, Section 3.7.1–3.7.2] identified two steps in Algorithm 5.2.2 in which communication

between cores could be reduced; during initialisation of the particle set (in Step 1b) and when

propagating the particle set in the iterative steps of the algorithm (in Step 2(b)i).

In the initialisation of the particle set, we first compose particles {~x0,i := x
(1:C)
0,i }Ni=1 in Step 1(b)i

where x
(c)
0,i ∼ fc for c = 1, . . . , C. Composing {~x0,i}Ni=1 requires communications between the
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cores, and there is a further communication back to the cores for the computation of the proposal

importance weight ρbm0 (~x0,·) in Step 1(b)ii (since the mean x̄0,i must be sent back to the individual

machines). Lastly, there is a third communication between the cores to compute ρbm0 (~x0,·) since

it can be trivially decomposed into a product of C terms corresponding to the contribution from

each core separately. To reduce the amount of communication between the cores, Dai et al. [2021,

Section 3.7.1] suggest to choose θ̃ ∈ Rd to be a weighted average of approximate modes of each sub-

posterior (which can be preformed in a single pre-processing step) and then modify the proposal

distribution for the initial draw to be from

f̃c

(
x

(c)
0

)
∝ exp

−
∥∥∥x(c)

0 − θ̃
∥∥∥2

2T

 · fc
(
x

(c)
0

)
. (5.29)

We must compensate for this modification by replacing the importance weight ρbm0 (·) with

%̃bm0 := exp


C
∥∥∥x̄0 − θ̃

∥∥∥2

2T

 , (5.30)

where x̄0 = 1
C

∑C
c=1 x

(c)
0 . We can see that

%̃bm0 (~x0) ·
C∏
c=1

f̃c

(
x

(c)
0

)
∝ ρbm0 (~x0) ·

C∏
c=1

fc

(
x

(c)
0

)
,

and since we re-normalise the weights, this removes the need to compute the constant of pro-

portionality for %̃bm0 . This modification by Dai et al. [2021] results in an approach whereby we

can sample from f̃c on each core in isolation (using a rejection sampler with fc as the proposal

density). More critically, the evaluation of the modified importance weights %̃bm0 does not require

any further communication between the cores (since the computation can be done at the central

server). This means that we have removed two of the three communications required in the original

formulation of the initialisation of the Bayesian Fusion algorithm. However, this approach does re-

quire a communication to compute θ̃. This modified initialisation is summarised in Algorithm 5.2.3.

Algorithm 5.2.3 Particle set initialisation modification (to replace Algorithm 5.2.2 Step 1b). [Dai
et al., 2021, Algorithm 2].

1(b) For i in 1 to N ,

(i) ~x0,i: For c = 1, . . . , C, simulate x
(c)
0,i ∼ f̃c (5.29). Set ~x0,i := x

(1:C)
0,i .

(ii) Compute un-normalised weight w′0,i := %̃bm0 (~x0,i) as per (5.30).

We now focus our attention on the iterative propagation of the particle set in Algorithm 5.2.2 Step

2(b)i. For this step, we must compute ~Mj := ~Mtj−1,tj as per (5.17), which requires a communication
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between the cores since it requires the position of every trajectory over all cores. Furthermore, after

propagating the particle set, there is a second communication to compute the updated importance

weights of the particle set. Instead, Dai et al. [2021, Section 3.7.2] suggest an alternative approach

where each of the C parallel processes propagate their own individual particles to compose ~xj ,

which can be achieved by exploiting Corollary 5.2.1.

Corollary 5.2.1. [Dai et al., 2021, Corollary 2]. Simulating ~xj ∼ Nd
(
~Mj ,Vj

)
, the required

transition from ~xj−1 to ~xj in Algorithm 5.2.2 Step 2(b)i, can be expressed as

x
(c)
j =

(
∆2
j

C(T − tj−1)

) 1
2

ξj +

(
T − tj
T − tj−1

) 1
2

η
(c)
j +M

(c)
j , (5.31)

where ξj, ηj are standard Gaussian vectors and M
(c)
j is the cth sub-vector of ~Mj := ~Mtj−1,tj (5.17).

Proof. See Dai et al. [2021, Appendix D]. This also follows directly from Corollary 7.3.2 by setting

Λc = Id for c ∈ C := {1, . . . , C}. �

Dai et al. [2021] notes that the interaction between the trajectories only occurs through the mean

of the trajectories at the previous iteration. Computation of x̄j−1 can be computed at the previous

iteration at the same time the trajectory positions are communicated to compute the updated

importance weight. Furthermore, the common Gaussian vector ξj can also be simulated at the

previous iteration and communicated at the same time. This results in an approach where each

of the C parallel cores can update the individual components of ~xj and consequently removes

an unnecessary additional communication between the cores. In particular, the trajectories can

be propagated separately using the mean of the trajectories which is computed at the previous

iteration. To summarise, we can modify Step 2(b)i by substituting in Algorithm 5.2.4.

Algorithm 5.2.4 Particle set propagation modification (to replace Algorithm 5.2.2 Step 2(b)i).
[Dai et al., 2021, Algorithm 3].

2(b)i.

(A) For c = 1, . . . , C, simulate x
(c)
j,i |(x̄j−1,i,x

(c)
j−1,i) in (5.31).

(B) Set ~xj,i := x
(1:C)
j,i , compute x̄j,i := 1

C

∑C
c=1 x

(c)
j,i .

5.2.3.3 Alternative methods for updating the particle set weights

So far, we have assumed that we have been able to compute functionals of each sub-posterior fc for

c = 1, . . . , C, but in many settings it may be impractical or infeasible to do so. This may be due to

some form of intractability of the sub-posteriors (e.g. settings considered in Andrieu and Roberts

[2009]), or its evaluation may be simply too computationally expensive which could be the case in

large data settings [Pollock et al., 2020; Bouchard-Côté et al., 2018; Bierkens et al., 2019; Dai et al.,
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2021]. In such scenarios, we no longer are able to evaluate φdlc which is necessary to update the

particle weights in the iterative steps of the BF algorithm. However, Dai et al. [2021, Section 3.7.3]

note that it is possible to consider a suitable unbiased estimator for φdlc and subsequently replacing

the unbiased estimator ρ̃bmj in Step 2(b)ii. This idea is summarised in the following corollary:

Corollary 5.2.2. [Dai et al., 2021, Corollary 3] The estimator

%̃bmj
(
~xj−1, ~xj

)
:=

C∏
c=1

∆κc
j · e−Ū

(c)
X ∆j

κc! · p (κc|Rc)
·
κc∏
kc=1

(
Ū

(c)
X − φ̃

dl
c

(
X

(c)
ξc,kc

)) , (5.32)

where φ̃dlc is an unbiased estimator of φdlc and Ū
(c)
j is a constant such that φ̃dlc (x) ≤ Ū (c)

j for x ∈ Rc.

Proof. This follows directly from Theorem 5.2.3. �

The estimator %̃bmj in Corollary 5.2.2 can therefore be used as a direct substitute for ρ̃bmj in Algorithm

5.2.2 Step 2(b)ii. Dai et al. [2021] highlight that there is a penalty for introducing %̃bmj as it typically

increases the variance of the estimator, which will result in higher variance in the particle set weights

in the BF algorithm. However, as noted, introducing an alternative unbiased estimator may be

necessary to apply the BF approach to some settings.

As an example (following the example provided in Dai et al. [2021, Appendix E]), an important

application of the Fusion methodology is to perform Bayesian inference with large datasets (see

for example Section 1.2). In such scenarios, we will have a large number of data points associated

to each sub-posterior. For instance, suppose we have mc � 1 data points for core c = 1, . . . , C,

then computing φdlc in (5.6) is an expensive O(mc) operation. To utilise Corollary 5.2.2, we simply

need to find a suitable unbiased estimator for φdlc , which in many settings, will be simple since φdlc

is linear in terms terms of ∇ log fc(x) and ∆ log fc(x). In particular, consider the case where the

sub-posteriors admit a structure with conditional independence and can be factorised as follows:

fc(x) ∝
mc∏
i=1

li,c(x). (5.33)

This assumption of this factorisation is fairly weak and many classes of models exhibits such a

conditional independence structure [Pollock et al., 2020]. Since φdlc is linear in terms of ∇ log li,c(x)

and ∆ log li,c(x), then we can use the following naive unbiased estimator for φdlc [Dai et al., 2021,

Appendix E]:

φ̃dlc (x) =
mc

2

[
(∇ log lI,c(x))ᵀ(∇ log lJ,c(x)) + ∆ log lI,c(x)

]
, (5.34)

where I, J
iid∼ U{1, . . . ,mc}. The advantage of using such an estimator is that evaluating this

estimator has O(1) cost. However, a caveat is that when applying Corollary 5.2.2, we must consider

the expected number of functional evaluations in computing the unbiased estimator. In particular,
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by using Corollary 5.2.2, the number of expected functional evaluations will change from K to K ′

and so we must consider the growth in the ratio K ′/K as mc → ∞. Dai et al. [2019] notes that

whilst (5.34) has O(1) cost to evaluate, this comes at the cost of an O(mc) inflation in the expected

number of function evaluations, effectively cancelling any benefit of using (5.34).

However, it is possible to apply the approach of Pollock et al. [2020] to develop an O(1) unbiased

estimator φ̃dlc which also has a O(1) scaling of the ratio K ′/K. In particular, Pollock et al. [2020,

Section 4] propose using control variates for each sub-posterior and compute ∇ log fc and ∆ log fc

at points close to the mode of the sub-posterior, x̂c, or a point close to the mode of the target

posterior x̂ (where ‘close’ means within O(m
− 1

2
c ) of the true respective modes). Note that the use

of such control variates within subsampling schemes have also been proposed with great success

in a number of other works, for instance Bouchard-Côté et al. [2018]; Bierkens et al. [2019]; Baker

et al. [2019]. Computing these control variates will typically be one-time O(mc) computations.

Now let

α̃I,c(x) := n ·
[
∇ log lI,c(x)−∇ log lI,c(x

∗)
]
, (5.35)

then since log fc(x) =
∑mc

i=1 log li,c(x) in this setting, we have

EA [α̃I,c(x)] = αc(x), EA [div α̃I,c(x)] = div αc(x), (5.36)

where αc(x) := ∇ log fc(x) − ∇ log fc(x
∗) and A is the law of I ∼ U{1, . . . , n}. By noting that

φdlc (x) in (5.6) can be re-expressed as

φdlc (x) =
1

2

[
αc(x)ᵀ(2∇ log fc(x

∗) + αc(x)) + div αc(x)
]

+ C∗, (5.37)

where C∗ := 1
2

(
‖∇ log fc(x

∗)‖2 + ∆ log fc(x
∗)
)

, then this leads to the following unbiased estimator

for φdlc :

φ̃dlc (x) :=
1

2

[
αI,c(x)ᵀ(2∇ log fc(x

∗) + αJ,c(x)) + div αI,c(x)
]

+ C∗, (5.38)

where I, J
iid∼ U{1, . . . ,mc}, i.e. if now we let A be the law of I, J

iid∼ U{1, . . . ,mc}, we have

EA
[
φ̃dlc (x)

]
= φdlc (x).

The evaluations of the constants ‖∇ log fc(x
∗)‖2, ∆ log fc(x

∗) are of O(mc) cost, but they only

need to be computed once and performed in parallel. Pollock et al. [2020, Theorem 3] showed

that under mild assumptions, and in the setting where sub-posteriors contract at the rate m
− 1

2
c ,

then K ′/K grows with data size like O(1). The unbiased estimator φ̃c(x) uses only double draws

from {1, . . . ,mc}, although Pollock et al. [2020] notes that it would be possible to replace this

by averaging over multiple draws (sampling from {1, . . . ,mc} with replacement) which could have

advantages of reducing the variance of the estimator at the cost of increasing the number of data

points to evaluate at.
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Part II

Methodology
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Chapter 6

Divide-and-Conquer Generalised

Monte Carlo Fusion

We have seen in Section 1.2 and Chapter 5 that the Fusion approach to combine (sample approx-

imations of) probability distributions via (1.1) is to construct a direct sample approximation of

f itself, rather than seeking to obtain an ad hoc approximation to f . The Monte Carlo Fusion

(MCF) approach of Dai et al. [2019] (outlined in Section 5.1) is a rejection sampling (see Section

2.2) approach to sample f , and so returns i.i.d. draws from f . The benefit of such approach is that

it is readily parallelisable and is exact (in the sense that it avoids any form of approximation error

besides Monte Carlo error). However, there are significant limitations with MCF; namely it strug-

gles in certain scenarios such as unifying sub-posteriors which exhibit strong correlation structure,

or sub-posteriors which conflict with one another (i.e. sub-posteriors which have little common

support), and the approach suffers from a lack of robustness with unifying increasing numbers of

sub-posteriors. These limitations are discussed more fully in Section 6.3.

In this chapter, we aim to alleviate some of these issues and begin by reformulating the the-

ory underpinning the MCF approach, and introduce a Generalised Monte Carlo Fusion (GMCF)

algorithm which is based upon importance sampling (see Section 2.3) (as opposed to rejection

sampling) and exploits readily available global information about each sub-posterior. The result-

ing GMCF methodology has far greater robustness to increasing sub-posterior correlation. We

next embed our GMCF methodology within a divide-and-conquer paradigm by combining the

sub-posteriors in stages to recover the correct fusion density f (1.1), in an approach we term

Divide-and-Conquer Generalised Monte Carlo Fusion (D&C-GMCF). We do this by appealing to

the Divide-and-Conquer Sequential Monte Carlo (D&C-SMC) approach of Lindsten et al. [2017]

(which we described in Section 3.4), and so as a consequence we are able to take advantage of

much of what is known about SMC and this particular variant thereof. The D&C-GMCF approach

addresses both the robustness of Fusion approaches with respect to increasing numbers of sub-
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posteriors and by means of tempering methodology, provides a possible resolution to conflicting

sub-posteriors. This is shown empirically by means of both illustrative and realistic benchmarks.

The remainder of this chapter is organised as follows: in Section 6.1 and Algorithm 6.1.2, we

present our GMCF approach. In Section 6.2, we embed our Fusion approach within a divide-and-

conquer paradigm, and by introducing a D&C-SMC algorithm, address the robustness of Fusion

with increasing numbers of sub-posteriors; the use of tree diagrams/graphs (see for instance Figures

6.1–6.2) illustrate how the sub-posteriors can be combined in stages in a flexible problem-specific

manner. We present illustrative examples to study the robustness of our methodology applied to

various scenarios in Section 6.3. In Section 6.4, we present some applications of our methodology

and study the performance of our approach in comparison to competing approximate methodologies

for combining sub-posterior samples which were outlined Section 1.2.1. We note that the content

of this chapter appears in Chan et al. [2021].

6.1 A generalisation of Monte Carlo Fusion

As noted in the introduction of this chapter, we will subsequently embed our Fusion approach

within a divide-and-conquer framework whereby sub-posteriors are combined in stages to recover

our target fusion density f (1.1). As such, we introduce an index set, denoted by C, representing

the sub-posteriors we want to unify. The key observation in the Fusion approach (first proposed in

Dai et al. [2019]) is that if we wish to sample from the density f (C)(x) ∝
∏
c∈C fc(x), where x ∈ Rd

and fc(x) for c ∈ C, then this is simply a marginal of a density on an extended state space (gC

given in Proposition 6.1.1). For the purposes of simplifying the notation in Proposition 6.1.1, we

denote by ~x(C) ∈ R|C|×d a vector composed of
{
x(c)

}
c∈C ∈ Rd (so ~x(C) := (x(c1), . . . ,x(c|C|)), with

ci denoting the ith element of the index set C). Although not required for Proposition 6.1.1, in

the subsequent methodology we develop (in common with Dai et al. [2019]), we assume that for

each c = 1, . . . , C, we can evaluate fc pointwise (up to its normalising constant), fc is nowhere zero

and everywhere differentiable, and that we can compute Ac(x) := log fc(x), ∇Ac(x), and ∇2Ac(x)

pointwise (where ∇ is the gradient operator and ∇2 is the Hessian). However, we note that this is

not a limiting factor of the Fusion methodology (as we have seen in Section 5.2.3.3).

Proposition 6.1.1. Let C := (c1, . . . , c|C|) denote the index set representing the sub-posteriors

we wish to unify and suppose that pc is the transition density of a Markov chain on R
d with

a stationary probability density proportional to f2
c . Then the (|C| + 1)d-dimensional probability

density proportional to the integrable function

gC

(
~x(C),y(C)

)
:=
∏
c∈C

[
f2
c

(
x(c)

)
· pc
(
y(C)

∣∣∣x(c)
)
· 1

fc(y(C))

]
, (6.1)

admits marginal density f (C) ∝
∏
c∈C fc for y(C) ∈ Rd.
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Proof. Following the same approach as in Proposition 5.1.1, by integrating out ~x(C), we have

∫
Rd
· · ·
∫
Rd
gC

(
~x(C),y(C)

)
dx(c1) · · · dx(c|C|) =

∏
c∈C

[∫
Rd
f2
c

(
x(1)

)
· pc
(
y(C)

∣∣∣x(c)
)
· 1

fc
(
y(C)

) dx(c)

]

=
∏
c∈C

[
f2
c

(
y(C))

fc
(
y(C)

) ]
=
∏
c∈C

fc

(
y(C)

)
= f (C)

(
y(C)

)
. (6.2)

Hence, y(C) has marginal density f (C). �

Dai et al. [2019, Proposition 2] (see Proposition 5.1.1) exploited Proposition 6.1.1 by noting that if

C := {1, . . . , C}, then we recover the target fusion density f (1.1). In the theory we develop in this

section, we consider the abstraction to more general index sets, as this facilitates the divide-and-

conquer approach we introduce in Section 6.2. Since gC will not typically be accessible directly,

Dai et al. [2019] proposed sampling from gC (with C := {1, . . . , C}) by constructing a suitable

(|C|+1)d-dimensional proposal density, hC , for use within a rejection sampling algorithm (outlined in

Algorithm 5.1.3), and then simply retaining the y(C) marginal of any accepted draw as a realisation

of f (C). Dai et al. [2019] showed that if pc in Proposition 6.1.1 was chosen to be the transition density

of a constant volatility Langevin diffusion (5.3) for time T > 0 with invariant measure f2
c for each

c ∈ C respectively, then for a (easily accessible) proposal hC constructed by sampling a single draw

from each sub-posterior (x(c) ∼ fc for c ∈ C), and a single Gaussian random variable parameterised

by the sub-posterior realisations (corresponding to the y(C)-marginal), the acceptance probability

was readily computable. The full details of the MCF approach are provided in Section 5.1.1.

As noted earlier, one of the principle shortcomings of the rejection sampling MCF approach of Dai

et al. [2019] is its lack of robustness with increasing sub-posterior correlation. In this section, we

develop theory and methodology to improve upon MCF (even in the setting where C := {1, . . . , C}),
by providing a principled way to weight the contribution from each sub-posterior in the construction

of the proposal hC , and then embed the approach in more robust Monte Carlo methodologies (such

as importance sampling (see Section 2.3) and sequential Monte Carlo (see Chapter 3)). Having the

flexibility to weight the contribution from each sub-posterior allows us to incorporate within the

algorithm global information for each sub-posterior which will often be readily obtainable, such as

information about sub-posterior means or covariance structures (x̂c and Σ̂c for c ∈ C respectively).

6.1.1 Theory

Although MCF is a rejection sampler and outputs independent realisations from (1.1), the compu-

tational efficiency of the approach is limited by the quality of the proposal used. The construction

of the proposal suggested by Dai et al. [2019] (which is given in (5.5)) closely matches the extended

target when each sub-posterior has a covariance structure which is approximately a scaled iden-

97



tity (i.e. Σ̂c ≈ (1/T )Id for c ∈ C and user chosen constant T > 0). However, there is a lack of

robustness in the approach (in the sense that the acceptance probabilities rapidly degrade) when

the sub-posteriors have non-identity covariance structure. In this section, our aim is to improve

the quality of the proposal to address this lack of robustness.

As we assume we are able to simulate directly from each sub-posterior x(c) ∼ fc for c ∈ C, it is possi-

ble to alter the proposal of Dai et al. [2019] via the manner in which the |C| sub-posterior realisations

paramaterise the Gaussian random variable corresponding to the proposed y(C)-marginal. Recall

from Section 5.1.1, the proposal for the y(C)-marginal in the MCF was simulated from Nd(x̄, TC Id)
where x̄ denotes the simple average of sub-posterior average. A natural choice for the proposal

parameterisation would be one which incorporated global information for each sub-posterior, e.g.

using estimated sub-posterior covariance matrices. In particular, we propose the proposal density

for gC (6.1) to be proportional to the following function (where we let Λc be the user-specified

matrices associated with sub-posterior fc for c ∈ C):

hC

(
~x(C),y(C)

)
:=
∏
c∈C

[
fc

(
x(c)

)]
· exp

{
−

(y(C) − x̃(C))ᵀΛ−1
C (y(C) − x̃(C))

2T

}
, (6.3)

where

x̃(C) :=

(∑
c∈C

Λ−1
c

)−1(∑
c∈C

Λ−1
c x

(c)

)
, Λ−1

C :=
∑
c∈C

Λ−1
c . (6.4)

Simulating from the proposal hC in (6.3) is possible by first simulating a single draw from each

sub-posterior (which are assumed to be accessible) to obtain {x(c)}c∈C . These draws are then

used to compute the weighted average x̃(C), and then simulate y(C) ∼ Nd
(
x̃(C), TΛC

)
as per (6.4).

This proposal for y(C) is a Gaussian perturbation of the approach suggested in Consensus Monte

Carlo (CMC) method [Scott et al., 2016] (see Section 1.2.1) for combining sub-posterior draws

(namely x̃(C)), on a scale commensurate with that of the posterior (modulated by a user-specified

parameter T ). Now considering the choice of the |C| stochastic processes on Rd with stationary

densities proportional to f2
c for c ∈ C (as required in Proposition 6.1.1), we similarly want to exploit

the availability of global sub-posterior information. As such, we choose pc in Proposition 6.1.1 to

be the transition density over [0, T ] of the following stochastic differential equation:

dX
(c)
t = Λc∇ log fc

(
X

(c)
t

)
dt+ Λ

1
2
c dW

(c)
t , X

(c)
0 = x(c), t ∈ [0, T ], (6.5)

where in this case Λc can be interpreted as a preconditioning matrix with Λ
1
2
c being the (positive

semi-definite) square root of Λc where Λ
1
2
c Λ

1
2
c = Λc, and W

(c)
t is a d-dimensional Brownian motion.

Note that for the purposes of our numerical simulations we used the Schur decomposition.

Having constructed a more informative proposal hC , we now require an expression for the ratio of

the target to proposal densities.
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Proposition 6.1.2. Letting pc
(
y(C)|x(c)

)
be the transition density of the diffusion given in (6.5)

we have
gC(~x

(C),y(C))

hC(~x(C),y(C))
∝ ρ0

(
~x(C)

)
· ρ1

(
~x(C),y(C)

)
, (6.6)

where

ρ0

(
~x(C)

)
:= exp

{
−
∑
c∈C

(x̃(C) − x(c))ᵀΛ−1
c (x̃(C) − x(c))

2T

}
, (6.7)

ρ1

(
~x(C),y(C)

)
:=
∏
c∈C

EWΛc

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
, (6.8)

and

φc(x) :=
1

2

(
∇ log fc(x)ᵀΛc∇ log fc(x) + Tr

(
Λc∇2 log fc(x)

))
, (6.9)

where Tr(·) denotes the trace of a matrix, and WΛc denotes the law of a Brownian bridge {X(c)
t , t ∈

[0, T ]} with X
(c)
0 := x(c), X

(c)
T := y(C) and covariance matrix Λc.

Proof. Let pc
(
y(C)∣∣x(c)

)
be the transition density of a Langevin diffusion with covariance matrix

Λc and invariant measure f2
c in the interval [0, T ] (as given in (6.5)). From the Dacunha-Castelle

representation [Dacunha-Castelle and Florens-Zmirou, 1986, Lemma 1] (see Section 4.3.4), we have

pc

(
y(C)

∣∣∣x(c)
)
∝ fc(y

(C))

fc
(
x(c)

) · exp

{
−(y(C) − x(c))ᵀΛ−1

c (y(C) − x(c))

2T

}

× EWΛc

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
.

The extended fusion target density of (6.1) is proportional to the integrable function

gC(~x
(C),y(C)) =

∏
c∈C

[
fc

(
x(c)

)]
· exp

{
−
∑
c∈C

(y(C) − x(c))ᵀΛ−1
c (y(C) − x(c))

2T

}

·
∏
c∈C

EWΛc

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
.

We have

∑
c∈C

(y(C) − x(c))ᵀΛ−1
c (y(C) − x(c))

2T
=
∑
c∈C

(y(C) − x̃(C))ᵀΛ−1
c (y(C) − x̃(C))

2T

+
∑
c∈C

(y(C) − x̃(C))ᵀΛ−1
c (x̃(C) − x(c))

T
+
∑
c∈C

(x̃(C) − x(c))ᵀΛ−1
c (x̃(C) − x(c))

2T
.
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We can simplify this further considering the middle term and by noting

∑
c∈C

(y(C) − x̃(C))ᵀΛ−1
c (x̃(C) − x(c))

T
=

∑
c∈C

y(C)ᵀ(Λ−1
c x̃

(C) −Λ−1
c x

(c))− x̃(C)ᵀ(Λ−1
c x̃

(C) −Λ−1
c x

(c))

T
. (6.10)

Recalling x̃(C) =
(∑

c∈C Λ−1
c

)−1 (∑
c∈C Λ−1

c x
(c)
)

and noting that
(∑

c∈C Λ−1
c

)
x̃(C) =

∑
c∈C Λ−1

c x
(c),

we can see that (6.10) cancels to 0.

Now, considering the proposal density hC given by (6.3), the ratio of gC and hC is given by,

gC(~x
(C),y(C))

hC(~x(C),y(C))
∝ exp

{
−
∑
c∈C

(x̃(C) − x(c))ᵀΛ−1
c (x̃(C) − x(c))

2T

}

·
∏
c∈C

EWΛc

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
,

and so defining ρ0 and ρ1 as in the statement of Proposition 6.1.2, we arrive at the result. �

6.1.2 Methodology

It would be possible to develop Monte Carlo methodology based directly upon Propositions 6.1.1–

6.1.2 provided we could simulate from hC and compute the quantities ρ0 and ρ1. Viewed from an

importance sampling perspective (see Section 2.3), Proposition 6.1.2 allows us to use ρ0 and ρ1 as

importance weights. The quantity ρ0 in (6.7) in essence penalises proposals based on the distance

the weighted average of the sub-posterior draws are from one another, whereas ρ1 penalises how far

the proposal y(C) is from each sub-posterior draw under the corresponding sub-posterior. Consider-

ing the un-normalised importance weight, the computation of ρ0 is direct, whereas computing ρ1 in

(6.8) is not direct as it involves the evaluation of path integrals of functionals of Brownian bridges.

As we have seen in Chapter 5, this is the key complication in implementing Fusion methodologies.

We have seen that it is possible to unbiasedly estimate quantities similar to ρ1 by application of the

path-space rejection sampling methodology introduced in Section 4.4; in particular, we utilise the

Poisson estimators discussed in Section 4.4.3 to simulate positive unbiased estimators for functions

of the form exp{−
∫ T

0 φc(X
(c)
t ) dt} where X

(c)
t ∼ WΛc for c ∈ C. However, note that unlike the

unbiased estimators constructed in Chapter 5 (recall we constructed unbiased estimators for Qbm

(5.9) in Algorithm 5.1.2, and ρbmj (5.22) in Algorithm 5.2.1), ρ1 in (6.8) involves evaluation of path

integrals of functionals of Brownian bridges with covariance matrices Λc for c ∈ C. In contrast, in

the unbiased estimators introduced in Chapter 5, we had Λc = Id. The benefit of having Λc 6= Id
is that when applying the methodology from Section 4.4, the proposal paths from WΛc have a

covariance structure which is more closely matched to that of f2
c , the invariant distribution of the
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target diffusion measure given by (6.5). This means that we have far more efficient simulation of

ρ1, especially in cases when the sub-posteriors exhibit high correlation, since our proposal paths

will more likely move in directions of high probability density. This approach of using Brownian

bridges with covariance Λc for c ∈ C is equivalent to employing a preconditioning transformation

to roughly equate the scales for different components (see e.g. Pollock et al. [2016, Section 4.3]).

For the purposes of the methodology we will subsequently develop, it is sufficient to find a non-

negative unbiased estimator of ρ1 with finite variance which can be obtained with finite cost. To

do so, we can apply the methodology outlined in Section 4.4.1 and Section 4.4.3. To utilise this

methodology, we require for a given sample path X
(c)
[0,T ] ∼WΛc that we have bounds on φc for each

c ∈ C. In general, it is not possible to find global bounds for φc, and so following the approach of

Beskos et al. [2006a] and Pollock et al. [2016], we simulate Brownian bridges in such a way that we

can determine a compact region which almost surely constrains a given path (the details of which

appear in Pollock et al. [2016, Sections 8.1 and 8.5] and are discussed in Section 4.2.2), which enables

us to instead find local bounds on φc. In particular, we let Rc := Rc
(
X

(c)
[0,T ]

)
denote a compact subset

of Rd for which X
(c)
t is constrained in time [0, T ]. We note that it is possible to partition the sample

space into disjoint sets and simulate from an associated distribution function (without having to

sample the underlying path), Rc ∼ Rc conditional on the user specified partitioning of the space.

