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Abstract

The work in this thesis concerns the branch of dynamics known as smooth ergodic

theory. When a dynamical system and a probability measure are well-behaved, one

can expect regular observables (typically Hölder continuous) to satisfy statistical

properties that go beyond the classical ergodic theorem. Such results include the

central limit theorem and its functional version, also called the weak invariance

principle. The latter is analysed in the �rst (and main) part of this thesis, where

we �nd rates of convergence to a Brownian motion in d-dimensions for discrete and

continuous time systems. The proofs rely on a connection between dynamical system

and martingale theory, via the martingale-coboundary decomposition introduced by

Gordin [26].

The second part of the thesis presents results from two papers [42, 43] published

by the author with Melbourne and Terhesiu, which discuss the decay of the transfer

operator in continuous time. The chapter dedicated to [43] shows a restriction on

the Banach spaces where such a transfer operator can have a spectral gap. The last

chapter presents [42] and proves an exponential decay of the transfer operator in a

strong norm for a class of nonuniformly expanding semi�ows.
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Chapter 1

Introduction

The study of chaos has always posed an interesting challenge to mathematicians.

Rather than analysing each orbit of an evolving system, ergodic theory shifted its

focus on qualitative properties that are true almost everywhere with respect to some

invariant measure. The general philosophy that deterministic chaos shares many

aspects with randomness gives a natural application to many standard probability

results. It is also of great interest when statistical laws arise from a dynamical

setting. This kind of analysis began in the 1970s with the work of Bowen, Ruelle,

Sinai, and it still o�ers many interesting aspects to the modern researchers.

This thesis analyses how quickly some chaotic systems display randomness, some-

how answering the question "How long does it take for an expanding system to

generate Brownian motion?". For this purpose, Chapter 2 recaps general facts from

dynamics and probability. Chapter 3 is the main content of this thesis, improving

the existing rates of convergence for maps and presenting the �rst known results

on this matter for �ows and multidimensional observables. Chapter 4 shows a re-

striction on the decay in norm of a family of transfer operators, in contrast to what

happens in discrete time. Finally, Chapter 5 provides an exponential decay in a

Hölder norm for a particular class of observables on a suspension semi�ow.

In Chapter 3, we focus on rates of convergence for a deterministic version of a

classical result of Donsker [23], which states the convergence in distribution of a

normalised i.i.d. random walk to a Brownian motion; we refer to this as the weak

invariance principle (in brief WIP). The WIP was proved for various nonuniformly

hyperbolic/expanding maps in [28] and for uniformly hyperbolic �ows in [20]. More

recent results for the WIP in a nonuniformly hyperbolic setting are [10, 27, 40, 46,
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47].

Let T : Λ → Λ be a map on a bounded metric space Λ with an invariant measure µ

and let v : Λ → Rd be a regular observable. De�ne the sequence of continuous

processes Wn as Wn(k/n) = n− 1
2

∑k−1
j=0 v ◦ T j, 0 ≤ k ≤ n, and linear interpolation

in [0, 1]. We say that such a system satis�es the WIP ifWn converges in distribution

as n→ ∞ to a Brownian motion W .

In the case of a measure-preserving �ow Tt : Λ → Λ, the sequence is de�ned as

Wn(t) =
1√
n

∫ nt

0

v ◦ Ts ds, t ∈ [0, 1]. (1.1)

This thesis analyses how well the laws of Wn on the space of continuous functions

approximate the Wiener measure given by W .

For nonuniformly expanding/hyperbolic maps modelled by Young towers with

exponential tails, Antoniou and Melbourne [5] proved a convergence rate ofO(n−1/4+δ)

in the Prokhorov metric, while Liu and Wang [35] proved the same rates in the q-

Wasserstein metric for q > 1, where δ gets smaller for bigger q. Their method is

based on a generalisation [32] of the martingale-coboundary decomposition tech-

nique of Gordin [26], which allows to apply a martingale version of the Skorokhod

embedding Theorem. It is known [11, 53] that such a method cannot yield better

rates than O(n−1/4). Moreover, such a result is applicable to real-valued observables

only, and we are not aware of a better method to get rates for the WIP in dimension

one.

To our knowledge, the literature does not have any further results on the rates

of convergence in the WIP for deterministic systems. Hence, our Chapter 3 gives

the �rst multidimensional results for maps and, in particular, covers the case of

nonuniformly expanding semi�ows. When d = 1, we get a rate of O(n−1/4(log n)3/4)

in Prokhorov for uniformly expanding maps and semi�ows, improving the one of [5]

in discrete time. For nonuniformly expanding semi�ows, we recover the same rate

of [5]. For d ≥ 1 with exponential tails, we are able to achieve a rate of O(n−1/6+δ) in

the 1-Wasserstein metric, independently of the dimension (which yields O(n−1/12+δ)

in Prokhorov).

One of the main challenges in Chapter 3 was to �nd a way to adapt results from

general martingale theory [18, 19, 33] to a continuous time setting. For maps, we

could follow the same strategy of [5, 35] and rely on an advanced adaptation [32]

of the martingale-coboundary decomposition introduced by Gordin [26]. However,
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for semi�ows Tt : Λ → Λ it was necessary to generalise [32] to continuous time; this

original work is found in Section 3.3.

It is important to mention that part of the author's PhD was dedicated (without

success) to �nd a more direct proof of the results in continuous time of Chapter 3.

Such a proof would have relied on ideas of a paper by Pène [52], where Berry-Esseen

estimates for a billiard �ow follow from the ones for the map. At a �rst glance, it

seemed feasible to extend such a method to the WIP; yet, many di�culties came in

the way. Even though some rates can be found, there are two main issues: (i) the

rates are equal or worse than the ones obtained in Chapter 3 and (ii) the proof is

more complex. Regarding (ii), the hardest part concerns passing the rates between

two di�erent measures, one of which is not invariant for the semi�ow. Such an issue

is sorted in [52] using methods that are not applicable to our setting. This thesis

does not display the attempt to adapt [52], leaving it for a potential future research.

In Section 3.3 we start from v : Λ → Rd Hölder continuous with mean 0. We �nd

an extension Ft : Y
φ → Y φ of Tt : Λ → Λ with semiconjugacy πφ : Y

φ → Λ, such

that Tt ◦ πφ = πφ ◦ Ft. Here, φ : Y → [1,∞) is a (possibly unbounded) return time

of Tt to the set Y ⊂ Λ. We will show that

ψ =

∫ 1

0

(v ◦ πφ) ◦ Fs ds = m+ χ ◦ F1 − χ, (1.2)

for some functions m,χ : Y φ → Rd. We call (1.2) the martingale-coboundary decom-

position of v ◦ πφ. We prove that E[m ◦ Fn|F−1
n+1B] = 0 for all n ≥ 1, where F−1

n+1B

are pre-image σ-algebras in Y φ. Such a property gives that (m◦Fn)n≥0 is a reversed

martingale di�erences sequence, which in turn generates a sequence of martingales

Mn(k) = n− 1
2

∑k
j=1m ◦ Fn−j, 0 ≤ k ≤ n.

We see from (1.1) and (1.2) that for every 0 ≤ k ≤ n,

Wn(k/n) ◦ πφ =

∫ k

0

(v ◦ πφ) ◦ Fs ds =
k−1∑
j=0

ψ ◦ Fj =
k−1∑
j=0

m ◦ Fj + χ ◦ Fk − χ.

By the identity Mn(k) =
∑n−1

j=0 m ◦ Fj −
∑k−1

j=0 m ◦ Fj and nice error bounds on the

coboundary, statistical properties for Wn are equivalent to the ones of Mn, and we

can pass rates found for the martingales to the sequence Wn.

The main advancement of [32] for maps, and of our Section 3.3 for �ows, is a

control over the squares of m. By mean of a secondary martingale-coboundary

decomposition presented in Subsection 3.3.3, we decompose the new observable
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v̆ = E[mmT −
∫
mmT |F−1

1 B] similarly to (1.2), and then apply martingale-type in-

equalities to control the growth of its Birkho� sums. More explicitly, for p ∈ (2,∞)

we �nd a constant C > 0 (dependent on v) such that∣∣∣max
1≤k≤n

∣∣∑k−1
j=0 v̆ ◦ Fj

∣∣∣∣∣
2(p−1)

≤ Cn
1
2 ,

for all n ≥ 1. Such an estimate is later applied to �nd rates of convergence for Mn.

To introduce the content of Chapter 4, we remark that formula (1.2) is con-

structed by mean of the exponential decay of the transfer operator P in discrete time

for a suitable Hölder norm ∥ ∥. For uniformly expanding system, this decay is typi-

cally proved by establishing quasicompactness and a spectral gap for the associated

transfer operator P . Such a spectral gap yields a decay rate ∥P nv −
∫
v∥ ≤ Cve

−an

for v Hölder, where a, Cv are positive constants. An immediate consequence of

the decay of P n is also the decay of correlations for Hölder observables. This ap-

proach has been extended to large classes of nonuniformly expanding dynamics with

exponential [59] and subexponential decay of correlations [60].

In continuous time, decay of correlations for semi�ows would follow if the transfer

operator Lt for Tt showed an exponential (or summable) decay on a Hölder space.

In addition, such a decay of would provide a direct proof of formula (1.2). Yet,

this is not usually done for continuous time dynamical systems, since the standard

techniques to get decay of correlations [21, 36, 50] bypass spectral gaps; see also [8]

which proves exponential decay of correlations for billiard �ows with a contact struc-

ture but does not establish a spectral gap. The only exceptions that we know of is

Tsujii [54, 55] which provides a spectral gap in an anisotropic Banach space for (i)

suspension semi�ows over the doubling map and (ii) contact Anosov �ows.

In Chapter 4 we obtain a restriction on the Banach spaces where the transfer

operator can have a summable decay in Hölder norm. Let Cη(Λ) denote the space of

η-Hölder continuous observables on Λ, for some η ∈ (0, 1). We prove the following

theorem for a �xed v ∈ L∞(Λ).

Theorem 1.1 ([43]). Let η ∈ (1
2
, 1). Suppose that Ltv ∈ Cη(Λ) for all t > 0 and

that
∫∞
0

∥Ltv∥η dt <∞. Then vt =
∫ t
0
v ◦ Ts ds is a coboundary:

vt = χ ◦ Tt − χ for all t ≥ 0, a.e. on Λ

where χ =
∫∞
0
Ltv dt ∈ Cη(Λ). In particular, supt≥0 |vt|∞ <∞.

Here, |g|∞ = ess supΛ |g| and ∥g∥η = |g|∞ + supx ̸=y |g(x)− g(y)|/d(x, y)η.
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As stated in [43], Theorem 1.1 implies that any Banach space admitting a spectral

gap and embedded in Cη(Λ) for some η > 1
2
is cohomologically trivial. However, for

(non)uniformly expanding semi�ows and (non)uniformly hyperbolic �ows of the type

in the aforementioned references, coboundaries are known to be exceedingly rare,

see for example [15, Section 2.3.3]. Hence, Theorem 1.1 can be viewed as an �anti-

spectral gap� result for such continuous time dynamical systems. Moreover, the

uniform boundedness of vt leads to trivial statistical properties. For example, under

the assumptions of Theorem 1.1, Wn(t) = n− 1
2

∫ nt
0
v ◦Ts ds converges in distribution

to the null process, with rates of O(n−1/2) in Prokhorov and any q-Wasserstein

metrics. Any time that the WIP is not trivial, we cannot expect such hypotheses to

hold.

The proof of Theorem 1.1 is incredibly straightforward, making Chapter 4 and

paper [43] surprisingly concise. Assuming the �ow to be Lipschitz a.e. on Λ, the

Hölder property of χ on Λ implies a.s. Hölder continuity in [0, 1] of the sample paths

of the martingales Mn(t) = n− 1
2

∑⌊nt⌋
j=1 m ◦Fn−j, t ∈ [0, 1]. A direct argument proves

that a non-constant martingale cannot have η-Hölder sample paths when η > 1/2.

Hence, we prove that m = 0 a.e. in Λ and so vt is just a coboundary.

In Chapter 5, we consider norm decay of transfer operators for uniformly and

nonuniformly expanding semi�ows modelled by a suspension over a Gibbs-Markov

map with exponential tails. In spite of Theorem 1.1, it is still possible to control

the Hölder norm of Ltv for a large class of semi�ows and observables v, and our

Theorem 5.2 is the �rst in this direction. Such a result was published in collaboration

with Melbourne and Terhesiu [43], giving the exponential decay of Ltv in some strong

norm.

The main ingredients of the proof are a Dolgopyat-type estimate [21] and oper-

ator renewal theory for semi�ows [44] which enables consideration of the operator

Laplace transform
∫∞
0
e−stLt dt. Hence, we get the decay of the correlation func-

tion from analyticity of Laplace transforms, bypassing spectral properties of Lt,

see [21, 36, 50] . The observables v are required to be smooth in the �ow direction

and have a good support, that is v = 0 nearby the base and roof of the suspension.

Yet, [43, Theorem 2.2] does not contradict Theorem 1.1, as the used norm does not

give Hölder control of Ltv in the �ow direction when passing through points at the

top of the suspension.
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Chapter 2

Ergodic theory and probability

The current chapter presents general facts from dynamical systems and probabil-

ity theory. These topics are widely known and can be found in general books on

probability and dynamics such as [29, 30] and the lecture notes [38].

Notation We write interchangeably an = O(bn) or an ≪ bn for two sequences

an, bn ≥ 0, if there exists a constant C > 0 and an integer n0 ≥ 0 such that

an ≤ Cbn for all n ≥ n0.

For x ∈ Rm and J ∈ Rm×n, write |x| = (
∑m

i=1 x
2
i )

1/2 and |J | = (
∑m

i=1

∑n
j=1 J

2
i,j)

1/2.

For a function v, we use the standard notation |v|∞ = ess sup |v|, and for p ∈ [1,∞),

we write |v|p =
(∫

|v|p
) 1

p .

We write T−nB = {T−nB : B ∈ B}, n ≥ 1, for the preimage σ-algebras given by a

measurable map T and a σ-algebra B.

2.1 Ergodic Theory

Let (Λ,B, µ) be a probability space.

De�nition 2.1. A (discrete time) dynamical system is a measurable map T : Λ → Λ.

For n ≥ 0, we refer to T n : Λ → Λ as the map obtained by composing n ≥ 0

times T , where T 0 = Id. If we have a family of maps Tt : Λ → Λ for t ∈ R (or t ≥ 0)

such that T0 = Id and Ts ◦Tt = Ts+t for all s and t, then we call (Λ, Tt) a continuous

time dynamical system and Tt is a �ow (or semi�ow).

Henceforth, the discrete or continuous nature of the system will be clear from

context, and most de�nitions for discrete time can be extended naturally to the
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continuous case.

We say that a measurable T is non-singular if µ(T−1B) = 0 is equivalent to

µ(B) = 0 for all B ∈ B. For such a map, the collections of null and positive measure

sets are preserved under the iterations of T . Here follows a stronger condition on T .

De�nition 2.2. A measurable map T is measure-preserving (or equivalently µ is

T -invariant), if µ(T−1B) = µ(B) for every B ∈ B. We call (Λ, T, µ) a measure-

preserving system.

The following systems are assumed to be measure-preserving unless stated oth-

erwise. A subset B ⊂ Λ is said to be invariant if T−1B = B. If B is invariant,

so is Λ\B; hence, we can partition the system given by T with T |B : B → B and

T |Λ\B : Λ\B → Λ\B. These are examples of what we call sub-systems of T .

De�nition 2.3. The measure µ (or the system T ) is ergodic if every measurable

T -invariant B has µ(B) ∈ {0, 1}.

In other terms, a dynamical system T is ergodic if every of its sub-systems have

either full or null measure.

De�nition 2.4. Let v ∈ L1(Λ,B, µ) and let A ⊂ B be a sub σ-algebra. The condi-

tional expectation E[v|A] is the unique element of L1(Λ,A, µ) such that
∫
A
v dµ =∫

A
E[v|A] dµ for all A ∈ A.

Existence and uniqueness (almost everywhere) of the conditional expectation are

shown by the Radon-Nikodym Theorem.

Example 2.5. Suppose that A = σ(A1, A2, . . . ), where {Ai} ⊂ B is an (at most

countable) partition of Λ with µ(Ai) > 0 for every i. Then, it can be checked by the

de�nition that

E[v|A] =
∞∑
i=1

1Ai

µ(Ai)

∫
Ai

v dµ, where 1Ai
(y) =

1 y ∈ Ai

0 y ∈ Λ\Ai

It follows that E[v|A]|Ai
= E[v|Ai] =

∫
Ai
v dµi for every i ≥ 1, where µi is the

classical conditional probability measure, µi(B) = µ(B ∩Ai)/µ(Ai), B ∈ B. Hence,

De�nition 2.4 is an extension of the standard expectation conditioned on an event.

Another important sub σ-algebra of B, is the collection of measurable T -invariant

sets I = {B ∈ B : T−1B = B}.
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Theorem 2.6 (Birkho�'s Ergodic Theorem). For every v ∈ L1(Λ)

1

n

n−1∑
j=0

v ◦ T j −→ E[v|I]

µ-a.e. as n→ ∞.

Unlike in Example 2.5, for a general µ we do not know an explicit formula for

E[v|I], however when µ is ergodic we do.

Corollary 2.7. If µ is ergodic, then for every v ∈ L1(Λ)

1

n

n−1∑
j=0

v ◦ T j −→
∫
Λ

v dµ,

µ-a.e. for n→ ∞.

Proof. By Theorem 2.6, it su�ces to show that E[v|I] =
∫
Λ
v dµ, µ-a.e. Let B

be invariant, so that by ergodicity µ(B) is either 0 or 1. If µ(B) = 0, then we

have 0 =
∫
B
E[v|I] dµ =

∫
B
(
∫
Λ
v dµ) dµ. If instead µ(B) = 1, we can �nish by∫

B
E[v|I] dµ =

∫
B
v dµ =

∫
Λ
v dµ =

∫
B
(
∫
Λ
v dµ) dµ and the de�nition of conditional

expectation.

We often refer to a measurable function v : Λ → R de�ned on a dynamical

system as an observable. Such a function can be interpreted as the data collected

(or observed) from a system that follows some dynamics.

De�nition 2.8 (Koopman operator). De�ne the operator U : L1(Λ) → L1(Λ) as

Uv = v ◦ T .

Proposition 2.9. The Koopman operator is linear and bounded in Lp(Λ) for all

p ∈ [1,∞). Moreover, |Uv|p = |v|p for all v ∈ Lp(Λ).

Proof. Linearity is straightforward. Let v ∈ Lp(Λ); since T is measure-preserving,

|Uv|pp =
∫
|Uv|p =

∫
|v|p ◦ T = |v|pp and the statement follows.

De�nition 2.10 (Transfer operator). De�ne the (Ruelle-Perron-Frobenius) transfer

operator P : L1(Λ) → L1(Λ), where Pv is the unique element of L1(Λ) satisfying

the duality relation ∫
Λ

v(w ◦ T ) dµ =

∫
Λ

(Pv)w dµ,

for every v ∈ L1(Λ) and w ∈ L∞(Λ).
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Proposition 2.11. We have that |Pv|p ≤ |v|p for all v ∈ Lp(Λ), p ∈ [1,∞].

Proof. For v ∈ L1 de�ne w = sgnPv. Hence,

|Pv|1 =
∫
Λ

|Pv| dµ =

∫
Λ

(Pv)w dµ =

∫
Λ

v(w ◦ T ) dµ ≤ |w|∞|v|1 = |v|1.

For p = ∞, assume without loss that |v|∞ = 1. Suppose by contradiction that

there exists v ∈ L∞ such that |Pv|∞ > 1. Hence, there exist ε > 0 and A ⊂ Λ

measurable, µ(A) > 0, on which Pv ≥ 1 + ε. So,

(1 + ε)µ(A) ≤
∫
Λ

(Pv)1A =

∫
Λ

v(1A ◦ T ) ≤ |v|∞|1A ◦ T |1 = µ(A).

Therefore, |Pv|∞ ≤ |v|∞.

Let now p ∈ (1,∞) and consider q = p/(p − 1) that is the conjugate exponent

of p. Let v ∈ L∞ and write w = |Pv|p−1 sgn(Pv), which lies in L∞ by what we have

already proven. By Hölder's inequality and T -invariance,

|Pv|pp =
∫
Λ

(Pv)w =

∫
Λ

v(w ◦ T ) ≤ |v|p|w|q

= |v|p
(∫

Λ

(
|Pv|p−1

) p
p−1

) p−1
p

= |v|p|Pv|p−1
p .

Hence, |Pv|p ≤ |v|p for all v ∈ L∞. Since simple functions are dense in Lp, we �nish

by the bounded linear transformation theorem.

Proposition 2.12. For every v ∈ L1(Λ),

(i)
∫
Λ
Pv dµ =

∫
Λ
v dµ;

(ii) PUv = v and UPv = E[v|T−1B];

(iii) If T is invertible, then Pv = v ◦ T−1 and UPv = v.

Proof. By de�nition of P ,
∫
Pv =

∫
v(1 ◦ T ) =

∫
v, which proves (i).

Let w ∈ L∞. Since T is measure-preserving,∫
Λ

P (Uv)w dµ =

∫
Λ

(Uv)(w ◦ T ) dµ =

∫
Λ

(vw) ◦ T dµ =

∫
Λ

vw dµ,

which proves the �rst identity in (ii). For the second part, let us check the conditions

in De�nition 2.4. The function Pv is integrable by de�nition. Let B ∈ B and note

that 1B ◦ T = 1T−1B. So,∫
T−1B

UPv =
∫
Λ
(Pv ◦ T )1T−1B =

∫
Λ
((Pv)1B) ◦ T

=

∫
Λ

(Pv)1B =

∫
Λ

v(1B ◦ T ) =
∫
T−1B

v.

9



To prove that UPv is T−1B-measurable,

(UPv)−1B = (Pv ◦ T )−1B = T−1((Pv)−1B) ∈ T−1B,

because Pv is B-measurable.

Assume now T invertible and let us show (iii). Let w ∈ L∞(Λ). Hence,∫
(Pv)w =

∫
((v ◦ T−1)w) ◦ T =

∫
(v ◦ T−1)w,

which yields Pv = v ◦ T−1. Hence, UPv = (v ◦ T−1) ◦ T = v.

Remark 2.13. By Proposition 2.12(iii) and Proposition 2.9, if T is invertible, then

the transfer operator P does not contract in any p-norm. A decay of ∥P nv∥ for an

observable v in some strong norm ∥ ∥ is desirable to prove statistical laws for T , see

for example [8, 21, 49, 59, 60]. Hence, a non-invertible system is necessary for the

direct application of such transfer operator methods.

Corollary 2.14. For every v ∈ L1(Λ) and n ≥ 1 we have

E[v ◦ T n|T−(n+1)A] = E[v|T−1A] ◦ T n.

Proof. For any n ≥ 1, the system T n : Λ → Λ is still measure-preserving, with

transfer operator P n. We conclude by Proposition 2.12(ii) that

E[v ◦ T n|T−(n+1)A] = Un+1P n+1(Unv) = Un(UPv) = E[v|T−1A] ◦ T n.

2.2 Probability theory and martingales

Let (Ω,A,P) be a probability space and let (S, dS) be a metric space with Borel

σ-algebra B.

De�nition 2.15. A function X : Ω → S is called random element of S if it is

A/B-measurable.

We say random variable or vector when S = Rd, and use the terms stochastic

process or random function when S is a functional space. We say that a sequence

of random elements Xn on (Ω,A,P) converges in distribution to a random element

X on (Ω′,A′,Q) (denoted by| Xn →d X), if the sequence of laws of Xn converges

weakly to the law of X, which means
∫
Ω
f(Xn) dP →

∫
Ω′ f(X) dQ for n→ ∞ and all

f : S → R continuous and bounded. Another possible notation is Xn∗P →w X∗Q.

