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Abstract
We provide an elementary proof of the dual representation of Expected Shortfall on the
space of integrable random variables over a general probability space. Unlike the results in
the extant literature, our proof only exploits basic properties of quantile functions and can
thus be easily implemented in any graduate course on risk measures. As a byproduct, we
obtain a new proof of the subadditivity of Expected Shortfall.

Keywords Expected Shortfall · Dual Representation · Subadditivity

Mathematics Subject Classification 49N15 · 60E15 · 91G70

JEL Classification G22 · D81 · C61

1 Introduction

The debate on capital adequacy and solvency regulation in the past thirty years has been
dominated by two competing risk measures: Value at Risk and Expected Shortfall. As is well
known, Value at Risk became popular as part of the RiskMetrics package developed by J.P.
Morgan in the 1990s with the aim to provide market participants with a set of techniques and
data to measure market risks in their portfolios; see [20]. Shortly after, Value at Risk was
chosen by the Basel Committee on Banking Supervision as the referencemarket riskmeasure
in the Basel II framework and was later to become the reference credit risk measure in the
Basel III framework as well as the reference metric used by European insurance regulators
for the computation of solvency capital requirements within the Solvency II framework; see
[6, 8, 16]. The introduction of Value at Risk raised a number of concerns about its ability to
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properly capture (tail) risks and to create the right incentives towards portfolio diversification,
which eventually led to the definition of Expected Shortfall in the early 2000s; see [2, 4, 9, 27,
31, 32]. Currently, Expected Shortfall has replaced Value at Risk as the reference market risk
measure in theBasel III framework and is employed to compute solvency capital requirements
for insurance and reinsurance companies in the Swiss Solvency Test; see [7, 17]. Both risk
measures have been the subject of an intense research program that was aimed to uncover
their relative merits and drawbacks both from a theoretical and empirical point of view; see,
e.g., [1, 5, 10, 11, 13, 21, 22, 25, 26, 34–36, 38].

A key difference at a theoretical level is that Expected Shortfall is a coherent risk measure
in the sense of [4] whereas Value at Risk is not as it fails to satisfy the important property of
subadditivity. Being coherent, Expected Shortfall can be equivalently described as a “robust
expectation”, i.e., as a supremum of expectations over a suitable family of probability mea-
sures. More precisely, let (�,F, P) be a probability space and denote by L1 and L∞ the
space of P-integrable and P-almost surely bounded random variables, respectively. Follow-
ing [18], we define the Expected Shortfall, also called Average Value at Risk, of X ∈ L1 at
level α ∈ (0, 1) by

ESα(X) := 1

α

∫ α

0
VaRβ(X) dβ,

where VaRβ(X) := − inf{x ∈ R; P(X ≤ x) > β} is the Value at Risk of X at level
β ∈ (0, 1), which coincides, up to a sign, with the upper quantile of X at level β. We denote
by P the collection of all probability measures on F , and for α ∈ (0, 1) we set

Pα :=
{
Q ∈ P; Q � P,

dQ

dP
≤ 1

α
P-a.s.

}
. (1.1)

We can then express the Expected Shortfall of X ∈ L1 as a “robust expectation” over Pα ,
namely

ESα(X) = sup
Q∈Pα

EQ(−X). (1.2)

This representation corresponds to the classical “Fenchel–Moreau–Rockafellar” dual repre-
sentation from convex analysis applied to Expected Shortfall; see [37, Theorem 2.3.3] for
a general formulation. The representation is informative per se and becomes a useful tool
in a variety of applications featuring Expected Shortfall, e.g., to pricing, hedging, portfolio
selection; see [3, 12, 19, 24, 29–33].

Historically, the intuition behind the dual representation of Expected Shortfall can be
traced back to the link between Expected Shortfall and the Worst Conditional Expectation at
level α ∈ (0, 1), which, following [4], is defined for every X ∈ L1 by

WCEα(X) := sup
A∈F, P[A]>α

EP (−X |A).