Although it is possible to find tight local bounds for φc in a problem specific manner, it is helpful

for practitioners to note that it is possible to find generic (less tight) bounds (which we denote by

L
(c)
X and U

(c)
X respectively):

Proposition 6.1.3. For all c ∈ C and x ∈ Rc, we have φc (x) ∈
[
L

(c)
X , U

(c)
X

]
, where

L
(c)
X := −1

2

(
d · PΛc

)
, (6.11)

U
(c)
X :=

1

2

[(∥∥∥∥Λ 1
2
c ∇ log fc

(
x̂(c)

)∥∥∥∥+ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥ · PΛc

)2

+ d · PΛc

]
, (6.12)

where d denotes the dimension of x, ‖·‖ is the Euclidean norm, x̂(c) is a user-specified point central

to Rc, and where PΛc is a quantity such that

PΛc ≥ max
x∈Rc

γ
(
Λc∇2 log fc (x)

)
, (6.13)

where γ denotes the matrix norm, defined as

γ(A) := max
‖x‖6=0

‖Ax‖
‖x‖

. (6.14)
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Proof. First note that we can rewrite (6.9) as follows,

φc (x) =
1

2

(∥∥∥∥Λ 1
2
c ∇ log fc (x)

∥∥∥∥2

+ Tr
(
Λc∇2 log fc (x)

))
. (6.15)

Let Rc := Rc
(
X

(c)
[0,T ]

)
denote a compact subset of Rd for which X

(c)
t is constrained in time [0, T ]

for c ∈ C, then to bound the first term in (6.15), we first use the triangle inequality by noting

max
x∈Rc

∥∥∥∥Λ 1
2
c ∇ log fc(x)

∥∥∥∥ = max
x∈Rc

∥∥∥∥Λ 1
2
c ∇ log fc(x̂

(c)) + Λ
1
2
c

(
∇ log fc(x)−∇ log fc(x̂

(c))
)∥∥∥∥

≤
∥∥∥∥Λ 1

2
c ∇ log fc(x̂

(c))

∥∥∥∥+ max
x∈Rc

∥∥∥∥Λ 1
2
c

(
∇ log fc(x)−∇ log fc(x̂

(c))
)∥∥∥∥, (6.16)

where x̂(c) is a user-specified point in Rd. Focusing now on bounding the second term of (6.16),

then we express this as a line integral between x and x̂(c) so

max
x∈Rc

∥∥∥∥Λ 1
2
c

(
∇ log fc(x)−∇ log fc(x̂

(c))
)∥∥∥∥ = max

x∈Rc

∥∥∥∥∥Λ− 1
2

c

∫ ‖x−x̂(c)‖

0
Λc∇2 log f(x+ un)n du

∥∥∥∥∥,
where u = x+ un, where n is a unit-vector with ‖n‖ = 1. We have

max
x∈Rc

∥∥∥∥∥Λ− 1
2

c

∫ ‖x−x̂(c)‖

0
Λc∇ log f(x+ un)n du

∥∥∥∥∥ ≤ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥
· sup
n;x∈Rc

∥∥Λc∇2 log f(x+ un)n
∥∥

≤ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥ · PΛc , (6.17)

where PΛc is defined in (6.13). Putting together (6.16) and (6.17), we have

max
x∈Rc

∥∥∥∥Λ 1
2
c ∇ log fc(x)

∥∥∥∥ ≤ ∥∥∥∥Λ 1
2
c ∇ log fc

(
x̂(c)

)∥∥∥∥+ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥ · PΛc .

Since for a matrix A ∈ Rd, Tr(A) ≤ d · γ(A), we can bound the second term in (6.15) as follows:

max
x∈Rc

∣∣Tr
(
Λc∇2 log fc(x)

)∣∣ ≤ d · PΛc ,

and hence we can bound φc as follows:

max
x∈Rc

|φc (x)| ≤ 1

2

[(∥∥∥∥Λ 1
2
c ∇ log fc

(
x̂(c)

)∥∥∥∥+ max
x∈Rc

∥∥∥∥Λ− 1
2

c

(
x− x̂(c)

)∥∥∥∥ · PΛc

)2

+ d · PΛc

]
.

Noting that in (6.15) that the first term is squared, then the lower and upper bounds of φc (x) for

x ∈ Rc are given by (6.11) and (6.12) respectively. �
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Once local bounds for φc are obtained, it is possible to unbiasedly estimate ρ1 using auxiliary

diffusion bridge path-space samplers developed in (for instance) Beskos et al. [2006b,a]; Fearnhead

et al. [2008]; Pollock et al. [2016]. In particular,

ρ1 = E
[
E
[
E
[
E
[
ρ̃1 | {Rc,X(c)

[0,T ], κc}c∈C
]
| {Rc,X(c)

[0,T ]}c∈C ,
]
| {Rc}c∈C

]]
= ER̄EW̄|R̄EK̄EŪ [ρ̃1] , (6.18)

where the subscript for each expectation denotes the law with which we are taking the expectation,

R̄ denotes the law of {Rc ∼ Rc : c ∈ C}, W̄ denotes the law of the |C| Brownian bridges (conditional

on the |C| distinct starting points, but with common endpoint y(C)) of {X(c)
[0,T ] ∼ WΛc : c ∈ C}, K̄

denotes the law of {κc : c ∈ C} where κc is a discrete random variable with conditional probabilities

P[κc = kc|Rc] := p(κc|Rc), Ū denotes the law of {ξc,1, . . . , ξc,κc : c ∈ C} iid∼ U [0, T ], and with

ρ̃1(~x(C),y(C)) =
∏
c∈C

 T κc · e−U
(c)
X T

κc! · p (κc|Rc)
·
κc∏
kc=1

(
U

(c)
X − φc

(
X

(c)
ξc,kc

)) . (6.19)

Corollary 6.1.1. ρ̃1 is a positive unbiased estimator of ρ1.

Proof. Follows directly from Theorem 7.1.3 by setting j = 1 and ∆j = T . �

Given L
(c)
X and U

(c)
X which bound φc as per Proposition 6.1.3, as discussed in Section 4.4.3, there are

two natural choices of unbiased estimator for ρ1 which we denote ρ̃
(a)
1 and ρ̃

(b)
1 (based, respectively,

upon the GPE-1 and GPE-2 estimators of Fearnhead et al. [2008] (see Section 4.4.3)):

Definition 6.1.1. (GPE-1 for ρ1 (6.8)): Choosing the law of κc ∼ Poi
(
(U

(c)
X − L

(c)
X )T

)
for c ∈ C

leads to the following unbiased estimator of ρ1:

ρ̃
(a)
1 (~x(C),y(C)) :=

∏
c∈C

e−L(c)
X T ·

κc∏
kc=1

U (c)
X − φc

(
X

(c)
ξc,kc

)
U

(c)
X − L

(c)
X

 . (6.20)

Definition 6.1.2. (GPE-2 for ρ1 (6.8)): Choosing the law of κc ∼ NB(γc, βc) for c ∈ C with

γc := U
(c)
X T −

∫ T

0
φc

(
x(c)T − s

T
+ y(C) s

T

)
ds, (6.21)

leads to the following unbiased estimator of ρ1:

ρ̃
(b)
1 (~x(C),y(C)) :=

∏
c∈C

e−U(c)
X T · T

κc · Γ(βc) · (βc + γc)
βc+κc

Γ(βc + κc)β
βc
c γ

κc
c

·
κc∏
kc=1

[
U

(c)
X − φc

(
X

(c)
ξc,kc

)] . (6.22)
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Computing ρ̃
(a)
1 and ρ̃

(b)
1 in the case where Λc = Id is detailed explicitly in Dai et al. [2021, Appendix

B] and in Chapter 4. In the case where Λc 6= Id, we simulate layers by appealing to a suitable

transformation. In particular, we transform the start and end points of the Brownian bridge with

transformation matrix Λ
− 1

2
c , letting z

(c)
0 := Λ

− 1
2

c x(c) and z
(c)
T := Λ

− 1
2

c y(C). The resulting Brownian

bridge sample path, z
(c)
t := Λ

− 1
2

c X
(c)
t , has identity covariance structure and thus we can use existing

methods for simulating layered Brownian bridge sample paths z
(c)
t with law WId from z

(c)
0 to z

(c)
T

(see for instance Section 4.2.2). We are then able with minimal modification to apply the approach

of Dai et al. [2021] to simulate an unbiased estimator for ρ1, as given in Algorithm 6.1.1.

Algorithm 6.1.1 Simulating ρ̃1 [Chan et al., 2021, Algorithm 3].

1. For c ∈ C
(a) z

(c)
0 , z

(c)
0 : Transform the path, setting z

(c)
0 := Λ

− 1
2

c x(c), and z
(c)
T := Λ

− 1
2

c y(C).

(b) Rc: Set Rc := Λ
1
2
c R

(z)
c , where R

(z)
c ∼ R(z)

c as per Algorithm 4.2.4.

(c) L
(c)
X , U

(c)
X : Compute lower and upper bounds, L

(c)
X and U

(c)
X , of φc(x) for x ∈ Rc (as per

(6.11) and (6.12), or otherwise).
(d) pc: Choose p(·|Rc) using either GPE-1 (Condition 6.1.1) or GPE-2 (Condition 6.1.2).
(e) κc, ξ: Simulate κc ∼ p(·|Rc), and simulate ξc,1, . . . , ξc,κc ∼ U [0, T ].

(f) z(c): Simulate z
(c)
ξc,1
, . . . ,z

(c)
ξc,κc
∼WId |R

(z)
c as per Algorithm 4.2.5.

(g) X(c): Reverse transform the path, setting X
(c)
ξc,kc

= Λ
1
2
c z

(c)
ξc,kc

for kc = 1, . . . , κc.

2. Output ρ̃
(·)
1 (6.19).

In Algorithm 6.1.1 Step 1c, we compute the lower and upper bounds on φc(x) for x ∈ Rc which can

be computed as per Proposition 6.1.3. To use these general bounds, we must find a upper bound on

the matrix norm of Λc∇2 log fc(x) for x ∈ Rc (i.e. find PΛc given in (6.13)), which can be done by

computing the matrix norm of the matrix which bounds the matrix Λc∇2 log fc(x) element-wise.

We note that in some cases, it may be easier to upper bound the matrix norm of the Hessian of

the transformed sub-posterior, f
(z)
c (z) where z := Λ

− 1
2

c x. In particular, we can focus on

PΛc ≥ max
z∈R(z)

c

γ
(
∇2 log f (z)

c (z)
)
, (6.23)

which is equivalent to finding the bound in (6.13). In Algorithm 6.1.1 Step 1b, we compute the layer

information R
(z)
c and so we can directly use this to find local element-wise bounds ∇2 log f

(z)
c (z)

for z ∈ R(z)
c . Therefore, to find PΛc , we just need to find bounds on the second order derivatives

of the log-sub-posterior in the transformed space z := Λ
− 1

2
c x so that we can compute the matrix

norm of the matrix which bounds ∇2 log f
(z)
c (z) element-wise. Some example calculations of using

the general bounds found in Proposition 6.1.3 can be found in Appendices B.5–B.7.

In developing a rejection sampling approach to sampling from f (C) by means of the extended density

gC with our proposal hC (as suggested by Proposition 6.1.1), it is natural to select the estimator ρ̃
(a)
1

as it is bounded. Indeed, the theory developed in Section 6.1.1 admits the earlier work of Dai et al.
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[2019] as a special case, as established in the following corollary. Although there is an advantage in

using the broader theory of Section 6.1.1 (with Λc 6= Id for c = 1, . . . , C) to support an improved

rejection sampling approach. We omit details of this as it is a minor modification of MCF.

Corollary 6.1.2. Setting Λc = Id for c ∈ C := {1, . . . , C}, where Id is the identity matrix of dimen-

sion d and accepting a proposal y(C) as a sample from (1.1) with probability (ρ0 · ρ̃(a)
1 )(~x(C),y(C)) ·

exp{
∑

c∈C ΦcT}, we recover the Monte Carlo Fusion approach of Dai et al. [2019].

In the subsequent section, we embed our approach within the Divide-and-Conquer Sequential Monte

Carlo (D&C-SMC) framework of Lindsten et al. [2017] to address the robustness of Fusion with

increasing numbers of sub-posteriors. In this setting, we are not restricted to obtaining independent

realisations of f (C) in (1.1), and so we can instead employ the estimator ρ̃
(b)
1 (as we no longer require

our estimator to be bounded above by a constant), which has better asymptotic properties and

still has finite variance [Fearnhead et al., 2008]. A (self-normalised) importance sampling approach

would proceed as follows: approximate gC in Proposition 6.1.1 by sampling from the proposal

density hC (i.e. (~x(C),y(C)) ∼ hC) as given in (6.3). Thus far, we have assumed we have access to

i.i.d. draws from each sub-posterior, but this is not necessary for our methodology. In particular,

in many settings (including that in Section 6.2) we will instead have access to importance weighted

draws from each sub-posterior (with weights w(c) for c ∈ C for instance, although in the simplest

setting w(c) ∝ 1 for c ∈ C). As such, the proposals are then assigned an un-normalised importance

weight w′(~x(C),y(C)) := (
∏
c∈C w

(c)) · (ρ0 · ρ̃1)(~x(C),y(C)).

In practice, and to better relate to our methodology developed later in Section 6.2, we adopt a

variant of the importance sampling approach described above. We term the following approach

Generalised Monte Carlo Fusion (GMCF), and summarise it in Algorithm 6.1.2. We assume for

simplicity in presenting our algorithm that we have access to M importance weighted samples

from each sub-posterior (each of which form a Monte Carlo representation for their respective

sub-posterior). In addition, we note that the marginal importance sampling weight ρ0 in (6.7)

only depends upon the sub-posterior realisations (and not y(C)). To exploit this fact, we compose

M partial proposals by pairing the draws from each sub-posterior {~x(C)
0,j }Mj=1, and compute the

associated partial weights {~w(C)
j }Mj=1 where ~w

(C)
j := (

∏
c∈C w

(c)
j ) · ρ0(~x

(C)
0,j ) for j = 1, . . . ,M . We

then sample with replacement N times from this collection of M draws with associated partial

weights ~w
(C)
j . For each of the N partial proposals, we then complete the proposal by simulating

a corresponding endpoint y
(C)
i . Taking account of our earlier sampling, each of the N particles

will be given (an appropriately normalised) weight proportional to ρ1(~x
(C)
0,i ,y

(C)
i ). By retaining for

each of the N weighted particles the marginal for y(C) (i.e. {y(C)
i , w

(C)
i }Ni=1), we simply have an

approximation to the desired distribution,

f (C)(y)dy ≈
N∑
i=1

w
(C)
i · δy(C)i

(dy). (6.24)
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Algorithm 6.1.2 gmcf(C, {{x(c)
0,i , w

(c)
i }Mi=1,Λc}c∈C , N, T ): Generalised Monte Carlo Fusion

(GMCF) [Chan et al., 2021, Algorithm 1].

1. Input: Importance weighted realisations {x(c)
0,i , w

(c)
i }Mi=1 for c ∈ C, the user-specified matrices,

{Λc : c ∈ C}, the number of particles required, N , and time horizon T > 0.

2. Partial proposal: Compose the importance weighted realisations {~x(C)
0,j , ~w

(C)
j }Mj=1 where

~w
(C)
j := (

∏
c∈C w

(c)
j ) · ρ0(~x

(C)
0,j ) for j = 1, . . . ,M , as per (6.7).

3. For i in 1 to N ,

(a) ~x
(C)
0,i : Sample I ∼ categorical(~w1, . . . , ~wM ) and set ~x

(C)
0,i := ~x

(C)
0,I .

(b) Complete proposal: Simulate y
(C)
i ∼ Nd

(
x̃

(C)
i , TΛC

)
as per (6.4).

(c) ρ̃
(C)
1,i : Compute importance weight ρ̃

(C)
1,i := ρ̃

(b)
1

(
~x

(C)
0,i ,y

(C)
i

)
as per Definition 6.1.2.

4. w
(C)
i : For i in 1 to N compute normalised weight w

(C)
i = ρ̃

(C)
1,i /

∑N
k=1 ρ̃

(C)
1,k .

5. Output:
{
~x

(C)
0,i ,y

(C)
i , w

(C)
i

}N
i=1

, where f̂ (C)(dy) :=
∑N

i=1w
(C)
i · δy(C)i

(dy) ≈ f (C)(y)dy.

Of course, in general in the Input step of Algorithm 6.1.2, we may have access to different numbers

of samples from each sub-posterior: say Mc importance weighted samples for sub-posterior fc (for

c ∈ C). In order to compose our M partial proposals in Step 2, there are a number of approaches we

could take. As presented above, if Mc = M for c ∈ C, we simply pair the sub-posterior draws index-

wise. This is a basic merging strategy of the sub-posterior realisations and has the advantage that

it can be implemented in O(M) cost (and if Mc 6= M for every c ∈ C one could simply sub-sample

to obtain a common number of samples from each sub-posterior). However, as noted in Lindsten

et al. [2017], while this approach has a low computational cost, it can lead to high variance when

the product
∏
c∈C fc(x

(c)) differs substantially from the corresponding marginal of f (C) — which

one might expect to be the case if the sub-posteriors disagree.

We found this simple approach more than adequate in our simulations, but there are more sophis-

ticated options available should they be required in still more challenging settings. In particular, as

described in Lindsten et al. [2017, Section 4.1], at the expense of a computational cost O(
∏
c∈CMc),

one could instead compose all possible permutations of the samples from each sub-posterior before

weighting and then resampling to reduce the number of points in the approximation back to a pre-

specified number, arriving at a better approximation at a greater cost. They termed this approach

mixture resampling and also detailed a lightweight mixture resampling approach in which more than

one permutation, but not all possible permutations, are used and found it to work well; as noted

by Kuntz et al. [2021a] such a strategy can be connected directly with the theory of incomplete

U -statistics and consequently one might hope to realise much of the benefit of mixture resampling

at a much reduced cost (see e.g. Kong and Zheng [2021]). Although Step 3a corresponds to a multi-

nomial resampling of the partially composed proposals, an approach we followed in the interest of

simplicity, we can of course use other resampling methods and might expect better performance by

choosing a lower-variance approach (see for instance Doucet et al. [2001]; Douc et al. [2005]; Gerber

et al. [2019] for an investigation of the properties of many such resampling schemes).
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6.2 A divide-and-conquer approach to Fusion

A key drawback of the Monte Carlo Fusion approach of Dai et al. [2019] is that it lacks robustness

with increasing number of sub-posteriors, |C|. This is unsurprising as the extended target and

proposal densities (gC and hC) of Proposition 6.1.1 are (|C| + 1)d-dimensional, and these become

increasingly mismatched with increasing dimension. In particular, as a consequence of the definition

of ρ1 in (6.8) of Proposition 6.1.2, the acceptance probability of any rejection-based scheme will

decrease geometrically with increasing |C|.

As presented both in Chapter 5 and Section 6.1, the Fusion methodologies discussed so far are ex-

amples of a fork-and-join approach which unifies all of the sub-posteriors in a single step (similarly,

the approximate methods discussed in Sections 1.2.1–1.2.2 are also fork-and-join approaches). In

particular, within the GMCF framework Section 6.1, we set C := {1, . . . , C}. This is illustrated in

the tree diagram of Figure 6.1, where the leaves of the tree represent the available sub-posterior

densities, the directed edges are used to illustrate the computational flow of Monte Carlo Fusion,

and the root vertex of the tree is the desired fusion density, f (as given in (1.1)).

f

f1

11

f2

33

f3

77

· · · fC−2

hh

fC−1

ll

fc

mm

Figure 6.1: A tree representation of the fork-and-join approach for the fusion problem of (1.1).

As the goal of the methodology is to obtain a Monte Carlo approximation of f in (1.1), one

could envision a recursive divide-and-conquer approach in which the sub-posteriors are combined

in stages to recover f . There are a number of possible orderings in which we could combine sub-

posteriors, and so we represent these orderings in tree diagrams, and term these hierarchies (see

e.g. Figure 6.2). For instance as illustrated in Figure 6.2a, one approach would be to combine

two sub-posteriors at a time (we term this a balanced-binary tree approach). In Figure 6.2a,

the intermediate vertices represent intermediate (auxiliary) densities up to proportionality. The

approximation of the distribution associated with any non-leaf vertex is obtained by an application

of Fusion methodology to the densities of the children of that vertex. A balanced-binary tree

approach is perhaps the most natural way to combine sub-posteriors in a truly distributed setting

(where the simulation of each sub-posterior has been conducted separately, and so the inferences

we wish to combine are distributed). Another approach one might employ is given in Figure 6.2b,

whereby sub-posteriors are fused one at a time (and so we term this the progressive tree approach).

This is perhaps the most natural approach for an online setting. We focus on these two natural

hierarchies for the remainder of this chapter, although other hierarchies are certainly possible within

our framework, and there is no limitation in unifying more than two vertices at any level of a tree

(as suggested by both Section 6.1 and Figure 6.1).
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(a) A balanced-binary tree.
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(b) A progressive tree.

Figure 6.2: Illustrative hierarchies for the fusion problem of (1.1).

From this recursive perspective, sample approximations of auxiliary densities obtained at one level

of any tree are themselves treated as sub-posteriors at the next level up. As such, one can iteratively

apply the Fusion methodology of Section 6.1, working through the levels of the tree from the leaves

to the root, using at each stage the output of one step as the input for the subsequent step. An

advantage of our divide-and-conquer approach is that as fewer sub-posteriors are combined at

each stage, we avoid (at each stage) the rapidly diminishing and variable importance weights. By

utilising the importance sampling approach to Fusion we developed in Section 6.1.2, we can embed

Fusion within sequential Monte Carlo to address the robustness of Fusion with increasing |C|, albeit

this being a trade-off with the cost of the repeated application of the methodology.

A divide-and-conquer variant of sequential Monte Carlo (D&C-SMC) was recently introduced in

Lindsten et al. [2017] and is discussed in Section 3.4. D&C-SMC generalises the classical SMC

framework from sequences (or chains) to trees, such as those in Figures 6.1 and 6.2. In our recursive

setting, we unify distributed sample approximations by operating on a tree of auxiliary Fusion

densities. Let T = (V, E) denote a tree with vertices V and (directed) edge set E . Let Leaf(T)

denote the leaves of the tree (which represent the sub-posteriors f1, . . . , fc), Root(T) denote the

root of the tree (which represents f in (1.1)) and Ch(v) denote the children of vertex v ∈ V where

Ch(t) = ∅ if t is a leaf. Let V = {v0, v1, . . . , vC , . . .} be the set of vertices, with v0 = Root(T),

{v1, . . . , vC} = Leaf(T) and as many intermediate vertices as are required to specify the tree.

For the purposes of utilising the methodology developed in Section 6.1.2, we define the following

notation for non-leaf vertices v /∈ Leaf(T): let Cv := ∪u∈Ch(v)Cu denote the index set representing

the sub-posteriors that we want to unify for vertex v /∈ Leaf(T). To simplify the notation and avoid

an unnecessary level of subscripts, we index densities and other quantities by v rather than Cv when

it is clear what is intended. In particular, let Λv := ΛCv , x̃
(v) := x̃(Cv) as per (6.4), ~x(v) := ~x(Cv),

y(v) := y(Cv) where y(v) ∼ fv := f (Cv) for v /∈ Leaf(T). Let WΛv denote the law of a Brownian bridge

{X(v)
t , t ∈ [0, T ]} with X

(v)
0 := x(v) and X

(v)
T := y(v) with covariance Λv. The extended target and

proposal densities for vertex v /∈ Leaf(T) are denoted gv := gCv and hv := hCv , respectively. Lastly,

the importance sampling weights for v /∈ Leaf(T) are given by ρ
(v)
0 (~x(v),y(v)) := ρ0(~x(Cv),y(Cv))

and ρ
(v)
1 (~x(v),y(v)) := ρ1(~x(Cv),y(Cv)).
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To describe our Divide-and-Conquer Generalised Monte Carlo Fusion (D&C-GMCF) approach, we

specify an algorithm that is carried out at each vertex v ∈ V which leads to a recursive procedure;

an initial call to d&c.gmcf(Root(V), . . .) carries out the overall approach. For v ∈ V, we define a

procedure (as given in Algorithm 6.2.1), which returns a weighted particle set {~x(v)
0,i ,y

(v)
i , w

(v)
i }Ni=1

where w
(v)
i denotes the normalised importance weight of particle i at vertex v ∈ V. From this

particle set, we can take the marginal weighted samples for y(v) to approximate the fusion density

fv ∝
∏
u∈Ch(v) fu for vertex v ∈ V. Recall that the leaf vertices, vc for c = 1, . . . , C, represent

each of the sub-posteriors. It is straightforwardly possible to additionally incorporate importance

sampling for the leaf vertices but for simplicity we assume that we have access to unweighted

samples for the sub-posteriors. Therefore, at these leaf vertices, we simply sample from the sub-

posteriors. If independent sampling is not feasible, one could use MCMC to obtain unweighted

sample approximations at the leaves. Formal arguments (under appropriate regularity conditions)

could in principle follow an approach analogous to that in Finke et al. [2020]. If v is a non-leaf

vertex, we simply call Algorithm 6.1.2 by inputting the importance weighted samples {y(u)
i , w

(u)
i }Ni=1

for u ∈ Ch(v). As in standard SMC, although the auxiliary distributions are defined on larger

spaces we do not need to retain sampled values which are not subsequently used; to obtain a

more computationally manageable algorithm, we can choose to retain only the final parameter

space marginal at each vertex (i.e. only returning {y(v)
i , w

(v)
i }Ni=1) since the computation of the

importance weights ρ
(v)
0 and ρ̃

(v)
1 at each vertex v /∈ Leaf(T) only requires {y(u)}u∈Ch(v).

Algorithm 6.2.1 d&c.gmcf(v,N, T ): Divide-and-Conquer Generalised Monte Carlo Fusion (D&C-
GMCF) [Chan et al., 2021, Algorithm 2].

Given: Sub-posteriors, {fu}u∈Leaf(T), and preconditioning matrices {Λu}u∈T.
Input: Node in tree, v, the number of particles N , and time horizon T > 0.

1. For u ∈ Ch(v),

(a)
{
x

(u)
i ,y

(u)
i , w

(u)
i

}N
i=1
← d&c.gmcf(u,N, T ).

2. If v ∈ Leaf(T),

(a) For i = 1, . . . , N , sample y
(v)
i ∼ fv(y).

(b) Output: {∅,y(v)
i , 1

N }
N
i=1.

3. If v /∈ Leaf(T),

(a) Output: Call gmcf(Ch(v), {{y(u)
i , w

(u)
i }Ni=1,Λu}u∈Ch(v), N, T ).

Note when calling Algorithm 6.1.2 (in Algorithm 6.2.1 Step 3), we input N importance samples

from each sub-posterior (i.e. Mu = M for u ∈ Ch(v)). As noted in Section 6.1.2, for simplicity,

we use these to obtain partial proposals by pairing the sub-posterior realisations index-wise. If

we use this simple merging scheme then M = N , and so resampling in Algorithm 6.1.2 Step 3a

might not be necessary. As standard within the SMC literature, in practice we choose to re-sample

only when we observe weight degeneracy [Kong et al., 1994]. We monitor weight degeneracy by

computing the effective sample size (ESS) (3.18) of the particle set, and if it falls below some

user-specified threshold then resampling is performed (see Sections 3.2–3.3 for a short introduction

on resampling). There are two steps where we can compute the ESS (3.18) (and if necessary
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resample) in Algorithm 6.1.2: (i) after computing the weights for the partially composed proposals,

~w
(C)
j :=

(∏
c∈C w

(c)
j

)
· ρ0(~x

(C)
0,j ) for j = 1, . . . ,M (in Step 2); and (ii) after computing the weights

ρ̃
(C)
1,i := ρ̃

(b)
1 (~x

(C)
0,i ,y

(C)
i ) (in Step 3c).

6.3 Illustrative comparisons with Monte Carlo Fusion

As discussed in the introduction of this chapter, although Monte Carlo Fusion (MCF) of Dai

et al. [2019] (see Section 5.1) offers some compelling advantages (such as providing a direct Monte

Carlo approximation to (1.1) without approximating the individual sub-posteriors), the existing

methodology lack robustness in various key practical settings. In this section, we revisit these

settings, and with the aid of illustrative examples, show that the Generalised Monte Carlo Fusion

(GMCF) and Divide-and-Conquer Generalised Monte Carlo Fusion (D&C-GMCF) approaches we

introduced in Sections 6.1 and 6.2 respectively, address these key bottlenecks when contrasted with

MCF. In particular, in Section 6.3.1 we consider the effect of increasing sub-posterior correlation, in

Section 6.3.2 we consider the robustness with increasing numbers of sub-posteriors, and in Section

6.3.3 we consider how to address conflicting sub-posteriors. When applying GMCF (or calling it as

an embedded algorithm in D&C-GMCF), in all cases we use the GPE-2 variant of Algorithm 6.1.2

discussed in Definition 6.1.2 of Section 6.1, and follow the direction of Fearnhead et al. [2008] by

estimating the mean of the Negative Binomial distribution in (6.21) by using the Trapezoidal rule

and setting βc = 10. We note that different choices for the parameters of the Negative Binomial

distribution in Definition 6.1.2 may affect the efficiency and variance of our algorithm, but does

not introduce any bias to the estimator. Details on how to find the corresponding code is given in

Appendix A, and necessary calculations to implement these examples are given in Appendix B (in

particular Appendix B.3 and Appendix B.4).

In order to compare the MCF, GMCF and D&C-GMCF approaches, we compute both the com-

putational run-times of each methodology and a metric which we term the Integrated Absolute

Distance (IAD). To compute the IAD we average across each dimension the difference between the

true target (fusion) density (f), and a kernel density estimate of the draws realised using a given

methodology (f̂). In particular,

IAD =
1

2d

d∑
j=1

∫ ∣∣∣f̂(θj)− f(θj)
∣∣∣dθj ∈ [0, 1]. (6.25)

In the case where the true marginal density is not available analytically, we take as a proxy for the

target f a kernel density estimate of f (for instance, obtained using realisations from an MCMC

run).
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6.3.1 Effect of correlation

In this example, we consider the illustrative case in which we wish to recover a bivariate Gaussian

target distribution, f ∝ f1f2, where fc ∼ N2(0,Σ) with Σ =

(
1 ρ

ρ 1

)
. As we are only considering

combining two sub-posteriors in this section, we in effect consider only the GMCF approach of

Section 6.1. To study the impact of sub-posterior correlation on the robustness of MCF and GMCF

we can simply consider varying the single parameter ρ, and (in this case) compute the effective

sample size (ESS) per second averaged across 50 runs in order to compare the efficiency of each

methodology. For simplicity, we assume we are able to sample directly from each sub-posterior,

and for both methodologies we set T = 1. For the purposes of the GMCF approach of Algorithm

6.1.2, we simply set Λc = Σ̂c, where Σ̂c is the estimated covariance matrix from the sub-posterior

samples for c = 1, 2 (and so in effect we have incorporated global information into our proposals),

and use a particle set size of N = 10000. The results are presented in Figure 6.3, which clearly show

that GMCF is robust to increasing sub-posterior correlation, and offers a significant computational

advantage over MCF (which in this case exhibits a strong degradation in efficiency and performance

as we increase the correlation between the two components in this two-dimensional example).
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Figure 6.3: ESS per second (averaged over 50 runs) when contrasting Monte Carlo Fusion and
Generalised Monte Carlo Fusion, along with increasing sub-posterior correlation, as per the example
in Section 6.3.1.