If the random element Y has the same law as X, we write Y =d X.
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De�nition 2.16. Let d ≥ 1 and Σ ∈ Rd×d be a positive semide�nite matrix. A

d-dimensional Brownian motion on [0, 1] with mean 0 ∈ Rd and covariance Σ is a

continuous stochastic processW = {W (t) ∈ Rd, t ∈ [0, 1]} that satis�es the following

properties: (i) P(W (0) = 0) = 1, (ii) for any partition 0 ≤ t1 < · · · < tk ≤ 1, the

increments (
W (t2)−W (t1)

)
, . . . ,

(
W (tn)−W (tn−1)

)
are stochastically independent, and (iii) for any 0 ≤ s ≤ t ≤ 1 the random variable

W (t)−W (s) is normally distributed in Rd with mean 0 and variance Σ(t− s).

Brownian motion exists by Kolmogorov's existence Theorem for stochastic pro-

cesses. The d-dimensionalWiener measure is the push-forward measure on C([0, 1],Rd)

induced by any Brownian motion. Such a measure can be obtained as a limit dis-

tribution of a random walk via the next result [57, Theorem 4.3.5].

Theorem 2.17 (Donsker's weak Invariance Principle (WIP)). Let (Xn)n≥0 be a

sequence of i.i.d. random variables in Rd with mean 0 and covariance Σ, de�ned

on the same probability space. De�ne the sequence of random functions Wn in

C([0, 1],Rd)1 as

Wn(k/n) =
1√
n

k−1∑
j=0

Xj, 0 ≤ k ≤ n,

and linear interpolation in [0, 1]. Then, Wn →d W , where W is a d-dimensional

Brownian motion on [0, 1] with mean 0 and covariance Σ.

Remark 2.18 (Central Limit Theorem (CLT)). Under the same assumptions of

Theorem 2.17, we have that 1√
n

∑n−1
j=0 Xj →d N , where N is a d-dimensional centred

Gaussian with covariance Σ.

We say that a system (Λ, Tµ) satis�es the WIP for an observable v : Λ → Rd, if

the thesis of Theorem 2.17 is true for the sequence Xj = v ◦ T j, j ≥ 0.

The second part of this section is dedicated to a short introduction to discrete

and continuous time martingales; see [29] for a reference. This type of stochastic

processes is essential in Chapters 3 and 4 to apply probabilistic techniques to dynam-

ics. Discrete time martingales are used in Chapter 3 to apply respectively results

1[57, Theorem 4.3.5] de�nes Wn as a càdlàg process, however the statement is still true when

Wn is continuous.
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of [33] and [19]. Continuous time martingales play a role in two chapters: in Chap-

ter 3 they are needed to adapt a result of Courbot [18] (see Proposition A.5), and in

Chapter 4 we use the fact that a non-constant martingale cannot be (1/2+ε)-Hölder

continuous.

De�nition 2.19. A sequence of integrable Rd-valued random variables (M(n))n≥1,

adapted to a non-decreasing �ltration (Fn)n≥1 of σ-algebras, is a (discrete time)

martingale if E[M(n+ 1)|Fn] =M(n) for all n ≥ 1.

The �rst example of such a sequence comes from the i.i.d. (Xn)n≥0 in Theo-

rem 2.17, being de�ned as Sn =
∑n−1

j=0 Xj, n ≥ 1. It satis�es trivially the martingale

property with respect to its natural �ltration Fn = σ(S1, . . . , Sn).

The term "martingale" is also used for any �nite family of integrable random

variables (M(k))1≤k≤n adapted to a �nite �ltration (Fk)1≤k≤n, and satisfying the

equation E[M(k + 1)|Fk] =M(k) for 1 ≤ k < n. That is because such a family can

be extended constantly to a sequence that is a genuine martingale.

De�nition 2.20. A sequence of integrable Rd-valued random variables (dn)n≥0,

together with the σ-algebras (Gn)n≥0, is called a reversed martingale di�erences

sequence (in brief RMDS) if Gn+1 ⊆ Gn, dn is Gn-measurable, and E[dn|Gn+1] = 0

for all n ≥ 0.

Proposition 2.21. Let (Λ, T,B, µ) be a system with transfer operator P . If v ∈

kerP , then the sequence (v ◦ T n)n≥0 with (T−nB)n≥0 is an RMDS.

Proof. For n ≥ 0, we have that T−(n+1)B ⊆ T−nB and v ◦ T n is T−nB-measurable.

We conclude by Corollary 2.14 and Proposition 2.12(ii) that

E[v ◦ T n|T−(n+1)B] = E[v|T−1B] ◦ T n = (Pv) ◦ T n+1 = 0.

Proposition 2.22. If (dn)n≥0 is an RMDS with σ-algebras (Gn)n≥0, then, for every

n ≥ 1 the process Mn(k) =
∑k

j=1 dn−j, 1 ≤ k ≤ n, with σ-algebras Fk = Gn−k, is a

martingale.

Proof. Let 0 ≤ k < n. By the inclusions on Gj, we get Fk ⊆ Fk+1. We have

that Mn(k) is integrable and Fk-measurable, because it is a sum of integrable and

Fk-measurable random variables. We can �nish by de�nition of an RMDS (De�ni-

tion 2.20):

E[Mn(k + 1)|Fk] =
∑k

j=1 dn−j + E[dn−k−1|Gn−k] =
∑k

j=1 dn−j =Mn(k).
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To conclude this subsection, we say that a function f : [0, 1] → R is càdlàg if

it is right-continuous and all its left limits exist. We de�ne a (continuous time)

martingale following [29], to be an integrable càdlàg stochastic process (M(t))t∈[0,1],

adapted to a �ltration (Gt)t∈[0,1], such that E[M(t)|Gs] =M(s) for all 0 ≤ s ≤ t ≤ 1.

Remark 2.23. Given a discrete time martingale (M(n))n≥1 with �ltration (Fn)n≥1,

there is a natural way to construct a sequence of continuous time martingales: t 7→

Mn(⌊nt⌋), with σ-algebras F⌊nt⌋, for n ≥ 1 and t ∈ [0, 1].

A martingale M is square integrable if supt∈[0,1] E[|M(t)|2] < ∞. For such an

M , [29, Theorem I.4.2] yields the existence of a real predictable process ⟨M⟩, such

that M2 − ⟨M⟩ is a martingale. The process ⟨M⟩ is called the quadratic variation

of M and is unique up to indistinguishability that is, if another process X satis�es

the same properties of ⟨M⟩, then P(X(t) = ⟨M⟩(t) for all t ∈ [0, 1]) = 1.

2.3 Some dynamical systems

De�nition 2.24. Let (Λ, dΛ) be a metric space. For η ∈ (0, 1] and d ≥ 1, a function

v : Λ → Rd is said to be η-Hölder continuous (and we write v ∈ Cη(Λ,Rd)) if there

exists C > 0 such that

|v(x)− v(y)| ≤ CdΛ(x, y)
η,

for all x, y ∈ Λ, x ̸= y. We write |v|η = supx ̸=y |v(x) − v(y)|/d(x, y)η and consider

the norm ∥v∥η = |v|∞ + |v|η, which makes Cη(Λ,Rd) a Banach space.

Example 2.25 (Doubling Map). De�ne T : [0, 1] → [0, 1] as Tx = 2x (mod 1). The

Lebesgue measure L is T -invariant and ergodic. As shown in [38], for v ∈ L1 we have

Pv(x) = 1/2
(
v(x/2) + v((x+ 1)/2)

)
, x ∈ [0, 1]. If v ∈ Cη([0, 1],R) with

∫
v dL = 0,

then Pv ∈ Cη([0, 1],R) with mean 0, and ∥P nv∥η ≤ (2η)−n|v|η. The CLT and the

WIP hold for Hölder observables, and can be proved by such a decay of P n.

Example 2.26 (Gibbs-Markov maps). Let µ be a Borel probability measure on

a bounded metric space (Y, dY ) and let {Yj} be an at most countable measurable

partition of Y . Let F : Y → Y be a measure-preserving transformation such

that Y restricts to a measure-theoretic bijection from Yj onto Y for each j. Let

g = dµ/(dµ ◦ Y ) be the inverse Jacobian of F . We assume that there are the

constants η ∈ (0, 1], λ > 1, and C > 0 such that dY (Fx, Fy) ≥ λdY (x, y) and
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| log g(x) − log g(y)| ≤ CdΛ(Fy, Fy)
η for all x, y ∈ Yj, j ≥ 1. Then F is a (full-

branch) Gibbs-Markov map as in [2] with ergodic (and mixing) invariant measure

µ. We use this kind of systems in Subsections 3.1.2 and 3.1.3 to de�ne nonuniformly

expanding maps and �ows, and in the Section 5.1 for the setup of Chapter 5.

By [2, Theorem 1.6], for every v ∈ Cη(Y,Rd) with
∫
v dµ = 0, there are a, C > 0

such that ∥P nv∥η ≤ Ce−nk for all n ≥ 1. Such a result is used in [32, Section 2.2]

and in Subsection 3.3.1 to construct the martingale-coboundary decomposition of a

regular observable. As in Example 2.25, such e decay of P n implies the CLT and

WIP for Hölder observables.

Example 2.27 (Pomeau-Manneville intermittent maps). Let γ > 0 and de�ne

T : [0, 1] → [0, 1] as

Tx =

x(1 + 2γxγ) x ∈ [0, 1/2)

2x− 1 x ∈ [1/2, 1].

This dynamical system comes from [51] and was studied in [37]. If γ = 0, then T

is the doubling map of Example 2.25. If γ > 0, this system is the prototypical

example of nonuniformly expanding map de�ned in Subsection 3.1.1. The non-

uniform expansion comes from the neutral �xed point at x = 0, as limx→0 T
′x = 1.

Such non-uniformity around 0 can be seen by the following fact: for any N ≥ 1

there exists a neighbourhood U of 0 and x ∈ U\{0}, such that T nx ∈ U for all

n ≤ N and TN+1x /∈ U . There is a unique ergodic absolutely continuous invariant

measure µ for γ ∈ (0, 1); moreover, Hölder continuous observables satisfy the CLT

and WIP for γ < 1/2.

Example 2.28 (Suspension �ow). A classical way to construct a �ow from a sys-

tem (Y, F, µ), is to consider an integrable function φ : Y → [1,∞) and de�ne the

suspension Y φ = {(y, u) ∈ Y × [0,∞) : u ∈ [0, φ(y)]}/ ∼ where (y, φ(y)) ∼ (Fy, 0).

De�ne µφ = (µ × Lebesgue)/
∫
Λ
φ dµ which is a probability measure on Y φ. The

suspension �ow Ft : Y
φ → Y φ is de�ned as Ft(y, u) = (y, u + t), t ∈ R (or t ≥ 0),

modulo identi�cations. We have that Ft preserves the measure µφ. Such a construc-

tion over a Gibbs-Markov map F is used in Subsection 3.1.3 and Section 5.1. We

know by [45] and [47] that statistical laws for the suspension �ow Ft follow from the

base system. Hence, nice hyperbolic or expanding properties of F yield results as

the CLT and the WIP for the �ow as well.
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2.4 Three metrics for probability measures

We conclude the �rst chapter of this thesis mentioning some metrics on the space of

probability measure, which are essential to analyse rates of convergence in Chapter 3.

This section recalls the de�nitions of Wasserstein and Prokhorov metrics follow-

ing [25], and the Ky Fan distance following [24]. Given a separable metric space

(S, dS) with Borel σ-algebra B, we write M1(S) for the set of Borel probability

measures on S. Let µ, ν ∈ M1(S), and let X, Y be random elements of S de�ned

on the same probability space.

1-Wasserstein (or Kantorovich) metric

W(µ, ν) = supψ∈Lip1 |
∫
S
ψ dµ−

∫
S
ψ dν|,

where Lip1 = {ψ : S → R : |ψ(x)− ψ(y)| ≤ dS(x, y) for all x, y ∈ S}.

Prokhorov (or Lévy-Prokhorov) metric

Π(µ, ν) = inf{ε > 0 : µ(B) ≤ ν(Bε) + ε for all B ∈ B},

where Bε =
⋃
x∈B{y ∈ S : dS(x, y) < ε}.

Ky Fan metric

α(X, Y ) = inf{ε > 0 : P(dS(X, Y ) > ε) ≤ ε}.

If A and B are random elements with respectively laws µ and ν, we write

Π(A,B) = Π(µ, ν) and W(A,B) = W(µ, ν).

Proposition 2.29. Let X, Y be random elements in S. Then

Π(X, Y ) ≤
√

W(X, Y ). (2.1)

Let q ∈ [1,∞). If X and Y are de�ned on a common probability space, then

Π(X, Y ) ≤ α(X, Y ) ≤

|dS(X, Y )|q/(q+1)
q

|dS(X, Y )|∞
(2.2)

15



Proof. The proofs of (2.1) and Π(X, Y ) ≤ α(X, Y ) are respectively in [25, The-

orem 2] and [24, Theorem 11.3.5]. To prove the top inequality of (2.2), write

ε = |dS(X, Y )|q/(q+1)
q . By Markov's inequality,

P(dS(X, Y ) > ε) ≤ ε−q|dS(X, Y )|qq = ε−qεq+1 = ε.

Hence, α(X, Y ) ≤ ε. The bottom inequality of (2.2) follows by

P(dS(X, Y ) > |dS(X, Y )|∞) = 0 ≤ |dS(X, Y )|∞.

For ν and a sequence (νn)n≥1 in M1(S), we have that W(νn, ν) → 0 implies

νn →w ν. The distance Π metrizes weak convergence on M1(S) and the same is

true for W under the extra assumption diam(S) <∞ [25]. Finally, we recall that α

metrizes convergence in probability [24, Theorem 9.2.2].
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Chapter 3

Rates for the WIP

3.1 Setup and main results

3.1.1 Setup

Let (Λ, dΛ) be a bounded metric space with a Borel probability measure ρ and

suppose that T : Λ → Λ is a nonsingular map. Assume that ρ is ergodic.

Suppose that there exists a measurable Y ⊂ Λ with ρ(Y ) > 0, and let {Yj} be

an at most countable measurable partition Y . Let τ : Y → Z+ be an integrable

function with constant values τj ≥ 1 on partition elements Yj. We assume that

T τ(y)y ∈ Y for all y ∈ Y and de�ne F : Y → Y as F = T τ .

The dynamical system (Λ, T, ρ) is said to be a nonuniformly expanding map if

there are constants λ > 1, η ∈ (0, 1], C ≥ 1, such that for each j and x, y ∈ Yj,

(a) F |Yj : Yj → Y is a measure-theoretic bijection;

(b) dΛ(Fx, Fy) ≥ λdΛ(x, y);

(c) dΛ(T
ℓx, T ℓy) ≤ CdΛ(Fx, Fy) for all 0 ≤ ℓ ≤ τj − 1;

(d) ζ = dρ|Y / dρ|Y ◦ F satis�es | log ζ(x)− log ζ(y)| ≤ CdΛ(Fx, Fy)
η.

We say that T is nonuniformly expanding of order p ∈ [1,∞] if the return time τ lies

in Lp(Y ). It is a standard result that there exists a unique ρ-absolutely continuous

ergodic (and mixing) T -invariant probability measure µΛ on Λ (see for example [32,

Subsection 2.1]).
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Example 3.1. Examples of such systems are given by the Pomeau-Manneville in-

termittent maps described in Example 2.27 for γ ∈ (0, 1). They are nonuniformly

expanding of order p for every p ∈ [1, 1/γ) (see [4, Subsection 2.5.2]).

Function space on Λ For v : Λ → Rd and η ∈ (0, 1], de�ne

∥v∥η = |v|∞ + |v|η, |v|η = sup
x,y∈Λ, x ̸=y

|v(x)− v(y)|
dΛ(x, y)η

.

Let Cη(Λ,Rd) consist of observables v : Λ → Rd with ∥v∥η < ∞. We say v ∈

Cη0 (Λ,Rd) if
∫
Λ
v dµΛ = 0.

3.1.2 Rates for maps

Let T : Λ → Λ be nonuniformly expanding with ergodic measure µ. For d ≥ 1 and

η ∈ (0, 1), let v ∈ Cη0 (Λ,Rd). De�ne the sequence Bn : [0, 1] → Rd, n ≥ 1, as

Bn(k/n) =
1√
n

k−1∑
j=0

v ◦ T j,

for 0 ≤ k ≤ n, and using linear interpolation in [0, 1]. The process Bn is a random

element in C([0, 1],Rd) de�ned on the probability space (Λ, µ). Note that the ran-

domness of Bn comes exclusively from the initial point y0 ∈ Λ, chosen according to

µ.

Here follows a standard result for Bn, see for example [27, 32, 40].

Theorem 3.2. Let T : Λ → Λ be nonuniformly expanding of order 2 and suppose

v ∈ Cη0 (Λ,Rd).

(i) The matrix Σ = limn→∞ n−1
∫
Λ
(
∑n−1

j=0 v ◦T j)(
∑n−1

j=0 v ◦T j)T dµΛ ∈ Rd×d exists

and is positive semide�nite. Typically Σ is positive de�nite: there exists a

closed subspace Cdeg of Cη0 (Λ,Rd) with in�nite codimension, such that we have

det(Σ) ̸= 0 if v /∈ Cdeg.

(ii) The WIP holds: Bn →d W in C([0, 1],Rd) on the probability space (Λ, µ),

whereW is a centred d-dimensional Brownian motion on [0, 1] with covariance

Σ.

The following theorems display rates in the WIP, where the order p ∈ (2,∞]

in�uences the speed of convergence. These rates are stated in the 1-Wasserstein and

Prokhorov metrics on M1(S), where S = C([0, 1],Rd) with the uniform distance.
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Theorem 3.3. Let p ∈ (2, 3), and suppose v ∈ Cη0 (Λ,Rd) for d ≥ 1. Then there is

a constant C > 0 such that W(Bn,W ) ≤ Cn− p−2
2p (log n)

p−1
2p for all integers n > 1.

Remark 3.4. To our knowledge, the rates of Theorem 3.3 are the �rst in the

dynamical system literature for multidimensional observables. They are likely not

optimal, as one expects that they improve when p increases (as it happens for

d = 1 in Theorem 3.6). Yet, the proof of Theorem 3.3 in Subsection 3.2.2 uses

modern techniques by [19], which do not work for p > 3. In such cases, our rates

become O(n−1/6+δ) for any δ > 0. If we consider the Pomeau-Manneville maps of

Example 2.27, such a threshold is reached when γ ∈ (0, 1/3).

Remark 3.5. For d = 1 and p ≥ 4, [35, Theorem 3.5] gives W(Bn,W ) ≪ n− p−2
4p .

Theorem 3.3 provides new rates for d = 1, p ∈ (2, 4) and, by Remark 3.4, it gives a

better rate than [35] of order O(n−1/6+δ) when p ∈ [4, 6).

Theorem 3.6. Let p ∈ (2,∞], and suppose v ∈ Cη0 (Λ,R). Then there exists C > 0

such that

Π(Bn,W ) ≤ C

n
− p−2

4p p ∈ (2,∞),

n−1/4(log n)3/4 p = ∞

(3.1)

(3.2)

for all integers n > 1.

Remark 3.7. The rates displayed in (3.1) are due to [5, Theorem 3.2], whereas the

ones in (3.2) are proved in Subsection 3.2.4.

Remark 3.8. Using (2.1), Theorem 3.3 yields for p ∈ (2, 3) and every d ≥ 1 that

Π(Bn,W ) ≪ n− p−2
4p (log n)

p−1
4p . This result is only relevant for d ≥ 2, as Theorem 3.6

gives better rates in d = 1.

Remark 3.9. Theorems 3.3 and 3.6 imply the corresponding rates for the CLT.

3.1.3 Rates for semi�ows

Let (Λ, dΛ) be a bounded metric space. Let {Tt : Λ → Λ}t≥0, be a family of maps

with T0 = Id and Ts+t = Ts ◦ Tt, s, t ≥ 0. Assume continuous dependence on initial

condition, that is for any K > 0 there exists C > 0 such that, for all t ∈ [0, K] and

x, y ∈ Λ,

dΛ(Ttx, Tty) ≤ CdΛ(x, y). (3.3)
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Suppose also that the semi�ow is Lipschitz continuous in time. Hence, there exists

L > 0 such that, for all t, s ≥ 0 and x ∈ Λ

dΛ(Ttx, Tsx) ≤ L|t− s|. (3.4)

Let η ∈ (0, 1]. Suppose that there exist a Borel subset X ⊂ Λ and a function

r ∈ Cη(X) with inf r ≥ 1 and Tr(x)x ∈ X for all x ∈ X. De�ne T : X → X as T = Tr

and assume that it is nonuniformly expanding in the sense of Subsection 3.1.1. Some

examples for such functions are the intermittent maps in Example 2.27. Hence,

there exist a Borel probability measure ρ on X, a subset Y ⊂ X with measurable

partition {Yj}, a return time τ ∈ L1(Y ), and a map F = T τ : Y → Y that satis�es

conditions (a)-(d) of Subsection 3.1.1.

The dynamical system (Λ, Tt) is said to be a nonuniformly expanding semi�ow

of order p ∈ [1,∞] if (X,T, ρ) is nonuniformly expanding of order p in the sense of

Subsection 3.1.2.

Let g = dµ/(dµ ◦ F ) be the inverse Jacobian of F . There are η ∈ (0, 1] and

C > 0 such that, for all x, y ∈ Yj, j ≥ 1, we have

g(y) ≤ Cµ(Yj), |g(x)− g(y)| ≤ Cµ(Yj)dΛ(Fx, Fy)
η, (3.5)

(see for example [2]). In particular, F is a (full-branch) Gibbs-Markov map as

in [2]. So, there exists a unique ergodic (and mixing) probability measure µ that

has bounded density with respect to ρ|Y .

Let φ : Y → [1,∞) be de�ned as φ(y) =
∑τ(y)−1

j=0 r(T jy). De�ne the suspension

space Y φ = {(y, u) ∈ Y × [0,∞) : u ∈ [0, φ(y)]}/ ∼ where (y, φ(y)) ∼ (Fy, 0). The

suspension semi�ow Ft : Y
φ → Y φ is given by Ft(y, u) = (y, u+t) computed modulo

identi�cations. Then, the projection πφ : Y
φ → Λ de�ned as πφ(y, u) = Tuy, is a

semiconjucacy from Ft to Tt. De�ne the ergodic Ft-invariant probability measure

µφ = (µ × Lebesgue)/φ̄, where φ̄ =
∫
Y
φdµ. Then, µΛ = (πφ)∗µ

φ is an ergodic

Tt-invariant probability measure on Λ.

Denote with Lt : L1(Y φ) → L1(Y φ) the transfer operator for Ft, so we have∫
(Ltv)w dµφ =

∫
v(w ◦ Ft) dµφ for all v ∈ L1, w ∈ L∞, t ≥ 0. De�ne the transfer

operator P : L1(Y ) → L1(Y ) for F , so
∫
(Pv)w dµ =

∫
v(w ◦ F ) dµ for all v ∈ L1

and w ∈ L∞; recall that |Pv|q ≤ |v|q for all q ∈ [1,∞]. Recall (see for example [2])

that (Pv)(y) =
∑

j g(yj)v(yj) where yj is the unique preimage of y under F |Yj .
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Function space on Λ For d ≥ 1 and η ∈ (0, 1], we use the notations Cη(Λ,Rd)

and Cη0 (Λ,Rd) from Subsection 3.1.1, integrating with respect to µΛ to centre.

For v ∈ Cη0 (Λ,Rd), de�ne Wn as

Wn(t) =
1√
n

∫ nt

0

v ◦ Ts ds, (3.6)

for n ≥ 1 and t ∈ [0, 1]. The process Wn is a random element in C([0, 1],Rd),

de�ned on the probability space (Λ, µΛ). The following result is a consequence of

Theorem 3.2 passed to the suspension [31, 45, 47].

Theorem 3.10. Let Tt : Λ → Λ be nonuniformly expanding of order 2 and v ∈

Cη0 (Λ,Rd).

