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Abstract

The transition of water into ice is a fundamental natural process; however nucleation is a

rare event in the context of molecular simulations and the underlying mechanism is not

well understood. The formation of ice is a key issue in the context of cryopreservation,

where cellular damage occurs due to extracellular ice formation at temperatures well above

the homogeneous freezing point of pure water. Thus such ice formation must be driven

heterogeneously. The primary intention of this thesis is to consider whether lipid bilayers,

as found in cellular membranes, may be the agent driving such heterogeneous nucleation.

Via molecular dynamics simulations, a number of phospholipid and lipopolysaccharide

bilayers were investigated to see what happens at the interface with supercooled liquid

water. While these bilayers do appear, to varying extents, to act as ice nucleating agents,

their potency as such does not appear to be strong enough to be the key facilitator in such

ice nucleation. In addition to the question as to whether bilayers promote ice nucleation,

the structural and chemical reasons are discussed, particularly in comparing the different

bilayers with each other. This is a key advantage of molecular simulations as compared to

experimental techniques.

In addition to molecular simulations, vesicles were synthesised experimentally and

examined using dynamic light scattering to support the validity of the simulation setup. As

an aside from the topic of ice nucleation, additional simulations were run of the permeation

of small drug molecules through lipid bilayers. These simulations employed enhanced

sampling techniques, and resulted in computing a free energy surface which was consistent

with experimental data.
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Introduction

“Water is life’s matter and matrix, mother and

medium. There is no life without water.”

Albert Szent-Györgyi

The most abundant liquid on Earth and a vital component of all known life, water is one

of the most fundamental compounds in the fields of life sciences and organic chemistry. In

addition to being abundant and essential to life, water has a number of properties which

are unlike other liquids: a well-known example being that its density is maximal in the

liquid phase.1 The nucleation process from water into ice is of great interest to a number

of academic and industrial fields. In the field of atmospheric science, ice nucleation plays

a key role in the formation of ice clouds and is fundamental to their modelling.2–5 The

emission of potential ice nucleating particles (INPs) from the shipping industry, particu-

larly in arctic regions, has implications for environmental preservation.6 The discovery of

cryoprotective agents (CPAs) and antifreeze proteins (AFPs) also has wide ranging ap-

plications, from automotive coolant systems to cryopreservation.7,8 It is cryopreservation

which is the primary motivation behind this thesis. Cryopreservation is the procedure

wherein biological material, such as cells, organelles and tissues,9 is preserved via the

employ of supercooling.10 Particularly when slow-freezing, it is essential to control ice for-

mation during the vitrification procedure11,12 as ice re-crystallisation during this process

accounts for a great deal of cellular damage, often destroying organic matter.9,13,14

In homogeneous systems, ice nucleation does not occur at the commonly understood

freezing point of 0 °C, yet in our collective experience this is the temperature at which

water freezes. In fact, the temperature of homogeneous ice nucleation1 is 232 K: a super-

cooling of 41 K. What then causes extracellular ice formation during the cryopreservation

process, which typically occurs at far milder supercooling than the onset of homogeneous

ice nucleation? Certainly there are many impurities in the aqueous medium surrounding

cells which may promote ice nucleation; but it is possible that the biological matter, which

is the subject of cryopreservation, could play an active role in promoting such extracellular

ice nucleation. In particular, some surfaces are known to act as ice nucleating agents,15,16

so perhaps the interface between extracellular water and the cellular membrane could

function as a site which facilitates ice nucleation.

Despite a wealth of knowledge about the interactions at the interfaces between lipid

bilayers and water,17–20 very little is known about the extent to which lipid bilayers can

xix
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act as ice nucleating agents (INAs); although cholesterol, a common component of cell

membranes, is known to act as an INA in its crystalline form21–23 and as a monolayer.24

It remains, however, an open question as to the extent to which phospholipids (which

account for the majority of many cellular membranes) can facilitate the formation of ice.

This question is the primary focus of this thesis. By comparing a wide range of

lipid bilayers, the effects of bilayer composition, structure and chemistry on interfacial ice

nucleation will be elucidated. The following three sets of systems are studied in detail via

molecular dynamics (MD) simulations:∗

• Model cellular membranes, composed of varying quantities of 1,2-dipalmitoyl-sn-

glycero-3-phosphocholine (DPPC) and cholesterol (CHL).

• Phospholipid membranes with a negative overall charge, composed of varying quan-

tities of DPPC and 1,2-dimyristoyl-sn-glycero-3-phosphatidylinositol (DMPI).

• Asymmetric phospholipid-lipopolysaccharide (LPS) membranes, representative of

the outer membrane of Gram-negative bacteria. There are three such systems, one

with no sugar, one (ReLPS) with two 2-keto-3-deoxy-d-mannooctanoic acid (KDO)

molecules per lipid A molecule, and one (RaLPS) with the complete oligosaccharide

core.

Altogether these systems exhibit a variety of chemical groups and structural trends as

well as a good degree of comparability to published literature and, in the case of the LPS

systems, complexity and correspondence with an actual cell membrane component.

DPPC is used as the basis for so many of these systems for a couple of reasons. From

a practical perspective, DPPC (often with CHL) bilayers have been the study of many

experimental25–27 and computational28–33 studies, this wealth of literature is highly valu-

able to a computational study as it allows for the simulation parameters to be thoroughly

verified. DPPC is also a suitable choice for model membrane systems as phosphatidyl-

cholines, the class of lipid to which DPPC belongs, are common constituents of cellular

membranes.34

It was found, over the course of this work, that the systems studied show some degree

of ice nucleation promotion, with some having more of an effect than others. The effects

of bilayer topology are considered, as are the chemical differences between the bilayers:

in particular the number and accessibility of hydrogen bonding sites, which are known to

play and active role in ice formation on the surface of crystalline CHL.21 From a structural

perspective, the introduction of CHL into DPPC bilayers has an especially potent effect

on the ordering, which would normally be expected to improve such bilayers’ abilities to

act as INAs, however at naturally occurring CHL concentrations (< 50 mol%)34–36 it is

unclear whether CHL improves the nucleating effect. DMPI may be expected to be a

more efficient INA than DPPC due to its greatly increased number of hydrogen bonding

sites, although this was not necessarily observed herein. Finally, sugar-coated LPS systems

∗See chapters 2 and 3 for more details of the systems and for structures for the lipids concerned.
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appear to act as fairly potent INAs, with the sugars potentially facilitating ice nucleation

via the “templating” effect, wherein a surface can act as a template for the growth of Ih,

this effect is particularly seen where there are a number of hydroxyl groups arranged with

a hexagonal structure.37,38

In complement to MD simulations, various mixed DPPC-CHL vesicles were synthesised

in the laboratory and their hydrodynamic diameters assessed via dynamic light scattering

(DLS). This allows for verification that the two-dimensional simulation setup is represen-

tative of real-world bilayers. Despite limitations in the efficacy of DLS for studying rather

heterogeneous solutions, the vesicles formed were clearly large enough for slab geometry

to be suitable in simulating such systems.

In an aside from the work on ice nucleation, similar bilayer systems were created out

of Hydro Soy PC∗ (HSPC). These were simulated at room temperature to study the free

energy landscape of the permeation of small drug molecules, specifically felodipine and

naproxen, through the bilayer. The enhanced sampling techniques of metadynamics (MT)

and umbrella sampling (US) were used for this purpose. MT has limitations for this

task and did not produce a good estimate for the free energy, however US proved more

successful.

In chapters 1 and 2, relevant topics within ice nucleation and lipid bilayers are reviewed.

The main subject of this thesis, that being the computational study of ice nucleation at

interfaces with DPPC-CHL/DMPI and LPS bilayers, is organised into four chapters: with

the simulation details and analysis methods introduced in chapters 3 to 5, and the results

located in chapter 7. Following this, chapters 8 and 9 cover the experimental work and

work on drug permeation through HSPC bilayers, respectively. The overall findings of the

thesis are then summarised in the conclusions.

∗l-α-phosphatidylcholine, hydrogenated (Soy).



Chapter 1

Ice Nucleation

1.1 The structure of ice

Defining what separates solid ice from supercooled liquid water is of obvious importance

to the computational study of ice nucleation. The “ice rules” or “Bernal-Fowler rules”, as

laid out by Bernal and Fowler 39 as follows:

1. Each oxygen must be covalently bonded to exactly two hydrogens.

2. There must be precisely one hydrogen located roughly in-between each pair of oxygen

atoms.

1.1.1 Hexagonal ice

Pauling 40 described the structure of an ideal ice crystal as follows:

1. Each oxygen atom is covalently bonded to two hydrogen atoms, with a bond length

of 0.95 Å.

2. Each water molecule is surrounded by four others, oriented in such a way that its

two hydrogen atoms are directed towards two of the neighbouring water molecules,

forming hydrogen bonds.

3. Such arrangements are restricted by the second requirement of the ice rules, i.e. that

each pair of neighbouring oxygens must have one and only one hydrogen approx-

imately in-between. These hydrogen atoms are distanced 0.95 Å from one oxygen

atom and 1.81 Å from the other.

4. For an ice crystal of N molecules, there are (3/2)N possible configurations, satisfying

the above requirements.

Ice satisfying these conditions is termed hexagonal ice (Ih) and is the basic form of ice

found in nature. The oxygen atoms are arranged in a vaguely two dimensional form∗ on a

∗Somewhat similar to the structure of graphite, but with the tetrahedral bond angles of 109.47° causing
some deviation from the two dimensional plane. Additionally these lattices are rigidly bonded to the lattices
above and below.

1
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Figure 1: The crystal structure of Ih, shown via two different orientations. Oxygen atoms
are coloured red, hydrogen atoms are coloured white and hydrogen bonds are displayed
by dashed blue lines.

hexagonal lattice, subject to the tetrahedral angles between these water molecules, with

such lattices forming a regular tetrahedral arrangement above and below.41 This structure

is composed of a system of interconnected hexagonal cages (HCs). Such a hexagonal

crystal structure is illustrated in figure 1, with oxygen atoms coloured red, hydrogen

atoms coloured white and hydrogen bonds displayed by dashed blue lines.

This tetrahedral arrangement cannot be perfectly ordered for both physical and geo-

metrical reasons. One such reason is that while a perfectly ordered state is geometrically

possible, and thermodynamically stable below 72 K, the orientation of each water molecule

is entirely determined by the configuration of its neighbours; and therefore very difficult

to attain (and extremely improbable to occur spontaneously, e.g. in nature).41 Secondly,

the H−O−H angle in a free water molecule is known to be 104.52°, and such molecules

are fairly rigid, whereas the O···O···O angles in a perfectly tetrahedral structure should

be 109.47°. This slight discrepancy however is not considered significant in the ability

of water molecules to form tetrahedral arrangements of ice, although it would make the

tetrahedral order necessarily slightly irregular.

1.1.2 The many differing phases of ice

While Ih is the form of ice found in nature, many different solid phases of H2O are pos-

sible, some of which are stable at various temperature/pressure ranges and others are

metastable. These other phases are typically grown under high pressure conditions. The

various phases of ice are enumerated using Roman numerals, with ice I being Ih and sub-

sequent ice phases being numbered in roughly the order in which they were first observed

experimentally.42–46 Nine of the first twelve phases (all except for IV, IX and XII) have

been found to be stable at certain temperatures and pressures and metastable at greatly

extended temperature/pressure ranges.41
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Figure 2: The crystal structure of Ic, shown via two different orientations. Oxygen atoms
are coloured red, hydrogen atoms are coloured white and hydrogen bonds are displayed
by dashed blue lines.

1.1.3 Cubic ice

Cubic ice (Ic) is a metastable variant of Ih, with the cubic structure seen in diamond

rather than the hexagonal structure described above. As with Ih, each water molecule

forms four hydrogen bonds to four distinct neighbouring molecules and the density is

practically identical. Pure Ic is not seen in nature, however crystals of it can be formed

by warming high-pressure phases (II–IX) to temperatures of 120–170 K, where the phase

transition to Ic occurs.47 Such Ic will transition to Ih at around 200 K and Ih will never

transition back into Ic under further cooling.41 This structure is composed of a system of

interconnected double diamond cages (DDCs). Such a cubic crystal structure is illustrated

in figure 2, with oxygen atoms coloured red, hydrogen atoms coloured white and hydrogen

bonds displayed by dashed blue lines.

1.2 Classical nucleation theory

One cannot discuss the theoretical study of ice nucleation without mentioning classical

nucleation theory (CNT). This is a simple, yet useful, theory which describes the ther-

modynamics and kinetics of nucleation quantitatively. In CNT, crystalline structures are

treated as homogeneous spheres, surrounded by an infinitely thin interface; this is termed

the capillarity approximation; which infers that the difference in free energy between liquid

and crystal (∆µV) alongside the interfacial free energy (γS) fully describe the thermody-

namics of crystal nucleation.48 In other words, the free energy of formation (∆GN ) of a

spherical crystal of radius r is:

∆GN = A(r)γS − V (r)∆µV = 4πr2γS −
4

3
πr3∆µV , (1)
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where A(r) = 4πr2 is the surface area of the crystal and V (r) = 4
3πr

3 is the volume of the

crystal.

The critical nucleus size, i.e. the size at which the free energy cost of formation matches

the free energy difference between liquid and crystal, is obtained by differentiating equa-

tion (1), with respect to r, and solving ∆G ′N = 0:

∆G ′N = 8πrγS − 4πr2∆µV = 4πr (2γS − r∆µV) = 0. (2)

Thus 2γS − r∆µV = 0, and so r∗ = 2γS
∆µV

, where r∗ is the critical radius.

We define ρC to be the number density∗ within the crystal. The expressions48 for the

critical nucleus size (n∗) and free energy barrier for nucleation (∆G ∗N ) are as follows:

n∗ = ρCV (r∗) = ρC ·
4

3
πr∗3 = ρC ·

4

3
π ·
(

2γS
∆µV

)3

=
32πρC

3
· γS3

∆µV3 , (3)

∆G ∗N = 4πr∗2γS −
4

3
πr∗3∆µV = 4π

(
2γS
∆µV

)2

γS −
4

3
π

(
2γS
∆µV

)3

∆µV =
16π

3
· γS

3

∆µV2 . (4)

The central result of CNT is the following equation for the nucleation rate† of homo-

geneous nucleation (J ):48

J = ρSZAkin exp

(
−∆G ∗N
kBT

)
, (5)

where ρS is the density of potential nucleation sites, Akin is a kinetic pre-factor, kB is

the Boltzmann constant, T is the temperature and Z is the Zeldovich factor, which is

a probability correction factor to account for the fact that a nucleus at the top of the

free energy barrier is not guaranteed to form a crystal.‡ 49–51 From an initial impression

of equation (5) one might expect§ that J increases with temperature; however ∆G∗N can

generally be assumed to be proportional to T 3/∆T 2, where ∆T is the supercooling.48,51,52

1.2.1 Heterogeneous CNT

CNT can also be used to describe surface heterogeneous nucleation. The nucleation bar-

rier for heterogeneous nucleation is generally much lower than that of homogeneous nu-

cleation; and as such in a heterogeneous system nucleation typically occurs preferentially

at the interface(s). Thus, while we were interested equally in the entire surface of the (hy-

pothetically spherical) nucleus for homogeneous nucleation, for heterogeneous nucleation

the proximity to the foreign surface must be considered. The expression for heterogeneous

∗I.e. ρC = n(r)/V (r), where n(r) is the number of molecules in the spherical crystal with radius r.
†The nucleation rate is defined as the number of nucleation events per unit time and volume.
‡I.e. Z is the probability that a nucleus at the top of the free energy barrier will form a crystal, as

opposed to re-dissolving.
§Perhaps with some alarm, since the nucleation rate should of course decrease with temperature.
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free energy of formation (∆GN (hetero))
∗ is:48

∆GN (hetero) = ∆GN (homo) · f(θ), (6)

where f(θ) ≤ 1 is the “shape factor” which balances the three sets of interfacial free

energies: γS(crystal,liquid), γS(crystal,surface) and γS(liquid,surface).

1.2.2 Two-step nucleation

One key limitation behind CNT is the assumption that critical or pre-critical nuclei appear

spontaneously and fully independent from one another — with the singular requirement

being a stochastic overcoming of a single free energy barrier. It stands to reason however,

that nucleation may follow a two-step process, wherein a first free energy barrier must be

overcome in forming an unstructured cluster, with a second free energy barrier required

to overcome to then structure the cluster into a crystalline order. This is not to say that

such nucleation theories are truly “one-step” or “two-step” — it is a continuous free energy

surface which can be traversed in multiple steps, but the key assumption is having one or

two free energy barriers to overcome. Pan et al. 53 detailed such a process for the formation

of ordered solid phases of proteins. In that work, they described the kinetics for such a

two-step nucleation process. Kovács and Christenson 54 described a two-step nucleation

process for ice nucleation from vapour, as is of interest in the study of atmospheric ice

nucleation and cloud formation.

1.3 Homogeneous ice nucleation

The nucleation of supercooled water into ice occurs homogeneously in nature in certain

settings, including that of atmospheric ice formation in clouds. Atkinson et al. 55 studied

the freezing of pure water droplets with diameters between 4 and 24 µm. They found that

volume nucleation† was more probable than surface nucleation‡ for droplets with diameter

greater than 6 µm. Sanz et al. 56 combined MD simulations with CNT to estimate the

interfacial free energy and nucleation free-energy barrier of homogeneous ice nucleation.

The conclusion of that work was that homogeneous ice nucleation is virtually impossible

at supercooling lesser than 20 K. This appears to be in agreement with Atkinson et al. 55

who reported no droplets frozen above 237 K§, a supercooling of 36 K. Thus much of the

ice nucleation in nature would not occur under homogeneous conditions, and relies on

heterogeneous factors.

∗With respect to equation (1), relabelling ∆GN as ∆GN (homo),
†Volume nucleation is nucleation within the bulk of a droplet.55

‡Surface nucleation is nucleation at the surface of a droplet.55

§According to figure 2 from that paper.
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1.4 Heterogeneous ice nucleation

If such a high degree of supercooling is required for homogeneous ice nucleation, this raises

the question: what induces ice formation at the much higher temperatures seen in nature?

Ice nucleating agents (INAs) take the form of surfaces, molecules or solutes and increase

the nucleation rates at higher temperatures by lowering the free energy barrier.48 Kanji

et al. 57 list a number of different aerosol ice nucleating particles (INPs) that can promote

atmospheric ice nucleation heterogeneously. Reinhardt and Doye 58 used hybrid Monte

Carlo simulations59 to study ice nucleation on a number of different surfaces. Such hy-

brid simulations work via replacing the regular Monte Carlo moves with short molecular

dynamics simulations.58,59 They found that a Lennard-Jones flat wall did not facilitate

nucleation, with ice nuclei more likely to form in the bulk than at the interface. Conversely,

they found that rigid ice-like surfaces∗ were consistently able to promote ice nucleation.

In a similar study, Fitzner et al. 60 simulated model systems of four generic fcc crystallo-

graphic planes: (111), (100), (110) and (211) with water layers of approximately 35 Å. In

agreement with the previous study,58 they found that the surfaces generally promoted ice

nucleation.

In addition to computational studies of heterogeneous ice nucleation, often employing

MD simulations to probe the nucleation process at an atomistic scale, there are a number

of experimental methods which can be used to study nucleation rates. Vali 61 presented

a method for quantitative analysis of drop freezing experiments which have been built

upon more recently by Whale et al. 62 . These methods involve tracking the freezing of

microlitre droplets as temperature is ramped downwards towards supercooled conditions

and can be used to experimentally compare the efficiency of different particles at nucleating

ice. Naturally these cannot provide the atomistic insight that we obtain from molecular

simulations, however they are effective at determining the efficiency of different INAs to

nucleate ice. This method is discussed in more detail in section 8.2.

Sosso et al.21,24 combined molecular simulations with drop freezing assays61,62 to study

the ice nucleating potential of cholesterol (CHL) structures. They found that CHL crys-

tals21 exhibited a high degree of ice nucleating ability — acting as even more potent INAs

than the mineral feldspar, which is known to be a very effective INA. In a separate paper,24

it was shown that CHL monolayers also exhibited, albeit to a lesser extent, ice nucleating

potential, with such ice nucleating ability directly proportional to the degree of structural

order within the monolayer. In these studies, the strong nucleating effect of such CHL

structures was attributed to the hydroxyl groups of CHL forming five and six-membered,

hydrogen bonded, rings with water molecules which build molecular cages that act as a

template for ice nucleation.

∗I.e. surfaces where the surface structure mimics the structure of ice, as described in section 1.1.1.
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1.5 Cryopreservation

At low temperatures, chemical reactions and biological metabolism slow down to such an

extent that allows for the long-term preservation of living cells and tissue. This basic

principle of cryopreservation is very simple and such biological matter is in fact able to en-

dure extremely low temperatures, below −180 °C. However, while storage of cryopreserved

matter is possible, the freezing and thawing processes pose far more of a challenge.

At sub-zero temperatures above −15 °C, extracellular ice will begin to form in the

aqueous medium, however intracellular ice formation is not observed; this was attributed

by Gao and Critser 14 to the plasma membrane blocking the growth of ice crystals.14 It is

the temperature region of −15 to −60 °C where cryoinjury∗ occurs. As the extracellular

medium is already partially frozen, the chemical potential of the intracellular supercooled

water is greater than that of the extracellular water, and thus there is a net movement

of water from inside to outside the cells via osmosis.9,14 The mechanism of cryoinjury

depends on the cooling rate. When cooling rapidly intracellular ice will form, leading to

an increased cellular volume and resulting in cell death.63–65 Conversely if cells are cooled

too slowly, the increase in volume of the intracellular water due to freezing will be less

than the volume loss due to osmosis; leading to a reduction in the cellular volume, which

can also result in cryoinjury.66,67 Thus both rapid and slow freezing techniques can cause

cryoinjury and cell death.

