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Abstract
Correlative co-located electrochemical multi-microscopy is
transforming our understanding of property– function relation-
ships in electrode materials. By coupling scanning electro-
chemical cell microscopy (SECCM) with complementary
characterization techniques applied to identical locations of a
surface, we can now unravel the intricate interplay between
various physicochemical properties of electrode materials and
interfaces and their impact on electrochemical phenomena,
with high spatial resolution. This review explores recent ad-
vances in this correlative approach to showcase how it can
reveal major new insights into the activity of materials and in-
terfaces. Applications span diverse electrochemical fields,
including energy conversion and storage, sensing, and corro-
sion science. We also envision future developments that will
open up new possibilities for rational materials design, accel-
erated mechanistic understanding, and automated materials
discovery.
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Introduction
Unraveling the intricate interplay between the physi-
cochemical properties of materials and their impact on
electrochemical behavior is critical to advance our
fundamental knowledge of interfacial electrochemical

phenomena. A clear understanding of
propertyefunction (e.g., structure-activity, which is the
main focus herein) relationships in electrode compo-
nents enables a bottom-up approach for their rational
design and integration, optimized for applications in
energy conversion and storage, electrocatalysis, sensing,
electrosynthesis, and corrosion resistance. Traditional
approaches to explore propertyefunction relationships
in electrode materials have relied heavily on macro-
scopic electrochemical characterization, which provides
only an average representation of the material, over-

looking inherent heterogeneity. In contrast, correlative
co-located electrochemical multi-microscopy offers a more
complete description of electrode surfaces by leveraging
scanning electrochemical probe microscopy (SEPM)
techniques, capable of capturing spatially resolved
electrochemical information with micro or nanoscale
resolution [1]. Correlating this information with the
local physicochemical properties of materials, obtained
by complementary microscopy and spectroscopy at
identical locations, opens up new avenues to achieve a
comprehensive understanding of propertyefunction
relationships. In essence, complex electroactive sur-
faces are studied as a collection of simpler “single en-
tities” [2], such as individual particles, structural
features, defects [3], etc.

The most notable SEPM techniques for correlative
electrochemical multi-microscopy are scanning electro-
chemical microscopy (SECM) [4], scanning ion
conductance microscopy (SICM) [5], and scanning
electrochemical cell microscopy (SECCM) [6e8].
Although the newest amongst these, SECCM has found

the most application, by some margin, due to its
inherent advantages for correlative analysis, including
direct measurement of the electrochemical reaction of
interest, easy access to nanoscale resolution [9e11], and
multi-scale capabilities [12e15]. SECCM utilizes a
pipette probe filled with an electrolyte, creating a
mobile electrochemical droplet cell at the tip for
spatially resolved electrochemical measurements [1].
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Built on an open access and easily customizable platform
[16], the SECCM format allows easy optical visualiza-
tion of the probe and surface, which is key to allowing
measurements at identical locations across different
microscopies. Optical visualization of the probe has
been implemented from the earliest use of the tech-
nique, e.g. top-view cameras for opaque substrates [17]
or inverted microscopes for transparent substrates

[18,19], so that the probe can be targeted at a specific
region of interest on the sample [17]. Identifiable sur-
face features and the electrolyte footprints left behind
serve as a precise marker for subsequent correlative
analysis by applying identical location, complementary
characterization techniques, e.g., scanning and trans-
mission electron microscopy (SEM, TEM) [20e22],
atomic force microscopy (AFM) [23], Raman spectros-
copy [23], electron backscatter diffraction (EBSD) [24],
and others. In-situ optical monitoring of the SECCM
experiment has more recently been established and,

apart from providing direct visualization of the droplet
cell [25], it also offers measurement automation [26,27]
and a foundation for the subsequent development of
artificial intelligence imaging routines.

An important aspect of SECCM is that mass transport
and interfacial reactivity can be treated in detail by
finite element method (FEM) modelling [28,29] and,
more recently, by simpler analytical expressions [30].
This theoretical knowledge complements practical as-
pects, such as the effects of iR drop [31], or the place-

ment of the quasi-reference counter electrode inside
the pipet probe [32].

In excess of a hundred articles have been published
using SECCM in the past three years alone, showcasing
its wide adoption in numerous electrochemical studies.
Table 1

Overview of physicochemical properties of materials obtained by a c
techniques coupled to SECCM, as described in this review.