(i) The matrix Σ = limn→∞ n−1
∫
Λ
(
∫ n
0
v ◦ Ts ds)(

∫ n
0
v ◦ Ts ds)T dµΛ is positive

semide�nite. Typically Σ is positive de�nite: there exists a closed subspace

Cdeg of Cη0 (Λ,Rd) with in�nite codimension, such that det(Σ) ̸= 0 if v /∈ Cdeg.

(ii) The WIP holds: Wn →d W in C([0, 1],Rd), whereW is a d-dimensional centred

Brownian motion with covariance Σ.

The following theorems are the continuous time versions of Theorems 3.3 and 3.6.

Theorem 3.11. Let p ∈ (2, 3), and suppose v ∈ Cη0 (Λ,Rd) for d ≥ 1. Then there is

a constant C > 0 such that W(Wn,W ) ≤ Cn− p−2
2p (log n)

p−1
2p for all integers n > 1.

Theorem 3.12. Let p ∈ (2,∞] and suppose v ∈ Cη0 (Λ,R). Then there exists C > 0

such that

Π(Wn,W ) ≤ C

n
− p−2

4p p ∈ (2,∞),

n−1/4(log n)3/4 p = ∞

(3.7)

(3.8)

for all integers n > 1.

Remark 3.13. To our knowledge, Theorems 3.11 and 3.12 are the �rst rates for

the WIP in the dynamical systems literature for continuous time. Note that Theo-

rem 3.11 implies rates in Π by the same argument of Remark 3.8.

The remaining of this chapter is organized as follows. Section 3.2 recalls tech-

niques from [32] and proves the rates for maps. Section 3.3 presents two new de-

compositions and estimates in continuous time for regular observables, extending

the work of [32]. Finally, Section 3.4 uses the new estimates to prove the rates for

semi�ows.
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3.2 Discrete time rates

In the �rst part of this section, we recall results from [32] in order to apply [19,

Theorem 2.3(2)] and we prove Theorem 3.3. Then, in Subsection 3.2.3 we derive

new estimates that are used, together with [18, Lemma 3], to prove Theorem 3.6.

3.2.1 Approximation via martingales

We present here the relevant results from [32] to obtain a Gordin-type [26] reversed

martingale di�erences sequence with a control over the sum of its squares.

Let T : Λ → Λ be nonuniformly expanding of order p ∈ [2,∞] with ergodic

invariant measure µΛ. We call an extension of (Λ, T,B, µΛ) any measure-preserving

system (∆, f,A, µ∆) with a measure-preserving π∆ : ∆ → Λ, such that T ◦ π∆ =

π∆ ◦ f . Denote with P : L1(∆) → L1(∆) the transfer operator for f with respect to

µ∆, which is characterised by
∫
(Pv)w dµ∆ =

∫
v(w ◦f) dµ∆ for all v ∈ L1, w ∈ L∞.

By Proposition 2.12(ii), we have P (v ◦ f) = v and (Pv) ◦ f = E[v|f−1A] for any

integrable v.

Proposition 3.14. Let p ∈ [2,∞). There is an extension f : ∆ → ∆ of T : Λ → Λ

such that for any v ∈ Cη0 (Λ,Rd) there exist m ∈ Lp(∆,Rd) and χ ∈ Lp−1(∆,Rd)

satisfying

v ◦ π∆ = m+ χ ◦ f − χ, Pm = 0. (3.9)

Moreover, there exists C > 0 such that

|m|p ≤ C∥v∥η and
∣∣max1≤k≤n |χ ◦ fk − χ|

∣∣
p
≤ C∥v∥ηn

1
p , (3.10)

for all n ≥ 1. If p = ∞, then m,χ ∈ L∞(∆) with estimates

|m|∞ ≤ C∥v∥η and |χ|∞ ≤ C∥v∥η. (3.11)

Proof. Equations (3.9) and (3.10) are [32, Propositions 2.4, 2.5, 2.7]. The esti-

mates (3.11) come from τ ∈ L∞, using the arguments displayed before [32, Propo-

sition 2.4].

We call m the martingale part of v and χ its coboundary part. It is relevant to

cite [32, Corollary 2.12] which gives the identity Σ =
∫
∆
mmT dµ∆, where Σ is the

matrix de�ned in Theorem 3.2(i).
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Proposition 3.15. Let p ∈ [2,∞). There exists C > 0 such that

∣∣max1≤k≤n |
∑k−1

j=0(E[mmT − Σ|f−1A]) ◦ f j|
∣∣
p
≤ C∥v∥2ηn

1
2 ,

for every n ≥ 1.

Proof. Let Φ̆ = (P (mmT )) ◦ f −
∫
∆
mmT dµ∆. By Proposition 2.12(ii), we have

Φ̆ = E[mmT − Σ|f−1A] and hence the result follows by [32, Corollary 3.2].

Proposition 3.16. Let n ≥ 1 and 0 ≤ k ̸= ℓ ≤ n− 1 be integers. Then

E[(m ◦ fk)(m ◦ f ℓ)T |f−nA] = 0.

Proof. Without loss suppose k < ℓ. By Proposition 2.12(ii),

E[(m ◦ fk)(m ◦ f ℓ)T |f−nA] = (P n[(m ◦ fk)(m ◦ f ℓ)T ]) ◦ fn

= (P n−kP k[(m(m ◦ f ℓ−k)T ) ◦ fk]) ◦ fn

= (P n−k[m(m ◦ f ℓ−k)T ]) ◦ fn.

The proof is �nished because P [m(m ◦ f ℓ−k)T ] = (Pm)(m ◦ f ℓ−k−1)T = 0.

The next theorem is an adaptation of [19, Theorem 2.3(2)] for an RMDS (see

De�nition 2.20), which is our main tool to prove multidimensional rates for the WIP.

Theorem 3.17 (Cuny, Dedecker, Merlevède). Let p ∈ (2, 3) and d ≥ 1. Suppose

that (dn)n≥0 is a Rd-valued stationary RMDS in Lp with σ-algebras (Gn)n≥0. Let

Mn =
∑n−1

k=0 dk for n ≥ 1. Assume moreover that

∞∑
n=1

1

n3−p/2

∣∣E[MnM
T
n |Gn]− E[MnM

T
n ]
∣∣
p/2

<∞. (3.12)

Then, there is C > 0 and there exists a probability space supporting a sequence

of random variables (M∗
n)n≥1 with the same joint distributions as (Mn)n≥1 and a

sequence (Nn)n≥0 of iid Rd-valued centred Gaussians with Var(N0) = E[d0dT0 ], such

that for every integer n > 1,

∣∣max1≤k≤n |M∗
k −

∑k−1
ℓ=0 Nℓ|

∣∣
1
≤ Cn

1
p (log n)

p−1
2p . (3.13)

Proof. This proposition is a version of [19, Theorem 2.3(2)] for p ∈ (2, 3). Such a

theorem is stated for a martingale di�erences sequence, however [19, Remark 2.7]

a�rms that its thesis is true for reversed martingale di�erences sequences as well.

To prove the su�ciency of condition (3.12), reason as in [19, Remark 2.4].
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The last theorem of this subsection is a version of [18, Lemma 3] stated for a

bounded RMDS. It will be used to prove one-dimensional rates in the WIP. See

Appendix A for the details regarding [18] and general martingale theory.

Theorem 3.18 (Courbot). Let (dn)n≥0 be a R-valued bounded stationary RMDS

with σ-algebras (Gn)n≥0. Consider W a real centred Brownian motion on [0, 1],

with variance σ2 = E[d20]. De�ne for 1 ≤ k ≤ n the process M c
n : [0, 1] → R as

M c
n(k/n) = n− 1

2

∑k
j=1 dn−j, using linear interpolation in [0, 1], and let us de�ne

Vn(k) = n−1
∑k

j=1 E[d2n−j|Gn−(j−1)]. Let

κn = inf
{
ε > 0 : P

(
max0≤k≤n |Vn(k)− (k/n)σ2| > ε

)
≤ ε
}
, (3.14)

κ̃n = max
{
κn| log κn|−

1
2 , n− 1

2

}
. (3.15)

Then, there exists C > 0 such that

Π(M c
n,W ) ≤ Cκ̃

1/2
n | log κ̃n|3/4

for all n ≥ 1 for which κ̃n ∈ (0, 1
2
).

3.2.2 Proof of Theorem 3.3

For �xed v ∈ Cη0 (Λ,Rd) with martingale part m ∈ Lp(∆,Rd), p ∈ (2,∞), de�ne the

sequence of processes Xn : [0, 1] → Rd, n ≥ 1,

Xn(k/n) =
1√
n

k−1∑
j=0

m ◦ f j, (3.16)

for 0 ≤ k ≤ n, and using linear interpolation in [0, 1]. Recall that the sequence Bn

is de�ned as Bn(k/n) = n−1/2
∑k−1

j=0 v ◦ T j plus linear interpolation.

Remark 3.19. In spite of Theorem 3.3 being valid only for p ∈ (2, 3), we work with

p ∈ (2,∞) where possible and restrict the range only when we apply Theorem 3.17

Lemma 3.20. There exists C > 0 such that W(Bn, Xn) ≤ Cn− p−2
2p for all n ≥ 1.

Proof. By Proposition 3.14,

Bn(k/n) ◦ π∆ −Xn(k/n) = n− 1
2

∑k−1
j=0(v ◦ π∆ −m) ◦ f j = n− 1

2 (χ ◦ fk − χ)
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for 0 ≤ k ≤ n. Since Bn and Xn are piecewise linear with the same interpolation

nodes, equation (3.10) yields∣∣supt∈[0,1] |Bn(t) ◦ π∆ −Xn(t)|
∣∣
p
=
∣∣supt∈{0, 1

n
,...,1} |Bn(t) ◦ π∆ −Xn(t)|

∣∣
p

= n− 1
2

∣∣max1≤k≤n |χ ◦ fk − χ|
∣∣
p
≪ n− p−2

2p .

Since π∆ is a semiconjugacy, for any ψ ∈ Lip1∣∣∫
Λ
ψ(Bn) dµΛ −

∫
∆
ψ(Xn) dµ∆

∣∣ ≤ ∫
∆
|ψ(Bn ◦ π∆)− ψ(Xn)| dµ∆

≤
∣∣supt∈[0,1] |Bn(t) ◦ π∆ −Xn(t)|

∣∣
p
≪ n− p−2

2p ,

which completes the proof.

Lemma 3.21. Let {ξn}n≥1 be a sequence of identically distributed real random

variables, de�ned on the same probability space. If a = E[eξ1 ] < ∞, then we have

that E[max1≤k≤n ξk] ≤ log(na) for all n ≥ 1.

Proof. We have that emax1≤k≤n ξk = max1≤k≤n e
ξk ≤

∑n
k=1 e

ξk . Since all ξk share the

same distribution, E[emax1≤k≤n ξk ] ≤ E[
∑n

k=1 e
ξk ] = na. Then by Jensen's inequality,

E[max1≤k≤n ξk] ≤ logE[emax1≤k≤n ξk ] ≤ log(na).

Lemma 3.22. Let W be a centred d-dimensional Brownian motion on [0, 1] with

covariance Σ. Then E[esupt∈[0,1] |W (t)|] <∞.

Proof. Since Σ is symmetric and positive semide�nite, there exists an orthogonal

d × d matrix P such that PΣP T = diag(σ2
1, . . . , σ

2
d), with σ2

i ≥ 0. Then, PW is

a centred Brownian motion with covariance PΣP T , and for all 1 ≤ i ≤ d the real-

valued processes (PW )i are independent centred Brownian motions with variances

σ2
i . Let σ̄ = max1≤i≤d σ

2
i . If σ̄ = 0, then both PW and W are the constant zero

process and the proof is �nished. If σ̄ > 0, we use standard Gaussian estimates and

get that for every 1 ≤ i ≤ d there exists Ci > 0 such that for all s > 1

P
(
supt∈[0,1] |(PW (t))i| > s

)
≤ Ci exp

(
−s2/(2σ̄)

)
.

Writing ξ = supt∈[0,1] |PW (t)|, Ĉ =
∑d

i=1Ci, and c = 2d2σ̄, we get

P(ξ > s) ≤
∑d

i=1 P
(
supt∈[0,1] |PWi(t)| > s/d

)
≤ Ĉ exp(−s2/c)

and

P(eξ > s) = P(ξ > log s) ≤ Ĉ exp
(
−(log s)2/c

)
.
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Hence, by a change of variable x = log s,

E[eξ] =
∫ 1

0
P(eξ > s) ds+

∫∞
1

P(eξ > s) ds ≤ 1 + Ĉ
∫∞
0
e−x

2/c+x dx <∞.

By orthogonality, |P Tx| = |x| for all x ∈ Rd. Hence,

|W (t)| = |P TPW (t)| = |PW (t)|

for every t ∈ [0, 1]. Therefore, E[esupt∈[0,1] |W (t)|] = E[eξ] <∞.

Proposition 3.23. Let W be a centred d-dimensional Brownian motion on [0, 1],

and let (Nn)n≥0 be a sequence of iid Rd-valued centred Gaussians with variance

Var(W (1)). De�ne the sequence of processes Yn : [0, 1] → Rd for 0 ≤ k ≤ n as

Yn(k/n) = n−1/2
∑k−1

j=0 Nj and with linear interpolation. Then, there exists C > 0

such that W(Yn,W ) ≤ Cn− 1
2 log n for all integers n > 1.

Proof. De�ne the sequence Y ∗
n : [0, 1] → Rd as Y ∗

n (k/n) = W (k/n) for 0 ≤ k ≤ n,

plus linear interpolation. We have that Yn =d Y
∗
n as continuous processes for all

n ≥ 1. So, for ψ ∈ Lip1,

|E[ψ(Yn)]−E[ψ(W )]| = |E[ψ(Y ∗
n )−ψ(W )]| ≤ E[supt∈[0,1] |Y ∗

n (t)−W (t)|] ≤ A1+A2,

where

A1 = E[supt∈[0,1] |Y ∗
n (t)−W (⌊nt⌋/n)|] and A2 = E[supt∈[0,1] |W (⌊nt⌋/n)−W (t)|].

Since

A1 = E[max1≤k≤n |W (k/n)−W ((k − 1)/n)|]

≤ E[max1≤k≤n supt∈( k−1
n
, k
n
) |W (t)−W ((k − 1)/n)|] = A2,

it is enough to estimate A2. By the rescaling property, Ŵn(t) = n
1
2W (t/n) is

a centred Brownian motion on [0, n] for every n ≥ 1, with the same covariance

as W . Let (ξk)k≥1 be a identically distributed sequence of random variables with

ξ1 =d supt∈[0,1] |W (t)|. Then, for every 1 ≤ k ≤ n,

supt∈( k−1
n
, k
n
) |W (t)−W ((k − 1)/n)| = n− 1

2 supt∈( k−1
n
, k
n
) |Ŵn(nt)− Ŵn(n(k − 1))|

= n− 1
2 supt∈(k−1,k) |Ŵn(t)− Ŵn(k − 1)|

=d n
− 1

2 ξk.

Lemma 3.22 yields that E[eξ1 ] < ∞, hence we can apply Lemma 3.21 getting that

A2 = n− 1
2E[max1≤k≤n ξk] ≪ n− 1

2 log n, which completes the proof.
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Proof of Theorem 3.3. Let p ∈ (2, 3) and let Xn be from (3.16). Consider W a

Brownian motion on [0, 1] with mean 0 and covariance Σ, from Theorem 3.2(ii).

Recall moreover that Σ =
∫
∆
mmT dµ∆. By Lemma 3.20, it su�ces to estimate

W(Xn,W ).

We claim that Mn =
∑n−1

j=0 m ◦ f j, n ≥ 1, satis�es condition (3.12) on the

probability space (∆, µ∆). Since Pm = 0, Proposition 2.21 yields that (m ◦ fn)n≥0

is an RMDS. It is in Lp by Proposition 3.14, and it is stationary because fn is

measure-preserving. In the following equation, the o�-diagonal terms are zero by

Proposition 3.16:

E[MnM
T
n |f−nA]−E[(MnM

T
n ]

=
∑n−1

k,ℓ=0

(
E[(m ◦ fk)(m ◦ f ℓ)T |f−nA]− E[(m ◦ fk)(m ◦ f ℓ)T ]

)
=
∑n−1

k=0

(
E[(mmT ) ◦ fk|f−nA]− E[(mmT ) ◦ fk]

)
=E
[∑n−1

k=0(mm
T − Σ) ◦ fk|f−nA

]
.

Using Proposition 3.15,

∣∣E[∑n−1
k=0(mm

T−Σ) ◦ fk|f−nA
]∣∣
p/2

=
∣∣E[∑n−1

k=0 E[(mmT − Σ) ◦ fk|f−k−1A]
∣∣f−nA

]∣∣
p/2

≤
∣∣∑n−1

k=0 E[(mmT − Σ) ◦ fk|f−k−1A]
∣∣
p/2

=
∣∣∑n−1

k=0 E[(mmT − Σ)|f−1A] ◦ fk
∣∣
p/2

≪ n
1
2 .

Hence for all p ∈ (2, 3) the series (3.12) converges, proving the claim.

By Theorem 3.17, there exists a probability space supporting a sequence (M∗
n)n≥1

with the same joint distributions as (Mn)n≥1 and a sequence (Nn)n≥0 of iid Rd-valued

centred Gaussians with Var(N0) = E[mmT ] = Σ, such that (3.13) holds.

Let Yn be as in Proposition 3.23 and let M∗
0 = 0. De�ne for n ≥ 1 the process

X∗
n : [0, 1] → Rd as X∗

n(k/n) = n− 1
2M∗

k for 0 ≤ k ≤ n, with linear interpolation. We

have that X∗
n =d Xn as continuous processes. By Proposition 3.23, we have that

W(Xn,W ) ≪ W(Xn, Yn) + n− 1
2 log n. Using (3.13), we have that for all ψ ∈ Lip1,

W(Xn, Yn) ≤ E[ψ(X∗
n)− ψ(Yn)] ≤ E[supt∈[0,1] |X∗

n(t)− Yn(t)|]

= n− 1
2

∣∣max1≤k≤n |M∗
k −

∑k−1
ℓ=0 Nℓ|

∣∣
1
≪ n− p−2

2p (log n)
p−1
2p .

Hence W(Xn,W ) ≪ n− p−2
2p (log n)

p−1
2p and the proof is complete.
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3.2.3 Using bounded martingales

Let T be nonuniformly expanding of order ∞. For v ∈ Cη0 (Λ,R), we consider

m ∈ L∞(∆) from Proposition 3.14 and write Φ̆ = E[m2|f−1A] − σ2, where by [32,

Corollary 2.12], σ2 =
∫
∆
m2 dµ∆. As pointed out before [32, Corollary 3.2], we can

write Φ̆ = m̆+ χ̆◦f − χ̆ for m̆, χ̆ : ∆ → R with Pm̆ = 0, which we call the secondary

martingale-coboundary decomposition of v. Since the return time τ from Subsec-

tion 3.1.1 lies in L∞, [32, Proposition 3.1] and the arguments displayed before [32,

Proposition 2.4] yield that there is C > 0 such that

|m̆|∞ ≤ C∥v∥2η and |χ̆|∞ ≤ C∥v∥2η. (3.17)

If g : ∆ → R and n ≥ 1, we use the notation gn =
∑n−1

j=0 g ◦ f j.

Proposition 3.24 (Azuma-Hoe�ding inequality [58, pg 237]). LetM(n) =
∑n

j=1Xj,

n ≥ 1, be a real-valued martingale with Xj ∈ L∞ for j ≥ 1. Then

P
(
max
1≤k≤n

|M(k)| ≥ x
)
≤ exp

{
−x2/2∑n
j=1 |Xj|2∞

}
,

for every x > 0 and n ≥ 1.

Proposition 3.25. Let v ∈ Cη0 (Λ,R). There exist a, C > 0 such that

µ∆

(
max
1≤k≤n

|
∑n−1

j=0 Φ̆ ◦ f j| ≥ x
)
≤ C exp

{
−ax

2

n

}
,

for every x > 0 and n ≥ 1.

Proof. Let Φ̆ = m̆ + χ̆ ◦ f − χ̆. For any k ≥ 1 we get Φ̆k = m̆k + χ̆ ◦ fk − χ̆, and

by (3.17) there exists K > 0 such that max1≤k≤n |Φ̆k| ≤ max1≤k≤n |m̆k|+K. So,

µ∆(max1≤k≤n |Φ̆k| ≥ x) ≤ µ∆(max1≤k≤n |m̆k|+K ≥ x)

≤ µ∆(max1≤k≤n |m̆k| ≥ x/2) + µ∆(K ≥ x/2).
(3.18)

Ifm = 0, we have automatically µ∆(max1≤k≤n |m̆k| ≥ x/2) = 0. Ifm ̸= 0, we use

that Pm̆=0 to get from Proposition 2.21 that (m̆◦fn)n≥0 is an RMDS in (∆, µ∆). By

Proposition 2.22, for every n ≥ 1 the process M̆n(k) =
∑k

j=1 m̆ ◦ fn−j, 1 ≤ k ≤ n is

a martingale. Since m̆k = M̆n(n)−M̆n(n−k), using the Proposition 3.24 and (3.17),

there is c > 0 such that

µ∆(max1≤k≤n |m̆k| ≥ x/2) ≤ µ∆(max1≤k≤n |M̆n(k)| ≥ x/4)

≤ exp

{
−x2/32∑n
j=1 |m̆|2∞

}
= exp

{
−cx

2

n

}
.
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Since µ∆(K ≥ x/2) = 1 for x ≤ 2K and 0 otherwise,

µ∆(K ≥ x/2) ≤ exp{4K2 − x2} ≤ exp{4K2} exp{−x2/n}.

Conclude by applying these estimates to (3.18).

3.2.4 Proof of Theorem 3.6 (p = ∞)

For �xed v ∈ Cη0 (Λ,R) with martingale part m ∈ L∞(∆), de�ne the sequence of

processes Yn : [0, 1] → R, n ≥ 1

Yn(k/n) =
1√
n

k∑
j=1

m ◦ fn−j,

for 1 ≤ k ≤ n, using linear interpolation in [0, 1]. Following [31, Lemma 4.8], let

h : C[0, 1] → C[0, 1] be the linear operator (hψ)(t) = ψ(1)− ψ(1− t).

Lemma 3.26. There exists C > 0 such that Π(h ◦Bn, Yn) ≤ Cn− 1
2 for all n ≥ 1.

Proof. The process h ◦ Bn is piecewise linear in [0, 1] with interpolation nodes k/n

for 0 ≤ k ≤ n, attaining values h ◦Bn(k/n) =
∑n−1

j=n−k v ◦ f j. By (3.9),

h ◦Bn(k/n) ◦ π∆ − Yn(k/n) = n− 1
2

(∑n−1
j=n−k v ◦ π∆ ◦ f j −

∑k
j=1m ◦ fn−j

)
= n− 1

2 ((v ◦ π∆)n − (v ◦ π∆)n−k − (mn −mn−k))

= n− 1
2 (χ ◦ fn − χ ◦ fn−k).

Since h ◦Bn ◦ π∆ and Yn have the same interpolation nodes, we have by (3.11),∣∣supt∈[0,1] |h ◦Bn(t) ◦ π∆ − Yn(t)|
∣∣
∞ ≤ 2n− 1

2 |χ|∞ ≪ n− 1
2 .

Using that π∆ is a semiconjugacy and applying (2.2),

Π(h◦Bn, Yn) = Π(h◦Bn◦π∆, Yn) ≤
∣∣supt∈[0,1] |h◦Bn(t)◦π∆−Yn(t)|

∣∣
∞ ≪ n− 1

2 .

Lemma 3.27. There exists C > 0 such that Π(Yn,W ) ≤ Cn− 1
4 (log n)

3
4 for all

integers n > 1.

Proof. Let dn = m ◦ fn for n ≥ 0. Since m ∈ kerP , dn is a stationary RMDS

on (∆, µ∆) with σ-algebras (f
−nA)n≥0, by Proposition 2.21. Equation (3.11) yields

that the sequence dn is bounded. We adopt the same notation of Theorem 3.18,

noting that σ2 =
∫
∆
m2 dµ∆,

Vn(k) = n−1
∑k

j=1 E[m2 ◦ fn−j|f−n−(j−1)A] = n−1
∑k

j=1 E[m2|f−1A] ◦ fn−j,
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and that Yn coincides with M c
n. We claim that

κn ≪
√
n−1 log n.