In a nonatomic setting, theWorst Conditional Expectation admits a dual representation in the
formof the right hand side of (1.2); thiswas established in [14, Example 4.2].1 This result then
automatically delivers the dual representation of Expected Shortfall for atomless probability
spaces because the two risk measures coincide in this setting; see, e.g., [14, Theorem 6.10].
However, as shown in [2], the two risk measures (and their dual representations) do not
coincide on general probability spaces, thereby requiring an independent study of Expected
Shortfall in a general setting.

1 The result can already be found in the preprint version from March 2000.
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To the best of our knowledge, the first complete derivation of the dual representation
of Expected Shortfall was obtained in [18, Theorem 4.39] for bounded random variables.
The proof is based on two steps. First, the equivalent formulation of Expected Shortfall as
a tail conditional expectation, which was originally proved in [2, 27], is used to show that
Expected Shortfall dominates from above each expectation in (1.2). Second, a Neyman-
Pearson type argument is employed to show that Expected Shortfall coincides with one
of those expectations for a suitable choice of the underlying probability so that one has
actually equality in (1.2). A similar two-step argument is used in [28] but the representation
is stated for integrable random variables defined on a nonatomic probability space. In the
aforementioned references the dual representation was also used to derive – as a direct
byproduct – another important property of Expected Shortfall, subadditivity. This duality-
based proof of subadditivity is included in the survey article [15], where it is said that “[this
proof] is probably the most mathematically advanced among all proofs in this paper”. In fact,
the authors recommend it “in an advanced course where the axiomatic theory of coherent
risk measures is a point of interest”.

The goal of this short note is to provide an elementary proof of the dual representation
(1.2) of Expected Shortfall, and, as a byproduct, a new proof of its subadditivity, for integrable
random variables over a general probability space. Our approach only relies on basic proper-
ties of quantile functions and standard results from measure theory. In particular, it does not
require the equivalent formulation of Expected Shortfall as a tail conditional expectation. We
first obtain the desired representation for simple random variables. A straightforward limiting
argument allows to extend it to bounded random variables. Finally, the continuity from above
of quantile functions makes it possible to further extend it to all integrable random variables.
The advantage of this multi-layer approach is that one can tailor to the reference audience the
choice of the model space and, hence, the overall mathematical complexity of the argument
(finite/general probability space, simple/bounded/integrable random variables). We believe
that the proof in the present note is considerably simpler than the ones in the extant literature
and can thus be successfully implemented in any graduate course on risk measures. In this
pedagogical spirit, we collect all the basic properties of quantile functions that are used in
the note in the appendix and provide a full proof.

2 Dual representation

In this section we establish the dual representation (1.2) of Expected Shortfall. As a prelim-
inary step, we collect some elementary properties of Expected Shortfall that are used in the
proof. They are direct consequences of elementary properties of quantile functions recorded
in Lemma 5 in the appendix. In particular, note that Expected Shortfall is well defined
by Lemma 5(a) and is continuous from above by combining Lemma 5(d) with monotone
convergence.

Proposition 1 For every α ∈ (0, 1) the following statements hold:

(a) ESα(X) ∈ R for every X ∈ L1.
(b) ESα(X) ≤ ESα(Y ) for all X , Y ∈ L1 such that X ≥ Y P-a.s. (monotonicity).
(c) ESα(X + c) = ESα(X) − c for all X ∈ L1 and c ∈ R (cash invariance).
(d) ESα(Xn) ↑ ESα(X) for all (Xn) ⊂ L1 and X ∈ L1 with Xn ↓ X P-a.s.
(e) For every X ∈ L1, there is k ∈ N such that ESα(X) = ESα(min{X ,m}) for m ∈ [k,∞).