Property

Footprint area and location OM, A
Meniscus size, state, location OM (in
Material morphology OM, A
Material topography, thickness, defects AFM,
Crystal structure EBSD
Chemical composition Rama

SIMS)
Atomic structure STEM
Band gap energy SR-OS

* Abbreviations:Optical microscopy (OM), Atomic force microscopy (AFM), Ele
electron microscopy (TEM), Interference reflection microscopy (IRM), Dark-fie
Photoluminescence (PL), Electron backscattered diffraction (EBSD), Shell-
Energy-dispersive X-ray spectroscopy (EDS), Electron energy loss spectrosco
ray photoelectron spectroscopy (XPS), Secondary ion mass spectrometry
Scanning transmission electron microscopy (STEM).
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This review aims to provide an overview of recent ad-
vances in correlative co-located electrochemical multi-
microscopy using SECCM to elucidate
propertyefunction relationships in electrode materials.
Specifically, we focus on the correlation of electro-
chemical behavior with a range of physicochemical
properties that can be obtained through complementary
characterization techniques, both ex situ and in situ.
Table 1, towards the end of the article, presents an
overview of the complementary techniques discussed
herein. We highlight the versatility of this approach by
presenting a variety of electrode materials and interfaces
relevant to important electrochemical applications
(Figure 1). The review begins by exploring the impor-
tance of the SECCM meniscus contact to enable
correlative analysis. Subsequently, we provide illustra-
tive examples of correlative multi-microscopy studies of
2D materials, polycrystalline extended surfaces, single
electrocatalytic particles, battery interfaces and in-

terphases, electrode fabrication and functionalization,
and spatially complex electrode structures. Readers may
also find other relevant reviews of interest, including
those addressing SECCM [7,8] and, more generally,
nanoscale electrochemical mapping [1,4,33] and high-
throughput nanoelectrochemistry [34].

Advances in understanding and utilizing meniscus
contact
The confined nature of the SECCM droplet cell is a key
advantage of the technique, as it allows for local inves-
tigation of the sample. However, accurate determination
of the contact (electrode) area and droplet condition is
usually important for reliable measurement data and

analysis, e.g., for calculating current density. Typically,
the SECCM meniscus contact area is approximately the
size of the tip, and various methods have been used to
ontinuously expanding array of complementary characterization

Characterization technique coupled to SECCM

FM, EM (SEM, TEM)
-situ IRM)
FM, EM (SEM, TEM), DFS
SR-OS, PL
, TEM diffraction
n (SHINERS), EM (EDS, EELS, EFTEM), XPS, SIMS (q-SIMS, ToF-

ctron microscopy (EM), Scanning electron microscopy (SEM), Transmission
ld spectroscopy (DFS), Spatially resolved optical spectroscopy (SR-OS),
isolated nanoparticles for enhanced Raman spectroscopy (SHINERS),
py (EELS), Energy-filtered transmission electron microscopy (EFTEM), X-
(SIMS), Quadruple SIMS (q-SIMS), Time-of-Flight SIMS (ToF-SIMS),
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Figure 1

Schematic illustrating the versatility of correlative-electrochemical multi-microscopy approaches based on SECCM and co-located microscopy.
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confirm this parameter [6]. Indeed, the electrolyte
footprint posteexperiment (i.e. meniscus contact area)
has been imaged routinely with optical microscopy [35],
AFM [36], SEM [21], and even TEM [22]. In certain
conditions, such as in alkaline media, the wetting may
be more extensive, resulting in a contact area signifi-
cantly larger than the size of the tip [37,38]. This rep-
resents an important consideration when using SECCM,
especially when investigating certain types of materials

or under specific conditions. To reduce the extent of
wetting in such cases, the SECCM pipet can be
deployed through an oil layer covering the surface
[37e40] but this may not always be practical. The
SECCM meniscus wetting in alkaline electrolyte was
investigated through the analysis of voltammograms for
a pH-independent redox probe, supported by FEM
modelling and microscopic imaging of SECCM foot-
prints [41]. This analysis offers a promising method of
determining meniscus properties, including the role of
evaporation and mass transport, in-situ [30,31].