Assuming the claim true, let us evaluate κ̃n from (3.15). Note that x 7→ x2(log x)−1

is decreasing for x ∈ (0, 1). Hence x 7→ x2| log x|−1 is increasing and so is the

function x 7→ x| log x|− 1
2 . Since κn ≪

√
n−1 log n, we get that

κn| log κn|−
1
2 ≪

√
log n

n| log log n− log n|
≪ 1√

n
.

By de�nition, κ̃n ≪ n− 1
2 as well, and the statement follows from Theorem 3.18.

Let us now prove the claim. Writing Φ̆ = E[m2|f−1A]−σ2 and Φ̆k =
∑k−1

j=0 Φ̆◦f j,

Vn(k)− (k/n)σ2 = n−1
∑k

j=1 Φ̆ ◦ fn−j = n−1(Φ̆n − Φ̆n−k),

for every n ≥ 1. So, max0≤k≤n |Vn(k)− (k/n)σ2| ≤ 2n−1max1≤k≤n |Φ̆k|. By Propo-

sition 3.25, there are a, C > 0 such that

µ∆

(
max0≤k≤n |Vn(k)− (k/n)σ2| ≥ ε

)
≤ µ∆

(
max1≤k≤n |Φ̆k| ≥ nε/2

)
≤ Ce−anε

2
,

for all ε ≥ 0 and n ≥ 1. Let now εn =
√
log n/(an). We have that C ≤ nεn for n

large enough and

µ∆

(
max0≤k≤n |Vn(k)− (k/n)σ2| > εn

)
≤ C exp{−anε2n} = C/n ≤ εn.

By de�nition (3.14), κn ≪ εn ≪
√
n−1 log n, which proves the claim.

Proposition 3.28. Let Z(t), t ∈ [0, 1], be a Rd-valued continuous process with

Z(0) = 0 a.s. and let W (t), t ∈ [0, 1], be a d-dimensional Brownian motion. Then

we have that Π(Z,W ) ≤ 2Π(h ◦ Z,W ).

Proof. We follow the proof of [5, Theorem 2.2]. It is easy to see that h ◦W =d W ,

because (i) t 7→ h◦W (t) is continuous, (ii) h◦W (0) = 0, (iii) for �xed 0 ≤ s ≤ t ≤ 1

we have h ◦W (t)− h ◦W (s) = W (1− s)−W (1− t) =d N (0, (t− s)Σ), and (iv) for

k ≥ 1 and any partition 0 ≤ t1 < · · · < tk ≤ 1, the increments

W (1− t1)−W (1− t2),W (1− t2)−W (1− t3), . . . ,W (1− tk−1)−W (1− tk)

are independent by the properties of W .

Note that h(hf) = f if f(0) = 0, and the map h : C[0, 1] → C[0, 1] is Lipschitz

with Lip(h) ≤ 2. We conclude by the Lipschitz mapping theorem [56, Theorem 3.2],

Π(Z,W ) = Π(h(h ◦ Z), h(h ◦W )) ≤ 2Π(h ◦ Z, h ◦W ) = 2Π(h ◦ Z,W ).
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Proof of Theorem 3.6 (p = ∞). Since Bn(0) = 0 for all n ≥ 1, Proposition 3.28

yields

Π(Bn,W ) ≪ Π(h ◦Bn,W ) ≤ Π(h ◦Bn, Yn) + Π(Yn,W ).

Apply Lemmas 3.26 and 3.27 to �nish.

3.3 Martingale-coboundary decompositions for semi-

�ows

Let Tt : Λ → Λ be a nonuniformly expanding semi�ow of order p ∈ [2,∞] as in

Subsection 3.1.3, which is semiconjugated through πφ to a suspension semi�ow

Ft : Y
φ → Y φ. We recall from Subsection 3.1.3 that r ∈ Cη(X) and τ ∈ Lp(Y )

are the return functions for respectively the �ow Tt and the map T . Next Propo-

sition proves some properties of the map φ : Y → [1,∞) that was de�ned as

φ(y) =
∑τ(y)−1

j=0 r(T jy).

Proposition 3.29. We have that φ ∈ Lp(Y, µ) and there is C > 0 such that

|φ(x)− φ(y)| ≤ C(infYj φ)dΛ(Fx, Fy)
η, (3.19)

for every j ≥ 1 and x, y ∈ Yj. If p ∈ [2,∞), then

∑
j µ(Yj)(supYj φ

p) <∞. (3.20)

Proof. Since τ ∈ Lp(Y, ρ|Y ) and dµ/dρ ∈ L∞(Y ), it follows that τ ∈ Lp(Y, µ).

Hence, ∫
Y
|φ|p dµ =

∫
Y
|
∑τ−1

j=0 r ◦ T j|p dµ ≤ |r|p∞
∫
Y
|τ |p dµ = |r|p∞|τ |pp <∞.

Recall that τ is constant on partition elements. Using that r ∈ Cη(X) and point (c)

from Subsection 3.1.1, there exists C > 0 such that for each j ≥ 1 and x, y ∈ Yj,

|φ(x)− φ(y)| ≤
∑τ(x)−1

ℓ=0 |r(T ℓx)− r(T ℓy)| ≤ Cτ(x)|r|ηdΛ(Fx, Fy)η.

By infX r ≥ 1 and the de�nition of φ, we get τ(x) ≤ φ(y) for all y ∈ Yj, which

implies that τ(x) ≤ (infYj φ). Equation (3.19) follows.

By (3.19), we get supYj φ − infYj φ ≤ C diam(Y )η(infYj φ). Hence, there exists

K > 0 such that supYj φ ≤ K infYj φ for all j ≥ 1. So,

∑
j µ(Yj)(supYj φ

p) ≤ Kp
∑

j µ(Yj)(infYjφ
p) ≤ Kp|φ|pp <∞.
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Lemma 3.30. There exists C > such that

dΛ(Tux, Tuy) ≤ C(infYj φ)dΛ(Fx, Fy)
η

for all j ≥ 1, x, y ∈ Yj, and u ≤ min{φ(x), φ(y)}.

Proof. For m ≥ 1 and g : X → R, write Smg =
∑m−1

j=0 g ◦ T j. For t ≥ 0 and

z ∈ X, de�ne the lap number Nt(z) = m ≥ 0 to be the unique integer such that

Smr(z) ≤ t < Sm+1r(z). Let x, y, u be as in the statement, and let r ∈ Cη(X,R)

from Subsection 3.1.3.

Write n = Nu(x), and let K = |r|∞ for estimate (3.3). We can write that

u = Snr(x) + E(x), where E(x) ≤ r(T nx) ≤ |r|∞. Then, (3.3) yields

dΛ(Tux, Tuy) ≪ dΛ(TSnr(x)x, TSnr(x)y). (3.21)

Using (3.4),

dΛ(TSnr(x)x, TSnr(x)y) ≤ dΛ(TSnr(x)x, TSnr(y)y) + dΛ(TSnr(y)y, TSnr(x)y)

= dΛ(T
nx, T ny) + dΛ(TSnr(y)y, TSnr(x)y)

≪ dΛ(T
nx, T ny) + |Snr(x)− Snr(y)|.

By our assumptions on x, y, u, we can apply point (c) of Subsection 3.1.1 to get

dΛ(T
nx, T ny) ≪ dΛ(Fx, Fy) ≤ diam(Λ)1−ηdΛ(Fx, Fy)

η.

Using Hölder continuity of r and again point (c),

|Snr(y)− Snr(x)| ≤
∑n−1

j=0 |r(T jx)− r(T jy)| ≪ |r|ηndΛ(Fx, Fy)η.

Since u ≤ min{φ(x), φ(y)} and inf φ ≥ 1, we have that n ≤ infYj φ. Therefore,

|Snr(y) − Snr(x)| ≪ |r|η(infYj φ)dΛ(Fx, Fy)η. Apply these estimates to (3.21) to

�nish.

Function space on Y De�ne the spaces Cη(Y,Rd) and Cη0 (Y,Rd) analogously to

Cη(Λ,Rd) and Cη0 (Λ,Rd), integrating on Y by µ to centre.

Function space on Y φ Let η ∈ (0, 1], d ≥ 1, and let Y φ
j = {(y, u) ∈ Y φ : y ∈ Yj}.

For v : Y φ → Rd, de�ne |v|∞ = sup(y,u)∈Y φ |v(y, u)| and

∥v∥η = |v|∞ + |v|η, |v|η = sup
j≥1

sup
(x,u),(y,u)∈Y φ

j , x̸=y

|v(x, u)− v(y, u)|
dΛ(Fx, Fy)η(infYj φ)

√
η
.
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Let Fη(Y φ,Rd) consist of observables v : Y φ → Rd with ∥v∥η < ∞. We have that

Fη(Y φ,Rd) is a Banach space, because it is a closed subspace of the functions on

on Y φ which are Hölder continuous in the y variable. De�ne

Fη
0 (Y

φ,Rd) = {v ∈ Fη(Y φ,Rd) :
∫
Y φv dµφ = 0}.

Proposition 3.31. Let v ∈ Cη0 (Λ,Rd). Then v ◦ πφ ∈ Fη2

0 (Y φ,Rd) and there exists

C > 0 such that ∥v ◦ πφ∥η2 ≤ C∥v∥η.

Proof. We have clearly that |v ◦ πφ|∞ ≤ |v|∞. Let j ≥ 1 and (x, u), (y, u) ∈ Y φ
j ,

such that u ≤ min{φ(x), φ(y)}. By Hölder continuity of v,

|v ◦ πφ(x, u)− v ◦ πφ(y, u)| = |v(Tux)− v(Tuy)| ≤ |v|ηdΛ(Tux, Tuy)η.

By Lemma 3.30, there exists C > 0 such that

dΛ(Tux, Tuy)
η ≤ C(infYj φ)

ηdΛ(Fx, Fy)
η2

Hence, |v ◦ πφ|η2 ≤ C|v|η, giving that ∥v ◦ πφ∥η2 ≤ C∥v∥η. To �nish the proof, we

see that
∫
Y φ(v ◦ πφ) dµφ =

∫
Λ
v dµΛ = 0.

The remainder of this section deals with observables in Fη(Y φ,Rd). By Proposi-

tion 3.31, this approach is su�cient to obtain the same decompositions and estimates

for elements of C
√
η(Λ,Rd), via the semiconjugacy πφ.

We present in the following two new decompositions for an observable and the

square of its martingale part, in the style of Gordin [26]. This follows and extends

the approach of [32] to continuous time.

Notation For n ≥ 1 and g : Y φ → Rd, write gn =
∑n−1

j=0 g ◦ Fj.

3.3.1 Primary decomposition

Given v ∈ Fη(Y φ,Rd), de�ne v′ : Y → Rd as v′(y) =
∫ φ(y)
0

v(y, u) du. Recall that

P : L1(Y ) → L1(Y ) is the transfer operator for F de�ned in Subsection 3.1.3.

Proposition 3.32. There exists a constant C > 0 such that ∥Pv′∥η ≤ C∥v∥η for

all v ∈ Fη(Y φ,Rd). We have that v′ ∈ Lp(Y,Rd), and if v ∈ Fη
0 (Y

φ,Rd) then

Pv′ ∈ Cη0 (Y,Rd).
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Proof. Let x, y ∈ Yj and suppose without loss that φ(x) ≤ φ(y). By (3.19),

|v′(x)− v′(y)| ≤
∫ φ(x)
0

|v(x, u)− v(y, u)| du+
∫ φ(y)
φ(x)

|v(y, u)| du

≪(|v|η(infYj φ)
√
η)(supYj φ) + |v|∞(infYj φ)dΛ(Fx, Fy)

η

≤∥v∥η(supYj φ
1+

√
η)dΛ(Fx, Fy)

η.

(3.22)

Let now x, y ∈ Y , with preimages xj, yj ∈ Yj under F . Since |v′| ≤ φ|v|∞, we

have that |v′(xj)| ≤ |v|∞(supYj φ). Using (3.5), (3.22), and (3.20) with p > 1

|(Pv′)(x)− (Pv′)(y)| ≤
∑

j |g(xj)− g(yj)||v′(xj)|+
∑

j g(yj)|v′(xj)− v′(yj)|

≪∥v∥η
(∑

j µ(Yj)(supYj φ
1+

√
η)
)
dΛ(Fxj, Fyj)

η ≪ ∥v∥ηdΛ(x, y)η.

Similarly, (3.20) yields also that |Pv′|∞ ≪ |v|∞, giving ∥Pv′∥η ≪ ∥v∥η.

Using |v′|p ≤ |φ|p|v|∞, we see that v′ ∈ Lp(Y,Rd). If moreover v ∈ Fη
0 (Y

φ,Rd),

then ∫
Y
v′ dµ =

∫
Y

∫ φ(y)
0

v(y, u) du dµ = φ̄
∫
Y φ v dµ

φ = 0.

Hence,
∫
Pv′ dµ =

∫
v′ dµ = 0 and so Pv′ ∈ Cη0 (Y ;Rd).

De�ne χ′,m′ : Y → Rd as follows:

χ′ =
∑∞

k=1 P
kv′, m′ = v′ − χ′ ◦ F + χ′.

It is well known for Gibbs-Markov maps (see [2, Theorem 1.6]), that for every w ∈

Cη0 (Y,Rd) there are a, C > 0 such that ∥P kw∥η ≤ Ce−ak for all k ≥ 1. Since Pv′ ∈

Cη(Y ;Rd), the series
∑∞

k=1 ∥P kv′∥η =
∑∞

k=0 ∥P kPv′∥η converges. By completeness,

χ′ ∈ Cη(Y ;Rd) and Pm′ = Pv′ − χ′ +
∑∞

k=2 P
kv′ = 0. We have that

∥χ′∥η ≤
∑∞

k=0 ∥P kPv′∥η ≪ ∥Pv′∥η, |m′|p ≤ |φ|p|v|∞ + 2|χ′|∞ ≪ |v|∞ + ∥Pv′∥η.

(3.23)

Hence m′ ∈ Lp(Y,Rd) and, by Proposition 3.32,

|m′|p ≪ ∥v∥η, ∥χ′∥η ≪ ∥v∥η. (3.24)

De�ne m,χ : Y φ → Rd by

χ(y, u) = χ′(y) +

∫ u

0

v(y, s) ds, m(y, u) =

m
′(y) u ∈ [φ(y)− 1, φ(y))

0 u ∈ [0, φ(y)− 1)

.

(3.25)
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Proposition 3.33. We have that m ∈ Lp(Y φ,Rd) and χ ∈ Lp−1(Y φ,Rd), with the

convention that ∞− 1 = ∞. Moreover, there exists C > 0 such that

|m|p ≤ C∥v∥η and |χ|p−1 ≤ C∥v∥η,

for all v ∈ Fη
0 (Y

φ,Rd).

Proof. First, suppose that p = ∞. Then, by (3.23) and (3.25),

|χ|∞ ≤ |χ′|∞ + |φ|∞|v|∞ ≪ |v|∞ + ∥Pv′∥η, |m|∞ = |m′|∞ ≪ |v|∞ + ∥Pv′∥η.

(3.26)

By Proposition 3.32, |v|∞ + ∥Pv′∥η ≪ ∥v∥η which concludes the �rst case.

Second, suppose that p ∈ [2,∞). By (3.23),

|χ(y, u)| ≤ |χ′|∞ + u|v|∞ ≪ φ(y)(|v|∞ + ∥Pv′∥η).

Hence,

|χ|p−1 ≪ (|v|∞ + ∥Pv′∥η)(
∫
Y

∫ φ
0
|φ|p−1 ds dµ)

1
p−1 = (|v|∞ + ∥Pv′∥η)|φ|

p
p−1
p <∞.

Since m′ ∈ Lp(Y,Rd), (3.25) and (3.23) yield

|m|pp ≪
∫
Y

∫ φ
0
|m′|p1{φ−1≤u<φ} du dµ = |m′|pp ≪ (|v|∞ + ∥Pv′∥η)p <∞.

So,

|χ|p−1 ≪ |v|∞ + ∥Pv′∥η and |m|p ≪ |v|∞ + ∥Pv′∥η. (3.27)

The statement follows by |v|∞ + ∥Pv′∥η ≪ ∥v∥η.

Recall that L1 : L
1(Y φ) → L1(Y φ) is the transfer operator for the one-time map

F1 : Y
φ → Y φ of the suspension semi�ow Ft de�ned in Subsection 3.1.3. In the next

proposition, we show how L1 acts pointwise on integrable observables.

Proposition 3.34. Let v ∈ L1(Y φ). Then

(L1v)(y, u) =

v(y, u− 1) u ∈ [1, φ(y))∑
j g(yj)v(yj, u− 1 + φ(yj)) u ∈ [0, 1)

Proof. Let w ∈ L∞(Y φ). By de�nition of L1 and µφ, and by the substitution

u 7→ u+ 1,∫
Y φ L1(1{0≤u<φ−1}v)w dµφ = φ̄−1

∫
Y

∫ φ(y)
0

1{0≤u<φ(y)−1}v(y, u)w(y, u+ 1) du dµ

=
∫
Y φ 1{1≤u<φ(y)}v(y, u− 1)w(y, u) dµφ.

(3.28)
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Next, let us focus on 1{φ−1≤u<φ}v. By the substitution u 7→ u+ 1− φ(y),

∫
Y φ L1(1{φ−1≤u<φ}v)w dµφ = φ̄−1

∫
Y

∫ φ(y)
φ(y)−1

v(y, u)w(Fy, u+ 1− φ(y)) du dµ

= φ̄−1
∫
Y

∫ 1

0
v(y, u− 1 + φ(y))w(Fy, u) du dµ.

Write ṽu(y) = v(y, u− 1 + φ(y)) and wu(y) = w(y, u). Then,∫
Y φ L1(1{φ−1≤u<φ}v)w dµφ = φ̄−1

∫ 1

0

∫
Y
ṽu(w

u ◦ F ) dµ du

= φ̄−1
∫ 1

0

∫
Y
(P ṽu)w

u dµ du

=
∫
Y φ 1{0≤u<1}(P ṽu)w dµφ.

(3.29)

We have by (3.28) and (3.29) that

(L1v)(y, u) = L1(1{0≤u<φ−1}v + 1{φ−1≤u<φ}v)(y, u)

= 1{1≤u<φ}v(y, u− 1) + 1{0≤u<1}(P ṽu)(y).

The proof is completed by the pointwise formula for P .

Proposition 3.35. Let v ∈ Fη
0 (Y

φ,Rd) and let ψ : Y φ → Rd be ψ =
∫ 1

0
v ◦ Fs ds.

Then ψ = m+ χ ◦ F1 − χ and m ∈ kerL1.

Proof. Let (y, u) ∈ Y φ with u ∈ [0, φ(y) − 1). Then F1(y, u) = (y, u + 1) and

ψ(y, u) =
∫ u+1

u
v(y, s) ds, so

χ(F1(y, u))− χ(y, u) =
∫ u+1

0
v(y, s) ds−

∫ u
0
v(y, s) ds = ψ(y, u) = ψ(y, u)−m(y, u).

If u ∈ [φ(y)− 1, φ(y)), then

ψ(y, u) =
∫ u+1−φ(y)
0

v(Fy, s) ds+ v′(y)−
∫ u
0
v(y, s) ds.

We have that F1(y, u) = (Fy, u+1−φ(y)). By de�nition, v′−m′ = χ′ ◦F −χ′ and

m(y, u) = m′(y), so

χ(F1(y, u))− χ(y, u) = χ′(Fy)− χ′(y) +
∫ u+1−φ(y)
0

v(Fy, s) ds−
∫ u
0
v(y, s) ds

= v′(y)−m′(y) + ψ(y, u)− v′(y) = ψ(y, u)−m(y, u).

Therefore ψ = m+ χ ◦ F1 − χ on the whole of Y φ.

We are left to prove that m ∈ kerL1 using the formula of Proposition 3.34. Let

y ∈ Y . If u ∈ [1, φ(y)), then u− 1 ∈ [0, φ(y)− 1) and by de�nition of m,

(L1m)(y, u) = m(y, u− 1) = 0.
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If u ∈ [0, 1), then u− 1 + φ(yj) ∈ [φ(yj)− 1, φ(yj)) for all preimages yj of y, and

(L1m)(y, u) =
∑

j g(yj)m(yj, u− 1 + φ(yj)) = (Pm′)(y) = 0,

because m′ ∈ kerP .

Following the terminology of Section 3.2, the new functions m and χ are called

respectively the martingale and coboundary part of v. In view of Proposition 3.35,

to estimate the Birkho� sums of ψ in p-norm, it would be desirable to have χ ∈ Lp.

This is indeed true for p = ∞ by Proposition 3.33; however, in general χ lies in

Lp−1. The next results sort out this problem for p ∈ [2,∞), showing by the ideas

of [32] that χ ◦ F1 − χ lies in Lp for all n ≥ 1.

Proposition 3.36. max1≤k≤n |χ ◦ Fk| = o(n1/p) a.e. in Y φ.

Proof. We follow the proof of [32, Proposition 2.6]. Since φ ∈ Lp(Y ), we have by

the ergodic theorem φ ◦ F n = o(n1/p) a.e. on Y , and so max0≤k≤n φ ◦ F k = o(n1/p)

a.e.

By de�nition (3.25) and equation (3.24), |χ(y, u)| ≤ |χ′|∞ + u|v|∞ ≪ φ(y)∥v∥η.

For any (y, u) ∈ Y φ and n ≥ 0, there exists j ∈ {0, . . . , n} and u′ ∈ [0, φ(F ny))

such that Fn(y, u) = (F jy, u′). Hence, |χ(Fn(y, u))| ≪ ∥v∥ηmax0≤k≤n φ(F
ky), and

therefore max0≤k≤n |χ(Fk(y, u))| ≪ ∥v∥ηmax0≤k≤n φ(F
ky) = o(n1/p) a.e.

Proposition 3.37. There exists C > 0 such that |max1≤k≤n |χ ◦ Fk − χ||p ≤

C∥v∥ηn1/p for all n ≥ 1. Moreover,

∣∣max1≤k≤n |χ ◦ Fk − χ|
∣∣
p
≤ C∥v∥η

(
n1/q + n1/p|1{φ≥n1/q}φ|p

)
(3.30)

for all n ≥ 1, q ≥ p, and v ∈ Fη
0 (Y

φ,Rd).

Proof. We follow the proof of [32, Proposition 2.7]. De�ne ta = |1{φ≥a}φ|p, a ≥ 0

and the families of sets for n ≥ 1

An = {(y, u) ∈ Y φ : u ≤ φ(y)− n}, Bn = {(y, u) ∈ Y φ : n ≤ u ≤ φ(y)}.

We have that µφ(An) = µφ(Bn) = φ̄−1
∫
{φ≥n}

∫ φ
n
du dµ. So,

np−1µφ(An) ≤ φ̄−1
∫
{φ≥n}

∫ φ
n
up−1 du dµ ≤ φ̄−1

∫
{φ≥n} φ

p dµ ≤ tpn.
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If (y, u) ∈ An and k = 1, . . . , n, then u+k ≤ φ(y). Hence, using Equation (3.25) we

have (χ ◦ Fk − χ)(y, u) =
∫ k
0
v(y, u + s) ds and 1An max1≤k≤n |χ ◦ Fk − χ| ≤ n|v|∞.

Therefore, ∣∣1An max1≤k≤n |χ ◦ Fk − χ|
∣∣
p
≤ n|v|∞(µφ(An))

1/p

= n1/p|v|∞(np−1µφ(An))
1/p ≤ n1/p|v|∞tn.