Alongside choosing the cooling and thawing rates, the rate of cryoinjury can be re-

duced by the addition of cryoprotective agents (CPAs). A good CPA should have low

toxicity and be capable of penetrating the cells which are to be preserved.9,10 One exam-

ple of a very commonly used CPA is glycerol,68,69 which is widely used in the storage of

bacteria and animal sperm.70 Another CPA, as demonstrated in 1959 by Lovelock and

Bishop 71 , is dimethyl sulphoxide (DMSO), which is frequently used for the cryopreser-

vation of cultured mammalian cells.72 One specific class of compound which are used to

prevent the growth of ice are antifreeze proteins (AFPs), which are found in nature in

extreme cold-dwelling species such as arctic and antarctic fish, birds, amphibians, insects

and plants.73–75 Mitchell et al. 76 demonstrated the design and synthesis of an AFP which

was non-toxic to red blood cells and greatly reduced the rate of cryoinjury by inhibiting

the growth of ice during the thawing process.

In the medical field, there are already many current applications of cryopreservation.

One such application is the cryopreservation of embryos for the sake of fertility preserva-

tion. Since the first successful pregnancy from a cryopreserved human embryo77 in 1983,

the use of cryopreservation in embryo storage for human-assisted reproduction has become

widespread.78 Riggs et al. 79 undertook an extensive analysis of the use of cryopreserved

embryos with a total of 11,768 IVF and oocyte donation patients from between 1986 and

2007. They found that the length of time for which the embryos were stored had no adverse

effect on post-thaw embryonic survival or pregnancy outcome — indicating that biological

∗I.e. damage to biological matter, caused by low temperatures.
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and chemical processes within cryogenically stored embryos are indeed sufficiently slowed

for long term storage.

A similar second application, again for fertility preservation, is the cryopreservation

of sperm cells and semen. Sperm freezing is used primarily to preserve the fertility of

patients undergoing cancer therapy, but also for patients who are unable to ejaculate

and for transgender patients who have undergone male-to-female reassignment; wherein

estrogen therapy causes temporary or permanent infertility.80 The first successful human

pregnancy using frozen sperm was reported by Bunge and Sherman 81 in 1953, where

semen had been stored, for a short period, in dry ice. By 1963, cryopreservation of

sperm was becoming widespread, with liquid nitrogen used as the method for long-term

storage.82,83 Szell et al. 84 reported in 2013 a successful pregnancy using sperm which had

been cryopreserved from 1971–2011, a period of 40 years; this gives a good indication of

the ability for sperm cells to survive long-term cryopreservation, over a period that greatly

exceeds the typical use of sperm freezing.

Another clinical application of cryopreservation is the preservation of stem cells; par-

ticularly mesenchymal stem cells (MSCs); which are found in various tissues, such as

bone marrow, adipose tissue, amniotic fluid and umbilical cord blood. MSCs are valuable

to the field of regenerative medicine, due to their ability to differentiate into specialised

cells from all three lineages: ectoderm, mesoderm and endoderm.11,85–87 MSCs are capa-

ble of differentiating into neurons and have been trialled, on rats and mice, with some

promising results, to treat neurodegenerative disorders, such as Parkinson’s disease88–90

and Alzheimer’s disease.90–93 MSCs also have the potential to be used in treating immune

disorders, such as type 1 diabetes,94,95 due to their ability to regulate immune responses;

as well as cardiovascular diseases.96,97 Bahsoun et al. 98 investigated the impact that cry-

opreservation has on bone marrow-derived MSCs, they found that cryopreservation had no

effect on the differentiation or proliferation of MSCs, however there were concerns about

the ability for cryopreserved MSCs to form colonies, as well as their viability. However the

cryopreservation of, and indeed the clinical applications of, MSCs are still in early stages,

with novel nanoscale techniques proffering solutions to the issues surrounding cryopreser-

vation.99

1.6 Molecular simulations of ice formation

Molecular dynamics (MD) simulations employ Newtonian mechanics to simulate the tra-

jectories of atoms over time based on generalised models of the physics of interatomic

interactions Such simulations are extremely valuable as they can provide detail at an

atomic scale which is impossible to attain from experimental techniques. The first MD

simulations were carried out in the 1950s by Alder and Wainwright 100 , but have recently

become evermore popular, thanks in no small part to the wide availability of simulation

packages, as well as the increase in computing power, leading to a far greater range of

possibilities for simulation.101,102
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In any molecular simulation, there are a great number of decisions to be made. One

especially important parameter when configuring a simulation is the choice of force fields.

In particular, when we are interested in water dynamics, such as ice nucleation, the choice

of water model is key. As simulations involving water have been common since the advent

of molecular simulations, there are a huge number of different water models.103,104 In early

simulations it was common to model water as a simple point charge (SPC)105–107 or even

to omit it entirely, however with advances in computational resources, water models with

more complex dynamical properties are viable.

One water model which has been frequently used for molecular simulations is the

monatomic water model (mW) which manages to coarse grain water molecules into a single

atom while retaining the hydrogen bonding structures that water forms via the inclusion

of an angular dependent term.108 This model is the best performing coarse grained water

model and in some regards can actually outperform atomistic models.109 The mW model

has been used for studies involving ice nucleation110,111 due to its speed in comparison

with fully atomistic models, however it over predicts the density of ice.112

The TIP4P water model113 is structured with a Lennard-Jones site, O, represent-

ing the oxygen atom, with three charge sites: H1, H2 and M. There have been many

re-parametrisations of the original TIP4P model, with commonly used versions includ-

ing TIP4P-Ew114 and TIP4P/2005.115 The TIP4P/Ice116 re-parameterisation has been

designed specifically to deal with solid-phase properties of water. This ice-focussed param-

eterisation has been shown to accurately reproduce the properties of ice and supercooled

liquid water in multiple studies.117,118

The interplay of Ic and Ih during the nucleation process, as well as in stable ice phases

is another topic of common discussion. In nature, only Ih is observed,119 however during

molecular simulations of ice nucleation, Ic is often initially more common.21,120 Buxton

et al. 121 used molecular dynamics simulations, both classical and employing the path-

integral molecular dynamics methodology, to examine the relative stability of Ih and Ic

ice phases. They concluded that the higher stability of Ih as compared to Ic could be

generally attributed to nuclear quantum effects (NQEs). This provides an explanation for

the ubiquity of Ih in nature.



Chapter 2

Lipid Bilayers

The previous chapter introduced the structure of ice, nucleation theory and simulations of

ice nucleation. In a similar fashion, this chapter will serve as an introduction to the struc-

ture of various lipid bilayers and the dynamics of water at their interfaces. In conjunction,

these two chapters discuss the foundations of the theory this work aims to extend. The

main focus of this thesis is the ability, or inability, of lipid bilayers to act as ice nucleating

agents. The structural and chemical properties of different examples will be examined as

will the behaviour of supercooled water at the interface.

2.1 Phospholipid bilayers as cell membranes

The primary components of cell membranes are lipid bilayers, often composed primarily of

phospholipids — lipids consisting of a hydrophilic phosphate-containing headgroup, with

two hydrophobic fatty acid tails.34 Most animal cell membranes are approximately 50%

phospholipid, by mass. Due to the amphiphilic nature of phospholipids, lipid bilayers

are formed spontaneously under suitable conditions, aggregating so as to submerge their

hydrophobic tails in the interior of the bilayer, with their hydrophilic heads facing the

water. Similarly, where phospholipid bilayers are ruptured, they rearrange autonomously

to repair the bilayer structure due to the energetic preference for the hydrophobic tails to

be away from water, and vice versa for the hydrophilic heads.35

Common phospholipids found within animal cells include phosphatidylcholine (PC),

sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phos-

phatidate (PA), phosphatidylserine (PS), phosphatidylglycerol (PG) and diphosphatidyl-

glycerol (DPG). For example, human erythrocyte (red blood cell) membranes contain

55 mol% phospholipids∗ and 45 mol% cholesterol (CHL, see figure 3(c)).36

One specific phospholipid commonly found in cell membranes is 1,2-dipalmitoyl-sn-

glycero-3-phosphocholine (DPPC, see figure 3(a)). As far back as 1961122 PC-CHL bi-

layers have been studied, with some early techniques including deuterium nuclear mag-

netic resonance spectroscopy (2H NMR)123 and electron spin resonance (ESR)124, both

∗Specifically, 17 mol% PC, 17 mol% SM, 16 mol% PE and 6 mol% PS.

10
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Figure 3: The chemical structures of (a) DPPC, (b) DMPI and (c) CHL. The hydrogen
bonding sites are coloured according to the palette reported in figure 24.

of which can provide insight into the mobility of the acyl chains which form lipid tail-

groups. DPPC-CHL bilayers have been extensively studied via both simulation28,30,33,125

and experiment.126–129

Another class of phospholipid found, albeit less prominently, in cell membranes are

PIs these are known to have an active role within mammalian cell membranes: anchoring

proteins and spatially organising trans-membrane signalling pathways.130,131 Stanishneva-

Konovalova and Sokolova 32 studied DPPC-DPPI∗ bilayers, containing 0.8 and 9.4 mol%

DPPI, via united atom and coarse-grained molecular simulations. They found that in-

creasing the amount of DPPI lead to increased packing density of the DPPC lipids. In

this thesis, specifically the lipid 1,2-dimyristoyl-sn-glycero-3-phosphatidylinositol (DMPI,

see figure 3(b)) is studied, with regards to the effect it has on DPPC bilayers and their

ability to nucleate ice.

2.2 The effect of cholesterol within phospholipid bilayers

As a common constituent lipid of cell membranes, it is important to consider the structural

effect the inclusion of CHL has on bilayers. From an experimental standpoint, Hung

et al. 132 looked at the structure of various PC-CHL bilayers. They used lamellar X-ray

diffraction to measure phosphate-phosphate distances across the bilayers. In all cases they

found that the thickness of the bilayer increases with CHL concentration while the area per

lipid decreases. This thickening of the bilayer is due to the closer packing of lipids, meaning

that the tails must be more perpendicular to the central plane of the bilayer. They noted

that the amount by which the bilayers thickened was dependent on the fatty acid chains

of the PC lipids and also that the maximum thickness was achieved in all cases at around

38 mol% CHL, a concentration considerably below the maximum theoretical solubility of

CHL.

∗1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol.
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Leeb and Maibaum 133 studied the effect of CHL concentration on DPPC-CHL bilayers

via MD simulations. They found that bilayer thickness increases with CHL concentration

up to around 20 mol%, after which a small decline was observed. They also found that

the degree of structural order increased with CHL concentration, again up to around

20 mol% where the order plateaued. Again with the most pronounced effect between

0–20 mol% CHL, the surface area per lipid was noted to decrease as CHL concentration

increased. This trend was greater than the decrease expected from the smaller size of CHL

as compared to DPPC; in fact, adding a single CHL molecule into a (49 lipids per leaflet)

pure DPPC bilayer would decrease the total surface area. In simulations with a single

CHL molecule per leaflet, they observed similar trends, particularly observing a greater

degree of tail order within DPPC tails, the lower the distance from the CHL molecule.

Phospholipid bilayers are in fact two dimensional fluids, with the individual lipids able

to diffuse within the plane of the leaflet. The fluidity of such a bilayer depends heavily

on its component lipids. CHL in particular has an immobilising effect on neighbouring

lipids, due to its its hydroxyl group positioning itself close to the base of the polar phos-

pholipid headgroups, such as PCs, with its rigid plate-like steroid rings stiffening the ends

of the phospholipid acyl chains closest to the headgroups.35 This causes the bilayers to be-

come stiffer and reduces the permeability to both water molecules and small water-soluble

molecules such as many drug molecules.35

2.3 Lipopolysaccharide membranes

The cell envelope of gram-negative bacteria, such as Escherichia coli (E. coli), consists of

a peptidoglycan cell wall, surrounded by an outer membrane (OM). This OM is a lipid bi-

layer but, unlike the membranes discussed earlier, not a phospholipid bilayer. Instead, the

OM is an asymmetric bilayer where the inner leaflet is composed of phospholipids while

the outer leaflet is comprised of glycolipids, in particular lipopolysaccharide (LPS).134

Synthesised LPS membranes consist of three regions: the O-polysaccharide chain, made

up of repeating oligosaccharide units; the oligosaccharide core; and Lipid A (see figure 4).

“Rough” mutants of LPS (R-LPS) do not have the O-specific chain, with the different

classes denoted a–e depending on the degree of completion of the oligosaccharide core.135

In particular, RaLPS contains the full oligosaccharide core, while ReLPS has only 2 or

3 KDO∗ units linked to each Lipid A molecule (see figure 6).136,137 See figure 5 for a

schematic of such LPS membranes with detail of the oligosaccharide core which was sim-

ulated in this work (section 3.2) which consists of two KDO∗ units, four Hep† units, three

Glc‡ units and one Gal§ unit (see figure 6 for structures).

This asymmetric LPS-phospholipid OM is responsible for a number of essential barrier

∗2-keto-3-deoxy-d-mannooctanoic acid
†l-glycero-d-manno-heptose
‡d-glucose
§d-galactose
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Figure 4: The chemical structure of Lipid A.

functions for the survival of such bacteria. Indeed, the OM protects bacteria against toxic

substances, such as antibiotics, while permitting the transport of important nutrients.138

The effectiveness of the barrier function of LPS can be explained by its amphipathic prop-

erties; similarly to phospholipid bilayers, the acyl chains in the lipid A molecules have a

hydrophobic nature which prevents the passage of hydrophilic molecules though the leaflet;

unlike phospholipids such as PCs however, the oligosaccharide regions display strong hy-

drophilic properties, thus preventing the passage of hydrophobic molecules alike.139 The

existence of the OM is largely attributed as a key factor in the resistance of gram-negative

bacteria to antimicrobials.139

2.4 Water at the interface with lipid bilayers

The structure of lipid bilayers would be very different without the presence of water.

The “hydrophobic effect”, wherein lipid molecules group together — thus preventing con-

tact between water and their hydrophobic tails — is what leads to the creation of “self-

assembled lipid bilayers”.140 Åman et al. 141 used MD simulations to study the behaviour

and interactions of interfacial water on the surface of a DPPC bilayer. They looked at the

first and second hydration shells of the lipid headgroups, defined as the regions enclosing

4.5 and 6.9 Å from the phosphorous atom, respectively. A double layer of interacting wa-

ter was evident, with the first and second shells containing approximately 5 and 16 water

molecules, respectively. This corresponds to circa 5 water molecules tightly bound to the

carbonyl group, with the remaining circa 11 water molecules around the choline groups.

The coordination of the various chemical groups within the headgroups will have a great
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effect on the analysis later discussed in chapter 7.

The dynamics of water at the interface with lipid bilayers have been extensively exam-

ined via molecular simulations. Wilson and Pohorille 17 used molecular dynamics to study

the interface between water and a glycerol-1-monooleate (GMO) bilayer. Like DPPC,

GMO headgroups are uncharged, they found that water penetrated into the headgroup

region but not beyond, they also found that the hydrophilic surface of the GMO bilayer

disrupted the interface. Additionally, they suggest that the TIP4P water model signifi-

cantly underestimates the surface tension of water, an important consideration as if the

surface tension is too low this may cause water to spread further from the bilayer, leading

to lower overall density. In addition, when simulations have a non-fixed box size, this re-

duction in water density will lead the in-plane dimensions of the simulation box to shrink

— leading to a more compact bilayer or indeed to a gel-phase bilayer at temperatures

where it should be liquid crystalline. This is discussed to a greater extent in section 3.4.1,

to ensure that these issues do not affect the simulations herein.

Ions within the water can also interact with the bilayer. Böckmann et al. 142 described

the effect of sodium chloride on pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC) bilayers using a combined experimental/computational approach — coupling flu-
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orescence correlation spectroscopy with MD simulations. They noted a strong interaction

between sodium ions and the carbonyl oxygens within the fatty acid tails. This leads to

an increased degree of ordering of the lipid tails, resulting in denser and thicker bilayers,

with lower in-plane mobility.



Chapter 3

Simulation Details

3.1 DPPC-CHL/DMPI systems

DPPC (see figure 3(a)) bilayers are prototypical models of cellular membranes, having been

the subject of many studies;28,30,143 both computational and experimental in nature, often

also containing CHL. Thus, DPPC is an excellent candidate to further our understanding

of ice formation in biological matter. DMPI (see figure 3(b)) is another phospholipid with

a different headgroup to DPPC, notably with an negative overall charge.∗

Eleven DPPC-CHL/DMPI lipid bilayer systems were constructed, using CHARMM-

GUI,147–151 with 30 lipids per leaflet (60 per system). The number of each lipid per

system, together with the in-plane dimensions of the simulation box, after equilibration

and quenching (see section 3.3), are listed in table 1. The systems have square cross

section so the x and y dimensions are the same. A TIP4P water layer, approximately 30 Å

thick, was placed either side of the bilayers, using the molecular dynamics (MD) package

GROMACS152–158 (see figure 7).

Table 1: Lipid composition of DPPC-CHL/DMPI systems simulated.

System No. lipids per leaflet Box x
name DPPC CHL DMPI [nm]

Pure DPPC 30 - - 3.56

20 mol% CHL 24 6 - 3.56
40 mol% CHL 18 12 - 3.37
60 mol% CHL 12 18 - 3.37
80 mol% CHL 6 24 - 3.35

Pure CHL - 30 - 3.31

20 mol% DMPI 24 - 6 3.91
40 mol% DMPI 18 - 12 4.04
60 mol% DMPI 12 - 18 4.05
80 mol% DMPI 6 - 24 4.20

Pure DMPI - - 30 4.12

∗It has been shown in some studies that charges can have a large effect on ice nucleation and can even
make the difference between a surface or crystal promoting or inhibiting ice nucleation.144–146

16
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Figure 7: Representative snapshot of (half of) a DPPC-CHL/water system, 40 mol% CHL
(coloured in black). The full system is a bilayer with another leaflet and water layer to
the left of the figure. Water molecules are coloured in blue. Within the DPPC molecules,
carbon, oxygen, phosphorus and nitrogen atoms are coloured in cyan, red, yellow and blue,
respectively. Hydrogen atoms belonging to DPPC or CHL molecules are not shown. The
water layer is in contact with an extended region of vacuum (see section 3.4). Note that
the horizontal axis in this figure is the one labelled z, with the xy-plane containing the
vertical axis and the page normal. This convention is shared across every system discussed
in this thesis.

3.2 Lipopolysaccharide systems

Three asymmetric phospholipid-LPS systems were simulated. These are representative

of the outer membrane of Gram-negative bacteria.134,159 The three systems consisted

of a phospholipid leaflet and a lipid A (see figure 4) leaflet, with varying amounts of

sugars: 2-keto-3-deoxy-d-mannooctanoic acid (KDO) l-glycero-d-manno-heptose (Hep),

d-glucose (Glc) and d-galactose (Gal); coating the lipid A (see figure 6). Specifically, the

three systems studied were Lipid A with no sugars; the “deep rough mutant” ReLPS,

with two KDO units linked to each Lipid A molecule; and RaLPS, with the complete

oligosaccharide core. The corresponding phospholipid leaflets consist of the three lipids

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoglycerol (POPG) 1,10-palmitoyl-2,20-vacenoyl cardiolipin (PVCL2) for

the Lipid A and ReLPS systems (see figure 8) and the three similar lipids 1-palmitoyl-2-

vacenoyl-sn-glycero-3-phosphoethanolamine (PVPE), 1-palmitoyl-2-vacenoyl-sn-glycero-

3-phosphoglycerol (PVPG) and PVCL2 for the RaLPS system. PVPE and PVPG differ

from POPE and POPG only in the fact that the C−−C double bond is between C9 and

C10 on the secondary tail for POPE/G and between C11 and C12 on the secondary tail for

PVPE/G. The exact composition and in-plane dimensions of these bilayers can be found
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Figure 8: The chemical structures of (a) POPE, (b) POPG and (c) PVCL2. PVPE
and PVPG differ from POPE and POPG only in the fact that the C−−C double bond is
between C9 and C10 on the secondary tail for POPE/POPG and between C11 and C12 on
the secondary tail for PVPE/PVPG.

in table 2. Again, box x and y dimensions are paired.

3.3 Equilibration and MD setup

Simulations were undertaken using the MD package GROMACS.152–158 The force-field

used to model the lipids was CHARMM36,31,160–164 which was used in particular to take

advantage of its CHL parameterisation,165 and the TIP4P/Ice116 force field was used for

the water molecules. It is worth mentioning that CHARMM36 was originally parame-

terised to be used with the TIP3P water model, however the combination of CHARMM36

and TIP4P/Ice has been validated and has been used to accurately reproduce the prop-

erties of supercooled liquid water and ice in recent studies.21,117,118 An initial energy

minimisation was carried out; using the SETTLE166 algorithm to constrain the geometry

of the water molecules, and the LINCS167 algorithm to constrain the bilayer geometry.

Three dimensional periodic boundary conditions (PBCs) were used. Subsequently, a num-

ber of initial equilibration runs (20 ns) were carried out at 323.15 K, sampling the NV T ∗

ensemble. The fairly high temperature of 323.15 K was chosen to avoid the gel-phase

∗POPE/POPG for Lipid A and ReLPS, PVPE/PVPG for RaLPS.
∗Fixed number of atoms, volume (i.e. x, y and z box dimensions) and temperature.
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Table 2: Composition of LPS systems simulated (No. molecules).