A key advantage of SECCM is its ability to target and
encapsulate particles of interest, enabling hundreds or
thousands of individual particles or particle aggregates
to be investigated in a single experiment. For instance,
silica nanospheres of different sizes were individually
encapsulated by the SECCM meniscus to study their
role as nucleation sites for hydrogen gas bubbles, with
the high-throughput capabilities of SECCM enabling
detailed and robust statistics [42].

Recently, a hybrid technique combining SECCM with
in-situ interference reflection microscopy (IRM) was
www.sciencedirect.com
developed [25]. In this configuration, the optical signal
is very sensitive to local phase (refractive index)
changes, enabling the direct visualization of the
meniscus cell during experiments if that is larger than
the diffraction limit (ca. 200 nm with commonly used
microscope objectives and illumination wavelengths)
[25]. Additionally, IRM allows for real-time tracking of
phase changes at the electrode-electrolyte interface
[25]. This technique has proven effective in detecting

electrolyte films of nanoscale thickness, as demon-
strated in a study using a pipette-and-droplet reservoir
bridging individual nanoparticles (NPs) located close to,
but outside, the nominal wetted area [43]. Optical and
electron microscopy confirmed an extended electro-
active region in this nanofluidics model system. The use
of in-situ optical microscopy facilitates the development
of semi- or fully automated SECCM targeting protocols
to probe selected regions of interest within a larger
sample area, thereby significantly accelerating experi-
mental workflows. For instance, high-throughput anal-

ysis of Liþ charging/discharging in single TiO2 NP
clusters [26] and electrocatalytic activity of single Au
NPs [27] has been successfully demonstrated using this
approach, as detailed in following sections.

In addition to targeting specific particles, SECCM allows
for probing different parts of a single particle or cluster to
reveal its intrinsic electrochemical activity. Hexagonal
Co3O4 plates were investigated by SECCM by landing
on their top surface or their edge, and correlated SEM
and AFM measurements were used to extract the ki-

netics for the oxygen evolution reaction (OER) at each
site [44]. Precise nanoscale control of the SECCM
Current Opinion in Electrochemistry xxxx, xxx:xxx
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meniscus position and height offers a valuable tool for
studying the role of contact resistance (with the sub-
strate electrode), and degree of wetting, in determining
the electrochemical performance of single particles
(Figure 2a). This approach was employed to investigate
the Liþ charging/discharging kinetics of LiMn2O4 par-
ticles by comparing the response of particles fully wetted
by electrolyte (also wetting the current collector) and

partly wetted particles (only top contact) [13]. Much
faster voltammetric scan rates can be applied in SECCM
compared to macroscopic measurements. This feature
facilitates the identification of intrinsic kinetic limita-
tions in electrochemical processes, as exemplified in the
case of LiMn2O4 particles supported by detailed physi-
cochemical FEM simulations [13].

Topographical and topological effects on charge
transfer in two-dimensional (2D) materials
Topographical variations across an electrode surface can
lead to local functionalities that significantly influence
charge transfer activity, ion transport, conductivity, and
other important phenomena relevant for electro-

chemical processes. Studies of nanoscale topographical
Figure 2

(a) Study of LiMn2O4 particles at different degrees of sample wetting, by mean
correlating the electrochemical measurements with SEM of the particles and
derlying substrate results in larger voltammogram peak separation than in the
et al. [13] under CC-BY 4.0. (b) SECCM current maps (top) and AFM force m
wrinkle and stress areas. Left and middle sections are from a single graphene
Reproduced from the study by Wahab et al. [49] under CC-BY 4.0. (c) A co-lo
with crystallographic orientations and grain boundary locations, illustrating stru
Wang et al. [62]. Copyright 2022 American Chemical Society. (d) Left: SECC
current (middle panel) and in-situ optical scattering (bottom panel) measureme
permission from the study by Saha et al. [27]. Copyright 2023 American Che

Current Opinion in Electrochemistry xxxx, xxx:xxx
effects in two dimensional (2D) materials, are readily
explored using SECCM and characterized by comple-
mentary microscopy techniques to reveal their impact
on electrochemistry.