(3.31)

Write Kv = |v|∞ + ∥Pv′∥η. By (3.23), |χ(y, u)| ≤ |χ′|∞ + u|v|∞ ≪ φ(y)Kv for

all (y, u) ∈ Y φ. De�ne φa = 1{φ≥a}φ for a ≥ 0. Since φp ≤ ap + φpa,

K−p
v max1≤k≤n |χ ◦ Fk(y, u)− χ(y, u)|p ≤ 2pK−p

v max0≤k≤n |χ ◦ Fk(y, u)|p

≪ max0≤k≤n φ
p(F ky) ≤ ap +

∑n
k=0 φ

p
a(F

ky)
(3.32)

for all (y, u) ∈ Y φ and a ≥ 0.

For any function w : Y φ → R of the form w(y, u) = w0(y) with w0 ∈ L1(Y ),

∫
Y φ\An

|w| dµφ = φ̄−1
∫
Y
min{φ, n}|w0| dµ ≤

∫
Y
min{φ, n}|w0| dµ. (3.33)

Take v ≡ 1 in Proposition 3.32, which gives v′ = φ and |P kφ|∞ ≤ |Pφ|∞ ≪ 1

for all k ≥ 1, because P is a contraction. By equations (3.32) and (3.33),

K−p
v

∫
Y φ\An

max1≤k≤n |χ ◦ Fk − χ|p dµφ ≤ ap +
∑n

k=0

∫
Y φ\An

φpa(F
ky) dµφ(y, u)

≤ ap +
∑n

k=0

∫
Y
min{φ, n}(φpa ◦ F k) dµ ≤ ap + n|φpa|1 +

∑n
k=1 |φ(φpa ◦ F k)|1

≪ ap + n|φpa|1 +
∑n

k=1 |(P kφ)φpa|1 ≪ ap + n|φpa|1 = ap + ntpa.

So,

∣∣1Y φ\An max1≤k≤n |χ ◦ Fk − χ|
∣∣
p
≪ Kv(a

p + ntpa)
1/p ≤ Kv(a+ n1/pta)

1/p. (3.34)

Let q ≥ p and let a = n1/q. Since tn ≤ tn1/q , we can apply (3.31) and (3.34) to get

∣∣max1≤k≤n |χ ◦ Fk − χ|
∣∣
p
≪ Kv(n

1/q + n1/p|1{φ≥n1/q}φ|p).

Since tn1/q ≤ |φ|p for all n ≥ 1, we take q = p to get

∣∣max1≤k≤n |χ ◦ Fk − χ|
∣∣
p
≪ Kvn

1/p. (3.35)

Proposition 3.35 implies that Kv ≪ ∥v∥η, which concludes the proof.

Corollary 3.38. |max1≤k≤n |χ ◦ Fk − χ||p = o(n1/p).
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Proof. We follow the proof of [32, Corollary 2.8]. Using that φ ∈ Lp(Y ), we have

|1{φ≥n1/q}φ|p → 0 by the monotone convergence theorem. Let q > p, then Proposi-

tion (3.37) yields for n→ ∞ that

n−1/p
∣∣max1≤k≤n |χ ◦ Fk − χ|

∣∣
p
≪ n− q−p

pq + |1{φ≥n1/q}φ|p −→ 0.

Remark 3.39. The results displayed in this subsection hold for p ∈ (1, 2) as well

(dropping the regularity on χ in Proposition 3.33). Note that for such a p, the series

in the proof of Proposition 3.32 may not converge for the given η ∈ (0, 1]. In such a

case, we choose a new η′ ∈ (0, η) such that 1+
√
η′ ≤ p in order to apply (3.20) and

prove instead that Pv ∈ Fη′(Y
φ,Rd). This would not be an obstruction because of

the inclusion of the Hölder spaces and the independence of the previous results on

the exponent η.

Remark 3.40. The method adopted in the current subsection requires only the

conditions: (a)
∫
v dµφ = 0, (b) v ∈ L∞, (c) ∥Pv′∥η <∞. Hence, for any observable

v : Y φ → Rd satisfying (a)�(c), we can decompose ψ =
∫ 1

0
v ◦Fs ds = m+χ◦F1−χ,

for some m,χ : Y φ → Rd, m ∈ kerL1. If p ∈ [2,∞], then m ∈ Lp and χ ∈ Lp−1 as

in Proposition 3.33. Write v′ =
∫ φ
0
v du. We get as in (3.26) and (3.27) that

|m|p ≪ |v|∞ + ∥Pv′∥η, |χ|p−1 ≪ |v|∞ + ∥Pv′∥η. (3.36)

For p ∈ [2,∞), we have that |max1≤k≤n |χ ◦Fk−χ||p = o(n1/p) as in Corollary 3.38,

and ∣∣max1≤k≤n |χ ◦ Fk − χ|
∣∣
p
≤ C(|v|∞ + ∥Pv′∥η)n1/p (3.37)

for all n ≥ 1 as in (3.35).

3.3.2 Key estimates

We recall here Rio's inequality [34] which, using ideas of [41], yields useful esti-

mates for the martingale-coboundary decomposition of any v ∈ Fη
0 (Y

φ,Rd). Rio's

inequality is stated from [48].

Proposition 3.41 (Rio's inequality). Let (Xn)n≥1 be a sequence of L2 random

variables adapted to an increasing �ltration (Gn)n≥1. Let q ≥ 1 and de�ne for

1 ≤ i ≤ n

bi,n = maxi≤u≤n |Xi

∑u
j=i E[Xj|Gi]|q.
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There exists a universal Cq > 0 such that

E[max1≤k≤n |
∑k

j=1Xj|2q] ≤ Cq(
∑n

i=1 bi,n)
q,

for all n ≥ 1.

Proposition 3.42. Let p ∈ [2,∞). There exists C > 0 such that

∣∣max1≤k≤n |
∑k−1

j=0 m ◦ Fj|
∣∣
p
≤ C(|v|∞ + ∥Pv′∥η)n

1
2 , (3.38)

and ∣∣max1≤k≤n |
∫ k
0
v ◦ Fs ds|

∣∣
2(p−1)

≤ C(|v|∞ + ∥Pv′∥η)n
1
2 , (3.39)

for all n ≥ 1 and any v : Y φ → Rd satisfying (a)�(c) from Remark 3.40.

Proof. We follow the proof of [32, Corollary 2.10]. Let Kv = |v|∞ + ∥Pv′∥η and let

m ∈ Lp∩kerL1 be from Remark 3.40. By Proposition 2.21, (m◦Fn)n≥0 is an RMDS

and |m|p ≪ Kv from (3.36). By Burkholder's inequality [13],

∣∣max1≤k≤n |
∑k

j=1m ◦ Fn−j|
∣∣
p
≪ |m|pn

1
2 ≪ Kvn

1
2 .

Equation (3.38) follows because mk =
∑n

j=1m ◦ Fn−j −
∑n−k

j=1 m ◦ Fn−j.

Let ψ =
∫ 1

0
v ◦ Fs ds = m + χ ◦ F1 − χ from Remark 3.40, and Xj = ψ ◦ Fn−j

with �ltration Gj = F−1
n−jB, for 1 ≤ j ≤ n. By Proposition 3.35 we have that

E[m ◦ Fn−j|Gi] = E[m|F−1
j−iB] ◦ Fn−j = (Lj−im) ◦ Fn−j+1 = 0, for i < j ≤ n. So,

∑u
j=i E[Xj|Gi] = m ◦ Fn−i + E[χ ◦ Fn+1−u|Gi]− χ ◦ Fn−i.

By (3.36), max1≤i≤u≤n |
∑u

j=i E[Xj|Gi]|p−1 ≪ Kv. Hence, by |Xj|∞ ≤ |ψ|∞ ≤ |v|∞,

max1≤i≤u≤n |Xi

∑u
j=i E[Xj|Gi]|p−1 ≤ |v|∞ max1≤i≤u≤n |

∑u
j=i E[Xj|Gi]|p−1 ≪ K2

v .

De�ning bi,n as in Proposition 3.41, we get max1≤i≤n bi,n ≪ K2
v . By Proposition 3.41

with q = p− 1,

∣∣max1≤k≤n |
∑k

j=1Xj|
∣∣
2q

≤ C
1
2q
q (
∑n

i=1 bi,n)
1
2 ≪ (nmax1≤i≤n bi,n)

1
2 ≪ n

1
2Kv.

Equation (3.39) follows by
∫ k
0
v ◦ Fs ds = ψk =

∑n
j=1Xj −

∑n−k
j=1 Xj.

Corollary 3.43. The limit Σ = limn→∞ n−1
∫
Y φ(
∫ n
0
v ◦ Fs ds)(

∫ n
0
v ◦ Fs ds)T dµφ

exists in Rd×d for any v ∈ Fη
0 (Y

φ,Rd). Moreover, Σ =
∫
Y φ mm

T dµφ.
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Proof. We follow the proof of [32, Corollary 2.12]. Let ψ =
∫ 1

0
v ◦ Fs ds. By Propo-

sition 3.35,
∫ n
0
v ◦ Fs ds = ψn = mn + χ ◦ Fn − χ. Since m ∈ kerL1,∫

Y φ(m ◦ Fi)(mT ◦ Fj) dµφ =
∫
Y φ(m ◦ Fi−j)mT dµφ =

∫
Y φ m(Li−jm

T ) dµφ = 0,

for all integers 0 ≤ j < i. Hence,
∫
Y φ mnm

T
n dµ

φ = n
∫
Y φ mm

T dµφ.

Using that |xxT − yyT | ≤ (|x| + |y|)|x − y| for all x, y ∈ Rd, and the Cauchy-

Schwarz inequality,

∣∣n−1
∫
Y φ ψnψ

T
n dµφ −

∫
Y φ mm

T dµφ
∣∣ = n−1

∣∣∫
Y φ ψnψ

T
n dµφ −

∫
Y φ mnm

T
n dµ

φ
∣∣

≤ n−1|ψnψTn −mnm
T
n |1 ≤ n−1|(|ψn|+ |mn|)|ψn −mn||1

≤ n−1(|ψn|2 + |mn|2)|ψn −mn|2

= n−1(|ψn|2 + |mn|2)|χ ◦ Fn − χ|2.

Since v ∈ Fη
0 (Y

φ,Rd) satis�es (a)�(c) from Remark 3.40, equation (3.38) gives that

|mn|2 ≪ n1/2, and (3.39) yields |ψn|2 ≪ n1/2. By Corollary 3.38, we have that

|χ ◦ Fn − χ|2 = o(n1/2). So,

∣∣n−1
∫
Y φ ψnψ

T
n dµφ −

∫
Y φ mm

T dµφ
∣∣≪ n−1/2∥v∥η|χ ◦ Fn − χ|2 −→ 0.

The latter proves simultaneously that Σ exists and is equal to
∫
Y φ mm

T dµφ.

Remark 3.44. Following the same approach of [32, Corollary 2.13], it is possible

to provide another proof of the WIP for p ≥ 2.

Proposition 3.45. Let p = ∞ and v : Y φ → Rd satisfying (a)�(c) from Re-

mark 3.40. There exist a, C > 0 such that

µφ
(
max
1≤k≤n

|
∫ k
0
v ◦ Fj| ≥ x

)
≤ C exp

{
−ax

2

n

}
,

for all n ≥ 1 and x > 0.

Proof. Let ψ =
∫ 1

0
v ◦ Fs ds. Remark 3.40 yields that ψ = m + χ ◦ F1 − χ, with

m ∈ L∞ ∩ kerL1. Then, (m ◦ Fn)n≥1 is a bounded RMDS by Proposition 2.21, and

we have
∫ n
0
v ◦Fs ds = ψn = mn+χ◦Fn−χ for n ≥ 1. To conclude, reason as in the

proof of Proposition 3.25, replacing Φ̆, m̆, χ̆, f , A with ψ, m, χ, F1, B respectively,

and using estimates (3.36) instead of (3.17).
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3.3.3 Secondary decomposition

For v ∈ Fη
0 (Y

φ,Rd), consider m from (3.25). Let UFv = v ◦ F be the Koopman

operator for F , and Utv = v ◦Ft, t ≥ 0, be the family of Koopman operators relative

to the semi�ow.

Proposition 3.46. (U1L1(mm
T ))(y, u) =

(UFP (m
′m′T )(y) u ∈ [φ(y)− 1, φ(y))

0 u ∈ [0, φ(y)− 1)

Proof. Let (y, u) ∈ Y φ. By Proposition 3.34 and the de�nition of m, if u ∈ [1, φ(y)),

(L1(mm
T ))(y, u) = mmT (y, u− 1) = 0; (3.40)

and if u ∈ [0, 1)

(L1(mm
T ))(y, u) =

∑
j g(yj)mm

T (yj, u− 1 + φ(yj)) = (P (m′m′T ))(y). (3.41)

Let us analyse U1L1(mm
T ). If (y, u) ∈ Y φ is such that u ∈ [0, φ(y) − 1), then

u+ 1 ∈ [1, φ(y)) and by (3.40) we get

(U1L1(mm
T ))(y, u) = (L1(mm

T ))(y, u+ 1) = 0.

If u ∈ [φ(y)− 1, φ(y)), then u+ 1− φ(y) ∈ [0, 1) and (3.41) yields that

(U1L1(mm
T ))(y, u) = (L1(mm

T ))(Fy, u+ 1− φ(y)) = (P (m′m′T ))(Fy),

�nishing the proof.

Recall that Σ =
∫
mmT dµφ and de�ne

v̆ = U1L1(mm
T )− Σ = E[mmT − Σ|F−1

1 B]. (3.42)

Let v̆′(y) =
∫ φ(y)
0

v̆(y, u) du, y ∈ Y .

Proposition 3.47. There exists C > 0 such that

|v̆|∞ ≤ C∥v∥2η and ∥P v̆′∥η ≤ C∥v∥2η,

for all v ∈ Fη
0 (Y

φ,Rd). Furthermore,
∫
Y φ v̆ dµ

φ = 0.

Proof. Since
∫
U1L1(mm

T ) dµφ =
∫
L1(mm

T ) dµφ = Σ, it follows that v̆ has mean 0.

By de�nition of m′, we see that |m′| ≤ |v′| + 2|χ′|∞. Using |v′| ≤ φ|v|∞ and

∥χ′∥η ≪ ∥v∥η from (3.24), we get that |m′| ≪ φ∥v∥η and |m′m′T | ≤ φ2∥v∥2η. By (3.5)

and (3.20) with p = 2,

|P (m′m′T )(y)| ≤
∑

j g(yj)|m′m′T (yj)| ≪
∑

j µ(Yj)(supYj φ
2) ∥v∥2η ≪ ∥v∥2η, (3.43)
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for all y ∈ Y . Moreover, Proposition 3.33 gives that that |m|2 ≪ ∥v∥η. By Propo-

sition 3.46 and (3.43),

|v̆|∞ ≤ |UFP (m′m′T )|∞ +
∣∣∫
Y φ mm

T dµφ
∣∣ ≤ |P (m′m′T )|∞ + |m|22 ≪ ∥v∥2η.

Let us now show the second estimate. Proposition 3.46 yields

v̆′(y) =
∫ φ(y)
0

(UFP (m
′m′T )(y)1{φ(y)−1<u<φ(y)} −Σ) du = (UFP (m

′m′T ))(y)− φ(y)Σ.

The identity PUF = IdL1(Y ) implies that P v̆′ = P (m′m′T ) − (Pφ)Σ. Therefore, to

�nish it su�ces to show that ∥P (m′m′T )∥η ≪ ∥v∥2η and ∥(Pφ)Σ∥η ≪ ∥v∥2η.

Let us focus on (Pφ)Σ. Apply Proposition 3.32 with v ≡ 1 to get that v′ = φ

and ∥Pφ∥η ≪ 1. Hence, ∥(Pφ)Σ∥η = ∥Pφ∥η|Σ| ≪ |m|22 ≪ ∥v∥2η.

Next, let us focus on P (m′m′T ). We know by (3.43) that |P (m′m′T )|∞ ≪ ∥v∥2η.

Let x, y ∈ Yj. By de�nition of m′, equation (3.22) and χ′ ∈ Cη(Y ;Rd), we get

|m′(x)−m′(y)| ≤ |v′(x)− v′(y)|+ |χ′(Fx)− χ′(Fy)|+ |χ′(x)− χ′(y)|

≪ ∥v∥η(supYj φ) dΛ(Fx, Fy)
η + ∥χ′∥ηdΛ(Fx, Fy)η + ∥χ′∥ηdΛ(x, y)η.

By point (b) of Subsection 3.1.1, |m′(x)−m′(y)| ≪ ∥v∥η(supYj φ)dΛ(Fx, Fy)
η. Using

again that |m′| ≤ φ∥v∥η,

|m′(x)m′(x)T −m′(y)m′(y)T | ≤(|m′(x)|+ |m′(y)|)|m′(x)−m′(y)|

≪∥v∥2η(supYj φ
2)dΛ(Fx, Fy)

η.

Fix x, y ∈ Y with preimages xj, yj ∈ Yj under F . By (3.5) and (3.20) with p = 2,

|(P (m′m′T ))(x)− (P (m′m′T ))(y)| ≤
∑

j |g(xj)− g(yj)||(m′m′T )(xj)|

+
∑

j g(yj)|(m′m′T )(xj)− (m′m′T )(yj)|

≪ ∥v∥2η
∑

j µ(Yj)(supYj φ
2) dΛ(Fxj, Fyj)

η

≪ ∥v∥2ηdΛ(x, y)η.

We conclude that ∥P (m′m′T )∥η ≪ ∥v∥2η.

Remark 3.48. In view of Remark 3.40 and Proposition 3.47, we can write

ψ̆ =
∫ 1

0
v̆ ◦ Fs ds = m̆+ χ̆ ◦ F1 − χ̆,

which is the secondary martingale-decomposition of v ∈ Fη
0 (Y

φ,Rd).
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We show now that the Birkho� sum and integral of v̆ are close. For n ≥ 1,

de�ne Skφ =
∑k−1

j=0 φ ◦ F j. For (y, u) ∈ Y φ and t > 0, de�ne the lap number

Nt(y, u) = n ≥ 0 to be the unique integer such that Snφ(y) ≤ t+ u < Sn+1φ(y).

Proposition 3.49. Let p ∈ [2,∞). There exists C > 0 such that∣∣∫ n
0
v̆ ◦ Fs ds−

∑n−1
j=0 v̆ ◦ Fj

∣∣
∞ ≤ C∥v∥2η,

for every n ≥ 1 and v ∈ Fη
0 (Y

φ,Rd).

Proof. De�ne α = UFP (m
′m′T ). Proposition 3.46 gives that (U1L1(mm

T ))(y, u) =

α(y) 1{φ(y)−1≤u<φ(y)} for all (y, u) ∈ Y φ. The integral
∫ n
0
(U1L1(mm

T )) ◦ Fs ds sums

α along an orbit under F , with an error given by∣∣∫ n
0
(U1L1(mm

T ))(Fs(y, u)) ds−
∑Nn−1(y,u)

j=0 α(Fjy)
∣∣ ≤ |α(y)|+|α(FNn(y,u)y)| ≤ 2|α|∞,

(3.44)

for all n ≥ 1 and (y, u) ∈ Y φ.

We �nd that every initial point (y, u) ∈ Y φ enters the strip [φ − 1, φ) exactly

once every lap. Still, the sum
∑n−1

j=0 (U1L1(mm
T ))◦Fj could miss the term α◦FNn−1 ,

giving that for every (y, u) ∈ Y φ and all n ≥ 1,∣∣∑n−1
j=0 (U1L1(mm

T ))(Fj(y, u))−
∑Nn−1(y,u)

j=0 α(Fjy)
∣∣ ≤ |α(FNn−1(y,u)y)| ≤ |α|∞.

(3.45)

Both (3.44) and (3.45) can be restated with in�nity norms, because the estimates

are uniform in (y, u). Combine (3.44) and (3.45), noticing that the two terms nΣ

cancel out:∣∣∫ n
0
v̆ ◦ Fs ds−

∑n−1
j=0 v̆ ◦ Fj

∣∣
∞ =

∣∣∫ n
0
(U1L1(mm

T )) ◦ Fs ds−
∑n−1

j=0 (U1L1(mm
T )) ◦ Fj

∣∣
∞

≤ 3|α|∞ ≤ 3|P (m′m′T )|∞ ≪ ∥v∥2η,

where the last inequality is true by (3.43).

Corollary 3.50. Let p ∈ [2,∞). There exists C > 0 such that∣∣max1≤k≤n |
∑k−1

j=0 v̆ ◦ Fj|
∣∣
2(p−1)

≤ C∥v∥2ηn
1
2 ,

for all n ≥ 1 and v ∈ Fη
0 (Y

φ,Rd).

Proof. By Proposition 3.47 and Remark 3.48, we can apply equation (3.39) to v̆,

getting |max1≤k≤n |
∫ k
0
v̆ ◦ Fj||2(p−1) ≪ (|v̆|∞+ ∥P v̆′∥η)n

1
2 ≪ ∥v∥2ηn

1
2 . The statement

follows by Proposition 3.49.
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Corollary 3.51. Let p = ∞ and v ∈ Fη
0 (Y

φ,R). There exist a, C > 0 such that

µφ
(
max
1≤k≤n

|
∑k−1

j=0 v̆ ◦ Fj| ≥ x
)
≤ C exp

{
−aε

2

n

}
,

for all x > 0 and n ≥ 1.

Proof. By Proposition 3.49, there exists K > 0 such that

max1≤k≤n
∣∣∑k−1

j=0 v̆ ◦ Fj
∣∣ ≤ max1≤k≤n

∣∣∫ k
0
v̆ ◦ Fj

∣∣+K.

Hence,

µφ
(
max
1≤k≤n

|
∑k−1

j=0 v̆ ◦ Fj| ≥ x
)
≤ µφ

(
max
1≤k≤n

|
∫ k
0
v ◦ Fj| ≥ x/2

)
+µφ(K ≥ x/2). (3.46)

The �rst term of the right-hand side of (3.46) is sorted by Propositions 3.45, while

the second term is treated as in (3.25).

3.4 Continuous time rates

Let Tt : Λ → Λ, be a nonuniformly expanding semi�ow of order p ∈ (2,∞] and let

v ∈ Cη0 (Λ,Rd). For t ∈ [0, 1] and n ≥ 1, let Wn(t) = n− 1
2

∫ nt
0
v ◦ Ts ds be as in (3.6),

and let W be a d-dimensional Brownian motion with mean 0 and covariance matrix

Σ as in Theorem 3.10. This section provides the proofs of Theorems 3.11 and

Theorem 3.12, getting rates for W(Wn,W ) when d ≥ 1 and for Π(Wn,W ) when

d = 1.

Let Ft : Y
φ → Y φ be the suspension semi�ow semiconjugated to Tt by the

map πφ : Y
φ → Λ, as described in Subsection 3.1.3. Let w = v ◦ πφ which lies

in Fη2

0 (Y φ,Rd) by Proposition 3.31, and de�ne the sequence of processes Ŵn on

(Y φ, µφ) as Ŵn = Wn ◦ πφ for n ≥ 1. Hence,

Ŵn(t) =
1√
n

∫ nt

0

w ◦ Fs ds, (3.47)

for t ∈ [0, 1]. Since πφ is measure-preserving, we have that (i) Σ =
∫
Y φ mm

T dµφ

by Corollary 3.43, where m is the martingale part of w and (ii) Wn =d Ŵn for all

n ≥ 1, so W(Wn,W ) = W(Ŵn,W ) and Π(Wn,W ) = Π(Ŵn,W ). Henceforth, we

work with w ∈ Fη
0 (Y

φ,Rd) and prove rates for Ŵn.

We recall from Proposition 3.35 that there exist m,χ : Y φ → Rd such that

ψ =
∫ 1

0
w ◦ Fs ds = m+ χ ◦ F1 − χ. (3.48)
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By Proposition 3.33, for p ∈ (2,∞] there exists C > 0 such that

|m|p ≤ C∥w∥η, |χ|p−1 ≤ C∥w∥η; (3.49)

and by Proposition 3.37, for p ∈ (2,∞)∣∣max1≤k≤n |χ ◦ Fk − χ|
∣∣
p
≤ C∥w∥ηn1/p. (3.50)

Notation For n ≥ 1 and g : Y φ → Rd, write gn =
∑n−1

j=0 g ◦ Fj.