6.3.2 Effect of hierarchy

We consider the illustrative case of attempting to recover a univariate standard Gaussian target

distribution. In particular, we have f ∝
∏C
c=1 fc, where fc ∼ N1(0, C) for c = 1, . . . , C. By

simply varying C, we can study the robustness with increasing numbers of sub-posteriors of MCF

(in effect the fork-and-join approach illustrated in Figure 6.1), and both our suggested versions

of D&C-GMCF (the balanced-binary tree approach illustrated in Figure 6.2a, and the progressive

tree approach illustrated in Figure 6.2b). Note that in our chosen idealised setting, there is no
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advantage conferred with our embedded GMCF methodology of Section 6.1, and so we are simply

contrasting hierarchies. In all cases we use a particle set of size N = 10000 with resampling if

ESS < N/2, set T = 1, use an appropriately scaled identity as the preconditioning (scalar) matrix,

and average across 50 runs. The results are presented in Figure 6.4, which clearly show that, in

contrast to the fork-and-join tree approach, both the balanced-binary tree and progressive tree

approaches are robust in recovering the correct posterior distribution in the case of increasing C at

the cost of modestly increased computational cost.
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Figure 6.4: Illustrative comparison of the effect of using different hierarchies in Section 6.3.2 (av-
eraged over 50 runs).

6.3.3 Dealing with conflicting sub-posteriors

Directly unifying C conflicting sub-posteriors (sub-posteriors which have little common support

and have high total-variation distance) using a fork-and-join approach as in Monte Carlo Fusion

[Dai et al., 2019] and Figure 6.1 is impractical. This can be understood with reference to (6.7) and

(6.8), which indicates that importance weights will degrade rapidly in this setting.

An approach to deal with conflicting sub-posteriors is to temper the sub-posteriors (to an inverse

temperature β ∈ (0, 1] such that there is sufficient sub-posterior overlap), and then propose a

suitable tree for which the recursive Divide-and-Conquer Generalised Monte Carlo Fusion approach

we introduced in Section 6.2 could then be applied to recover (1.1). In particular,

f(x) ∝
1/β∏
i=1

[
C∏
c=1

fβc (x)

]
, for

1

β
∈ N. (6.26)

One such generic tree is provided in Figure 6.5, in which the tempered sub-posteriors are first

unified into 1/β ∈ N tempered posteriors, which are then again unified into f .
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Figure 6.5: Illustrative tree approach for the fusion problem in the case of conflicting sub-posteriors
as in Section 6.3.3. 1/β copies of the C tempered (and over-lapping) sub-posteriors represent the
leaves of the tree, which are unified into 1/β tempered versions of f (using a suitable tree and
D&C-GMCF as in Section 6.2), and then unified again (using another tree, and D&C-GMCF) to
recover f .

To illustrate the advantage of our D&C-GMCF and tempering approach in the case of conflicting

sub-posteriors, we consider the scenario of unifying two Gaussian sub-posteriors with the same

variance (1), but with different mean (±µ). In particular, we have f ∝ f1f2 where f1 ∼ N1(−µ, 1)

and f2 ∼ N1(µ, 1). By simply increasing µ we can emulate increasingly conflicting sub-posteriors

and study how MCF (which is equivalent to the fork-and-join approach of Figure 6.1), behaves in

terms of the IAD metric and computational time. We contrast this with our tempering approach,

considering a range of temperatures 1/β ∈ {2, 4, 8, 16}, and then following the guidance of Figure

6.5. In particular, we use our D&C-GMCF approach to unify the tempered sub-posteriors with the

balanced-binary approach of Figure 6.2a for both the first and second stage in Figure 6.5. In all

cases, we use a particle set size of N = 10000 with resampling if ESS < N/2, set T = 1, and average

across 50 runs. The results are presented in Figure 6.6, and show clearly that our D&C-GMCF

approach is significantly more robust to conflicting sub-posteriors than the MCF approach where no

tempering is applied. A natural trade-off arises when applying the tempering approach suggested,

in that decreasing β results in tempered sub-posteriors which are less conflicting and are easier to

combine, but there is an increased computational cost in recovering f as an increased number of

levels are added to the resulting tree.

6.4 Examples

In this section, we consider a logistic regression model applied to a simulated dataset (Section 6.4.1),

and a real credit card dataset (Section 6.4.2). For each dataset, we compare the performance (in

terms of computational run-time and the Integrated Absolute Distance (IAD) as defined in (6.25))

of the Divide-and-Conquer Generalised Monte Carlo Fusion (D&C-GMCF) method introduced

in Section 6.2, against the other established approximate methodologies we discussed in Section

1.2.1. As in Section 6.3, we use the GPE-2 variant of Algorithm 6.1.2 discussed in Definition 6.1.2

with the same guidance on parameterisation. We consider the setting where the data is first split

into C disjoint subsets and the simulation of each sub-posterior is conducted separately. For this
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Figure 6.6: Illustrative comparison of using no tempering (solid line), and tempering at 4 differ-
ent levels together with D&C-GMCF, to combat conflicting sub-posteriors as per Section 6.3.3
(averaged over 50 runs).

reason, we focus on the balanced-binary tree approach (Figure 6.2a), as for a fixed dataset this is

the most natural hierarchy (whereas the progressive tree approach in Figure 6.2b is more naturally

suited to an online setting). The established methodologies we contrast our implementation against

are Consensus Monte Carlo (CMC) [Scott et al., 2016], the kernel density averaging approach of

Neiswanger et al. [2014] (which we term KDEMC ), and the Weierstrass Sampler (WRS) [Wang

and Dunson, 2013] (see Appendix A for details of where to find the corresponding code). For

each example, as a benchmark for f (in terms of a reference in computing IAD), we use Stan

[Carpenter et al., 2017] on the entire dataset, together with an appropriate choice of prior, to find a

reference sample approximation of the desired f . For full details on where to find the corresponding

code/scripts to implement these examples, see Appendix A. Furthermore, in Appendix B, we supply

details of calculations required to implement these examples.

6.4.1 Simulated data example

In this section, we consider an idealised small data size scenario (m = 1000) to which we applied

a logistic regression model:

yi =

1 with probability
exp{xᵀ

i β}
1+exp{xᵀ

i β}
,

0 otherwise.
(6.27)

This is a variant of Scott et al. [2016, Section 4.3], and is of specific interest because when such

a dataset is split among a large number of cores, C, both exact and approximate methodologies

for unifying sub-posterior samples are challenged. In particular, the resulting sub-posteriors will

typically conflict with one another and have little overlapping support.
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Each record of the simulated design matrix contained four covariates in addition to an intercept.

The ith entry of the design matrix is given by xi = [1, ζi,1, ζi,2, ζi,3, ζi,4]ᵀ, where ζi,1, ζi,2, ζi,3, ζi,4 are

random variables generated from a mixture density with a point-mass at zero (and so are either

activated or not). In particular, we have for j = 1, . . . , 4, that ζi,j ∼ pjN1(1, 1)+(1−pj)δ0. For this

example we chose p1 = 0.2, p2 = 0.3, p3 = 0.5 and p4 = 0.01 (corresponding to a rarely activated

covariate). Upon simulating the design matrix, binary observations were obtained by simulation

using the parameters β = [−3, 1.2,−0.5, 0.8, 3]ᵀ. In total there were a relatively small number of

positive responses (
∑

i yi = 129).

To study our methodology, we begin by splitting the dataset of size m = 1000 equally between

C ∈ {4, 8, 16, 32} cores. On each dataset on each core, we fit the logistic regression model using

MCMC with Stan using a Gaussian prior distribution with mean 0 and variance C on each of the

parameters, resulting in the required C sub-posteriors. The resulting sub-posteriors in the case of

C = 32 naturally resulted in conflicting sub-posteriors (see Section 6.3.3) due to the small amount

of data on each core. We then applied our D&C-GMCF approach using a balanced-binary tree with

N = 10000 and T = 0.5, and compared our approach to CMC, KDEMC and WRS. The results are

shown in Figure 6.7, with reference to the Stan benchmark.

It is clear from Figure 6.7a that D&C-GMCF achieves the best sample approximation in terms of

IAD of any of the approaches considered. Furthermore, the quality of the sample approximation

is robust to the increasing sub-posteriors that we consider. In terms of computational cost, CMC

outperforms all other methodologies, but has poor performance in terms of IAD. WRS offers a

similar performance to CMC in this example but at a slightly higher computational cost whereas

KDEMC has by far the poorest performance.
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Figure 6.7: Comparison of competing methodologies to Divide-and-Conquer Generalised Monte
Carlo Fusion (D&C-GMCF) applied to a logistic regression problem with simulated data (in the
setting of Section 6.4.1).
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6.4.2 Credit-card data example

In this example, we consider the ‘Default of credit card clients’ dataset available from the UCI

Machine Learning Repository [Yeh and Lien, 2009] and again fit the logistic regression model of

(6.27). The dataset comprised m = 30000 records, each of which contained response variable of

whether a default had occurred (which we treated as yi = 1), or not (in which case yi = 0). From

the dataset we used the X2: Gender attribute, treating it as a binary covariate with 1 being male

and 0 female. In addition we used the X3: Education attribute to create three further binary

covariates: a binary corresponding to whether the individual had completed high school; a binary

corresponding to completion of university; and a further binary corresponding to completion of

graduate school. These three education covariates were chosen to induce strong correlation in the

resulting inference.

We again split the dataset of size m = 30000 equally between C cores, and again used Stan together

with a Gaussian prior distributions with mean 0 and variance C on each of the parameters, to arrive

at our C sub-posteriors. In this example, we consider C ∈ {32, 64, 128} subsets, which we then

attempt to unify. This example is particularly challenging as the data and sub-posteriors exhibit

large correlation (due to the covariates related to X3: Education), especially for large C. D&C-

GMCF using a balanced-binary tree with N = 30000 and T = 0.5, together with CMC, KDEMC

and WRS were then used to unify the C sub-posteriors. The results are shown in Figure 6.8 with

reference to the Stan benchmark. The results in Figure 6.8 are comparable to those of Section

6.4.1: D&C-GMCF achieves the best IAD of all methodologies, and is robust to increasing C. This

comes at a moderate fixed computational cost, which scales no worse than any other methodology

(including CMC), and indeed in this example has a computational cost which is lower than KDEMC.
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Figure 6.8: Comparison of competing methodologies to Divide-and-Conquer Generalised Monte
Carlo Fusion (D&C-GMCF) applied to a logistic regression problem with real data (in the setting
of Section 6.4.2).
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Chapter 7

Divide-and-Conquer Generalised

Bayesian Fusion

We have seen that although the Monte Carlo Fusion (MCF) approach [Dai et al., 2019] (see Sec-

tion 5.1) provides a theoretical framework for sampling independent draws from the fusion target

density f in (1.1), it has several computational drawbacks (which we discussed in detail in Sec-

tion 6.3). To alleviate some of these problems, we introduced the Generalised Monte Carlo Fusion

(GMCF) approach in Chapter 6 which reformulates the theory underpinning the MCF approach.

In Section 6.2, we embedded the GMCF approach within a Divide-and-Conquer Sequential Monte

Carlo (D&C-SMC) [Lindsten et al., 2017] (see Section 3.4) to arrive at the Divide-and-Conquer

Generalised Monte Carlo Fusion (D&C-GMCF) approach, whereby sub-posterior sample approxi-

mations were combined in stages to recover the target fusion density f in (1.1). We saw through

various simulation studies and examples that D&C-GMCF offered a much greater robustness to

a number of practical scenarios. However, as discussed in Section 5.2, the Bayesian Fusion (BF)

approach of Dai et al. [2021] is an alternative sequential Monte Carlo (SMC) (see Chapter 3) ap-

proach which also aimed to develop a methodology which shares the consistency properties of MCF

while addressing some of the scalability issues of MCF. While the BF and D&C-GMCF approaches

allow Fusion to be applied to more practical settings, both approaches still lack the scalability with

regards to dimensionality of the underlying fusion target density. In this chapter, we will generalise

the theory and methodology of BF by applying many of the ideas outlined in Chapter 6; namely

adjusting the proposal distribution of the extended target density to incorporate global information

of the sub-posteriors. We subsequently embed this Generalised Bayesian Fusion (GBF) approach

within a D&C-SMC paradigm. We will see that the resulting Divide-and-Conquer Generalised

Bayesian Fusion (D&C-GBF) approach is the most scalable Fusion methodology developed so far

and is applicable to much higher dimensional problems.
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In the next section and with Algorithm 7.1.2, we present the theory and methodology of our GBF

approach. In Section 7.2, we follow the same approach as in Section 6.2 to embed the algorithm

with a divide-and-conquer approach to combine the sub-posterior is stages and present our D&C-

GBF approach in Algorithm 7.2.1. This is accompanied with practical guidance for implementing

GBF which includes full details for selecting the user-specified parameters in the algorithm and is

provided in Section 7.3. In Section 7.4, we present illustrative simulation studies to investigate the

robustness of our approach when applied to various scenarios; we investigate the applicability of the

implementational guidance developed in Sections 7.4.1–7.4.2 and study the impact of dimension on

the robustness of the Fusion approaches in Section 7.4.3. In Section 7.5, we study the performance

of our D&C-GBF approach in a number of real data applications. The content of this chapter is

joint work with my supervisors, Dr. Murray Pollock and Professor Gareth Roberts.

7.1 A generalisation of Bayesian Fusion

In this section, we develop theory and methodology to generalise and improve upon Bayesian Fusion

(BF) Dai et al. [2021], by incorporating information about the covariance of the sub-posteriors

within the SDE formulation of the algorithm. As in Section 6.1, we consider the more general

fusion density f (C) ∝
∏
c∈C fc, where C is an index set representing the sub-posteriors to unify.

7.1.1 Theory

To begin generalising the BF approach, we first need to derive tractable dynamics of our proposal

measure, denoted P, of |C| scaled Brownian motion processes which are conditioned to coalesce at

some time T > 0. We correct this to find the target fusion measure, denoted F, by finding appro-

priate importance weights. In particular, let P be the proposal measure given by the probability

law induced by |C| interacting d-dimensional parallel continuous-time Markov processes in [0, T ]

where each process is given by the stochastic differential equation,

dX
(c)
t =

X̃t −X(c)
t

T − t
dt+ Λ

1
2
c dW

(c)
t , X

(c)
0 := x

(c)
0 ∼ fc, t ∈ [0, T ], (7.1)

where Λc are (positive semi-definite) user-specified matrices associated to sub-posterior fc for c ∈ C
with Λ

1/2
c being the (positive semi-definite) square root of Λc where Λ

1/2
c Λ

1/2
c = Λc. Note that

for the purposes of our numerical simulations later we use the Schur decomposition. Furthermore,

{W (c)
t }c∈C denotes independent Brownian motions, and X̃

(c)
t denoting the weighted average of

the processes at time t with weights {Λc}c∈C . We denote by ~x
(C)
t ∈ R|C|×d a vector composed of

{x(c)
t }c∈C ∈ Rd (in particular, we have ~x

(C)
t := (x

(c1)
t , . . . ,x

(c|C|)
t ), with ci denoting the ith element

of the index set C). Realisations of the proposal measure are denoted as X := {~x(C)
t , t ∈ [0, T ]}.

We note that the initialisation of the proposal measure given by (7.1) at time t = 0 only requires

independent draws from the |C| sub-posteriors that we wish to unify. For the purposes of exposition,

we defer discussion on the practical simulation of P (without discretisation error) to Section 7.1.2.1.
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The Fusion measure F is the measure induced by the Radon-Nikodým derivative,

dF
dP

(X) ∝ ρ0

(
~x

(C)
0

)
·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
, (7.2)

where {X(c)
t , t ∈ [0, T ]} is a Brownian bridge from X

(c)
0 := x

(c)
0 ∼ fc to X

(c)
T := x

(c)
T with covariance

matrix Λc, ρ0 is given in (6.7) and φc is given in (6.9). Recall with the Fusion methodologies,

we typically we assume that we can evaluate each sub-posterior pointwise (up to its normalising

constant) and for c = 1, . . . , C, fc is nowhere zero and everywhere differentiable, and that we can

compute Ac(x) := log fc(x), ∇Ac(x), and ∇2Ac(x) pointwise (where ∇ is the gradient operator

and ∇2 is the Hessian), since we will need to be able to evaluate φc(x) defined in (6.9). However,

we will see later (in Section 7.3.3.2) that this is not a limiting factor of the methodology.

Having defined the proposal measure P and the Fusion measure F, we can now establish how we

can access the target fusion density f (C) by means of the temporal marginal of F corresponding to

value of the |C| trajectories at the time of coalescence T .

Theorem 7.1.1. Under the fusion measure F, the ending points of the |C| interacting, parallel

processes have a common value at time T , y(C) which has density f (C) and y(C) = x
(c1)
T = · · · =

x
(c|C|)

T almost surely.

Proof. Following the approach of Dai et al. [2019, Appendix A], we begin by proving that the law

of |C| independent Brownian motions initialised at x
(c)
0 ∼ fc for c ∈ C and conditioned to coalesce

at time T satisfies (7.1). Here, we use Doob h-transforms [Rogers and Williams, 2000, Chapter IV,

Section 6.39] and define the following space-time harmonic function

h
(
t, ~x

(C)
t

)
=

∫ ∏
c∈C

1√
2π(T − t)|Λc|

exp

{
−(y − x(c)

t )ᵀΛ−1
c (y − x(c)

t )

2(T − t)

}
dy, (7.3)

which represents the integrated density of coalescence at time T given the current state ~x
(C)
t . Then

the |C| conditioned processes satisfy a SDE of the form,

d ~X
(C)
t = ~Λ

1
2 d ~W

(C)
t + ~Λ∇ log

(
h(t, ~X

(C)
t )
)

dt, (7.4)

where ∇ log
(
h(t, ~x

(C)
t )
)

=:
(
v

(c1)
t , . . . ,v

(c|C|)
t

)
is a collection of |C|d-dimensional vectors and

~Λ
1
2 =


Λ

1
2
c1 0d×d . . . 0d×d

0d×d Λ
1
2
c2 . . . 0d×d

...
. . .

...
...

0d×d 0d×d . . . Λ
1
2
c|C|

 , ~Λ =


Λc1 0d×d . . . 0d×d

0d×d Λc2 . . . 0d×d
...

. . .
...

...

0d×d 0d×d . . . Λc|C|

 ,
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where Λ
1
2
c is the (positive semi-definite) square root of Λc where Λ

1
2
c Λ

1
2
c = Λc for c ∈ C, and 0d×d

denotes the d× d matrix with all elements equal to 0.

Considering the cth term and letting Λ−1
C =

∑
c∈C Λ−1

c , then

v
(c)
t =

∫ (Λ−1
c (y−x(c)

t )
T−t

)∏
c∈C

1√
2π(T−t)|Λc|

exp

{
−

(
y−x(c)

t

)ᵀ
Λ−1
c

(
y−x(c)

t

)
2(T−t)

}
dy

∫ ∏
c∈C

1√
2π(T−t)|Λc|

exp

{
−

(
y−x(c)

t

)ᵀ
Λ−1
c

(
y−x(c)

t

)
2(T−t)

}
dy

=

∫ (Λ−1
c y
T−t

)
exp

{
− (y−x̃t)ᵀΛ−1

C (y−x̃t)
2(T−t)

}
dy∫

exp
{
− (y−x̃t)ᵀΛ−1

C (y−x̃t)
2(T−t)

}
dy

− Λ−1
c x

(c)
t

T − t

=
Λ−1
c

(
x̃t − x(c)

t

)
T − t

.

Consequently, we have

∇ log
(
h(t, ~x

(C)
t )
)

=

Λ−1
c1

(
x̃t − x(c1)

t

)
T − t

, . . . ,
Λ−1
c|C|

(
x̃t − x

(c|C|)
t

)
T − t

 , (7.5)

and (7.1) holds.

Next, we show that under F this common value has density f . Since P is the measure for |C|
coalesced Brownian motions (shown above), from (7.2), we can write F as

dF(X) ∝ dP(X) · ρ0

(
~x

(C)
0

)
·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]

∝

[∏
c∈C

fc

(
x

(c)
0

)]
· exp

{
−

(y(C) − x̃(C)
0 )ᵀΛ−1

C (y(C) − x̃(C)
0 )

2T

}
· dW̄Λ(X)

· exp

{
−
∑
c∈C

(x̃
(C)
0 − x(c)

0 )ᵀΛ−1
c (x̃

(C)
0 − x(c)

0 )

2T

}
·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]

=

[∏
c∈C

fc

(
x

(c)
0

)]
· exp

{
−
∑
c∈C

(y(C) − x(c)
0 )ᵀΛ−1

c (y(C) − x(c)
0 )

2T

}
· dW̄Λ(X)

·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
, (7.6)

where W̄Λ denotes the law of |C| independent Brownian bridges {X(c)
t , t ∈ [0, T ]}c∈C starting at

X
(c)
0 := x

(c)
0 and ending at X

(c)
T := y(C) (with covariance Λc). Let gC(~x

(C)
0 ,y(C)) denote the
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marginal distribution of F at ~x
(C)
0 and ~x

(C)
T =: y(C), then we have

gC(~x
(C)
0 ,y(C)) ∝

∏
c∈C

[
fc

(
x

(c)
0

)]
· exp

{
−
∑
c∈C

(y(C) − x(c)
0 )ᵀΛ−1

c (y(C) − x(c)
0 )

2T

}

·
∏
c∈C

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
,

=
∏
c∈C

[
f2
c

(
x

(c)
0

)
· pc
(
y(C)

∣∣∣x(c)
0

)
· 1

fc
(
y(C)

)] , (7.7)

where

pc

(
y(C)

∣∣∣x(c)
0

)
∝
fc
(
y(C))

fc

(
x

(c)
0

) · exp

{
−(y(C) − x(c)

0 )ᵀΛ−1
c (y(C) − x(c)

0 )

2T

}

· EWΛc

[
exp

{
−
∫ T

0
φc

(
X

(c)
t

)
dt

}]
. (7.8)

Recall from Proposition 6.1.1, using the Dacunha-Castelle representation [Dacunha-Castelle and

Florens-Zmirou, 1986, Lemma 1] (see Section 4.3.4), this is the transition density density of a

Langevin diffusion with covariance matrix Λc over time t ∈ [0, T ] (as given in (6.5)). Critically,

this diffusion process has invariant density proportional to f2
c , so∫

p
(
y(C)

∣∣∣x(c)
0

)
f2
c

(
x

(c)
0

)
dx

(c)
0 = f2

c

(
y(C)

)
.

By integrating out ~x
(C)
0 in (7.7), we can see that gC(~x

(C)
0 ,y(C)) admits f (C) as a marginal. �

7.1.2 Methodology

Theorem 7.1.1 suggests that we can simulate from the fusion target density f (C) by simulating

X ∼ F and retaining the T time marginal, y(C). As suggested by the theory, we do so by means

of simulating a number of proposals X ∼ P and accepting (or importance weighting) the terminal

time marginal y(C) with probability (or weight) proportional to the Radon-Nikodým derivative in

(7.2). As such, we need to consider: (i) how to simulate proposals from X ∼ P (outlined in Section

7.1.2.1); and (ii) how to compute the Radon-Nikodým correction (7.2) (outlined in Section 7.1.2.2).

We then present our proposed complete methodology in Section 7.1.2.3.

7.1.2.1 Simulating from the proposal measure

First, we consider how to simulate proposals from X ∼ P. We begin by noting that the initialisation

of the proposal measure given by (7.1) at time t = 0 only requires independent draws from the

|C| sub-posteriors that we wish to unify, which in this thesis, we assume we have access to. If

independent sampling is not feasible, it is possible to obtain approximate sub-posterior samples
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using MCMC (see Section 5.2.3.1 for a discussion on the impacts of using approximate sub-posterior

samples for Fusion). Further, although paths X ∼ P are infinite dimensional random variables (and

so we cannot draw entire sample paths from P), it is sufficient for our needs to simulate (exactly)

the paths at a finite collection of times provided we can ensure that we are able to simulate the

path (exactly) at time T . For clarity, we only consider simulating X at times given by the following

auxiliary temporal partition,

P = {t0, t1, . . . , tn : 0 =: t0 < t1 < · · · < tn := T}. (7.9)

We let ∆j := tj− tj−1 and for notational simplicity, subscripts are suppressed when considering the

processes at times given in the temporal partition. In particular, let x
(c)
j denote x

(c)
tj

, and let ~x
(C)
j

denote ~x
(C)
tj

. The following theorem tells us how to simulate from P without discretisation error.

Theorem 7.1.2. Let C := (c1, . . . , c|C|) denote the index set representing the sub-posteriors we wish

to unify, then if X satisfies (7.1), then under the proposal measure, P, we have

(a) For s < t,

~X
(C)
t

∣∣∣( ~X(C)
s = ~x(C)

s

)
∼ N|C|d

(
~M

(C)
s,t ,Vs,t

)
, (7.10)

where ~M
(C)
s,t ∈ R|C|×d :=

(
M

(c1)
s,t , . . . ,M

(c|C|)
s,t

)
with

M
(c)
s,t =

T − t
T − s

x(c)
s +

t− s
T − s

x̃s, (7.11)

and

Vs,t =


Γ11 Γ12 . . . Γ1|C|

Γ21 Γ22 . . . Γ2|C|
...

...
. . .

...

Γ|C|1 Γ|C|2 . . . Γ|C||C|

 ∈ R|C|d×|C|d, (7.12)

where for i, j = 1, . . . , |C|,

Γii =
(t− s)(T − t)

T − s
Λci +

(t− s)2

T − s
ΛC ∈ Rd×d, (7.13)

Γij =
(t− s)2

T − s
ΛC ∈ Rd×d. (7.14)

(b) For each c ∈ C, the distribution of {X(c)
q , s ≤ q ≤ t} given endpoints X

(c)
s = x

(c)
s and

X
(c)
t = x

(c)
t is a Brownian bridge with covariance matrix Λc, so

X(c)
u

∣∣∣(x(c)
s ,x

(c)
t

)
∼ Nd

(
(t− q)x(c)

s + (q − s)x(c)
t

t− s
,
(t− q)(q − s)

t− s
Λc

)
. (7.15)
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Proof. Theorem (a): We begin by deriving the joint density of ~X
(C)
t conditional on the state at

time s, ~x
(C)
s . Firstly, consider the d(|C| + 1) dimensional joint density of ~X

(C)
t and end-point y(C)

conditional on ~x
(C)
s , which we denote as p1, then

−2 log p1 = D1 +D2,

where D1 is the log-density of y(C) conditional on ~x
(C)
s and given by

D1 =
∑
c∈C

(y(C) − x(c)
s )ᵀΛ−1

c (y(C) − x(c)
s )

T − s
+ k1

where k1 is a constant; D2 is the log-density of ~X
(C)
t conditional on ~x

(C)
s and y(C) (which is simply

the log-density of |C| Brownian bridges with respective covariance matrices Λc for c ∈ C), given by

D2 =
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

t− s
T − s

y(C) − T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

t− s
T − s

y(C) − T − t
T − s

x(c)
s

]
+k2,

where k2 is a constant. We therefore have

−2 log p1 =
(y(C) − x̃(C)

s )ᵀΛ−1
C (y(C) − x̃(C)

s )

T − s

+
∑
c∈C

[
t− s

(T − t)(T − s)
y(C)ᵀΛ−1

c y
(C) − 2

T − t
y(C)ᵀΛ−1

c x
(c)
t +

2

T − s
y(C)ᵀΛ−1

c x
(c)
s

]
+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k3

=
1

T − s

[
y(C)ᵀΛ−1

C y
(C) − 2y(C)ᵀΛ−1

C x̃
(C)
s

]
+

[
t− s

(T − t)(T − s)
y(C)ᵀΛ−1

C y
(C) − 2

T − t
y(C)ᵀΛ−1

C x̃
(C)
t +

2

T − s
y(C)ᵀΛ−1

C x̃
(C)
s

]
+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k4

=

[
1

T − s
+

t− s
(T − t)(T − s)

]
y(C)ᵀΛ−1

C y
(C) − 2

T − t
y(C)ᵀΛ−1

C x̃
(C)
t

+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k4

=
1

T − t

[
y(C)ᵀΛ−1

C y
(C) − 2y(C)ᵀΛ−1

C x̃
(C)
t

]
+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k4

=
1

T − t

[
(y(C) − x̃(C)

t )ᵀΛ−1
C (y(C) − x̃(C)

t )
]
− 1

T − t
x̃

(C)ᵀ
t Λ−1

C x̃
(C)
t
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+
∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k4,

where k3 and k4 are constants, and ΛC :=
(∑

c∈C Λ−1
c

)−1
.

Next, we integrate out y(C) to obtain the d|C|-dimensional density of ~X
(C)
t conditional on ~x

(C)
s ,

which we denote p2:

−2 log p2 = − 1

T − t
x̃

(C)ᵀ
t Λ−1

C x̃
(C)
t +

∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t −

T − t
T − s

x(c)
s

]ᵀ
Λ−1
c

[
x

(c)
t −

T − t
T − s

x(c)
s

]
+ k5

= − 1

T − t
x̃

(C)ᵀ
t Λ−1

C x̃
(C)
t +

∑
c∈C

T − s
(t− s)(T − t)

[
x

(c)
t

ᵀ
Λ−1
c x

(c)
t − 2

(
T − t
T − s

)
x

(c)
t

ᵀ
Λ−1
c x

(c)
s

]
+ k6,

where k5 and k6 are constants. Noting that

x̃
(C)ᵀ
t Λ−1

C x̃
(C)
t =

(∑
c∈C

Λ−1
c

)−1(∑
c∈C

Λ−1
c x

(c)
t

)ᵀ(∑
c∈C

Λ−1
c

)(∑
c∈C

Λ−1
c

)−1(∑
c∈C

Λ−1
c x

(c)
t

)
=

(∑
c∈C

Λ−1
c x

(c)
t

)ᵀ
ΛC

(∑
c∈C

Λ−1
c x

(c)
t

)
=
∑
i,j∈C

x
(i)
t

ᵀ (
Λ−1
i ΛCΛ

−1
j

)
x

(j)
t .