SECCM has proven to be a powerful tool for spatially
resolved activity measurements in graphene. For
instance, monolayer graphene supported on Cu exhibi-

ted faster electron-transfer kinetics than bilayer and
multilayer graphene for the classical outer-sphere
[Ru(NH3)6]

3þ/2þ couple, and this finding was groun-
ded on detailed theoretical modelling that revealed that
electron-transfer at metal-supported graphene is pre-
dominantly adiabatic [45], with the graphene layer(s)
modifying the electrostatic potential experienced by the
redox couple, and consequently changing the activation
barrier for electron transfer.

The [Ru(NH3)6]
3þ/2þ process was also investigated at

twisted bilayer graphene, formed by stacking atomically
thin layers with a small misorientation, to produce a
Moiré superlattice (measured by scanning tunnelling
microscopy). A strong twist-angle dependence of
s of finely tuning the pipette (and hanging meniscus) vertical position and
(where relevant) SECCM footprints. Fully wetting the particles and un-
case of partially wetting the particles. Reproduced from the study by Tao
aps (bottom) of graphene and hBN layers, linking increased activity to
layer, and right section is from combined one and four-layer hBN regions.
cated SECCM/EBSD/AFM approach to correlate the local Ag dissolution
cture-activity relationships. Reproduced with permission from the study by
M cyclic voltammograms at individual Au NPs of varied shapes. Right:
nts during potential cycling (top panel) of Au nanocubes. Reproduced with
mical Society. Q5
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electron transfer kinetics was discovered that was
related to the changes in the electronic structure of the
bilayer graphene devices [46]. A further study of twisted
trilayer graphene demonstrated that electron transfer
rates are influenced by the electronic localization in
each atomic layer rather than the overall density of
states [47].

SECCM has been instrumental in exploring local proton
transport properties within 2D materials, such as defec-
tive graphene structures [48]. Recently, it has enabled
the discovery of proton transport through defect-free
monolayers of graphene and hexagonal boron nitride
(hBN) (Figure 2b) [49]. Co-located AFM revealed that
this phenomenon occurs at nanoscale wrinkles and
others regions with a stressed or curved lattice, which
lowers the activation barrier for proton transfer, as
revealed by density functional theory (DFT) calcula-
tions. Proton transport was also suggested to be fast along

the surface of MXenes, such as Ti3C2Tx flakes [50],
identified by an SECCM study of the pseudocapacitive
response of this material through controlled contact of
only a small basal plane region of a monolayer flake.

The electrochemical response of single and multiple
layers of 2D transition metal dichalcogenides has also
been mapped by SECCM. Electron transfer kinetics was
found to be dependent on number of layers for several of
these materials, associated to a change in band gap and
electron tunnelling barrier [36]. Coupling SECCM with

field-effect electrostatic manipulation of band align-
ment demonstrated the effect of charge carrier con-
centration on heterogeneous electron transfer at few-
layer MoS2 electrodes, as observed using the
[Ru(NH3)6]

3þ/2þ couple [35].

Several studies have explored the combination of
SECCM with photoluminescence measurements to
investigate different optoelectronic phenomena in 2D
materials, e.g., charge transport and carrier recombina-
tion in the vicinity of photoexcited spots in layered
WSe2 [51,52], enhanced photoelectrocatalytic activity

at the interface of strained MoS2/Cu2O heterostructures
[53], and locally increased photocurrents caused by
edge-type defects on MoS2 crystals [54].

Effect of crystallographic structure in extended
polycrystalline surfaces on local electrochemical
kinetics
Various aspects of electrochemical reactivity, such as the
nature of active sites, ion surface adsorption, and
degradation, are significantly influenced by the acces-
sible crystallographic facets and grain boundaries on
polycrystalline electrode surfaces. Elucidating crystal-
lographic structure-function relationships is thus

important for the optimization of electrode materials.
SECCM provides an efficient method for locally
www.sciencedirect.com
interrogating a multitude of sites in extended poly-
crystalline materials, by employing a high-throughput
pseudo-single-crystal approach to reveal insights into the
origin of crystal-dependent electrochemical reactivity in
combination with co-located EBSD mapping.

