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Longitudinal population-level HIV 
epidemiologic and genomic surveillance 
highlights growing gender disparity of HIV 
transmission in Uganda

HIV incidence in eastern and southern Africa has historically been 
concentrated among girls and women aged 15–24 years. As new cases 
decline with HIV interventions, population-level infection dynamics may 
shift by age and gender. Here, we integrated population-based surveillance 
of 38,749 participants in the Rakai Community Cohort Study and 
longitudinal deep-sequence viral phylogenetics to assess how HIV incidence 
and population groups driving transmission have changed from 2003 to 
2018 in Uganda. We observed 1,117 individuals in the incidence cohort  
and 1,978 individuals in the transmission cohort. HIV viral suppression 
increased more rapidly in women than men, however incidence declined 
more slowly in women than men. We found that age-specific transmission 
flows shifted: whereas HIV transmission to girls and women (aged 15–24 
years) from older men declined by about one-third, transmission to women 
(aged 25–34 years) from men that were 0–6 years older increased by half 
in 2003 to 2018. Based on changes in transmission flows, we estimated 
that closing the gender gap in viral suppression could have reduced 
HIV incidence in women by half in 2018. This study suggests that HIV 
programmes to increase HIV suppression in men are critical to reduce 
incidence in women, close gender gaps in infection burden and improve 
men’s health in Africa.

Despite the widespread availability of human immunodeficiency virus 
(HIV) prevention and treatment interventions, there were 1.5 million 
new HIV infections and 680,000 HIV-associated deaths in 20201. More 
than half of these new cases and deaths were concentrated in the eastern 
and southern regions of the African continent, where incidence rates 
have historically been highest in adolescent girls and young women, 
aged 15–24 years2–5. Although HIV incidence has declined by 43% in east-
ern and southern Africa since 2010, current HIV service programmes 
are failing to reduce new cases rapidly enough to meet United Nations 
health targets for HIV epidemic control1. With rising levels of HIV drug 

resistance6,7 and flatlined global investment in HIV control8, the African 
HIV epidemic has reached a critical inflection point9.

Over the past decade, African HIV control programmes, includ-
ing the US President’s Emergency Plan for AIDS Relief (PEPFAR), have 
focused on expanding treatment coverage in people with HIV and 
reducing HIV infections among adolescent girls and young women10,11. 
However, recent data from Africa indicate that the mean age of infec-
tion is shifting12,13 and incidence rates are declining faster in men than 
in women14,15, suggesting that the age and gender structure of the 
African HIV epidemic is evolving. Here, we integrate 15 years of data on 
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investigate the time trends in infection dynamics and transmission 
networks during mass scale-up of HIV services in Africa1.

Results
HIV incidence is declining faster in men than women
From 23 September 2003 to 22 May 2018, 38,749 participants were 
enrolled in RCCS14. Of these participants, 22,724 tested HIV seronegative 
at first survey, and contributed an estimated 127,217 person-years (PY) 
of follow-up (Fig. 1b, Supplementary Tables 1 and 2). Study participants 
were enrolled following population census, household enumeration 

HIV incidence and onward transmission to show how the drivers of the 
heterosexual African HIV epidemic are changing by age and gender. We 
focus on a study population aged 15 to 49 years with an HIV risk profile 
typical across eastern and southern Africa16,17, living in 36 semi-urban 
and rural agrarian communities that are part of the population-based 
Rakai Community Cohort Study (RCCS) in south-central Uganda18 (Fig. 
1a). We followed individuals in the RCCS who were HIV seronegative 
and documented new infection events. We also deep sequenced HIV 
virus longitudinally from people with viremic HIV. This enabled us to 
infer directed transmission networks across age and gender19,20, and 

Burundi

Kenya

Rwanda

Tanzania

Uganda

Rakai

N

0
2005 2010 2015

5,000

10,000

15,000

20,000

25,000

C
en

su
s-

el
ig

ib
le

 p
op

ul
at

io
n

Women

Men

Round 10

Round 12

Round 14

Round 16

Round 11

Round 13

Round 15

Round 17

Round 18

Participant

Non−participant

c Round 10
Sep 2003−Oct 2004

Round 12
Aug 2006−May 2008

Round 14
Jan 2010−May 2011

Round  16
Jul 2013−Dec 2014

Round 18
Oct 2016−Apr 2018

0

0.5

1.0

1.5

2.0

In
ci

de
nc

e 
ra

te
s

pe
r 1

00
 p

er
so

n−
ye

ar
s

15 20 25 30 35 40 45

0%

2%

4%

6%

C
on

tr
ib

ut
io

n 
to

 in
ci

de
nt

 c
as

es

Age (years)

d

a b

15 20 25 30 35 40 45 15 20 25 30 35 40 45 15 20 25 30 35 40 45 15 20 25 30 35 40 45

15 20 25 30 35 40 45 15 20 25 30 35 40 45 15 20 25 30 35 40 45 15 20 25 30 35 40 45 15 20 25 30 35 40 45

Fig. 1 | Time trends in age-specific HIV incidence rates for men and women in 
Rakai, Uganda. a, Location of RCCS in south-central Uganda. Study outcomes 
are reported for all RCCS communities located inland to Lake Victoria across nine 
survey rounds. b, Number of RCCS participants in the census-eligible population 
of age 15–49 years by survey round. c, Estimated mean HIV incidence rates per 
100 PY of exposure in uninfected individuals (line) by 1-year age band, gender 
(colours) and survey round, along with 95% confidence intervals (ribbon), and 

median age of incident cases (arrowhead). d, Estimated median contribution 
to incidence cases in the study population (line) by 1-year age band, gender 
(colours) and survey round, along with 95% confidence intervals (ribbon). 
Throughout all subfigures, incidence estimates are based on n = 1,117 individuals 
in the incidence cohort. Basemap in a from OpenStreetMap under a Creative 
Commons license CC BY-SA 2.0.
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and informed consent in nine survey rounds of approximately 18 
months’ duration, herein denoted as survey rounds 10–18 (Methods 
and Extended Data Fig. 1).

In total, we observed 1,117 incident HIV infections (Supplementary 
Tables 3 and 4 and Extended Data Fig. 2). Figure 1c shows that incidence 
rates among men in inland communities fell rapidly from 1.05 (95% 
confidence interval (CI) 1.03–1.08) per 100 PY in 2003 (survey round 
10) by 67.8% (66.2–69.2) to 0.34 (0.33–0.35) per 100 PY in 2018 (survey 

round 18), with no substantial shift in the median age of male incident 
infection (blue arrowheads in Fig. 1c). In young women aged 15–24 
years, incidence rates fell similarly rapidly from 1.42 (1.35–1.5) per 
100 PY in 2003 by 74.5% (71.6–77.1) to 0.36 (0.33–0.40) per 100 PY in 
2018. However, among women aged 25–34, declines in HIV incidence 
were substantially slower (from 1.51 (1.45–1.57) per 100 PY in 2003 by 
43.9% (40.5–47.4) to 0.84 (0.80–0.89) per 100 PY in 2018), and similarly 
in women aged 35-49 (from 0.90 (0.85–0.94) per 100 PY in 2003 by 
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Fig. 2 | Time trends in age-specific sources of HIV infections in women and 
men. a, Estimated age distributions of transmitting partners (posterior median: 
line; 95% credible interval: ribbon), along with the median age at transmission 
(posterior median: cross; 95% credible interval: bar). Age contributions sum 
to 100% for each round, summing over men and women. b, Estimated age 
distributions of transmitting partners by 5-year age bracket of infected partners 
(posterior median: thick black bar in boxplots; 50% interquartile range: height 
of box; 80% credible intervals: whiskers in boxplots). The width of the boxplots 
is proportional to the total infections in each recipient group. For reference, 
posterior estimates of the age distributions of sexual contact partners of men and 

women by 5-year age bands in the past 12 months in the same communities are 
shown in dark grey (estimates visualized in the same manner). c, Comparison of 
the age contributions to transmitting partners (colour) to the age contributions 
to men and women with unsuppressed HIV (posterior median: dashed black  
line; 95% credible interval: ribbon), along with median age (posterior median: 
cross; 95% credible interval: bar). Age contributions sum to 100% for men and 
women combined. Throughout all subfigures, transmission flow estimates  
are based on n = 227 heterosexual source–recipient pairs identified among 
n = 1,978 individuals in the transmission cohort and n = 1,117 individuals in the 
incidence cohort.
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37.4% (31.9–42.6) to 0.56 (0.52–0.60) per 100 PY in 2018), resulting in 
a progressive, substantial shift in the median age of infection in women 
from 23.4 (22.6–24.1) in 2003 to 28.2 (27.1–29.2) in 2018 (Fig. 1c,d). 
Progress in reducing HIV incidence thus continues to be substantially 
slower in women14,15, especially among those aged 25 years and above.

The proportion of transmission from men is increasing
To characterize the population transmission flows by age and gen-
der that underly observed shifts in incidence, we deep sequenced 
virus from 1,978 participants with HIV19 (Supplementary Table 5). By 
embedding genomic surveillance into a population-based cohort  
study, deep-sequence sampling coverage was high relative to typical 
pathogen sequencing studies, which is essential for reconstructing 
transmission events20–24. We characterized the phylogenetic ordering 
between multiple viral variants from individuals and estimated the 
direction of transmission with phyloscanner21,25 (Methods). We identi-
fied 236 heterosexual source–recipient pairs that were phylogenetically 
close and exhibited, in combination with data on last negative and first 
positive tests, strongly consistent evidence of the direction of trans-
mission (Methods and Extended Data Fig. 3). We further estimated the 
likely infection date from deep-sequence data26, which enabled us to 
place the source–recipient pairs in calendar time and consider their 
age at the time of infection (Extended Data Fig. 4). Of the 236 hetero-
sexual source–recipient pairs, we retained in total 227 pairs in whom 
transmission was estimated to have occurred during the study period.

Deep-sequence phylogenetics cannot prove direction of transmis-
sion between two persons21, but in aggregate these data are able to cap-
ture heterosexual HIV transmission flows at a population level20,27. We 
estimated population-level transmission flows adjusting for detection 
probabilities with semi-parametric Poisson flow regression models28, 
and under the constraint that the transmission flows needed to closely 
match the age- and gender-specific incidence dynamics shown in  
Fig. 1 (Methods, Extended Data Fig. 5 and Supplementary Table 6). The 
fitted model was consistent with all the available data (Extended Data  
Fig. 6). Figure 2a shows the age profile of the estimated male and female 
sources of infection, such that the male plus the female sources sum to 

100% for each survey round. Overall, we found that the contribution 
of men to onward transmission increased progressively from 57.9% 
(56.2–59.6) in 2003 to 62.8% (60.2–65.2) in 2018, indicating that HIV 
transmission is now more disproportionately driven by men than has 
been the case previously.

Transmissions from men are shifting to older ages
The age profile of the population-level sources of infection character-
izes the major age groups that sustain transmission29. We find that 
the age of transmitting male partners progressively increased from a 
median age of 28.5 (27.1–30.1) years in 2003 to 33.5 (31.0–36.0) years 
in 2018 (Table 1 and Fig. 2a), and this increase in the age of transmit-
ting male partners was largest in transmissions to women aged 20–24 
years (Fig. 2b). By contrast, the median age of female transmitting 
partners remained similar (from 25.0 (23.0–27.0) years in 2003 to 26.0 
(24.0–28.0) years in 2018), corresponding to our earlier observations 
that the age of male incident infections also remained similar during 
the observation period.

Over time, substantially fewer infections occurred in adolescent 
girls and young women aged 15–24 years. In 2003 the largest transmis-
sion flows were to women aged 15–24 years from male partners 0–6 
years older (15.5% (12.3–18.9)) and from male partners more than 6 
years older (16.0% (12.7–19.2); Supplementary Table 7). By 2018, these 
transmission flows declined by approximately one-third, with 8.1% 
(5.6–11.0) to women aged 15–24 years from male partners aged 0–6 
years older, and 12.1% (9.3–15.2) to women aged 15–24 years from male 
partners aged more than 6 years older. In those infections in adolescent 
girls and young women that occurred in 2018, the median age differ-
ence between incident infections in adolescent girls and young women 
and their transmitting male partners was 9.0 (7.0–12.0) years (Fig. 2b 
and Supplementary Table 7), similarly as in a phylogenetic study from 
KwaZulu-Natal in South Africa30. This prompted us to estimate for 
comparison age-specific sexual contact patterns within RCCS com-
munities (Methods and Supplementary Table 8). In 2018, the median 
age difference between adolescent girls and young women and their 
male sexual partners was 3.6 (3.5–3.9) years. Our data thus indicate that 

Table 1 | HIV prevalence, viral suppression, transmission sources and impact of counterfactual interventions focused on 
closing the suppression gap in men by age of male partner, round 18, October 2016 to April 2018

Age HIV 
prevalence in 
men (% in age 
bracket)

Men with HIV 
who have 
unsuppressed 
virus (% in age 
bracket)

Male–female 
difference in the 
proportion of 
individuals with 
HIV who have 
unsuppressed 
virus(difference)

Contribution 
of age group 
to all men with 
unsuppressed 
virus (%)

Contribution 
of age group to 
all transmitting 
male partners 
(%)

Closing half the suppression gap Closing the suppression gap 95-95-95 in men

Contribution 
of age group to 
additional number 
of men with 
unsuppressed 
virus in counter-
factual (%)

Predicted 
reduction in 
incidence 
in women 
in round 18 
(% of actual 
incidence)