So we have,

−2 log p2 = − 1

T − t
∑
i,j∈C

x
(i)
t

ᵀ (
Λ−1
i ΛCΛ

−1
j

)
x

(j)
t +

T − s
(t− s)(T − t)

∑
c∈C

x
(c)
t

ᵀ
Λ−1
c x

(c)
t

− 2

t− s
∑
c∈C

x
(c)
t

ᵀ
Λ−1
c x

(c)
s + k6

=
T − s

(t− s)(T − t)
∑
c∈C

x
(c)
t

ᵀ
Λ−1
c x

(c)
t −

1

T − t
∑
c∈C

x
(c)
t

ᵀ (
Λ−1
c ΛCΛ

−1
c

)
x

(c)
t

− 1

T − t
∑
i,j∈C
i 6=j

x
(i)
t

ᵀ (
Λ−1
i ΛCΛ

−1
j

)
x

(j)
t −

2

t− s
∑
c∈C

x
(c)
t

ᵀ
Λ−1
c x

(c)
s + k6

= ~xᵀtV
−1
s,t ~x

(C)
t −

2

t− s
~xᵀtL

−1~x(C)
s + k6

where

V −1
s,t =


Σ−1

11 Σ−1
12 . . . Σ−1

1|C|
Σ−1

21 Σ−1
22 . . . Σ−1

2|C|
...

...
. . .

...

Σ−1
|C|1 Σ−1

|C|2 . . . Σ−1
|C||C|

 ∈ R|C|d×|C|d, (7.16)
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with

Σ−1
ii =

T − s
(t− s)(T − t)

Λ−1
ci −

1

T − t
(
Λ−1
ci ΛCΛ

−1
ci

)
∈ Rd×d,

Σ−1
ij = − 1

T − t

(
Λ−1
ci ΛCΛ

−1
cj

)
∈ Rd×d,

for i, j = 1, . . . , |C|, and

L−1 =


Λ−1
c1 0d×d . . . 0d×d

0d×d Λ−1
c2 . . . 0d×d

...
. . .

...
...

0d×d 0d×d . . . Λ−1
c|C|

 ∈ R|C|d×|C|d,

where 0d×d is the d× d with all elements zero. We finally complete the square to get

−2 log p2 = ~x
(C)
t V −1

s,t ~x
(C)
t − 2~x

(C)
t V −1

s,t
~M

(C)
s,t + k6,

where

~M
(C)
s,t =

Vs,tL
−1~x

(C)
s

t− s
.

Inverting V −1
s,t in (7.16), we obtain (7.12) and subsequently we can get the expression for M

(c)
s,t in

(7.11) to prove the statement in part (a) of Theorem 7.1.1.

For part (b), for c ∈ C, the law of {X(c)
t , t ∈ (0, T )} conditional on endpoints x

(c)
0 and y(C) is

that of a Brownian bridge (see Section 4.1.2). This statement in the theorem holds from the

standard properties of Brownian bridges (with covariance matrix Λc). In particular, considering

the distribution of X
(c)
q at an intermediate point q ∈ (s, t) given the positions X

(c)
s = x

(c)
s and

X
(c)
t = x

(c)
t at times s and t respectively, then we have

P
(
Xq = w

∣∣∣X(c)
s = x(c)

s ,X
(c)
t = x

(c)
t

)
∝ P

(
X

(c)
t = x

(c)
t

∣∣∣X(c)
s = x(c)

s ,Xq = w
)
· P
(
Xq = w

∣∣∣X(c)
s = x(c)

s

)
∝ P

(
X

(c)
t = x

(c)
t

∣∣∣Xq = w
)
· P
(
Xq = w

∣∣∣X(c)
s = x(c)

s

)
∝ exp

(
−(x

(c)
t −w)ᵀΛ−1

c (x
(c)
t −w)

2(t− q)

)
· exp

(
−(w − x(c)

s )ᵀΛ−1
c (w − x(c)

s )

2(q − s)

)
,

and hence we arrive at the result in the statement. �

As we can initialise a draw from P, and from Theorem 7.1.2 we can simulate from its transition

density, we can now explicitly express the d(n|C| + 1)-dimensional density of the |C|d-dimensional

Markov process at the (n+ 1) time marginals given by the temporal partition under P by iterative
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simulation from the transition density:

hC

(
~x

(C)
0 , . . . , ~x

(C)
n−1,y

(C)
)
∝
∏
c∈C

[
fc

(
x

(c)
0

)]
·
n∏
j=1

N|C|d
(
~x

(C)
j

∣∣∣ ~M (C)
j ,Vj

)
, (7.17)

where Nd(x|µ,Σ) denotes the density of a d-dimensional Normal distribution (evaluated at x) with

mean µ and covariance Σ and for notational convenience we let ~M
(C)
j = ~M

(C)
tj−1,tj

and Vj = Vtj−1,tj .

Recall that ~x
(C)
0 := (x

(c1)
0 , . . . ,x

(c|C|)
0 ) where C := {c1, . . . , c|C|} and y(C) := x

(c)
n for each c ∈ C.

7.1.2.2 Radon-Nikodým correction of the proposal

Now, we draw our consideration to the second step of how to compute the Radon-Nikodým correc-

tion of (7.2), given we have drawn our proposal from P restricted to the times given by the partition

P. Factorising the Radon-Nikodým derivative in (7.2) according to the temporal partition P, the

d(n|C|+ 1)-dimensional density under F is

gC

(
~x

(C)
0 , . . . , ~x

(C)
n−1,y

(C)
)
∝ hC

(
~x

(C)
0 , . . . , ~x

(C)
n−1,y

(C)
)
·
n∏
j=0

ρj , (7.18)

where ρ0 is given in (6.7) and for j = 1, . . . , n,

ρj

(
~x

(C)
j−1, ~x

(C)
j

)
=
∏
c∈C

EWΛc,j

[
exp

{
−
∫ tj

tj−1

(
φc

(
X

(c)
t

)
−Φc

)}]
∈ (0, 1], (7.19)

where WΛc,j is the law of a Brownian bridge {X(c)
t , t ∈ (tj−1, tj)} fromXtj−1 := x

(c)
j−1 toXtj := x

(c)
j

with covariance Λc, and Φc <∞ is a constant such that φc(x) ≥ Φc for all x and each c ∈ C. As

with Dai et al. [2021], we note that we can avoid computation of the global lower bounds Φc of

φc, by considering a sequential Monte Carlo approach, since these are simply constants that will

be cancelled during normalisation of the importance weights.

Although we cannot directly compute ρj for j = 1, . . . , n, we have seen several times in this thesis

that we can construct unbiased estimators in a similar fashion to Beskos et al. [2008]; Fearnhead

et al. [2008]. To recap, to find an unbiased estimator, we need to find upper and lower bounds

for φc(X
(c)
t ) for t ∈ [tj−1, tj ]. Beskos et al. [2008] noted that if we can bound a sample path

X
(c)
[tj−1,tj ]

∼ WΛc,j , then conditional on these layers (or bounds) of the sample path, we can find

upper and lower bounds of φc denoted U
(c)
j and L

(c)
j , respectively, such that φc(X

(c)
t ) ∈ [L

(c)
j , U

(c)
j ]

for t ∈ [tj−1, tj ]. To achieve this, let Rc := Rc(X[tj−1,tj ]) denote the compact region (or layer)

in which X
(c)
t is constrained in time [tj−1, tj ]. If Λc = Id, then we can simulate a layer to which

X
(c)
t ∈ Rc for t ∈ [tj−1, tj ] by using algorithms outlined in Pollock et al. [2016, Section 7] and

summarised in Section 4.2.2 (for instance Algorithm 4.2.4). In the case where Λc 6= Id, we can still

simulate Rc by appealing to a suitable transformation as we did in Section 6.1.2. Once we have
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simulated layer information for X
(c)
t for t ∈ [tj−1, tj ], we can simulate the path at any required

time marginals conditional on the simulated layer, X
(c)
t ∼ WΛc,j |Rc (via a transformation and

applying Algorithm 4.2.5). Although it is possible to find bounds for φc given the compact set Rc

in a problem specific manner, we can also find general (less tight) bounds which are provided in

Section 6.1.2 in Proposition 6.1.3.

Once local bounds for φc are obtained, we can unbiasedly estimate ρj in (7.19) for j = 1, . . . , n by

letting ∆j := tj − tj−1 and computing aj ρ̃j , where aj := exp{
∑

c∈C Φc∆j} and

ρ̃j

(
~x

(C)
j−1, ~x

(C)
j

)
:=
∏
c∈C

∆κc
j · e

−U(c)
j ∆j

κc! · p (κc|Rc)
·
κc∏
kc=1

[
U

(c)
j − φc

(
X

(c)
ξc,kc

)] , (7.20)

where L
(c)
j and U

(c)
j are constants such that L

(c)
j ≤ φ

(
X

(c)
t

)
≤ U

(c)
j for all X

(c)
t ∼ WΛc,j |Rc,

κc is a discrete random variable with conditional probabilities P[κc = kc|Rc] := p(κc|Rc) and

ξc,1, . . . , ξc,κc
iid∼ U [tj−1, tj ] for all c ∈ C.

Theorem 7.1.3. Let aj := exp{
∑C

c=1 Φc∆j}, then for every j = 1, . . . , n, aj ρ̃j is an unbiased

estimator of ρj. In particular, we have

ρj = E
[
E
[
E
[
E
[
aj ρ̃j | {Rc,X(c)

[tj−1,tj ]
, κc}c∈C

]
| {Rc,X(c)

[tj−1,tj ]
}c∈C ,

]
| {Rc}c∈C

]]
= ER̄EW̄|R̄EK̄EŪ [aj ρ̃j ] , (7.21)

where expectation subscripts denote the law with which they are taking; R denotes the law of {Rc ∼
Rc : c = 1, . . . , C}, W̄ denotes the law of the C Brownian bridges {WΛc,j : c = 1, . . . , C}, K̄ denotes

the law of {κc : c = 1, . . . , C} and Ū denotes the law of {ξc,1, . . . , ξc,κc : c = 1, . . . , C} iid∼ U [tj−1, tj ].

Proof. Following in the style of Beskos et al. [2006a, 2008]; Fearnhead et al. [2008] (see Section 4.4)

and Dai et al. [2021, Appendix B], for j = 1, . . . , n, we have

ER̄EW̄|R̄EK̄EŪ [aj ρ̃j ]

= ER̄EW̄|R̄EK̄EŪ

∏
c∈C

∆κc
j · e

−(U
(c)
j −Φc)∆j

κc! · p (κc|Rc)

κc∏
kc=1

(
U

(c)
j − φc

(
X

(c)
ξc,kc

))
= ER̄EW̄|R̄EK̄

∏
c∈C

∆κc
j · e

−(U
(c)
j −Φc)∆j

κc! · p (κc|Rc)
·

∫ tj

tj−1

U
(c)
j − φc

(
X

(c)
t

)
∆j

dt

κc
= ER̄EW̄|R̄

∏
c∈C

 ∞∑
kc=0

∆kc
j · e

−(U
(c)
j −Φc)∆j

kc! · p (kc|Rc)
·

∫ tj

tj−1

U
(c)
j − φc

(
X

(c)
t

)
∆j

dt

kc


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= ER̄EW̄|R̄

∏
c∈C

e−(U
(c)
j −Φc)∆j ·

 ∞∑
kc=0

∆kc
j

kc! · p (kc|Rc)
·

∫ tj

tj−1

U
(c)
j − φc

(
X

(c)
t

)
∆j

dt

kc



= ER̄EW̄|R̄

[∏
c∈C

e−(U
(c)
j −Φc)∆j · exp

{∫ tj

tj−1

(
U

(c)
j − φc

(
X

(c)
t

))
dt

}]

=
∏
c∈C

EWΛc,j

[
exp

{
−
∫ tj

tj−1

(
φc

(
X

(c)
t

)
−Φc

)
dt

}]
=: ρj ,

and hence aj ρ̃j is an unbiased estimator for ρj . �

This unbiased estimator for ρj allows for significant flexibility in choosing the law K. Throughout

this thesis, the main two choices that we consider in are the GPE-1 and GPE-2 estimators of

Fearnhead et al. [2008] (see Section 4.4.3) which lead to the following two estimators for ρj :

Definition 7.1.1. (GPE-1 for ρj (7.19)): Choosing the law of κc ∼ Poi
(
(U

(c)
j −L

(c)
j )∆j

)
for c ∈ C

leads to the following estimator:

ρ̃
(a)
j

(
~x

(C)
j−1, ~x

(C)
j

)
:=
∏
c∈C

e−L(c)
j ∆j ·

κc∏
kc=1

U (c)
j − φc

(
X

(c)
ξc,kc

)
U

(c)
j − L

(c)
j

 , (7.22)

where exp{
∑C

c=1 Φc∆j} · ρ̃(a)
j is an unbiased estimator for ρj .

Definition 7.1.2. (GPE-2 for ρj (7.19)): Choosing the law of κc ∼ NB(γc, βc) for c ∈ C with

γc := U
(c)
j ∆j −

∫ tj

tj−1

φc

(
x

(c)
j−1 ·

tj − s
∆j

+ x
(c)
j ·

s− tj−1

∆j

)
ds, (7.23)

leads to the following estimator:

ρ̃
(b)
j

(
~x

(C)
j−1, ~x

(C)
j

)
:=
∏
c∈C

e−U(c)
j ∆j ·

∆κc
j · Γ(βc) · (βc + γc)

βc+κc

Γ(βc + κc)β
βc
c γ

κc
c

·
κc∏
kc=1

[
U

(c)
j − φc

(
X

(c)
ξc,kc

)] ,

(7.24)

where exp{
∑C

c=1 Φc∆j} · ρ̃(b)
j is an unbiased estimator for ρj .

As we discuss in Section 7.1.2.3, we will be embedding this estimator within a SMC framework,

and thus the critical consideration when choosing the law K is to minimise the variance estimator.

In our subsequent simulations, we typically choose the GPE-2 estimator in Condition 7.1.2 since it

has been empirically shown to have superior performance in Fearnhead et al. [2008, Section 5] and

Dai et al. [2021, Section 3.5]. We summarise the approach to simulating ρ̃j in Algorithm 7.1.1.
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Algorithm 7.1.1 Simulating ρ̃j .

1. For c ∈ C
(a) z

(c)
j−1, z

(c)
j : Transform the path, setting z

(c)
j−1 := Λ

− 1
2

c x
(c)
j−1, and z

(c)
j := Λ

− 1
2

c x
(c)
j .

(b) Rc: Set Rc := Λ
1
2
c R

(z)
c , where R

(z)
c ∼ R(z)

c as per Algorithm 4.2.4.

(c) L
(c)
j , U

(c)
j : Compute lower and upper bounds, L

(c)
X and U

(c)
X , of φc(x) for x ∈ Rc (as per

(6.11) and (6.12), or otherwise).
(d) pc: Choose p(·|Rc) using either GPE-1 (Condition 7.1.1) or GPE-2 (Condition 7.1.2).
(e) κc, ξ: Simulate κc ∼ p(·|Rc), and simulate ξc,1, . . . , ξc,κc ∼ U [tj−1, tj ].

(f) z(c): Simulate z
(c)
ξc,1
, . . . ,z

(c)
ξc,κc
∼WId |R

(z)
c as per Algorithm 4.2.5.

(g) X(c): Reverse transform the path, setting X
(c)
ξc,kc

= Λ
1
2
c z

(c)
ξc,kc

for kc = 1, . . . , κc.

2. Output ρ̃
(·)
j (7.20).

7.1.2.3 Generalised Bayesian Fusion algorithm

As noted earlier, Theorem 7.1.1 suggests that we can simulate from the fusion target density f (C)

by simulating X ∼ F and retaining the T time marginal, y(C). As suggested by the theory, we do

so by means of simulating a number of proposals X ∼ P and accepting (or importance weighting)

the terminal time marginal y(C) with probability proportional to the Radon-Nikodým derivative in

(7.2). We are now able to practically do each of these steps (as discussed in Sections 7.1.2.1 and

7.1.2.2 respectively), but the methodological approach requires careful consideration.

The simplest methodological approach here is a rejection sampler (see Section 2.2). To do so, we

can simply simulate a proposal from hC (7.17) (by utilising Theorem 7.1.2) and accept this proposal

(and returning the value for y(C) as a sample from f (C)) with probability equal to
∏n
j=0 ρj . Whilst

a rejection sampling approach to sample from gC in this fashion is valid and would ultimately

return i.i.d. draws from our fusion target f (C), this approach would unfortunately suffer from

several inefficiencies. In fact, Monte Carlo Fusion Dai et al. [2019] (discussed in Section 5.1)

follows a similar approach (although based upon a different formulation of the problem which

does not utilise Theorem 7.1.2) and suffers from these computational drawbacks. Note a full

discussion of the connections between the methodology outlined in this chapter and the earlier

Fusion algorithms are discussed at the end of this section. In particular, we would expect the

acceptance probabilities ρj (7.19) to decay geometrically with increasing number of sub-posteriors,

|C|, as each term in this product is bounded by 1. Furthermore, we expect the acceptance probability∏n
j=0 ρj to decay exponentially with increasing T . Consequently, a rejection sampling approach will

ultimately be impractical and typically would lead to very small acceptance probabilities. Similarly,

an importance sampling approach (in which the proposals are all retained with an importance weight

of
∏n
j=0 ρj) will ultimately suffer from the same issues of robustness in practice.

The BF approach of Dai et al. [2021] introduced the auxiliary temporal partition P in order to

simulate from gC using SMC, allowing for the gradual coalescence of the C stochastic processes. In
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particular, we can initialise an SMC algorithm by simulating N particles from the time 0 marginal

in hC (which consists of composing |C| samples from each of the sub-posterior densities to obtain

~x
(C)
0 ), and assigning them an initial un-normalised importance weight given by w′0,i := ρ0(~x

(C)
0,i )

for i = 1, . . . , n. This initial particle set constitutes an approximation to the time 0 marginal of

gC , and can be sequentially propagated n times through the temporal time mesh P by simulating

~x
(C)
j,i |~x

(C)
j−1,i ∼ Nd( ~M

(C)
j,i ,Vj) as per (7.11) and (7.12). In our SMC formulation, at each iteration

(j = 1, . . . , n) the un-normalised importance weight of every particle is updated by a factor of

ρj(~x
(C)
j−1,i, ~x

(C)
j,i ). The weighted particle set obtained after the final nth iteration of the algorithm

corresponds to the coalesce time T , meaning that y
(C)
i := x

(c1)
n,i = · · · = x

(c|C|)

n,i for i = 1, . . . , N . By

retaining the final time marginal y(C) for each of the N weighted particles (i.e. {y(C)
i , w

(C)
n,i }Ni=1), we

have an approximation to the desired distribution,

f (C)(y)dy ≈
N∑
i=1

w
(C)
n,i · δy(C)i

(dy). (7.25)

As is common in SMC, to avoid weight degeneracy in which the variance of the importance weights

degrades rapidly in n, we employ a resampling strategy. As such, at the end of each iteration, the

weights are re-normalised and we follow the conventional approach of Kong et al. [1994] to monitor

weight degeneracy by estimating effective sample size (ESS) (3.18) of the particle set. If the ESS

falls below some user-specified threshold then at the beginning of the next iteration we resample

the particle set to get N equally weighted particles. In all of our simulations in the subsequent

sections, we used residual resampling [Higuchi, 1997; Liu and Chen, 1998; Whitley, 1994], but note

there are a wide variety of resampling methodologies within the SMC literature (see e.g. Gerber

et al. [2019] for a recent investigation of the properties of many resampling schemes). As remarked

upon in Section 7.1.2.2, due to this normalisation of the particle set weights we can avoid the need

to explicitly compute the constants Φc in (7.19), as they are simply constants which cancel.

We term our Fusion approach Generalised Bayesian Fusion (GBF) and summarise it in Algorithm

7.1.2. To generalise the algorithm further (and make it amenable to a recursive divide-and-conquer

approach), we assume we have access to M importance weighted realisations of each sub-posterior,

{x(c)
0,k, w

(c)
k }

M
k=1 for c ∈ C. To initialise the algorithm, we start by composing M initial weighted

particles by pairing the draws from each sub-posterior {~x(C)
0,k}

M
k=1, and compute the associated (un-

normalised) partial weights {w(C)′
0,k }

M
k=1 where w

(C)′
0,k :=

(∏
c∈C w

(c)
k

)
· ρ0(~x

(C)
0,k) for k = 1, . . . ,M . If

we have M 6= N , we resample to obtain N samples from each sub-posterior, otherwise, we choose

to only resample if the ESS is below some user-specified threshold. In general, for the Input step of

Algorithm 7.1.2, we may have access to different numbers of samples from each sub-posterior: say

Mc importance weighted samples for sub-posterior fc (for c ∈ C). For our simulations, if Mc = M

for c ∈ C, we simply pair the sub-posterior draws index-wise. This is a basic merging strategy of

the sub-posterior realisations and has the advantage that it can be implemented in O(M) cost (and

if Mc 6= M for every c ∈ C one simply sub-sample to obtain a common number of samples from
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each sub-posterior). We found this simple approach to be adequate in our simulations, but note

there are more sophisticated options available described in Lindsten et al. [2017, Section 4.1] (and

see Section 6.1.2 for a more detailed discussion).

Algorithm 7.1.2 gbf(C, {{x(c)
0,i , w

(c)
i }Mi=1,Λc}c∈C , N,P): Generalised Bayesian Fusion (GBF).

1. Initialisation (j = 0):

(a) Input: Importance weighted realisations {x(c)
0,i , w

(c)
i }Mi=1 for c ∈ C := (c1, . . . , c|C|), the

user-specified matrices, {Λc : c ∈ C}, the number of particles required, N , and temporal
partition P := {t0, t1, . . . , tn : 0 =: t0 < t1 < · · · < tn := T}.

(b) Compose the importance weighted realisations {~x(C)
0,k , w

(C)′
0,k }

M
k=1 where w

(C)′
0,k :=(∏

c∈C w
(c)
k

)
· ρ0(~x

(C)
0,k) for k = 1, . . . ,M as per (6.7).

(c) w
(C)
0,k : For k in 1 to M , compute normalised weight w0,k = w

(C)′
0,k /

∑M
k′=1w

(C)′
0,k′ .

(d) gM0 : Set gM0 (d~x
(C)
0 ) :=

∑M
k=1w

(C)
0,k · δ~x(C)

0,k

(d~x
(C)
0 ).

(e) ~x
(C)
0,i : If M 6= N , for i = 1, . . . , N , resample ~x

(C)
0,i ∼ gM0 and reset w

(C)
0,i = 1

N .
2. Iterative updates. For j = 1, . . . , n:

(a) Resample: If the ESS :=

(∑N
i=1w

(C)
j−1,i

2
)−1

breaches the lower user-specified threshold,

then for i = 1, . . . , N , resample ~x
(C)
j−1,i ∼ gNj−1 and reset w

(C)
j−1,i = 1

N .
(b) For i in 1 to N ,

i. ~x
(C)
j,i : Simulate ~x

(C)
j,i ∼ Nd

(
~M

(C)
j,i ,Vj

)
as per Theorem 7.1.2.

ii. w
(C)′
j,i : Compute un-normalised weight w

(C)′
j,i = w

(C)
j−1,i · ρ̃j(~x

(C)
j−1,i, ~x

(C)
j,i ) as per (7.20)

(using Algorithm 7.1.1).

(c) w
(C)
j,i : For i in 1 to N , compute normalised weight w

(C)
j,i = w

(C)′
j,i /

∑N
k′=1w

(C)′
j,k′ .

(d) gNj : Set gNj (d~x
(C)
j ) :=

∑N
i=1w

(C)
j,i · δ~x(C)

j,i

(d~x
(C)
j ).

3. Output:
{
~x

(C)
0,i , . . . , ~x

(C)
n−1,i,y

(C)
i , w

(C)
n,i

}N
i=1

, where f̂ (C)(dy) := gNn (dy) ≈ f (C)(y)dy.

The theory and methodology developed in this section admits the Bayesian Fusion [Dai et al., 2021]

and Generalised Monte Carlo Fusion (GMCF) (see Chapter 6) approaches as a special case and is

established in the following corollaries:

Corollary 7.1.1. Setting Λc = Id for c ∈ C := {1, . . . , C}, where Id is the identity matrix of

dimension d, and applying the approach outlined in Algorithm 7.1.2 recovers the Bayesian Fusion

approach of Dai et al. [2021, Algorithm 1] (also given in Algorithm 5.2.2).

Corollary 7.1.2. Setting P := {0, T} and applying the approach outlined in Algorithm 7.1.2

recovers the Generalised Monte Carlo Fusion approach of Algorithm 6.1.2.

As alluded to in Section 5.2, one of the main reasons why GBF is typically more robust than the

GMCF is that there is more flexibility in the algorithm. We have seen that in the GMCF (and
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MCF (see Section 5.1)) approaches, there is a trade-off when choosing T . In particular, recall with

the MCF, if T is chosen to be small, then the first acceptance probability ρbm (5.8) is smaller,

while the second acceptance probability Qbm (5.9) is going to be larger. In the GMCF approach

where an importance sampling approach is used, this corresponds to having a larger variance in the

normalised importance weights from the initialisation of the algorithm (meaning a low ESS after

the first step of the algorithm), but having smaller variance in the normalised weights in the second

step of the algorithm (hence larger ESS). For larger values of T , then the opposite is true.

A key drawback with MCF and GMCF is that in many practical settings, it is unrealistic to be

able to find the optimal tuning parameter T easily, and even if the optimal T is found, it is not

likely that you will have good performance across the two steps of the algorithms. A particular

case where this is a problem is when combining conflicting (heterogeneous) sub-posteriors. In such

settings, it will be incredibly difficult to find a T which leads to good effective sample size at the

end of the two importance sampling steps in Algorithm 6.1.2 (in a rejection sampling paradigm, we

will have poor acceptance rates at the two accept/reject steps in Algorithm 5.1.3). In contrast, the

BF and GBF approaches introduce a temporal partition of time T , denoted P. This provides the

methods with enough flexibility to ensure there is a good initialisation of the algorithm whilst still

having stable performance during the iterative steps in the algorithm. In particular, it is possible

to make T sufficiently large such that the initial importance weights {ρ0,i}Ni=1 (see Step 1b) have

low variance. Furthermore, we can ensure we have stable importance weights during the iterative

steps of the algorithm by imposing a finer temporal mesh for P. Unfortunately, this comes at the

cost of increasing the number of iterations in the algorithm, n, but the advantage is that we are

able to obtain a more robust algorithm for the fusion problem.

7.2 Divide-and-Conquer Generalised Bayesian Fusion

In Section 6.2, we embedded the Generalised Monte Carlo Fusion (GMCF) approach within a

Divide-and-Conquer Sequential Monte Carlo (D&C-SMC) framework [Lindsten et al., 2017] (see

Section 3.4) and we found this to vastly improve the scalability of the GMCF approach with regards

to increasing number of sub-posteriors to combine (see for instance Section 6.3.2). The key idea

was that since the fundamental goal of the methodology is to approximate f in (1.1), it is possible

to construct a recursive divide-and-conquer approach in which the sub-posteriors are combined

in stages to recover f (as opposed to combining the sub-posterior samples in a single step, i.e.

C := {1, . . . , C}). The notable advantage of appealing to the D&C-SMC framework is that we can

consequently take advantage of the theory and methodologies which have been developed for this

framework. As we noted in Section 3.4, the theoretical properties of D&C-SMC are increasingly-

well characterised (see e.g. Kuntz et al. [2021b]). In this section, we follow the same approach as in

Section 6.2 to incorporate the Generalised Bayesian Fusion (GBF) approach of Section 7.1 within

a D&C-SMC algorithm. Since we have seen how we can do this with GMCF in Section 6.1, in this

section, we will mostly re-define notation which is required to do this for GBF.
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As noted in Section 6.2, we can represent the order by which sub-posteriors are combined by us-

ing tree diagrams, which are termed hierarchies (see e.g. Figure 6.2). In these hierarchies, the

intermediate vertices represent intermediate (auxiliary) densities up to proportionality. The ap-

proximation of the distribution associated with any non-leaf vertex is obtained by an application

of Fusion methodology to the densities of the children of that vertex. In Section 6.2, we focused on

two alternative approaches to the fork-and-join method; namely the balanced-binary tree approach

where we combine two sub-posteriors at a time (illustrated in Figure 6.2a), and the progressive tree

approach whereby sub-posteriors are fused one at a time (illustrated in Figure 6.2b). While these

are two simple tree hierarchies that can be applied, the methodology that we develop in this section

is a general framework which can be used with any such tree.

We again adopt the notation from Section 6.2 to introduce our divide-and-conquer approach. Let

T = (V, E) denote a tree with vertices V and (directed) edge set E . Let Leaf(T) denote the leaves of

the tree (which represent the sub-posteriors that we wish to ultimately unify: f1, . . . , fc), Root(T)

denote the root of the tree (which represents the fusion target density f (1.1)) and Ch(v) denote

the children of vertex v ∈ V where Ch(t) = ∅ if t is a leaf. Let V = {v0, v1, . . . , vC , . . .} be the set

of vertices, with v0 = Root(T), {v1, . . . , vC} = Leaf(T) and as many intermediate vertices as are

required to specify the tree. Furthermore, to directly apply the methodology developed in Section

7.1.2 we define the following notation for non-leaf vertices v /∈ Leaf(T): let Cv := ∪u∈Ch(v)Cu denote

the index set representing the sub-posteriors that we want to unify for vertex v /∈ Leaf(T). In

addition, to simplify the notation and avoid an unnecessary level of subscripts, we index densities

and other quantities by v rather than Cv when it is clear what is intended. In particular, let Λv :=

ΛCv , ~x
(v)
t := ~x

(Cv)
t , x̃

(v)
t := x̃

(Cv)
t , y(v) := y(Cv) where y(v) ∼ fv := f (Cv) for v /∈ Leaf(T). Let WΛv ,j

denote the law of a Brownian bridge {X(v)
t , t ∈ [tj−1, tj ]} with X

(v)
tj−1

:= x
(v)
j−1 and X

(v)
tj

:= x
(v)
j with

covariance Λv for j = 1, . . . , n. The extended target and proposal densities for vertex v /∈ Leaf(T)

are denoted gv := gCv and hv := hCv , respectively. Lastly, the importance sampling weights for

v /∈ Leaf(T) are given by ρ
(v)
0 (~x(v)) := ρ0(~x(Cv)) and ρ

(v)
j (~x(v),y(v)) := ρj(~x

(Cv),y(Cv)) for all j.

From this recursive perspective, sample approximations of auxiliary densities obtained at one level

of any tree are themselves treated as sub-posteriors at the next level up. As such, one can iteratively

apply GBF and work through the levels of the tree from the leaves to the root, using at each stage

the output of one step as the input for the subsequent step. An advantage of our divide-and-

conquer approach is that as fewer sub-posteriors are combined at each stage, we avoid the rapidly

diminishing and variable importance weights as noted in Section 6.2.