In order to prove (1.2), we first establish a link between the sign of Expected Shortfall and
the sign of expectations taken under probabilities in the dual setPα from (1.1). In the language

123



Mathematics and Financial Economics

of risk measures, this is equivalent to establishing a dual representation of the acceptance set
associated with Expected Shortfall.

Proposition 2 Let α ∈ (0, 1). For every X ∈ L1 the following statements hold:

(a) If ESα(X) ≤ 0, then EQ (X) ≥ 0 for every Q ∈ Pα .
(b) If ESα(X) > 0, then EQ (X) < 0 for some Q ∈ Pα .

Proof Step 1: Discrete random variables. Let X take the values x1 < · · · < xN with
probabilities p1, . . . , pN > 0, respectively. For every k ∈ {0, . . . , N }, define the cumulative
probability pk := ∑k

h=1 ph and let K := min{k ∈ {1, . . . , N }; pk ≥ α}. Then, for each
k ∈ {1, . . . , K } and β ∈ (pk−1, pk),

VaRβ(X) = − inf{x ∈ R : P(X ≤ x) > β} = −xk .

By definition of ESα , this readily implies

ESα(X) = 1

α

(
K−1∑
k=1

∫ pk

pk−1

VaRβ(X) dβ +
∫ α

pK−1

VaRβ(X) dβ

)

= 1

α

(
K−1∑
k=1

−xk pk − xK

(
α −

K−1∑
k=1

pk

))
=

K−1∑
k=1

(xK − xk)
pk
α

− xK . (2.1)

For Q ∈ Pα and k ∈ {1, . . . , N }, set qk := Q(X = xk) and note that
∑N

k=1 qk = 1 as well
as

EQ(X) =
N∑

k=1

xkqk =
K−1∑
k=1

−(xK − xk)qk + xK +
N∑

k=K+1

(xk − xK )qk . (2.2)

(a) Suppose that ESα(X) ≤ 0 and take Q ∈ Pα . As xK − xk > 0 and qk ≤ pk
α

for every
k ∈ {1, . . . , K − 1} and xk − xK > 0 for every k ∈ {K + 1, . . . , N }, (2.1) and (2.2) give

EQ(X) ≥ EQ(X) +
N∑

k=K+1

−(xk − xK )qk =
K−1∑
k=1

−(xK − xk)qk + xK ≥ −ESα(X) ≥ 0.

(b) Suppose that ESα(X) > 0. We then always can find Q ∈ Pα such that qk = 1
α
pk for

k ∈ {1, . . . , K −1} and qk = 0 for k ∈ {K +1, . . . , N }. Then, (2.2) together with (2.1) give

EQ(X) =
K−1∑
k=1

−(xK − xk)qk + xK =
K−1∑
k=1

−(xK − xk)
pk
α

+ xK = −ESα(X) < 0.

Step 2: Bounded random variables. Let X ∈ L∞. Below we use the elementary fact
that X can be approximated uniformly from above by discrete random variables.

(a) Suppose that ESα(X) ≤ 0 but assume there is Q ∈ Pα with EQ(X) < 0. Then, we

find a discrete random variable X ′ satisfying X − EQ(X)

2 ≥ X ′ ≥ X . This yields EQ(X ′) ≤
EQ (X)

2 < 0 and ESα(X ′) ≤ ESα(X) ≤ 0 by monotonicity of ESα , which contradicts point
(a) in Step 1.

(b) If ESα(X) > 0, then there exists a discrete random variable X ′ with X + ESα(X)
2 ≥

X ′ ≥ X . As a result, ESα(X ′) ≥ ESα(X)
2 > 0 by monotonicity and cash invariance of ESα .

It follows from point (b) in Step 1 that EQ(X) ≤ EQ(X ′) < 0 for some Q ∈ Pα .
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Step 3: Integrable random variables. Let X ∈ L1 and for all m, n ∈ N define
Xm,n := max{min{X ,m},−n} ∈ L∞. It follows from dominated convergence that
EP (|X − Xm,n |) → 0. As for every Q ∈ Pα , we have dQ

dP ≤ 1
α

P-a.s., this gives
EQ(|X − Xm,n |) → 0. Below we additionally use that, by Proposition 1(e), there exists
k ∈ N such that ESα(min{X ,m}) = ESα(X) for every m ∈ N with m ≥ k.