Contribution 
of age group to 
additional number 
of men with 
unsuppressed 
virus in counter-
factual (%)

Predicted 
reduction in 
incidence in 
women in round 
18 (% of actual 
incidence)

Contribution of age 
group to additional 
number of men 
with unsuppressed 
virus in counter-
factual (%)

Predicted 
reduction in 
incidence 
in women 
in round 18 
(% of actual 
incidence)

15–19 0.8 73.2 36.8 5.3 1.4 5.3 21.9 5.3 43.7 7.4 72.2

(0.4–1.3) (56.6–86.2) (16.8–54.2) (3.0–8.8) (0.4–3.5) (2.5–8.7) (21.2–22.8) (2.5–8.7) (42.4–45.6) (5.2–9.9) (68.8–74.6)

20–24 2.1 66.5 26.6 9.0 12.7 7.1 24.7 7.1 49.6 12.2 60.4

(1.6–2.7) (55.5–76.6) (14.0–38.2) (6.5–11.8) (7.5–19.2) (3.7–10.9) (23.2–26.2) (3.7–10.9) (46.6–52.7) (9.4–15.6) (55.6–65.0)

25–29 6.2 53.5 23.2 17.9 20.2 15.0 25.1 15.0 50.5 22.7 58.4

(5.2–7.3) (45.3–61.4) (13.7–32.6) (14.6–21.5) (13.8–27.5) (9.1–21.5) (23.9–26.6) (9.1–21.5) (47.9–53.5) (18.2–28.1) (54.0–62.4)

30–34 12.5 39.6 19.2 24.3 19.4 21.3 25.2 21.3 50.7 26.9 58.7

(10.8–14.2) (33.6–45.8) (12.1–26.1) (20.8–28.0) (13.3–27.3) (13.7–27.7) (23.6–27.0) (13.7–27.7) (47.4–54.3) (22.2–31.5) (53.0–64.0)

35–39 16.4 28.9 17.6 21.3 25.8 24.0 26.9 24.0 54.3 18.6 52.9

(14.6–18.2) (23.3–35.0) (11.2–24.3) (17.9–24.8) (18.4–34.9) (16.9–31.1) (24.8–28.7) (16.9–31.1) (49.8–58.1) (13.5–23.6) (46.6–60.0)

40–44 16.8 21.9 14.6 13.8 14.9 17.7 28.3 17.7 57.7 8.3 42.5

(14.8–18.9) (16.3–28.2) (8.5–21.5) (10.6–17.1) (9.2–21.8) (10.9–23.9) (25.8–30.0) (10.9–23.9) (52.4–61.1) (2.6–13.4) (35.2–51.9)

45–49 16.4 19.4 12.2 8.2 4.4 9.6 27.1 9.6 56.1 3.7 40.3

(14.1–19.1) (13.0–27.0) (4.5–20.5) (5.5–11.3) (1.7–8.5) (2.7–15.8) (24.6–29.0) (2.7–15.8) (50.1–59.7) (0.0–8.5) (29.4–55.1)

Total 8.0 33.9 14.8 100 100 100 25.1 100 50.6 100 58.4

(7.4–8.6) (29.7–38.3) (10.0–19.6) (24.2–26.2) (48.6–52.8) (54.9–61.7)
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the main transmission flow into adolescent girls and young women is 
through contacts with considerably older men as compared to their 
typical sexual contacts30,31, and that while this transmission flow has 
weakened overall, it remains the predominant mode of infection in 
adolescent girls and young women.

By 2018, the largest share of transmission flows shifted to women 
aged 25–34 years, from male partners 0–6 years older. In 2003, trans-
missions to women 25–34 years from these transmitting partners 
accounted for 7.7% (6.2–9.3) of all transmissions, and by 2018 the share 
of these flows increased by half to 12.0% (9.1–15.0; Supplementary 
Table 7). We also find that the transmission flows to women aged 35 
years and above increased (Supplementary Table 7, also indicated by 
wider boxplots in Fig. 2b).

Our data suggest further deviations in age-specific transmis-
sion flows from the typical sexual contact patterns within study 
communities. For all women aged 30 years and older, we estimate 
their male transmitting partners were of similar age with a poste-
rior interquartile age range of 30.3–38.0 years in 2018, whereas for 
comparison the typical sexual contact partners of these women were 
older with a posterior interquartile age range of 40.0–42.7 years. 
These findings explain the unexpected age profile of male transmit-
ting partners (Fig. 3c) that concentrates in men aged 25–40 years 
instead of extending to progressively older men (Extended Data  
Fig. 7). Our observations are in line with recent studies from Zambia20 
and South Africa32 that show having a male partner aged 25–40 years 

rather than having an age gap between partners is associated with 
increased transmission risk.

The transmission flows into men remained similar over time  
(Fig. 2b). In 2018, the largest transmission flow was to men aged  
25–34 years from transmitting female partners of similar age that were 
0–6 years older (10.6% (8.9–12.3)).

Gender gaps in viral suppression are increasing
We next placed the reconstructed shifts in transmission dynamics 
into the wider context of rapidly expanding HIV treatment during  
the observation period14. We measured viral load from 2011  
(survey round 15) among almost all participants with HIV33 (Supple-
mentary Table 1 and Extended Data Fig. 8). Following World Health 
Organization (WHO) criteria34, individuals with viral load measure-
ments below 1,000 copies per ml of plasma were considered viremic 
(Methods and Supplementary Table 9). By 2018, we find that the pro-
portion of men and women who were viremic was entirely decoupled 
from HIV prevalence in that while the proportion of women with HIV 
was substantially higher than in men, the proportion of viremic women 
was similar or lower than in men (Fig. 3a). We quantified these trends 
with the male-to-female ratio of the proportion of viremic individu-
als relative to 2003 levels, which has been progressively increasing in 
all age groups (Fig. 3b). This suggests35 that faster rises in female HIV 
suppression could explain in part the faster declines in male incidence 
rates as higher rates of antiretroviral treatment (ART) uptake and virus 
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95% credible interval: error bars). c, Estimated viral suppression rates by 1-year 
age band (x axis) and gender (colour) for survey round 18 (posterior median: 
dots; 95% credible interval: error bars). Throughout all subfigures, estimates are 
based on data from n = 38,749 participants including n = 3,265 participants with 
HIV and with measured viral load. First-time participants were used as proxies of 
individuals who did not participate in the survey.
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suppression in women mean that male partners are less likely to become 
infected, whereas men’s higher rates of unsuppressed virus mean they 
are more likely to transmit to female partners (Extended Data Fig. 9). 
These trends have by 2018 accumulated to a substantial gap in suppres-
sion levels in men compared to women (Table 1 and Fig. 3c).

Men contribute disproportionally to transmission
Combining phylogenetics with the virus suppression data also 
allowed us to compare transmission with population-level infec-
tiousness as measured through viremic individuals (Table 1 and  
Fig. 2c). In 2018, the contribution of men to viremic individuals  
was 49.2% (44.3–54.1). For the same time period, we found that 
the contribution of men to transmission was consistently higher  
(62.8% (60.2–65.2)), indicating that men contribute more to transm-
sission than population viral load suggests. These findings are com-
patible with generally higher viral load in men than women33,36, which 
is expected to lead to higher transmission rates per sex act from men 
than women, heterogeneous contact patterns37, higher biological 
susceptibility of women to HIV infection in heterosexual contacts38,39, 
but also lower susceptibility of men to HIV infection following  
voluntary medical male circumcision40.

Policy implications
It has been previously demonstrated that people with HIV who are on 
ART and maintain suppressed virus do not transmit HIV41,42. On this 
basis, we quantified the effect that closing the gap in male–female 
virus suppression levels could have had on HIV transmission flows. 
Specifically, we parameterized the transmission flow model in terms 
of HIV seronegative individuals who are susceptible to infection and 
individuals with unsuppressed HIV who remain infectious. Thus, we 
were able to use the fitted model to estimate the impact of fewer indi-
viduals with unsuppressed HIV on evolving HIV transmission in coun-
terfactual, modelled intervention scenarios (Methods). We considered 
the impact of three hypothetical scenarios: first, the impact of reduc-
ing by half the gap in the proportion of men with suppressed virus as 
compared to women (‘closing half the suppression gap in men’) at the 
end of the observation period in 2018 (Fig. 3c); second, the impact 
of achieving the same virus suppression levels in men with HIV as in 
women in 2018 (‘closing the suppression gap in men’); and third—for 
reference—achieving the UNAIDS ( Joint United Nations Programme on 
HIV/AIDS) 95-95-95 target that 86% of men (0.95 × 0.95 × 0.95) with HIV 
reach viral suppression in all age groups in 201843. Table 1 and Fig. 4a 
describe the age-specific male counterfactual viral suppression targets 
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Remaining virally unsuppressed in round 18

Modelled counterfactual intervention scenarios
Closing the suppression gap
in men relative to women
Closing half the suppression gap
in men relative to women
95-95-95 in men

Already virally suppressed in round 18

Fig. 4 | Counterfactual modelling scenarios predicting the effect of 
interventions to increase HIV suppression in men on incidence reductions in 
women. a,b, Estimated additional number of men with HIV in the census-eligible 
population in round 18 that already had suppressed virus (light grey), those 
who would have achieved viral suppression in the counterfactual intervention 
scenarios (colour), and those who would have remained with unsuppressed 
virus in the counterfactuals (dark grey) (posterior median: bars; 95% credible 
interval: error bars). c, Reduction in incidence in women of the census-eligible 
population in round 18 under the counterfactual targeted scenarios (posterior 
median: bars; 95% credible interval: error bars). d, Estimated incidence rates 

among women in the census-eligible population in round 18 (black solid line) and 
the counterfactual scenarios (colour), with incidence rates among men in round 
18 shown as reference (black dashed line) (posterior median: lines; 95% credible 
intervals: ribbons). Throughout all subfigures, estimates are based on data from 
n = 15,053 participants in survey round 18, including n = 110 individuals in the 
incidence cohort in round 18, n = 432 individuals with HIV and with measured 
viral load in round 18, and n = 61 heterosexual source–recipient pairs in rounds 
16–18, and information inferred through hierarchical models from all individuals 
in earlier rounds.
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of each scenario, and place these into the context of prevalence, sup-
pression and transmission. Overall, we found slightly older men would 
have reached suppression in the scenarios closing the suppression 
gap as compared to the UNAIDS 95-95-95 scenario. We predict that in 
the UNAIDS 95-95-95 scenario, an additional 172.6 (136.8–210.0) men 
with HIV would have reached viral suppression in 2018 (Fig. 4b) and 
this would have resulted in a 58.4% (54.9–61.7) additional reduction in 
HIV incidence in women in 2018 (Fig. 4c), which is in good agreement 
with the contribution of 95-95-95 interventions to projected incidence 
reductions for all of eastern and southern Africa under the mathemati-
cal models used to inform the global HIV prevention strategy44. In the 
scenario closing half the suppression gap in men, an additional 75.1 
(53.9–96.0) men with HIV would have reached viral suppression in 
2018 and resulted in a 25.1% (24.2–26.2) additional reduction in HIV 
incidence in women in 2018. In the scenario closing the entire sup-
pression gap in men, an additional 150.2 (107.8–193.0) men with HIV 
would have reached viral suppression in 2018 and resulted in a 50.6% 
(48.6–52.8) additional reduction in HIV incidence in women in 2018 (Fig. 
4b–c). Thus, all three intervention scenarios involved reaching a small 
additional number of men compared with the thousands of women 
with higher risk of HIV acquisition in the same rural and semi-urban 
study areas45. We predict that closing the suppression gap in men would  
have changed the female-to-male incidence rate ratio from 1.59 (1.38–1.82)  
to 0.78 (0.69–0.87) in 2018 (Fig. 4d), entirely closing the growing  
gender disparity in HIV incidence.

Discussion
Effective HIV interventions and services are essential to bring most Afri-
can countries on track to end AIDS as a public health threat by 2030 and 
accelerate progress towards the vision of the UNAIDS ‘three zeros’ tar-
get: zero new HIV infections, zero discrimination and zero AIDS-related 
deaths44,46. Gender inequalities are among the main reasons why global 
targets on mass scale-up of HIV testing, biomedical interventions and 
on incidence reductions have not been achieved47. Here, we combined 
population-based incidence with deep-sequence viral phylogenetic 
surveillance data to characterize how HIV incidence and heterosexual 
transmission sources have been changing by age and gender in a typical 
rural and semi-urban African setting. We show that along with increasing 
availability of HIV services, there have been consistently faster increases 
in viral suppression in women than in men and an increasing majority 
of new infections are arising from men. We also document substantial 
age shifts in HIV incidence and transmission sources, with the primary 
burden of incidence shifting to older women aged 25–34 years, the 
primary burden of transmission shifting to male partners aged 30–39 
years, and the relative contribution of transmission flows to adolescent 
girls and young women from older men reducing by one-third. Model-
ling counterfactual improvements in HIV outcomes for men based on 
the inferred transmission flows during the last survey round in 2016–
2018, we find that closing the male gender gap in viral suppression rates  
could have reduced incident female infections by half in that time  
period and brought about gender equality in HIV infection burden.

This study evaluated data from one longitudinal surveillance 
cohort in southern Uganda, but the increasing gender disparities 
and shifts in age-specific transmission are not unique. Incidence data 
published over the past decade documents widespread declining 
incidence across the African continent17, greater differences in rates 
of new infections between men and women over calendar time, and 
rising average age of infection in women17. Data from population sur-
veillance studies and HIV treatment and prevention trials shows higher 
levels of viremia among men compared to women with HIV48,49, and 
phylogenetic studies from Botswana50 and Zambia20 also report gender 
disparities in HIV transmission. Together, these observations suggest 
that the principal characteristics of the evolving HIV epidemic likely 
apply more broadly in similar rural and semi-urban populations across 
eastern and southern Africa.