System Lipid A ReLPS RaLPS

POPE † 145 145 90
POPG† 8 8 5
PVCL2 8 8 5

Lipid A 53 53 35

KDO 0 106 70
Hep 0 0 140
Glc 0 0 105
Gal 0 0 35

Box x [nm] 9.14 9.48 7.94

transition for DPPC, which occurs at around 305–315 K.29

Following these MD runs, the simulation box was elongated in the z-direction up to

270 Å; creating water-vacuum interfaces, in order to avoid artefacts caused by the slab

geometry of the system168 (see section 3.4). An equilibration run of 20 ns, sampling the

NV T ensemble at 323.15 K, was then carried out. Following the NV T run, a longer

NpT ‡ run, of 200 ns, was carried out in order to equilibrate the system. Under the NpT

ensemble, the x and y (in-plane) box dimensions were coupled and the z box dimension

was fixed. Lipid bilayers on their own are capable of expanding and contracting by a

reasonably large factor under pressure. A constant surface tension γs = 120 mJ m−2, was

imposed. The choice of this γs value is discussed in section 3.4.1.

Following liquid crystalline equilibration, the systems were quenched from 323.15 K to

233.15 K, at a rate of 2.25 K ns−1, under constant (ambient) pressure and imposed surface

tension (120 mJ m−2). The systems were subsequently equilibrated at 233.15 K, using a

20 ns run under the NPT ensemble with surface tension of 120 mJ m−2. The time step

used for these simulations was 2 fs, meaning that the 20 ns equilibration runs contained 20

million steps. The ergodic hypothesis is assumed, i.e. that for a sufficiently long simulation,

the probability of finding the system in any reachable state is independent of the time,

and therefore also independent of the starting configuration.169

Once equilibrated at 233.15 K, extended MD runs of 70 ns–3.8 µs, depending on sys-

tem, under the NV T ensemble were started. The NV T ensemble was preferable for the

production runs as the fixed box dimensions make quantitative analyses, particularly those

in terms of z, simpler to perform. The DPPC-CHL systems were all run for over 3 µs,

however this was deemed unnecessary for the subsequent systems on the basis that the sys-

tems are in a good state of equilibration and thus a smaller number of frames adequately

samples the configurations. Of course, as these are unbiased simulations of rare events,

the phase space is certainly not fully explored, however extended unbiased simulations will

not be able to achieve that. These simulations were carried out in GROMACS using the

v-rescale thermostat, Berendsen barostat with surface tension coupling (where relevant),

‡Fixed number of atoms, pressure and temperature.
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Verlet cutoff scheme, plain cutoff for Van der Waals interactions, with force-switch.

3.4 Verification of simulation procedure

Such two-dimensional slab systems pose a particular difficulty in MD simulations as there

are trade-offs between the conventional methods for constructing them. In MD simula-

tions, three-dimensional PBCs are preferable, as they do not require the imposition of

any “walls” which stop atoms from leaving the system. The issue with using walls is that

cause to edge effects, which can be on the scale of nanometers deep into the simulation

box. Thus in a water-bilayer system, the water layer must be sufficiently thick enough

so that a bulk-like water region can exist beyond the effects of both the wall and the

bilayer. A similar issue occurs in this situation if three-dimensional PBCs are employed:

as we want to consider an isolated bilayer within bulk water, the water layer must be thick

enough that the bilayer cannot interact with itself, and again we desire a bulk-like region

within the water layer.

As we are limited by computing resources, neither of the aforementioned setups are

ideal; extending the water layer naturally has the effect of increasing the computational

costs. Thankfully, there is another option, as described by Bostick and Berkowitz 168 . As

detailed in the previous section, we have an extended vacuum region on either side of

the water, A combination of an Ewald sum and imposed surface tension constrains the

water with only minimal interfacial effects at the water-vacuum interface. This is called

the Ewald sum in three dimensions with a correction term (EW3DC). In the following

subsections, this simulation setup will be scrutinised to determine whether it is valid.

3.4.1 Surface tension

The electrostatic potential which is imposed when using the EW3DC method is not suf-

ficient on its own to stop water from spreading out into the vacuum region. Just as the

behaviour of water in the real world is greatly affected by its high surface tension, imposing

surface tension is necessary here to make the system act as it should when using the NpT

ensemble. According to literature170 results: the ice-water surface tension of TIP4P/Ice

water is 29.8 mJ m−2. Assuming that the water-bilayer and water-vacuum surface tensions

are similar, one can therefore expect to get the correct surface tension value by multiplying

this by the number of interfaces (4). Thus a value of γs ≈ 120 mJ m−2 is expected.

Using the pure DPPC system, following the 323.15 K NV T run, a number of 20 ns

NpT runs were commenced also at 323.15 K with varying values for this imposed surface

tension. The resultant water densities are illustrated in figure 9. A linear regression

was carried out, omitting the point at γs = 150 mJ m−2 as this point is a clear outlier,

the regression model has R2 = 0.9088: strong correlation. This linear regression gives

the water density with γs = 120 mJ m−2 as 0.989 g cm−3, the correct density of water at

323.15 K. Therefore γs = 120 mJ m−2 was chosen, in agreement with the literature value



3.4 Verification of simulation procedure 21

Figure 9: Bulk water density for different imposed surface tensions. The error bars show
one standard deviation. The red line is the literature value for water density at 323.15 K.
The green line shows the linear regression model, excluding the outlier at γs = 150 mJ m−2.

for surface tension. To further verify the structure when simulating with imposed surfaces

tension, the surface area per lipid can be compared to literature data. For example, for

pure DPPC after equilibration at 323.15 K, the box x and y dimensions were 4.24 nm,

giving an average area per lipid of 0.599 nm2 which is in good agreement with the data

given by,133 as are the 20 and 40 mol% CHL systems (see table 3).

Table 3: Average (mean) area per lipid after NV T and NPT equilibration at 323.15 K
(liquid crystalline phase) compared to reference data from Leeb and Maibaum 133 (data
extracted from figure 4 of that paper).

System Box x [nm] Mean area per lipid [nm2] Reference [nm2]

Pure DPPC 4.24 0.599 0.60
20 mol% CHL 3.59 0.429 0.43
40 mol% CHL 3.52 0.413 0.41

3.4.2 Energy continuity

The MD package GROMACS152–158 has an in-built function, gmx energy, which extracts

energy values from MD trajectories. Using this function, the potential energy, kinetic

energy, total energy, temperature, pressure and box dimensions were extracted from the

equilibrium trajectories and it was confirmed that the values over time matched with what

would be expected. Any jumps in energy between separate trajectory files would indicate a

continuation error. Additionally, looking at these energies gives an impression of whether

the simulations were long enough for the system to have reached an equilibrium, i.e.

whether the energies appear to have converged. In particular, this was used to decide the
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length of the equilibrium trajectories: after an initial 20 ns NpT run these energies, and in

particular the box dimensions, did not appear to converge, thus the longer equilibration

run length of 200 ns was chosen.

3.4.3 Deuterium order parameter

The structure of lipid membranes can be studied experimentally using 2H NMR to quantify

the orientational mobility of C−H bonds∗ along the acyl chains of the lipids.171,172 These
2H NMR results, which can be very accurate, can be compared to molecular simulations

via the deuterium order parameter (SCD), which is defined as follows:173,174

SCD =

〈
3 cos2(θ)− 1

2

〉
, (7)

where θ is the (time and position dependent) angle between the C−D bond and a reference

axis (in this case, the positive z-axis) and the brackets 〈·〉 denote an ensemble average.

Defined as such, the value of SCD depends on not only the order within the structure but

also the global orientation.

Figure 10 shows the values of SCD along the acyl chains of DPPC in the pure DPPC

simulations, in the liquid crystalline phase at 323.15 K, compared to reference data,31

including both experimental SCD values for a DPPC bilayer as well as those computed

from a NpAT † simulation under the CHARMM36 force field, as used herein. Note that

the overall trends are the same, although all of the values are slightly higher than the

reference data. This can be explained by the fact that the surface area per lipid in these

pre-quenched simulations is slightly higher than in the reference data.31 This should not

be any cause for concern as the surface area per lipid will reduce during the annealing

process, as the bilayer transitions from the liquid crystalline to the gel phase. Note that the

imposed surface tension will not prevent this from occurring as it does not have a direct

effect on the contraction (or expansion) of the box dimensions — the imposed surface

tension value would be the same regardless of the in-plane dimensions of the system.

Nonetheless, the matching shape of this SCD distribution provides further evidence for the

validity of the simulation setup.

∗Naturally, for 2H NMR, these are carbon-deuterium bonds.
†Fixed number of atoms, pressure, cross-sectional area and temperature.
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Figure 10: Deuterium order parameter (SCD) values for acyl chains in pure DPPC bilayer
simulations at 323.15 K, plotted as magenta diamonds and cyan circles; compared to
reference data, all taken from the paper by Klauda et al. 31 , plotted as blue diamonds
and green circles for reference simulation data and red triangles for reference experimental
data.



Chapter 4

Order Parameters for Water

The first challenge in analysing the occurrence of ice nucleation from a simulation tra-

jectory is distinguishing between liquid water and ice. In the case of nucleation studies,

using unbiased molecular simulations, this task is made all the more difficult by the fact

that we are looking for small, pre-critical ice nuclei; which persist for a few nanoseconds,

at most. One way of distinguishing between different phases of water is with geometric

order parameters. Such parameters are designed to encode some geometric property of

each molecule into a numerical value. Depending on the parameter in use, as well as

the analytical intent, we can either use these values to filter down to only molecules of

particular interest or we can study the distribution of values, perhaps in relation to time

or some spacial axis. In this chapter, a number of useful order parameters are defined, as

well as a method for condensing multiple parameters into one dimension.

4.1 Steinhardt bond order parameters

One such set of order parameters, which are commonly used for the purpose of studying ice

nucleation, are the (Steinhardt) bond order parameters.175 These work via an averaging of

the spherical harmonics of a chosen order, over the molecules within the first coordination

shell. Commonly the order chosen is 3, 4 or 6 for identifying cubic and hexagonal crystal

structure. The Steinhardt parameter, of order l, for a molecule i, is defined as follows:

ql(i) =

√√√√ 4π

2l + 1

l∑

m=−l
|qml (i)|2 ∈ R (8)

with the complex sub-parameters qml (i) defined thus:

qml (i) = 〈Y m
l (rij)〉j∈1i ∈ C (9)

where 〈·〉j∈1i denotes an ensemble average over the first coordination shell, excluding

i itself, rij is the vector from molecule i to molecule j and Y m
l indicate the spherical

harmonics. Note that for the Steinhardt parameters, molecules are considered as single

24
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points in space — we use the position of the oxygens as their centres. Equations (8)

and (9) are defined in such a way as to make ql(i) rotationally invariant by the properties

of the spherical harmonics. The normalisation constant 4π/(2l + 1) can be split into two

parts. The numerator 4π comes from the 0-th order spherical harmonic† Y 0
0 (rij) = 1/

√
4π.

The denominator 2l + 1 exists to average the |qml (i)|2 over m ∈ {−l, . . . , l}.

4.1.1 Averaged local bond order parameters: Lechner and Dellago

Lechner and Dellago 176 proposed an alternative version (ql(i)) of these parameters, aver-

aging the complex vectors qml (i) over a particle’s first coordination shell as follows:

ql(i) =

√√√√ 4π

2l + 1

l∑

m=−l
|qml (i)|2 ∈ R (10)

with

qml (i) = 〈qml (k)〉k∈1i ∈ C (11)

where 〈·〉k∈1i denotes an ensemble average over the first coordination shell including i itself,

note that this is different to the ensemble average from equation (9), which did not include

the molecule i.‡ The advantage to these parameters as compared to the regular Steinhardt

parameters is that, by taking into account the second shell around each molecule, they can

provide a more accurate determination of different structures. The do however have the

downside of coarsening the resolution, as they take into account molecules further away

and thus are excellent for categorising bulk materials, but less good for smaller clusters.176

4.1.2 Averaged local bond order parameters: Li et al.

Li et al. 177 also proposed an enhanced version of the Steinhardt parameters, similarly to

Moore et al. 178 . They are defined as follows:

q̃l(i) = <
(〈

#»q l(i) · #»q ∗l (k)

| #»q l(i)|| #»q ∗l (k)|

〉

k∈1i

)
∈ R (12)

where #»q l(i) is the (2l + 1)-dimensional vector:

#»q l = (q−ll , q
−l+1
l , . . . , ql−1

l , qll) ∈ C2l+1, (13)

#»q ∗l (i) is the corresponding vector of complex conjugates qml (i)∗ and <(z) is the real part

of the complex vector z. These parameters average the dot products of qml s amongst

the first coordination shell in order to take into account orientational order of the first

†The (constant and real) value of the 0-th order spherical harmonic can in turn be deduced from the
fact that

∫ 2π

0

∫ π
0
Y 0
0 (θ, φ)Y 0

0 (θ, φ)∗ sin(θ)dθdφ = 1, where z∗ means the complex conjugate of z, in this case
the same since Y 0

0 (θ, φ) ∈ R.
‡Under this notation, 1i is the first coordination shell of molecule i, while 1i = 1i ∪ {i}.
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coordination shell in a similar way to the previous averaged parameters. Computing these

three variants of the Steinhardt bond order parameters is discussed in section 6.1.

4.2 A comparison of the different bond order parameters

A visual comparison for the three sets of parameters can be found in figure 11. It is

worth noting that this figure is produced using model systems of fully coordinated water,

with liquid water simulated at 300 K, ice at 265 K and clathrate water at 230 K. Under-

coordination has a large effect on the bond order parameters, with proximity to an interface

having an especially large impact on the two sets of averaged local bond order parameters.

This is due to their definition effectively using two coordination shells.

We are particularly interested in good separation between liquid water and ice. In

the case of the regular versions ql, the distribution of values for ice are fairly narrow and

could reasonably be used for filtering, however it would leave a lot of non-icy molecules as

the distribution of values for liquid water are very broad. The second set of parameters,

ql parameters perform much better at distinguishing liquid water from ice, particularly

q3 and q6. Finally, the third set of parameters q̃l also show good separation between

liquid water and ice, particularly q̃3 and q̃6. The fourth order parameter q̃4 shows the best

separation between the four states: liquid, clathrate, Ihand Icfor an individual parameter,

with clathrate water typically overlapping some other state in other cases. Interestingly,

for the averaged parameters clathrate water appears to overlap with liquid water, while for

the regular ql parameters, the distribution of values for clathrate water looks very similar

to that of ice. This could potentially be leveraged to separate the four states more clearly

by selecting one regular and one averaged parameter in a two-dimensional parameter.

4.3 Lattice order parameters

Two additional order parameters that can be used to look at the structure of water are

the three and four-body lattice order parameters, F3 and F4; defined respectively by Báez

and Clancy 179 and Rodger et al. 180

4.3.1 Three-body lattice order parameter

The three-body lattice order parameter, F3(i), for a given water molecule i, considers

the O···O···O angles between triplets of water molecules, with the given molecule being

central. It is defined by the following equation:179

F3(i) =
∑

Λ∈12
i

(
|cos (θiΛ)| cos (θiΛ)− cos2 (109.47°)

)2
, (14)

where 12
i is the set of all pairs of distinct water molecules in the first coordination shell

of i, excluding i itself, and given such a pair Λ, θiΛ is the angle between the oxygen of the
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l=
3

ql(i) q l(i) q̃l(i)
l=

4

Water
Hexagonal ice
Cubic ice
Clathrate
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6

Figure 11: A comparison, via probability density plots, of the 3rd, 4th and 6th order
Steinhardt parameters (dotted lines), with the averaged versions proposed by Lechner
and Dellago 176 (solid lines) and the averaged versions proposed by Li et al. 177 (dashed
lines). Blue indicates liquid water (at 300 K), cyan hexagonal ice (at 265 K), green cubic
ice (at 265 K) and magenta clathrate water (at 230 K).

central molecule i and the oxygen atoms of Λ. Note that 109.47° is the angle found in a

perfect tetrahedral lattice, thus a perfect ice structure will yield F3 values of exactly zero.

4.3.2 Four-body lattice order parameter

The four-body lattice order parameter, F4(i), for a given water molecule i, considers

the H−O···O−H torsional angles between pairs of water molecules. It is defined by the

following equation:180

F4(i) = 〈cos (3ϕij)〉j∈1i . (15)

Here, 〈·〉j∈1i indicates an ensemble average across the first coordination shell of i, excluding

i itself and ϕij denotes the H−O···O−H torsional angle for water molecules i and j,

choosing the outermost hydrogen atoms from each molecule.

4.3.3 Lattice order parameters in combination

By treating F3 and F4 as a two-dimensional order parameter, we are able to achieve

good separation between liquid water, ice and clathrate (see figure 12) — the distinction

between liquid and clathrate in particular being something that the bond order parameters
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struggle with. This two dimensional parameter is fairly good at distinguishing between

liquid, clathrate and ice — as with many of the Steinhardt parameters, the distribution of

values for water is fairly broad, however the distributions for clathrate and ice are much

more focussed and distinct. As such, filtering to the ice (or clathrate) region would remove

the almost all of the clathrate (or ice) molecules and a large proportion of the liquid water.

It is F4 alone which is responsible for the clear separation between ice and clathrate,

however F3 will help such a filtering algorithm by removing most of the water. It is

important however to recognise that F3 is especially sensitive to coordination — as it is

defined as a sum, rather than an ensemble average. Of all the parameters defined, F4 is

likely the least affected by coordination.

0.0 0.2 0.4 0.6 0.8 1.0
F3

−1.00
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F 4

Literature F3 versus F4 values

Liquid water at 300 K
Clathrate water at 230 K
Hexagonal ice at 265 K

Figure 12: Two dimensional distribution of lattice order parameters F3 and F4 for model
water systems. Literature values, as reported by Parui and Jana 181 , are marked with
diamonds.

4.4 Orientational order parameter

The orientational order parameter, θ, for a given water molecule, corresponds to the angle

defined between the dipole moment (acting from positive to negative charge density) and

the bilayer normal, i.e. the vector pointing outwards from the bilayer at a 90° angle from

the bilayer plane. An angle of θ = 0° indicates that the dipole moment is pointing

perpendicularly away from the bilayer, while an angle of θ = 180° indicates where the

dipole moment points toward the bilayer (see figure 13).
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Figure 13: Visual schematic of water dipole orientation at θ = 0° and θ = 180°. The
dipole moment (µ) for each water molecule and the bilayer normal (N) on either side are
displayed.

4.4.1 Orientation of ideal water

One can mathematically derive the distribution of θ values for ideal water (i.e. a water box

where one is equally likely to find any possible orientation when picking a random water

molecule). In a mathematical sense, for the water to be perfectly ideal, this box must

be assumed to be infinite in either space or time.∗ To derive this distribution, we define

a coordinate system with some water molecule† (i) as the origin, the xy-plane being the

tangential plane of the bilayer and the z axis being normal to the bilayer. Now, we label

the unit vector pointing out of the molecule in the direction of its dipole moment r(i).‡

All possible such vectors map out a unit sphere, S = {x ∈ R3 | ‖x‖ = 1}, surrounding the

molecule.

As orientation is a continuous parameter, we must consider the probability density

rather than the probability of a given orientation. As explained above, we are considering

the unit sphere S to be the set of all possible orientations; furthermore it is instinctively

evident that any two regions on the sphere with the same surface area should correspond

to two ranges of orientations with the same total probability. Thus if we have a (two-

dimensional) range of orientations which maps onto a region, Π ⊂ S, the probability that

any given molecule, i, is oriented within that same range is:

P(i ∈ Π) =
A(Π)

A(S)
=
A(Π)

4π
(16)

where A(Γ) denotes the area of a surface Γ.

We can parameterise these normalised vectors using spherical coordinates θ ∈ [0, π],

∗In fact, given that such an ideal system is both homogeneous and at equilibrium, infinite space and
infinite time, or indeed infinite space and time, are mathematically equivalent (see appendix A).

†We are considering the water molecule as a single point.
‡I.e. r(i) = µ

‖µ‖ ∈ S, where µ is the dipole moment for molecule i.



4.4 Orientational order parameter 30

φ ∈ [0, 2π), where θ is the same orientational order parameter as defined earlier and φ is

the angle of the projection of r(i) onto the xy-plane.∗ We are not, in fact, interested in

the value of φ, so will define regions using only θ, it is implied that each region allows all

possible values of φ. Let a and b be values such that 0 ≤ a ≤ b ≤ π and let Π be the

region of the sphere defined by Π = {r(θ, φ) ∈ S | a ≤ θ ≤ b}. Then we have the following

expression for the area of Π:

A(Π) =

∫∫

Π

∥∥∥∥
∂r

∂θ
× ∂r

∂φ

∥∥∥∥ . (17)

We write r, and its partial derivatives, in terms of θ and φ:

r(θ, φ) =




sin θ cosφ

sin θ sinφ

cos θ


 ,

∂r

∂θ
(θ, φ) =




cos θ cosφ

cos θ sinφ

− sin θ


 ,

∂r

∂φ
(θ, φ) =



− sin θ sinφ

sin θ cosφ

0


 .