As in Section 6.2, we describe the Divide-and-Conquer Generalised Bayesian Fusion (D&C-GBF)

approach by specify an algorithm that is carried out at each vertex v ∈ V which leads to a re-

cursive procedure; an initial call to d&c.gbf(Root(V), . . .) carries out the overall approach. For

v ∈ V, we define a procedure (as given in Algorithm 7.2.1), which returns a weighted particle set

{~x(v)
0,i , . . . , ~x

(v)
n−1,i,y

(v)
i , w

(v)
n,i}Ni=1 where w

(v)
n,i denotes the normalised importance weight of particle i
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for vertex v ∈ V. From this particle set, we can take the marginal weighted samples for y(v) to

approximate the fusion density fv ∝
∏
u∈Ch(v) fu for vertex v ∈ V. Recall that the leaf vertices,

vc for c = 1, . . . , C, represent each of the sub-posteriors. It is straightforwardly possible to addi-

tionally incorporate importance sampling for the leaf vertices but for simplicity we assume that

we have access to unweighted samples for the sub-posteriors. Therefore, at these leaf vertices, we

simply sample from the sub-posteriors. If v is a non-leaf vertex, we simply call Algorithm 7.1.2 by

inputting the importance weighted samples {y(u)
i , w

(u)
i }Ni=1 for u ∈ Ch(v). As we did in Section 6.2,

although the auxiliary distributions are defined on larger spaces, we do not need to retain sampled

values which are not subsequently used; to better manage the memory required to implement our

method, we can choose to retain only returning the weighted particle set {y(v)
i , w

(v)
i }Ni=1 since we

only require this to compute the importance weights in Algorithm 7.1.2 at each vertex v /∈ Leaf(T).

Algorithm 7.2.1 d&c.gbf(v,N,P): Divide-and-Conquer Generalised Bayesian Fusion (D&C-
GBF).

Given: Sub-posteriors, {fu}u∈Leaf(T), and preconditioning matrices {Λu}u∈T.
Input: Node in tree, v, the number of particles N , and (optionally) the temporal mesh partitions
{Pu}u∈Ch(v), Pv.

1. For u ∈ Ch(v),

(a)
{
~x

(u)
0,i , . . . , ~x

(u)
n−1,i,y

(u)
i , w

(u)
n,i

}N
i=1
← d&c.gbf(u,N,Pu).

2. If v ∈ Leaf(T),

(a) For i = 1, . . . , N , sample y
(v)
i ∼ fv(y).

(b) Output: {∅,y(v)
i , 1

N }
N
i=1.

3. If v /∈ Leaf(T),
(a) If Pv is not inputted, apply guidance from Section 7.3.1 and Section 7.3.2.

(b) Output: Call gbf(Ch(v), {{y(u)
i , w

(u)
i }Ni=1,Λu}u∈Ch(v), N,Pv).

Note that in Algorithm 7.2.1, we allow the user to specify different temporal partitions at each

node and level (i.e. {Pu}u∈Ch(v), Pv). As we explore fully in Section 7.3, when we develop guidance

for user chosen tuning parameters, having this flexibility on the temporal partition can lead to a

far more robust and efficient implementation of Algorithm 7.2.1.

7.3 Implementational guidance for Generalised Bayesian Fusion

In this section, we develop guidance for choosing the parameter T and the temporal partition P
(and so n implicitly) for our Generalised Bayesian Fusion (GBF) approach (Algorithm 7.1.2). Note

that this guidance can be used directly at each node within our Divide-and-Conquer Generalised

Bayesian Fusion (D&C-GBF) approach (Algorithm 7.2.1). Since GBF is fundamentally a sequen-

tial Monte Carlo (SMC) algorithm, we want to choose these hyperparameters to ensure that the

discrepancy between subsequent proposals and targets are not degenerate. For this reason, and in

common with Dai et al. [2021, Section 3], we look at the incremental weight changes and study the
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conditional effective sample size (CESS) [Zhou et al., 2016]:

CESSj :=

(∑N
i=1 ρ̃j,i

)2

∑N
i=1 ρ̃

2
j,i

for j = 1, . . . , n; CESS0 :=

(∑N
i=1 ρ0,i

)2

∑N
i=1 ρ

2
0,i

, (7.26)

where ρ0,i and ρ̃j,i are given in (6.7) and (7.20) respectively.

In order to develop heuristics to choose hyperparameters, we consider the idealised setting of

combining multivariate Gaussian sub-posteriors with mean vector ac and covariance matrix b|C|
m Λc,

for some b > 0, for c ∈ C. The target is f ∼ Nd(ã, b|C|m ΛC), where ã :=
(∑

c∈C Λ−1
c

)−1 (∑
c∈C Λ−1

c ac
)

and ΛC :=
(∑

c∈C Λ−1
c

)−1
. For BF, Dai et al. [2021] considered this setting along with Λc = Id

for all c ∈ C. By imposing an additional assumption that the partition was a regular mesh, we

obtain a temporal mesh P. In this section, we instead develop guidance for T (see Section 7.3.1)

in the more sophisticated GBF setting, and then in Section 7.3.2 investigate the more challenging

selection of P without assumption on its regularity (i.e. permitting an irregular, or adaptive, choice

of mesh). As a consequence we instead implicitly find n. It should be noted that the findings in

our work can be directly applied in the BF setting to improve upon that methodology.

In our idealised setting the key consideration is the degree to which the sub-posteriors disagree

with one another. To measure how significantly the sub-posterior conflict, we define

σ2
a :=

1

|C|
∑
c∈C

(ac − ã)ᵀΛ−1
c (ac − ã). (7.27)

We further consider the two following conditions in order to explore how the algorithm hyperpa-

rameters should change according to sub-posterior heterogeneity:

Condition 7.3.1. SH(λ). The sub-posteriors obey the SH(λ) condition (for some λ > 0) if

σ2
a =

b(|C| − 1)λ

m
. (7.28)

This represents a natural condition which arises in many settings, for instance if m
|C| of the data is

randomly allocated to each sub-posteriors then σ2
a ∼ b

mχ
2
|C|−1 and have mean b(|C|−1)

m . For m
|C| large,

then we expect for λ > 1, the sub-posteriors would obey the SH(λ) condition with high probability.

Condition 7.3.2. SSH(γ). The sub-posteriors obey the SSH(γ) condition (for some γ > 0) if

σ2
a = bγ. (7.29)

This represents a setting where the sub-posterior heterogeneity does not decay with data size m.
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Remark 7.3.1. Choice of (b): In the case that {Λc}c∈C are chosen to be the estimated covariance

matrices for each sub-posterior, then we set b = m
|C| , since the sub-posteriors in our idealised setting,

fc ∼ Nd(ac, b|C|m Λc), will have variance which closely matches the sub-posterior variance. In general,

we want to choose b such that b|C|
m Λc is close to the variance of sub-posterior fc for c ∈ C.

We study empirically our choices of tuning parameter in the idealised settings described by the

SH(λ) condition and SSH(γ) condition in Sections 7.4.1–7.4.2 respectively.

7.3.1 Guidance for choosing T

The time horizon T only directly affects the initial weighting given to each of the N particles

through ρ0 in (6.7). Thus, to develop guidance for selecting T , we study CESS0 in (7.26).

Theorem 7.3.1. Let fc ∼ Nd(ac, b|C|m Λc) for c ∈ C, then considering the initial conditional effective

sample size CESS0 we have that as N →∞, the following convergence in probability holds

N−1CESS0
p→ exp

− σ2
a

(
b
m

)(
T
|C| + b

m

)(
T
|C| + 2b

m

)
 ·

1 +

(
|C|b
Tm

)2

1 + 2|C|b
Tm


− (|C|−1)d

2

. (7.30)

Proof. Considering the initial conditional effective sample size, CESS0, we have

N−1CESS0 := N−1


(∑N

i=1 ρ0,i

)2

∑N
i=1 ρ

2
0,i

→ (E[ρ0,i])
2

E[ρ2
0,i]

=

E
[
exp

{
−
∑

c∈C
(x̃

(C)
0 −x

(c)
0 )ᵀΛ−1

c (x̃
(C)
0 −x

(c)
0 )

2T

}]2

E
[
exp

{
−
∑

c∈C
(x̃

(C)
0 −x

(c)
0 )ᵀΛ−1

c (x̃
(C)
0 −x

(c)
0 )

T

}]

=

E
[
e−
|C|σ2
2T

]2

E
[
e−
|C|σ2
T

] , (7.31)

where σ2 := 1
|C|
∑

c∈C(x̃
(C)
0 −x

(c)
0 )ᵀΛ−1

c (x̃
(C)
0 −x

(c)
0 ) where x

(c)
0 ∼ Nd(ac,

b|C|
m Λc). To get an expression

for N−1CESS0, we begin by obtaining the moment generating function (mgf) for σ2. First note

1

|C|
∑
c∈C

(x
(c)
0 − ã)ᵀΛ−1

c (x
(c)
0 − ã) = σ2 +

1

|C|
∑
c∈C

(x̃
(C)
0 − ã)ᵀΛ−1

c (x̃
(C)
0 − ã). (7.32)

Considering the term 1
|C|
∑

c∈C(x
(c)
0 −ã)ᵀΛ−1

c (x
(c)
0 −ã) and letting Yc := Λ

− 1
2

c (x
(c)
0 −ã), then Yc has
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mean Λ
− 1

2
c (ac − ã) and variance b|C|

m Id. Hence
√

m
b|C|Yc has mean

√
m
b|C|Λ

− 1
2

c (ac − ã) and variance

Id, and so let

λ =
∑
c∈C

∥∥∥∥√ m

b|C|
Λ
− 1

2
c (ac − ã)

∥∥∥∥2

=
m

b|C|
∑
c∈C

(ac − ã)ᵀΛ−1
c (ac − ã) =

m

b
σ2
a,

then m
b|C|
∑

c∈C ‖Yc‖
2 ∼ χ2(|C|d, λ) distribution (i.e. m

b|C|
∑

c∈C(x
(c)
0 − ã)ᵀΛ−1

c (x
(c)
0 − ã) has a non-

central χ2(|C|d, λ) distribution) with mgf

M1(s) :=
exp

{
λs

1−2s

}
(1− 2s)

|C|d
2

. (7.33)

Secondly, consider 1
|C|
∑

c∈C(x̃
(C)
0 − ã)ᵀΛ−1

c (x̃
(C)
0 − ã) = 1

|C|(x̃
(C)
0 − ã)ᵀΛ−1

C (x̃
(C)
0 − ã), where Λ−1

C :=∑
c∈C Λ−1

c . Then since x̃
(C)
0 ∼ Nd(ã, b|C|m ΛC), then Z :=

√
m
b|C|Λ

− 1
2 (x̃

(C)
0 − ã) ∼ Nd(0, Id) and so

‖Z‖2 ∼ χ2
d (i.e. m

b|C|
∑

c∈C(x̃
(C)
0 − ã)ᵀΛ−1

c (x̃
(C)
0 − ã) has χ2

d distribution) with mgf

M2(s) := (1− 2s)−
d
2 . (7.34)

From (7.32), we have

σ2 =
b

m

[
m

b|C|
∑
c∈C

(x
(c)
0 − ã)ᵀΛ−1

c (x
(c)
0 − ã)

]
︸ ︷︷ ︸

∼χ2(|C|d,λ)

− b

m

[
m

b|C|
∑
c∈C

(x̃
(C)
0 − ã)ᵀΛ−1

c (x̃
(C)
0 − ã)

]
︸ ︷︷ ︸

∼χ2
d

,

where λ = mσ2
a
b . Therefore, using (7.33) and (7.34), the mgf for σ2 is given by

Mσ2(s) =
M1( sbm)

M2( sbm)
= exp

{
mσ2

as

m− 2sb

}
·
(

1− 2
sb

m

)− (|C|−1)d
2

, where
sb

m
<

1

2
. (7.35)

Given the mgf of σ2, then

N−1CESS0 →
E
[
e−
|C|σ2
2T

]2

E
[
e−
|C|σ2
T

] =
Mσ2

(
− |C|2T

)2

Mσ2

(
− |C|T

)

=

[
exp

{
mσ2

a

(
− |C|

2T

)
m−2

(
− |C|b

2T

)
}
·
(

1− 2
(
− |C|2T

)
b
m

)− (|C|−1)d
2

]2

exp

{
mσ2

a

(
− |C|
T

)
m−2

(
− |C|b

T

)
}
·
(

1− 2
(
− |C|T

)
b
m

)− (|C|−1)d
2
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=

exp

{
−
mσ2

a

(
|C|
T

)
m+

|C|b
T

}
·
(

1 + |C|b
Tm

)−(|C|−1)d

exp

{
−

mσ2
a

(
|C|
T

)
m+2

(
|C|b
T

)
}
·
(

1 + 2
(
|C|b
Tm

))− (|C|−1)d
2

= exp

{
− σ2

a
T
|C| + b

m

}
· exp

{
σ2
a

T
|C| + 2b

m

}
·


(

1 + |C|b
Tm

)2

1 + 2
(
|C|b
Tm

)

− (|C|−1)d

2

= exp

− σ2
a

(
b
m

)(
T
|C| + b

m

)(
T
|C| + 2b

m

)
 ·

1 +

(
|C|b
Tm

)2

1 + 2|C|b
Tm


− (|C|−1)d

2

,

and so Theorem 7.3.1 immediately follows. �

The following corollary considers the effect of T on CESS0 in the SH(λ) and SSH(γ) settings:

Corollary 7.3.1. If for some constant k1 > 0, T is chosen such that T ≥ b|C|3/2k1
m , then the

following lower bounds on CESS0 hold:

(a) If SH(λ) holds for some λ > 0, then

lim
N→∞

N−1CESS0 ≥ exp

{
− λ

k2
1

− d

2k2
1

}
. (7.36)

(b) If SSH(γ) holds for some γ > 0, and T ≥ k2|C|
1
2 for some constant k2 > 0, then

lim
N→∞

N−1CESS0 ≥ exp

{
− bγ

k1k2
− d

2k2
1

}
. (7.37)

Proof. Under Condition 7.3.1, σ2
a = (|C|−1)λ

m < |C|λ
m , so for the first term in (7.30),

exp

− σ2
a

(
b
m

)(
T
|C| + b

m

)(
T
|C| + 2b

m

)
 ≥ exp

{
−σ

2
ab|C|2

T 2m

}

≥ exp

{
−b

2|C|3λ
T 2m2

}
≥ exp

{
− λ

k2
1

}
, (7.38)
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where T ≥ b|C|3/2k1
m for some constant k1 > 0, and for the second term in (7.30), then

1 +

(
|C|b
Tm

)2

1 + 2|C|b
Tm


− (|C|−1)d

2

≥

exp


(
|C|b
Tm

)2

1 + 2|C|b
Tm



− (|C|−1)d

2

= exp

−
(
|C|b
Tm

)2
(|C| − 1)d

2(1 + 2C
Tm)


≥ exp

−
(
|C|3b2
T 2m2

)
d

2


≥ exp

{
− d

2k2
1

}
, (7.39)

with T ≥ b|C|3/2k1
m . Hence, under Condition 7.3.1 and choosing T ≥ b|C|3/2k1

m , combining the bounds

from (7.38) and (7.39) gives (7.36). Under Condition 7.3.2, σ2
a = bγ, if we assume T ≥ b|C|3/2k1

m for

some constant k1 > 0, and T ≥ |C|
1
2k2 for some constant k2 > 0, then(

T

|C|
+

b

m

)(
T

|C|
+

2b

m

)
≥ T 2

|C|2
≥ bk1k2

m
,

and so we have

exp

− σ2
a

(
b
m

)(
T
|C| + b

m

)(
T
|C| + 2b

m

)
 ≥ exp

{
−

b2γ
m

bk1k2
m

}
= exp

{
− bγ

k1k2

}
. (7.40)

Hence, under Condition 7.3.2 and choosing T such that T ≥ b|C|3/2k1
m and T ≥ |C|

1
2k2, we can

combine the bounds from (7.40) and (7.39) to obtain the bound in (7.37). �

To provide a systematic way to choose k1 and k2 (and so determine T ), we must estimate several

quantities: b, a positive constant which ensures b|C|
m Λc closely matches the variance of the sub-

posterior; λ, related to the variance of the sub-posterior means; and σ2
a, which is defined in (7.27)

and is the variance of the sub-posterior means. After obtaining these quantities, we can use Remark

7.3.2 in order to choose k1 and k2.

Remark 7.3.2. Choice of (k1, k2): To choose k1 and k2, we first specify ζ ∈ (0, 1) to be a lower

bound on the initial effective sample size that we would desire. We then can consider which situation

that we are likely to be in, and then:

1. Under SH(λ), suppose we want to ensure N−1CESS0 is above ζ ∈ (0, 1), from (7.36), we have

exp
{
− λ
k21
− d

2k21

}
= ζ, which implies we choose k1 =

√
− (λ+ d

2
)

log(ζ) .
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2. Under SSH(γ), suppose we want to ensure N−1CESS0 is above ζ ∈ (0, 1), then from (7.37),

we have

exp

{
− bγ

k1k2
− d

2k2
1

}
= ζ. (7.41)

Recall that for SSH(γ), we must have T ≥ max
{
b|C|3/2k1

m , |C|
1
2k2

}
. Since we wish T to be

small, we would like k1 and k2 to be small, and thus we set these two terms equal to each

other and find k2 = b|C|k1
m . Substituting into (7.41), we then choose k1 =

√
−( γmC + d

2 )
log(ζ) .

Given k1 and k2, T can be chosen such that T ≥ b|C|3/2k1
m if SH(λ) holds, and T ≥ max

{
b|C|3/2k1

m , |C|
1
2k2

}
if SSH(γ) holds. Typically we want to minimise the number of iterations in Algorithm 7.1.2, so we

choose the smallest T which satisfies the user-specified ζ ∈ (0, 1).

7.3.2 Guidance for choosing P

In this section, we develop guidance for choosing the temporal mesh P by considering the CESS for

the jth iteration of the algorithm (i.e. in the time interval (tj−1, tj ]), then iterating for j = 1, . . . , n.

To simplify the analysis of Algorithm 7.1.2, for which there is considerable flexibility in the choice

of proposal distribution for our unbiased estimator of the importance weights (see Theorem 7.1.3

of Section 7.1.2.2), we assume that we have access to the optimal unbiased estimator. Recall from

Section 4.4.3 that Fearnhead et al. [2008, Theorem 1] (and Dai et al. [2021, Appendix B]) showed

that the variance of the unbiased estimator aj ρ̃j is minimised when p(κc|Rc) ∼ Poi(λc), where

λc :=

[
∆j

∫ tj

tj−1

(
U

(c)
j − φc

(
X

(c)
t

))2
dt

] 1
2

, (7.42)

for c ∈ C. Under the optimal choice, the second moment is finite and E
[
(aj ρ̃j)

2
]
≤ 1 < ∞. In

practice choosing this optimal distribution for K is not possible since the integral in (7.42) cannot

be evaluated directly. This is why in Section 7.1.2.2 we choose alternative simulatable distributions

(as described in Conditions 7.1.1–7.1.2), which try to match this optimal distribution closely. With

this optimal choice, we establish the following theorem:

Theorem 7.3.2. Let p(κc|Rc) in (7.20) be a Poisson distribution with intensity given in (7.42), for

c ∈ C, and k3, k4 be positive constants. If lim∆j→0 is taken over sequences of ∆j := tj − tj−1 → 0

with

tj − tj−1 ≤ ∆̃j := min

{
b2|C|k3

E [νj ]m2
,

(
b2|C|k4

2m2d

) 1
2

}
, (7.43)

where

νj :=
1

|C|
∑
c∈C

(
x

(c)
j−1 − ac

)ᵀ
Λ−1
c

(
x

(c)
j−1 − ac

)
, (7.44)
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and the expectation E[νj ] is taken over ~x
(C)
j−1, we have

lim
∆j→0

lim
N→∞

N−1CESSj ≥ e−k3−k4 , (7.45)

where lim∆j→0 limN→∞N
−1CESSj means convergence in probability.

Proof. As N →∞, we have

N−1CESSj := N−1


(∑N

i=1 ρ̃j,i

)2

∑N
i=1 ρ̃

2
j,i

 =


(
N−1

∑N
i=1 aj ρ̃j,i

)2

N−1
∑N

i=1 (aj ρ̃j,i)
2

→ E [aj ρ̃j ]
2

E
[
(aj ρ̃j)

2
] ,

where aj := exp{
∑

c∈C Φc∆j}. Since aj ρ̃j is an unbiased estimate of ρj (see Theorem 7.1.3), then

E [aj ρ̃j ] =
∏
c∈C

EWΛc,j

(
exp

{
−
∫ tj

tj−1

(
φc

(
X

(c)
t

)
−Φc

)})

= EW̄Λ

(
exp

{
−
∑
c∈C

∫ tj

tj−1

φc

(
X

(c)
t

)})
· aj

where W̄Λ denotes the law of the collection of Brownian bridges {WΛc,j : c ∈ C} for each j. Note

that under the optimal distribution for p(κc|Rc) (a Poisson distribution with intensity given in

(7.42)), then E
[
(aj ρ̃j)

2
]
≤ 1 [Fearnhead et al., 2008; Dai et al., 2021], so

lim
N→∞

N−1CESSj ≥ E [aj ρ̃j ]
2 =

[
EW̄Λ

(
exp

{
−
∑
c∈C

∫ tj

tj−1

φc

(
X

(c)
t

)})]2

· a2
j .

If fc ∼ Nd(ac, b|C|m Λc), then φc(x) = 1
2

((
m
b|C|

)2
(x− ac)ᵀΛ−1

c (x− ac)− md
b|C|

)
which has global

lower bound Φc = −1
2

(
md
b|C|

)
(since the minimum of φc occurs at the mean, ac). Then by considering

small intervals (tj−1, tj) and taking the limit of ∆j := tj − tj−1 → 0, then

lim
∆j→0

lim
N→∞

N−1CESSj

≥ lim
∆j→0

[
E

(
E

{
E

(
exp

{
−
∑
c∈C

∫ tj

tj−1

φc

(
X

(c)
t

)
dt

}∣∣∣∣∣ξj , ~x(C)
j−1

)∣∣∣∣∣~x(C)
j−1

})]2

· a2
j

≥ lim
∆j→0

[
E

(
E

{
E

(
exp

{
−∆j

2

∑
c∈C

(
m

b|C|

)2

(x
(c)
j − ac)

ᵀΛ−1
c (x

(c)
j − ac)

}∣∣∣∣∣ξj , ~x(C)
j−1

)∣∣∣∣∣~x(C)
j−1

})]2

≥

[
E

(
E

{
lim

∆j→0
E

(
exp

{
−∆j

2

∑
c∈C

(
m

b|C|

)2

(x
(c)
j − ac)

ᵀΛ−1
c (x

(c)
j − ac)

}∣∣∣∣∣ξj , ~x(C)
j−1

)∣∣∣∣∣~x(C)
j−1

})]2

,
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(by using a trapezoidal rule approximation of the integral and exploiting the use of small intervals)

where lim∆j→0 and expectations are exchanged using the dominated convergence theorem (as the

exponential term is bounded above by 1 and its expectation exists [Dai et al., 2021, Appendix C]).

From (7.58) in Corollary 7.3.2, we note that x
(c)
j only depends x

(c)
j−1 through ξj and ζ

(c)
j for all

c ∈ C, and we have

x
(c)
j

∣∣∣ξj , ~x(C)
j−1 ∼ Nd

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
,
T − tj
T − tj−1

∆jΛc

)
,

and consequently,(
T − tj
T − tj−1

∆j

)−1∑
c∈C

(x
(c)
j − ac)

ᵀΛ−1
c (x

(c)
j − ac) ∼ χ

2(|C|d, λ′j),

with moment generating function Mj(s) := exp
{

λ′js

1−2s

}
· (1− 2s)−

|C|d
2 , where

λ′j =

(
T − tj
T − tj−1

∆j

)−1∑
c∈C

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
− ac

)ᵀ
Λ−1
c

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
− ac

)
=

(
T − tj
T − tj−1

∆j

)−1

|C|σ2
tj ,

with

σ2
tj :=

1

|C|
∑
c∈C

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
− ac

)ᵀ
Λ−1
c

(
E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
− ac

)
.

Letting s = −1
2

(
m
b|C|

)2 ( T−tj
T−tj−1

)
∆2
j , then

lim
∆j→0

lim
N→∞

N−1CESSj ≥
[
E
(
E
{

lim
∆j→0

exp

{
λ′js

1− 2s

}∣∣∣∣~x(C)
j−1

})]2

· (1− 2s)−|C|d

≥

E
E

 lim
∆j→0

exp

−
1
2

(
m2

b2C

)
σ2
tj∆j

1− 2s


∣∣∣∣∣∣~x(C)
j−1


2

· (1− 2s)−|C|d.

From (7.58), we have

E
[
x

(c)
j

∣∣∣ξj , ~x(C)
j−1

]
=

[
∆2
j

T − tj−1

] 1
2

ξj +
T − tj
T − tj−1

x
(c)
j−1 +

tj − tj−1

T − tj−1
x̃j−1,

and so we have lim∆j→0 σ
2
tj =: νj where νj is given in (7.44). Using Jensen’s inequality, we can get

lim
∆j→0

lim
N→∞

N−1CESSj ≥ lim
∆j→0

exp

−
1
2E [νj ]

(
m2

b2|C|

)
∆j

1− 2s


2

· (1− 2s)−|C|d

142



≥ lim
∆j→0

exp

−E [νj ]
(
m2

b2|C|

)
∆j

1− 2s

 · (1− 2s)−|C|d. (7.46)

Consider the first term in (7.46), then taking the limit ∆j → 0 implies that s → 0, and if ∆j ≤
b2|C|k3
E[νj ]m2 for some k3 > 0, then

exp

−E [νj ]
(
m2

b2|C|

)
∆j

1− 2s

 ≥ exp {−k3} . (7.47)

Similarly for the second term in (7.46), if ∆j ≤
(
b2|C|k4
2m2d

) 1
2
, we have

(1− 2s)−|C|d ≥ exp {4s|C|d}

= exp

{
4|C|d

(
−1

2

(
m

b|C|

)2( T − tj
T − tj−1

)
∆2
j

)}

= exp

{
−2

(
m2

b2|C|

)
d∆2

j

}
≥ exp {−k4} . (7.48)

Combining the bounds in (7.47) and (7.48), and taking the limit ∆j → 0 over sequences of tj −
tj−1 → 0, with (7.43), we arrive at the result given in the theorem. �

Remark 7.3.3. In Theorem 7.3.2, νj (as defined in (7.44)) describes the scaled/weighted average

variation of the |C| trajectories of the distribution of their proposed update locations with respect

to their individual sub-posterior means (i.e. describing how far x
(c)
j−1 is from ac). Since the GBF

approach has |C| trajectories which are initialised from their respective sub-posterior distributions

and coalesce to a common end point, this variation is mainly determined by a combination of:

(i) how large the time horizon T is; (ii) how large the interval we are simulating over for this

iteration (tj−1, tj ]; and (iii) how much the sub-posteriors conflict which we determine by looking at

the variation in their means as per (7.27). Given a weighted particle set from the (j−1)th iteration

of the algorithm, {~x(C)
j−1,i, w

(C)
j−1,i}Ni=1, a natural estimator for E [νj ] is

Ê [νj ] =

N∑
i=1

w
(C)
j−1,i

(
1

|C|
∑
c∈C

(
x

(c)
j−1,i − ac

)ᵀ
Λ−1
c

(
x

(c)
j−1,i − ac

))
. (7.49)

Following Theorem 7.3.2 and Remark 7.3.3 we now have the additional problem of specifying k3

and k4, and using the result to develop practical guidance. We do so by first choosing a lower

bound on the conditional effective sample size that we would tolerate, ζ ′ ∈ (0, 1), and select k3 and

k4 such that e−k3−k4 = ζ ′ and compute tj = min
{
T, tj−1 + ∆̃j

}
recursively at each iteration until

j = n such that tn = T .
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Note that we expect to have very different performance with different choices of k3 and k4. For

instance, we can obtain a very high CESSj by simply choosing k3 very small and setting k4 =

− log(ζ ′) − k3, which ultimately leads to having very small intervals sizes ∆̃j . Choosing small

interval sizes may help computationally simulating ρ̃j , but this comes at the cost of having more

iterations of the algorithm, leading to an increased communication between the cores. Natural

choices for jointly specifying k3 and k4 are ones which lead to the largest interval size which still

satisfies N−1CESSj ≥ ζ ′ ∈ (0, 1), as this minimises the number of iterations in Algorithm 7.1.2.

We now consider the previously introduced regular and irregular (adaptive) mesh selection of

P in Section 7.3.2.1 and Section 7.3.2.2 respectively. As noted in Section 5.2.3, although the

implementational guidance for the (standard) BF approach can be found in Dai et al. [2021, Section

3.2], the guidance developed in this section for choosing T and P also applies to the BF algorithm

(Algorithm 5.2.2) by setting Λc = Id for all c ∈ C = {1, . . . , C}.

7.3.2.1 A regular mesh construction

For algorithmic simplicity and to avoid computing (7.43) at each iteration of Algorithm 7.1.2 to

determine the interval size for iteration j of the algorithm, it is possible to construct a regular

mesh P whereby each interval size is the same for each iteration, i.e. ∆̃j = ∆ for each j = 1, . . . , n

where n = dT/∆e (where dxe denotes the smallest integer greater than or equal to x). This

simplification of regularity was suggested in Dai et al. [2021, Remark 6]. They noted that for

large datasets in which observations were randomly allocated to sub-posteriors, that one would

expect sub-posterior heterogeneity to be small. Hence one would expect E[νj ] to be small (of

O(m−1)). In their simulations in Dai et al. [2021, Section 3 and 4], they set k3 = k4 = 1 and

let ∆ := tj−1 − tj =
√

(b2|C|k4)/(2m2d) for all j. The rationale presented in Dai et al. [2021,

Remark 6] does not hold in generality so in this section, we instead develop a more systematic way

to construct a regular mesh. In particular, setting k3 = k4 as they suggest is sub-optimal.

Given a user specified lower bound on CESSj , ζ
′ ∈ (0, 1), we want to minimise the number of

iterations of Algorithm 7.1.2 Step 2. This is achieved with reference to Theorem 7.3.2 and by

choosing a combination of k3 and k4 such that: (i) exp{−k3 − k4} ≥ ζ ′ (i.e. CESSj for any j does

not violate the chosen ζ ′); and (ii), b2|C|k3
E[νj ]m2 ≥

√
b2|C|k4
2m2d

for each j. The difficulty here is that at each

iteration, we must compute the average variation of the trajectories, E[νj ]. Of course, this is not

possible directly and so an estimate Ê[νj ] is computed as per (7.49). To ensure the chosen ζ ′ is not

violated at any iteration we follow the guidance of (7.43) by taking a supremum over all intervals

of this estimator (i.e. supj Ê[νj ]). This choice allows us to specify k3 and k4 to obtain n and P.