Given that the African HIV epidemic has historically been con-
centrated among adolescent girls and young women4,5, programmes 
and policies rightfully have concentrated on reducing HIV risk in this 
demographic. Here, we document that most heterosexual transmission 
is driven by men and that—as incidence is declining—the contribution 
of men to onward heterosexual transmission is growing, likely due to 
slower population-level declines in HIV viremia in men. While there 
are emerging efforts to design male-centred HIV interventions51,52, 
African men continue to be overlooked in the design of programmatic 
services53,54. Many factors, including gender norms, mobility and lack 
of targeted programming to men contribute to lower uptake of HIV 
services by men52. Case finding of men with HIV might be difficult but 
could be strengthened by expanding access to HIV testing services most 
likely to reach them, such as through self-testing or assisted partner 
notification and other social network strategies53,55,56. Retention of men 
with HIV in treatment and care programmes could be improved through 
male-centred differentiated service delivery. It is well established that 
improving male engagement in HIV services leads to better health for 
men57,58. We expect additional interventions such as voluntary medical 
male circumcision, condom promotion or pre-exposure prophylaxis 
would lead to further reductions in new cases59.

Our findings are grounded in 15 years of consecutive 
population-based epidemiologic and molecular surveillance in south-
ern Uganda, enabling us to measure changes in HIV incidence and 
transmission during a critical period of HIV service scale-up. Though 
it is typically assumed that age-specific patterns in onward HIV trans-
mission correspond to those of viremia or follow typical sexual contact 
patterns, we find that this is not always the case. First, men contributed 
disproportionally more to onward heterosexual transmission than to 
viremia across all survey rounds during which viremia were measured 
(Fig. 2c and Extended Data Fig. 7a). Second, older women contributed 
less to transmission than viremia suggests, an observation that was con-
sistent with attenuating sexual activity of women from age 25 onwards 
(Extended Data Fig. 7a). Third, young women and young men tended to 
be infected by transmitting partners who were substantially older than 
the typical sexual partners of the same population age group (Fig. 2b 
and Extended Data Fig. 7b). These findings illustrate the central utility 
of pathogen genomics to track and understand patterns of transmis-
sion, especially when interpreted in the context of population-based 
surveillance data, and when implemented at high enough sequence 
coverage to reconstruct directed transmission networks.

This study has important limitations. First, not all census-eligible 
individuals participated in the survey, primarily due to absence for 
work or school14 (Extended Data Fig. 1). We used data from first-time 
participants as proxies of non-participants, but we cannot rule out 
that non-participants include disproportionally larger populations of 
people with HIV and/or with different risk profiles. In this case, sensitiv-
ity analyses (Supplementary Table 10) indicate that more viremic men 
would have to be reached in all intervention scenarios for similar HIV 
incidence reductions in women as in Fig. 4. Second, we were only able 
to deep-sequence a fraction of all transmission events, and these may 
not be representative of all transmissions. We characterized sampling 
probabilities under the assumption that individuals were ever deep 
sequenced at random within age and gender strata, and found that 
the sampling probabilities did not differ substantially between strata 
in each round (Extended Data Fig. 5), so that the estimated transmis-
sion flows were not sensitive to our sampling probability adjustments 
(Supplementary Table 10). Of course, these sampling adjustments are 
modelled and it is possible that missing data could bias our findings. 
Third, our error analyses indicate that deep-sequence phylogenetics 
are not a perfect marker of direction of transmission, with estimated 
false discovery rates of 16.3% (8.8–28.3%) in this cohort21. Fourth, over 
time some communities were added and others left RCCS (Supplemen-
tary Table 2). We repeated our analysis on the subset of 28 continuously 
surveyed communities, and found similar incidence and transmission 
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dynamics (Supplementary Table 10). Fifth, our findings on rural and 
semi-urban populations may not extend to populations with different 
demographics, risk profiles or healthcare access, and this includes 
populations in urban or metropolitan areas or key populations.

This study demonstrates shifting patterns in HIV incidence and 
in the drivers of HIV infection in communities typical of rural and 
semi-urban east Africa, providing key data for evidence-informed 
policymaking. We find incidence rates have dropped substantially in 
women aged 15–24 years from 2003 to 2018, and incidence rates now 
peak among women aged 25–35 years, consistent with cross-sectional 
national surveillance data from Uganda60. Shifts in women’s incidence 
are the result of an increase in the age of transmitting male partners, 
and the primary contribution to HIV transmission lies now in men aged 
30 years and above. The growing contribution of men to heterosexual 
transmission is associated with substantially slower declines of unsup-
pressed viremia in men than in women. We predict successful interven-
tions centred on men that bring suppression rates in men on par with 
those in women could reduce incidence in women by half and close 
the gender gap in new infections. These findings reinforce calls for 
HIV prevention programming and services to give greater priority to 
reach and retain in care men with HIV as this will improve male health, 
substantially reduce incidence in women, and close gender gaps in 
infection burden.

Methods
The Rakai Community Cohort Study
Longitudinal surveillance. Between September 2003 and May 2018, 
9 consecutive survey rounds of RCCS, labelled as survey rounds 10 to 
18, were conducted in 36 inland communities in south-central Uganda 
(Fig. 1, Supplementary Tables 1 and 2, and Supplementary Fig. 1). The 
results presented in this paper derive from data collected through these 
surveys, including the population census, the RCCS survey partici-
pants, the incidence cohort and the phylogenetic transmission cohort.

RCCS survey methods have been reported previously14,18. In 
brief, for each survey round, the RCCS did a household census, and 
subsequently invited all individuals who were aged 15-49 years and 
residents for at least 1 month to participate in the open, longitudinal 
RCCS survey; and so data collection was not randomized. Data collec-
tion was blind relative to previous interactions with individuals or any 
personal characteristics apart from age and residency status, and any 
research questions. Eligible individuals first attended group consent 
procedures, and individual consent was obtained privately by a trained 
RCCS interviewer. Following consent, participants reported in a private 
location, typically a tent at the survey hub, on demographics, behav-
iour, health and health service use. All participants were offered free 
voluntary counselling and HIV testing as part of the survey. Rapid tests 
at the time of the survey and confirmatory enzyme immunoassays were 
performed to determine HIV status. All participants were provided with 
pre-test and post-test counselling, and referrals of individuals who were 
HIV-positive for ART. Additionally, all consenting participants, irrespec-
tive of HIV status, were offered a venous blood sample for storage/
future testing, including viral phylogenetic studies. Supplementary 
Table 1 summarizes the characteristics of the RCCS participants and 
HIV-positive participants by age and gender. For the purpose of our 
analyses, we combined data from three pairs of geographically close 
areas in peri-urban settings into three communities, and 28 of 36 com-
munities were continuously surveyed over all rounds (Supplementary 
Table 2). All epidemiologic data collected through RCCS are stored in 
a database running Microsoft SQL server 2019 and Microsoft Access 
version 2016.

Population size estimates. To characterize changes in population 
demography, individual-level data on the census-eligible individu-
als that were obtained during each census were aggregated by gen-
der, 1-year age band (between 15 and 49 years) and survey round  

(Extended Data Fig. 1a,b, bars). The age reported by household heads 
in the census surveys tended to reflect grouping patterns towards 
multiples of five, suggesting that household heads reported ages only 
approximately. For this reason, we smoothed population sizes across 
ages independently for every gender and survey round, using locally 
weighted running line smoother (LOESS) regression methods that fit 
multiple polynomial regressions in local neighbourhoods as imple-
mented in the R package stats (version 3.6.2) with the span argument 
set to 0.5 (Extended Data Fig. 1a,b, line). Model fit was assessed visually 
without a formal test, suggesting that the data met the assumptions 
of the statistical model.

Participation rates. To characterize participation rates, we calculated 
the proportion of RCCS participants in the census-eligible population 
by gender, 1-year age band and survey round (Extended Data Fig. 1c,d, 
bars). Following consent, participants reported either their birth date 
or current age themselves, and accompanying documentary evidence 
was requested. There were no obvious age grouping patterns of multi-
ples of 5 among participants. Overall, participation rates were lower in 
men than women (63% versus 75%). Participation rates also increased 
with age for both men and women, and were very similar across survey 
rounds. Considering the grouping patterns by age in the population 
count data, we again smoothed the participation rates across ages 
independently for every gender and survey round using LOESS regres-
sion as specified above for population size estimation (Extended Data 
Fig. 1c,d, line). Model fit was assessed visually without a formal test, 
suggesting that the data met the assumptions of the statistical model.

HIV status and prevalence. All RCCS participants were offered free 
HIV testing. Prior to October 2011, HIV testing was performed through 
enzyme immunoassays (EIAs) with confirmation via western blot and 
DNA polymerase chain reaction (PCR). After October 2011, testing was 
performed through a combination of three rapid tests with confirma-
tion of positives, weakly positives and discordant results by at least two 
EIAs and western blot or DNA PCR61. Overall, 99.7% participants took up 
the test offer across survey rounds, and Supplementary Table 1 docu-
ments the number of participants with HIV. From these survey data, we 
estimated HIV prevalence (that is, probability for a participant to have 
HIV) with a non-parametric Bayesian model over the age of participants 
independently for both genders and survey round. Specifically, we 
used a binomial likelihood on the number of participants with HIV 
parameterized by the number of participants and HIV prevalence in 
each 1-year age band. The HIV prevalence parameter was modelled on 
the logit scale by the sum of a baseline term and a zero-mean Gaussian  
process on the age space. The prior on the baseline was set to a 
zero-mean normal distribution with a standard deviation of 10. The 
covariance matrix of the Gaussian Process was defined with a squared 
exponential kernel, using a zero-mean half-normal prior with a stand-
ard deviation of 2 on the scale parameter of the squared exponential  
kernel and a zero-mean half-normal prior with a standard deviation of 
11.3 (= (49 − 15)/3) on the lengthscale of the squared exponential kernel. 
The model was fitted with Rstan (release 2.21.0) using Stan’s adaptive 
Hamiltonian Monte Carlo (HMC) sampler62 with 10,000 iterations, 
including 500 iterations of warm-up. Convergence and mixing were 
good, with highest R-hat value of 1.0029, and lowest effective sample 
size of 830. The model represented the data well, with 98.57% of data 
points inside 95% posterior predictive intervals, indicating that the 
data met the assumptions of the statistical model. For the mathe-
matical modelling of transmission flows, we assumed that age- and 
gender-specific HIV prevalence were the same in non-participants in 
the RCCS communities as in the participants in these communities.

ART use. The RCCS measures ART use through participant reports since 
survey round 11. Self-reported ART use reflected viral suppression with 
high specificity and a sensitivity around 70% in the study population 
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(Supplementary Table 9). We took the following pre-processing steps. 
For survey round 10, we assumed self-reported ART use to have been 
on the same levels as in survey round 11. Next, the ART use field was 
adjusted to ‘yes’ for the participants with HIV who did not report ART 
use but who had a viral load measurement below 1,000 copies per mil-
lilitre of blood plasma. Further, we considered it likely that with increas-
ingly comprehensive care and changing treatment guidelines14,63, ART 
use in individuals with HIV who did not participate increased substan-
tively over time, and this prompted us to consider as proxy of ART use 
in non-participants the observed ART use in first-time participants 
with HIV. Overall, first-time participants represented 15.3–39.9% of all 
participants across survey rounds. Extended Data Fig. 8a,b exemplifies 
the self-reported ART use data in male participants and male first-time 
participants. The ART use rate estimates for participants and first-time 
participants were obtained using the same Bayesian non-parametric 
model as for HIV prevalence fitted independently on the reported ART 
use data of participants and first-time participants. Convergence and 
mixing were good, with highest R-hat value of 1.0025 and lowest effec-
tive sample size of 978 for the participants, and 1.0027, 521 respectively 
for the first-time participants. The model represented the data well, 
with 99.67% of data points inside the corresponding 95% posterior 
predictive intervals for the participants, and 99.24% for the first-time 
participants, indicating that the data met the assumptions of the sta-
tistical model. The resulting, estimated ART use rates in infected men 
and women are shown in Extended Data Fig. 8c.

Viral suppression. Since survey round 15, HIV-1 viral load was measured 
on stored serum/plasma specimens from infected participants using the 
Abbott real-time m2000 assay (Abbott Laboratories), which is able to 
detect a minimum of 40 copies ml–1. Viral suppression was defined as a 
viral load measurement below 1,000 copies ml–1 plasma blood following 
recommendations of the WHO34. To estimate virus suppression levels 
in the infected non-participants, we considered again as proxy data 
on infected first-time participants. Overall, viral load measurements 
were obtained from 19.3% of participants with HIV in survey round 15 
and nearly all (>97.71%) participants with HIV since survey round 1664–66. 
From these data we estimated the proportion of individuals in the study 
population with HIV who had suppressed virus in participants and 
first-time participants (used as proxy for non-participants), using the 
same Bayesian non-parametric model as for HIV prevalence and ART 
use. Convergence and mixing were good with the lowest R-hat value of 
1.0016 and lowest effective sample size of 461 for the participants and 
1.0052, 844 respectively for the first-time participants. The model rep-
resented the data well, with 98.19% of data points inside 95% posterior 
predictive intervals and 97.99% for the first-time participants, indicat-
ing that the data met the assumptions of the statistical model. For the 
purpose of mathematical modelling of transmission flows, we next 
considered the earlier survey rounds 10 to 14, for which viral load meas-
urements were not available. On average, 93% of individuals reporting 
ART use also had suppressed virus (Supplementary Table 9), leading 
us to estimate the number of individuals with suppressed virus before 
2011 from corresponding ART use data. Specifically, we estimated the 
proportion of the study population with HIV that was virally suppressed 
by adjusting the estimated ART use data with the sensitivity of being 
virally suppressed given self-reported ART use and the specificity of 
being virally suppressed given self-reported no ART use estimated 
from round 15 when available, and otherwise from round 16 (Supple-
mentary Table 9). Specificity and sensitivity values by 1-year age bands 
were linearly interpolated between the midpoints of the age brackets 
in Supplementary Table 9. The resulting, estimated virus suppression 
levels in men and women with HIV are shown in Extended Data Fig. 8d, 
illustrating that the gap in virus suppression levels increased over time.