This approach has been successfully applied to image the
electrochemical CO2 reduction reaction (eCO2RR) on

polycrystalline Cu [55], revealing that higher eCO2RR
activity occurs on facets with higher step and kink site
density. Similarly, several electrocatalytic and surface
processes on polycrystalline Pt were studied within a
single SECCM measurement, providing insights into
facet-dependent electrochemical performance [56,57].
Local variations of HER kinetics across polycrystalline Ag
were correlated to specific crystal facets through spatially
resolved Tafel slope analysis [58]. In another study, the
OER activity of Co oxy(hydroxide) was found to differ on
various facets of the underlying polycrystalline Co elec-

trode [59], which in combination with other characteri-
sation techniques such as X-ray photoelectron
spectroscopy (XPS), transmission electron microscopy
(TEM), and atom probe tomography allowed for a
deeper understanding of OER activity and the compo-
sition, structure, and thickness of these materials. The
effect of boron-doped diamond terminations on elec-
trochemical activity was determined by SECCM
complemented with identical location Raman, AFM, and
SEM characterization, both for single-crystal particles
and polycrystalline surfaces [60]. Additionally, SECCM-

EBSD revealed that the efficiency of benzotriazole as a
corrosion inhibitor is dependent on the crystallographic
facet of Cu materials [61].

Grain boundaries between crystallographic facets with
accumulated defects can also act as hotspots of elec-
trochemical activity. This crucial information can be
accessed by high-resolution SECCM, particularly in
combination with high angular resolution EBSD to
reveal the nature of the grain boundary. For instance, the
origin of enhanced eCO2RR activity at grain boundaries
in Au electrodes was linked to surface-terminating dis-

locations [29]. Similarly, Ag dissolution rate was found to
be promoted by the interfacial energy and the density of
steps and broken bonds at the grain boundary planes
(Figure 2c) [62].

Effect of size and structure on the electrochemical
behavior of single NPs
NPs supported on electrodes play an essential role in
electrochemistry, especially in electrocatalysis applica-
tions. Despite efforts to synthesize well-defined
monodisperse NPs, there will be subtle differences in
atomic arrangements and surface capping agents (if
used) from one NP to another, affecting their surface

free energy and reactivity [63]. Probing the structure-
activity relationships of single NPs is important, but it
Current Opinion in Electrochemistry xxxx, xxx:xxx
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poses inherent challenges due to their small size and
complex nature.

SECCM is an ideal technique for performing single-
particle electrochemical measurements, achieved by
simply bringing the probe into meniscus contact with
targeted particles, as discussed above, and reviewed
earlier [7,8]. SECCM was employed in combination

with a single-particle-on-a-nanoelectrode approach to
investigate the OER at individual Co3O4 nanocubes
[64]. The former technique provided statistics from a
large number of measurements, while the latter enabled
accelerated stress tests under highly alkaline conditions
and high current densities. By employing identical-
location electron microscopy, structural trans-
formations of individual nanocubes during electro-
chemical processes were visualized.

In another study, plasmon resonance was combined with

SECCM to reveal local reactive hotspots in Au nanorods
during light-assisted electrochemical dissolution [65]. A
spectral redshift in dark-field spectroscopy indicated
isotropic dissolution of the nanorods, while a blueshift
suggested a tip-preferred transformation, which was
confirmed with complementary SEM imaging. More
recently, SECCM was used to evaluate the catalytic
activity across Au NPs with different morphologies
(Figure 2d), with in-situ optical microscopy aiding in
targeting individual NPs for analysis [27]. Correlating
SECCM data with optical spectroscopy and TEM

showed negligible morphological changes of the Au NPs
during operation. Thus, variations in catalytic behavior
were attributed to adsorbates or surface restructuring.

The capability of SECCM to isolate and analyze the
electrochemical response of single particles has been
successfully exploited for various materials, e.g., Au
[66,67] and Cu2O [68]. The electrocatalytic activity of
individual Pd NPs was related to distinct crystal planes
and strain associated with the particle’s shape [69].
Similarly, hematite nanorods with {110} and {001}
facets at the tip and body parts, respectively, exhibited

face-dependent OER activity [70], as revealed by a
correlative SECCM and co-located electron micro-
scopy study.

Battery interfaces and interphases
SECCM is becoming increasingly popular for studying
battery-related interfaces and interphases. Successful
operation of SECCM with non-aqueous electrolytes and
inside a glovebox environment [16,21] has enabled the
analysis of micro and nanoscale features of battery ma-
terials under working conditions, combined with other
characterization techniques.