Now, applying equation (17), we get the following expression for the area of Π:

A(Π) =

∫ b

a

∫ 2π

0

∥∥∥∥∥∥∥




sin θ cosφ

sin θ sinφ

cos θ


×



− sin θ sinφ

sin θ cosφ

0




∥∥∥∥∥∥∥
dφ dθ

=

∫ b

a

∫ 2π

0

∥∥∥∥∥∥∥




sin2 θ cosφ

sin2 θ sinφ

cos θ sin θ




∥∥∥∥∥∥∥
dφ dθ =

∫ b

a

∫ 2π

0

√
sin2 θ dφ dθ

† =

∫ b

a

∫ 2π

0
sin θ dφ dθ = 2π

∫ b

a
sin θ dθ = 2π(cos a− cos b)

And thus we arrive at a final expression for the probability for a random molecule having

orientation a ≤ θ ≤ b:

P(a ≤ θ ≤ b) = P(i ∈ Π) =
cos a− cos b

2
. (18)

4.4.2 The probability density function of θ

From equation (18), we can derive the cumulative density function (CDF):

F (θ) =
cos 0− cos θ

2
=

1

2
− 1

2
cos θ, (19)

and from this we can differentiate to give the probability density function (PDF):

f(θ) =
dF

dθ
(θ) =

1

2
sin θ. (20)

∗Note that in this section we use angles in radians rather than degrees to simplify the derivation.
†We know sin θ ≥ 0 since 0 ≤ θ ≤ π.
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For the purpose of using orientation as an order parameter, it would be preferable to be

able to understand the results without comparison to ideal water; thus we shall define a

new normalised order parameter ϑ, such that θ and ϑ are in one-to-one correspondence

and so that the PDF, g(ϑ) is constant.

Finding such a parameter is in fact rather easy, we define ϑ = cos θ, which is clearly

a strictly decreasing one-to-one correspondence (bijection) on the domain θ ∈ [0, π]. If

α and β are values such that −1 ≤ α ≤ β ≤ 1, then from equation (18) we obtain the

expression for the probability that ϑ falls between α and β:

P(α ≤ ϑ ≤ β) =
β − α

2
, (21)

noting that α ≤ ϑ ≤ β is equivalent to cos−1 α ≥ θ ≥ cos−1 β, since cos is a strictly

decreasing function on the domain [0, π]. Thus we obtain the CDF and PDF, respectively,

as follows:

G(ϑ) =
ϑ− 0

2
=
ϑ

2
, g(ϑ) =

dG

dϑ
(ϑ) =

1

2
. (22)

Note that, for this revised order parameter, ϑ = −1 corresponds to the dipole moment

pointing into the bilayer, ϑ = 1 corresponds to the dipole moment pointing out of the

bilayer and ϑ = 0 corresponds to the dipole moment pointing parallel to the plane of the

bilayer (see figure 13). The parameter cos θ has in fact been used in a number of studies,

albeit often with no explanation for its preference over θ.182,183

4.5 Compound order parameters

Often a single parameter can be good at separating between two phases, but ineffective at

separating between others. Since all the parameters defined so far are one-dimensional, the

likelihood of overlap between different regions is great. If we take two of the more promising

parameters and treat them as a single two-dimensional parameter, as we did in section 4.3.3

with F3 and F4, we often find that we can obtain better separation. This comes with its

downsides however: visualising two-dimensional data is difficult; particularly if we wish to

look at the trends over time or a spacial axis. Thus if we could reduce the parameter back

down to one dimension, while maintaining the separation, this is very desirable. There

are many methods to perform such a dimensionality reduction, from fields such as linear

algebra184 and machine learning;185 however, one can perform a simpler reduction from

two dimensions to one by hand. There are a few natural methods for this; one example is

to simply rotate the system and then project onto the x-axis.

In figure 11, we saw that the 3rd and 6th order local bond parameters q3 and q6 were

particularly good at distinguishing between ice and water and q3 was reasonably good at

separating the hexagonal and cubic ice phases. Figure 14 shows these two parameters on

a two-dimensional grid. It appears that such method of rotation followed by projection

could work fairly well, however this does not appear to be the best method for separation
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preserving dimensionality reduction. Instead, notice that we can draw two lines (as shown

in the figure) splitting the domain into four regions. Numbering counter-clockwise, starting

with the right hand region, region 1 contains a great majority of cubic ice, region 2 contains

the majority of hexagonal ice and region 3 the majority of liquid water and clathrate.

Figure 14: Two-dimensional distribution of q3 and q6 values for model water systems. Two
lines are drawn, separating the hexagonal and cubic ice regions and the liquid/clathrate
region. The intersection of these two lines (0.36, 0.16) is marked in red.

Now we have produced this separation, we can reduce to a single dimension, by defining

a new parameter, φ, which is based on the angle of the vector going from the intersection

point between the two lines (plotted in red, figure 14) to (q3, q6):

φ(i) =
1

π
cos−1

(
q3(i)− 0.36√

(q3(i)− 0.36)2 + (q6(i)− 0.16)2

)
. (23)

Note that φ is defined in such a way that it takes values between 0 and 1, although this

is not a necessity. The distribution of φ values for model systems is shown in figure 15.

In fact, this compound parameter has an error rate lower than 0.1% in differentiating

between ice and non-icy water, in such model systems. It is also good at differentiating

between hexagonal and cubic ice.

It is worth however noting that for the model systems, liquid water was simulated

at 300 K, ice at 265 K and clathrate at 230 K. It would be worth studying the effect of

temperature on these distributions. In particular, supercooled liquid water does show a

greater degree of local bond order than under standard conditions, albeit still lesser than

ice. For these specific systems, the compound parameter does achieve a better degree
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of separation, however this is definitely as a result of overfitting and water within real

systems is far more difficult to classify, hence the loose requirements for water to be

considered “icy” in section 5.1. As such, the increased computational cost to compute

such a compound parameter is unlikely to be worth it.
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Figure 15: Distribution of compound parameter φ values for model water systems.



Chapter 5

Analysis Methods

5.1 Largest icy cluster per frame

The largest “icy cluster” per frame was computed using the PLUMED 2.3.0 software,

compiled with the crystallization module.186–188 These clusters were computed as follows:

1. Filter all water molecules by PLUMED’s implementation of a local q6 parameter

(see section 4.1).∗

2. Compute contact matrix between molecules left after filtering.

3. Use the contact matrix to build a list of clusters via a depth first search.

4. Determine which cluster is the largest.

Note that for the DPPC-CHL and DPPC-DMPI systems, the two water layers are treated

as one so it is truly the largest cluster per frame; for the LPS systems, which are asymmet-

ric, the two water layers are treated separately, so there are two largest clusters per frame,

one from each side. Looking at pre-critical icy clusters, in this way, has been shown to be

a valid method for quantitative analysis of the ice nucleating ability of a given particle or

surface; as evidenced by a number of previous studies.24,192,193 An example of a PLUMED

input to compute these is given in appendix B. Note that these clusters are pre-critical

and an individual cluster rarely persists for more than a frame (4 ps) or two.

5.2 Hydrogen bonds

In a recent study, Sosso et al. 21 found that CHL molecules’ role as ice nucleating agents is

partially due to their amphoteric hydroxy groups, which are capable of both donating and

accepting hydrogen bonds. In that work it was observed that ice nuclei would form, with

those hydroxy groups being a member of the cluster, due to their chemical similarities to

water. Clearly then the formation of, or lack thereof, hydrogen bonds between icy clusters

∗While other parameters described in chapter 4, for example q3, could also be good options for this
step, q6 has been used in numerous previous works for this purpose.177,189–191

34
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and a bilayer is an important factor to consider. Thus the number of hydrogen bonds

in each frame, between the largest icy cluster (as defined in the previous section) and

the bilayer, was computed. A hydrogen bond X−H···Y was defined via to the geometric

criteria: d(X,Y) ≤ 3.2 Å and θ ≥ 150°, where θ is the angle between X, H and Y.

It is worth noting that the lipids in question have varying numbers of hydrogen bonding

sites. CHL has only one, although it can both donate and accept hydrogen bonds, but as

previously mentioned is known to be active in the nucleation process. DPPC has a total

of eight bonding sites, although these are all only capable of accepting hydrogen bonds,

while DMPI has thirteen bonding sites, five of which can donate or accept hydrogen bonds.

Another factor to consider is the accessibility of these sites, while the CHL hydroxy group

is active in the case of CHL crystals21 and monolayers,24 in mixed DPPC-CHL bilayers,

the hydroxy group is often poorly hydrated and therefore not close enough to any icy

clusters to form hydrogen bonds.

5.3 Bilayer ordering

The degree of structural order within a bilayer is likely to play a large role in the ice nucle-

ating potential. Sosso et al. 24 found that for CHL monolayers, the ice nucleating ability

was directly proportional to the degree of structural order. From a chemical perspective,

it is also clear that the way in which headgroups are packed will have an effect on the

potential to form hydrogen bonds, thereby improving or lessening a bilayer’s effect on ice

nucleation. In this section, two measures for structural order within lipid bilayers are

defined. The first, the single molecule angle criteria (SMAC), is a more novel approach

to studying bilayers; while the second, the Voronoi accessible area per lipid, has been

frequently employed in similar computational studies of bilayers.30,133,194,195

5.3.1 SMAC collective variable

The degree of order within the bilayers can be assessed in multiple ways. The SMAC

parameter is a collective variable (CV) which measures orientational order with respect to

a defined molecular axis.196 In this case, we define SMAC so that it is high, approaching

1, for systems where lipid tails are close to parallel; and lower for systems where lipids

are more chaotically oriented. To define the SMAC parameter si, for a particular lipid

molecule i, first one must define a molecular axis. In the case of these simulations, the

axis is chosen to follow the (first) tail of each lipid in the bilayer with the exception of

lipid A, where we use each of the four primary chains and PVCL2, where we use both of

the primary chains. For example, in the case of DPPC, the axis is defined as being the

vector from the central carbon atom∗ to the penultimate carbon in the primary tail (C15,

see figure 3). The choice of these axes was intended to reduce noise from movement and

∗The carbon which is bonded to the headgroup, primary tail oxygen and secondary tail carbon.
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packing of the tails and the numbers of axes were intended to balance the fact that some

of the lipids in question have more tails than others.

We define a switching function f , which acts on the distance rij between two lipids i

and j:

f(rij) =
1

1 + (2rij)6
, (24)

and set ni = Σi 6=jf(rij). Now we define another switching function ψ, this time acting on

the size of the coordination shell:

ψ(ni) = exp
(
−ni

6

)
. (25)

Finally we define a Gaussian kernel function K, acting on the angle θij defined between

the molecular axes of two lipids i and j:∗

K(θij) = exp

(
−
θ2
ij

2σ2

)
, (26)

where σ is the width of the Gaussian; here we used σ = 0.58. Now we are ready to define

the SMAC parameter:

si = (1− ψ(ni)) ·
Σi 6=jf(rij)K(θij)

ni
. (27)

The average SMAC parameter was computed using the SMAC collective variable from the

PLUMED 2.3.0 software, compiled with the crystallization module.186–188 This CV has

typically been used in the past for nucleation studies and molecules in solution rather than

for membrane ordering.197 The PLUMED input for computing the SMAC parameter is

given in appendix C.

5.3.2 Voronoi area per lipid

A second measure for the spatial ordering of bilayers is to compare the average surface

area per lipid. This is achieved by computing the accessible area for each lipid via the

construction of a Voronoi tessellation.133,194 In the case of CHL, the lone oxygen is used

as the vertex, whereas for DPPC and DMPI the central glycerol carbon and the first

carbon in each tail are used as vertices; this is to account for the difference in size between

cholesterol and the phospholipids. These accessible areas were not computed for the LPS

systems, as the leaflet we are interested in (lipid A with or without sugars) is homogeneous

in-plane. For these systems, the average area per lipid A is computed by dividing the total

surface area by the number of lipid A molecules. The accessible areas were computed using

the built in area per lipid function of the FATSLiM package.198

∗I.e. cos(θij) = u ·v, where u and v are unit vectors in the direction of the molecular axes of molecules
i and j respectively (as defined at the start of section 5.3.1).
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5.4 Geometric analysis

The method detailed in section 5.1 is highly effective in assessing the pre-critical nucleation

of ice, without requiring immense computational resources. However if one wants to

examine these clusters in more detail, there are various geometrical criteria that can be

used. Ice nuclei are formed of two key cage structures: double diamond and hexagonal

cages, the building blocks of cubic and hexagonal ice, respectively. Both of these cage

structures are formed of six-membered, hydrogen bonded rings.199 Thus a natural first

geometry to consider is the prevalence of six-membered (hydrogen bonded or not) rings.

One can then look at whether these rings assemble any double diamond or hexagonal cages.

In addition to looking for ice structures, one can look for the five and six-membered ring

cage structures, characteristic of clathrates.200

5.4.1 Rings and cages analysis

Using the R.I.N.G.S. code,201 the number of five and six-membered rings within the largest

icy cluster was computed for each frame. Using code developed within the Sosso group

(see chapter 6),202 which I have extensively modified, the number of these rings which

were wholly hydrogen bonded and the number of double diamond and hexagonal cages

formed by the six-membered rings was computed.

5.4.2 Clathrate clustering analysis

Using the five and six-membered rings identified by the R.I.N.G.S. code,201 an algorithm

to look at clathrate cages was implemented into code (see chapter 6).202 This was based

on the method described by Bi and Li 200 where they first looked for 56, 5661 and 5662

half-cages, and then looked for such half-cages which could form a full cage of either 512,

51262, 51263 or 51264 structure. These full cage structures are illustrated in the form of

two-dimensional Schlegel diagrams in figure 16(a)–(d).

The code written does not compute these half or full cages, instead looking for “555”,

“655” and “6556” “part-cages,” (see figure 16(e)–(g)) however it would be a fairly simple

extension to use these to compute the half or full cages. Nonetheless, locating these three

types of part-cages allows for rendering such cages using a visualisation package and the

number of such part-cages provides a good indication of the amount of clathrate-like water

in the system. Perhaps unsurprisingly, for the systems studied in this work there were not

many part-cages found; hence why this particular analytic tool was not extended further.
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Figure 16: The left panel shows two-dimensional Schlegel diagrams for the clathrate cage
structures: (a) 512, (b) 51262, (c) 51263 and (d) 51264. Nodes are coloured blue if located
in the centre of a 555 part-cage and red if located in the centre of a 655 part-cage. The
right panel shows the three types of part-cage: (e) 555, (f) 655 and (g) 6556.



Chapter 6

Analysis algorithms

During the course of this PhD, I have written and edited a large body of code in the

programming languages of FORTRAN and Python. In this chapter I detail some of the

more complex algorithms which I have used within my analysis code. All of the code

snippets within are in pseudocode for readability.

A large amount of the analysis content of this thesis pertains to a suite of analysis

code “HIN”, which was developed by various members of the Sosso group and is available

on GitHub.202 Within this code I have personally written the following modules:

• bondorder, which computes the Steinhardt parameters and averaged versions ql(i),

qml (i) and q̃ml (i) (see sections 4.1 and 6.1),

• clathrates, which computes the lattice order parameters F3 and F4 (see sections 4.2

and 6.2).

I have also extensively rewritten and in cases extended the modules:

• order, which computes the orientational order parameter θ (see section 4.4),

• rings, which computes the number of rings within a cluster or region of the system

and the number of cages (see section 5.4.1).

In addition to those analytical components, I completely redesigned the input file system,

changing it from a very long (and constantly growing as new modules were added) fixed

format input file to a much more concise and humanly readable input format, also adding

the option to display a command line progress bar.

6.1 Computing the Steinhardt bond order parameters

The three variants of Steinhardt bond order parameter, defined in section 4.1, were com-

puted via a FORTRAN code. In this section, the algorithm is detailed. Full FORTRAN

source code is available on GitHub.202 The first step in computing any of the Steinhardt

parameters, for an individual water molecule i, is to compute qml (i) for every value of

m ∈ {−l, . . . , l}, see equation (9).

39
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function qlm(i) {

complex sigma = 0 + 0i # complex variable

# loop over first coord shell (excluding i itself)

for j in [first coord shell]:

real (r, theta, phi) = position(j) - position(i) # spherical coordinates

sigma += Ylm(l, m, theta, phi) # add the l,m spherical harmonic to the sum

return sigma / [size of first coord shell] # divide sum by count to get avg.

}

Computation of the regular Steinhardt parameter, ql(i), see equation (8), is now simple

with the following algorithm:

function ql(i) {

real sigma = 0 # real variable

# loop over m from -l to l

for m in [-l,...,l]:

sigma += |qlm(i)|^2 # add absolute square of qlm to the sum

return sqrt((4pi*sigma) / (2l+1))

}

6.1.1 Computing the Lechner and Dellago local bond order parameters

To compute the second set of bond order parameters, first we need to compute qml (i) for

every value of m ∈ {−l, . . . , l}, see equation (11), as we did for qml (i) in the previous

section. This is achieved by simply summing the qml (j) for every molecule j within the fist

coordination shell (including i itself). Once all the qml (i) are computed, calculating ql(i)

is much the same as for ql(i):

function qlb(i) {

real sigma = 0 # real variable

# loop over m from -l to l

for m in [-l,...,l]:

sigma += |qlmb(i)|^2 # add absolute square of q^-lm to the sum

return sqrt((4pi*sigma) / (2l+1))

}
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6.1.2 Computing the Li et al. local bond order parameters

The third set of parameters are defined somewhat differently from the first two, see equa-

tion (12). The algorithm for computing q̃l(i), for a water molecule i, is detailed below:

function qlt(i) {

complex sigma = 0 + 0i # complex variable

real qi_squared = 0 # real variable

# loop over m from -l to l

for m in [-l,...,l] :

qi_squared += |qlm(i)|^2

# loop over first coord shell (excluding i itself)

for j in [first coord shell]:

complex qi_dot_qj = 0 + 0i # complex variable

real qj_squared = 0 # real variable

# loop over m from -l to l

for m in [-l,...,l]:

qi_dot_qj += qlm(i) * (qlm(j)^*)

qj_squared += |qlm(j)|^2

sigma += qi_dot_qj/sqrt(qj_squared)

return Re(sigma) / ([size first coord shell]*sqrt(qi_squared))

}

6.1.3 Computing the spherical harmonics

In the implementation of the code, the third, fourth and sixth spherical harmonics are

hard-coded for performance reasons; however, if other orders were desired they can be

computed via the equation:203

Y m
l (θ, φ) =

(
2l + 1

4π

(l −m)!

(l +m)!

) 1
2

Pml (cos θ)eimφ, (28)

where Pml are the associated Legendre polynomials, which obey and are fully described

by the following four identities:

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x), for l ∈ N, m ∈ {1, . . . , l}; (29)

Pml (x) = (−1)m(2m− 1)!!(1− x2)m/2, for m = l ∈ N; (30)

Pml (x) = x(2m+ 1)Pmm (x), for l ∈ N, m = l − 1; (31)
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(l−m)Pml (x) = x(2l−1)Pml−1(x)− (l+m−1)Pml−2(x), for l ∈ N, m ∈ {0, . . . , l − 2}; (32)

where n!! indicates the double factorial of n, i.e. n!! = 3 · 5 · · · (n − 2) · n for odd n and

n!! = 2 · 4 · · · (n − 2) · n for even n. Thus the associated Legendre polynomials can be

computed recursively as follows:

recursive function Plm(l,m,x) {

if m < 0: return (-1)^m * ((l+m)! / (l-m)!) * Plm(l,-m,x)

else if m = l: return (-1)^m * (2m-1)!! * (1-x^2)^(m/2)

else if m = l-1: return x * (2m+1) * Plm(m, m, x)

else: return [x * (2l-1) * Plm(l-1,m,x) - (l+m-1)*Plm(l-2,m,x)] / (l-m)

}

Note that a negative m is immediately replaced with a positive m in the above algorithm

and a positive m is always increased until it reaches l, whereby P ll is well defined. Thus

this algorithm will converge for any positive integer l, and m ∈ {−l, . . . , l}.

6.2 Computing the lattice order parameters

The three and four-body lattice order parameters F3 and F4, see equations (14) and (15)

respectively, were also computed via a FORTRAN code. Here those algorithms are de-

tailed. As with the Steinhardt bond order parameters section, full FORTRAN source code

is available on GitHub.202

6.2.1 Computing the three-body lattice order parameter

The three-body lattice order parameter, F3, was computed, according to equation (14),

using the equivalence rij · rik = |rij ||rjk| cos(θΛ), as detailed below:

function F3(i) {

real sigma = 0 # real variable

# loop over molecules j,k in first coord shell (with i,j,k distinct)

for j,k in [first coord shell]:

real cos2_num = r_ij.r_ik * |r_ij.r_ik| # |cos(th)|cos(th) numerator

real cos2_den = |j|^2 * |k|^2 # |cos(th)|cos(th) denominator

sigma += ( cos2_num/cos2_den - cos^2(109.47) )^2

return sigma

}

6.2.2 Computing the four-body lattice order parameter

The four-body lattice order parameter, F4, was computed, according to equation (15). The

largest challenge in computing F4(i) for a water molecule i is calculating the H−O···O−H
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torsional angles, ϕ. The torsional angle for water molecules i and j is defined as being the

angle formed between the two planes Π and Γ, so that oi,oj ,hi ∈ Π and oi,oj ,hj ∈ Γ;

where oi, oj , hi and hj are the positions of the oxygen atoms and outermost hydrogen

atoms from molecules i and j. The intersection of these planes is the line L, containing

both oi and oj :

L = {oi + αoj | α ∈ R}, (33)

Now, the angle between planes Π and Γ is the same as the angle between two vectors

u ∈ Π and v ∈ Γ, chosen such that both are perpendicular to L.