Sexual behaviour. RCCS participants reported to interviewers in 
each round on aspects of sexual behaviour, including the number of 

sexual partners in the past 12 months within the same community, 
the number of partners outside the community, and in round 15 the 
demographic characteristics of up to four partners (Supplementary 
Table 8). To interpret HIV transmission flows in the context of typical 
sexual contact networks, we focused on the detailed behaviour data 
collected in round 15 and estimated sexual contact intensities between 
men and women by 1-year age band, defined as the expected number 
of sexual contacts of one individual of gender g and age a with the 
population of the opposite gender h and age b in the same community. 
Estimates were obtained with the Bayesian rate consistency model 
(version 1.0.0), using default prior specifications67. We noted along 
with previous work68–71 that women tended to report considerably 
fewer contacts than men (Supplementary Table 8), prompting us to 
include in the linear predictor of contact rates additional age-specific 
random effects to capture under-reporting behaviour in women. Fur-
ther, community-specific baseline parameters were added to allow for 
variation in the average level of contact rates in each community, but 
the age-specific structure of contact rates was assumed to be identical 
across communities. The resulting model was fitted to all data pertain-
ing to within-community sexual contacts in the last year, including 
reports of within-community contacts for which information on the 
partners remained unreported. Contacts reported with partners from 
outside the same community were excluded, because male-female 
contacts have to add up to female-male contacts only in the same popu-
lation denominator, and hence under-reporting could only be adjusted 
for when within-community contacts are considered. The model was 
fitted with CmdstanR (version 0.5.1)72 using Stan’s adaptive HMC sam-
pler62 with 4 chains, where each chain runs 2,800 iterations, including 
300 warm-up iterations. Convergence and mixing were good, with 
highest R-hat value of 1.003, and lowest effective sample size of 1,745. 
The model represented the data well, with >99% of data points inside 
95% posterior predictive intervals, indicating that the data met the 
assumptions of the statistical model. Supplementary Table 8 reports 
the estimated sexual contact intensities from men and women in sur-
vey round 15, and shows that the estimated, under-reporting adjusted 
sexual contact intensities in women were considerably higher than 
those directly reported. The table also shows that the estimated num-
ber of sexual contacts from men to women equal those from women 
to men, and the estimated age distribution of sexual contacts is shown 
in Fig. 2 and Extended Data Fig. 7.

Longitudinal HIV incidence cohort
Data and outcomes from the incidence cohort. RCCS encompasses 
both a full census of the study communities and a population-based 
survey in each surveillance round, which enables identification and 
follow-up of unique individuals over time, and thus provides a compre-
hensive sampling frame to measure HIV incidence. The RCCS incidence 
cohort comprises all RCCS study participants who were HIV-negative at 
their first visit (baseline) and had at least one subsequent follow-up visit 
(Supplementary Fig. 1). Individuals in the incidence cohort were con-
sidered to be at risk of acquiring HIV after their first visit, and stopped 
accruing risk at the date of HIV acquisition or the date of last visit. 
Exposure times were estimated from data collected at survey visit times 
similarly as in ref. 14. Individuals in the incidence cohort who remained 
negative until the last survey round contributed their time between the 
first and last survey visit to their exposure period. Individuals in the inci-
dence cohort who were found to have acquired HIV must have done so 
between the visit date of the last round in which they were negative and 
the visit date of the current round, and the infection date was imputed 
at random between the two dates. This included incident cases who had 
no missed visit between the last negative and current visit (type 1) or 
one missed visit (type 2) as in ref. 14, but also cases who had more than 
one missed visit (type 3). Unknown dates were imputed at random 50 
times, and individual exposure periods and incident cases were then 
attributed to each survey round, summed over the cohort, and then 
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averaged over imputations. Supplementary Table 3 and Extended 
Data Fig. 2 illustrate the age- and gender-specific exposure times and 
incidence events in each survey round. In sensitivity analyses, we con-
sidered only those individuals in the incidence cohort who resided in 
one of the 28 inland communities that were continuously surveyed 
across survey rounds 10 to 18, and found similar incidence dynamics 
with slightly faster declines in incidence rates in younger men, although 
this difference was not statistically significant. No statistical methods 
were used to pre-determine sample sizes but our sample sizes are 
similar to those reported in previous publications14.

Modelling and analysis. The primary statistical objective was to esti-
mate longitudinal age-specific HIV incidence rates by 1-year age bands 
across (discrete) survey rounds, separately for each gender. We used a 
log-link mixed-effects Poisson regression model, with individual-level 
exposure times specified as offset on the log scale, common baseline 
fixed effect and further random effects. The random effects comprised a 
one-dimensional smooth function on the age space, a one-dimensional 
smooth function on the survey round space, and an interaction term 
between age and survey round. The functions were specified as 
one-dimensional Gaussian processes. Alternative specifications, includ-
ing two-dimensional functions over the participant’s age and survey 
round, and without interaction terms between age and survey rounds 
were also tried. We did not consider incidence trends in continuous 
calendar time because study communities were surveyed in turn, and 
so the incidence data within each round are structured by communities, 
which would require further modelling assumptions to account for. 
Owing to the large number of individual observations, models were 
fitted using maximum-likelihood estimation (MLE) with the R package 
mgcv (version 1.8-38)73, to each of the 50 datasets with imputed expo-
sure times for each gender independently. Numerical convergence was 
examined with the gam.check function. Within- and between-sample 
uncertainties in parameter estimates, from the variability of the estima-
tion procedure and the data imputation procedure, were incorporated 
in the age-, gender- and survey-round-specific incidence rate estimates 
by drawing 1,000 replicate incidence rate estimates from the MLE model 
mean parameter and associated standard deviation obtained on each 
of the 50 imputation datasets, and then calculating median estimates  
and 95% prediction intervals over the 1,000 × 50 Monte Carlo estimates 
(Fig. 1c). Model fits were evaluated by comparing predicted HIV inci-
dence infections estimates to the empirical data. To assess model fit, 
incident cases were predicted using the Poisson model parameterized 
by replicate MLE incidence estimates. Overall, model fit was very good, 
with 98.80% (98.10–99.49) data points inside the 95% prediction inter-
vals across the 50 imputed datasets and the fitted model was consistent 
with the available data (Extended Data Fig. 6), indicating that the data 
met the assumptions of the statistical model. The Akaike information 
criterion was used to identify the best model for each gender, and the 
best model was as described above (Supplementary Table 4).

Longitudinal viral phylogenetic transmission cohort
Data from the transmission cohort. Within RCCS, we also performed 
population-based HIV deep sequencing spanning a period of more 
than 6 years, from January 2010 to April 2018. The primary purpose of 
viral deep sequencing was to reconstruct transmission networks and 
identify the population-level sources of infections, thus complement-
ing the data collected through the incidence cohort.

The RCCS viral phylogenetic transmission cohort comprises all 
participants with HIV for whom at least one HIV deep-sequence sample 
satisfying minimum quality criteria for deep-sequence phylogenetic 
analysis is available (Supplementary Fig. 1). For survey rounds 14 to 16 
(PANGEA-HIV 1), viral sequencing was performed on plasma samples 
from participants with HIV who had no viral load measurement and 
self-reported being ART-naive at the time of the survey, or who had a 
viral load measurement above 1,000 copies per ml of plasma. We used 

this criterion because viral deep sequencing was not possible within our 
protocol on samples with virus less than 1,000 copies per ml of plasma, 
and because self-reported ART use was in this population found to be a 
proxy of virus suppression with reasonable specificity and sensitivity14,21. 
Plasma samples were shipped to University College London Hospital for 
automated RNA sample extraction on QIAsymphony SP workstations 
with the QIAsymphony DSP Virus/Pathogen Kit (catalogue number 
937036, 937055; Qiagen), followed by one-step reverse transcription PCR 
(RT–PCR)74. Amplification was assessed through gel electrophoresis on 
a fraction of samples, and samples were shipped to the Wellcome Trust 
Sanger Institute for HIV deep sequencing on Illumina MiSeq and HiSeq 
platforms in the DNA pipelines core facility. Primers are publicly avail-
able74. For survey rounds 17 and 18 (PANGEA-HIV 2), viral load measure-
ments were available for all infected participants and viral sequencing 
was performed on plasma samples of individuals who had not yet been 
sequenced and who had a viral load measurement above 1,000 copies 
per ml of plasma. Plasma samples were shipped to the Oxford Genom-
ics Centre for automated RNA sample extraction on QIAsymphony SP 
workstations with the QIAsymphony DSP Virus/Pathogen Kit (937036, 
937055; Qiagen), followed by library preparation with the SMARTer 
Stranded Total RNA-Seq kit v2 - Pico Input Mammalian (Clontech, TaKaRa 
Bio), size selection on the captured pool to eliminate fragments shorter 
than 400 nucleotides (nt) with streptavidin-conjugated beads75 to enrich 
the library with fragments desirable for deep-sequence phylogenetic 
analysis, PCR amplification of the captured fragments, and purifica-
tion with Agencourt AMPure XP (Beckman Coulter), as described in 
the veSEQ-HIV protocol76. Sequencing was performed on the Illumina 
NovaSeq 6000 platform at the Oxford Genomics Centre, generating 350 
to 600 base pair (bp) paired-end reads. Sequencing probes are publicy 
available77. A subset of samples from survey rounds 14 to 16 with low qual-
ity read output under the PANGEA-HIV 1 procedure was re-sequenced 
with the veSEQ-HIV protocol. To enhance the genetic background used 
in our analyses, additional samples from the spatially neighbouring 
MRC/UVRI/LSHTM surveillance cohorts and other RCCS communities 
were also included. For sequencing, the following software were used, 
QuantStudio Real-Time PCR System v1.3, Agilent TapeStation Software 
Analysis 4.1.1, Clarity Version 4.2.23.287, FreezerPro 7.4.0-r14598, and 
LabArchives Electronic Lab Notebook 2023. We restricted our analysis 
to samples from 2,172 individuals that satisfied minimum criteria on 
read length and depth for phylogeny reconstruction and subsequent 
inferences. Specifically, deep sequencing reads were assembled with the 
shiver sequence assembly software, version 1.5.778. Next, phyloscanner 
version 1.8.125 was used to merge paired-end reads, and only merged 
reads of at least 250 bp in length were retained in order to generate 250 
bp deep-sequence alignments as established in earlier work21.

Deep sequencing was performed from 2010 (survey round 14) 
onwards, but because sequences provide information on past and 
present transmission events, we also obtained information on transmis-
sion in earlier rounds and calculated sequence coverage in participants 
that were ever deep-sequenced at minimum quality criteria for phylo-
genetic analysis. Specifically, we required that individuals had a depth 
of ≥30 reads over at least 3 non-overlapping 250 bp genomic windows. 
Individuals who did not have sequencing output meeting these criteria 
were excluded from further analysis, and these were largely individuals  
sequenced only in PANGEA-HIV 1, and were primarily associated  
with low viral load samples76,79. In total, we deep-sequenced virus from 
1,978 participants with HIV of who 559 were also in the incidence cohort. 
Supplementary Table 5 characterizes HIV deep-sequencing outcomes 
in more detail. No statistical methods were used to pre-determine sam-
ple sizes but our sample sizes are similar to those reported in previous 
publications20,27,50.

Reconstruction of transmission networks and source–recipient  
pairs. The HIV deep-sequencing pipeline provided sequence 
fragments that capture viral diversity within individuals, which 
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enables phylogenetic inference into the direction of transmission 
from sequence data alone21,78,80. First, potential transmission networks 
were identified, and in the second step transmission networks were 
confirmed and the transmission directions in the networks were char-
acterized as possible. In this study, the first step was modified from 
previous protocols21 to ease computational burden, while the second 
step was as before performed with phyloscanner version 1.8.1.

In the first step81, to identify potential transmission networks, HIV 
consensus sequences were generated as the most common nucleo-
tide in the aligned deep-sequence fragments that were derived for 
each sample. We then calculated similarity scores between all pos-
sible combinations of consensus sequences in consecutive 500 bp 
genomic windows rather than the entire genome to account for the 
possibility of recombination events and divergent virus in parts of 
the genome. Similarity score thresholds to identify putative, geneti-
cally close pairs were derived from data of long-term sexual partners 
enrolled in the RCCS cohort similarly as in refs. 21,81, and then applied 
to the population-based sample of all possible combinations of suc-
cessfully sequenced individuals. Overall, 2,525 putative, genetically 
close individuals were identified, and these formed 305 potential 
transmission networks.