(a) Assume that ESα(X) ≤ 0 and take any Q ∈ Pα . For all m, n ∈ N with m ≥ k
we have ESα(Xm,n) ≤ ESα(min{X ,m}) = ESα(X) ≤ 0 by monotonicity of ESα , whence
EQ(Xm,n) ≥ 0 by (a) in Step 2. This yields EQ(X) ≥ 0 as well.

(b) Suppose that ESα(X) > 0 and take any ε ∈ (0,ESα(X)). Note that, for every m ∈ N,
we have Xm,n + ε ↓ min{X ,m}+ ε, which implies ESα(Xm,n + ε) → ESα(min{X ,m}+ ε)

by Proposition 1(d). In particular, for every m ∈ N with m ≥ k, we have ESα(Xm,n + ε) →
ESα(X + ε) > 0 by cash invariance of ESα . Hence, we can take m, n ∈ N large enough
to obtain both ESα(Xm,n + ε) > 0 and EP (|X − Xm,n |) < αε. By (b) in Step 2, we find
Q ∈ Pα such that EQ(Xm,n + ε) < 0. It remains to observe that

EQ(X) ≤ EQ(|X − Xm,n |) + EQ(Xm,n) ≤ 1

α
EP (|X − Xm,n |) − ε < 0. �

The preceding result delivers at once the desired representation of Expected Shortfall.

Theorem 3 Let α ∈ (0, 1). For every X ∈ L1 the following representation holds:

ESα(X) = sup
Q∈Pα

EQ (−X) . (2.3)

In particular, ESα is subadditive, i.e., for all X , Y ∈ L1,

ESα(X + Y ) ≤ ESα(X) + ESα(Y ).

Proof Let X ∈ L1. For m ∈ R, by cash invariance of ESα and Proposition 2(a) and (b),

ESα(X) ≤ m ⇒ ESα(X + m) ≤ 0 ⇒ inf
Q∈Pα

EQ(X + m) ≥ 0

⇒ sup
Q∈Pα

EQ(−X) ≤ m,

ESα(X) > m ⇒ ESα(X + m) > 0 ⇒ inf
Q∈Pα

EQ(X + m) < 0

⇒ sup
Q∈Pα

EQ(−X) > m.

Combining the inequalities above yields (2.3). Finally, subadditivity follows directly from
the the right-hand side of (2.3) and subadditivity of the supremum. �
Remark 4 We have opted to divide the proof of Proposition 2 into three steps to enhance
versatility. If the interest is only on the dual representation of Expected Shortfall on a finite
probability space or on a general probability space for bounded random variables, then one
has to read only up to the end of Step 1 or Step 2, respectively. The proof of Theorem 3 is
identical in these cases.

Funding Open access funding provided by Universitá degli Studi di Verona within the CRUI-CARE
Agreement.

Data availability statement Data sharing not applicable to this article as no datasetswere generated or analysed
during the current study.
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Appendix A: Some properties of quantile functions

Fix a probability space (�,F, P). For a random variable X ∈ L1 we define the cumulative
probability at x ∈ R by FX (x) := P(X ≤ x) and the upper quantile at level α ∈ (0, 1) by

q+
α (X) := inf{x ∈ R; FX (x) > α}.

For a sequence (Xn) ⊂ L1 we write Xn ↓ X whenever Xn ≥ Xn+1 for every n ∈ N

and Xn → X P-a.s.. Moreover, we set X+ := max{X , 0} and X− := max{−X , 0}. The
next lemma collects some basic properties of quantile functions. We include a proof for
completeness.