3.4.1 Proof of Theorem 3.11

For p ∈ (2,∞) and d ≥ 1, let w ∈ Fη
0 (Y

φ,Rd) and consider its martingale part

m ∈ Lp(Y φ,Rd). De�ne the sequence of processes Xn : [0, 1] → Rd as

Xn(k/n) =
1√
n

k−1∑
j=0

m ◦ Fj, (3.51)

for n ≥ 1, 0 ≤ k ≤ n, and using linear interpolation in [0, 1]. See Remark 3.19 for a

brief comment on the range of p.

Lemma 3.52. Let {ξn}n≥1 be a sequence of identically distributed real random

variables, de�ned on the same probability space. If ξ1 ∈ Lq for some q ∈ [1,∞),

then |max1≤k≤n |ξk||q ≤ n1/q|ξ1|q for all n ≥ 1.

Proof. We have that (max1≤k≤n |ξk|)q = max1≤k≤n |ξk|q ≤
∑n

k=1 |ξk|q. Since all ξk

share the same distribution, E[(max1≤k≤n |ξk|)q] ≤ E[
∑n

k=1 |ξk|q] = nE[|ξ1|q]. The

statement follows.

Recall the processes Ŵn be from (3.47) and Xn be from (3.51).

Lemma 3.53. There exists C > 0 such that W(Ŵn, Xn) ≤ Cn− p−2
2p for all n ≥ 1.

Proof. Let ψ =
∫ 1

0
w ◦ Fs ds. By equation (3.48), ψk = mk + χ ◦ Fk − χ, k ≥ 1, and

Ŵn(t)−Xn(t) = n−1/2(ψ⌊nt⌋/n −m⌊nt⌋/n) +Rn(t) = n−1/2(χ ◦ F⌊nt⌋/n − χ) +Rn(t)

for all t ∈ [0, 1], where Rn(t) = (Ŵn(t)− Ŵn(⌊nt⌋/n))− (Xn(t)−Xn(⌊nt⌋/n)). So,

n
1
2 |Rn(t)| ≤

∣∣∫ nt
⌊nt⌋w ◦ Fs ds

∣∣+ |m ◦ F⌊nt⌋−1| ≤ |w|∞ +max1≤k≤n |m ◦ Fk−1|.

By Lemma 3.52 and (3.49),

n− 1
2

∣∣max1≤k≤n |m ◦ Fk−1|
∣∣
p
≤ n− 1

2
+ 1

p |m|p ≪ n− p−2
2p ∥w∥η.
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Hence,∣∣supt∈[0,1] |Rn(t)|
∣∣
p
≤ n− 1

2 (|w|∞ +
∣∣max1≤k≤n |m ◦ Fk−1|

∣∣
p
) ≪ n− p−2

2p ∥w∥η.

By the estimate on Rn and (3.50),∣∣supt∈[0,1] |Ŵn(t)−Xn(t)|
∣∣
p
≪ n− 1

2

∣∣max1≤k≤n |χ ◦ fk − χ|
∣∣
p
+ n− p−2

2p ≪ n− p−2
2p .

We �nish the proof showing that for any ψ ∈ Lip1,∣∣∫
Y φ ψ(Ŵn) dµ

φ −
∫
Y φ ψ(Xn) dµ

φ
∣∣ ≤ ∣∣supt∈[0,1] |Ŵn(t)−Xn(t)|

∣∣
p
≪ n− p−2

2p .

Proof of Theorem 3.11. Let p ∈ (2, 3), w ∈ Fη
0 (Y

φ,Rd) and let Ŵn be from (3.47).

Using Lemma 3.53, it su�ces to estimate W(Xn,W ).

We claim thatMn =
∑n−1

j=0 m◦Fj, n ≥ 1, satis�es (3.12) on the probability space

(Y φ, µφ). Since L1m = 0, Proposition 2.21 yields that (m ◦ Fn)n≥0 is an RMDS.

It is in Lp by (3.49), and is stationary because Fn is measure-preserving. Since

m ∈ kerL1, we can follow the proof of Proposition 3.16 and get that E[(m ◦Fk)(m ◦

Fℓ)
T |F−1

n B] = 0 for all 0 ≤ k ̸= ℓ ≤ n−1. Using the notation v̆ = E[mmT−Σ|F−1
1 B]

from (3.42), we apply Corollary 3.50 and reason as in the proof of Theorem 3.3 from

Subsection 3.2.2 to prove the claim.

Since Mn satis�es condition (3.12), we can now apply Theorem 3.17 and follow

the proof of Theorem 3.3 in Subsection 3.2.2 to �nish.

3.4.2 Proof of Theorem 3.12 (p = ∞)

Let p = ∞ and w ∈ Fη
0 (Y

φ,R), with martingale part m ∈ L∞(Y φ,R). De�ne the

sequence of processes Yn : [0, 1] → R, n ≥ 1

Yn(k/n) =
1√
n

k∑
j=1

m ◦ Fn−j,

for 1 ≤ k ≤ n, using linear interpolation in [0, 1]. Let h : C[0, 1] → C[0, 1] be the

linear operator (hψ)(t) = ψ(1)− ψ(1− t). Let Ŵn be from (3.47).

Lemma 3.54. There exists C > 0 such that Π(h ◦ Ŵn, Yn) ≤ Cn− 1
2 for all n ≥ 1.

Proof. Let ψ =
∫ 1

0
w ◦ Fs ds. By equation (3.48),

h ◦ Ŵn(t)− Yn(t) = n− 1
2

(∫ n
n−⌊nt⌋w ◦ Fs ds−

∑⌊nt⌋−1
j=1 m ◦ Fn−j

)
+Rn(t)

= n− 1
2

(
ψn − ψn−⌊nt⌋ −

(
mn −mn−⌊nt⌋

))
+Rn(t)

= n− 1
2

(
χ ◦ Fn − χ ◦ Fn−⌊nt⌋

)
+Rn(t)
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for every t ∈ [0, 1], where

Rn(t) = h ◦ (Ŵn(t)− Ŵn(⌊nt⌋/n))− (Yn(t)− Yn(⌊nt⌋/n))

= (Ŵn((1− ⌊nt⌋)/n)− Ŵn(1− t))− (Yn(t)− Yn(⌊nt⌋/n)).

So,

n
1
2 |Rn(t)| ≤

∣∣∫ 1−⌊nt⌋
1−t w ◦ Fs ds

∣∣+ |m ◦ Fn−⌊nt⌋−1| ≤ |w|∞ + |m|∞,

and by (3.49),
∣∣supt∈[0,1] |Rn(t)|

∣∣
∞ ≪ n− 1

2∥w∥η. Hence,∣∣supt∈[0,1] |h ◦ Ŵn(t)− Yn(t)|
∣∣
∞ ≪ n− 1

2 (2|χ|∞ + ∥w∥η) ≪ n− 1
2∥w∥η.

We conclude by (2.2) that

Π(h ◦ Ŵn, Yn) ≤
∣∣supt∈[0,1] |h ◦ Ŵn(t)− Yn(t)|

∣∣
∞ ≪ n− 1

2 .

Lemma 3.55. There exists C > 0 such that Π(Yn,W ) ≤ Cn− 1
4 (log n)

3
4 for all

integers n > 1.

Proof. Let dn = m ◦ Fn for n ≥ 0, which is a stationary RMDS on (Y φ, µφ) with

the σ-algebras (F−1
n B)n≥0 by Proposition 2.21. Equation (3.49) yields that the

sequence dn is bounded. We adopt the same notation of Theorem 3.18, noting that

Yn coincides with M c
n, σ

2 =
∫
Y φ m

2 dµφ, and

Vn(k) = n−1
∑k

j=1 E[m2 ◦ Fn−j|F−1
n−(j−1)B] = n−1

∑k
j=1 E[m2|F−1B] ◦ Fn−j.

Following the proof of Lemma 3.27, to �nish it su�ces to show κn ≪
√
n−1 log n.

Writing v̆ = E[m2|F−1
1 B]− σ2 as in (3.42), we have that

Vn(k)− (k/n)σ2 = n−1
∑k

j=1 v̆ ◦ Fn−j = n−1(v̆n − v̆n−k),

for every n ≥ 1. So, max0≤k≤n |Vn(k) − (k/n)σ2| ≤ 2n−1max1≤k≤n |v̆k|. By Corol-

lary 3.51, there are a, C > 0 such that

µ∆

(
max0≤k≤n |Vn(k)− (k/n)σ2| ≥ ε

)
≤ µ∆

(
max1≤k≤n |v̆k| ≥ nε/2

)
≤ Ce−anε

2
,

for all ε ≥ 0 and n ≥ 1. Hence, we prove κn ≪
√
n−1 log n as in Lemma 3.27.

Proof of Theorem 3.12 (p = ∞). Let w ∈ Fη
0 (Y

φ,Rd) and let Ŵn be from (3.47).

Since Ŵn(0) = 0 for all n ≥ 1, Proposition 3.28 yield

Π(Ŵn,W ) ≪ Π(h ◦ Ŵn,W ) ≤ Π(h ◦ Ŵn, Yn) + Π(Yn,W ).

Conclude by Lemmas 3.54 and 3.55.
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3.4.3 Proof of Theorem 3.12 (p ∈ (2,∞))

In the current subsection, we use the new estimates in Section 3.3 to adapt the

method in [5, Section 4] to the semi�ow case. The following results are proven by

the same techniques of [5]. Let p ∈ (2,∞) and w ∈ Fη
0 (Y

φ,R), with the mar-

tingale part m ∈ Lp(Y φ,R). Consider σ2 =
∫
Y φ m

2 dµφ and de�ne the RMDS

dn = (m◦Fn)/(n1/2σ) with σ-algebras Gn = F−1
n B. Then (dn−j)0≤j≤n with �ltration

(Gn−j)0≤j≤n is a martingale di�erences array. For 0 ≤ k ≤ n, let

Vn(k) =
∑k

j=1 E[d2n−j|Gn−(j−1)].

De�ne now a sequence of processes Xn : [0, 1] → R, n ≥ 1, as

Xn

(
Vn(k)

Vn(n)

)
=

k∑
j=1

dn−j, (3.52)

for 0 ≤ k ≤ n, and linear interpolation in [0, 1]. As stated in [5], the integer

k in (3.52) is a random variable k = kn(t) : Y
φ → {0, . . . , n}, that satis�es the

inequalities Vn(k) ≤ tVn(n) < Vn(k + 1).

Proposition 3.56. There exists C > 0 such that
∣∣supt∈[0,1] |kn(t) − ⌊nt⌋|

∣∣
2(p−1)

≤

Cn
1
2 for all n ≥ 1.

Proof. The proof is carried as [5, Proposition 4.4]. The only fact left to show is that

∣∣max1≤k≤n |Vn(k)− k/n|
∣∣
2(p−1)

≪ n
1
2 . (3.53)

By Corollary 2.14,

Vn(k)−
k

n
=

1

nσ2

k∑
j=1

E[m2 ◦ Fn−j|F−1
n−(j−1)B]−

1

nσ2

k∑
j=1

σ2

=
1

nσ2

k∑
j=1

(
E[m2 − σ2|F−1

1 B] ◦ Fj
)
,

and can prove (3.53) by Corollary 3.50.

Proposition 3.57. For n ≥ 1 and ψ =
∫ 1

0
v ◦ Fs ds, de�ne the new function Zn =

max0≤i,ℓ≤√
n |ψl| ◦ Fi⌊√n⌋.

(a)
∣∣∑b−1

j=a ψ ◦ Fj
∣∣ ≤ Zn((b− a)(

√
n− 1)−1 + 3) for all 0 ≤ a < b ≤ n.

(b) |Zn|2(p−1) ≤ C∥w∥ηn1/4+1/(4(p−1)) for all n ≥ 1.
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Proof. Part (a) is proven as in [5, Proposition 4.6], using ψ in place of v. Part (b)

follows as well, using �nally (3.39) to get
∣∣max1≤k≤n |ψk|

∣∣
2(p−1)

≪ n1/2.

Let h : C[0, 1] → C[0, 1] be the linear operator (hψ)(t) = ψ(1) − ψ(1 − t), and

recall the de�nition of Ŵn from (3.47).

Lemma 3.58. There exists C > 0 such that Π(h◦Ŵn, σXn) ≤ Cn− p−2
4p for all n ≥ 1.

Proof. We follow the proof of [5, Lemma 4.7]. De�ne the piecewise constant process

V ′
n(t) = n−1/2

∑n−k−1
j=n−⌊nt⌋ ψ ◦ Fj, t ∈ [0, 1], where ψ =

∫ 1

0
w ◦ Fs ds = m + χ ◦ F1 −

χ from equation (3.48), and k = kn(t) is the random variable from (3.52). By

equation (3.48),

h ◦ Ŵn(t)− σXn(t) = n− 1
2

(∫ n
n−⌊nt⌋w ◦ Fs ds−

∑k
j=1m ◦ Fn−j

)
+Rn(t)

= n− 1
2 (ψn − ψn−⌊nt⌋ − (mn −mn−k)) +Rn(t)

= n− 1
2 (ψn−k − ψn−⌊nt⌋ + χ ◦ Fn − χ ◦ Fn−k) +Rn(t)

= V ′
n(t) + n− 1

2 (χ ◦ Fn − χ ◦ Fn−k) +Rn(t),

(3.54)

for every t ∈ [0, 1], where
∣∣supt∈[0,1] |Rn(t)|

∣∣
p
≤ n− 1

2

(
|w|∞ +

∣∣max1≤k≤n |m ◦Fk−1|
∣∣
p

)
.

Reasoning as in the proof of Lemma 3.53, we get
∣∣supt∈[0,1] |Rn(t)|

∣∣
p
≪ n− p−2

2p ∥w∥η.

Using (3.50),

n− 1
2

∣∣supt∈[0,1] |χ ◦ Fn − χ ◦ Fn−kn(t)|
∣∣
p
= n− 1

2

∣∣supt∈[0,1] |χ ◦ Fkn(t) − χ|
∣∣
p

= n− 1
2

∣∣max1≤k≤n |χ ◦ Fk − χ|
∣∣
p
≪ n− p−2

2p .

By Propositions 3.56 and 3.57, and by Cauchy-Schwarz,∣∣supt∈[0,1] |V ′(t)|
∣∣
p−1

≤ n− 1
2

∣∣Zn(n− 1
2 supt∈[0,1] |⌊nt⌋ − kn(t)|+ 3)

∣∣
p−1

≤ n− 1
2 |Zn|2(p−1)(n

− 1
2

∣∣supt∈[0,1] |⌊nt⌋ − kn(t)|
∣∣
2(p−1)

+ 3)

≪ n− 1
2 |Zn|2(p−1) ≪ n−( 1

4
− 1

4(p−1)
) = n− 1

4
p−2
p−1 .

Applying these estimates to (3.54), | supt∈[0,1] |h ◦ Ŵn(t) − σXn(t)||p−1 ≪ n− 1
4

p−2
p−1 .

Finish by applying the top inequality of (2.2) with q = p− 1.

We now state [33, Theorem 1] of Kubilius, as done in [5, Theorem 4.2].

Theorem 3.59 (Kubilius). Let δ ∈ [0, 3/4]∪{1}, and let B be a standard Brownian

motion on [0, 1]. There is a constant C > 0 such that Π(Xn, B) ≤ Cλ| log λ| where

λ = λ1 + λ2 and

λ1 = inf0≤ε≤1

{
ε

1
2 +

(∫ (∑n
j=1 |dn−j|2+2δ

1{|dn−j |>ε}
)
dµφ

)1/(3+2δ)}
,

λ2 = inf0≤ε≤1

{
ε+ µφ(|Vn(n)− 1| > ε2)

}
.
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Lemma 3.60. There exists C > 0 such that Π(Xn, B) ≤ Cn− p−2
4p for all n ≥ 1.

Proof. We follow the proof of [5, Lemma 4.3]. Let λ = λ1 + λ2 as in Theorem 3.59.

It su�ces to show that

λ1 ≪ n−r1(p) and λ2 ≪ n− p−1
4p−3 ,

where

r1(p) =


p−2
2p+2

2 < p ≤ 7
2

p−2
4p−5

7
2
< p < 4

p−2
4p−6

p ≥ 4

.

Assuming the claim, we have that λ1, λ2 ≪ n−r1(p), and Theorem 3.59 yieldsΠ(Xn, B) ≪

n−r1(p) log n. The result follows because r1(p) >
p−2
4p

.

Let us prove the claim. Choose δ ∈ [0, 3/4] ∪ {1} greatest such that 2 + 2δ ≤ p.

Reasoning as in [5] by Hölder's inequality, and then Markov's inequality,

σ2+2δ
∫ (∑n

j=1 |dn−j|2+2δ
1{|dn−j |≥ε}

)
dµφ ≤ n−δ|m|2+2δ

p µφ(|m| ≥ εσn1/2)(p−2−2δ)/p

≤ n−δ|m|2+2δ
p

(
|m|pp

εpσpnp/2

)(p−2−2δ)/p

= σ−(p−2−2δ)|m|ppε−(p−2−2δ)n−(p−2)/2.

By (3.49),

λ1 ≪ inf0≤ε≤1

{
ε

1
2 + ε−

p−2−2δ
3+2δ n− p−2

6+4δ

}
≤ 2n− p−2

4p−4δ−2 = 2n−r1(p).

For λ2, we use (3.53) to get by Markov's inequality

µφ(|Vn(n)− 1| > ε2) ≪ ε−4(p−1)n−(p−1).

Hence,

λ2 ≪ inf
0≤ε≤1

{ε+ ε−4(p−1)n−(p−1)} ≤ 2n− p−1
4p−3 .

Proof of Theorem 3.12 (p ∈ (2,∞)). Let w ∈ Fη
0 (Y

φ,Rd) and let Ŵn be from (3.47).

Since Ŵn(0) = 0 for all n ≥ 1, Proposition 3.28 yields Π(Ŵn,W ) ≪ Π(h ◦ Ŵn,W ).

Using that W =d σB, we get

Π(Ŵn,W ) ≪ Π(h ◦ Ŵn, σB) ≪ Π(h ◦ Ŵn, σXn) + Π(σXn, σB).

Conclude by Lemmas 3.58 and 3.60.
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Chapter 4

Nonexistence of a spectral gap in

Hölder spaces

The current chapter displays paper [43] which was published, in collaboration with

Melbourne and Terhesiu, in the Israel Journal of Mathematics. As stated in the

abstract of [43], we show a natural restriction on the smoothness of spaces on which

the transfer operator for a continuous dynamical system has a spectral gap. Such a

space cannot be embedded in a Hölder space with Hölder exponent greater than 1
2

unless it consists entirely of coboundaries.

4.1 Main result

Let (Λ, d) be a bounded metric space with Borel probability measure µ, and let

Tt : Λ → Λ be a measure-preserving semi�ow. We suppose that t → Tt is Lipschitz

a.e. on Λ, that is there exists L > 0 such that d(Ttx, Tsx) ≤ L|t− s| for all t, s ≥ 0

and almost every x ∈ Λ. Let Lt : L1(Λ) → L1(Λ) denote the transfer operator

corresponding to Tt (so
∫
Λ
Ltv w dµ =

∫
Λ
v w ◦ Tt dµ for all v ∈ L1(Λ), w ∈ L∞(Λ),

t > 0). Let v ∈ L∞(Λ) and de�ne vt =
∫ t
0
v ◦ Tr dr for t ≥ 0.

Theorem 4.1. Let η ∈ (1
2
, 1). Suppose that Ltv ∈ Cη(Λ) for all t > 0 and that∫∞

0
∥Ltv∥η dt <∞. Then vt is a coboundary:

vt = χ ◦ Tt − χ for all t ≥ 0, a.e. on Λ

where χ =
∫∞
0
Ltv dt ∈ Cη(Λ). In particular, supt≥0 |vt|∞ <∞.

Here, |g|∞ = ess supΛ |g| and ∥g∥η = |g|∞ + supx ̸=y |g(x)− g(y)|/d(x, y)η.
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Theorem 4.1 implies that any Banach space admitting a spectral gap and em-

bedded in Cη(Λ) for some η > 1
2
is cohomologically trivial. However, for typical

(non)uniformly expanding semi�ows and (non)uniformly hyperbolic �ows, cobound-

aries are known to be exceedingly rare, see for example [15, Section 2.3.3]. Hence,

Theorem 4.1 can be viewed as an �anti-spectral gap� result for such continuous time

dynamical systems.

4.2 Proof of Theorem 4.1

Let v ∈ L∞(Λ), assume Ltv ∈ Cη(Λ) for every t > 0, and
∫∞
0

∥Ltv∥η dt < ∞ where

η ∈ (1
2
, 1). Following Gordin [26] we consider a martingale-coboundary decomposi-

tion. De�ne χ =
∫∞
0
Ltv dt ∈ Cη(Λ), and

vt =

∫ t

0

v ◦ Tr dr, mt = vt − χ ◦ Tt + χ,

for t ≥ 0. Let B denote the Borel σ-algebra on Λ.

Proposition 4.2. (i) t→ mt is C
η a.e. on Λ.

(ii) E(mt|T−1
t B) = 0 for all t ≥ 0.

Proof. (i) For 0 ≤ s ≤ t ≤ 1 and x ∈ Λ,

|ms(x)−mt(x)| ≤ |vs(x)− vt(x)|+ |χ(Tsx)− χ(Ttx)|

≤ |s− t||v|∞ + |χ|η d(Tsx, Ttx)η.

Since t 7→ Tt is a.e. Lipschitz, it follows that t 7→ mt is a.e. C
η.

(ii) Let Utv = v ◦ Tt, and recall that LtUt = I and E(·|T−1
t B) = UtLt. Then

Ltmt = Lt(vt − Utχ+ χ) =
∫ t
0
LtUrv dr − χ+

∫∞
0
LtLrv dr

=
∫ t
0
Lt−rv dr − χ+

∫∞
0
Lt+rv dr

=
∫ t
0
Lrv dr − χ+

∫∞
t
Lrv dr = 0.

Hence E(mt|T−1
t B) = UtLtmt = 0.

Proof. Theorem 4.1 Fix T > 0, and de�ne

MT (t) = mT −mT−t = mt ◦ TT−t, t ∈ [0, T ].
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De�ne the �ltration GT,t = T−1
T−tB. It is immediate to see that MT (t) = mt ◦ TT−t is

GT,t-measurable. For s < t, MT (t)−MT (s) = mT−s −mT−t = mt−s ◦ TT−t, so

E(MT (t)−MT (s)|GT,s) = E(mt−s ◦ TT−t|T−1
T−sB)

= E(mt−s|T−1
t−sB) ◦ TT−t = 0

by Proposition 4.2(ii). Hence MT is a martingale for each T > 0. Next,

|MT (t)|∞ = |mt ◦ TT−t|∞ ≤ |mt|∞ ≤ |vt|∞ + 2|χ|∞ ≤ T |v|∞ + 2|χ|∞.

Hence MT (t), t ∈ [0, T ], is a bounded martingale.

By Proposition 4.2(i), MT has Cη sample paths. Since η > 1
2
, it follows from

general martingale theory that MT ≡ 0 a.e. Taking t = T , we obtain mT = 0 a.e.

Hence vT = χ ◦ Tt − χ a.e. for all T > 0 as required.

For completeness, we include the argument that MT ≡ 0 a.e. We require two

standard properties of the quadratic variation process, written as t 7→ ⟨MT ⟩(t); a

reference for these is [16, Theorem 4.1]. First, ⟨MT ⟩(t) is the limit in probability as

n→ ∞ of

Sn(t) =
n∑
j=1

(MT (jt/n)−MT ((j − 1)t/n))2.

Second (noting that MT (0) = 0),

⟨MT ⟩(t) =MT (t)
2 − 2

∫ t

0

MT dMT ,

where the stochastic integral has expectation zero. In particular, E[⟨MT ⟩] ≡ E[M2
T ].

Since MT has Hölder sample paths with exponent η > 1
2
, we have a.e. that

|Sn(t)| = O(tηn−(2η−1)) → 0 as n→ ∞.