For ease of practical implementation of Algorithm 7.1.2, it is desirable to avoid any recursive

definitions of n and P (i.e. they are specified prior to calling Algorithm 7.1.2 Step 2 where they

are required). In this setting we would need to estimate supj Ê[νj ] based upon only the initial

(weighted) sub-posterior realisations {~x(C)
0,i , w

(C)
0,i }Mi=1 obtained in Algorithm 7.1.2 Step 1b.
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Following Remark 7.3.3, we would expect E[νj ] to be maximised at t = T (corresponding to

(7.51)), but in some instance may also occur at t = 0 (corresponding to (7.52)). In most practical

applications of GBF it will be at t = T as the proposal for the coalescence of the |C| stochastic

processes has a Gaussian distribution with mean x̃
(C)
0 with variance TΛC (as a consequence of

Theorem 7.1.2 and considering s = 0 and t = T ). On the other hand, if the sub-posterior means

are very close together, the largest variation in the trajectories from their respective means could

occur at the start of the bridge. As such, we propose taking the larger of these two scenarios to

arrive at the following approximation:

sup
j

Ê [νj ] ≈ max{Ψ1,Ψ2}, (7.50)

where

Ψ1 :=
M∑
i=1

w
(C)
0,i

1

|C|
∑
c∈C

(
x̃

(C)
0,i − ac

)ᵀ
Λ−1
c

(
x̃

(C)
0,i − ac

)
, (7.51)

Ψ2 :=
M∑
i=1

w
(C)
0,i

1

|C|
∑
c∈C

(
x

(c)
0,i − ac

)ᵀ
Λ−1
c

(
x

(c)
0,i − ac

)
, (7.52)

and where w
(C)
0,i are the initial particle weights given in Algorithm 7.1.2 Step 1b.

Our approximation of supj Ê [νj ] has obvious limitations: it may not be conservative enough to

ensure the user chosen ζ ′ is not breached; and it may be too conservative and lead to choosing n

too high. In practice we have found it to be a robust approximation.

Once we have a suitable estimate of supj Ê [νj ], we need to find a suitable choice for k3 and k4 to

ensure that we always choose the RHS side of (7.43) (as that leads to a regular mesh) and satisfies

ζ ′. As there are many combinations of k3 and k4 which can return a regular mesh, we aim to find

the combination which returns the largest interval size. We can do this by means of the following

proposition which considers the jth interval of the partition:

Proposition 7.3.3. Considering the jth interval of P (i.e. [tj−1, tj ]), given a user-specified thresh-

old ζ ′ ∈ (0, 1) and estimate Ê[νj ] of E[νj ], then the largest interval size which satisfies N−1CESSj ≥
ζ ′ is given by

∆̃j =

√
b2|C|k4,j

2m2d
,

where,

k4,j :=

(
Ê[νj ]

2
m2

2b2|C|d − 2 log(ζ ′)

)
−

√(
2 log(ζ ′)− Ê[νj ]

2
m2

2b2|C|d

)2

− 4 log(ζ ′)2

2
. (7.53)

Proof. Using Theorem 7.3.2, then for iteration j, we want to choose exp{−k3,j−k4,j} = ζ ′ ∈ (0, 1),
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and so k3,j = − log(ζ ′)− k4,j . By substituting this into (7.43), we can choose the mesh size as

∆̃j = min

{
b2|C|[− log(ζ ′)− k4,j ]

E[νj ]m2
,

(
b2|C|k4,j

2m2d

) 1
2

}
, (7.54)

where k4,j < − log(ζ ′) (in order to ensure that k3,j > 0). Here, we want the largest interval which

satisfies N−1CESSj ≥ ζ ′. This corresponds to choosing k4,j with

b2|C|[− log(ζ ′)− k4,j ]

E[νj ]m2
=

(
b2|C|k4,j

2m2d

) 1
2

=⇒ b4|C|2[− log(ζ ′)− k4,j ]
2

E[νj ]2m4
=
b2|C|k4,j

2m2d

=⇒ [− log
(
ζ ′
)
− k4,j ]

2 =
E[νj ]

2m2

2b2|C|d
k4,j

=⇒ log
(
ζ ′
)2

+ 2k4,j log
(
ζ ′
)

+ k2
4,j =

E[νj ]
2m2

2b2|C|d
k4,j

=⇒ k2
4,j +

(
2 log

(
ζ ′
)
− E[νj ]

2m2

2b2|C|d

)
k4,j + log

(
ζ ′
)2

= 0. (7.55)

Applying the quadratic formula to solve (7.55) gives

k4,j =

(
E[νj ]

2m2

2b2|C|d − 2 log(ζ ′)
)
±
√(

2 log(ζ ′)− E[νj ]2m2

2b2|C|d

)2
− 4 log(ζ ′)2

2
.

Note that we have the constraints that 0 < k4,j < − log(ζ ′), and since from (7.55), we have

k2
4,j +

(
2 log

(
ζ ′
)
− E[νj ]

2m2

2b2|C|d

)
k4,j = − log

(
ζ ′
)2
,

then we will always choose the smaller root and arrive at the statement of the theorem. �

Using Proposition 7.3.3, we can substitute our estimate of supj Ê[νj ] into (7.53), and compute the

regular interval size ∆ :=
√

b2|C|k4
2m2d

and n = dT/∆e. In effect, we are setting k4 = supj k4,j . Whilst

choosing k4 < supj k4,j would lead to another regular mesh, we are attempting to find the choice of

k3 and k4 which leads to the largest interval size. This process is summarised in Algorithm 7.3.1.

Algorithm 7.3.1 Computing regular mesh P.

1. Input: Time T > 0 and importance weighted particles {~x(C)
0,i , w

(C)
0,i }Mi=1.

2. Compute estimate of supj Ê[νj ] as per (7.50).
3. Compute k4 using the estimate from Step 2 as per (7.53).

4. Compute ∆ :=
√

b2|C|k4
2m2d

and let n = dT/∆e.
5. For j = 1, . . . , n, let tj = min{T, tj−1 + ∆}.
6. Output: P := {t0, . . . , tn}.
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7.3.2.2 An adaptive mesh construction

While the regular mesh introduced in Section 7.3.2.1 offers the simplicity of choosing the temporal

partition prior to the iterative steps in Algorithm 7.1.2 Step 2, the construction of the regular mesh

essentially computes the worst case scenario of the trajectory variation, and consequently this can

lead to an excessive number of points in P. Specifically, it can be an overly conservative approach

to constructing P. An alternative mesh construction is to have an irregular (or adaptive) mesh

which we outline in this section.

Suppose we are at the beginning of the jth iteration of Algorithm 7.1.2 Step 2, we have in effect

simulated our |C| stochastic processes up to time tj−1 < T . We can now consider the placement of

the next point in the partition, tj , with reference to the user chosen ζ ′ ∈ (0, 1). In particular, we

want the interval to be as large as possible while ensuring that the CESSj does not degrade by more

than ζ ′. To do this we can compute an estimate of E[νj ] as per (7.49) and appeal to Proposition

7.3.3 in order to choose k4,j , and consequently the interval size ∆j for that particular iteration j to

set tj = min{tj−1 + ∆j , T}. Once we reach T we simply halt iterating Algorithm 7.1.2 Step 2.

In contrast to the regular mesh construction in Section 7.3.2.1, we cannot compute the temporal

mesh prior to Algorithm 7.1.2 Step 2. Therefore, the computation of the interval size for iteration

j must be done immediately after Step 2a and prior to Step 2b of Algorithm 7.1.2. In this setting,

the number of steps in Algorithm 7.1.2 (i.e. n) is not known in advance. Given the construction of

the regular mesh assumes the worst case interval in selecting the mesh size, we would expect that

the overall n would be lower in our adaptive approach. Indeed, we show this empirically in our

simulation studies in Section 7.4. We summarise this approach in Algorithm 7.3.2.

Algorithm 7.3.2 Computing adaptive mesh P (computing ∆j at iteration j immediately after
Algorithm 7.1.2 Step 2a).

1. Input: Time T > 0 and importance weighted particles {~x(C)
j−1,i, w

(C)
j−1,i}Ni=1.

2. Compute Ê[νj ] as per (7.49).
3. Compute k4 with the estimate from Step 2 as per (7.53).

4. Compute tj = min

{
T, tj−1 +

√
b2|C|k4
2m2d

}
.

5. Output: ∆j := tj − tj−1.

7.3.3 Practical implementational considerations

One of the main aims of this thesis is to further develop the Fusion methodology so that it can

be applied to a wider range of practical settings. In this chapter, we have outlined theory and

methodology to tackle the general fusion problem of sampling from f (C) by combining samples

from the sub-posteriors fc for c ∈ C, and the implementational guidance provided thus far is for

the general application of GBF methodology. However, in many practical settings there will be

additional constraints which require us to modify Algorithm 7.1.2 appropriately. Examples include
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settings where latency between cores is problematic, or in scenarios where functional evaluations of

the sub-posterior densities fc are not available. In this section, we revisit the practical implemen-

tational considerations outlined by Dai et al. [2021, Section 3.7] for the (standard) BF approach

(also discussed in Section 5.2.3) and generalise them to our setting. To clarify, the implementation

of our methodology in examples presented in Sections 7.4–7.5 do not exploit these modifications.

7.3.3.1 Reducing communication between the cores

For BF, Dai et al. [2021, Section 3.7.1–3.7.2] identified two steps where communication between

cores could be reduced (see Section 5.2.3.2). In particular, it is possible to limit the amount of

communication between cores when initialising the particle set, and also when propagating the

particles in the iterative steps of the algorithm. In a distributed/parallel setting, it is desirable

to reduce the number of communication between cores since there is a latency penalty for each

communication leading to a more computationally expensive algorithm. In this section, we outline

how we can take these ideas from Dai et al. [2021, Section 3.7.1–3.7.2] and apply it in our setting.

In Algorithm 7.1.2 Step 1b, the particles are composed by pairing the sub-posterior draws index-

wise to obtain {~x(C)
0,i }Mi=1 which requires a communication between the cores. To fully initialise

the algorithm, we must assign importance weights to the particles which requires an additional

two communications between the cores; namely a communication back to the individual cores to

provide the weighted mean of the particles x̃0,i, and a communication between the cores to compute

ρ0,i(~x
(C)
0,· ) (since (6.7) can be decomposed into a product of |C| terms corresponding to the individual

contributions from each sub-posterior). Following the approach of Dai et al. [2021, Section 3.7.1],

let θ̃ ∈ Rd be a weighted average of approximate modes (or means) of each sub-posterior. Noting

that this can be computed in a single pre-processing step prior to initialisation, then we can modify

the proposal mechanism for the initial draw to be from the density

f̃c

(
x

(c)
0

)
∝ exp

{
−(x

(c)
0 − θ̃)ᵀΛ−1

c (x
(c)
0 − θ̃)

2T

}
· fc
(
x

(c)
0

)
, (7.56)

then by modifying the algorithm by replacing ρ0 with

%̃0 := exp

{
(x̃

(C)
0 − θ̃)ᵀΛ−1

C (x̃
(C)
0 − θ̃)

2T

}
, (7.57)

where Λ−1
C := (

∑
c∈C Λ−1

c ), we can see that

%̃0

(
~x

(C)
0

)
·
∏
c∈C

f̃c

(
x

(c)
0

)
∝ ρ0

(
~x

(C)
0

)
·
∏
c∈C

fc

(
x

(c)
0

)
.

Since we subsequently re-normalise the importance weights, we do not need to compute any constant

of proportionality for %̃0. Adopting this approach means that we can sample from f̃c on each core
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independently and evaluate the modified importance weight without any further communication

between the cores. This therefore reduces the number of communications required to initialise the

particle set from three (in the original formulation) to two (since this approach does require one

communication to compute θ̃). The modified initialisation is summarised in Algorithm 7.3.3.

Algorithm 7.3.3 Particle set initialisation modification (to replace Algorithm 7.1.2 Step 1b).

1(b) For k in 1 to M ,

(i) ~x
(C)
0,k : For c ∈ C, simulate x

(c)
0,k ∼ f̃c (7.56). Set ~x

(C)
0,k := (x

(c1)
0,k , . . . ,x

(c|C|)

0,k ).

(ii) Compute un-normalised weight w
(C)′
0,k :=

(∏
c∈C w

(c)
k

)
· %̃0(~x

(C)
0,k) as per (7.57).

There is also scope to reduce the number of communications required to propagate the particle

set in Algorithm 7.1.2 Step 2(b)i. To propagate the particles, there is a communication between

the cores in order to compute ~M
(C)
j := ~M

(C)
tj−1,tj

as per (7.11) since this requires the current

position of each of the |C| trajectories. Once we have computed this and propagated the samples,

a further communication back to the cores would be necessary so that each core can compute their

contribution to the ρ̃j importance weight. Alternatively, we can utilise Corollary 7.3.2 so that each

of the |C| processes can propagate their own individual particles to compose ~x
(C)
j .

Corollary 7.3.2. Simulating ~x
(C)
j ∼ Nd

(
~M

(C)
j ,Vj

)
, the required transition from ~x

(C)
j−1 to ~x

(C)
j in

Algorithm 7.1.2 Step 2(b)i, can be expressed as

x
(c)
j =

[
∆2
j

T − tj−1

] 1
2

ξj +

[
T − tj
T − tj−1

∆j

] 1
2

η
(c)
j +M

(c)
j , (7.58)

where ξj ∼ Nd(0,ΛC), η
(c)
j ∼ Nd(0,Λc) and M

(c)
j is the cth sub-vector of ~M

(C)
j given by (7.11).

Proof. From part (a) of Theorem 7.1.2, we have ~x
(C)
j ∼ Nd

(
~M

(C)
j ,Vj

)
where ~M

(C)
j := ~M

(C)
tj−1,tj

is

given by (7.11) and Vj := Vtj−1,tj is given by (7.12). From (7.58), the mean and covariance matrix

of ~x
(C)
j given ~x

(C)
j are also given by ~M

(C)
j and Vj as required. �

Notice that the interaction between the |C| trajectories only occurs through x̃j−1 which can be

computed at the previous iteration, and we can communicate this along with ξj at the same time.

This removes an unnecessary communication between the cores at every iteration, resulting in a

more efficient algorithm if latency is a concern. This approach is presented in Algorithm 7.3.4.

Algorithm 7.3.4 Particle set propagation modification (to replace Algorithm 7.1.2 Step 2(b)i).

2(b)i.

(A) For c ∈ C, simulate x
(c)
j,i |(x̃j−1,i,x

(c)
j−1,i) in (7.58).

(B) Set ~x
(C)
j,i := (x

(c1)
j,i , . . . ,x

(c|C|)

j,i ) and compute x̃
(C)
j,i := (

∑
c∈C Λ−1

c )−1(
∑

c∈C Λ−1
c x

(c)
j,i ).
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7.3.3.2 Alternative methods for updating the particle set weights

In this chapter (and in Chapter 6), we have assumed that we have been able to compute functionals

of each sub-posterior fc for c ∈ C, but as we have noted in Section 5.2.3.3, there are many settings

where it may be impractical or infeasible to do so. This may be case if there is some form of in-

tractability of the sub-posteriors [Andrieu and Roberts, 2009], or if the evaluation of such quantities

is simply too computationally expensive (for instance in large data settings [Pollock et al., 2020;

Bouchard-Côté et al., 2018; Bierkens et al., 2019; Baker et al., 2019; Dai et al., 2021]). In these

settings, we no longer are able to evaluate φc in (6.9) which is necessary to update the particle

weights in the iterative steps of Algorithm 7.1.2. However, we have seen in Section 5.2.3.3, it is

possible to consider alternative unbiased estimators for ρ̃j in Step 2c.

Corollary 7.3.3. [Dai et al., 2021, Corollary 3] The estimator

%̃j

(
~x

(C)
j−1, ~x

(C)
j

)
:=
∏
c∈C

∆κc
j · e−Ū

(c)
X ∆j

κc! · p (κc|Rc)

κc∏
kc=1

(
Ū

(c)
X − φ̃c

(
X

(c)
ξc,kc

)) , (7.59)

where φ̃c is an unbiased estimator of φc and Ū
(c)
j is a constant such that φ̃c(x) ≤ Ū (c)

j for x ∈ Rc.

Proof. This follows directly from Theorem 7.1.3. �

The estimator %̃j in Corollary 7.3.3 can therefore be used as a substitute for ρ̃j in Algorithm 7.1.2

Step 2c. However, we must be careful in constructing %̃j since its introduction typically increases

the variance of the estimator which increases the variance in the weights. In particular, by using

Corollary 7.3.3, the number of expected functional evaluations will change from K to K ′ and so we

must consider the growth in the ratio K ′/K as mc →∞ [Pollock et al., 2020; Dai et al., 2021].

Consider the example setting provided in Dai et al. [2021, Appendix E] and Section 5.2.3.3), where

we have a large number of data points associated to each sub-posterior (i.e we have mc � 1 data

points for core c ∈ C) then computing φc in (6.9) is an expensive O(mc) operation. Assuming that

the sub-posteriors admit a structure with conditional independence and can be factorised as

fc(x) ∝
mc∏
i=1

li,c(x), (7.60)

then we could use the following naive unbiased estimator for φdlc :

φ̃c(x) =
mc

2

(
∇ log lI,c(x

∗)ᵀΛc∇ log lJ,c(x
∗) + Tr

(
Λc∇2 log lI,c(x

∗)
))
, (7.61)

where I, J
iid∼ U{1, . . . ,mc}. Although using such an estimator has the advantage of having O(1)

cost when evaluating, this comes at the cost of an O(mc) inflation in the expected number of
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evaluations when evaluating %̃j over ρ̃j . However, following the approach of Pollock et al. [2020,

Section 4] and Dai et al. [2021, Appendix E], we can choose some suitable control variates and

compute ∇ log fc and ∇2 log fc at points close to either the mode of the sub-posterior, x̂c, or the

mode of the target posterior x̂ (where close means within O(m
− 1

2
c ) of the true respective modes).

Computing these control variates will typically be one-time O(mc) computations. Now let

α̃I,c(x) := n · [∇ log lI,c(x)−∇ log lI,c(x
∗)], (7.62)

H̃I,c(x) := n · [∇2 log lI,c(x)−∇2 log lI,c(x
∗)], (7.63)

then since log fc(x) =
∑mc

i=1 log li,c(x), we have

EA [α̃I,c(x)] = αc(x), EA
[
H̃I,c(x)

]
= Hc(x). (7.64)

where αc(x) := ∇ log fc(x) −∇ log fc(x
∗) and Hc(x) := ∇2 log fc(x) −∇2 log fc(x

∗) and A is the

law of I ∼ U{1, . . . , n}. Noting that φc(x) in (6.9) can be re-expressed as

φc(x) =
1

2
[αc(x)ᵀΛc(2∇ log fc(x

∗) + αc(x)) + Tr(ΛcHc(x))] + C∗, (7.65)

where C∗ := 1
2

(
∇ log fc(x

∗)ᵀΛc∇ log fc(x
∗) + Tr

(
Λc∇2 log fc(x

∗)
))

, then this leads to the following

unbiased estimator for φc:

φ̃c(x) :=
1

2

[
αI,c(x)ᵀ(2∇ log fc(x

∗) + αJ,c(x)) + Tr
(
ΛcH̃I,c(x)

)]
+ C∗, (7.66)

where I, J
iid∼ U{1, . . . ,mc}, i.e. if now we let A be the law of I, J

iid∼ U{1, . . . ,mc}, we have

EA
[
φ̃c(x)

]
= φc(x).

The constants ‖∇ log fc(x
∗)‖2, Tr

(
∇2 log fc(x

∗)
)

can be evaluated at O(mc) cost, but they only

need to be computed once prior to calling Algorithm 7.1.2. The unbiased estimator φ̃c(x) uses only

double draws from {1, . . . ,mc}, although Pollock et al. [2020] notes that it would be possible to

average over multiple draws (sampling from {1, . . . ,mc} with replacement) which could reduce the

variance of the estimator at the cost of increasing the number of data points to evaluate at.

7.4 Simulation studies

In this section, we study empirically the performance of our Fusion algorithms (Sections 7.1 and

7.2), and selection of tuning parameters (T , n and P as discussed in Section 7.3) in our two idealised

key settings—the SH(λ) setting (Condition 7.3.1) and SSH(γ) setting (Condition 7.3.2) described

in Section 7.3. We do this in Sections 7.4.1 and 7.4.2 respectively. For simplicity, here we focus

on BF and GBF, noting that GBF is simply D&C-GBF with a fork-and-join tree hierarchy (as

in Figure 6.1). Note that the earlier BF approach is simply a special case of GBF with Λc = Id
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for c ∈ C, and so comparison with this work is straight-forward. Finally, in Section 7.4.3 we

compare the performance of Fusion methodologies (including D&C-GMCF (of Section 6.2) and

D&C-GBF) with increasing dimensionality. We return in Section 7.5 to consider more substantive

examples using real data. To compare the performance of different approaches we consider their

computational cost (by computing both the computational run-times and the number of iterations

in Algorithm 7.1.2, n, as a proxy for amount of communication between the cores) and Integrated

Absolute Distance (IAD) defined in (6.25).

Throughout this section we use the GPE-2 estimator of ρj as given in Definition 7.1.2 and use the

Trapezoidal rule to estimate the mean γc in (7.23) and set βc = 10 for c ∈ C. Details on how

to find the corresponding scripts to run these experiments is given in Appendix A, and necessary

calculations to implement these examples are given in Appendix B.4.

7.4.1 Sub-posterior Homogeneity

We first study the guidance developed for T and P in Section 7.3 for GBF (Algorithm 7.1.2) in the

SH(λ) setting of Condition 7.3.1. Recall, this is the setting in which we are combining homogeneous

sub-posteriors, and would naturally arise if a dataset was split randomly across several cores. To

study this setting, we consider the idealised scenario of combining C = 10 bivariate Gaussian sub-

posteriors, with a range of data sizes from m = 1000 to m = 40000, which have been randomly

split across the C = 10 cores. In particular, each sub-posterior has mean 0 = (0, 0) and variance

C
mΣ, where Σ =

(
1 ρ

ρ 1

)
with ρ = 0.9. For this example, we apply both BF and GBF with a fixed

particle set size of N = 10000.

To examine the guidance for T and P, we consider the effect of different choices for T and P to

CESS0 and CESSj for j = 1, . . . , n with increasing data size. We consider the four following choices

of T and P:

1. a fixed choice of T and n to obtain P (for GBF, T = 1 and n = 5, and for BF, T = 0.005

and n = 5),

2. using the recommended T from the guidance in Section 7.3.1 and fixed n = 5 to obtain P,

3. using the recommended T and P using a regular mesh (as outlined in Algorithm 7.3.1),

4. using the recommended T and P using a adaptive mesh (as outlined in Algorithm 7.3.2).

In implementing the BF and GBF, we set our lower tolerable bounds for the initial (CESS0) and

the iterative (CESSj) conditional effective sample sizes to be 0.5N (i.e. we set ζ = ζ ′ = 0.5) and

resample if ESS falls below 0.5N . The procedure for obtaining the recommended T and P for each

approach is outlined in Remark 7.4.1.
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Remark 7.4.1. We set the tuning parameters for BF and GBF (for the SH(λ) setting of Section

7.4.1) as follows:

1. Following the guidance outlined in Remark 7.3.2, and with ζ = 0.5, λ = 1 and d = 2, we have

k1 =

√
− (λ+ d

2
)

log(ζ) ≈ 1.7. For GBF, Λc is the estimated covariance matrices for sub-posterior

c = 1, . . . , C, so b = m
C (see Remark 7.3.1), and we choose T = C

1
2k1. For BF, Λc = Id for

c = 1, . . . , C, so we have b = 1 and so we choose T = C3/2k1/m.

2. When using the regular mesh, we use Algorithm 7.3.1 to obtain P. First let ζ ′ = 0.5 then

for GBF we have b = m
C , and so ∆j = ∆ =

√
k4

2Cd for each j, where k4 is computed as per

(7.53) and computing an estimate of the supremum of Ê[νj ] as per (7.50). For BF, b = 1, so

∆j = ∆ =
√

Ck4
2m2d

for each j.

3. When using the adaptive mesh, we use Algorithm 7.3.2 to obtain ∆j recursively at each

iteration to construct P. We let ζ ′ = 0.5 and for GBF (where b = m
C ) we compute tj =

min{T, tj−1 + ∆j} where ∆j =
√

k4
2Cd at each iteration of Algorithm 7.1.2, until we have

tj = T . For the standard BF approach, note that b = 1 so we must compute ∆j =
√

Ck4
2m2d

instead at each iteration.

The conditional effective sample size of the GBF and (standard) BF approaches with increasing

data size in this SH(λ) setting are shown in Figure 7.1. First considering the results from fixing T

and n in Figure 7.1a, we can see that BF lacks robustness with increasing data size. Here CESS0

improves with increasing data size (m), which is due to the sub-posteriors becoming increasingly

similar with m in this idealised scenario. However, as we increase m the fixed choice for T (and

hence the size of the intervals) becomes increasingly inappropriate for the sub-posteriors, which

leads to a degradation in average CESSj . In contrast, GBF incorporates global information about

the sub-posteriors (i.e. the variance of the sub-posteriors), so there is no change in performance

with m. Note there is a trade-off with the choice of T : a small T leads to poor behaviour on

initialisation (i.e. low CESS0), but good behaviour at each iteration (i.e. high average CESSj).

Considering Figure 7.1b, we see that scaling T following the guidance in Section 7.3.1 immediately

stabilises CESS0, although CESSj performance is still poor (n is too small). In Figure 7.1c and

Figure 7.1d, we see that utilising both the guidance for T and the mesh P drastically improves the

performance of both BF and GBF. In both cases GBF outperforms BF: it achieves higher average

CESSj , and the variance of CESSj is lower. Given BF is a special case of GBF, this improvement

can be ascribed to the use of estimated covariance matrices for Λc. In particular, this choice leads

to a lower variance unbiased estimator for ρj , and an improved proposal hbf (7.17) for gbf (7.18).

From Figure 7.1e we see that with BF that without our guidance on T and P, average IAD is

poor, and the variance of the IAD is very large. In contrast, GBF with our guidance is robust
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across the different scenarios. Comparing the regular and adaptive meshes simply using CESS0

and CESSj would imply that the regular mesh is performing better (since it has slightly better

CESSj), however the adaptive mesh is slightly more computationally efficient as shown by having a

smaller mesh size, n, (illustrated in Figure 7.1f) and having a faster algorithm run-time (illustrated

in Figure 7.1g). By looking at the IAD obtained for these approaches, we can see that we are able

to obtain similar performance at a lower cost with the adaptive mesh construction.
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(a) Fixed user-specified T and n.
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(b) Recommended T and fixed n.

7.4.2 Sub-posterior Heterogeneity

Now we study the guidance for T and P for GBF (Algorithm 7.1.2) developed in Section 7.3 in the

SSH(γ) setting of Condition 7.3.2. This represents the setting where sub-posterior heterogeneity

does not decay with data size. Here, we consider the scenario of combining C = 2 bivariate Gaussian

sub-posteriors, fc ∼ N
(
µc,

2
mΣ

)
, where µ1 = −(0.25, 0.25) and µ2 = (0.25, 0.25) and Σ =

(
1 ρ

ρ 1

)
,

with ρ = 0.9. We again consider a range of data sizes, which ranges from m = 250 to m = 2500 and

are randomly split between C = 2 cores. We apply BF and GBF with a fixed particle set size of
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(c) Recommended T and recommended regular mesh P.
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(d) Recommended T and recommended adaptive mesh P.
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(e) Integrated absolute distance: lines connect the mean IAD (averaged over ten runs) while the points
denote the individual IAD achieved on each run.
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Figure 7.1: Bivariate Gaussian example in SH(λ) setting with increasing data size. In Figures 7.1a,
7.1b, 7.1c, 7.1d solid lines denote initial CESS (CESS0), and dotted lines denote averaged CESS in
subsequent iterations ( 1

n

∑n
j=1 CESSj), and crosses denote CESSj for each j = 1, . . . , n.
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N = 10000. In this setting as m increases the sub-posterior heterogeneity increases since the sub-

posteriors have diminishing overlapping support. In BF (where Λ1 = Λ2 = Id) this heterogeneity

is not captured, and σ2
a = 0.125 irrespective of m. By contrast, our generalised approach is able to

capture the heterogeneity with m with the inclusion of the estimated covariance matrices {Λc}c=1,2.

As with the previous example in Section 7.4.1, we will investigate the effect of varying T and P
with m, and its impact upon CESS0 and CESSj . We consider the following choices for T and P:

1. a fixed choice of T and n to obtain P (for GBF, T = 2 and n = 5, and for BF, T = 0.01 and

n = 5),

2. using the recommended T from the guidance in Section 7.3.1 and fixed n = 5 to obtain P,

3. using the recommended T and P using a regular mesh (as outlined in Algorithm 7.3.1),

4. using the recommended T and P using a adaptive mesh (as outlined in Algorithm 7.3.2).

When applying the guidance, we set the lower tolerable bounds on the initial (CESS0) and iterative

(CESSj) conditional effective sample sizes to be 0.5N (i.e. we set ζ = ζ ′ = 0.5) and resample if the

ESS drops below 0.5N . The procedure for obtaining the recommended T and P in each approach

is outlined in Remark 7.4.2.

Remark 7.4.2. We set the tuning parameters for BF and GBF (for the SSH(γ) setting of Section

7.4.2) as follows:

1. We follow the guidance outlined in Remark 7.3.2, noting that ζ = 0.5 and d = 2. For GBF,

Λc=1,2 are the estimated covariance matrices for each of the sub-posteriors, so b = m
C (see

Remark 7.3.1), and γ = mσ2
a/C (where σ2

a is estimated from the sub-posterior samples).

Consequently, we can compute k1 = k2 =
√
−
(γm
C + d

2

)
/ log(ζ), and choose T = C

1
2k1. For

BF, Λc=1,2 = Id, so b = 1 and γ = σ2
a, and so we can compute k1 =

√
−
(γm
C + d

2

)
/ log(ζ)

and k2 = Ck1
m , and choose T = C3/2k1

m = C
1
2k2.