In the second step, we confirmed the potential transmission net-
works in phylogenetic deep-sequence analyses. We updated the back-
ground sequence alignment used in phyloscanner to a new sequence 
dataset that included 113 representatives of all HIV subtypes and circu-
lating recombinant forms and 200 near full-genome sequences from 
Kenya, Uganda and Tanzania, obtained from the Los Alamos National 
Laboratory HIV Sequence Database (http://www.hiv.lanl.gov/). The 
deep-sequence alignment options were updated to using MAFFT 
(version 7.475) with iterative refinement82, and additional iterative 
re-alignment using consistency scores in case a large proportion of 
gap-like columns in the first alignment was detected. Deep-sequence 
phylogeny reconstruction was updated to using IQ-TREE (version 
2.0.3) with GTR+F+R6 substitution model, resolving the previously 
documented deep-sequence phylogenetics branch length artefact20,83. 
Confirmatory analyses of the potential transmission networks were 
updated to using phyloscanner (version 1.8.1) with input argument 
zeroLengthAdjustment set to TRUE. From phyloscanner output, we 
calculated pairwise linkage scores that summarize how frequently 
viral phylogenetic subgraphs of two individuals were adjacent and 
phylogenetically close in the deep-sequence phylogenies correspond-
ing to all 250 bp genomic windows that contained viral variants from 
both individuals21,25. Similarly we calculated pairwise direction scores 
that summarize how frequently viral phylogenetic subgraphs of one 
individual were ancestral to the subgraphs of the other individual in 
the deep-sequence phylogenies corresponding to all 250 bp genomic 
windows that contained viral variants from both individuals and in 
which subgraphs had either ancestral or descendant relationships21,25. 
Phylogenetically likely source–recipient pairs with linkage scores 
≥0.5 and direction scores ≥0.5 were extracted, and only the most 
likely source–recipient pair with highest linkage score was retained 
if multiple likely sources were identified for a particular recipient. 
The resulting source–recipient pairs were checked further against 
sero-history data from both individuals where available. If sero- 
history data indicated the opposite direction of transmission, the 
estimated likely direction of transmission was set to that indicated 
by sero-history data.

Infection time estimates. The shape and depth of an individual’s 
subgraph in deep-sequence phylogenies also provide information 
on the time since infection, and since the sequence sampling date is 
known thus also on the infection time84 and the age of both individuals 
at the time of the infection event. We used the phyloTSI random forest 
estimation routine with default options, which was trained on HIV 
seroconverter data from the RCCS and other cohorts, and uses as input 

the output of the phyloscanner software26. Individual-level time since 
infection estimates were associated with wide uncertainty (Extended 
Data Fig. 4a), and for this reason we refined estimates for the phyloge-
netically likely recipient in source–recipient pairs using the inferred 
transmission direction, age data, and where available longitudinal 
sero-history data. Specifically, we refined plausible infection ranges as 
indicated in the schema in Supplementary Fig. 2. Here, the dotted red 
rectangle illustrates the 2.5% and 97.5% quantiles of the phyloTSI infec-
tion time estimates for the phylogenetically likely recipient (x axis)  
and transmitting partner (y axis). We incorporated evidence on the 
direction of transmission by requiring that the date of infection of 
the phylogenetically likely recipient is after that of the transmitting 
partner (filled red triangle). Sero-history and demographic data were 
incorporated as follows. For both the recipient and the transmitting 
partner, the upper bound of the infection date was set as the thirtieth 
day prior to the first positive test of the participant85. The lower bound 
of the infection date was set to the largest of the following dates, the 
date of last negative test if available, the fifteenth birthday, or the 
date corresponding to 15 years prior the upper bound86. The refined 
uncertainty range of the infection time estimates of the phyloge-
netically likely transmitting partner and recipient are illustrated as 
the purple triangle in the schema above, and obtained as follows. 
Firstly, we defined individual-level plausible ranges, by intersect-
ing the range of dates consistent with the phyloTSI predictions and 
sero-history data. If the intersection was empty, we discarded the 
phyloTSI estimates. Then we intersected the rectangle given by the 
cartesian product of the plausible intervals for source and recipient 
with the half-plane consistent with the direction of transmission. 
Finally, infection dates were sampled at random from the refined 
uncertainty range, so that the median infection date estimates cor-
respond to the centre of gravity of the triangle (cross). In sensitivity 
analyses, we further integrated estimates of transmission risk by stage 
of infection87, though this had limited impact on the estimates (see 
‘Sensitivity analyses’ section). In cases where the likely transmitting 
partner in one heterosexual pair was the recipient partner in another 
heterosexual pair, the above infection date refinement algorithm was 
applied recursively so that the refined infection date estimates were 
consistent across pairs. Finally, the transmission events captured by 
each source–recipient pair were attributed to the survey round into 
which the posterior median infection time estimate of the recipient 
fell, and in cases where the median estimate fell after the start time 
of a round and the end time of the preceding round, the event was 
attributed to the preceding round.

In total, we identified 539 source–recipient pairs that involved par-
ticipants from the 36 survey communities and further individuals from 
the background dataset. In 13 of the 539 source–recipient pairs, avail-
able dates of last negative tests indicated that only the opposite trans-
mission direction was possible and in these cases the inferred direction 
of transmission was set to the opposite direction. The resulting pairs 
included 501 unique recipient partners, and for reach we retained the 
most likely transmitting partner. To identify pairs capturing transmis-
sion events within the RCCS inland communities, we restricted analysis 
initially to 236 heterosexual source–recipient pairs in whom both indi-
viduals were ever resident in the 36 survey communities. Of these, 142 
pairs were from men to women and 94 from women to men. Infection 
times were estimated for all sampled individuals and refined for the 
recipient partners in the 236 heterosexual source–recipient pairs. For 
4 recipient partners, the phyloTSI estimates were ignored as they were 
incompatible with inferred transmission direction and survey data, and 
was based on sero-history data only. The phylogenetically most likely 
location of both individuals at time of transmission was estimated as 
their location at the RCCS visit date that was closest to the posterior 
median infection time estimate. Using this location estimate, 233 of 
the 236 heterosexual source–recipient pairs were estimated to capture 
transmission events in RCCS inland communities and were retained 
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for further analysis. A further six recipient partners had posterior 
median infection time estimates outside the observation period from 
September 2003 to May 2018 and were excluded, leaving for analysis 
227 heterosexual source–recipient pairs that captured transmission 
events in RCCS inland communities during the observation period. 
This excluded 88 potential source–recipient pairs from our study due 
to ethical considerations and prior analyses suggesting these pairs 
most likely represent partially sampled transmission chains (that is, 
‘false positives’)21.

Transmission flow analysis
Statistical framework. We next estimated the sources of the inferred 
population-level HIV incidence dynamics from the dated, source–
recipient pairs in the viral phylogenetic transmission cohort. Overall, 
inference was done in a Bayesian framework using a semi-parametric 
Poisson flow model similar ref. 28, that was fitted to observed counts 
of transmission flows Yg→h

p,i,j  with transmission direction g → h 
(male-to-female or female-to-male), time period p (survey rounds 10–15 
and 16–18) in which the recipient was likely infected, and 1-year age 
bands i, j of the source and recipient populations respectively, where

i, j ∈ 𝒜𝒜 = 𝒜15, 16,… ,48,49} (1a)

(g → h) ∈ 𝒟𝒟 = 𝒜male-to-female, female-to-male}. (1b)

The target quantity of the model is the expected number of HIV trans-
missions in the study population in transmission direction g → h 
(male-to-female or female-to-male), survey round r (survey round 10 
to 18) in which infection occurred, and 1-year age bands i, j of the source 
and recipient populations respectively, which we denote by λg→h

r,i,j .  
We considered that the expected number of HIV transmissions in  
the study population is characterized by transmission risk and  
modulated by the number of infectious and susceptible individuals, 
which prompted us to express λg→h

r,i,j  in the form of a standard discrete- 
time susceptible-infected (SI) model,

λg→h
r,i,j = βg→h

r,i,j × Shr,j × Igr,i × ||(t endr − t startr )|| , (2)

where βg→h
r,i,j > 0 is the transmission rate exerted by one infected, virally 

unsuppressed individual of gender g and age i on one person in the 
uninfected (‘susceptible’) population of the opposite gender h and age 
j in a standardized unit of time in survey round r. Additionally, Shr,j is the 
number of susceptible individuals of gender h and age j in survey round 
r and Igr,i is the number of infected, virally unsuppressed individuals of 
gender g and age i in survey round r. With equation (2), we express 
expected transmission flows with a population-level mechanism of 
how transmission rates from individuals with unsuppressed HIV act 
on the susceptible population, and we preferred equation (2) over a 
purely phenomenological model of the λg→h

r,i,j  for the generalizing 
insights it provides. The main simplifying approximations in equation 
(2) are that all quantities on the right-hand side of equation (2) are in 
discrete time and constant in each round, meaning we approximate 
over changes in population size, HIV prevalence and viral suppression 
at a temporally finer scale, and assume further that one generation of 
transmissions occurs from individuals with unsuppressed HIV in each 
round. Importantly, in this framework, we can then relate the expected 
transmission flows to the HIV incidence dynamics and the data from 
the longitudinal incidence cohort by summing in equation (2) over the 
sources of infections,

∑
i
λg→h
r,i,j = (∑

i
βg→h
r,i,j × Igr,i) × Shr,j × ||(t endr − t startr )|| (3a)

=∶ κh
r,j × Sh

r,j × ||(t endr − t startr )|| , (3b)

where κhr,j is the incidence rate per susceptible person of gender h and 
age j in survey round r (that is, Shr,j) and per unit time (|(t endr − t startr )|). 
Estimates of κhr,j were calculated in units of 100 PY as described above 
and shown in Fig. 1c, and we will constrain the semi-parametric Poisson 
flow model using these estimates. From the model output, we are 
primarily interested in the transmission flows and transmission sources 
during each round as quantities out of 100%, defined respectively by

πg→h
r,i,j = λg→h

r,i,j /( ∑
i′∈𝒜𝒜, j′∈𝒜𝒜, k∈𝒟𝒟

λkr,i′ ,j′ ) (4a)

δg→h
r,i,j = πg→h

r,i,j /(∑
i′∈𝒜𝒜

πg→h
r,i′ ,j ) (4b)

δg→h
r,i = ∑

j∈𝒜𝒜
πg→h
r,i,j . (4c)

In words, equation (4b) quantifies the sources of infection in individuals 
of gender h and age j in survey round r such that the sum of δg→h

r,i,j   
across i equals one, and equation (4c) quantifies the sources of infec-
tion in the entire population in survey round r that originate from  
the group of individuals of gender g and age i such that the sum  
of δg→h

r,i  across g and i equals one. The width of the boxplots in Fig. 2b 
shows equation (4b) and Fig. 2a,c show equation (4c).

Specification of susceptible and infected individuals. The number 
Shr,j of the susceptible population of gender h and age j was calculated 
by multiplying the smoothed estimate Nh

r,j  of the census-eligible  
population of gender h and age j (shown in Extended Data Fig. 1a,b) 
with 1 minus the posterior median estimate of HIV prevalence ρh

r,j   
in census-eligible individuals of gender h and age j in survey round r  
(calculated as described further above). To specify the number Igr,i   
of individuals with unsuppressed HIV of gender g and age i, we  
multiplied the smoothed estimate Ng

r,i of the census-eligible population  
of gender g and age i in survey round r (shown in Extended Data  
Fig. 1a,b) with the posterior median estimate of HIV prevalence in the 
census-eligible population of gender g and age i (ρg

r,i) with 1 minus the 
posterior median estimate νgr,i  of the proportion of census-eligible 
individuals of gender g and age i in survey round r that have suppressed 
HIV (calculated as described further above and shown in Extended  
Data Fig. 8d). The start and end times of each survey round, t startr   
and t endr  were set as shown in Fig. 1b and specified in units of years, so 
that the transmission intensity is also expressed in units of years.