Hence ⟨MT ⟩ ≡ 0 a.e. It follows that E[M2
T ] ≡ 0 and so MT ≡ 0 a.e.
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Chapter 5

Decays in norm of transfer operators

The current chapter displays paper [42] which was published, in collaboration with

Melbourne and Terhesiu, in Studia Mathematica. As stated in the abstract of [42],

we establish here exponential decay in Hölder norm of transfer operators applied

to smooth observables of uniformly and nonuniformly expanding semi�ows with

exponential decay of correlations.

This chapter is organised as follows. In Section 5.1, we recall the setup for

nonuniformly expanding semi�ows with exponential decay of correlations and state

our main result, Theorem 5.2, on decay in norm. In Section 5.2, we prove Theo-

rem 5.2.

5.1 Setup and statement of the main result

In this section, we state our result on Hölder norm decay of transfer operators for

uniformly and nonuniformly expanding semi�ows.

Let (Y, d) be a bounded metric space with Borel probability measure µ and an at

most countable measurable partition {Yj}. Let F : Y → Y be a measure-preserving

transformation such that F restricts to a measure-theoretic bijection from Yj onto

Y for each j. Let g = dµ/(dµ ◦ F ) be the inverse Jacobian of F .

Fix η ∈ (0, 1). Assume that there are constants λ > 1 and C > 0 such that

d(Fy, Fy′) ≥ λd(y, y′) and | log g(y) − log g(y′)| ≤ Cd(Fy, Fy′)η for all y, y′ ∈ Yj,

j ≥ 1. In particular, F is a Gibbs-Markov map as in [2] (see also [1, 3]) with ergodic

(and mixing) invariant measure µ.

Let φ : Y → [2,∞) be a piecewise continuous roof function. We assume that
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there is a constant C > 0 such that

|φ(y)− φ(y′)| ≤ Cd(Fy, Fy′)η (5.1)

for all y, y′ ∈ Yj, j ≥ 1. Also, we assume exponential tails, namely that there exists

δ0 > 0 such that ∑
jµ(Yj)e

δ0|1Yj
φ|∞ <∞. (5.2)

De�ne the suspension Y φ = {(y, u) ∈ Y × [0,∞) : u ∈ [0, φ(y)]}/ ∼ where

(y, φ(y)) ∼ (Fy, 0). The suspension semi�ow Ft : Y
φ → Y φ is given by Ft(y, u) =

(y, u+ t) computed modulo identi�cations. We de�ne the ergodic Ft-invariant prob-

ability measure µφ = (µ× Lebesgue)/φ̄ where φ̄ =
∫
Y
φdµ.

Let Lt : L
1(Y φ) → L1(Y φ) denote the transfer operator corresponding to Ft (so∫

Y φ Ltv w dµ
φ =

∫
Y φ v w ◦ Ft dµφ for all v ∈ L1(Y φ), w ∈ L∞(Y φ), t > 0) and let

P0 : L
1(Y ) → L1(Y ) denote the transfer operator for F . Recall (see for example [2])

that (P0v)(y) =
∑

jg(yj)v(yj) where yj is the unique preimage of y under F |Yj, and

there is a constant C > 0 such that

|g(y)| ≤ Cµ(Yj), |g(y)− g(y′)| ≤ Cµ(Yj)d(Fy, Fy
′)η, (5.3)

for all y, y′ ∈ Yj, j ≥ 1.

Function space on Y φ Let Y φ
j = {(y, u) ∈ Y φ : y ∈ Yj}. Fix η ∈ (0, 1], δ > 0.

For v : Y φ → R, de�ne |v|δ,∞ = sup(y,u)∈Y φ e−δu|v(y, u)| and

∥v∥δ,η = |v|δ,∞ + |v|δ,η, |v|δ,η = sup
j≥1

sup
(y,u),(y′,u)∈Y φ

j , y ̸=y′
e−δu

|v(y, u)− v(y′, u)|
d(y, y′)η

.

Then Fδ,η(Y
φ) consists of observables v : Y φ → R with ∥v∥δ,η <∞.

Next, de�ne ∂uv to be the partial derivative of v with respect to u at points

(y, u) ∈ Y φ with u ∈ (0, φ(y)) and to be the appropriate one-sided partial deriva-

tive when u ∈ {0, φ(y)}. For m ≥ 0, de�ne Fδ,η,m(Y
φ) to consist of observables

v : Y φ → R such that ∂juv ∈ Fδ,η(Y
φ) for j = 0, 1, . . . ,m, with norm ∥v∥δ,η,m =

maxj=0,...,m ∥∂juv∥δ,η.

Given r > 0, we consider the subset {(y, u) ∈ Y × R : u ∈ [r, φ(y) − r]} viewed

as a subset of Y φ. We say that a function v : Y φ → R has good support if there

exists r > 0 such that supp v ⊂ {(y, u) ∈ Y × R : u ∈ [r, φ(y)− r]}.

For functions with good support, ∂uv coincides with the derivative in the �ow

direction ∂tv = limh→0(v ◦ Fh − v)/h.
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Remark 5.1. It is standard to restrict to observables with good support when

considering decay of correlations for semi�ows, see for instance [22, 54].

Let

F0
δ,η,m(Y

φ) = {v ∈ Fδ,η,m(Y
φ) :

∫
Y φv dµ

φ = 0}.

We write Fδ,η(Y
φ) and F0

δ,η(Y
φ) when m = 0.

Function space on Y For v : Y → R, de�ne

∥v∥η = |v|∞ + |v|η, |v|η = sup
j≥1

sup
y,y′∈Yj , y ̸=y′

|v(y)− v(y′)|/d(y, y′)η.

Let Fη(Y ) consist of observables v : Y → R with ∥v∥η <∞.

Dolgopyat estimate De�ne the twisted transfer operators

P̂0(s) : L
1(Y ) → L1(Y ), P̂0(s)v = P0(e

−sφv).

We assume that there exists γ ∈ (0, 1), ε > 0, m0 ≥ 0, A,D > 0 such that

∥P̂0(s)
n∥Fη(Y )7→Fη(Y ) ≤ |b|m0γn (5.4)

for all s = a+ ib ∈ C with |a| < ε, |b| ≥ D and all n ≥ A log |b|. Such an assumption

holds in the settings of [6, 7, 9, 21].

Now we can state our main result on norm decay for Lt.

Theorem 5.2. Under these assumptions, there exists ε > 0, m ≥ 1, C > 0 such

that

∥Ltv∥δ,η,1 ≤ Ce−εt∥v∥δ,η,m for all t > 0

for all v ∈ F0
δ,η,m(Y

φ) with good support.

Remark 5.3. Since the norm applied to v is stronger than the norm applied to

Ltv, Theorem 5.2 does not imply a spectral gap for Lt. We note that the norm on

Fδ,η,1(Y
φ) gives no Hölder control in the �ow direction when passing through points

of the form (y, φ(y)). This lack of control is a barrier to molli�cation arguments of

the type usually used to pass from smooth observables to Hölder observables. In

fact, such arguments are doomed to fail at the operator level by [43, Theorem 1.1]

(Theorem 4.1 in this thesis) when η > 1
2
and hence seem unlikely for any η.
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Remark 5.4. Usually, we can take m0 ∈ (0, 1) in (5.4) in which case m = 3 su�ces

in Theorem 5.2.

There are numerous simpli�cations when {Yj} is a �nite partition. In particular,

conditions (5.1) and (5.2) are redundant and we can take δ = 0.

Remark 5.5. At �rst glance, Theorem 5.2 has some similarities with [14, The-

orem 1]. In particular, we mention formula (2.4) therein which takes the form

∥Ptµ∥A ≤ Cℓe
−ℓt∥Zµ∥B where Z = ∂t. However, ∥ ∥A corresponds to a �weak� norm

which would just be the L∞ norm in our setting. Moreover, the hypothesis in [14]

that the operators Tt : B → B (Lt : Fδ,η,1(Y
φ) → Fδ,η,1(Y

φ) in our notation) are

bounded looks to be unveri�able in our setting even for �xed t. On the other hand,

the expansion in equation (2.3) of [14] is beyond our methods.

Remark 5.6. Numerous (non)uniformly hyperbolic �ows are modelled (after induc-

ing and quotienting along stable leaves) by �Gibbs-Markov semi�ows� Ft : Y
φ → Y φ

of the type considered here with the exponential tail condition (5.2). These include

basic sets for Axiom A �ows, Lorentz gases with �nite horizon, and Lorenz attrac-

tors (see for instance [39, Section 1.1]). Whenever the Dolgopyat estimate (5.4) is

veri�ed in such examples, as in [6, 7, 9, 21], Theorem 5.2 guarantees exponential

decay for the norm of the transfer operator for the corresponding Gibbs-Markov

semi�ow.

5.2 Proof of Theorem 5.2

Our proof of norm decay is broken into three parts. In Subsection 5.2.1, we recall a

continuous-time operator renewal equation [44] which enables estimates of Laplace

transforms of transfer operators at the level of Y . In Subsection 5.2.2, we show how

to pass to estimates of Laplace transforms of Lt. In Subsection 5.2.3, we invert the

Laplace transform to obtain norm decay of Lt.

5.2.1 Operator renewal equation

Let Ỹ = Y × [0, 1] and de�ne

F̃ : Ỹ → Ỹ , F̃ (y, u) = (Fy, u),
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with transfer operator P̃ : L1(Ỹ ) → L1(Ỹ ). Also, de�ne

φ̃ : Ỹ → [2,∞), φ̃(y, u) = φ(y).

De�ne the twisted transfer operators

P̂ (s) : L1(Ỹ ) → L1(Ỹ ), P̂ (s)v = P̃ (e−sφ̃v).

Let Ỹj = Yj × [0, 1]. For v : Ỹ → R, de�ne

∥v∥η = |v|∞ + |v|η, |v|η = sup
j≥1

sup
(y,u),(y′,u)∈Ỹj , y ̸=y′

|v(y, u)− v(y′, u)|/d(y, y′)η.

Let Fη(Ỹ ) consist of observables v : Ỹ → R with ∥v∥η <∞. Let

F0
η (Ỹ ) = {v ∈ Fη(Ỹ ) :

∫
Ỹ
v dµ̃ = 0}

where µ̃ = µ× Leb[0,1].

Lemma 5.7. Write s = a+ ib ∈ C. There exists ε > 0, m1 ≥ 0, C > 0 such that

(a) s 7→ (I − P̂ (s))−1 : F0
η (Ỹ ) → Fη(Ỹ ) is analytic on {|a| < ε};

(b) s 7→ (I−P̂ (s))−1 : Fη(Ỹ ) → Fη(Ỹ ) is analytic on {|a| < ε} except for a simple

pole at s = 0;

(c) ∥(I − P̂ (s))−1∥Fη(Ỹ )7→Fη(Ỹ ) ≤ C|b|m1 for |a| ≤ ε, |b| ≥ 1.

Proof. It su�ces to verify these properties for Z(s) = (I − P̂0(s))
−1 on Y . They

immediately transfer to (I − P̂ (s))−1 on Ỹ since (P̂ v)(y, u) = (P̂0v
u)(y) where

vu(y) = v(y, u).

The arguments for passing from (5.4) to the desired properties for Z(s) are stan-

dard. For completeness, we sketch these details now recalling arguments from [6].

De�ne Fη(Y ) with norm ∥ ∥η by restricting to u = 0 (this coincides with the usual

Hölder space on Y ). Let A, D, ε and m0 be as in (5.4). Increase A and D so that

D > 1 and |b|m0γ[A log |b|] ≤ 1
2
for |b| ≥ D. Suppose that |a| ≤ ε, |b| ≥ D. Then

∥P̂0(s)
[A log |b|]∥η ≤ |b|m0γ[A log |b|] ≤ 1

2
and ∥(I − P̂0(s)

[A log |b|])−1∥η ≤ 2.

As in [6, Proposition 2.5], we can shrink ε so that s → P̂0(s) is continuous on

Fη(Y ) for |a| ≤ ε. The simple eigenvalue 1 for P̂0(0) = P0 extends to a continuous

family of simple eigenvalues λ(s) for |s| ≤ ε. We can choose ε so that 1
2
< λ(a) < 2
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for |a| ≤ ε. By [6, Corollary 2.8], ∥P̂0(s)
n∥η ≪ |b|λ(a)n ≤ |b|2n for all n ≥ 1, |a| ≤ ε,

|b| ≥ D. Hence

∥Z(s)∥η ≤
(
1 + ∥P̂0(s)∥η + · · ·+ ∥P̂0(s)

[A log |b|]−1∥η
)
∥(I − P̂0(s)

[A log |b|])−1∥η

≪ (log |b|) |b| 2A log |b| ≤ |b|m1 ,

with m1 = 1+A log 2. This proves analyticity on the region {|a| < ε, |b| > D} with

the desired estimates for property (c) on this region.

For |a| ≤ ε, |b| ≤ D, we recall arguments from the proof of [6, Lemma 2.22]

(where P̂0(s) is denoted Qs). For ε su�ciently small, the part of spectrum of P̂0(s)

that is close to 1 consists only of isolated eigenvalues. Also, the spectral radius

of P̂0(s) is at most λ(a) and λ(a) < 1 for a ∈ [0, ε], so s 7→ Z(s) is analytic on

{0 < a < ε}.

Suppose that P̂0(ib)v = v for some v ∈ Fη(Y ), b ̸= 0. Choose q ≥ 1 such that

q|b| > D. Since P̂0(s) is the L2 adjoint of v 7→ esφv ◦ F , we have eibφv ◦ F = v.

Hence eiqbφvq ◦ F = vq and so P̂0(iqb)v
q = vq. But ∥Z(iqb)vq∥η < ∞, so v = 0.

Hence 1 ̸∈ spec P̂0(ib) for all b ̸= 0. It follows that for all b ̸= 0 there exists an open

set Ub ⊂ C containing ib such that 1 ̸∈ spec P̂0(s) for all s ∈ Ub, and so s 7→ Z(s) is

analytic on Ub.

Next, we recall that for s near to zero, λ(s) = 1 + cs + O(s2) where c < 0.

Hence s 7→ Z(s) has a simple pole at zero. It follows that there exists ε > 0

such that s 7→ Z(s) is analytic on {|a| < ε, |b| < 2D} except for a simple pole at

s = 0. Combining this with the estimates on {|a| < ε, |b| ≥ D} we have proved

properties (b) and (c) for Z(s).

Finally, the spectral projection π corresponding to the eigenvalue λ(0)= 1 for

P̂0(0) = P is given by πv =
∫
Y
v dµ. Hence the pole disappears on restriction to

observables of mean zero, proving property (a) for Z(s).

Next de�ne

Ttv = 1ỸLt(1Ỹ v), Utv = 1ỸLt(1{φ̃>t}v)

and

T̂ (s) =

∫ ∞

0

e−stTt dt, Û(s) =

∫ ∞

0

e−stUt dt,

By [44, Theorem 3.3], we have the operator renewal equation

T̂ = Û(I − P̂ )−1.
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Proposition 5.8. There exists ε > 0, C > 0 such that s 7→ Û(s) : Fη(Ỹ ) → Fη(Ỹ )

is analytic on {|a| < ε} and ∥Û(s)∥Fη(Ỹ )7→Fη(Ỹ ) ≤ C|s| for |a| ≤ ε.

Proof. By [44, Proposition 3.4],

(Utv)(y, u) =

v(y, u− t)1[t,1](u) 0 ≤ t ≤ 1

(P̃ vt)(y, u) t > 1

where vt(y, u) = 1{t<φ(y)<t+1−u}v(y, u− t+φ(y)). Hence Û(s) = Û1(s)+ Û2(s) where

(Û1(s)v)(y, u) =

∫ u

0

e−stv(y, u− t) dt, Û2(s)v =

∫ ∞

1

e−stP̃ vt dt.

It is clear that ∥Û1(s)v∥η ≤ eε∥v∥η. We focus attention on the second term

(Û2(s)v)(y, u) =
∑

jg(yj)

∫ ∞

1

e−stvt(yj, u) dt =
∑

jg(yj)V̂ (s)(yj, u),

where V̂ (s)(y, u) =
∫ 1

u
es(t−u−φ)v(y, t) dt. Clearly, |1Yj V̂ (s)|∞ ≤ eε|1Yj

φ|∞|v|∞. Also,

V̂ (s)(y, u)− V̂ (s)(y′, u) = I + J,

where

I =

∫ 1

u

(es(t−u−φ(y)) − es(t−u−φ(y
′)))v(y, t) dt,

J =

∫ 1

u

es(t−u−φ(y
′))(v(y, t)− v(y′, t)) dt.

For y, y′ ∈ Yj,

|I| ≤ |v|∞
∫ 1

u

eε(|1Yj
φ|∞+u−t)|s||φ(y)− φ(y′)| dt≪ |s||v|∞ eε|1Yj

φ|∞d(Fy, Fy′)η

by (5.1), and

|J | ≤
∫ 1

u

eε(|1Yj
φ|∞+u−t)|v(y, t)− v(y′, t)| dt ≤ eε|1Yj

φ|∞|v|η d(y, y′)η.

Hence |V̂ (s)(y, u)− V̂ (s)(y′, u)|η ≪ |s|eε|1Yj
φ|∞∥v∥η d(Fy, Fy′)η.

It follows from the estimates for 1Yj V̂ (s) together with (5.3) that

∥Û2(s)v∥η ≪
∑

j|s|µ(Yj)e
ε|1Yj

φ|∞∥v∥η.

By (5.2), ∥Û2(s)v∥η ≪ |s|∥v∥η for ε su�ciently small. Hence, we conclude that

∥Û(s)v∥η ≪ |s|∥v∥η.
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5.2.2 From T̂ on Ỹ to L̂ on Y φ

Lemma 5.7 and Proposition 5.8 yield analyticity and estimates for T̂ = Û(I − P̂ )−1

on Ỹ . In this subsection, we show how these properties are inherited by L̂(s) =∫∞
0
e−stLt dt on Y

φ. Recall that Ỹ = Y × [0, 1] which we view as a subset of Y φ.

Remark 5.9. The approach in this subsection is similar to that in [12, Section 5]

but there are some important di�erences. The rationale behind the two step decom-

position in Propositions 5.10 and 5.11 below is that the discreteness of the decompo-

sition in Proposition 5.10 simpli�es many formulas signi�cantly. In particular, the

previously problematic term Et in [12] becomes elementary (and vanishes for large

t when φ is bounded). The decomposition in Proposition 5.11 remains continuous

to simplify the estimates in Proposition 5.14.

Since the setting in [12] is di�erent (in�nite ergodic theory, reinducing) we keep

the exposition here self-contained even where the estimates coincide with those

in [12].

De�ne

An : L1(Ỹ ) → L1(Y φ), (Anv)(y, u) = 1{n≤u<n+1}(Lnv)(y, u), n ≥ 0,

Et : L
1(Y φ) → L1(Y φ), (Etv)(y, u) = 1{[t]+1≤u≤φ(y)}(Ltv)(y, u), t > 0.

Proposition 5.10. Lt =

[t]∑
j=0

Aj1ỸLt−j + Et for t > 0.

Proof. For y ∈ Y , u ∈ (0, φ(y)),

(Ltv)(y, u) =

[t]∑
j=0

1{j≤u<j+1}(Ltv)(y, u) + 1{[t]+1≤u≤φ(y)}(Ltv)(y, u)

=

[t]∑
j=0

(AjLt−jv)(y, u) + (Etv)(y, u).

Now use that An = An1Ỹ .

Next, de�ne

Bt : L
1(Y φ) → L1(Ỹ ), Btv = 1ỸLt(1∆tv),

Gt : L
1(Y φ) → L1(Ỹ ), Gtv = Bt(ω(t)v),

Ht : L
1(Y φ) → L1(Ỹ ), Htv = 1ỸLt(1∆′

t
v),
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for t > 0, where

∆t = {(y, u) ∈ Y φ : φ(y)− t ≤ u < φ(y)− t+ 1}

∆′
t = {(y, u) ∈ Y φ : u < φ(y)− t}, ω(t)(y, u) = φ(y)− u− t+ 1.

Proposition 5.11. 1ỸLt =
∫ t
0
Tt−τBτ dτ +Gt +Ht for t > 0.

Proof. Let y ∈ Y , u ∈ [0, φ(y)]. Then∫ t

0

1∆τ (y, u) dτ =

∫ t

0

1{φ(y)−u≤τ≤φ(y)−u+1} dτ

= 1{t≥φ(y)−u+1} + 1{φ(y)−u≤t<φ(y)−u+1}(t− φ(y) + u)

= 1− 1{t<φ(y)−u+1} + 1{φ(y)−u≤t<φ(y)−u+1}(t− φ(y) + u)

= 1− 1∆′
t
(y, u) + 1∆t(y, u)(t− φ(y) + u− 1).

Hence
∫ t
0
1∆τ dτ = 1− 1∆tω(t)− 1∆′

t
. It follows that∫ t

0

Tt−τBτv dτ = 1Ỹ

∫ t

0

Lt−τ1ỸBτv dτ = 1Ỹ

∫ t

0

Lt−τBτv dτ

= 1Ỹ

∫ t

0

Lt−τLτ (1∆τv) dτ = 1ỸLt

(∫ t

0

1∆τv dτ
)

= 1ỸLtv −Gtv −Htv

as required.

We have already de�ned the Laplace transforms L̂(s) and T̂ (s) for s = a + ib

with a > 0. Similarly, de�ne

B̂(s) =

∫ ∞

0

e−stBt dt, Ê(s) =

∫ ∞

0

e−stEt dt,

Ĝ(s) =

∫ ∞

0

e−stGt dt, Ĥ(s) =

∫ ∞

0

e−stHt dt.

Also, we de�ne the discrete transform Â(s) =
∞∑
n=0

e−snAn.

Corollary 5.12. L̂(s) = Â(s)T̂ (s)B̂(s) + Â(s)Ĝ(s) + Â(s)Ĥ(s) + Ê(s) for a > 0.

Proof. By Proposition 5.10,

L̂(s)− Ê(s) =

∫ ∞

0

e−st
[t]∑
j=0

Aj1ỸLt−j dt =
∞∑
j=0

e−sjAj1Ỹ

∫ ∞

j

e−s(t−j)Lt−j dt

= Â(s)1Ỹ

∫ ∞

0

e−stLt dt = Â(s)1Ỹ L̂(s).

Hence L̂ = Â1Ỹ L̂+ Ê. In addition, by Proposition 5.11, 1Ỹ L̂ = T̂ B̂ + Ĝ+ Ĥ.
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Proposition 5.13. Let δ > ε > 0. Then there is a constant C > 0 such that

(a) ∥Â(s)∥Fη(Ỹ )→Fδ,η(Y φ) ≤ 1,

(b) ∥Ê(s)∥Fδ,η(Y φ)→Fδ,η(Y φ) ≤ C,

(c) ∥Ĥ(s)∥Fδ,η(Y φ)→Fη(Ỹ ) ≤ eδ,

for |a| ≤ ε.

Proof. (a) Let v ∈ Fη(Ỹ ). Let (y, u), (y′, u) ∈ Y φ
j , j ≥ 1. Since (Anv)(y, u) =

1{n≤u<n+1}v(y, u− n),

(Â(s)v)(y, u) =
∞∑
n=0

e−sn1{n≤u<n+1}v(y, u− n) = e−s[u]v(y, u− [u]).

Hence

|(Â(s)v)(y, u)| ≤ eεu|v|∞, |(Â(s)v)(y, u)− (Â(s)v)(y′, u)| ≤ eεu|v|η d(y, y′)η.

That is, |Â(s)v|ε,∞ ≤ |v|∞, |Â(s)v|ε,η ≤ |v|η. Hence ∥Â(s)v∥δ,η ≤ ∥Â(s)v∥ε,η ≤ ∥v∥η.

(b) We take C = 1/(δ − ε). Let v ∈ Fδ,η(Y
φ). Let (y, u), (y′, u) ∈ Y φ

j , j ≥ 1. Note

that (Etv)(y, u) = 1{[t]+1≤u}v(y, u− t), so

(Ê(s)v)(y, u) =

∫ ∞

0

e−st1{[t]+1≤u}v(y, u− t) dt.