For simplicity, we define the coordinate system such that oi = 0, i.e. oj , hi and hj

are vector positions relative to oi, now L = {αoj | α ∈ R}. Since the vectors u and v are

perpendicular to L, we must have that u · oj = 0 and u · oj = 0. Note now that since

setting oi = 0, we have:

Π = {αhi + βoj | α, β ∈ R}, Γ = {αhj + βoj | α, β ∈ R}, (34)

and since we are only interested in angles and not magnitudes, we can assume that u and

v are of the form:

u = hi + λoj , v = hj + µoj , λ, µ ∈ R. (35)

Now

u · oj = (hi + λoj) · oj = hi · oj + λoj · oj = hi · oj + λ|oj |2 = 0, (36)

v · oj = (hj + µoj) · oj = hj · oj + µoj · oj = hj · oj + µ|oj |2 = 0. (37)

Finally, we get values for λ and µ:

λ = −hi · oj
|oj |2

, µ = −hj · oj
|oj |2

, (38)

and we can calculate the cosine of the torsional angle ϕ:

cos(ϕ) =
u · v
|u||u| , (39)

using the values obtained using u = hi+λoj , v = hj +µoj . The algorithm for computing

F4 is given below in pseudocode:

function F4(i) {

real sigma = 0 # real variable

# loop over first coord shell (excluding i itself)

for k in [first coord shell]:

# get position vectors for oxygen atoms and outer hydrogen atoms

vector oi = (0, 0, 0) # all positions relative to oxygen from molecule i

vector oj = position([oxygen from molecule j])
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vector hi = position([hydrogen from molecule i, furthest from oj])

vector hj = position([hydrogen from molecule j, furthest from oi])

real lambda = -hi.oj / |oj|^2

real mu = -hj.oj / |oj|^2

vector u = hi + lambda*oj

vector v = hj + mu*oj

real cos_phi = u.v / |u||v|

sigma += 4*cos_phi^3 - 3*cos_phi

return sigma

}



Chapter 7

Results

In this chapter, the results from the DPPC-CHL/DMPI and LPS systems, supercooled

to 233.15 K, are discussed. As introduced in sections 3.1 and 3.2, these are water-bilayer-

water systems with a variety of different bilayers: DPPC-CHL bilayers from 0–100 mol%

CHL, DPPC-DMPI bilayers from 0–100 mol% DMPI and asymmetric bilayers with one

lipid A leaflet and one phospholipid leaflet. Extracting quantitative information from MD

simulations is a difficult task, however the analytical tools described in chapters 4 and 5

can provide insight into the structure of the bilayers, as well as the amount of nucleation

events occurring and the location of these occurrences.

7.1 Pre-critical ice nuclei

In section 5.1, methodology was detailed for computing the largest “icy cluster” occurring

in each frame of the simulation trajectories. Figure 17 shows the distribution of sizes

of these clusters for all the different systems. For the DPPC-CHL/DMPI systems, the

largest cluster across both sides is considered as the bilayers are symmetrical. For the LPS

systems, the largest cluster from each side is considered as the bilayers are asymmetrical

(i.e. the two sides are treated as separate systems).

Note that the LPS systems are considerably larger, so one would expect to see larger

clusters on average. This is due to both volume (or number of molecules) and area based

factors. From a volumetric perspective, regardless of the bilayers ability or inability to

promote ice nucleation, a larger number of water molecules makes it statistically more

likely to see larger clusters. While it is true that splitting the LPS systems in half reduces

this effect, each half of these systems still has around three to four times as many water

molecules as the smaller systems. From the perspective that the LPS systems have a larger

surface area, it follows that if the bilayer does promote ice nucleation, then the interface

is larger and therefore one would expect to see more “icy” molecules and therefore larger

clusters. It would theoretically be possible to normalise the data in order to account

for this; however the effect of system size on the distribution of cluster sizes is a rather

complex question and the mismatching scales are not a particular issue for the analyses

45
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Figure 17: Box plots of the sizes of the largest icy cluster per frame for the various
systems. The asymmetric LPS systems are split into “left”: the side containing a mixture
of phospholipids, and “right”: the side containing Lipid A with (ReLPS, RaLPS) or
without (Lipid A) lipopolysaccharide chains. The boxes extend from the upper to lower
quartile, with a line at the median. The whiskers encase the entire range of values,
excluding outliers; which are not plotted. Outliers are defined as being values falling
above the 99.9th percentile. While the analyses described in sections 7.1.1 and 7.1.2 only
consider such clusters which contain at least 30 water molecules, the box plots include all
largest clusters.
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discussed herein, many of which are more qualitative than quantitative.

From figure 17, it is noted that the inter-quartile ranges and medians are broadly

similar for all eleven DPPC-CHL/DMPI systems. They are also similar (but higher)

across the six sides of the LPS simulations. In the LPS systems, the slightly lower values

for RaLPS can be explained by the fact that the simulation box is smaller than that of

the ReLPS and Lipid A systems. The same can likely be said of the slightly lower values

observed in the high CHL systems.

7.1.1 Choice of minimum cluster size

Figure 18 shows the difference in probability density, when filtering by a minimum size

of 30 or 40 or not filtering, for the DPPC-CHL systems. When using a minimum of 40

molecules per cluster, around 93.5 % of all frames are omitted for the DPPC-CHL systems.

Filtering by a minimum of 30, on the other hand, retains around 30 % of frames in those

same systems. Filtering by this minimum size of 30 does however counter the emergence of

a peak at the water-vacuum interface; caused by smaller icy clusters forming preferentially

at this interface, as compared to in the bulk water region.

Gasparotto et al. 204 reported that supercooled water molecules, i.e. molecules of water

cooled below 0 °C but still in a liquid state, are relatively mobile at water-vacuum inter-

faces, with the effect that hydrogen bonds are formed and broken more quickly than in

bulk water. This could explain the observed phenomenon of clusters forming preferen-

tially at the vacuum interface; while the fleetingness of these hydrogen bonded structures

provides an explanation for why these clusters are generally fairly small.

7.1.2 Ice nuclei at the lipid-water interface

The rate of emergence of pre-critical icy clusters at the interface between the bilayers

studied herein and the water layer provides a unique insight into the ability of each bilayer

to act as an INA. Figures 19 to 21 show the distribution of largest pre-critical icy nuclei

for the DPPC-CHL, DPPC-DMPI and LPS systems, respectively. In these graphs, only

clusters with at least 30 water molecules are included, as discussed in section 7.1.1.

In the case of DPPC-CHL (see figure 20), some degree of increased ice nucleation was

observed for all six systems. It is interesting to note that the pure DPPC bilayer appears

to have a similar ice nucleating potential to pure CHL, which is known to be a good INA in

both crystalline21 and monolayer24 form, despite the fact that the bilayer-water interface

is much more diffuse in the case of DPPC than that of CHL. These DPPC bilayers appear

to be comparable to CHL monolayers, which are known24 to facilitate ice nucleation

below −15 °C, in their ability to act as INAs; this suggests that while such bilayers can

act as INAs, they are weak in comparison to biological INAs such as crystalline CHL,21

Pseudomonas syringae205,206 and pollen.207–210 For the mixed bilayers, containing both

DPPC and CHL, the effect on ice nucleation appears to decrease as CHL concentration

increases, noted by a less prominent peak in the probability density at the bilayer-water
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Figure 18: Probability density fice(z) (black, solid) for (unsigned) z-distance of water
molecules, within a largest icy cluster, from the centre of mass of the bilayer. DPPC,
CHL and water densities: ρDPPC(z), ρCHL(z) and ρwater(z) are displayed with dashed
magenta, green and blue lines, respectively. Corresponding PDFs only including clusters
with minimum 30 or 40 molecules are shown by yellow and red dotted lines, respectively.
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interface, up until 40 mol% CHL, wherein it increases once more until 100 mol% CHL. This

can likely be attributed at least in part to the accessibility of the CHL hydroxyl group

for low CHL systems and the fact that any water which is surrounding these groups is

under-coordinated, as discussed later in section 7.3; while the hydrogen bonding sites on

the DPPC molecules become more tightly packed (see section 7.2) and fewer in number.

Similar trends are observed in the case of the DPPC-DMPI systems (see figure 20).

It appears that pure DMPI appears is even more active than pure CHL, showing a pro-

nounced peak in the probability density at the bilayer–water interface. It is also of note

that the decrease of the peak with increased DMPI concentration is less pronounced than

was seen with the DPPC-CHL systems.

Finally, we consider the LPS systems (see figure 21). These are asymmetric systems,

the “left” side of the bilayer features a phospholipid-water interface, whilst the “right”

side of the bilayer is composed of lipid A (plus coating sugars in the case of ReLPS and

RaLPS). Focusing first on the phospholipid leaflet alone (left side), we observe a small

increase of the probability density for the ice nuclei to form within the interfacial region.

Moving onto the right side of the membranes, it appears that the Lipid A system (top

panel of figure 21) has little, if any, ice nucleating potential, with no noticeable peak in

the probability density for icy clusters to form at the bilayer-water interface. However,

this is not the case when we look at the ReLPS and RaLPS systems.

The PDF for RaLPS appears intriguing, as we see a substantial number of ice nuclei

even within the extended sugar-water interface, where the water density is much lower

than in the bulk of the water layer. This is indicative of high potency at nucleating ice of

the RaLPS system but not inconsistent with the fact that ice does not appear in under-

coordinated water.∗ This is because water is not evenly dispersed within the sugar layer

and, while the average water density is around 0.6 g cm−3, this is arranged in pockets of

fully coordinated water, see figure 22 for a visualisation of the RaLPS sugar distribution.

We have looked at the emergence of pre-critical icy clusters around the bilayer-water

interface, this is a great measure of a surface’s tendency to promote ice nucleation. Next,

we look at some structural properties of the bilayer itself. In a previous study,24 it was

shown that there is a directly proportional relationship between the degree of structural

order within CHL monolayers and their ability to promote ice nucleation. This is not

directly comparable with the result herein, as the systems differ in both structure and

chemistry, however the fact that better ordered systems may be better at promoting

ice nucleation, with all other factors equal, should provide an interesting insight to the

relationship between pre-critical cluster emergence and structural order.

∗As described in section 1.1, water molecules within ice crystals must necessarily be surrounded by
four other water molecules. Similarly, the procedure described in section 5.1 for computing the icy clusters
will be strongly affected by the coordination of the water molecules.
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Figure 19: Probability density fice(z) (black, solid) for (unsigned) z-distance of water
molecules, within a largest icy cluster, from the centre of mass of the bilayer. DPPC,
CHL and water densities: ρDPPC(z), ρCHL(z) and ρwater(z) are displayed with dashed
magenta, green and blue lines, respectively.
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Figure 20: Probability density fice(z) (black, solid) for (unsigned) z-distance of water
molecules, within a largest icy cluster, from the centre of mass of the bilayer. DPPC,
DMPI and water densities: ρDPPC(z), ρDMPI(z) and ρwater(z) are displayed with dashed
magenta, cyan and blue lines, respectively.
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Figure 21: Probability density fice(z) (black, solid) for (signed) z-distance of water
molecules, within a largest icy cluster, from the centre of mass of the bilayer (includ-
ing the sugars). Total membrane, lipid A, sugar and water densities: ρmemb(z), ρlipidA(z),
ρsugars(z) and ρwater(z) are displayed with dashed red, yellow, pink and blue lines, respec-
tively.
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Figure 22: Distribution of sugars in the RaLPS system. Left panel shows xy-plane cross
section. Right panel shows the system across the z-axis. Lipid A is coloured black, sugars
are coloured orange, water molecules are coloured blue. Hydrogen atoms are not drawn
for Lipid A and sugars.

7.2 Structural order within the bilayers

To explain the trends observed in the simulations, it is vital to have an understanding

of the structural properties of the different bilayers and how the lipids interact with each

other. In section 5.3.1 the SMAC parameter was defined, this provides a measure of

order within the bilayers, taking into account both local density and orientation. Higher

values of SMAC correspond with a greater degree of order between the lipid tails. The

average SMAC values for each system are given in figure 23(a). For the DPPC-CHL/DMPI

systems, the average SMAC values are also reported for each lipid type; while for the LPS

systems, the SMAC values for the two leaflets are reported separately.

Adding CHL into DPPC bilayers we see a progressive increase in structural order up

to 40 mol% CHL, with both DPPC and CHL lipids appearing the most ordered at around

this concentration. The ordering and condensing effect that CHL has on DPPC bilayers

is well known25,30,133 and here appears to decline at concentrations higher than 40 mol%

CHL.∗ Remarkably, the pure DPPC and pure CHL bilayers report a very similar degree

of structural order via the SMAC parameter, a value lower than that of any of the mixed

systems. It is interesting to note that phospholipid bilayers found in nature typically

have CHL content ranging from 0–50 mol%.34,35 Comparing these trends with those from

figure 19, the most ordered of the bilayers appear to be those with the least ice nucleating

potential. This appears surprising as previous studies24 on CHL monolayers found that

structural order was in directly proportional to the ice nucleating potential. One should

∗There is not much literature relating to bilayers with greater than 50 mol% CHL owing to their non-
existence in nature. For the same reason however, it seems unsurprising to see the structural ordering
decreasing above these concentrations.
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Figure 23: (a) Average SMAC parameter 〈si〉 for lipid tails in different systems. The top
panel shows SMAC for DPPC-CHL bilayers, with mol% CHL along the horizontal axis,
the middle panel shows SMAC for DPPC-DMPI bilayers, with mol% DMPI along the
horizontal axis, while the bottom panel shows SMAC for the three LPS bilayer systems.
The error bars show one standard deviation. The points are slightly offset along the x-
axis for improved readability. The y-scale is identical for DPPC-CHL and DPPC-DMPI
for purposes of comparison, the scale is different for LPS due to the greatly lower degree
of order in the lipid A tails. (b) Average (Voronoi) surface area per lipid. DPPC-CHL
systems have solid points, DPPC-DMPI have unfilled points.

note this apparent contradiction, but also note that the systems here are affected by

chemical factors as well as structural factors, as these are heterogeneous bilayers.

In DPPC-CHL bilayers, we saw mixed bilayers which were better ordered than the

pure bilayers. The opposite is true in DPPC-DMPI bilayers — here the systems with the

greatest degree of structural order are the pure DPPC and pure DMPI bilayers, while

the mixed systems are less ordered. Adding DMPI into DPPC bilayers induces a degree

of structural disorder, largely due to disorder between the DMPI tails, interestingly the

DPPC tails retain a similar degree of order across all systems. In comparing DPPC-CHL

to DPPC-DMPI we should recall that CHL is a much smaller lipid than DPPC, while

DMPI has a slightly larger headgroup than DPPC, but is of a much more similar size.

Considering the fact that the trends in figures 19 and 20 are similar, this poses interesting

questions about the relevance of structural order to a system’s ability to act as an INA. In

section 7.3, the inter-molecular hydrogen bonds are considered, which will help to explain
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these trends.

The final set of systems to compare the SMAC parameter for are the LPS systems.

Here the addition of sugars from Lipid A, with no sugar, to ReLPS, with two KDO units

linked to each lipid A residue, appears to result in very little, if any increase in the SMAC

parameter, and thus the degree of structural order within the bilayer. The story is rather

different when we look at the RaLPS system, with the complete oligosaccharide core on

each lipid A residue, this system appears to display a much lower degree of structural

order amongst the (four major) lipid A tails. In all three systems, the lipid A tails

show rather lower values of SMAC than any component within the DPPC-CHL/DMPI

systems, however we should remember that SMAC measures the density of tails as well

as the orientational symmetry.

More surprising is the trend seen in the SMAC parameters for the phospholipid leaflets;

here it appear that the phospholipids become less well-ordered as we add sugar to the

lipid A leaflet. This can be partially attributed to the difference in density between

the three systems.∗ Overall, the LPS systems do seem to be less well ordered than the

DPPC-CHL/DMPI systems, which is perhaps unsurprising due to the far greater level

of complexity in these systems. We saw in figure 21 that the Lipid A system was not a

particularly good INA, however the ReLPS and RaLPS systems did display a good amount

of ice nucleating potential. Again, this seems to contradict previous results that showed

better ordered monolayers to be better INAs than less well ordered ones, however the

differences can be attributed to the “rough” structure of the sugar coated lipid A leaflets

— causing more accessibility to hydrogen bonding sites, as discussed in the next section.

The second measure of bilayer order discussed is the accessible area per lipid. This

was computed using a Voronoi tessellation, as described in section 5.3.2. Figure 23(b)

shows these Voronoi accessible areas per lipid for the DPPC-CHL/DMPI systems. These

values are higher for the DPPC-DMPI systems than for their DPPC-CHL counterparts

— unsurprising as DMPI has a slightly larger headgroup than DPPC, while CHL is a

substantially smaller lipid. In the case of DPPC-CHL, the trends in Voronoi area are

in good agreement with the SMAC results, with DPPC taking up the least space in the

40 mol% CHL system. Interestingly, CHL accesses a similar amount of space in all systems,

with the exception of the 20 mol% CHL system, where the CHL molecules average area

per lipid is slightly lower, this can be attributed to the tight packing between DPPC and

CHL lipids, similarly to as described by Leeb and Maibaum 133 .

In the DPPC-DMPI systems, the trends are broadly linear, with area per lipid in-

creasing with DMPI concentration. This is what one would expect given the relative sizes

of the two lipid headgroups and appears to suggest, as did the SMAC results, that the

two lipids interact with each other in a fairly similar manner to which they interact with

other lipids of their same type. Voronoi areas were not computed for the LPS systems

∗Note that, by equation (27), si should scale with density by a factor of (1− ψ(ni)), as the right hand
side of equation (27) is the mean of f(rij)K(θij), which is unaffected by density. Thus, by equation (25),
the SMAC parameter increases with density if all other factors are unchanged.
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as the difference between these systems is in the z-direction rather than in the xy-plane.

The average area per lipid A residue can however be calculated by simply dividing the

cross-sectional area by the number of lipid A molecules. This gives average area per lipid

for the Lipid A, ReLPS and RaLPS systems to be 157.6, 169.7 and 180.2 Å2, respectively.

Having looked at both the icy clusters and the degree of structural order between the

different bilayers, a number of apparent contradictions have arisen. The next section,

regarding the hydrogen bonds which form between the bilayers and the icy clusters will

go some way to reconciling these differences and further elucidating the interplay between

structural and chemical factors in what makes a lipid bilayer good or bad at promoting

ice nucleation.

7.3 Hydrogen bonds

Figure 24 shows the average number of hydrogen bonds between each bilayer and the

largest icy cluster per frame, as a function of the bilayer composition. For the DPPC-

CHL/DMPI systems, the hydrogen bonds are categorised by bonding site (see figure 3)

and whether the bond is donated or accepted by the bilayer. For the LPS systems, the

hydrogen bonds are categorised with reference to each residue instead, as there are far too

many potential bonding sites to illustrate them all separately.

Looking first at the DPPC-CHL systems, the number of hydrogen bonds between the

largest icy clusters and the CHL molecules is roughly proportional to the CHL concen-

tration. However, for systems below 40 mol% CHL, we only see a negligible number of

such hydrogen bonds; this can be explained by the inaccessibility of the CHL hydroxyl

group to the water — in such systems, the CHL molecules tend to sit close to the centre,

with the DPPC headgroups extending much further out. Clearly illustrating this point is

figure 19, where in the 20 and 40 mol% CHL systems there is very little overlap, along the

z-direction, between CHL density and the location of the icy clusters. This is due to the

small degree of overlap between CHL and water density.

It is less easy to quantify the trends for hydrogen bonds between DPPC and the

icy clusters, as these appear to fluctuate rather than showing any clear correlation to the

DPPC concentration. DPPC has eight hydrogen bonding sites (see figure 3(a)) with five of

these being located especially deep within the bilayer-water interface (the four “tailgroup

oxygens” and the innermost phosphate oxygen). As the DPPC concentration decreases

we see an increase in hydrogen bonds forming at these five sites, due to an increase in

water density compared to the higher DPPC systems; this trend peaks at 60 mol%, after

which the reduction in total bonding sites leads to a reduction in hydrogen bonds. While

those five sites show the clearest trend, similar trends are observed for the other bonding

sites, with none of the sites being as accessible as the CHL hydroxy group in pure CHL

environments such as monolayers, crystals or the pure CHL bilayer system studied here.

In contrast, the DPPC-DMPI systems present a very different picture. Owing to the

fact that these two lipids are far more alike than DPPC and CHL, the trends appear
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Figure 24: Average number of hydrogen bonds per frame from the largest icy cluster to
DPPC-CHL (top left), DPPC-DMPI (bottom left) and LPS (right) bilayers. For DPPC,
CHL and DMPI, the different possible bonding sites are coloured in the same way as in
figure 3. DMPI has four bonding sites (O2, O3 and O4) which can accept or donate
hydrogen bonds; the third and fourth columns in the key correspond to those three sites,
with acceptors on the left and donors on the right. For the LPS systems, bonding sites
are grouped by molecule and not distinguished between donors and acceptors.
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much more straightforward. For DPPC the number of hydrogen bonds appears to be

approximately linearly proportional to the concentration of DPPC. For DMPI, the same

seems to be true up until 80 mol% DMPI, after which the number of hydrogen bonds

appears to plateau. It seems reasonable to suggest, considering the structure of DMPI

(see figure 3(c)), that interfacial icy clusters are already fully “saturated” with available

hydrogen bonding sites in the 80 mol% DMPI bilayer. Interestingly, this 80 mol% DMPI

system has the most hydrogen bonds when we include those with both lipids, perhaps this

can be accounted for by the “roughness” due to the lower degree of structural order in

this system, as compared to the 60 and 100 mol% DMPI systems (see figure 23).

It is evident also that DMPI, on average, forms a greater number of hydrogen bonds

with the icy clusters than DPPC. This can be attributed to the greater number and

accessibility of hydrogen bonding sites in the PI headgroup as compared to PC — thirteen,

five of which can both accept and donate hydrogen bonds, as compared to eight for DPPC,

all of which may only accept bonds. Interestingly, these results appear to be consistent

with the slightly higher ice nucleating effect of pure DMPI bilayers in comparison to pure

DPPC bilayers (see figures 19 and 20). In comparing these trends it is important to recall

that, conversely to what is seen in DPPC-CHL bilayers, mixed DPPC-DMPI bilayers

are less well ordered than their pure counterparts (see figure 23). This makes it all the

more striking that we see such ice nucleating potential from the mixed DPPC-DMPI

systems; likely in part due to the higher potential DMPI has to form hydrogen bonds with

water molecules and the order induced by such hydrogen bonding having an effect on ice

nucleation.