Bayesian model. We first present the likelihood of the observed counts 
of transmission flows Yg→h

p,i,j  under the semi-parametric Poisson flow 
model that is parameterized in terms of equation (2). The phylogeneti-
cally reconstructed source–recipient pairs capture only a subset of 
incidence events, and so it is important to characterize the sampling 
frame. As in ref. 28, we consider the unknown transmission events Zg→h

r,i,j  
in survey round r and assume these are sampled at random within  
each strata with probabilities that factorize into sampling probabilities 
of sources of age i and gender g and sampling probabilities of  

recipients of age j and gender h, Yg→h
r,i,j ∼ Binomial(Zg→h

r,i,j , ξ
1
r,g,i ξ

2
r,h,j) . Using 

equation (4a), we also let Zg→h
r,i,j ∼ Multinomial(Zr, πg→h

r,i,j ), where Zr is the 

total number of infection events in round r.
Because we have data from both the transmission and incidence 

cohorts, we are able to constrain the sampling problem with the  
detection probabilities of incidence events. Specifically, setting 
Yhr,j = ∑i∈𝒜𝒜Y

g→h
r,i,j  and Zh

r,j = ∑i∈𝒜𝒜Z
g→h
r,i,j , we let Yhr,j ∼ Binomial(Z

h
r,j, ζ

h
r,j)  and  

set the detection probability to the proportion of the expected  
number of incident cases of gender h and age j that could be phylo-
genetically reconstructed in time period p,
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ζhp,j = ( ∑
r∈p, i∈𝒜𝒜

Yg→h
r,i,j )/(∑

r∈p
κhr,j × Shr,j × ||(t endr − tstartr )||) , (5)

for all rounds r in the two time periods rounds 10–15 and 16–18. We set 
the detection probability of round r to match that of its correspond-
ing period p. We focused in equation (5) on time periods due to the 
limited phylogenetic count data. The advantage in constraining the 
transmission model with the detection probabilities (equation (5)) is 
that the estimates of the transmission model will be consistent with 
the incidence dynamics that we already estimated with data from the 
incidence cohort. Re-arranging terms between binomial and multino-
mial models, we obtain

Yg→h
r,i,j ∼ Multinomial (Zr, ξ 1r,g,i ξ

2
r,h,j π

g→h
r,i,j ) (6a)

ξ 2r,h,j =
∑i∈𝒜𝒜π

g→h
r,i,j

∑i∈𝒜𝒜ξ
1
r,g,iπ

g→h
r,i,j

ζhr,j, (6b)

which shows that the sampling probabilities of recipients ξ 2r,h,j can be 
expressed in terms of the detection probability of infection events, 
weighted by the relative contribution and sampling of source-specific 
transmission events to the same incidence group. We still need to 
specify ξ 1r,h,i to complete the sampling model. Here, we approximated 
the sampling probability of sources with the proportion of individuals 
of age i and gender h with unsuppressed virus in round r that were ever 
deep-sequenced. Note that the sampling model (equation (6)) will alter 
the posterior mean transmission flows πg→h

r,i,j  only when the sampling 
probabilities ξ 1r,h,i and ζhr,j  differ between age and gender strata in the 
same round. Extended Data Fig. 5 visualizes our specifications of ζhr,j  
and ξ 1r,h,j, and shows that the sampling differences between age and 
gender groups are relatively modest in any given round, which suggests 
that the adjustments on the inferred transmission flows based on our 
modelled sampling probabilities will be modest.

In the semi-parametric Poisson flow model of ref. 28, the sampling  
model (equation (6)) can be analytically integrated out based on  
standard thinning properties, which in turn allows us to express the 
likelihood of observing the phylogenetic data with

Yg→h
p,i,j ∼ Poisson(∑

r∈p
ξ 1r,g,i ξ

2
r,h,j λ

g→h
r,i,j ) (7a)

λg→h
r,i,j = βg→h

r,i,j × Shr,j × Igr,i × ||(t endr − t startr )|| (7b)

logβg→h
r,i,j = ̂cccg→h(i, j) + γ0 + γg + γr + γp(r) + fff g→h

0 (i, j)

+fff g→h
r (j) + fff g→h

p(r) (i)
(7c)

ξ 2r,h,j =
∑i∈𝒜𝒜λ

g→h
r,i,j

∑i∈𝒜𝒜ξ
1
r,g,iλ

g→h
r,i,j

ζhr,j, (7d)

where ̂cccg→h(i, j)  is the posterior median estimate of the log rate of  
sexual contacts within communities in one year between one person 
of age i and gender g and one person of age j and gender h that we 
estimated from the sexual behaviour data, and the remaining terms 
quantify the transmission probability per sexual contact on the log 
scale. The model is designed in such a way that the log sexual contact 
rates describe a fixed age-specific non-zero mean surface, and the 
remaining parameters describe age-specific random deviations around 
the mean surface. With this approach, any inferred deviations in 

transmission rates relative to sexual contact rates are informed by the 
phylogenetic data and robust to prior specifications on the random 
deviations. Specifically, γ0 is the baseline parameter characterizing 
overall transmission risk per sexual contact, γg is a gender-specific 
offset which is set to zero in the female-to-male direction and a real 
value in male-to-female direction, γr a round-specific offset which is 
set to zero for the first survey round 10, and γp is a time period specific 
offset which is set to zero for the first time period. We assume the 
age-specific structure of transmission rates in terms of the transmitting 
partners (denoted by i) and recipients (denoted by j) are similar across 
similar ages, and so we can exploit regularizing prior densities28 to  
learn smooth, latent transmission rate surfaces from the sparse data 
shown in Extended Data Fig. 3. In detail, we modelled the age-specific 
structure of transmission rates non-parametrically with 2 time-invariant 
random functions fff g→h

0  with two-dimensional inputs on the domain 
[15, 50) × [15, 50) that characterize age–age interactions in transmission 
risk for each gender, 2 × 8 random functions fff g→h

r  with one-dimensional 
inputs that characterize time trends in the age of recipients for each 
gender for survey rounds after round 10, and 2 random functions fff g→h

p  
with one-dimensional inputs that characterize time trends in the age 
of transmitting partners for each gender for the second time period. 
We attach to each of these random functions computationally efficient 
B-splines projected Gaussian process (GP) priors88, which we con-
structed by describing the random functions with cubic B-splines over 
equidistant knots and modelling the prior relationship of the B-splines 
parameters with GPs with squared exponential kernels with variance 
and lengthscale hyper-parameters, denoted respectively by σ2 and ℓ. 
The prior densities of our Bayesian model are

γ0 ∼ 𝒩𝒩(0, 102) (8a)

γmale ∼ 𝒩𝒩(0, 1) (8b)

γr ∼ 𝒩𝒩(0, 1) for r > R10 (8c)

γp ∼ 𝒩𝒩(0, 1) for p = R16-R18 (8d)

fff g→h
0 ∼ 2D-B-splines-GP (σg→h

0 , ℓ g→h
0,1 , ℓ g→h

0,2 ) (8e)

fff g→h
r ∼ 1D-B-splines-GP ( ̃σg→h

r , ̃ℓ g→h
r ) for r > R10 (8f)

fff g→h
p ∼ 1D-B-splines-GP (σ̆ g→h, ̆ℓ g→h) for p = R16-R18 (8g)

σg→h
0,i ,σg→h

0, j , ̃σg→h, σ̆ g→h ∼ Half-Cauchy (0, 1) (8h)

ℓ g→h
0,1 , ℓ g→h

0,2 , ̃ℓ g→h, ̆ℓ g→h ∼ Inv-Gamma (2, 2), (8i)

where the 2 × 8 recipient-specific time-varying 1D B-splines GPs each 
have squared exponential kernels with gender- and round-specific 
hyper-parameters ̃σg→h

r , ̃ℓ g→h
r , the 2 source-specific time-varying 1D 

B-splines GPs each have squared exponential kernels with gender- 
specific hyper-parameters σ̆ g→h, ̆ℓ g→h, and the 2 time-invariant 2D 
B-splines GPs each have squared exponential kernels with gender- 
specific hyper-parameters σg→h

0 , ℓ g→h
0,1  and ℓ g→h

0,2  decomposed as 
follows,

kg→h
0 ((i, j), (i ′, j ′)) = (σg→h

0 ) 2 exp(− (i − i ′) 2

2(ℓ g→h
0,1 ) 2

) exp(− ( j − j ′) 2

2(ℓ g→h
0,2 ) 2

) . (9)

We constrain the model further with a pseudo-likelihood term so that 
the model’s implied incidence rate κh

r,j  in equation (3b) is around the 
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MLE incidence rate estimate obtained from the incidence cohort. We 
took this approach in lieu of fitting the model to both the source–recipi-
ent and individual-level incidence exposure data to bypass extreme 
computational runtimes12, and in the context that the source–recipient 
data are not informative of incidence dynamics89. Specifically, we fitted 
log-normal distributions to the 1,000 × 50 Monte Carlo replicate rate 
estimates for individuals of gender h and age j in round r (see above) 
using the lognorm R package (version 0.1.6)90, and then set

∑iλ
g→h
r,i,j

Shr,j × ||(t endr − t startr )||
∼ LogNormal (mean − κ̂hr,j, var − κ̂hr,j) , (10)

where mean- κ̂hr,j  and var- κ̂hr,j  denote respectively the parameters of  
the fitted log-normal distributions, and the left-hand side is  
calculated from equation (7b) and matches the model’s incidence rate 
κhr,j in equation (3b).

Computational inference. Model (7–10) was fitted with Rstan (version 
2.21.0), using Stan’s adaptive HMC sampler62 with 4 chains for 3,500 
iterations including 500 warm-up iterations. Convergence and mix-
ing were good, with highest R-hat value of 1.0027 and lowest effective 
sample sizes of 1,444. The model presented the data well, with 99.63% 
data point inside 95% posterior predictive intervals and the fitted 
model was consistent with all the available data (Extended Data Fig. 6), 
indicating that the data met the assumptions of the statistical model. 
There were no divergent transitions, suggesting non-pathological 
posterior topologies.

Counterfactual interventions
We investigated—given the inferred transmission flows—the hypothe-
tical impact of targeted counterfactual intervention scenarios c on 
predicted incidence reductions in women in the most recent survey 
round 18. In the model, counterfactual interventions were imple-
mented by calculating the expected number of transmission flows 
(equation (2)) into women under counterfactual c that fewer men of 
age i had remained with unsuppressed HIV in survey round 18, which 
we denote by ̃IMR18,i,c . We obtained the expected number of incident  
cases in women of age j in round 18 in counterfactual c via

̃λ
M→F
R18,j,c = ∑

i
∫ β̂M→F

R18,i,j × ̃IMR18,i,c × SFR18,j × ||(t endR18 − t startR18 )|| dβ̂M→F
R18,i,j, (11)

where uncertainty in the posterior age-specific transmission rates after 
fitting model ((7)–(10)) is integrated out. The predicted incidence rate 
reductions were based on comparing the counterfactuals(11) to the 
inferred cases in women in the corresponding age group (3b), 

1 − (∑j
̃λ
M→F
R18,j,c) / (∑jλ̂

M→F
R18,j ).

Closing half the gap in viral suppression rates in men relative to 
women. In this scenario, we considered the impact of reducing by half 
the gap in the proportion of men with unsuppressed HIV compared to 
the same proportion in women. To this end, we first calculated for each 
1-year age band the average of the estimated proportion of 
census-eligible infected men in round 18 with suppressed virus and the 
same proportion in women, ̃νM

R18,i = (νM
R18,i + νF

R18,i)/2. Next, we set ̃IMR18,i,1 
to the smoothed estimate of census-eligible men of age i in round  
18 multiplied with the posterior median estimate of HIV prevalence  
in census-eligible men of age i, and with 1 − ̃νM

R18,i.

Closing the gap in viral suppression rates in men relative to women. 
In this scenario, we considered the impact of achieving the same pro-
portions of men with unsuppressed HIV as in women. To this end, we 
set ̃IMR18,i,2 to the smoothed estimate of census-eligible men of age i in 

round 18 multiplied with the posterior median estimate of HIV preva-
lence in census-eligible men of age i, and with 1 − νF

R18,i.

95-95-95 in men. In this scenario, we considered the impact of achiev-
ing viral suppression in 85.7% (0.95 × 0.95 × 0.95) in each 1-year age 
group of men with HIV. The number of remaining men with unsup-
pressed HIV in round 18, ̃IMR18,i,3, was calculated by multiplying the 
smoothed estimate of the census-eligible men of age i in round R18 
with the posterior median estimate of HIV prevalence in the 
census-eligible men of age i, and with 1 − 0.953.

Sensitivity analyses
Sensitivity in incidence rate estimates to the GAM incidence model 
specification. The longitudinal age-specific HIV incidence rates of the 
central analysis were estimated with a log-link generalized additive 
effects Poisson regression model with a linear predictor comprising 
relatively simple main and interaction effects by age and survey round, 
fitted to individual-level 0/1 incidence outcomes and exposure times 
specified as offset on the log scale. To assess sensitivity against the 
relatively simple linear predictor, we considered a more complex mean 
specification comprising independent LOESS smoothers to capture 
age-specific incidence trends in each survey round, and fitted this mean 
model for computational reasons to crude HIV incidence rates. Specifi-
cally, we fitted LOESS regressions as implemented in the R package stats 
(version 3.6.2) with span argument set to 0.7 across the age space inde-
pendently to each of the crude gender- and round-specific HIV incidence 
rates in all 50 imputation datasets, and weighted by the corresponding, 
group-level aggregated exposure times. The HIV incidence rate estimates 
under the LOESS model had as expected a smaller mean absolute error 
against the crude estimates as compared against the GAM model (0.0048 
(0.0046–0.0051) versus 0.0053 (0.0051–0.0056); Supplementary  
Fig. 3). Overall, the contribution of men to incidence was more variable 
across rounds while the shifts in the median age at infection were similar 
in the central and this sensitivity analysis (Supplementary Table 10).

Sensitivity in incidence rate and transmission flow estimates to 
limited communities. Over time some communities were added and 
others left RCCS (Supplementary Table 2). We repeated our analysis on 
the subset of 28 consecutively surveyed communities. We found similar 
incidence rates with slightly faster declines in male new infections and 
larger gender disparities (Supplementary Fig. 4). All other primary 
findings remained insensitive (Supplementary Table 10).

Sensitivity in estimating transmission flows to uncertainty in infec-
tion time estimates. In the central analysis, phyloTSI infection time 
estimates associated to source–recipient pairs were refined using the 
inferred transmission direction, age, and sero-history data. To assess 
sensitivity to the infection time estimates used, we inferred transmis-
sion flows on the basis of the raw phyloTSI infection time estimates as 
long as they were compatible with the inferred transmission direction, 
and otherwise on the basis of the refined estimates. Overall, we found 
source–recipient pairs were potentially allocated to earlier or later 
time periods reflecting the wide uncertainty in infection time esti-
mates, though across the sample the age distribution of sources and 
recipients was remarkably stable (Extended Data Fig. 4). All primary 
findings were insensitive to using the raw infection time estimates 
(Supplementary Table 10).