2. When using the regular mesh, we use Algorithm 7.3.1 to obtain P. As ζ ′ = 0.5, we have for

GBF b = m
C , and so ∆j = ∆ =

√
k4

2Cd for each j where k4 is computed as per (7.53) (with

supj Ê[νj ] computed as per (7.50)). For BF we have b = 1, so ∆j = ∆ =
√

Ck4
2m2d

for each j.

3. When using the adaptive mesh, we use Algorithm 7.3.2 to obtain ∆j recursively at each

iteration to construct P. With ζ ′ = 0.5 for the GBF (where b = m
C ) we compute tj =

min{T, tj−1 + ∆j} where ∆j =
√

k4
2Cd at each iteration of Algorithm 7.1.2 until we have

tj = T . For BF with b = 1 we have instead ∆j =
√

Ck4
2m2d

at each iteration.
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CESS for BF and GBF with increasing m in this SSH(γ) setting are shown in Figure 7.2. We can

immediately see that the SSH(γ) setting is much more challenging than the idealised SH(λ) setting

of Section 7.4.1, which is unsurprising as in this case the sub-posteriors are becoming increasingly

mismatched as m increases. In Figure 7.2a, we see that fixing T and n is not ideal for either method.

As shown in Figure 7.2b, there is a positive effect for both BF and GBF in using our recommended

scaling of T in the quality of the initialisation. In Figure 7.2c and Figure 7.2d, where both the

guidance for T and P are implemented, we see a substantial improvement in the performance of

both approaches with respect to CESS, with our new GBF approach outperforming BF.

In Figure 7.2c we see that the use of a regular mesh in choosing P, following our guidance, provides

robust CESSj with low variance. Indeed, it appears to outperform the adaptive mesh approach for P
(see Figure 7.2d). However, as discussed in Section 7.3.2.2, the regular mesh is overly conservative,

and when we factor in the reduced number of iterations required in the adaptive case (Figure 7.2f),

along with the overall reduction in computational cost (Figure 7.2g) for comparable IAD (Figure

7.2e), we see that the use of an adaptive mesh is preferable.
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(a) Fixed user-specified T and n.
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(b) Recommended T and fixed n.
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(c) Recommended T and recommended regular mesh P.
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(e) Integrated absolute distance: lines connect the mean IAD (averaged over ten runs) while the points
denote the individual IAD achieved on each run.
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Figure 7.2: Bivariate Gaussian example in SSH(γ) setting with increasing data size. In Figures
7.2a, 7.2b, 7.2c, 7.2d solid lines denote initial CESS (CESS0), and dotted lines denote averaged
CESS in subsequent iterations ( 1

n

∑n
j=1 CESSj), and crosses denote CESSj for each j = 1, . . . , n.
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7.4.3 Dimension study

In this section, we empirically study the performance of Fusion approaches (BF, GBF, D&C-GMCF

and D&C-GBF) with increasing dimensionality. To do so we consider a d-dimensional multivariate

Gaussian f ∝
∏C
c=1 fc, where we let C = 8 and fc ∼ Nd(0, CΣ), and where

Σii = 1, for all i = 1, . . . , d,

Σij = 0.9, for all i 6= j, (i, j) ∈ {1, . . . , d},

and simply vary d. For BF and GBF we use an adaptive mesh for P, and for D&C-GBF we consider

both a regular and adaptive mesh for P with a balanced-binary tree hierarchy. In all cases we use

the guidance developed in Section 7.3. As we are in the SH(λ) setting (the true sub-posterior means

are the same), we set λ = 1. The lower bounds of the tolerable initial and iterative CESS are set

to 0.05N (i.e. ζ = ζ ′ = 0.05) and we resample if the ESS drops below 0.5N , where N = 10000.
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Figure 7.3: Comparison of Fusion methodologies with increasing dimensionality (in the setting of
Section 7.4.3). In Figure 7.3a, lines connect the mean IAD (averaged over ten runs) while the
points denote the individual IAD achieved on each run.

From Figure 7.3a, the performance of all Fusion methods degrades as we increase the dimensionality

both in terms of the average IAD and also the variance. Since our target exhibits large correlation

between the components, BF (recall this is simply the GBF approach with Λc = Id for all c =

1, . . . , C) struggles even in low dimensions for this particular problem, whereas our generalised

approaches which we have developed in this thesis offer a much better scaling with dimensionality.

D&C-GBF comfortably outperforms existing Fusion approaches for even moderate dimensionality

in terms of IAD and computational cost.
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7.5 Examples

In this section, we consider a number of models applied to a variety datasets, and suppose the

dataset is randomly split into C (disjoint) subsets. We compare (in terms of computational run-

time and IAD) the performance of our Fusion methodologies (GBF, D&C-GMCF and D&C-GBF)

with other established (approximate) methodologies. As a benchmark for the target f we use Stan

[Carpenter et al., 2017] to implement an MCMC sampler for the target posterior distribution using

the full dataset. In implementing Fusion methodologies, we use the GPE-2 variants of Algorithm

2c and Algorithm 7.1.1 as before. Our implementations for GBF and D&C-GBF are as presented

in Sections 7.1 and 7.2, following the guidance presented in Section 7.3 (but without the inclusion

of any adaptions such as those presented in Section 7.3.3). In implementing D&C-GBF we use the

balanced-binary tree hierarchy.

The approximate methodologies we contrast our implementation against are Consensus Monte

Carlo (CMC) [Scott et al., 2016], the kernel density averaging approach of Neiswanger et al. [2014]

(which we term KDEMC ), and the Weierstrass Sampler (WRS) [Wang and Dunson, 2013]. For

full details on where to find the corresponding code/scripts to implement these examples, see

Appendix A. Furthermore, in Appendix B, we supply details of calculations required to implement

all examples found in this section.

7.5.1 Robust regression

In this section, we consider the ‘Combined Cycle Power Plant’ dataset available from the UCI

Machine Learning Repository [Kaya et al., 2012; Tüfekci, 2014]. The dataset comprises m = 9568

records of the net hourly electrical output of a combined cycle power plant over 6 years between

2006 and 2011, together with four (hourly averaged) ambient variables: temperature; ambient-

pressure; relative-humidity; and, exhaust-vacuum.

To model electrical output using the ambient variables, we use a robust regression model:

yi ∼ t(ν,Xiβ, σ), i = 1, . . . , n,

βj′ ∼ N1

(
µβj′ , σ

2
βj′

)
, j′ = 0, . . . , p,

where y ∈ Rn is the dependent variable (electrical output), X ∈ Rn×(p+1) is the design matrix,

β ∈ Rp+1 is the vector of predictor (ambient) variables which we want to perform inference on. For

simplicity, we assume that ν, σ, µj′ and σ2
βj′

for j′ = 0, . . . , p are known.

For our dataset p = 4, and so d = 5. We consider C ∈ {4, 8, 16, 32, 64, 128} cores, each of which is

assigned a random split of the data. We use Stan to sample the sub-posteriors (with µj′ = 0 and

σ2
βj′

= 10C for j′ = 0, . . . , p), which we will attempt to unify as in (1.1). We use the approximate

CMC, KDEMC and WRS approaches to do this, together with our Fusion approaches. For D&C-

162



GMCF, we set T = 1 and N = 100000, whereas for D&C-GBF, we will set N = 10000. We have

a different number of particles N for these two approaches so that the computational cost of each

Fusion method is comparable. In implementing D&C-GBF we set ζ = 0.5, ζ ′ = 0.05, and consider

both the regular and adaptive mesh variants of the temporal partition, P. For each Fusion method,

we resample if ESS falls below 0.5N . The results are presented in Figure 7.4.

Figure 7.4a clearly shows that of all the approaches considered, D&C-GBF provides the highest

quality and most reliable sample approximation for f , and is the most robust to increasing C.

For a comparable computational cost, D&C-GMCF does not perform as well as D&C-GBF and

we can observe a drop in performance for larger C. However, D&C-GMCF is still more scalable

with respect to C over the approximate methods here. Although more computationally intensive,

D&C-GBF has a cost which grows at the same rate as the approximate methodologies considered.

Of the variants of D&C-GBF considered, the adaptive mesh outperforms the regular mesh.
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Figure 7.4: Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian
Fusion (D&C-GBF) applied to a robust regression problem with power plant dataset (in the setting
of Section 7.5.1).

7.5.2 Negative Binomial regression

Here we consider the ‘Bike Sharing’ dataset available on the UCI Machine Learning Repository

[Fanaee-T and Gama, 2014]. The dataset contains m = 17379 records of the total count of bikes

on rental each hour, together with seven variables: seasonality (a categorical variable with

four levels: spring, summer, autumn, winter); weekend (binary, taking value 1 if a weekend, and

0 if not); holiday; (binary, taking value 1 if a holiday, and 0 if not); rush-hour (binary, taking

value 1 if recorded on a weekday between 7AM-9AM or 4PM-7PM, and 0 if not); weather (binary,

taking value 1 if ‘clear’, and 0 if not); temperature (continuous); and, wind-speed (continuous).

For the purposes of our work, we replaced the variable seasonality with three binary variables

codifying the four levels.
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To model the total count of bikes on rental, we use the following Negative binomial regression

model with Gaussian priors on the regression parameters:

yi ∼ NB(µi, r), where log(µi) = Xiβ, i = 1, . . . , n,

βj′ ∼ N1

(
µβj′ , σ

2
βj′

)
, j′ = 0, . . . , p,

where y ∈ Rn is our total count of bikes on rental, X ∈ Rn×(p+1) is the design matrix, β ∈ Rp+1 is

the vector of predictor variables. For simplicity, r, µβj′ , σ
2
βj′

for j′ = 0, . . . , p are assumed known.

For this dataset p = 9, and so d = 10. As in Section 7.5.1, we split the dataset amongst C ∈
{4, 8, 16, 32, 64, 128} cores, and use Stan with µj′ = 0 and σ2

βj′
= 10C for j′ = 0, . . . , p, to recover

the respective sub-posteriors. To implement D&C-GBF we set N = 10000, ζ = 0.2, ζ ′ = 0.05, and

consider both regular and adaptive mesh variants of P, and resample if the ESS drops below 0.5N .

The results in Figure 7.5 again show that, when contrasted with existing (approximate) approaches,

D&C-GBF provides the most accurate sample approximation, and is robust and consistent with

increasing C.
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Figure 7.5: Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian
Fusion (D&C-GBF) applied to a Negative Binomial regression problem with bike sharing dataset
(in the setting of Section 7.5.2).

7.5.3 Logistic regression

In this section, we consider recovering posterior distribution of a logistic regression model (6.27)

with standard Gaussian priors applied to a number of different datasets. In Section 7.5.3.1, we

revisit the simulated dataset from Section 6.4.1 and in Sections 7.5.3.2 and 7.5.3.3, we consider a

smart grid dataset and NYC airport flight dataset, respectively.
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7.5.3.1 Simulated data

In this example, we revisit the simulated dataset we introduced in Section 6.4.1. Recall, we have a

dataset simulated from a logistic regression model with m = 1000 records and the dimensionality of

the problem is d = 5. To conduct Fusion we first equally split the data between C ∈ {4, 8, 16, 32, 64}
cores and use Stan to sample from the logistic regression model with Gaussian prior distributions

with mean 0 and variance C on each parameter to find a sample approximation of each sub-posterior.

Together with the approximate methodologies, we implemented our D&C-GBF approach with

N = 10000, ζ = 0.2, ζ ′ = 0.05, and both regular and adaptive temporal partition meshes. Here, we

also consider applying Generalised Bayesian Fusion (GBF) (i.e. directly applying Algorithm 7.1.2

with C := {1, . . . , C} which is equivalent to D&C-GBF within a fork-and-join tree hierarchy, as

per Figure 6.1). We again plot the results from Section 6.4.1 and further include the results from

applying our GBF and D&C-GBF methodologies in Figure 7.6.

Considering Figure 7.6a, we see again that D&C-GBF achieves the best sample approximation, and

the quality of the sample approximation is robust to increasing C. Note that our divide-and-conquer

framework offers significant gains, with D&C-GBF outperforming GBF in terms of robustness with

C (even with the same tuning parameter guidance being followed). Compared with D&C-GMCF,

D&C-GBF offers a better IAD performance whilst having a computational cost which looks to

scale better (although it is slightly more expensive for lower number of sub-posteriors). Note that

CMC outperforms all other approximate methodologies, which leaves the practitioner with a clear

decision: if a cheap but approximate methodology is needed use CMC, but if accuracy is the goal

then D&C-GBF should be used.
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Figure 7.6: Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian
Fusion (D&C-GBF) applied to a logistic regression problem with simulated data (in the setting of
Section 7.5.3.1).
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7.5.3.2 Smart grid stability data

We consider the ‘Smart Grid Stability’ dataset available on the Kaggle [Schäfer et al., 2016] which

is a simulated dataset consisting of m = 60000 records of smart grid stability (taking value 1 if

stable, and 0 otherwise). We model this binary outcome with p = 12 predictors (so d = 13). We

again split the dataset equally between C ∈ {4, 8, 16, 32, 64, 128} cores, and use Stan together with

a Gaussian prior distributions with mean 0 and variance C on each of the parameters, to arrive

at our C sub-posteriors. D&C-GBF is implemented using a balanced-binary tree with N = 10000,

ζ = 0.2 and ζ ′ = 0.05. As with previous examples, we also implement CMC, KDEMC and WRS

and compare the performances of each approach. The results are shown in Figure 7.7.

We can see that D&C-GBF achieves the best IAD of all methodologies, and is robust to increasing

number of sub-posteriors C. Comparing to the approximate methods, our Fusion approach comes at

a higher computational cost, but this seems to scale slightly better in this example when compared

to the other methodologies considered.
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Figure 7.7: Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian
Fusion (D&C-GBF) applied to a logistic regression problem with smart grid dataset (in the setting
of Section 7.5.3.2).

7.5.3.3 NYC flights data

Finally, we consider the nycflights13 dataset (available via the nycflights13 R package on

CRAN [Wickham, 2021]). In this study we predict on-time arrival of airplanes, by creating binary

observations for arrival-delay (taking the value 1 if the flight arrived 1 minute or more late, and

0 otherwise). We model this using p = 20 predictor variables (so d = 21). After removing any

entries with NA values, in total the dataset was of size m = 327346. This dataset was split randomly

across C ∈ {4, 8, 16, 32, 64, 128} cores, and we used Stan to find sample approximations of each

sub-posterior (using Gaussian priors with mean 0 and variance C for each parameter). D&C-GBF

was implemented with N = 30000, ζ = 0.2 and ζ ′ = 0.05. The results are shown in Figure 7.8.
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Results for this example are in-line with those earlier: D&C-GBF provides the best sample approx-

imation, is robust to increasing C, but comes at the expense of increased computational cost. In

such large data settings, additional modifications (such as the ones explored in Section 7.3.3) could

be explored for greater scalability. Although approximate methodologies have been specifically

developed to tackle Bayesian big-data problems, here we see that they struggle to recover f even

in this idealised scenario. They additionally (and critically) lack robustness when scaled with C.
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Figure 7.8: Comparison of competing methodologies to Divide-and-Conquer Generalised Bayesian
Fusion (D&C-GBF) applied to a logistic regression problem with nycflights13 dataset (in the
setting of Section 7.5.3.3).

To further compare the methodologies, we consider fixing C = 64 and varying the computational

budget for each method by varying the sample size N in order to study the effect of increased

computation on IAD performance. We observe the performance of each method by computing the

IAD against the same benchmark for the target f that was used above (based upon N = 30000

samples using Stan). Since the IAD of the approximate methodologies typically had large variance,

we run these methods 10 times and take an average as they are relatively inexpensive to run. We

additionally plot the minimum and maximum IAD achieved in the 10 runs as to show the variance

in performance at different sample sizes. To save on computation, we decide to stop performing

replicates of an algorithm approximately at the point when performing the method once would take

over an hour, or if it appears that the average IAD performance of the method is not changing much

with more computation. As such, for CMC and KDEMC, we considered a wide range of sample

sizes N = 500 to N = 200000 but for KDEMC, we only took a range from N = 500 to N = 50000.

For D&C-GBF, we considered N = 500 to N = 30000 which we did not do replicate runs of due

to the computational budget that such experiment would require. However, we expect the error to

decrease with computation as the Monte Carlo error of our methodology should decrease with N .

In Figure 7.9, we plot the IAD performance of each method against the computational run-time

of the algorithms. For CMC and WRS, the average and variance of the IAD decreases with
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Figure 7.9: Integrated absolute distance against computational budget for competing methodologies
to Divide-and-Conquer Generalised Bayesian Fusion (D&C-GBF) applied to a logistic regression
problem with nycflight with fixing C = 64 (in the setting of Section 7.5.3.3).

more computation, but both methods quickly reach a point where IAD no longer decreases. We

additionally plot a pink dashed line which is the minimum mean value IAD achieved for CMC, as

this seems to the point which the IAD of CMC converges to. Neither the average nor the variance

IAD for KDEMC decrease here. Therefore, in this example, CMC offered the best performance

out of the approximate methods at a lower computational cost.

If accuracy is important, we can see that Fusion should be used as each approximate methodologies

reach a point where performance does not increase with greater computation. It is clear in this

instance that if a cheap methodology is needed (possibly due to a lack of computational budget or

lack of time), CMC performs the best, but if accuracy is important, then our D&C-GBF method-

ology should be employed. However, it is important to note that this is a setting which is relatively

favourable to CMC as the problem is not too far from Gaussian in part due to the reasonably large

number of data points on each core, m/64 ≈ 5000, whereas we have seen several instances earlier in

this section where all approximate methodologies performed poorly (e.g. in the small data setting

of Section 7.5.3.1). The disadvantage of using approximate methodologies is needing to understand

the biases being imposed, which can be hard to do in practical settings.
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Chapter 8

Concluding Remarks

The Fusion approach to unifying sub-posteriors into a coherent sample approximation of the pos-

terior (as in (1.1)), offers fundamental advantages over approximation based approaches. In par-

ticular, Fusion avoids having to impose any distributional approximation on the sub-posteriors,

meaning it is more robust to a wider range of models, and circumvents needing to understand the

impact of imposed approximations on the unified posterior. To date, Fusion approaches (such as the

Monte Carlo Fusion (MCF) [Dai et al., 2019] and Bayesian Fusion (BF) [Dai et al., 2021]) have had

impractical computational cost in a number of realistic settings, lacking robustness when consid-

ering: the number of sub-posteriors being unified; when unifying highly correlated sub-posteriors;

the dimensionality of the sub-posteriors; and when considering conflicting sub-posteriors. In this

thesis, we have substantially addressed the practical issues of existing Fusion approaches by means

of a number of theoretical and methodological extensions of the original framework. In particular,

we generalised the MCF and BF approaches in Section 6.1 and Section 7.1 respectively which incor-

porates available global information for each sub-posterior in order to construct more informative

proposals, and through illustrative examples have shown the benefits of doing so (see for instance

Sections 6.3.1, 7.4.1 and 7.4.2).

To address the problem of scalability with number of sub-posteriors, C, we embedded our Fusion

approaches within a Divide-and-Conquer Sequential Monte Carlo (D&C-SMC) framework [Lindsten

et al., 2017; Kuntz et al., 2021b]. We first introduced the Divide-and-Conquer Generalised Monte

Carlo Fusion (D&C-GMCF) approach in Section 6.2, together with a number of tree hierarchies,

which allow the sub-posteriors to be combined in stages to recover the fusion target density f .

As demonstrated in Section 6.3.2, D&C-GMCF is a robust approach to unifying large numbers

of sub-posteriors. Furthermore, as shown in Section 6.3.3, even in the setting of conflicting sub-

posteriors, D&C-GMCF together with tempering and an appropriate hierarchy can result in a

practical Fusion algorithm. In Section 6.4 we applied our D&C-GMCF approach to realistic datasets

and compared its performance with competing approximate methodologies and in all of these
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settings, our implementation of D&C-GMCF offered the best performance in terms of Integrated

Absolute Distance (IAD) to an appropriate benchmark, at a modest computational cost.

Although our D&C-GMCF approach was able to build upon the existing MCF methodology and

can be applied to a wider range of settings, we noted that there are settings where it was difficult to

find an appropriate choice for T in Algorithm 6.2.1. The problem here is when we recursively call

the Generalised Monte Carlo Fusion (GMCF) algorithm in Algorithm 6.2.1, it can be difficult to

find a suitable time T which leads to a sufficiently large effective sample size after both importance

sampling steps. This often occurs when combining sub-posteriors which have little overlapping sup-

port. In Section 6.3.3, we suggested a potential approach to combine conflicting sub-posteriors by

employing a tempering idea but it is not entirely clear how to use this in practice. We subsequently

considered embedding the more practical Generalised Bayesian Fusion (GBF) approach within a

D&C-SMC algorithm to obtain the Divide-and-Conquer Generalised Bayesian Fusion (D&C-GBF)

approach. By using the provided guidance for selecting the hyperparameters T and P required for

the GBF approach in Section 7.3, we saw in Section 7.4.3 that our D&C-GBF approach was the

most scalable Fusion approach to date with regards to dimension. Finally, in Section 7.5, we com-

pared our D&C-GBF approach with a number of Fusion methodologies and found that it offered

best performance in terms of IAD even at a similar computational cost. However, when compared

to existing approximate methodologies, we still saw that our Fusion approaches typically came at

an increased computational cost.

There are a number of interesting avenues for extending the work of this thesis. An immediate

avenue of research is to pursue continued methodological advances of the Fusion methodology to

further reduce the computational cost of the algorithms in order to make it more competitive to

existing approximate approaches. Towards this goal, it would be interesting to adapt the Fu-

sion approach to constraints in practical settings. In particular, one application instance is when

considering a truly distributed ‘big data‘ setting where communication between different cores is

expensive [Scott et al., 2016]. We discussed several practical implementation considerations in Sec-

tion 7.3.3, but proper implementation of these techniques in larger data settings have yet to be

explored. It would be particularly interesting to investigate embedding a sub-sampling approach

within the Fusion algorithms (akin to the approaches of Pollock et al. [2020]; Bouchard-Côté et al.

[2018]; Baker et al. [2019]; Bierkens et al. [2019]). We also note that there is a growing literature

on implementing SMC approaches in parallel and distributed settings (see for instance Doucet and

Lee [2018, Section 7.5.3]; Bolic et al. [2005]; Lee et al. [2010]; Murray et al. [2016]) which may also

be interesting to integrate with our Fusion approaches. Furthermore, as discussed in the introduc-

tion, another particularly promising direction is considering (1.1) under privacy constraints of the

individual sources [Yıldırım and Ermiş, 2019]. In this setting, we may have a number of parties

that wish to combine their distributional analysis on a common parameter space and model but

cannot reveal their distribution or data due to confidentiality. This application could also motivate

variant tree hierarchies for D&C-GBF.
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From a theoretical perspective, current Fusion methodologies only consider sub-posteriors on a

common parameter space. One direction of interest is extending Fusion methodology to combine

sub-posteriors with varying dimension. The Markov Melding framework of Goudie et al. [2019];

Manderson and Goudie [2022] where separate sub-models (potentially of differing dimension) are

fitted to different data sources and then joined, is promising. In this setting, the tree hierarchies

could be defined by the model itself. To mitigate computational robustness of Fusion with increasing

dimension in this setting, it may be possible to further utilise the D&C-SMC methodology in

Lindsten et al. [2017]. Furthermore, when considering the problem of performing Bayesian inference

for large datasets, we have only considered the case where we assume the data is i.i.d., however

there are many models where this is not the case (e.g. in hidden Markov models (HMMs) and with

time series data). Ou et al. [2021] and Wang and Srivastava [2021] are two recent works which look

at divide-and-conquer methods for Bayesian inference with non i.i.d. data. It would be interesting

to explore an extension of the current Fusion methodology to non i.i.d. settings.

From a methodological perspective, it can be argued that the Fusion methodologies can difficult to

implement since it utilises the path-space rejection sampling methodology which we discussed in

Section 4.4. There is much work to do in this area to make Fusion methodologies more accessible by

means of producing a software package which implements much of this machinery. Indeed, the avail-

ability of programs such as BUGS [Gilks et al., 1994], JAGS [Plummer et al., 2003], Stan [Carpenter

et al., 2017] (which we have used a number of times in this thesis) have made standard Markov chain

Monte Carlo samplers available to researchers and are used in many applications. There has also

been some recent work by Corbella et al. [2022] which aims to make algorithms based on Piecewise

Deterministic Markov Processes (PDMPs) more accessible by providing software implementations

which only also only require the functional form of the target density of interest. The latter two

approaches have an embedded Automatic Differentiation (AD) tool (see Baydin et al. [2018] for a

review of such methods) which allows the user to only provide the functional form of the proba-

bility density function of interest. This is of particular importance to Fusion since the algorithms

require the computation of the first and second order derivatives of the log-sub-posteriors, so being

able to circumvent the need to analytically find the derivatives would be helpful for practitioners

who are looking to implement the Fusion algorithms discussed within this thesis. Ideally, to make

Fusion more easily accessible to a wider range of researchers or practitioners, one could envisage

an Automatic Fusion (inspired by the Automatic Zig-Zag algorithm of Corbella et al. [2022]) ap-

proach whereby the user simply needs to provide the sub-posterior densities (potentially along with

sub-posteriors samples) to combine the sub-posterior samples. Note that numerical optimisation

methods to compute bounds of φc (6.9) may also be necessary for such an implementation too.
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Appendix A

Implementational details for examples

In this chapter, we provide details on where to find the code to implement the experiments in

this thesis. All statistical computations found in this thesis were written in R [R Core Team,

2022], C++ and Rcpp [Eddelbuettel, 2013]. Code for the Fusion algorithms discussed in this thesis

(along with documentation) can be found on GitHub at https://github.com/rchan26/DCFusion.

In this package, we provide functions for the Fusion algorithms discussed in Chapters 5, 6 and 7

for the different examples we considered (see Appendix B for the calculations required for these

examples). Furthermore, we have seen that the Fusion methodologies discussed in the thesis rely

on algorithms for simulating sample paths of Brownian bridges, layered Brownian bridges, dif-

fusions, and other related processes (i.e. methods discussed in Chapter 4). Code to implement

algorithms found in Chapter 4 which are necessary for the implementation of Fusion can be found

at https://github.com/rchan26/layeredBB.

To implement the approximate methodologies considered in this thesis (i.e. the methods discussed

in Section 1.2.1), we used existing implementations for them. In particular, Consensus Monte

Carlo [Scott et al., 2016] and the approach of Neiswanger et al. [2014] (which we termed Kernel

Density Estimate Monte Carlo (KDEMC)) are implemented using implementations can be found

the parallelMCMCcombine package in R available from [Miroshnikov and Conlon, 2014]. The

Weierstrass Sampler (WRS) and is implemented using an existing R implementation (which can

be found on GitHub at https://github.com/wwrechard/weierstrass).

To perform posterior (and sub-posterior) sampling for the examples in Sections 6.4 and 7.5, we used

Stan [Carpenter et al., 2017]. Our Stan code for posterior sampling can be found at the following

R packages:

• For the logistic regression example: https://github.com/rchan26/HMCBLR.

• For the robust regression example: https://github.com/rchan26/HMCBRR.
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• For the negative binomial regression example: https://github.com/rchan26/HMCGLMR.

All experiments were ran on a 2021 MacBook Pro (M1 Pro, 14-inch, 16GB RAM) besides the

examples provided in Sections 7.5.3.2 and 7.5.3.3 where these experiments were ran on Microsoft

Azure computing platform using a 64 core Data Science Virtual Machine with 128GB RAM in

order to deal with the larger datasets.

For the remainder of the chapter, we will provide details where the datasets that were used in this

thesis can be found.

A.1 Credit card data example

In Section 6.4.2, we fitted a logistic regression model to the ‘Default of credit card clients’ dataset

available from the UCI Machine Learning Repository [Yeh and Lien, 2009]. This can be found at

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients.

A.2 Power plant data example

In Section 7.5.1, we considered a robust regression example with the ‘Combined Cycle Power Plant’

dataset available from the UCI Machine Learning Repository [Kaya et al., 2012; Tüfekci, 2014] at

https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant.

A.3 Bike sharing data example

In Section 7.5.2, we considered a negative binomial regression example with the ‘Bike Sharing’

dataset available from the UCI Machine Learning Repository [Fanaee-T and Gama, 2014]. This

dataset can be found at https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

and in particular, we used the hourly (hour.csv) recorded dataset from this link.

A.4 Smart grid stability data example

In Section 7.5.3.2, we looked the ‘Smart Grid Stability’ dataset available on the Kaggle [Schäfer

et al., 2016] at https://www.kaggle.com/datasets/pcbreviglieri/smart-grid-stability, and

considered applying a logistic regression model to the data.

A.5 NYC flights data example

In Section 7.5.3.3, we applied a logistic regression model to the nycflights13 dataset. This can be

accessed by installing the nycflights13 [Wickham, 2021] package in R. In this example, we used
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the dataset to create p = 20 predictors (for predicting the binary outcome of the flight arriving late

or not). In particular, we created the following variables:

• dep delayed: binary variable with 1 if flight departed at least 1 minute late, or 0 if not,

• weekday: binary variable with 1 if flight was on a weekday (Monday-Friday), or 0 if not,

• night: binary variable with 1 if flight was at night (8PM-5AM), or 0 if not,

• carrier: categorical variable with 16 categories providing the carrier of the flight (resulting

in 15 binary variables),

• origin: categorical variable with 3 categories providing the origin airport of the flight (re-

sulting in 2 binary variables).
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Appendix B

Calculations for examples

In this chapter, we provide the calculations necessary to implement the Fusion algorithms discussed

in this thesis. In particular, to implement Monte Carlo Fusion [Dai et al., 2019] (see Section 5.1)

or Bayesian Fusion [Dai et al., 2021] (see Section 5.2) we must be able to compute the function

φdlc (5.6). This requires the computation of the first and second order derivatives of the log-sub-

posterior densities. Furthermore, we must be able to compute bounds of φdlc . Similarly, in order to

implement Generalised Monte Carlo Fusion (Section 6.1), Divide-and-Conquer Generalised Monte

Carlo Fusion (Section 6.2), Generalised Bayesian Fusion (Section 7.1) and Divide-and-Conquer

Generalised Bayesian Fusion (Section 7.2), we must be able to compute φc given in (6.9) and

compute its bounds (as per Proposition 6.1.3 or otherwise). As such, we will provide the necessary

calculations to implement the methodology in the various examples throughout this thesis.