The final set of systems to consider is the LPS systems. Here the number of hydrogen

bonds between the phospholipid leaflet and the icy clusters at the phospholipid-water

interface are fairly consistent across all three systems. It would be surprising to see

any specific trends in this case as the only difference between those leaflets are minor.

Comparing the hydrogen bonds formed with the three lipid A leaflets, strong trends are

observed. In figure 21, we saw that lipid A alone does not appear to facilitate ice nucleation

very much if at all, this appears to correspond with the bar for the Lipid A system in

figure 24. In contrast, the ReLPS and RaLPS systems do form a large number of hydrogen

bonds with the icy clusters, especially with the most accessible of the sugar residues.

In RaLPS, one might be surprised to see so many bonds forming between lipid A and

the icy clusters, and surprised to see the density of icy clusters where the water density is

low. Certainly one shouldn’t see many icy clusters in under-coordinated water; however

the nature of the systems is that, while the average water density is around 0.6 g cm−3, the

water is assembled in pockets of fully coordinated regions. This means that the effective

surface area of the RaLPS system, and to a lesser extent the ReLPS system, is far greater

than the cross-sectional area, hence the ability for clusters to form so many hydrogen

bonds. In other words, due to the sugar residues extending well into the water region and

coming into contact with pockets of fully coordinated water, there are a vastly greater

number of possible sites where hydrogen bonds might form between icy clusters and the
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bilayer.

7.4 Water geometry

7.4.1 Water orientation

It is widely accepted that the structure of liquid water can be greatly affected by contact

with hydrophilic and hydrophobic surfaces.211 Such effects have been posed as a leading

factor with regard to the ability of different surfaces to nucleate ice.212,213 One way to look

at the hydrophilic or hydrophobic properties of surfaces is by looking at the distribution

of orientations of water molecules, as a function of their distance from the surface. In

section 4.4, we defined two different orientational order parameters: θ, defined as the

angle between the dipole moment of a water molecule and the bilayer normal, and ϑ,

defined as the cosine of θ; with the point of ϑ being that the probability density function

for ideal water is a constant 1/2.

In figure 25, the values of ϑ are plotted for a bulk-like region of the pure DPPC system.

Here, we see that the distribution of probability density for the bulk-like water is close

to 1
2 , as expected for ideal water. This has been plotted as a colourmap over z in order

to demonstrate that the distribution of ϑ values is invariant across this region. Thus this

water region is indeed bulk-like. We do see a number of horizontal lines in this plot, these

can be explained as artifacts of the binning procedure for histogram production, note that

they are broadly constant across the z range. The distribution of θ values, as a function of

the z-distance from the centre of the bilayer, are given as colour maps in figures 27 and 29

and similar plots for ϑ are given in figures 28 and 30, with water density also shown on

Figure 25: Colourmap of normalised orientational order parameter ϑ = cos(θ) distribution
for a bulk-like region of water, taken from the pure DPPC system. The scale of the colour
bar is the probability density with respect to ϑ. Since the range of ϑ is [−1, 1], a uniform
distribution will produce the probability density value of 1/2. This has been plotted as
a colourmap over z in order to demonstrate that the distribution of ϑ values is invariant
across this region.
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each graph for reference.

In figure 27, we see a trend across the DPPC-CHL systems where θ values below 90° are

seen near the interface with the high DPPC systems, with a slight inclination for θ values

in the same region to rise above 90° when we have a higher proportion of CHL. This trend

is made all the more clear in figure 28 when we look at the ϑ distribution; again here we see

well defined peaks around ϑ = 1 for the high DPPC systems, with a corresponding dip in

the probability density around ϑ = 1 in the case of the high CHL systems. This trend can

be explained by the topology of the headgroups of DPPC and CHL. In the case of DPPC,

there are a number of hydrogen bonding sites, all of which can only accept hydrogen bonds,

this could explain why it is that we see a greater number of water molecules with their

dipole moments pointing away from the bilayer. For a visualisation of this, see figure 26

which shows a snapshot of water molecules at the surface of a DPPC bilayer. While this

is a case of averages, it is apparent from the figure that more water molecules have their

dipoles pointing away from the bilayer than towards it. Conversely, CHL has one bonding

Figure 26: A snapshot of water molecules at the surface of a DPPC bilayer. The horizontal
axis is the xy-plane, while the vertical axis is the z-axis. Water molecules are displayed
solidly with their oxygen atoms coloured red and their hydrogens coloured white. DPPC
molecules are transparent with carbon, oxygen, phosphorus and nitrogen atoms coloured
in cyan, red, yellow and blue, respectively. Hydrogen atoms are not displayed for the
DPPC molecules. On average, more water molecules near the interface have their dipoles
pointing away from the bilayer than towards it.
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site which can either donate or accept hydrogen bonds. The fact that we see a slight

preference for water molecules’ dipole moments to point into the bilayer might initially

seem at odds with figure 24 where we see around twice as many water molecules donating

hydrogen bonds to the CHL hydroxy group than accepting them. However, when one

examines the area in which we see water molecules’ dipole moments pointing into the

bilayer, these are in fact water molecules which are deep within the headgroups, therefore

many of these molecules may have their dipole moments pointed away from CHL hydroxy

groups.

Turning our attention now to the right hand panels of figures 27 and 28, we observe a

much weaker trend for the DPPC-DMPI systems. This is somewhat expected as both the

structure and the chemistry of DPPC and DMPI are much more alike than that of DPPC

and CHL. In all six systems we see an increased concentration of θ below 90° around

the diffusion layer, however this is less pronounced for the high DMPI than it is for the

high DPPC systems. Again, this difference can be explained by the geometry of hydrogen

bonding sites, as DMPI has an increased number in comparison to DPPC, however the

additional sites can act as both acceptors and donors, once again implying that we would

not expect to see such a strong preference for the water dipoles to point outwards from

the bilayer. When we look at the distribution of ϑ for DPPC-DMPI, as shown in the right

hand panel of figure 28, we can see that as stated with θ and explained by the hydrogen

bonding sites, DMPI has less of an orienting effect on water than DPPC, although water

molecules in the diffusion layer are more likely to be oriented with their dipole pointing

away from the bilayer. We can also see more clearly than in figure 27 that the orienting

effect of DPPC is more substantially retained at lower DPPC concentrations than in the

case of the DPPC-CHL systems. This can be explained by the fact that DPPC and DMPI

are more similar to one another in both chemistry and size than DPPC and CHL are.

Finally, we discuss figures 29 and 30. For the diffusion layer between water and the

phospholipid leaflet, there is a slight tendency in θ to be below 90° as we saw with DPPC

and DMPI. For the Lipid A leaflet, we see a similar trend, which is unsurprising due to

the chemical similarities between the headgroup of lipid A molecules and the PC, PI, PE,

PG and CL phospholipid headgroups. Looking at ϑ, the information can be more easily

seen. For the Lipid A system, we see a large peak around ϑ = −1, corresponding to a

concentration of water molecules with their dipoles pointing into the bilayer at the edge

of the bulk water. This is interesting as it is the opposite trend to which we saw for

phospholipid bilayers and cannot be explained by hydrogen bonding, as lipid A, like the

phospholipids is more likely to accept hydrogen bonds than to donate them, thus some

other form of inter-molecular interaction must be responsible for this phenomenon. In the

case of the ReLPS and RaLPS, we once again see a higher number of interfacial water

molecules oriented with their dipoles pointing outwards and the distribution of water

molecules upon the phospholipid leaflet is rather similar to the distribution we saw for

DMPI, which is unsurprising.

Overall, analysis of the normalised parameter ϑ has been remarkably successful in
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comparison to θ, with details impossible to see in the θ plots becoming very pronounced

when considering ϑ. One might initially be skeptical of the drastic increase in the clarity

of the peaks, but when considering the shape of the sinusoidal wave that y = cos(x)

produces from 0 to 180° this is less surprising. It is also important to note that there is

geometric legitimacy to this normalisation, as explained in section 4.4.2, and thus these

more pronounced peaks are also credible.

7.4.2 Rings and cages

The number of 3–9 membered rings within each icy cluster was computed for the DPPC-

CHL bilayers, in particular, the number of six-membered rings is of interest as these are

the basic building blocks of both cubic and hexagonal ice. Extraction of detail from these

results is not a simple task. For each frame, we have the number of six-membered rings

within the largest icy cluster which were counted to give a probability distribution ΩN ,

for N = 1, 2, . . . defined as such:

ΩN =
Number of frames with N six-membered rings

Total number of frames
. (40)

Note that N starts at 1 and not 0. This is because in practice the R.I.N.G.S. code always

finds at least one six-membered ring within the largest icy clusters. Plotting the values of

ΩN gives an insight as to how one might fit the data. Specifically, when we plot using a

logarithmic scale, the distribution looks linear, suggesting that one might be able to fit a

line:

ln
(
P[nR = N ]

)
= mN + c, (41)

where ln indicates the natural logarithm, P[nR = N ] is the expected probability of having

N six-membered rings and m and c are constants. This can be written equivalently as:

P[nR = N ] = AemN , (42)

where A is the constant A = ec. One possible method for fitting the line is using a least-

squares regression. However, that method leads to values for m and c which do not satisfy

the probability axiom of unit measure. In other words, we must require that:

∞∑

N=1

P[nR = N ] = 1. (43)

Well,
∞∑

N=1

P[nR = N ] =

∞∑

N=1

AemN = A

∞∑

N=1

emN , (44)
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Figure 27: Orientational order parameter (θ) colour maps for DPPC-CHL/DMPI systems
(see section 4.4). Average water density is shown as a dashed white line. The scale for the

colour map is count per frame per �A3
per 180°. A value of θ = 0° corresponds to the dipole

moment pointing away from the plane of the bilayer (along the normal) while a value of
θ = 180° corresponds to the dipole moment pointing towards the plane of the bilayer.
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Figure 28: Normalised orientational order parameter (ϑ = cos(θ)) colour maps for DPPC-
CHL/DMPI systems (see section 4.4). Average water density is shown as a dashed white

line. The scale for the colour map is count per frame per �A3
. A value of ϑ = 1 corresponds

to the dipole moment pointing away from the plane of the bilayer (along the normal) while
a value of ϑ = 0 corresponds to the dipole moment pointing towards the plane of the
bilayer.
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Figure 29: Orientational order parameter (θ) colour maps for LPS systems (see sec-
tion 4.4). Average water density is shown as a dashed white line. The scale for the

colour map is count per frame per �A3
per 180°. A value of θ = 0° corresponds to the

dipole moment pointing away from the plane of the bilayer (along the normal) while a
value of θ = 180° corresponds to the dipole moment pointing towards the plane of the
bilayer.

Figure 30: Normalised orientational order parameter (ϑ = cos(θ)) colour maps for LPS
systems (see section 4.4). Average water density is shown as a dashed white line. The

scale for the colour map is count per frame per �A3
. A value of ϑ = 1 corresponds to the

dipole moment pointing away from the plane of the bilayer (along the normal) while a
value of ϑ = 0 corresponds to the dipole moment pointing towards the plane of the bilayer.
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which is a geometric series, since m < 0, thus 0 < em < 1. And therefore

∞∑

N=1

P[nR = N ] =
Aem

1− em = 1. (45)

This can be rearranged to discover that

A = e−m − 1. (46)

Therefore there is only one unknown to choose to fit the curve, i.e.

P[nR = N ] = (e−m − 1)emN . (47)

A reasonable choice for m might be the one so that P[nR = 1] = Ω1, then

Ω1 = P[nR = 1] = (e−m − 1)em = 1− em, (48)

thus em = 1− Ω1, and so

m = ln(1− Ω1), (49)

and

A = e−m − 1 = e− ln(1−Ω1) − 1 =
1

1− Ω1
− 1 =

Ω1

1− Ω1
. (50)

We know that Ω1 < 1, therefore this logarithm is definitely defined.

With the exception of the 20 mol% CHL system, this model agrees with the data from

the DPPC-CHL systems fairly well for smaller values of N . For larger values (N ∼ 10)

equations (42), (49) and (50) give an overestimate for the probability for approximately

the range 10 ≥ N ≥ 20 and an underestimate for greater values of N . However, the fit is

fairly good and the nature of the logarithmic scale exaggerates the discrepancy. We can

verify how well these curves fit by computing the squared sum of residuals (SSR), i.e. the

sum of the squares of the differences between the actual data values and the curve:

SSR =
∞∑

N=1

(AemN − ΩN )2. (51)

The computed values of A and m for the six DPPC-CHL systems and the SSRs are given

in table 4 and the values of ΩN , along with the fitted curves P[nR = N ] = AemN are

displayed in figure 31. There is a reverse exponential relationship between A and the

expected number of rings, i.e. the larger the value of A, the fewer rings are expected on

average. Thus it appears that we see more rings in the lower CHL systems, with the

greatest number of rings being seen around the 20–40 mol% CHL systems. Note that the

20 mol% CHL system is an outlier.

A similar process was done for the number of DDCs and HCs in the systems, with the

main difference being that most frames contain zero cages, thus the procedure must be
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Figure 31: Probability distribution of number of rings per frame for DPPC-CHL systems.
Values from simulations ΩN are shown as magenta crosses, curves fitted of the form P[nR =
N ] = AemN are shown in cyan, values for A and m are given in table 4. The left hand
panel shows the values with a linear scale, while on the right hand side, a semi-log scale
is used, with the probability values plotted with a logarithmic scale, this allows us to see
more detail for higher values of N .
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Table 4: Values of A and m for fitted curves of the form P[nR = N ] = AemN . The squared
sum of residuals (SSR) is also given.

System A m SSR

Pure DPPC 0.435 −0.361 9.04× 10−4

20 mol% CHL 0.262 −0.233 5.37× 10−3

40 mol% CHL 0.429 −0.357 4.17× 10−4

60 mol% CHL 0.487 −0.397 5.83× 10−4

80 mol% CHL 0.495 −0.402 4.66× 10−4

Pure CHL 0.472 −0.386 1.80× 10−4

altered so as to include Ω0. However, the exponential appearance only seems to start at

N = 1 like with the rings, so equation (43) becomes:

∞∑

N=1

P[nC = N ] = 1− Ω0, (52)

and equations (49) and (50) become, respectively:

m = ln

(
1− Ω1

1− Ω0

)
and A =

(1− Ω0)Ω1

1− Ω− Ω1
. (53)

The final form of the approximate distribution is then given:

P[nC = N ] =





Ω0 N = 0

AemN N > 0
. (54)

The values for Ω0 and the computed values for A and m for DDCs and HCs are given

in table 5. The values and fitted curves for DDCs and HCs are shown in figures 32 and 33,

respectively. Note that for both DDCs and HCs, P[nC = 0] ≈ 1 for all systems, and the

maximum numbers of cages seen are much lower than for the rings. Nonetheless, the fit is

reasonably good for the DDCs, for HCs, the slope is steeper still and is hard to analyse.

Table 5: Values of A and m for fitted curves of the form given in equation (54).

System
DDCs HCs

Ω0 A m Ω0 A m

Pure DPPC 0.986 0.0436 −1.42 0.989 0.509 −3.85
20 mol% CHL 0.989 0.0298 −1.33 0.991 0.714 −4.36
40 mol% CHL 0.979 0.0519 −1.26 0.986 0.326 −3.17
60 mol% CHL 0.989 0.0485 −1.68 0.991 0.529 −4.09
80 mol% CHL 0.987 0.0373 −1.34 0.991 0.538 −4.16

Pure CHL 0.982 0.0523 −1.36 0.987 0.514 −3.74
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Figure 32: Probability distribution of number of DDCs per frame for DPPC-CHL systems.
Values from simulations ΩN are shown as magenta crosses, curves fitted of the form given
in equation (54) are shown in cyan, values for A and m are given in table 5. The left hand
panel shows the values with a linear scale, while on the right hand side, a semi-log scale
is used, with the probability values plotted with a logarithmic scale, this allows us to see
more detail for higher values of N . Note that the model was defined differently for N = 0
and for N > 0 in equation (54), which is why the logarithms of the curves are not linear.
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Figure 33: Probability distribution of number of HCs per frame for DPPC-CHL systems.
Values from simulations ΩN are shown as magenta crosses, curves fitted of the form given
in equation (54) are shown in cyan, values for A and m are given in table 5. The left hand
panel shows the values with a linear scale, while on the right hand side, a semi-log scale
is used, with the probability values plotted with a logarithmic scale, this allows us to see
more detail for higher values of N . Note that the model was defined differently for N = 0
and for N > 0 in equation (54), which is why the logarithms of the curves are not linear.



7.5 Discussion 71

7.5 Discussion

Altogether, these results present evidence that phospholipid bilayers promote ice nucle-

ation to some extent, however there is evidence to suggest that they are not especially

potent INAs. They have also further elucidated the interplay between structural and

chemical factors. In particular, pure DPPC, CHL and DMPI bilayers proved to have

slightly more of an impact on ice nucleation than mixed bilayers of the same constituents.

The condensing effect which CHL has on DPPC bilayers has a big impact on the accessi-

bility of hydrogen bonding sites and this has been postulated as an explanation for why

mixed DPPC-CHL bilayers have a lesser effect on ice nucleation than pure DPPC bilayers,

despite CHL crystals and monolayers being known to be highly potent INAs. It is perhaps

curious that no such potency was discovered for CHL bilayers. The LPS systems studied

also displayed some ability to promote ice nucleation, however again their potency as INAs

do not appear to be great.

These results present a step towards understanding the factors which make a surface

a good or bad ice nucleating agent. The availability and accessibility of hydrogen bonding

sites have been shown to correlate well with the cluster analysis. The structure of bilayers,

but particularly the structure of these accessible hydrogen bonding sites is a key factor

in the ice nucleating potential of a surface via “templating”. The orientational order

parameter also provides some insight into the behavior of water molecules at the surface

of the bilayer, with the trends seen particularly interesting in the DPPC-CHL and LPS

systems.



Chapter 8

Synthesis of DPPC-CHL Vesicles

In addition to the computational study detailed in the previous chapters, a small amount of

experimental work was undertaken. Although reduced in scale, partially due to the lack of

lab access during the COVID pandemic, there are some conclusions which could be drawn

from these experiments — chiefly to verify the setup of the simulation systems in terms

of their scale. This chapter also builds foundations for possible future experimental work,

in particular the concept that experimental work involving vesicles should be comparable

with two-dimensional bilayer simulations.

8.1 Dynamic light scattering

Dynamic light scattering (DLS) is an analytical technique, wherein a polarised laser beam

is shone through an aqueous sample. The intensity of scattered light at a fixed scat-

tering angle θ is detected and this intensity is used to approximate the size of particles

within the sample solution.214 The cause of this phenomenon is Rayleigh scattering,215,216

whereby small particles cause visible light to scatter. If the particles are sufficiently small

in comparison to the wavelength of the laser used (typically the expected requirement is

d < λ/10, where d is the particle diameter and λ is the wavelength of the laser) then it

can be assumed that the light will be scattered isotropically in all directions.

According to the Rayleigh approximation, the intensity of scattered light, I, is related

to the particle diameter and the wavelength by the expressions I ∝ d6 and I ∝ λ−4. The

proportional relationship to d6 means that measuring light scattered by a polydisperse

solution is somewhat challenging, and therefore DLS works best for monodisperse solu-

tions. The quartic inverse relationship with the wavelength means that a greater intensity

of light is scattered when using a smaller wavelength, thus there is a trade off between

having a wavelength which is sufficiently longer than the particle diameters but is not so

long as to reduce the intensity of scattered light by too great an extent.217

The principle behind DLS is the measurement of Brownian motion, which can be

related to the size of the particles in a solution. The larger a particle is, the slower its

Brownian motion; with the velocity of this motion being defined by the translational

72
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diffusion coefficient, D. If this value is known, along with the viscosity of the solution, the

size of a particle may be approximated, assuming that the particle is spherical, via the

Stokes-Einstein equation:

d(H) =
kBT

3πηD
, (55)

where d(H) is the hydrodynamic diameter, kB is the Boltzmann constant, T is the tem-

perature and η is the viscosity of the solution.217

If a laser is shone through a cuvette containing particles in solution, the Rayleigh

scattering of light will form a speckle pattern which fluctuates constantly due to Brownian

motion. In DLS, a correlator is used to assess the sizes of the particles. The principle of a

correlator is to numerically compare the signals at different times, with perfect correlation

(i.e. identical signals) taking the value of 1.0 and no correlation taking the value of 0.0.

If δt is a very small time interval, typically on the scale of nanoseconds or microseconds,

the signals at some initial time t and t + δt will be very similar, but as we increase the

time difference, t + 2δt, t + 3δt, · · · , the signal will become less and less similar to the

signal at time t, until eventually (as t → ∞) there will be no correlation whatsoever.