Sensitivity in time since infection estimates to higher transmissibil-
ity during acute infection. In the central analysis, transmission flows 
were estimated using the centre of gravity of the uncertainty region 
associated with the refined infection time estimates. To account for 
higher transmission rates during acute infection of the transmitting 
partner87, we assumed that the transmission hazard was 5 times higher 
in the first 2 months after infection of the transmitting partner as 
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compared to the following period, and obtained the resulting mean 
infection time estimate under this assumption by generalizing our 
Monte Carlo approach used in the central analysis to an importance 
sampling approach under piecewise linear transmission hazards. The 
primary results were insensitive to these changes as less than 5% of 
source–recipient pairs were attributed to different survey rounds 
(Supplementary Table 10).

Sensitivity in estimating transmission flows to right censoring of 
likely transmission pairs. The RCCS transmission cohort was defined 
retrospectively and so it is possible that some transmission events, 
especially in later rounds, remain as of yet unseen because the corre-
sponding individuals are not yet in the survey or do not yet have virus 
deep-sequenced. To assess sensitivity to right censoring, we excluded 
from analysis those source–recipient pairs for which virus of the source 
or the recipient was deep-sequenced only after rounds 17, 16 and 15. The 
primary findings were insensitive to these analyses because the prob-
abilities of detecting infection events in the phylogenetic data changed 
accordingly (Supplementary Table 10 and Supplementary Fig. 5).

Sensitivity in estimated transmission flows to limited sample size 
of likely transmission pairs. The number of observed infection events 
in the incidence cohort was approximately four times larger than the 
number of reconstructed transmission events, prompting us to explore 
the effect of sampling uncertainty on the transmission flow estimates. 
We bootstrap sampled source–recipient pairs at random with replace-
ment three times, and repeated inferences on these bootstrap samples. 
Our primary findings remained insensitive (Supplementary Table 10).

Sensitivity in estimated transmission flows to modelled sampling 
estimates. The sampling adjustments in equation (6) require assump-
tions including that sampling is independent of infection and transmis-
sion, independent between source and recipient, at random within 
strata, and well approximated by approximating sources with individu-
als with unsuppressed virus. We repeated flow inferences without any 
adjustments and without adjustments for potentially unequal sampling 
of sources. Our primary findings were insensitive across these analyses 
(Supplementary Table 10).

Sensitivity in transmission flow estimates to the phylo-SI model 
specification. In the central analysis, the log transmission rates that 
underpin the estimated transmission flows were estimated using the 
linear predictor in equation (7c), and this model specification was 
associated with overall smallest mean absolute error and posterior 
predictive coverage as shown in Supplementary Table 6 against the 
following alternative models,

logβg→h
r,i,j = ̂cccg→h(i, j) + γ0 + γg + γr + γp(r) + fff g→h

0 (i, j) + fff g→h
p(r) (i), (12a)

logβg→h
r,i,j = ̂ccc g→h(i, j) + γ0 + γg + γr + γp(r) + fff g→h

0 (i, j) + fff g→h
p(r) (j), (12b)

logβg→h
r,i, j = ̂cccg→h(i, j) + γ0 + γg + γr + γp(r) + fff g→h

0 (i, j) + fff g→h
p(r) (i, j), (12c)

logβg→h
r,i,j = ̂ccc g→h(i, j) + γ0 + γg + γr + γp(r) + fff g→h

0 (i, j) + fff g→h
r (j) (12d)

logβg→h
r,i,j = ̂cccg→h(i, j) + γ0 + γg + γr + γp(r) + fff g→h

0 (i, j)

+fff g→h
r (j) + fff g→h

p(r) (j),
(12e)

logβg→h
r,i,j = ̂cccg→h(i, j) + γ0 + γg + γr + γp(r) + fff g→h

0 (i, j)

+fff g→h
r (j) + fff g→h

p(r) (i, j).
(12f)

Models specifying transmission rates without a round-specific random 
function on the age of infected individuals, equations (12a)–(12c), did 
not fit the data well (Supplementary Table 6). The remaining models, 
equations (12d)–(12f), performed as well as the model used in the 
central analysis (Supplementary Table 6) and our primary findings 
remained insensitive (Supplementary Table 10).

Sensitivity in counterfactual intervention impacts to assump-
tions on viral suppression levels in non-participants. Infection and 
viremia in the non-participant census-eligible population remained 
unknown and in the central analysis, we considered as proxy of virus 
suppression levels among non-participants data from first-time par-
ticipants. We performed two sensitivity analyses, assuming first that 
all non-participants with HIV were also viremic across all rounds, 
and assuming second that virus suppression was identical among 
non-participants and participants of the same age, gender and sur-
vey round. Together, the two scenarios likely encompass the true, 
unknown viral suppression levels in non-participants. These sce-
narios were implemented by updating the number of individuals  
with viremia in equation (2), and refitting the model. The sensitivity 
analysis assuming all non-participants with HIV were viremic resulted 
in larger predicted incidence reductions in women around 75%,  
while the sensitivity analysis assuming virus suppression was the  
same among non-participants as among participants of the same 
age, gender and survey round resulted in similar predicted incidence 
reductions in women than in the central analysis (Supplementary 
Table 10).

Sensitivity in counterfactual intervention impacts to potentially 
higher HIV prevalence in non-participants. In the central analysis, 
we assumed that HIV prevalence was the same in participants and 
non-participants of the same age, gender and survey round. We consid-
ered three sensitivity analyses, assuming first that prevalence was 25% 
higher in male non-participants compared to male participants of the 
same age, gender and survey round, assuming second that prevalence 
was 25% higher in female non-participants compared to female partici-
pants of the same age, gender and survey round, and assuming third 
that prevalence was 25% higher in female and male non-participants 
compared to female and male participants of the same age, gender 
and survey round respectively. These scenarios were implemented by 
updating the number of virally unsuppressed individuals in equation 
(2), and refitting the model. Our primary findings remained insensitive 
(Supplementary Table 10).

Sensitivity in counterfactual intervention impacts to lower viral 
suppression thresholds. Different definitions of HIV suppression are 
currently operational, and we considered the effect of lower thresh-
olds to define viral suppression (<200 copies ml–1) than in the cen-
tral analysis (<1,000 copies ml–1). This scenario was implemented by 
re-estimating the age- and gender-specific proportions of individuals 
with HIV in the study population who had suppressed virus at the lower 
threshold, re-calculating gaps in viral suppression levels in men relative 
to women, and re-calculating the additional number of men needed to 
reach and maintain viral suppression in the counterfactual intervention 
scenarios. We found slightly smaller gender gaps in viral suppression at 
the lower threshold and the predicted incidence reduction in women 
in the counterfactual that assessed closing the suppression gap in men 
was around 45%, and all other findings remained insensitive (Supple-
mentary Table 10).

Ethics statement
The study was independently reviewed and approved by the Ugandan 
Virus Research Institute, Scientific Research and Ethics Committee, 
protocol GC/127/13/01/16; the Ugandan National Council of Science 
and Technology; and the Western Institutional Review Board, protocol 
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200313317. All study participants provided written informed con-
sent at baseline and follow-up visits using institutional review board 
approved forms. This project was reviewed in accordance with Centers 
for Disease Control and Prevention (CDC) human research protection 
procedures and was determined to be research, but CDC investigators 
did not interact with human subjects or have access to identifiable data 
or specimens for research purposes. Participants in RCCS received 
10,000 UGX (approximately US$2.50) in compensation for the baseline 
and follow-up surveys.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Pseudo-anonymized data from the RCCS incidence and transmission 
cohort as well as pseudo-anonymized deep-sequence phylogenies to 
reproduce all analyses are available from Zenodo (https://zenodo.org/ 
record/8412741) as open-access dataset under the CC-BY-4.0 license91. 
HIV consensus sequences are available from Zenodo (https://zenodo. 
org/records/10075815) and the PANGEA-HIV sequence repository 
(https://github.com/PANGEA-HIV/PANGEA-Sequences) as open-access  
dataset under the CC-BY-4.0 license92, with identifiers changed to 
ensure participants cannot be identified from this dataset.
Additional deep-sequence HIV-1 reads can be requested from PANGEA- 
HIV under a managed access policy due to privacy and ethical reasons, 
which aligns with UNAIDS ethical guidelines. The process for accessing 
data, the PANGEA-HIV data sharing policy and a detailed description 
of what data are available is laid out in full at (https://www.pangea-hiv. 
org/join-us). Briefly, applicants can apply to receive additional data by 
submitting a concept sheet proposal in which they explain the research 
question and how they will mitigate potential risks to participant pri-
vacy. In line with requirements for PANGEA members, applicants will be 
asked to present proof of human subject research training and comply 
with PANGEA-internal publication agreements. PANGEA encourages 
external applicants to collaborate with the researchers who generated 
the data. For more information contact PANGEA project manager Lucie 
Abeler-Dörner (lucie.abeler-dorner@bdi.ox.ac.uk). The time frame for 
a response to requests is 2–4 weeks.
Additional cohort data can be requested from RHSP. Because of privacy 
and ethical reasons, RHSP maintains a controlled access data policy 
for corresponding epidemiological metadata and corresponding data 
collection tools. In brief, RHSP policy requires individuals to submit 
an RHSP data request form (available upon request from info@rhsp.
org or gkigozi@rhsp.org) and a brief concept note (one or two pages) 
detailing their research questions and methods. In addition, research-
ers are asked to provide a curriculum vitae/resume along with proof 
of human subjects research training. Concept sheets can be submit-
ted to Godfrey Kigozi (gkigozi@rhsp.org), executive director of the 
RHSP. Only individuals named on the original data request and who 
provide the request, resume and human subjects research training, 
are permitted access to the data. Released data are not to be reused 
for other purposes outside of approved concepts. The time frame for 
a response to requests is 2–4 weeks.

Code availability
Code to reproduce all analyses is freely available on GitHub version 
1.1.2 under the GNU General Public License version 3.0 at the reposi-
tory (https://github.com/MLGlobalHealth/phyloSI-RakaiAgeGender).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Characteristics of the RCCS study population by age, 
gender, and time. (a-b) Population size. Counts of the aggregated individual-
level census data by 1-year age group (bars) are shown along LOESS smoothed 
population size estimates (line) for men and women (see text). (c-d) RCCS 

participation rates. Rates relative to the aggregated census data by 1-year age 
band (bars) are shown along LOESS smoothed participation rates (line) for both 
men and women. For reference, round 10 values are indicated in each subsequent 
plot in darker colours. The timeline of the survey rounds is shown in Fig. 1b.
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Extended Data Fig. 2 | Age- and gender-specific person-years at risk and HIV incidence events in the RCCS incidence cohort. Person-years at risk in the RCCS 
incidence cohort among (a) women and (c) men. HIV incidence events in the RCCS incidence cohort among (b) women and (d) men.
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Extended Data Fig. 3 | Phylogenetically reconstructed source–recipient 
pairs. (a) Number of heterosexual source–recipient pairs by the date of 
infection of the recipient (x-axis), the age of the recipient at infection (panel), 
and transmission direction (colour). (b) Heterosexual source–recipient pairs 

by the age of the recipient (x-axis) and the age of the source (y-axis) at the 
median infection time estimate by the round (colour) in which transmission was 
estimated to have occurred. The number of phylogenetically reconstructed 
source–recipient pairs is indicated in the top-left corner.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparison of estimated infection dates in 
phylogenetically reconstructed source–recipient pairs. (a) Estimated 
infection times of the recipient in the n = 227 phylogenetically reconstructed 
source–recipient pairs from phyloTSI based on deep-sequence data alone 
(x-axis) against refined estimates accounting for sero-history and inferred 
direction of transmission (y-axis). Median estimates (dots) are shown along 
95% uncertainty ranges (lines). (b) Histogram of absolute difference (bars) and 

mean absolute differences (triangle) between infection time estimates and the 
midpoint of seroconversion intervals in 98 source–recipient pairs in which the 
recipient had a last negative test, across the two methods (colour). (c) Histogram 
(bars) and median (triangle) age of the phylogenetically likely recipient, across 
the two methods (colours). (d) Histogram (bars) and median (triangle) age of the 
phylogenetically likely source, across the two methods (colours).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Sampling estimates of transmission events and sources 
of infections. (a-c) The sampling cascade of transmission events was modelled 
by comparing the number of phylogenetically reconstructed source–recipient 
events to the estimated number of infection events under the incidence model, 
by gender, age band and survey round of infected individuals. Throughout, 
shown are the number of sampled and unsampled transmission events, the 
estimated proportion of transmission events that were ever deep-sequenced, 
and log ratios of estimated proportion of transmission events that were ever 
deep-sequenced in any strata relative to the overall average across strata (point 
estimates: dots, 95% confidence intervals: linebars). Estimates are based on 
n = 227 source–recipient pairs and n = 1,117 observed incidence events. (d-f) 