B.1 Univariate distribution with light tails

In Section 5.1.3.1, we considered a univariate distribution where the sub-posterior densities were

given by fc(x) = e−
x4

2C . The first and second derivatives of log fc are given by

d log fc(x)

dx
= −2x3

C
,

d2 log fc(x)

dx2
= −6x2

C
,

respectively. We applied Monte Carlo Fusion [Dai et al., 2019] (see Section 5.1) for this example,

hence we must compute φdlc given in (5.6). In one dimension, this is given by

φdlc (x) :=
1

2

((
d log fc(x)

dx

)2

+
d2 log fc(x)

dx2

)
. (B.1)
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Substituting in the first and second derivatives for this example, we arrive at (5.11). To compute

lower and upper bounds, L
(c)
X and U

(c)
X , of φdlc (x) for x ∈ Rc, first note that in one dimension, Rc is

simply an interval [l, u]. We can compute the derivative of φdlc (x) to find that

dφdlc (x)

dx
=

12x5

C2
− 6x

C
.

Setting this to 0, the turning points of φdlc occur at x = 0,−
(
C
2

)1/4
,
(
C
2

)1/4
. To find focal bounds

of φdlc , we must evaluate φdlc at x = l, x = u and any of these turning points if they occur in the

interval [l, u]. We obtain L
(c)
X and U

(c)
X by taking the minimum and maximum value of these points.

B.2 Univariate mixture Gaussian

In Section 5.1.3.2, we considered an example with tempered univariate mixture Gaussian sub-

posterior distributions. In particular, we consider fc(x) ∝ f(x)β :=
(∑K

k=1wk · N1

(
x
∣∣µk, σ2

k

))β
where β ∈ (0, 1), K denotes the number of components in the mixture, µk denotes the mean for

component k, wk denotes the weight for component k and N1(x|µk, σ2
k) denotes the density of a

univariate Normal distribution with mean µk and variance σ2
k for k = 1, . . . ,K. In our example in

Section 5.1.3.2, we had K = 3, where the weights were (0.35, 0.2, 0.45) with means (−3, 2, 0.5) and

variances (1, 1.52, 0.52).

We applied Monte Carlo Fusion [Dai et al., 2019] (see Section 5.1) for this example, hence we must

compute φdlc given in (5.6). Here, since fc(x) ∝ f(x)β, we have a one dimensional example with

φdlc (x) :=
1

2

((
d log fc(x)

dx

)2

+
d2 log fc(x)

dx2

)

=
1

2

((
f ′c(x)

fc(x)

)2

+
fc(x) · f ′′c (x)− f ′c(x)2

f(x)2

)
. (B.2)

We note that the derivatives of fc = f(x)β where are given by

f ′c(x) :=
df(x)β

dx
= βf ′(x) · f(x)β−1,

f ′′c (x) :=
d2f(x)β

dx2
= βf ′′(x) · f(x)β−1 + β(β − 1)f ′(x)2f(x)β−2.

We have

f(x) :=

K∑
k=1

wk · N1

(
x
∣∣µk, σ2

k

)
=

K∑
k=1

wk
1√

2πσ2
k

exp

(
−(x− µk)2

2σ2
k

)
,

so the derivatives of f(x) are simply the weighted sums of derivatives of Gaussian densities, in
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particular:

f ′(x) =
K∑
k=1

wk ·
(
µk − x
σ2
k

)
· N1

(
x
∣∣µk, σ2

k

)
,

f ′′(x) =

K∑
k=1

wk ·
(

(x− µk)2 − σ2
k

σ4
k

)
· N1

(
x
∣∣µk, σ2

k

)
.

We can use these results together to compute φdlc in (B.2). To find upper and lower bounds of φc

conditional on some simulated hypercube Rc(x) := [l, u], we simply employ a numerical optimiser.

In particular, we utilise the optimise function implemented in base in R (although note other

programming languages will have similar numerical optimisation libraries available). This function

searches the interval from l to u (which we input) for a minimum or maximum of the function

and so returns L
(c)
X and U

(c)
X via Brent’s method [Brent, 1973]. Since we are only optimising a

function in one dimension, this is typically fast and accurate. We found this to be sufficient in our

simulations and provided tight bounds for φc.

B.3 Univariate Gaussian

In Sections 6.3.2 and 6.3.3, we considered examples involving combining univariate Gaussian sub-

posteriors, i.e. fc(x) ∝ exp
(
− (x−µc)2

2Cσ2
c

)
. The first and second derivatives of log fc are given by

d log fc(x)

dx
= −(x− µc)

Cσ2
c

,

d2 log fc(x)

dx2
= − 1

Cσ2
c

,

respectively. In these examples, we considered applying Generalised Monte Carlo Fusion (see

Section 6.1) and hence we must compute φc given in (6.9). In one-dimension, this is simply given

by

φc(x) :=
Λc
2

((
d log fc(x)

dx

)2

+
d2 log fc(x)

dx2

)
, (B.3)

where Λc is a scalar. Therefore, the φc function for univariate Gaussian sub-posteriors is given by

φc(x) =
Λc
2

(
(x− µc)2

C2σ4
c

− 1

Cσ2
c

)
. (B.4)

Since φc (B.4) is simply a quadratic with global minimum occuring at x = µc, then to find lower

and upper bounds, L
(c)
X and U

(c)
X , of φc for x ∈ Rc := [l, u], then we can simply evaluate φc at the

corners of our hypercube Rc (i.e. evaluate at x = l and x = u), and if the mean µc ∈ [l, u], then we

also must compute φc at the mean too (since we would simply take L
(c)
X = µc in this case, as this is
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where the global minimum occurs). By taking the minimum and maximum values of these points,

we can obtain L
(c)
X and U

(c)
X .

B.4 Multivariate Gaussian

In Sections 6.3.1, 7.4.1, 7.4.2 and 7.4.3, we considered examples involving combining multivariate

Gaussian sub-posteriors (noting that the first three of these examples, we considered bivariate

Gaussian (d = 2) sub-posteriors). If fc ∼ Nd(µc, CΣc), then

log fc(x) = − 1

2C
(x− µc)ᵀΣ−1

c (x− µc) + constant,

and

∇ log fc(x) = − 1

C
Σ−1
c (x− µc),

∇2 log fc(x) = − 1

C
Σ−1
c .

Then we can use these directly to compute φc in (6.9). As with the univariate Gaussian example

in Appendix B.3, we can follow a similar approach since we have a quadratic in x. In particular,

in each dimension k = 1, . . . , d, given the bounds in Z-space [lk, uk] say where zt,k ∈ [lk, uk] for

t ∈ [0, T ] (or t ∈ [tj−1, tj ] more generally in the BF setting), then the minimum of φc occurs at

either lk, uk or µc,k if µc,k ∈ [lk, uk]. Therefore, in each dimension, we can simply check if the value

of the mean is included in the bound. We collect all permutations of the potential points where

the minimum or maximum can occur in each dimension, evaluate at these points and use these to

find L
(c)
X and U

(c)
X .

B.5 Logistic Regression

In Sections 6.4.1, 6.4.2 and 7.5.3, we considered applying our Fusion methodologies to a logistic

regression example with Gaussian prior distributions for the parameters. In particular, our sub-

posterior densities were given by the posterior for Bayesian logistic regression with Nd(µj , Cσ2
βj

)

prior for βj for j = 0, . . . , p is given by

fc(β) := π(β|y) =

[
n∏
i=1

eXiβ·yi

1 + eXiβ

]
·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

) (B.5)

where X ∈ Rn×(p+1) is the design matrix so Xiβ = β0 + β1Xi1 + · · ·βpXip. The log-posterior is

given by

log fc(β) =
n∑
i=1

[
Xiβ · yi − log

(
1 + eβXi

)]
−

p∑
j=0

(βj − µj)2

2Cσ2
βj

+ constant. (B.6)
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The first derivative of the log-posterior with respect to βk for k = 0, . . . , p, is given by

∂ log fc(β)

∂βk
=

n∑
i=1

[
Xik · yi −

Xike
Xiβ

1 + eXiβ

]
− (βk − µk)

Cσ2
βk

=
n∑
i=1

[
Xik ·

(
yi −

1

1 + e−Xiβ

)]
− (βk − µk)

Cσ2
βk

(B.7)

and the second order derivatives of the log-posterior are given by

∂2 log fc(β)

∂β2
k

= −
n∑
i=1

X2
ike

Xiβ

(1 + eXiβ)2
− 1

Cσ2
βk

, (B.8)

∂2 log fc(β)

∂βk∂βl
= −

n∑
i=1

XikXile
Xiβ

(1 + eXiβ)2
for k 6= l, (B.9)

for k, l = 0, . . . , p. We can use these directly to compute φc given in (6.9).

B.5.1 Computing the bounds of φc

To compute the bounds of φc, we can utilise the bounds provided in Proposition 6.1.3 (or in

(6.11) and (6.12)). To do so, we must be able to compute an upper bound of the matrix norm

Λc∇2 log fc(x) for x ∈ Rc where Rc denotes the simulated layer information, i.e. to compute (6.13)

which occurs in the bounds. While this can be done by computing the matrix norm of the matrix

which bounds the matrix Λc∇2 log fc(x) element-wise, we noted in Section 6.1.2 that it is typically

easier to find bounds on the matrix norm of ∇2 log f
(z)
c (z) where z := Λ

− 1
2

c β, and instead we can

focus on finding a bound in the transformed space, i.e. compute (6.23).

In this logistic regression setting, let z = Λ
− 1

2
c β then the transformed posterior density is given by

f (z)
c (z) = π(β|X,y)|J |, (B.10)

where J = Λ
− 1

2
c is the Jacobian matrix with elements Jij = ∂zi

∂βj
= Λ

− 1
2

c,ij . We have

log f (z)
c (z) = log π(β|X,y) + log |J |. (B.11)

Since β = Λ
1
2
c z, we have

f (z)
c (z) := π(β|X,y) · |Λ−

1
2

c |

=

[
n∏
i=1

eXiβ·yi

1 + eXiβ

]
·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

) · |Λ− 1
2

c |
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=

 n∏
i=1

eXi(Λ
1
2
c z)·yi

1 + eXi(Λ
1
2
c z)

 ·


p∏
j=0

1√
2πCσ2

βj

exp

−
(

(Λ
1
2
c z)j − µj

)2

2Cσ2
βj


 · |Λ− 1

2
c |, (B.12)

so

log f (z)
c (z) =

n∑
i=1

[
Xi(Λ

1
2
c z) · yi − log

(
1 + eXi(Λ

1
2
c z)

)]
−

p∑
j=0

(
(Λ

1
2
c z)j − µj

)2

2Cσ2
βj

+ constant. (B.13)

We first note that since β = Λ
1
2
c z, then βi = (Λ

1
2
c z)i =

∑
k Λ

1
2
ikzk. So we have

∂(XiΛ
1
2
c )z

∂zk
=

∂

∂zk

∑
j

Xijβj

=
∂

∂zk

∑
j

Xij

(∑
k

Λ
1
2
jkzk

)

=
∑
j

XijΛ
1
2
jk

= (XΛ
1
2
c )ik (B.14)

and also we have

∂(Λ
1
2
c z)i

∂zk
=

∂

∂zk

∑
j

Λ
1
2
ijzj = Λ

1
2
ik (B.15)

Using (B.14) and (B.15), then the first derivative of the log-transformed posterior with respect to

βk for k = 0, . . . , p, is given by

∂ log f
(z)
c (z)

∂zk
=

n∑
i=1

[
(XΛ

1
2
c )ik ·

(
yi −

1

1 + e−(XiΛ
1
2
c )z

)]
−

p∑
j=0

Λ
1
2
jk

(
(Λ

1
2
c z)j − µj

)
Cσ2

βj

. (B.16)

Then the second order derivatives are given by

∂2 log f
(z)
c (z)

∂zk∂zl
= −

n∑
i=1

(XΛ
1
2
c )ik(XΛ

1
2
c )ile

(XiΛ
1
2
c )z(

1 + e(XiΛ
1
2
c )z

)2 −
p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

, (B.17)

for k, l = 0, . . . , p.
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To find bounds for φc, we must now try to find bounds on the second derivatives given above

and compute the matrix norm of the matrix made up of these bounds (which ultimately bounds

∇2 log f
(z)
c (z) element-wise). For this example, we can find global and lower bounds of the second

derivatives. Note however, we typically will expect better performance with the local bounds on

PΛc (6.23) (as this will typically lead to the expected number of points we need to evaluate while

performing Poisson thinning, κc, to be lower) despite these bounds being slightly more expensive

to compute in practice.

B.5.1.1 Global bounds of PΛc

We first note that ex

(1+ex)2
≤ 1

4 for all x (and this maximum occurs at x = 0). We can utilise this

to obtain a global bound:

sup

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=
n∑
i=1

|XΛ
1
2
c |ik · |XΛ

1
2
c |il

4
+

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (B.18)

B.5.1.2 Local bounds of PΛc

Local bounds can be obtained if we can find local bounds for

G1(z) :=
e(XiΛ

1
2
c )z(

1 + e(XiΛ
1
2
c )z

)2 , (B.19)

for i = 1, . . . , n. In that case, we have

sup
z∈R(z)

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=
n∑
i=1

[
|XΛ

1
2
c |ik · |XΛ

1
2
c |il · max

z∈R(z)
{G1(z)}

]
+

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (B.20)

To compute maxz∈R(z) {G1(z)}, see Section B.7.1.2 and Algorithm B.7.1 and set r = 1.

B.6 Robust Regression

In Section 7.5.1, we considered a robust regression example (using a student-t distribution) with

Gaussian prior distributions for the parameters. In particular, our sub-posterior densities were

given by the posterior for Bayesian robust regression with Nd(µj , Cσ2
βj

) prior for βj for j = 0, . . . , p

is given by

fc(β) = π(β|X,y) :=

 n∏
i=1

Γ(ν+1
2 )

Γ(ν2 )
√
πνσ

(
1 +

1

ν

(
yi −Xiβ

σ

)2
)−( ν+1

2 )

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·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

) . (B.21)

The log-posterior is given by

log fc(β) = −
(
ν + 1

2

) n∑
i=1

log

(
1 +

1

νσ2
(yi −Xiβ)2

)
−

p∑
j=0

(βj − µj)2

2Cσ2
βj

+ constant. (B.22)

The first derivative of the log-posterior with respect to βk for k = 0, . . . , p is given by

∂ log π(β|X,y)

∂βk
= −

(
ν + 1

2

) n∑
i=1

−2Xik
νσ2 (yi −Xiβ)

1 + 1
νσ2 (yi −Xiβ)2

− (βk − µk)
Cσ2

βk

= (ν + 1)
n∑
i=1

Xik(yi −Xiβ)

νσ2 + (yi −Xiβ)2
− (βk − µk)

Cσ2
βk

, (B.23)

and the second order derivatives of the log-posterior are given by

∂2 log π(β|X,y)

∂β2
k

= (ν + 1)
n∑
i=1

X2
ik

(
(yi −Xiβ)2 − νσ2

)
(νσ2 + (yi −Xiβ)2)2 − 1

Cσ2
βk

, (B.24)

∂2 log π(β|X,y)

∂βk∂βl
= (ν + 1)

n∑
i=1

XikXil

(
(yi −Xiβ)2 − νσ2

)
(νσ2 + (yi −Xiβ)2)2 for k 6= l, (B.25)

for k, l = 0, . . . , p. We can use these derivatives directly to compute φc given in (6.9).

B.6.1 Computing the bounds of φc

Following in the same approach as Section B.5.1, we can compute the bounds of φc (in (6.9)) by

utilising the bounds provided in (6.11) and (6.12). As noted in Section B.5.1, we must be able to

find an upper bound on the matrix norm of ∇2 log f
(z)
c (z) where z := Λ

− 1
2

c β, i.e. compute (6.23).

To do so, we can compute the matrix norm of the matrix which bounds ∇2 log f
(z)
c (z) element-wise.

Now, let z = Λ
− 1

2
c β then f

(z)
c (z) = π(β|X,y)|J |, where J = Λ

− 1
2

c is the Jacobian matrix, so we

have

f (z)
c (z) := π(β|X,y) · |Λ−

1
2

c |

=

 n∏
i=1

Γ(ν+1
2 )

Γ(ν2 )
√
πνσ

1 +
1

ν

yi −Xi(Λ
1
2
c z)

σ

2−( ν+1
2 )

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·


p∏
j=0

1√
2πCσ2

βj

exp

−
(

(Λ
1
2
c z)j − µj

)2

2Cσ2
βj


 · |Λ− 1

2
c |. (B.26)

so

log f (z)
c (z) = −

(
ν + 1

2

) n∑
i=1

log

(
1 +

1

νσ2

(
yi −Xi(Λ

1
2
c z)

)2
)

−
p∑
j=0

(
(Λ

1
2
c z)j − µj

)2

2Cσ2
βj

+ constant. (B.27)

Recall from (B.14) and (B.15), then The first derivative of the log-transformed posterior with

respect to βk for k = 0, . . . , p is given by

∂ log f
(z)
c (z)

∂zk
=

(
ν + 1

2

) n∑
i=1

−2(XΛ
1
2
c )ik

νσ2

(
yi − (XiΛ

1
2
c )z

)
1 + 1

νσ2

(
yi − (XiΛ

1
2
c )z

)2 −
p∑
j=0

Λ
1
2
jk

(
(Λ

1
2
c z)j − µj

)
Cσ2

βj

= (ν + 1)
n∑
i=1

(XΛ
1
2
c )ik

(
yi − (XiΛ

1
2
c )z

)
νσ2 +

(
yi − (XiΛ

1
2
c )z

)2 −
p∑
j=0

Λ
1
2
jk

(
(Λ

1
2
c z)j − µj

)
Cσ2

βj

(B.28)

Then the second order derivatives are given by

∂2 log f
(z)
c (z)

∂zk∂zl
= (ν + 1)

n∑
i=1

(XΛ
1
2
c )ik(XΛ

1
2
c )il

((
yi − (XiΛ

1
2
c )z

)2

− νσ2

)
((

yi − (XiΛ
1
2
c )z

)2

+ νσ2

)2 −
p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

(B.29)

for k, l = 0, . . . , p.

B.6.1.1 Global bounds of PΛc

To compute PΛc for this example, first note that we can write

∂2 log f
(z)
c (z)

∂zk∂zl
= (ν + 1)

n∑
i=1

(XΛ
1
2
c )ik(XΛ

1
2
c )il

[
1

Ei + b
− 2b

(Ei + b)2

]
−

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

, (B.30)
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for k, l = 0, . . . , p, where b = νσ2 and Ei =

(
yi − (XiΛ

1
2
c )z

)2

. Now let

K(Ei) =
1

Ei + b
− 2b

(Ei + b)2
,

then the derivative is given by

K ′(Ei) = − 1

(Ei + b)2
+

4b

(Ei + b)3
.

Setting K ′(Ei) = 0 gives Ei = 3b, and we have K(Ei = 3b) = 1
8b . So the supremum of the second

derivative is given by

sup

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=
(ν + 1)

8νσ2

n∑
i=1

|XΛ
1
2
c |ik · |XΛ

1
2
c |il −

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (B.31)

We can therefore use this to compute PΛc to compute bounds for φc as per (6.11) and (6.12).

B.7 Negative Binomial Regression

In Section 7.5.2, we considered a negative Binomial regression example with Gaussian prior distri-

butions for the parameters. In particular, our sub-posterior densities were given by the posterior

density with Nd(µj , Cσ2
βj

) priors for βj for j = 0, . . . , p, is given by

fc(β) := π(β|X,y)

=

[
n∏
i=1

Γ(yi + r)

yi!Γ(r)

(
µi

µi + r

)yi ( r

µi + r

)r]
·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

)
=

[
n∏
i=1

Γ(yi + r)

yi!Γ(r)

exp(Xiβ · yi) · rr

(exp(Xiβ) + r)yi+r

]
·

 p∏
j=0

1√
2πCσ2

βj

exp

(
−(βj − µj)2

2Cσ2
βj

) (B.32)

The log-posterior is given by

log fc(β) =

n∑
i=1

[Xiβ · yi − (yi + r) log (exp(Xiβ) + r)]−
p∑
j=0

(βj − µj)2

2Cσβj
+ constant. (B.33)

The first order derivative of the log-posterior with respect to βk for k = 0, . . . , p, is given by

∂ log fc(β)

∂βk
=

n∑
i=1

[
Xikyi −

(yi + r)Xik exp(Xiβ)

exp(Xiβ) + r

]
− (βk − µk)

Cσ2
βk

,
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=

n∑
i=1

[
Xik ·

(
yi −

(yi + r) exp(Xiβ)

exp(Xiβ) + r

)]
− (βk − µk)

Cσ2
βk

, (B.34)

and the second order derivatives of the log-posterior are given by

∂2 log fc(β)

∂β2
k

= −
n∑
i=1

(yi + r)rX2
ik exp(Xiβ)

(exp(Xiβ) + r)2 − 1

Cσ2
βk

, (B.35)

∂2 log fc(β)

∂βk∂βl
= −

n∑
i=1

(yi + r)rXikXil exp(Xiβ)

(exp(Xiβ) + r)2 for k 6= l, (B.36)

for k, l = 0, . . . , p. We can use these directly to compute φc given in (6.9).

B.7.1 Computing the bounds of φc

Following in the same approach as Section B.5.1, we can compute the bounds of φc (in (6.9)) by

utilising the bounds provided in (6.11) and (6.12). As noted in Section B.5.1, we must compute

(6.23). To do so, we can compute the matrix norm of the matrix which bounds ∇2 log f
(z)
c (z)

element-wise. We have

f (z)
c (z) := π(β|X,y) · |Λ−

1
2

c |

=


n∏
i=1

Γ(yi + r)

yi!Γ(r)

exp

(
Xi(Λ

1
2
c z) · yi

)
· rr(
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(
Xi(Λ

1
2
c z)

)
+ r

)yi+r


·
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j=0

1√
2πCσ2

βj

exp
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(

(Λ
1
2
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)2

2Cσ2
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
 · |Λ− 1

2
c |, (B.37)

and

log f (z)
c (z) =

n∑
i=1

[
(XiΛ

1
2
c )z · yi − (yi + r) log

(
exp

(
(XiΛ

1
2
c )z

)
+ r

)]

−
p∑
j=0

(
(Λ

1
2
c z)j − µj

)2

2Cσβj
+ constant. (B.38)

Recall from (B.14) and (B.15) that we have ∂(XiΛ
1
2
c )z

∂zk
= (XΛ

1
2
c )ik and ∂(Λ

1
2
c z)i
∂zk

= Λ
1
2
ik. Then first
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derivative of the log-transformed posterior with respect to βk is given by

∂ log f
(z)
c (z)

∂zk
=

n∑
i=1

(XΛ
1
2
c )ik ·

yi − (yi + r) exp
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1
2
c )z

)
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(
(XiΛ

1
2
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+ r
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1
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(
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1
2
c z)j − µj

)
Cσ2
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(B.39)

and the second order derivatives are given by

∂2 log f
(z)
c (z)

∂zk∂zl
= −

n∑
i=1

(yi + r)r(XΛ
1
2
c )ik(XΛ

1
2
c )il exp

(
(XiΛ

1
2
c )z

)
(

exp

(
(XiΛ

1
2
c )z

)
+ r

)2 −
p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (B.40)

To find bounds for rc, we must now try to find bounds on the second derivatives given above

and compute the matrix norm of the matrix made up of these bounds (which ultimately bounds

∇2 log f
(z)
c (z) element-wise). For this example, we can find global and lower bounds of the second

derivatives. Note however, we typically will expect better performance with the local bounds on PΛc

(as this will typically lead to the expected number of points we need to evaluate while performing

Poisson thinning, κc, to be lower) despite these bounds being slightly more expensive to compute

in practice.

B.7.1.1 Global bounds of PΛc

Note that eax

(eax+r)2
≤ 1

4r for all x (where a is some constant), so we can use this to obtain global

bounds on the matrix norm in the transformed space. Note that this maximum occurs at x =
1
a log(r). To find global bounds, we can use

sup

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=

n∑
i=1

(yi + r)r|XΛ
1
2
c |ik · |XΛ

1
2
c |il

4r
+

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (B.41)

B.7.1.2 Local bounds of PΛc

Local bounds can be obtained if we can find local bounds for

Gr(z) :=

exp

(
(XiΛ

1
2
c )z

)
(

exp

(
(XiΛ

1
2
c )z

)
+ r

)2 (B.42)
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for z ∈ R(z) and i = 1, . . . , n. In that case, we have

sup
z∈R(z)

[∣∣∣∣∣∂2 log f
(z)
c (z)

∂zk∂zl

∣∣∣∣∣
]

=
n∑
i=1

[
(yi + r)r|XΛ

1
2
c |ik · |XΛ

1
2
c |il · max

z∈R(z)
{Gr(z)}

]
+

p∑
j=0

Λ
1
2
jkΛ

1
2
jl

Cσ2
βj

. (B.43)

We can obtain bounds for Gr(z) by noting that exp(x)
(r+exp(x))2

≤ 1
4r for all x and this maximum is

attained at x = log(r). Further note that exp(x)
(r+exp(x))2

≤ 1
4r is a uni-modal function (with mode at

x = log(r) as noted). Now let

Fi(z) := (XiΛ
1
2
c )z =

d∑
j=1

(XiΛ
1
2
c )jzj , (B.44)

then let F ↓i := minz∈R(z) Fi(z) and F ↑i := maxz∈R(z) Fi(z) denote the minimum and maximum of

Fi(z) for z ∈ R(z) respectively. Then we note that this can simply be computed in with a linear

cost with d. Now, noting that Fi(z) is linear and exp(x)
(r+exp(x))2

≤ 1
4r is uni-modal, after computing

F ↓i and F ↑i , there are two cases:

1. If we have log(r) ∈ [F ↓i , F
↑
i ], then we know that for this hypercube R(z), we will attain the

maximum 1
4r .

2. If log(r) /∈ [F ↓i , F
↑
i ], then the maximum of Gr(x) occurs at which ever point is the closest to

log(r).

Therefore local bounds can be obtained by minimising and maximising Fi(z) for z ∈ R(z). If this

interval includes log(r), then the local maximum attains the global maximum, otherwise, the local

maximum occurs at either of these intervals (which ever is closer to log(r)).

This method for finding local bounds requires two optimisations of Fi(z), but we note that we can

actually obtain the bounds by only performing one optimisation. In particular, we can evaluate

Fi(z) at any arbitrary value ẑ ∈ R(z) (we can simply take this to be the centre of the hypercube).

If we have Fi(ẑ) > log(r), then we just need only need minimise the function Fi(z), since if we

have F ↓i < log(r), then we know that log(r) ∈ [F ↓i , F
↑
i ], so the global maximum is attained. If

F ↓i > log(r), then the maximum of G(x) just occurs at F ↓i and we can avoid the need to maximise

the function Fi(z). However, if conversely, we evaluate Fi(z) at z = ẑ and we have Fi(ẑ) < log(r),

then we just need to maximise Fi(z) for z ∈ R(z) and apply the inverse of the same trick. To

summarise, in order to find maxz∈R(z) {Gr(z)}, we can apply Algorithm B.7.1.
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Algorithm B.7.1 Computing the local bounds of Gr(z) given in (B.42) for z ∈ R(z).

1. Compute Fi(ẑ) at some arbitrary value ẑ ∈ R(z).
2. If Fi(ẑ) > log(r):

(a) Compute F ↓i := minz∈R(z) Fi(z).

(b) maxz∈R(z)

 exp

(
(XiΛ

1
2
c )z

)
(

exp

(
(XiΛ

1
2
c )z

)
+r

)2

 =


1
4r if F ↓i < log(r),

G(F ↓i ) =
exp

(
F ↓i

)
(

exp
(
F ↓i

)
+r

)2 otherwise.

3. Else (if Fi(ẑ) < log(r)):
(a) Compute maxz∈R(z) Fi(z).

(b) maxz∈R(z)

 exp

(
(XiΛ

1
2
c )z

)
(

exp

(
(XiΛ

1
2
c )z

)
+r

)2

 =


1
4r if F ↑i > log(r),

G(F ↑i ) =
exp

(
F ↑i

)
(

exp
(
F ↑i

)
+r

)2 otherwise.
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Rémi Bardenet, Arnaud Doucet, and Christopher C. Holmes. On Markov chain Monte Carlo

methods for tall data. Journal of Machine Learning Research, 18(47), 2017.

Atilim G. Baydin, Barak A. Pearlmutter, Alexey A. Radul, and Jeffrey M. Siskind. Automatic

Differentiation in Machine Learning: a Survey. Journal of Marchine Learning Research, 18:1–43,

2018.

James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer, New York, 1980.

Alexandros Beskos and Gareth O. Roberts. Exact Simulation of Diffusions. The Annals of Applied

Probability, 15(4):2422–2444, 2005.

Alexandros Beskos, Omiros Papaspiliopoulos, and Gareth O. Roberts. Retrospective exact simula-

tion of diffusion sample paths with applications. Bernoulli, 12(6):1077–1098, 2006a.

190



Alexandros Beskos, Omiros Papaspiliopoulos, Gareth O. Roberts, and Paul Fearnhead. Exact and

computationally efficient likelihood-based estimation for discretely observed diffusion processes

(with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68

(3):333–382, 2006b.

Alexandros Beskos, Omiros Papaspiliopoulos, and Gareth O. Roberts. A Factorisation of Diffu-

sion Measure and Finite Sample Path Constructions. Methodology and Computing in Applied

Probability, 10(1):85–104, 2008.

Alexandros Beskos, Stefano Peluchetti, and Gareth O. Roberts. varepsilon-Strong simulation of

the Brownian path. Bernoulli, 18(4):1223–1248, 2012.

Joris Bierkens, Paul Fearnhead, and Gareth O. Roberts. The Zig-Zag Process and Super-Efficient

Sampling for Bayesian Analysis of Big Data. The Annals of Statistics, 47(3):1288–1320, 2019.

Joris Bierkens, Sebastiano Grazzi, Kengo Kamatani, and Gareth O. Roberts. The Boomerang

Sampler. In International Conference on Machine Learning, pages 908–918. PMLR, 2020.

Fischer Black and Myron Scholes. The Pricing of Options and Corporate Liabilities. The Journal

of Political Economy, 81(3):637–654, 1973.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for Statis-

ticians. Journal of the American statistical Association, 112(518):859–877, 2017.

Miodrag Bolic, Petar M. Djuric, and Sangjin Hong. Resampling algorithms and architectures for

distributed particle filters. IEEE Transactions on Signal Processing, 53(7):2442–2450, 2005.
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