If the particles in a solution are large, the Brownian motion will be slow and therefore

the correlation will decay slowly. Conversely, when the particles are small, the Brownian

motion will be rapid and the correlation between signals will rapidly vanish. The shape of

the correlogram (i.e. the graph of correlation over time) also contains information about

the mono or polydispersity of the particles, with a more monodisperse sample giving a

steeper line of decay.217

For a monodisperse sample, the correlation function G(τ), where τ is the time differ-

ence, can be given by the expression:

G(τ) = α+ β exp[−2Γτ ], (56)

where α is the baseline of the correlation function (i.e. G(τ)→ A as τ →∞) and β is the

intercept of the correlation function (i.e. G(0) = β). The value of Γ is defined thus:

Γ = Dq2, (57)

where D is the translational diffusion coefficient and

q =
4πn

λ
sin(θ/2), (58)

where n is the refractive index of the dispersant, λ is the wavelength of the laser and

θ is the scattering angle, where the detector is positioned. For polydisperse samples,

the respective exponential decays from the different particle sizes must be summed. By

combination of equations (55) and (56), the hydrodynamic diameter can be approximated,

with the polydispersity index also possible to approximate from the correlation function.217
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8.2 Microlitre nucleation by immersed particles

The microlitre by immersed particle (µl-NIPI) instrument as described in detail by Whale

et al. 62 consists of a hydrophobic surface on top of a cold stage, with an enclosure in which

humidity may be controlled by means of a dry gas flow. Around forty droplets of volume

1 µl are deposited on the surface at ambient conditions. The chamber is then closed, and

dry zero-grade nitrogen pumped through to control prevent frost growth. The cold stage is

then programmed to perform a 1 °C/min temperature ramp from 20 to −35 °C. A camera

placed above the stage is used to record the progress at a rate of 1 frame per second,

with the fraction of droplets frozen over temperature being the parameter of interest.

This is a naturally scalable process, as any number multiple runs can be combined into

one, provided that the conditions are sufficiently controlled. As nucleation is a stochastic

process, in theory, the larger the number of droplets, the closer to the correct result

should be obtained. The limit here is of course the time taken to run one experiment —

approximately one hour for around forty droplets.

From the distribution of the proportion of water droplets frozen over temperature, one

can calculate the differential nucleus concentration k(T ) at temperature T as follows:218

k(T ) = − 1

X∆T
· ln
(

1− ∆N

N(T )

)
, (59)

where ∆T is the step in temperature between frames, N(T ) is the number of unfrozen

droplets remaining at temperature T , ∆N is the number of nucleation events between

temperature T and temperature T + ∆T and X is a normalisation constant to some unit

size of droplet. In this case, as we assume the droplets to all be of equal size 1 µl, we

may simply use X = 1. The differential nucleus concentration must be calculated for both

the samples in question, and a control of the solution in which the samples are immersed.

Ideally any solutes in addition tho the sample of interest should have no effect on ice

nucleation. From these two measurements, k(T ) for the control can be subtracted from

k(T ) for the sample to determine what effect the immersed particles have on ice nucleation.

8.3 Experimental methods

DPPC and CHL were obtained from Sigma-Aldrich. DPPC and CHL were dissolved in

2 ml of 3:1 chloroform-methanol mixture in round-bottomed flasks. Exact amounts of each

lipid to produce vesicles ranging from 0–80 mol% CHL are given in table 6, along with the

exact molar concentrations of CHL, attained using the molecular masses of 734.0 g mol−1

and 386.7 g mol−1 for DPPC and CHL, respectively.219,220 For the sake of brevity, the

systems will be referred to throughout this chapter by the target molar concentration of

CHL rather than the exact values. Each solution was dried in a rotary evaporator at

200 rpm for one hour. The resulting lipid film was re-dissolved in an appropriate (see

table 6) volume of 25 mm sodium phosphate (NaPi) buffer solution, pH 6.5, to a lipid
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concentration of 3.3 mg ml−1. The solutions were then sonicated for two minutes without

heating. Finally, the solutions were frozen at −20 °C, thawed and then sonicated for

another two minutes. This final step was repeated four times in total before transferring

the vesicle solutions into falcon tubes for storage at −20 °C.

Table 6: Mass of DPPC and CHL and volume of NaPi buffer used for vesicle synthesis.

Target mol% CHL 0 5 10 15 20 25 30 35 40 80

Mass DPPC [mg] 24.9 43.6 20.2 20.0 17.7 18.3 17.0 16.1 16.2 6.5
Mass CHL [mg] 0 2.0 1.2 2.1 2.3 3.7 4.5 4.8 6.1 13.7

Volume NaPi [ml] 7.55 13.8 6.48 6.70 6.06 6.67 6.52 6.33 6.76 6.12

Exact mol% CHL 0.0 8.0 10.1 16.6 19.8 27.7 33.4 36.1 41.7 80.0

In order to carry out DLS on the vesicles, first they were thawed. Once defrosted, the

samples were sonicated for two minutes. Samples were diluted to 0.6 mg ml−1 in 25 mm

NaPi buffer, pH 6.5. The diameters of the vesicles were approximated via DLS, using a

Zetasizer Nano-series instrument (Malvern Instruments, UK) with 1 cm path-length UV-

transparent disposable cuvettes. A sample of each solution was processed six times for

300 s at 20 °C and a further six times at 50 °C. Intensity and number distributions were

exported, using the Malvern Zetasizer software.

Microdrop freezing assays were attempted with the samples, unfortunately it was found

that the buffer solution in which the vesicles were suspended itself acts as an INA, see

figure 34. Therefore this experiment was inconclusive. It would be possible as a future

work to attempt to synthesise similar vesicles in de-ionised water, which does not freeze

until a very low temperature (∼232 K).1

8.4 Results

Results from the DLS experiments were somewhat varied. In some systems, namely 0, 5,

30 and 80 mol% CHL, very similar distributions were obtained for all runs and at both

temperatures. In the case of the 10, 15 and 20 mol% CHL systems, consistent distribu-

tions were obtained for each of the six runs at both 20 and 50 K, however there was a

discrepancy in the hydrodynamic diameters calculated when comparing the runs at the

two temperatures. The remaining systems (25, 35 and 40 mol% CHL) showed more un-

certainty in the analysis of the DLS results, with inconsistent hydrodynamic diameters

calculated from the different runs — manifesting as two separate peaks in the number

distribution or, in the case of 35 mol% CHL at 50 K, a broader distribution of multiple

peaks. Number distributions from DLS for the ten systems with the values averaged over

six runs and with outliers removed are shown in figure 35. DLS as a technique works best

on monodisperse solutions and it is fairly probable that the messiness in some of these

DLS results is due to a high degree of polydispersity. For the further study of such vesicles

it might be wise to reduce this polydispersity, e.g. by extruding through polycarbonate

membranes to create more uniform vesicle populations.221
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Figure 34: Differential nucleus concentrations k(T ) (see equation (59)) for DPPC vesicles
and buffer solution (magenta circles and cyan diamonds) difference between k(T ) values
shown with magenta dashed line (DPPC-buffer) and cyan solid line (buffer-DPPC). A
higher k(T ) indicates a larger number of nucleation events at temperature T .

Despite the suspected polydispersity of the samples, in all cases it was clear that

vesicles formed with diameters of around 40–600 nm. When we consider the dimensions of

the simulation boxes, as detailed in table 1, we note that the x and y dimensions ranged

from 3.31–4.20 nm. If we now consider a fairly extreme case where we choose one of the

smaller vesicles, with d = 40 nm, and we consider a 4×4 nm section of the surface, we would

be interested to know how much curvature that section would have. As we are assuming

a perfectly spherical shape, we can simplify it by considering only two dimensions, i.e.

considering a circle of diameter 4 nm, and a section of the edge with length 4 nm. Clearly

the circumference of this circle is 40π nm, and thus the central angle of the segment is:

θ = 2π · 4 nm

40π nm
= 0.2c, (60)

with angles expressed in radians. From here we can easily obtain that the difference in

height between the edges and the centre of the 4× 4 nm region would be:

δz = 20 nm(1− cos θ) ≈ 0.4 nm. (61)

Such a slight curvature in a region of this size, even in the case of the smallest of the
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Figure 35: Number distributions from DLS for the ten systems. Values averaged over six
runs, with outliers removed.

vesicles would suggest that vesicles such as the ones created by this method are directly

comparable to the bilayers that have been simulated, and that vesicles such as these could

indeed provide experimental insight to complement future theoretical research.

8.5 Discussion

Altogether the experimental work detailed in this chapter introduces some methods which

can be used to complement molecular simulations of lipid bilayers, specifically with a focus

on their potential to act as ice nucleating agents. In particular, the method described in

section 8.3 synthesises vesicles which are of a large enough diameter that the are compa-

rable to planar simulation systems. An experimental method for assessing such vesicles’

ability to promote (or inhibit) ice nucleation was described in section 8.2. Unfortunately,

the vesicles were synthesised in a buffer solution which itself promoted ice nucleation, so

these experiments were unsuccessful. In future work it would be preferable to synthesise

vesicles in de-ionised water, whereupon the µl-NIPI technique should yield better results.



Chapter 9

Permeation of Drug Molecules

Through Phospholipid Bilayers

9.1 Naproxen and felodipine

Naproxen is a non-steroidal anti-inflammatory agent, used to treat inflammatory diseases

such as osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, tendinitis, bursitis

and acute gout. It is also used for pain relief, particularly for patients suffering moderate

migraines, and for treatment of primary dysmenorrhea and for reduction of fevers. It is

typically administered orally.222 Felodipine is a calcium-channel blocking agent, used for

management of hypertension. It is also administered orally.223
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Figure 36: The chemical structures of (a) naproxen and (b) felodipine.

A key issue in the delivery of small drug molecules such as naproxen and felodipine

is their ability to permeate across cellular membranes, specifically the gastrointestinal

membrane.224,225 In fact a very large number, 25–40 %, of approved drugs suffer from low

membrane permeability.225–228 These two drug molecules were chosen as suitable candi-

dates for permeation studies and with the view of comparing to experimental results.

9.2 Enhanced sampling for MD simulations

While MD simulations can be excellent for the study of equilibrium dynamics, the extent

of timescales which are accessible are limited by computing resources. For the systems

78
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studied in this thesis, which are on the order of 100,000 atoms, simulations longer than

a few microseconds are unfeasible without coarse-graining, which would clearly have a

negative effect on our ability to study water-water and water-bilayer dynamics, due to the

reduction in resolution.∗ Many natural phenomena occur on a timescale far greater than

such timescales, so called “rare events”, rendering MD unsuitable for their study. One

method for overcoming this issue is to apply some form of bias to the simulation — to

accelerate the rate of occurrence of such rare events.

9.2.1 Collective variables

Many enhanced sampling techniques work by applying some form of bias to a simulation,

in order to force it to explore the full free energy landscape of interest. Naturally, even

an extremely small molecular simulation has an enormous number of coordinates — far

too many to be able to fully explore the entire range of possible configurations. Thus it

is essential to reduce the dimensionality of the system to a small number of important

characteristics. Thus, one must choose a collective variable (CV)† or set of CVs which are

of as little dimension as possible, but which fully describe the process of interest. Selecting

such CVs acts to reduce a very complex simulation box to a single, or a few dimensions.

There are a great many different types of CV which may be used for biased MD.

Two examples are the use of order parameters, such as q6 (see equation (8)), and the

potential energy of the system; as used in combination by Trudu et al. 233 , to study the

freezing of a Lennard-Jones fluid, and Quigley and Rodger 234 to study ice nucleation and

growth. Another CV which is commonly used, in particular for exploring chemical reaction

pathways is the coordination number of important atoms, as used by Ensing et al. 235 to

study the E2 reaction between fluoroethane and a fluoride ion. The simplest types of CVs

are geometric quantities, such as distances, angles and dihedral angles formed between

atoms, molecules or larger groups of atoms. It is the geometric CV which shall be used

later on in this chapter, with z-distance between two centres of mass parameterising a

one-dimensional free-energy landscape.

9.2.2 Metadynamics

Metadynamics (MT) is one such method of accelerating rare events. Employing a CV

or set of CVs, the principle of MT is to procedurally apply Gaussian potentials to this

reduced dimension space, biasing the simulation away from free-energy regions which have

been previously explored. This allows the simulation to overcome free energy barriers and

discover distant local minima.236,237 On subtracting the applied biases, this results in a

single free energy curve (or surface). The MT method has been explained without great

∗In fact, this loss in detail makes it impossible to parameterise the force field in such a way that
reproduces all properties faithfully.229–231

†A collective variable (CV) is a differentiable function which describes the state of the molecular system,
chosen such as to describe the process of some transition of interest.232
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detail here as while it was attempted, it proved unsuccessful in this use case. Nonetheless,

details of the MT simulations are given in section 9.3.3.

9.2.3 Umbrella sampling

Umbrella sampling (US) is another method for biasing molecular simulations. Similarly to

MT, US employs a CV, or set of CVs, to reduce the system to one or a few dimensions. In

US, an energetic bias is applied at selected points across the range of the CV(s), in order

to connect energetically separated regions.238–240 These bias potentials w are defined to

depend solely on the reaction coordinate and are added to the unbiased energy (Eu) of

the system to create the final biased energy (Eb) used in the simulation:

Eb(r) = Eu(r) + w(ξ), (62)

where r is the state of the system and ξ is the reaction coordinate. According to derivations

by Kästner 240 , the unbiased free energy A(ξ), for the individual window, is given by:

A(ξ) = − 1

β
ln(P b(ξ))− w(ξ) + F, (63)

where β = 1/(kBT ), with kB the Boltzmann constant and T the temperature. P b is the

biased probability distribution along the reaction coordinate ξ and

F = − 1

β
ln
〈

exp [−βw(ξ)]
〉
ξ

(64)

with 〈·〉ξ denoting an ensemble average over ξ.

Typically for simulations such as these, a harmonic bias potential is applied of the

form:

w(ξ) =
k

2
(ξ − ξ0)2, (65)

where k is the spring constant and ξ0 is the centre of the biasing potential.

In practice, a single window for US will result in a simulation which is more restricted

along the reaction coordinate than an unbiased simulation. Thus a number of simulations

are run with biasing potentials at selected points. When choosing the number of simulation

windows for US and the bias potential to employ, it is important to ensure that the entire

region of interest within the phase space is sampled. This can be verified by summing the

individual histograms:

Ω(ξj) =
S∑

i=1

Ωi(ξj), (66)

where Ωi(ξj) is the value of the histogram for some bin ξj and for the i-th simulation, where

S is the total number of simulation windows. If Ω(ξj) = 0 for any ξj then the the space has

not been fully sampled and therefore one must either adjust the biasing potential or add

more windows. Such individual histograms Ωi are shown in the top panels of figures 39
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and 41 with the sums, Ω shown in the second panels. Strictly speaking, the count is

plotted and not a histogram, however as the bins are of equal width, this is irrelevant.

Naturally, these separate runs will only provide reliable information within the region of

phase space that is fully explored, and thus the unbiased free energy estimates obtained

Ai must be combined.

9.2.4 Weighted histogram analysis method

The most commonly employed method for combining these free energy curves is the

weighted histogram analysis method (WHAM),241,242 which weights the individual free

energy estimates in such a way as to minimise the statistical error. Suppose we have S sim-

ulations, employing biasing potentials wi, over the reaction coordinate ξ, with i = 1, . . . , S.

Let P b
i (ξ) be the probability distribution of values over ξ from the i-th biased simulation,

then the best approximation for the unbiased probability distribution we can get from this

single simulation is:

P u
i (ξ) = exp

[
β (wi(ξ)− fi)

]
P b
i (ξ), (67)

where fi is the free energy obtained from adding the biasing potential to the reference

potential, as in equation (62).

The basic principle behind WHAM is to perform a weighted average of the individual

simulations:

P (ξ) = C
S∑

i=1

ρi(ξ)P
u
i (ξ), (68)

where ρi is the weighting for the i-th window and C is a normalisation constant. The

weights ρi are chosen so as to minimise the statistical error of P , subject to

S∑

i=1

ρi = 1. (69)

The following derivation closely follows the work of Kumar et al. 241 and Souaille and

Roux 242 . Assuming that all the simulations are statistically independent, the weightings

ρi can be separated from the statistical error:

σ2[P (ξ)] = C

S∑

i=1

ρ2
i (ξ)σ

2[P u
i (ξ)], (70)

where σ2[P (ξ)] and σ2[P u
i (ξ)] represent the statistical errors in P (ξ) and P u

i (ξ), respec-

tively. We can choose ρi to minimise this error using the method of Lagrange multipliers,

subject to the condition (69). This involves solving the set of equations:

∂

∂ρi

(
σ2[P (ξ)]− λ

(
S∑

i=1

ρi − 1

))
= 0 , ∀i = 1, . . . , S. (71)



9.2 Enhanced sampling for MD simulations 82

Here λ is the Lagrange multiplier. The error σ2[P u
i (ξ)] does not depend on the values of

ρi, thus equation (71) rearranges to give:

σ2[P u
i (ξ)]−1 =

2C

λ
ρi(ξ) , ∀i = 1, . . . , S. (72)

Since this is true for all i = 1, . . . , S, we can sum to give:

S∑

j=1

σ2[P u
j (ξ)]−1 =

S∑

j=1

2C

λ
ρj(ξ) =

2C

λ
C

S∑

j=1

ρj(ξ) =
2C

λ
. (73)

Equation (71) can also be rearranged and combined with equation (73) to give:

ρi(ξ) =
λ

2C
σ2[P u

i (ξ)]−1 =
σ2[P u

i (ξ)]−1

∑S
j=1 σ

2[P u
j (ξ)]−1

, ∀i = 1, . . . , S. (74)

From equation (67), we get the following:

σ2[P u
i (ξ)] = exp

[
2β (wi(ξ)− fi))

]
· σ2[P b

i (ξ)] (75)

and σ2[P b
i (ξ)] can be expressed as follows:242,243

σ2[P b
i (ξ)] =

gi(ξ)

ni∆ξ
P b
i (ξ), (76)

where ni is the length of the i-th simulation, ∆ξ is the width of the bins used to calculate

the histogram, P b
i (ξ) is the probability distribution obtained from a hypothetical infinite-

length simulation and gi(ξ) = 1 + τi(ξ)/∆t, where τi(ξ) is the correlation time and ∆t is

the time step. The factors gi can be assumed to be equal for all simulations under US

such as is detailed in this thesis.

By substituting P b
i (ξ) for P b

i (ξ) and P (ξ) for in equation (67), we obtain an estimate

for P b
i (ξ):

P b
i (ξ) = exp

[
− β (wi(ξ)− fi)

]
P (ξ). (77)

Now, using equations (74) to (77), we obtain the following:

ρi(ξ) =
σ2[P u

i (ξ)]−1

∑S
j=1 σ

2[P u
j (ξ)]−1

=
exp

[
− 2β (wi(ξ)− fi)

]
· σ2[P b

i (ξ)]−1

∑S
j=1

(
exp

[
− 2β (wj(ξ)− fj)

]
· σ2[P b

j (ξ)]−1
)

=
gi(ξ)

−1∆ξP (ξ)−1 · ni exp
[
− β (wi(ξ)− fi)

]
∑S

j=1

(
gj(ξ)−1∆ξP (ξ)−1 · nj exp

[
− β (wj(ξ)− fj)

])

∗ =
ni exp

[
− β (wi(ξ)− fi)

]
∑S

j=1

(
nj exp

[
− β (wj(ξ)− fj)

]) .

(78)

∗Using the assumption that the gi are equal for all simulations.
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Finally, we substitute equations (67) and (78) into equation (68) to give

P (ξ) = C
S∑

i=1

ρi(ξ)P
u
i (ξ) = C

S∑

i=1

ni exp
[
− β (wi(ξ)− fi)

]
∑S

j=1 nj exp
[
− β (wj(ξ)− fj)

] · P u
i (ξ)

= C
S∑

i=1

ni exp
[
− β (wi(ξ)− fi)

]
∑S

j=1 nj exp
[
− β (wj(ξ)− fj)

] · exp
[
β (wi(ξ)− fi)

]
P b
i (ξ)

= C

S∑

i=1

niP
b
i (ξ)

∑S
j=1 nj exp

[
− β (wj(ξ)− fj)

] .

(79)

Equation (79) is the first of what is known as the WHAM equations.

To derive the second WHAM equation, first note that, by definition:

exp
[
− βfk

]
=

∫
P (ξ) exp

[
− βwk(ξ)

]
dξ, (80)

and thus

exp
[
− βfk

]
= C

∫ S∑

i=1

niP
b
i (ξ) exp

[
− βwk(ξ)

]
dξ

∑S
j=1 nj exp

[
− β (wj(ξ)− fj)

]dξ, (81)

which can be iterated to compute the free energy fk.

9.3 Simulation details

A Hydro Soy PC∗ (HSPC, see figure 37(a)) bilayer was first created and equilibrated at

300 K before adding molecules of the drugs naproxen and felodipine (see figure 36). As with

the drug molecules, this specific membrane was selected for comparison with experimental

results.

9.3.1 Hydro Soy PC bilayer

A pure 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC, see figure 37(b)) lipid bilayer

system was constructed, using CHARMM-GUI,147–151 with 30 lipids per leaflet (60 per

system). The resulting structure and topology files were manually edited, removing two

chain carbons from the primary tail, to create an HSPC bilayer. A TIP4P/Ice water layer

30 Å thick was placed either side of the bilayers, using the MD package GROMACS152–158

This bilayer water system was energy minimised, equilibrated, elongated by adding

vacuum regions and equilibrated with EW3DC as described in section 3.3, using the same

force fields as for the previous systems. These initial equilibrations were carried out at

328.15 K. Following equilibration in the liquid crystalline phase,244 the system was an-

nealed to 300 K and equilibrated at this cooler temperature, again following the procedure

from section 3.3. Now at room temperature, the bilayer has entered the gel phase.244

Once again following the procedure laid out in section 3.3, the system was equilibrated

∗l-α-phosphatidylcholine, hydrogenated (Soy).
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Figure 37: The chemical structures of (a) HSPC and (b) DSPC.

at 300 K, sampling the NpT ensemble. The in-plane dimensions of the simulation box,

once equilibrated and quenched, was 3.89 nm. The systems have square cross section so

the x and y dimensions are the same. As with the other simulations, these simulations

were carried out in GROMACS using the v-rescale thermostat, Berendsen barostat with

surface tension coupling (where relevant), Verlet cutoff scheme, plain cutoff for Van der

Waals interactions, with force-switch.