Hence

|(Ê(s)v)(y, u)| ≤
∫ ∞

0

eεt|v|δ,∞ eδ(u−t) dt = C|v|δ,∞ eδu,

and

|(Ê(s)v)(y, u)− (Ê(s)v)(y′, u)| ≤
∫ ∞

0

eεt|v|δ,η d(y, y′)ηeδ(u−t) dt

= Ceδu|v|δ,η d(y, y′)η.

That is, |Ê(s)v|δ,∞ ≤ |v|δ,∞ and |Ê(s)v|δ,η ≤ |v|δ,η.

(c) Let v ∈ Fε,η(Y
φ). Let (y, u), (y′, u) ∈ Ỹj, j ≥ 1. Then (Htv)(y, u) = 1{t<u}v(y, u−

t) and (Ĥ(s)v)(y, u) =
∫ u
0
e−stv(y, u− t) dt. Hence,

|Ĥ(s)v|∞ ≤ eδ|v|δ,∞,

|(Ĥ(s)v)(y, u)− (Ĥ(s)v)(y′, u)| ≤ eδ|v|δ,η d(y, y′)η.

The result follows.
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Proposition 5.14. There exists δ > ε > 0, C > 0 such that

∥B̂(s)∥Fδ,η(Y φ)→Fη(Ỹ ) ≤ C|s| and ∥Ĝ(s)∥Fδ,η(Y φ)→Fη(Ỹ ) ≤ C|s|

for |a| ≤ ε.

Proof. Let v ∈ L1(Y φ), w ∈ L∞(Ỹ ). Using that Ft(y, u) = (Fy, u + t − φ(y)) for

(y, u) ∈ ∆t,∫
Ỹ

Btv w dµ̃ = φ̄

∫
Y φ

Lt(1∆tv)w dµ
φ = φ̄

∫
Y φ

1∆tv w ◦ Ft dµφ

=

∫
Y

∫ φ(y)

0

1{0≤u+t−φ(y)<1}v(y, u)w(Fy, u+ t− φ) du dµ

=

∫
Y

∫ t

t−φ(y)
1{0≤u<1}v(y, u+ φ(y)− t)w(Fy, u) du dµ

=

∫
Ỹ

vtw ◦ F̃ dµ̃ =

∫
Ỹ

P̃ vtw dµ̃

where vt(y, u) = 1{0<u+φ(y)−t<φ(y)}v(y, u+ φ(y)− t).

Hence Btv = P̃ vt and it follows immediately that Gtv = P̃ (ω(t)v)t. But

(ω(t)v)t(y, u) = 1{0<u+φ(y)−t<φ(y)}(ω(t)v)(y, u+ φ(y)− t) = (1− u)vt(y, u),

so (Gtv)(y, u) = (1− u)(Btv)(y, u).

Next, B̂(s)v = P̃ V̂ (s) where

V̂ (s)(y, u) =

∫ ∞

0

e−stvt(y, u) dt =

∫ u+φ(y)

u

e−stv(y, u+ φ(y)− t) dt

=

∫ φ(y)

0

e−s(φ(y)+u−t)v(y, t) dt.

It is immediate that

(Ĝ(s)v)(y, u) = (1− u)(B̂(s)v)(y, u). (5.5)

Suppose that δ > ε > 0 are �xed. Let v ∈ Fδ,η(Y
φ). Let (y, u), (y′, u) ∈ Ỹj,

j ≥ 1. Then

|V̂ (s)(y, u)| ≤
∫ φ(y)

0

e−a (φ(y)+u−t)|v|δ,∞ eδt dt≪ eδφ(y)|v|δ,∞

and so |1Yj V̂ (s)|∞ ≪ eδ|1Yj
φ|∞ |v|δ,∞.

Next, suppose without loss that φ(y′) ≤ φ(y). Then

V̂ (s)(y, u)− V̂ (s)(y′, u) = J1 + J2 + J3
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where

J1 =

∫ φ(y)

0

(e−s(φ(y)+u−t) − e−s(φ(y
′)+u−t))v(y, t) dt,

J2 =

∫ φ(y)

0

e−s(φ(y
′)+u−t)(v(y, t)− v(y′, t)) dt,

J3 =

∫ φ(y)

φ(y′)

e−s(φ(y
′)+u−t)v(y′, t) dt.

For notational convenience we suppose that a ∈ (−ε, 0) since the range a ≥ 0 is

simpler. Using (5.1),

|J1| ≤
∫ φ(y)

0

eε(|1Yj
φ|∞+1−t)|s||φ(y)− φ(y′)||v|δ,∞ eδt dt

≪ |s|φ(y)eδ|1Yj
φ|∞ d(Fy, Fy′)η|v|δ,∞ ≪ |s|e2δ|1Yj

φ|∞ d(Fy, Fy′)η|v|δ,∞,

|J2| ≤
∫ φ(y)

0

eε(|1Yj
φ|∞+1−t)|v|δ,η eδtd(y, y′)η dt≪ eδ|1Yj

φ|∞ d(y, y′)η|v|δ,η,

|J3| ≤
∫ φ(y)

φ(y′)

eε(|1Yj
φ|∞+1−t)|v|δ,∞ eδt dt≪ e2δ|1Yj

φ|∞|v|δ,∞ d(Fy, Fy′)η.

Hence

|V̂ (s)(y, u)− V̂ (s)(y, u)| ≪ |s|e2δ|1Yj
φ|∞∥v∥δ,η d(Fy, Fy′)η.

Now, for (y, u) ∈ Ỹ ,

(B̂(s)v)(y, u) = (P̃ V̂ (s))(y, u) =
∑

jg(yj)V̂ (s)(yj, u),

where yj is the unique preimage of y under F |Yj. It follows from the estimates for

V̂ (s) together with (5.3) that

∥B̂(s)v∥η ≪ |s|
∑

jµ(Yj)e
2δ|1Yj

φ|∞∥v∥δ,η.

Shrinking δ, the desired estimate for B̂ follows from (5.2). Finally, the estimate for

Ĝ follows from (5.5).

Proposition 5.15.
∫
Ỹ
B̂(0)v dµ̃ = φ̄

∫
Y φ v dµ

φ for v ∈ L1(Y φ).

Proof. By the de�nition of B̂,∫
Ỹ

B̂(0)v dµ̃ =

∫
Ỹ

∫ ∞

0

Lt(1∆tv) dt dµ̃ = φ̄

∫ ∞

0

∫
Y φ

Lt(1∆tv) dµ
φ dt

= φ̄

∫ ∞

0

∫
Y φ

1∆tv dµ
φ dt = φ̄

∫
Y φ

∫ ∞

0

1{φ−u<t<φ−u+1}v dt dµ
φ

= φ̄

∫
Y φ

v dµφ,

as required.
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Lemma 5.16. Write s = a + ib ∈ C. There exists ε > 0, δ > 0, m2 ≥ 0, C > 0

such that

(a) s 7→ L̂(s) : F0
δ,η(Y

φ) → Fδ,η(Y
φ) is analytic on {|a| < ε};

(b) s 7→ L̂(s) : Fδ,η(Y
φ) → Fδ,η(Y

φ) is analytic on {|a| < ε} except for a simple

pole at s = 0;

(c) ∥L̂(s)v∥δ,η ≤ C|b|m2∥v∥δ,η for |a| ≤ ε, |b| ≥ 1, v ∈ Fδ,η(Y
φ).

Proof. Recall that

L̂ = ÂT̂ B̂ + ÂĜ+ ÂĤ + Ê, T̂ = Û(I − P̂ )−1

where Û , Â, B̂, Ĝ, Ĥ and Ê are analytic by Propositions 5.8, 5.13 and 5.14.

Hence part (b) follows immediately from Lemma 5.7(b). Also, part (c) follows

using Lemma 5.7(c).

By Proposition 5.15, B̂(0)(F0
δ,η(Y

φ)) ⊂ F0
η (Ỹ ). Hence the simple pole at s = 0

for (I − P̂ )−1B̂ disappears on restriction to F0
δ,η(Y

φ) by Lemma 5.7(a). This proves

part (a).

5.2.3 Moving the contour of integration

Proposition 5.17. Let m ≥ 1. Let v ∈ Fδ,η,m(Y
φ) with good support. Then

L̂(s)v =
∑m−1

j=0 (−1)js−(j+1)∂jt v + (−1)ms−mL̂(s)∂mt v for a > 0.

Proof. Recall that supp v ⊂ {(y, u) ∈ Y φ : u ∈ [r, φ(y) − r]} for some r > 0. For

h ∈ [0, r], we can de�ne (Ψhv)(y, u) = v(y, u− h) and then (Ψhv) ◦ Fh = v.

Let w ∈ L∞(Y φ) and write ρv,w(t) =
∫
Y φ v wt dµ

φ where wt = w ◦ Ft. Then for

h ∈ [0, r],

ρv,w(t+ h) =

∫
Y φ

v wt ◦ Fh dµφ =

∫
Y φ

(Ψhv) ◦ Fhwt ◦ Fh dµφ =

∫
Y φ

Ψhv wt dµ
φ.

Hence h−1(ρv,w(t+ h)− ρv,w(t)) =
∫
Y φ h

−1(Ψhv − v)wt dµ
φ so

ρ′v,w(t) = −
∫
Y φ

∂tv wt dµ
φ = −

∫
Y φ

∂tv w ◦ Ft dµφ = −ρ∂tv,w(t).

Inductively, ρ
(j)
v,w(t) = (−1)jρ∂jt v,w

(t).
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Now
∫
Y φ L̂(s)v w dµ

φ =
∫∞
0
e−st

∫
Y φ Ltv w dµ

φ dt =
∫∞
0
e−stρv,w(t) dt, so repeat-

edly integrating by parts,∫
Y φ

L̂(s)v w dµφ =
m−1∑
j=0

s−(j+1)ρ(j)v,w(0) + s−m
∫ ∞

0

e−stρ(m)
v,w (t) dt

=
m−1∑
j=0

(−1)js−(j+1)ρ∂jt v,w
(0) + (−1)ms−m

∫ ∞

0

e−stρ∂mt v,w(t) dt

=

∫
Y φ

m−1∑
j=0

(−1)js−(j+1)∂jt v w dµ
φ + (−1)ms−m

∫ ∞

0

e−stρ∂mt v,w(t) dt.

Finally,
∫∞
0
e−stρ∂mt v,w(t) dt =

∫
Y φ L̂(s)∂

m
t v w dµ

φ and the result follows since w ∈

L∞(Y φ) is arbitrary.

We can now estimate ∥Ltv∥δ,η.

Corollary 5.18. Under the assumptions of Theorem 5.2, there exists ε > 0, m3 ≥ 1,

C > 0 such that

∥Ltv∥δ,η ≤ Ce−εt∥v∥δ,η,m3 for all t > 0

for all v ∈ F0
δ,η,m3

(Y φ) with good support.

Proof. Let m3 = m2 + 2. By Lemma 5.16(a), L̂(s) : F0
δ,η,m3

(Y φ) → Fδ,η(Y
φ) is

analytic for |a| ≤ ε. The alternative expression in Proposition 5.17 is also analytic

on this region (the apparent singularity at s = 0 is removable by the equality with

the analytic function L̂). Hence we can move the contour of integration to s = −ε+ib

when computing the inverse Laplace transform, to obtain

Ltv =

∫ ∞

−∞
est
(m3−1∑

j=0

(−1)js−(j+1)∂jt v + (−1)m3s−m3L̂(s)∂m3
t v
)
db

= e−εt
m3−1∑
j=0

(−1)j∂jt v

∫ ∞

−∞
eibts−(j+1) db

+ (−1)m3e−εt
∫ ∞

−∞
eibts−m3L̂(s)∂m3

t v db.

The �nal term is estimated using Lemma 5.16(b,c):∥∥∥∫ ∞

−∞
eibts−m3L̂(s)∂m3

t v db
∥∥∥
δ,η

≪
∫ ∞

−∞
(1 + |b|)−(m2+2)(1 + |b|)m2∥∂m3

t v∥δ,η db≪ ∥v∥δ,η,m3 .

Clearly, the integrals
∫∞
−∞ eibts−(j+1) db converge absolutely for j ≥ 1, while the

integral for j = 0 converges as an improper Riemann integral. Hence altogether we

obtain that ∥Ltv∥δ,η ≪ e−εt∥v∥δ,η,m3 .
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For the proof of Theorem 5.2, it remains to estimate ∥∂uLtv∥δ,η. Recall that the

transfer operator P0 for F has weight function g. We have the pointwise formula

(P k
0 v)(y) =

∑
Fky′=y gk(y

′)v(y′) where gk = g . . . g ◦ F k−1. Let φk =
∑k−1

j=0 φ ◦ F j.

Proposition 5.19. Let v ∈ L1(Y φ). Then for all t > 0, (y, u) ∈ Y φ,

(Ltv)(y, u) =

[t/2]∑
k=0

∑
Fky′=y

gk(y
′)1{0≤u−t+φk(y′)<φ(y′)}v(y

′, u− t+ φk(y
′)).

Proof. Recall that the roof function φ is bounded below by 2. The lap number

Nt(y, u) ∈ [0, t/2]∩N is the unique integer k ≥ 0 such that u+t−φk(y) ∈ [0, φ(F ky)).

In particular, Ft(y, u) = (FNt(y,u)y, u+ t− φNt(y,u)(y)). For w ∈ L∞(Y φ),∫
Y φ

Lt(1{Nt=k}v)w dµ
φ =

∫
Y φ

1{Nt=k}v w ◦ Ft dµφ

= φ̄−1

∫
Y

∫ φ(y)

0

1{0≤u+t−φk(y)<φ(Fky)}v(y, u)w(F
ky, u+ t− φk(y)) du dµ

= φ̄−1

∫
Y

∫ φ(Fky)

0

1{0≤u−t+φk(y)<φ(y)}v(y, u− t+ φk(y))w(F
ky, u) du dµ.

Writing vut,k(y) = 1{0≤u−t+φk(y)<φ(y)}v(y, u− t+ φk(y)) and w
u(y) = w(y, u),∫

Y φ

Lt(1{Nt=k}v)w dµ
φ = φ̄−1

∫ ∞

0

∫
Y

1{u<φ◦Fk}v
u
t,k w

u ◦ F k dµ du

= φ̄−1

∫ ∞

0

∫
Y

1{u<φ}P
k
0 v

u
t,k w

u dµ du =

∫
Y φ

(P k
0 v

u
t,k)(y)w(y, u) dµ

φ.

Hence,

(Ltv)(y, u) =

[t/2]∑
k=0

(Lt(1{Nt=k}v)(y, u) =

[t/2]∑
k=0

(P k
0 v

u
t,k)(y).

The result follows from the pointwise formula for P k
0 .

Proof of Theorem 5.2. Let m = m3+1. By Corollary 5.18, ∥Ltv∥δ,η ≪ e−εt∥v∥δ,η,m.

Recall that ∂u denotes the ordinary derivative with respect to u at 0 < u < φ(y)

and denotes the appropriate one-sided derivative at u = 0 and u = φ(y). Since v

has good support, the indicator functions in the right-hand side of the formula in

Proposition 5.19 are constant on the support of v. It follows that ∂uLtv = Lt(∂uv).

By Corollary 5.18,

∥∂uLtv∥δ,η = ∥Lt(∂uv)∥δ,η ≪ e−εt∥∂uv∥δ,η,m3 ≤ e−εt∥v∥δ,η,m.

Hence, ∥Ltv∥δ,η,1 ≪ e−εt∥v∥δ,η,m as required.
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Appendix A

Jump measures for martingales

In Subsections 3.2.4 and 3.4.2 we have shown a rate of O(n−1/4(log n)3/4) for real-

valued observables de�ned on uniformly expanding maps and semi�ows. The proofs

in both discrete and continuous time rely on Theorem 3.18. This appendix presents

notions from the general martingale theory, and explains how to get Theorem 3.18

from [18, Lemma 3]. Basic de�nitions about martingales can be found in Chap-

ter 2. We use [29] as a reference, in particular Chapter II.1 for the content on jump

measures, their compensators, and ⋆-processes.

De�nition A.1. Let Y be a càdlàg process adapted to a �ltration and de�ned on

the probability space (Ω,P). The jump measure of Y is a family µY of measures on

[0, 1]× R, indexed by ω ∈ Ω,

µY (ω; dt dx) =
∑

s∈[0,1] 1{∆Ys(ω) ̸=0}δ(s,∆Ys(ω))(dt, dx),

where δ is the Dirac measure on [0, 1]× R, and ∆Ys = Ys − limt→s− Yt.

The sum in De�nition A.1 is at most countable for all ω ∈ Ω, because any càdlàg

function has at most countably many discontinuities. For any Borel-measurable

f : R → R, we de�ne the ⋆-process of f with respect to µY as

f ⋆ µY (ω, t) =
∫ t
0

∫
R f(x)µY (ω; ds, dx), ω ∈ Ω, t ∈ [0, 1], (A.1)

when the integral exists �nite, and ∞ otherwise.

Another important family of measures on [0, 1] × R is the compensator of µY ,

denoted by νY . Its characterisation can be found in [29, Theorem II.1.8]; we do

not make it explicit because requires concepts that go beyond the purposes of this

appendix. We know by [29, Theorem II.1.17(b)], that there exists a "good version"
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of the compensator of µY , which is di�erent from νY at most on a null set of Ω. Let

us remark that we can de�ne the process f ⋆ νY as we did in (A.1) for µY .

Proposition A.2. Let f : R → R such that E[|f |⋆νY (1)] <∞. Suppose that there

exists a predictable process A such that f ⋆ µY − A is a martingale. Then A is

indistinguishable from f ⋆ νY .

Proof. Apply [29, Theorem II.1.8(ii)] with W = f , using that any martingale is also

a local martingale (which de�nition is omitted here).

Lemma A.3. Let Y be a càdlàg process adapted to a �ltration and with uniformly

bounded jumps (that is β0 = | supt∈[0,1] ∆Yt|∞ < ∞). Then for all measurable

f : R → R, the process f(x)1{|x|>β} ⋆ τ is null, for τ = µY , νY and all β ≥ β0.

Proof. Let β ≥ β0. By De�nition A.1, µY (ω; [0, 1],R \ [−β, β]) = 0 for a.e. ω ∈ Ω.

By (A.1), for a.e. ω ∈ Ω and all t ∈ [0, 1], f(x)1{|x|>β} ⋆ µY (t) = 0. The null process

is a martingale, hence Proposition A.2 yields that A = f(x)1{|x|>β} ⋆ νY is the null

process, too.

For X, Y càdlàg processes de�ned on the same probability space, denote with

αU(X, Y ) = inf{ε > 0 : P(supt∈[0,1] |X(t)− Y (t)| > ε) ≤ ε}.

Following Courbot [18], we call αU the uniform Ky Fan distance.

Next proposition is an adaptation of [18, Lemma 3] for a bounded stationary

RMDS. Such a result is stated in Courbot [18] for general continuous time martin-

gales, however for our purposes it su�ces to consider martingales constructed from

an RMDS via Proposition 2.22 and Remark 2.23.

Remark A.4. The uniform Ky Fan distance satis�es the axioms to be a metric;

however, despite of its name, αU is not a Ky Fan distance in the sense of Section 2.4,

because the càdlàg function space with the sup norm is not separable. Yet, if both X

and Y have continuous sample paths, then αU(X, Y ) is the genuine Ky Fan distance

of X and Y , de�ned by the metric space (C[0, 1], ∥ · ∥∞).

Proposition A.5 (Courbot). Let (dn)n≥0 be a real bounded stationary RMDS, with

σ-algebras (Gn)n≥0. De�ne for 1 ≤ k ≤ n the process Mn(t) = n− 1
2

∑⌊nt⌋
j=1 dn−j, t ∈

[0, 1], and Vn(k) = n−1
∑k

j=1 E[d2n−j|Gn−(j−1)]. Let κn and κ̃nbe as in Theorem 3.18,

κn = inf
{
ε > 0 : P

(
max0≤k≤n |Vn(k)− (k/n)σ2| > ε

)
≤ ε
}
,

κ̃n = max
{
κn| log κn|−

1
2 , n− 1

2

}
.
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For every n ≥ 1, there exist a probability space supporting a càdlàg process Zn

and a Brownian motion B with variance σ2 = E[d0], such that Mn =d Zn in the

Skorohod J1 topology. Moreover, there exists C > 0 such that

αU(Zn, B) ≤ Cκ̃
1/2
n | log κ̃n|3/4,

for all n ≥ 1 for which κ̃n ∈ (0, 1
2
).

Proof. Let L = |d0|∞. The processes Mn are continuous time martingales by

Proposition 2.22 and Remark 2.23. They are square integrable because each Mn

is bounded, | supt∈[0,1] |Mn(t)||∞ ≤ n1/2L < ∞. Using the angle brackets to denote

the quadratic variation process, it can be checked that ⟨Mn⟩(t) = Vn(⌊t⌋), t ∈ [0, 1].

For any Brownian motion W with variance σ2 it is known that ⟨W ⟩(t) = σ2t; it

follows that κn = αU(⟨Mn⟩, ⟨W ⟩).

For n ≥ 1 and β > 0, write as in [18]

Mβ
n =Mn − x1{|x|>β} ⋆ (µn − νn) and An,β = α(|x|21{|x|>β} ⋆ νn, 0).

Here, µn is the jump measure of Mn, and νn is a good version of the compensator of

µn. Since the jumps ofMn are bounded by n
−1/2L, Lemma A.3 yields thatMβ

n =Mn

and An,β = 0 for all β ≥ n−1/2L.

De�ne

bn = max{κn| log κn|−
1
2 , inf{β > 0 : β| log β| ≥ An,β}}.

Reasoning as in [17] and in the proof of [18, Lemma 3], for every n ≥ 1 there exists

a probability space supporting a Brownian motion B and a time change τn, such

that Mn =ML
n =d B ◦ τn as càdlàg processes. Write Zn = B ◦ τn. The proof of [18,

Lemma 3] yields that αU(Zn, B) ≪ b
1/2
n | log bn|3/4, for bn small enough.

We are left to show that bn ≪ κ̃n. Let βn = n−1/2L, so βn| log βn| ≥ 0 = An,βn

for all n ≥ 1. Then, inf{β > 0 : β| log β| ≥ An,β} ≤ βn. We �nish by

bn ≤ max{κn| log κn|−
1
2 , βn} ≪ max{κn| log κn|−

1
2 , n− 1

2} = κ̃n.

Proof of Theorem 3.18. Let n ≥ 1 for which κ̃n ∈ (0, 1
2
), and de�ne the sequence

a(n) = κ̃
1/2
n | log κ̃n|3/4. By Proposition A.5, there exist Zn =d Mn, B =d W in the J1

topology, such that αU(Zn, B) ≪ a(n). Since Zn and Mn share the same law, Zn is

piecewise constant with jumps at the same places as Mn, with probability 1. Hence,

if we de�ne Zc
n by linearly interpolating Zn at k/n, 0 ≤ k ≤ n, we get M c

n =d Z
c
n as

continuous processes.
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Every jump of Mn is bounded by n−1/2|d0|∞, so

| supt∈[0,1] |M c
n(t)−Mn(t)||∞ ≤ n− 1

2 |d0|∞.

Hence,

P(supt∈[0,1] |Zc
n(t)− Zn(t)| > n− 1

2C) =P(supt∈[0,1] |M c
n(t)−Mn(t)| > n− 1

2C)

=0 ≤ n− 1
2 |d0|∞.

By de�nition, αU(Z
c
n, Zn) ≪ n− 1

2 . By de�nition of κ̃n, we have n
− 1

2 ≪ a(n). Hence,

αU(Z
c
n, B) ≤ αU(Z

c
n, Zn) + αU(Zn, B) ≪ n− 1

2 + a(n) ≪ a(n). Using Remark A.4

and equation (2.2), we can conclude with

Π(M c
n,W ) = Π(Zc

n, B) ≤ αU(Z
c
n, B) ≪ a(n).
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