Additional differences in source sampling were modelled by considering 
unsuppressed individuals as potential sources of infection, and calculating the 
number of unsuppressed individuals in a round that were ever deep-sequenced. 
Throughout, shown are the number of sampled and unsampled possible 
transmission sources, the estimated proportion of possible sources that were 
ever deep-sequenced, and log ratios of estimated proportion of possible sources 
that were ever deep-sequenced in any strata relative to the overall average across 
strata (point estimates: dots, 95% confidence intervals: linebars). Estimates are 
based on n = 227 source–recipient pairs and n = 3,265 participants with HIV and 
measured viral load.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Validation of the incidence rate and transmission 
flow models. (a) Empirical HIV incidence rates were obtained for each of the 
50 data sets with imputed exposure times and compared to the estimated HIV 
incidence rates under the Poisson model. The median (point) and 95% range 
(horizontal error bars) of the crude HIV incidence rates are plotted against 
the posterior median (point) and 95% range (vertical error bars) of estimated 
HIV incidence rates for each gender, age and round. (b) Prior incidence rates 
as specified according to the outputs of the incidence rate and used in the 
transmission model are compared versus the posterior incidence rates obtained 

with the transmission model. Shown are medians (point) and 95% credible 
intervals (error bars) by gender, age and round. (c) Observed transmission flow 
counts are compared to posterior predictive estimates under the transmission 
model. Shown are medians (point) and 95% credible intervals (error bars) by 
direction of transmission, time period, and age of the phylogenetically likely 
source. Throughout all subfigures, empirical and modelled incidence estimates 
are based on n = 1,117 individuals in the incidence cohort and n = 227 source–
recipient pairs among n = 1,978 individuals in the transmission cohort.
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Extended Data Fig. 7 | Age contributions to sexual contacts, viral suppression 
and transmission. (a) Estimated age contributions from women to men of all 
ages (left) and from men to women of all ages (right) to sexual contacts in round 
15, viral suppression in round 18, and transmission in round 18 (posterior median: 
line, 95% credible interval: ribbon). Age contributions sum to 100% separately 
for women and men. (b) Estimated age contributions from women to men of 

specific ages (left) and from men to women of specific ages (right) to sexual 
contacts in round 15, and transmission in round 18 (posterior median: line, 95% 
credible interval: error bars). Age contributions sum to 100% for women and 
men combined. Throughout all subfigures, empirical and modelled incidence 
estimates are based on n = 1,117 individuals in the incidence cohort and n = 227 
source–recipient pairs among n = 1,978 individuals in the transmission cohort.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | ART use and virus suppression in the RCCS study 
population by age, gender, and time. (a) HIV-positive male participants, by 
whether they reported ART use (colour), by 1-year age band (x-axis) and survey 
round (rows). (b) HIV-positive male first-time participants, by whether they 
reported ART use (colour), by 1-year age band (x-axis) and survey round (panel). 
(c) Estimates of ART use in men (blue) and women (pink) in the study population 
by 1-year of age. Data from participants (dots) are shown along smoothed 
posterior median estimates (solid line) and 95% credible intervals (ribbon) 
in participants, and along posterior median estimates in the census-eligible 
population (dashed line), using data from first-time participants as proxy of ART 

use in non-participants (see text). (d) Estimates of virus suppression, defined as a 
viral load measurement below 1,000 copies of HIV per millilitre plasma blood, in 
men (blue) and women (pink) in the study population by 1-year of age. Data from 
participants (dots) are shown along smoothed posterior median estimates (solid 
line) and 95% credible intervals (ribbon) in participants, and along posterior 
median estimates in the census-eligible population (dashed line), using data 
from first-time participants as proxy of ART use in non-participants. Throughout 
all subfigures, estimates are based on n = 38,749 participants including n = 3,924 
participants with HIV who report ART status and n = 3,265 participants with HIV 
and measured viral load.
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Extended Data Fig. 9 | Longitudinal changes in viral suppression and 
incidence rates in the RCCS study population since 2003. (a) Changes in 
incidence rates relative to round 10, that is Sep 2003 to Oct 2004 (posterior 
median: dots, 95% confidence interval: error bars). (b) Female-to-male ratio 
in changes in incidence rates relative to round 10 (posterior median: dots, 
95% credible interval: error bars). (c) Male-to-female ratio in changes in the 
proportion of individuals with HIV who have unsuppressed virus relative to 

round 10 (posterior median: dots, 95% credible interval: error bars). (d) Scatter 
plot between the female-to-male ratio in changes in incidence rates as shown 
in (b) and the male-to-female ratio in changes in the proportion of individuals 
with HIV who have unsuppressed virus relative to round 10 as shown in (c). 
Throughout all subfigures, estimates are based on n = 1,117 individuals in the 
incidence cohort and n = 3, 265 participants with HIV and measured viral load.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection For sequencing, the following software were used, QuantStudio Real-Time PCR System v1.3, Agilent TapeStation Software Analysis 4.1.1, 
Clarity Version 4.2.23.287, FreezerPro® (7.4.0-r14598), LabArchives ELN (Electronic Lab Notebook) 2023. All epidemiologic data collected 
through the Rakai Community Cohort Study are stored in a database running Microsoft SQL server 2019 and Microsoft Access version 2016. 
 

Data analysis All data were analyzed with R version 4.1.2, the R package stats version 3.6.2,  the R package Rstan version 2.21.0, the R package cmdstanR 
version 0.5.1, the R package mgcv version 1.8-38, shiver version 1.5.7, phyloscanner version 1.8.1, MAFFT version 7.475, IQ-Tree version 2.0.3, 
phyloTSI version 1.0.0, ; and using the custom code scripts freely available at https://github.com/MLGlobalHealth/phyloSI-RakaiAgeGender. 
Team communications were supported through the Zulip chat app 5.10.2 (https://zulip.com/). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Pseudo-anonymised data from the RCCS incidence and transmission cohort as well as pseudo-anonymised deep-sequence phylogenies to reproduce all analyses are 
available from Zenodo (https:/zenodo.org/record/8412741) as open-access data set under the CC-BY-4.0 license. HIV consensus sequences are available from 
Zenodo (https://zenodo.org/records/10075815) and the PANGEA-HIV sequence repository (https://github.com/PANGEA-HIV/PANGEA-Sequences) as open-access 
data set under the CC-BY-4.0 license, with identifiers changed to ensure participants cannot be identified from this data set. 
 
Additional deep-sequence HIV-1 reads can be requested from PANGEA-HIV under a managed access policy due to privacy and ethical reasons, as the risks to the 
participants outweigh the benefits. The risk is to accidentally disclose evidence of transmission, or of not transmission, therefore making light evidence of sexual 
contact and transmission that could jeopardise relationships, and in some instances lead to criminalisation which is against UNAIDS ethical guidelines. The process 
for accessing data, the PANGEA-HIV Data Sharing Policy and a detailed description of what data are available is laid out in full at 
(https://www.pangea-hiv.org/join-us). Briefly, applicants can apply to receive additional data by submitting a concept sheet proposal in which they explain the 
research question and how they will mitigate potential risks to participant privacy. In line with requirements for PANGEA members, applicants will be asked to 
present proof of human subject research training and comply with PANGEA-internal publication agreements. PANGEA encourages external applicants to collaborate 
with the researchers who generated the data. For more information contact PANGEA project manager Lucie Abeler-Dörner (lucie.abeler-dorner@bdi.ox.ac.uk). The 
time frame for a response to requests is 2-4 weeks. 
 
Additional cohort data can be requested from RHSP. Because HIV transmission is criminalized in Uganda and due to further privacy considerations, RHSP maintains a 
controlled access data policy for corresponding epidemiological metadata and corresponding data collection tools. In brief, RHSP policy requires individuals to 
submit an RSHSP data request form (available upon request) and a brief concept  note (1-2 pages) detailing their research questions and methods. In addition, 
researchers are asked to provide a curriculum vitae/resume along with proof of human subjects research training. Concept sheets can be submitted to Dr. Godfrey 
Kigozi (gkigozi@rhsp.org), executive director of the RHSP.  Only individuals named on the original data request and who provide the request, CV/resume and HSR 
training, are permitted access to the data. Released data are not to be reused for other purposes outside of approved concepts. The time frame for a response to 
requests is 2-4 weeks.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The results presented in this study derive from data collected through nine consecutive survey rounds of the Rakai 
Community Cohort Study (RCCS) between September 2003 and May 2018. Participants self-reported their gender, birth date, 
and age at visit. 

Population characteristics Following consent, participants reported on demographics, behavior, health, and health service use. All participants were 
offered free voluntary counseling and HIV testing as part of the survey. Rapid tests at the time of the survey and confirmatory 
enzyme immunoassays were performed to determine HIV status. All participants were provided with pre-test and post-test 
counseling, and referrals of individuals who were HIV-positive for ART. Additionally, all consenting participants, irrespective 
of HIV status, were offered a venous blood sample for storage/future testing, including viral phylogenetic studies. Table S1 
summarises the characteristics of the RCCS participants and HIV-positive participants by age and gender. Within the RCCS, we 
also performed population-based HIV deep-sequencing spanning a period of more than 6 years, from August 2011 to April 
2018. The primary purpose of viral deep sequencing was to reconstruct transmission networks and identify the population-
level sources of infections, thus complementing the data collected through the incidence cohort. Participants are 
characterised in Supplementary Table S1.

Recruitment For each survey round, the RCCS did a household census, and subsequently invited all individuals that were of age 15-49 
years and residents for at least 1 month to participate in the open, longitudinal RCCS survey. Eligible individuals first attended 
group consent procedures, and individual consent was obtained privately by a trained RCCS interviewer. While our analyses 
accounted for participation biases by age, gender and community we cannot rule out the possibility that other unmeasured 
factors associated with age and gender and also HIV serostatus, viral load suppression, and onward transmission may have 
been related to study participation, potentially biasing results.

Ethics oversight The study was independently reviewed and approved by the Ugandan Virus Research Institute, Scientific Research and Ethics 
Committee, protocol GC/127/13/01/16; the Ugandan National Council of Science and Technology; and the Western 
Institutional Review Board, protocol 200313317. All study participants provided written informed consent at baseline and 
follow-up visits using institutional review board approved forms. This project was reviewed in accordance with CDC human 
research protection procedures and was determined to be research, but CDC investigators did not interact with human 
subjects or have access to identifiable data or specimens for research purposes. Participants in the RCCS received 10,000UGX 
(approximately 2.50USD) in compensation for the baseline and follow-up surveys. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The results presented in this study derive from data collected through nine consec- 
utive survey rounds of the Rakai Community Cohort Study (RCCS) between September 2003 and May 2018. All data collected 
through the surveys were of quantitative nature.

Research sample Individuals that were of age 15-49 years and residents for at least 1 month in inland and fishing communities in South-central 
Uganda. In total, 38749 participants were enrolled. Participants are characterized by survey round, gender and age in Supplementary 
Table S1. Sampling was representative of the population except for individuals away for work or at school.

Sampling strategy The entire eligible population was invited to participate in the RCCS; sampling was thus population-based and survey participation 
was voluntary. Viral sequencing was performed on plasma samples from participants with HIV who had no viral load measurement 
and self-reported being ART-naïve at the time of the survey, or who had a viral load measurement above 
1,000 copies/mL plasma. 

Data collection Between September 2003 and May 2018, nine consecutive survey rounds of the Rakai Community Cohort Study (RCCS) were 
conducted in 36 inland communities in south-central Uganda. For each survey round, the RCCS did a household census, and 
subsequently invited all individuals that were of age 15-49 years and residents for at least 1 month to participate in the open, 
longitudinal RCCS survey; and so data collection was not randomized, and data collection was blind relative to previous interactions 
with individuals or any personal characteristics apart from age and residency status, and any research questions. Eligible individuals 
first attended group consent procedures, and individual consent was obtained privately by a trained RCCS interviewer. Following 
consent, participants reported in a private location, typically a tent at the survey hub, on demographics, behavior, health, and health 
service use. All participants were offered free voluntary counseling and HIV testing as part of the survey. Rapid tests at the time of 
the survey and confirmatory enzyme immunoassays were performed to determine HIV status. All participants were provided with 
pre-test and post-test counseling, and referrals of individuals who were HIV-positive for ART. Additionally, all consenting participants, 
irrespective of HIV status, were offered a venous blood sample for storage/future testing, including viral phylogenetic studies. All 
epidemiologic data collected through RCCS are stored in a database running Microsoft SQL server 2019 and Microsoft Access version 
2016. Further details for the survey methods are described in Grabowski, M. K. et al. HIV prevention efforts and incidence of HIV in 
Uganda. New England Journal of Medicine 377, 2154–2166 (2017) 

Timing Surveys were conducted between September 2003 and May 2018. The first survey round considered in this analysis was Round 10, 
September 26, 2003 - November 23, 2004; followed by Round 11, February 15, 2005 - June 30, 2006; Round 12, August 30, 2006 - 
June 06, 2008; Round 13, June 17, 2008 - July 12, 2009; Round 14, January 18, 2010 - June 21, 2011; Round 15, August 10, 2011 - July 
05, 2013; Round 16, July 08, 2013 - January 30, 2015; Round 17, February 23, 2015 - September 02, 2016; and Round 18, October 03, 
2016 - May 22, 2018.

Data exclusions Viral sequence data were excluded if they had not sufficient depth or length for the purpose of deep-sequence phylogenetic 
analyses. We required that individuals had a depth of ≥ 30 such reads over at least 3 non-overlapping 250bp genomic windows. 88 
transmission pairs had to be excluded due to ethical considerations. 

Non-participation Non-participation rates among eligible individuals in the communities considered were as follows. Round 10: 4,569/11,976; Round 11 
4,255/12,528; Round 12 4,966/13,718; Round 13 4,715/13,433; Round 14 5,165/14,828; Round 15 7,217/20,806; Round 16 
7,815/21,887; Round 17 7,836/22,929; Round 18 8,216/23,269. Participation rates varied by age and gender and are described in 
Supplementary Table S1 and Extended Data Fig 1, and the most common reason for non-participation was being away for work or 
school.

Randomization Participants were not allocated into experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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