9.3.2 Adding small drug molecules

The small drug molecules naproxen and felodipine (see figure 36) were each hydrated with

TIP4P water, within a 3.2 nm cubic box. In these simulations, naproxen was simulated

with the hydrogen from its carboxylic group dissociated. Using three dimensional PBCs

in GROMACS,152–158 the two systems were energy minimised using the SETTLE166 algo-

rithm to constrain the geometry of the water molecules, and the LINCS167 algorithm to

constrain the geometry of the drug molecules. Following this, equilibration runs under the

NV T and subsequently the NpT ensemble were undertaken. The CHARMM3631,160–164

and TIP4P/Ice116 force fields were used.

Following equilibration of the drug molecules, the drug molecules were solvated into

the water layers of the HSPC system, creating four bilayer-drug systems: one with a

single naproxen molecule, one with a single felodipine molecule, one with two naproxen

molecules (one either side of the bilayer) and one with two felodipine molecules (again, one

either side of the bilayer). The idea with the two molecule systems was to identify whether

interactions between two drug molecules had a relevant effect on the free energy landscape,

however the final US simulations only used a single molecule. These four systems were

equilibrated via a 20 ns NV T run, followed by a 20 ns NpT run. The simulations were

run using EW3DC, at a temperature of 300 K, with the same simulation setup as in

section 3.3. During both runs, walls were imposed in the z-direction, at 45 ns from either

side of the bilayer centre, prohibiting the drug molecule(s) from exiting the water layer,
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using PLUMED2.186–188

9.3.3 Metadynamics

Following the unbiased equilibration, MT runs were initiated, using the NpT ensemble.

Biasing and walls, as before, were applied, using PLUMED2.186–188 The variable used for

biasing was the z-component of the centre of mass of the drug molecule, taken relative to

the centre of the bilayer, in other words the CV was:

δz = COM(drug)z − COM(bilayer)z, (82)

where COM(G) is the centre of mass of atom group G and rz is the z component of vector

r. For the systems with two drug molecules, only one was biased but the walls were applied

to both. Various parameters were tried for the MD setup, ranging from small gaussians,

with width 0.1 nm and height 1.0 kJ mol−1, to larger gaussians, with width 0.3 nm and

height 4.0 kJ mol−1.

As discussed in section 9.4, these MT runs were unsuccessful in characterising the free

energy landscape. It is possible that a MT run involving a more complex CV, such as one

comprised of both the z-component and also some measure of the molecules orientation

may yield better results.

9.3.4 Umbrella Sampling

In parallel with the MT runs, US runs were run as a continuation from the equilibrated

trajectories. Setting up simulations employing US is more complicated than in the case

of MT, as many separate simulations are required, with biases applied at different points

along the CV. As with MT, the CV used, δz, was the z-component of the centre of mass

of the drug molecule, taken relative to the centre of the bilayer. An initial, continuous

simulation was run, with the location of the bias moving by 5 Å every 5 ns; i.e. a 5 ns

run with the bias centred at z = +40 Å, a 5 ns run with the bias centred at z = +35 Å

and so on up until z = −40 Å. The biases applied were harmonic, with spring constant:

k = 250 kJ mol−1 (see equation (65)). The walls at ±45 Å were also applied as before.

These first US runs primarily served to generated starting configurations for subsequent

runs, with the drug molecules at various z positions across the simulation box.

Following those initial runs, a number of different spring constants were tested in order

to find a setup that samples the entire range of the CV (in this case z). This was achieved

by increasing the spring constant on successive runs, until the full energy landscape was

surveyed, i.e. so that there was sufficient overlap in the histograms from the first panels of

figures 39 and 41, which show the distribution of the drug molecules across all the runs.

While this was achievable in this case with 1 Å spacing, increasing the spring constant will

cause those histograms to narrow, and so it could have been necessary to add additional

“umbrellas”. Finally the value k = 2000 kJ mol−1 was settled on, which was strong enough
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to overcome the free energy barriers within the bilayer, while being sufficiently weak so

that there was overlap between simulations using 1 Å spacing. The WHAM code written

by Grossfield 245 was used to compute the free energy landscapes with respect to the CV

δz. The US simulation windows were run for 10 ns for the regions outside of the bilayer.

The regions within the bilayer were run for a total of 30 ns for the felodipine system, after

which the free energy surface had converged reasonably well. For the naproxen system,

the parallel runs were extended to a total of 50 ns each as the free energy surface had not

converged so successfully, however the convergence was still incomplete (see section 9.4).

9.4 Results

Figure 38 shows the results of MT simulations. These simulations were run with Gaussian

biases of width 0.1 nm and height 1.0 kJ mol−1, at temperature 300 K and for run lengths of

290–301 ns with 2 fs MD steps and biases applied every 100 steps. The two systems with a

single drug molecule seem to have had little success in exploring the free energy landscape.

Figure 38: Results from MT of drug-bilayer systems. The top left panel shows the system
with one felodipine molecule, the top right with two felodipine molecules, the bottom
left with one naproxen molecule and the bottom right with two naproxen molecules. The
average water and bilayer density over z are plotted with dot-dashed blue lines and dashed
magenta lines respectively. The free energy surface is displayed with a solid black line,
with the yellow shaded region showing the error computed by re-weighting the free energy
surface and taking the difference.
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There is perhaps more success in the two systems with the second unbiased drug molecule,

with the naproxen free energy surface looking fairly reasonable and the right hand side

of the felodipine system also looking somewhat as expected, however the error regions

are still large. It is possible that the issues encountered with the MT attempts are down

to the choice of the CV and a CV with more variables could have better explored the

free energy landscape, in particular the orientation of the drug molecules could have been

incorporated into the biasing which may have yielded better results. With the simplistic

CV used, US is rather more suitable since we have a good idea of how we expect the free

energy landscape to look, with respect to the z-coordinate of the drug molecules.

Figures 39 and 41 show the results of US for the systems containing felodipine and

naproxen, respectively. In each the top panel shows the histograms Ωi(ξj) of z-distribution

of the drug molecule (with respect to the bilayer centre) for each individual simulation,

see equation (66). Note that the water layer regions were run for a shorter time, therefore

the lower heights for those curves. The bins used for the histograms were of equal 0.2 Å

width, from −45 Å to 45 Å. The second panel shows the sum of these histograms, Ω(ξj).

Strictly speaking, the count is plotted and not a histogram, however as the bins are of

equal width, this is irrelevant. The third panel shows the estimate for the free energy as

computed by the WHAM software.245 For both systems, looking at Ω(ξj), which is shown

in the second panels, we note that Ω(ξj) >> 0 in every bin ξj . This justifies that the choice

of 1 Å spacing between simulation windows with the spring constant k = 2000 kJ mol−1

since the entire phase space has been sampled.

With this confirmed, we move our attention to the third panels which show the free

energy. In the case of felodipine, we notice that the drug molecule is rather content to

sit on the surface of the bilayer, with local free energy minima seen at the edge of the

diffusion layers on both sides of the bilayer. Permeation across the hydrophilic headgroup

region does require a free energy barrier to be overcome, upon which the global free energy

minima are seen amongst the lipid molecules, at around 10 Å from the centre of the bilayer,

see figure 40. Thus it is energetically favourable for the molecule felodipine to embed itself

within such lipid membranes; this could be of great interest to the field of drug delivery.

For the molecule felodipine to cross over the bilayer centre, a rather large free-energy

barrier must be overcome, further exacerbated by the depth of the minima on either side.

This is the least energetically favourable location for the drug molecule.

Refocussing now to examine the free energy surface for the naproxen molecule as it

traverses the bilayer, we notice a rather less symmetrical free energy curve. Nonetheless,

we can still identify some characteristic features of the free energy landscape. As with

felodipine, naproxen finds local free energy minima at the interface between bilayer and

water, indicating that naproxen is also likely to sit on the surface of the bilayer. There

is then a free energy barrier to overcome for the drug molecule to permeate within the

bilayer. Within the bilayer, the free energy landscape is slightly inconclusive and does not

appear to have fully converged, however it appears that there could be a minimum in the

centre of the bilayer. This is interesting as it is not where we saw the minima in the case
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Figure 39: Results from US of felodipine-bilayer system. The top panel shows the his-
tograms Ωi(ξj) of z-distribution of the felodipine molecule (with respect to the bilayer
centre) for each individual simulation, see equation (66). Note that the water layer re-
gions were run for a shorter time, therefore the lower heights for those curves. The bins
used for the histograms were of equal 0.2 Å width, from −45 Å to 45 Å. The second panel
shows the sum of these histograms, Ω(ξj). Strictly speaking, the count is plotted and not
a histogram, however as the bins are of equal width, this is irrelevant. The third panel
shows the estimate for the free energy as computed by the WHAM software.245 The fourth
panel shows the density profiles for the bilayer and the water to provide a reference for
the other panels. The x-scale is the same for all panels.
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of felodipine; it is possible that the more linear molecule naproxen is able to embed itself

in the central region of the bilayer, where the bilayer density is reduced, while the slightly

less compact felodipine molecule would disrupt the hydrophobic tailgroups substantially

to do the same and is instead more likely to embed amongst the tails.

It is also notable that the height of the free energy barriers are lower for naproxen

than for felodipine, this suggests that it is easier for naproxen to traverse the bilayer than

for felodipine. As previously mentioned, in the context of MT, taking into account the

orientation of the drug molecules could have been useful for the sake of biasing — this

could also have been incorporated into the CV for US, although there are trade-offs with

expanding from a one-dimensional CV to one of two or three dimensions.

Figure 40: Visualisation of the free energy minimum for felodipine within the bilayer.
Felodipine is shown all in black. DPPC is drawn as lines with carbon, oxygen, phosphorus
nitrogen and hydrogen atoms coloured in cyan, red, yellow, blue and white, respectively.
Water is displayed as yellow lines.

9.5 Discussion

Altogether the US simulations have provided some insight into the free energy landscape

for these two molecules as they permeate across HSPC bilayers. The final free energy

surface calculated for felodipine appears to have converged reasonably well and shows

deep free energy minima around the base of the HSPC headgroups. For felodipine, the

region within the bilayer does not appear to have converged as conclusively, however the

minima seen for felodipine do not appear to exist.

This observation is in good accordance with experimental work,246 where felodipine

and naproxen loaded liposomes were prepared with HSPC and CHL. They found that the
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Figure 41: Results from US of naproxen-bilayer system. The top panel shows the his-
tograms Ωi(ξj) of z-distribution of the naproxen molecule (with respect to the bilayer
centre) for each individual simulation, see equation (66). Note that the water layer re-
gions were run for a shorter time, therefore the lower heights for those curves. The bins
used for the histograms were of equal 0.2 Å width, from −45 Å to 45 Å. The second panel
shows the sum of these histograms, Ω(ξj). Strictly speaking, the count is plotted and not
a histogram, however as the bins are of equal width, this is irrelevant. The third panel
shows the estimate for the free energy as computed by the WHAM software.245 The fourth
panel shows the density profiles for the bilayer and the water to provide a reference for
the other panels. The x-scale is the same for all panels. This system does not appear to
have fully converged.
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liposomes containing naproxen formed larger particles than with felodipine, postulated to

be caused by the fact that naproxen locates on the surface of the liposomal bilayer, whereas

felodipine locates at the minima within the bilayer. Another comparison which can be

drawn with the experimental results is that Cullen et al. 246 found a much higher amount

of drug release over 24 hours for naproxen loaded liposomes than for those containing

felodipine. This matches the observation from the US simulations, where the free energy

barriers for permeation appear to me significantly lower for naproxen than for felodipine.

A possible way to improve these simulations would be through the use of a CV, incorpo-

rating the orientation of the drug molecules. Under this CV, MT may have yielded better

results which could perhaps better elucidate the free energy landscape of the naproxen

system in particular. It would also be possible to use such a CV with US simulations,

although this would of course require a much higher number of “umbrellas”.



Conclusions

The core question of this thesis was the following. Do lipid bilayers act as biological ice

nucleating agents and if so to what extent? This is a very important question regarding

our understanding of the mechanisms of biological ice nucleation, for example during

cryopreservation processes. A wealth of analysis has been run for MD simulations of

three classes of lipid bilayers: DPPC-CHL, DPPC-DMPI and the three asymmetric LPS

membranes. Through comparison to published results regarding CHL crystals21 and self-

assembled CHL monolayers,24 it appears that while such bilayers can and do promote ice

nucleation, any such effect is far weaker than that of the most potent INAs.

Furthermore, by comparing the different bilayers studied herein, it was shown that

pure DPPC, CHL and DMPI bilayers acted as slightly more potent INAs than the mixed

membranes. This can be somewhat elucidated by considering the interplay between the

structural and chemical properties of the bilayers. The number of hydrogen bonding sites

for example is a chemical property which helps to promote ice nucleation, although the

total number is less important than the accessibility of the bonding sites — a structural

quality. In particular, with mixed DPPC-CHL bilayers, the CHL molecules tend to be

deeply embedded into the bilayer, causing the hydroxy group, which promotes ice nucle-

ation so actively in crystals21 and monolayers,24 to be inaccessible to water and therefore

unable to promote ice nucleation. In addition to the computational simulations of these

phospholipid bilayers, DPPC-CHL vesicles were synthesised. This confirmed the validity

of the size of simulation box used and could be further extended to experimentally assess

the ice nucleating ability of such vesicles, for example via µl-NIPI.

The LPS membranes also showed some potential as ice nucleating agents, with both the

Re and Ra mutants facilitating the emergence of ice nuclei within the extended diffusion

layers, wherein we see pockets of fully coordinated water. This may be surprising due to

the low average water density in these regions, although as mentioned much of the water

is in fact fully coordinated. In addition the sugar residues on the Re and Ra mutants

do contain a large number of hydrogen bonding sites —potentially playing an active role

in facilitating this ice nucleation. The Lipid A system with no sugars coating does not

appear to have much of an ice nucleating effect —seemingly much less than any of the

phospholipid membranes studied.

Some of the analysis protocols discussed herein are novel. In particular, the normalisa-

tion ϑ of the orientational order parameter θ (see section 4.4.2) from which vastly improved
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resolution was obtained of the distribution of orientations in a geometrically sound fash-

ion. A method for combining order parameters was also discussed (see section 4.5) which

is easy to understand from a human perspective. This is a simpler version of a dimen-

sionality reduction compared to more complex methods which are well documented.184,185

Many computational algorithms are also described in chapter 6 and much new code has

been written to perform these calculations.

The overall narrative herein suggests that while cellular membranes can promote ice

nucleation to some extent, it is probable that it is other entities within biological systems

which cause the onset of ice nucleation at the relatively mild supercooling levels seen during

cryopreservation. A wide array of different order parameters and properties of both the

bilayers and water molecules have been explored, building a large body of data regarding

the physical properties of such bilayers and interfacial water layers under supercooled

conditions, as well as the interactions between bilayers and water molecules. Altogether,

this thesis presents a contribution towards a greater understanding of heterogeneous ice

nucleation in biological matter as well as consideration towards the structural properties

of various supercooled bilayers.

Separately to the study of ice nucleation, permeation of the small drug molecules

felodipine and naproxen across phospholipid membranes has been investigated, utilising

the enhanced sampling techniques: MT and US. Using US, a degree of information about

the free energy landscape as the two molecules traverse the bilayer was found. Both

molecules were found to have free energy minima on the surface of the bilayer, suggesting

they may be likely to adhere to the surface. Naproxen had a free energy minimum in

the centre, between the two leaflets, while the minima for felodipine within the bilayer

were found at around 10 Å from the centre. I have suggested that it may be the geometry

of the molecules, in addition to their chemical properties which govern whether they are

likely to embed between the leaflets or amongst the tails. The theoretical free energy

landscape calculated was consistent with experimental data from collaborators; although

the comparison has not been discussed within this thesis. As an avenue for further research,

simulations could be run to assess the free energy landscapes for permeation of other drug

molecules through bilayers using the same protocols as detailed in chapter 9.
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and E. H. Backus, Chem. Sci., 2022, 13, 5014–5026.

[25] T. J. McIntosh, Biochim. Biophys. Acta - Biomembr., 1978, 513, 43–58.
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Appendix A

Equivalence of infinities

In section 4.4.1, it was claimed that for a homogeneous system at equilibrium, specifically

a water box, infinite time, infinite space and infinite time and space are mathematically

equivalent. To demonstrate that this is the case, consider a simulation trajectory Ψ as an

n× k matrix:

Ψ =




x11 · · · x1k

...
. . .

...

xn1 · · · xnk


 , (83)

where n is the number of particles, k is the number of frames and xij is a vector containing

the parameters for particle i at time j.

Consider two theoretical infinite simulations: Ψ1 which is infinite in time and Ψ2 which

is infinite in both space and time. Similarly to equation (83), we can write:

Ψ1 =




x11 x12 · · ·
x21 x22 · · ·
x31 x32 · · ·
x41 x42 · · ·




and Ψ2 =




y11 y12 y13 · · ·
y21 y22 y23 · · ·
y31 y32 y33 · · ·

...
...

...
. . .



, (84)

where xij and yij are the position vectors for the two simulations. Note that for ease of

explanation, simulation Ψ1 has 4 particles, however the same method extends to any finite

N .

To prove that the two trajectories are mathematically equivalent, a bijection must

be defined between the sets Φ1 = {xij | i ∈ {1, 2, 3, 4}, j ∈ N} and Φ2 = {yij | i, j ∈ N},
where N is the natural numbers. To define a bijection between these two sets, first note

that we can clearly arrange the elements of Φ1 into an single list:

L1 = {x11, x12, x13, x14, x21, x22, x23, . . . } . (85)

We can do the same with Φ2 by traversing the matrix along its diagonals, starting on the

105
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top row and moving diagonally down and to the left:

L2 = {y11, y12, y21, y13, y22, y31, y14, . . . } . (86)

Finally, mapping the i-th element of L1 to the i-th element of L2 defines a bijection

f : Φ1 7→ Φ2 and thus the two simulations are mathematically equivalent. By the same

argument, a finite time, infinite space simulation is mathematically equivalent to a infinite

time and space simulation, and so the three are all equivalent.



Appendix B

PLUMED input for computing

largest icy cluster per frame

The largest icy cluster per frame was computed, as described in section 5.1, with the

PLUMED 2.3.0 software,186–188 as follows. First we set up the parameters for hydrogen

bond identification, specifically distance cutoffs of 0.324 nm for O···O and 0.25 nm for

O···H and angular cutoff of 0.2π for O−H···O. The indices specify the atomic indices of

the water oxygen and hydrogen atoms for the given system.

HBOND_COORD SPECIES=6457-17145:4 HYDROGENS=6458-17146:4,6459-17147:4

RCUTOO=0.324 RCUTOH=0.25 ACUT=0.20pi LABEL=hb

Secondly, we select all the oxygen atoms with four hydrogen bonds, in other words, every

fully coordinated water molecule — a water molecule that is only partially coordinated

cannot be part of a cluster unless it is on the surface.

MFILTER_BETWEEN DATA=hb LOWER=3.9 UPPER=4.1 SMEAR=0.0 LABEL=rsumsb

Next, we compute the Steinhardt vectors. The LOCAL Q6 function is then used to calculate

the degree of local order around each atom and we filter only the atoms with LOCAL Q6

greater or equal to 0.45 in order to locate all the icy molecules.

Q6 SPECIES=rsumsb SWITCH={GAUSSIAN D_0=0.324 R_0=0.00001 D_MAX=0.3241} LABEL=q6

LOWMEM

LOCAL_Q6 DATA=q6 SWITCH={GAUSSIAN D_0=0.324 R_0=0.00001 D_MAX=0.3241} LABEL=lq6

LOWMEM

MFILTER_MORE DATA=lq6 SWITCH={GAUSSIAN D_0=0.45 R_0=0.00001 D_MAX=0.4501}

LABEL=cf

A contact matrix is then created based on distance and this is used to compute the

clustering, including surface atoms.

CONTACT_MATRIX ATOMS=cf WTOL=0.1 SWITCH={GAUSSIAN D_0=0.324 R_0=0.00001

D_MAX=0.3241} LABEL=mat
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DFSCLUSTERING MATRIX=mat LABEL=cls SERIAL

CLUSTER_WITHSURFACE CLUSTERS=cls RCUT_SURF=0.324 LABEL=scls SERIAL

CLUSTER_NATOMS CLUSTERS=scls CLUSTER=1 LABEL=lambda

Finally, the output file is written.

OUTPUT_CLUSTER CLUSTERS=scls CLUSTER=1 STRIDE=1 FILE=dfs_surf.dat

FLUSH STRIDE=2000

ENDPLUMED



Appendix C

PLUMED input for calculating

SMAC parameter

The SMAC parameter, as defined in section 5.3.1, was calculated using the PLUMED

2.3.0 software,186–188 as follows. First we define the molecular axis of each lipid molecule

or tail (see section 7.2 for how these were defined for the different lipids).

MOLECULES ...

MOL1=6241,6305,6264

MOL2=6315,6379,6338

MOL3=6389,6453,6412

####### etc #######

LABEL=m3

... MOLECULES

We then calculate the SMAC parameter, we are only interested in the packing of the lipid

tails, so we use a single kernel with angle 0.

SMAC ...

DATA=m3 LOWMEM

KERNEL1={GAUSSIAN CENTER=0 SIGMA=0.580}

SWITCH={RATIONAL R_0=0.5} MEAN MORE_THAN={RATIONAL R_0=0.6} SWITCH_COORD={EXP

R_0=6}

LABEL=s2

... SMAC

Finally, we write the output file.

PRINT ARG=s2.* FILE=smac.dat

ENDPLUMED
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