Lemma 5 For all X ∈ L1 and α ∈ (0, 1) the following statements hold:

(a) q+
α (X) ∈ R and

∫ 1
0 |q+

β (X)| dβ < ∞.

(b) q+
α (X) ≥ q+

α (Y ) for all X , Y ∈ L1 with X ≥ Y P-a.s.
(c) q+

α (X + c) = q+
α (X) + c for all X ∈ L1 and c ∈ R.

(d) q+
α (Xn) ↓ q+

α (X) for every (Xn) ⊂ L1 with Xn ↓ X.
(e) There is k ∈ N such that q+

β (X) = q+
β (min{X ,m}) for all β ∈ (0, α) and m ∈ N with

m ≥ k.

Proof Weonly prove integrability in (a) and the assertions in (d) and (e) as the other statements
are straightforward to verify by definition.

To establish integrability in (a), assume first that X ≥ 0 P-a.s., in which case q+
β (X) ≥ 0

for every β ∈ (0, 1). For all x ∈ R and β ∈ (0, 1) we have

q+
β (X) > x �⇒ FX (x) ≤ β �⇒ q+

β (X) ≥ x .

By Fubini’s theorem, we therefore obtain

E(X) =
∫ ∞

0
(1 − FX (x)) dx =

∫ ∞

0

∫ 1

0
1[FX (x),1](β) dβ dx

=
∫ 1

0

∫ ∞

0
1[0,q+

β (X)](x) dx dβ =
∫ 1

0
q+
β (X) dβ,

proving the desired assertion. For a generic X ∈ L1 it suffices to observe that, for every
β ∈ (0, 1), we haveq+

β (X) = q+
β (X+) ifq+

β (X) ≥ 0 andq+
β (X) = q+

β (−X−) ifq+
β (X) < 0,

whence we derive that |q+
β (X)| = q+

β (X+) − q+
β (−X−) ≤ 2q+

β (|X |) by (b).
To prove (d), take a sequence (Xn) ⊂ L1 such that Xn ↓ X but assume that q+

α (X) <

infn∈N q+
α (Xn). Being increasing, FX has at most countably many discontinuity points.

Hence, we find a continuity point x ∈ R for FX such that q+
α (X) < x < infn∈N q+

α (Xn).
As a result, FXn (x) ≤ α < FX (x) for every n ∈ N but FXn (x) → FX (x) by convergence
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in distribution, which is implied by almost-sure convergence. This is impossible and yields
q+
α (Xn) ↓ q+

α (X) by (b).
Finally, to prove (e), take γ ∈ (α, 1) and k ∈ N such that k > q+

γ (X) > q+
α (X). By (b), to

conclude the proof, it suffices to show that, for all β ∈ (0, α) andm ∈ Nwithm ≥ k, we have
q+
β (X) ≤ q+

β (min{X ,m}). To this effect, take an arbitrary x ∈ R such that Fmin{X ,m}(x) > β.

As q+
β (min{X ,m}) ≤ q+

β (X) < q+
γ (X) again by (b), we may assume without loss of

generality that x < q+
γ (X). It is then easy to see that FX (x) = Fmin{X ,m}(x) > β, implying

that q+
β (X) ≤ x . This yields q+

β (X) ≤ q+
β (min{X ,m}) as desired. �
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33. Ruszczyński, A., Shapiro, A.: Optimization of risk measures. In: Probabilistic and Randomized Methods

for Design Under Uncertainty, pp. 119–157. Springer, Berlin (2006)
34. Wang, R., Zitikis, R.: An axiomatic foundation for the Expected Shortfall. Manag. Sci. 67(3), 1413–1429

(2021)
35. Weber, S.: Solvency II, or how to sweep the downside risk under the carpet. Insur. Math. Econ. 82,

191–200 (2018)
36. Yamai, Y., Yoshiba, T.: Value-at-risk versus expected shortfall: a practical perspective. J. Bank. Finance

29(4), 997–1015 (2005)
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