For instance, charge-discharge measurements of single
LiFePO4 particles were performed to evaluate the charge
Current Opinion in Electrochemistry xxxx, xxx:xxx
transfer resistance in both aqueous and organic electro-
lytes [71]. The implementation of a semi-automatic
optics-enabled targeted SECCM scanning protocol
enabled high-throughput measurements of Li-ion
charging/discharging of clusters of TiO2 NPs by signifi-
cantly reducing experimental times [26]. Many clusters
revealed a relatively high capacity, dependent on the size
of individual NPs, under fast charging conditions.

Interfacial structure transformations on Si electrodes
were induced and studied by local Li-ion electro-
chemical cycling using SECCM [72]. Cross sectional
analysis of SECCM regions of the electrodes, carefully
extracted by Xeþ plasma-focused ion beam and exam-
ined by high-resolution scanning TEM, revealed varying
degrees of nanoscale surface degradation, which
depended on the crystallographic properties of the Si
electrode. In a further study, the effect of the native
oxide layer on Si electrodes on the solid-electrolyte

interphase (SEI) formation and lithiation reversibility
was revealed by SECCM and correlative secondary ion
mass spectrometry (SIMS) (Figure 3a). Removing the
oxide layer resulted in Li trapping and reduced revers-
ibility [21]. Further insights about the dynamics and
intricate composition of the SEI on Si were discovered
by coupling SECCM with shell-isolated nanoparticles
for enhanced Raman spectroscopy (SHINERS) [73].
The chemical composition of the SEI was found to be
strongly dependent on certain experimental conditions
by a high-throughput combinatorial electrochemistry

experiment, which simultaneously evaluated the effect
of charge/discharge cycle, cut-off voltage, and electro-
lyte solvent.

Controlled fabrication, functionalization, and probing
of complex electrode structures
SECCM is a versatile and powerful tool that can provide
valuable insights into additional fundamental and
applied processes, including controlled fabrication of
(nano)structures, local functionalization and patterning
of surfaces, as well as the analysis of complex electrode
materials with variable composition and porosity. Those
applications are greatly enhanced when coupled with
complementary co-location microscopy.

Fabrication of well-ordered arrays of Ag NPs (Figure 3b)
was achieved by controlling nucleation and growth
events by SECCM to yield individual nanoparticles of
defined size [20]. Deep understanding of single-
nanoparticle formation can be achieved by coupling
SECCM with in-situ optical microscopy, which enabled
the real-time optical monitoring of Ag electrodeposition
dynamics with high temporal and spatial resolution [74].
The statistical nature of nucleation and growth processes
can be revealed by conducting hundreds of SECCM in-

dividual measurements, as demonstrated in the elec-
trochemical formation and dissolution of Au NPs [75].
www.sciencedirect.com
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Figure 3

(a) Correlative SECCM/SIMS multi-microscopy to reveal interfacial chemistry effects in the electrochemical performances of HF–Si and SiOx/Si.
Reproduced from the study by Xu et al. [21] under CC-BY 4.0. (b) Optical dark field scattering and SEM images of Ag NP arrays on ITO, fabricated via
SECCM patterning. Reproduced with permission from Rahaman et al. [20]. Copyright 2022 American Chemical Society. (c) SEM image of the locally
anodized (top right corner of the image) glassy carbon surface, also showing SECCM landing spots; and the relative composition of carbon-based
functional groups obtained from C 1s XPS spectra, the ratio of D and G bands (ID/IG) obtained from Raman (top). Spatially resolved dopamine oxidation
kinetics obtained from SECCM across the pristine and locally anodized areas (bottom). Reproduced from the study by Swinya et al. [23] under CC-BY
4.0. (d) Chemical composition and spatially resolved OER activity map obtained by EDS and SECCM on high-entropy alloys. Reproduced from the study
by Banko et al. [77] with permission by the authors.
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Additionally, SECCM also enabled the local electroless
deposition of molecular materials, such as cobaloxime
complexes used for photocatalytic HER studies [76].

SECCM has also proven to be a valuable tool for locally
introducing chemical functionalities [23] or defects [15]
into materials. For instance, anodizing glassy carbon
electrodes resulted in the increase of oxygen function-
alities and surface roughness, as determined by com-
plementary XPS, energy dispersive X-ray spectroscopy
(EDS) and Raman (Figure 3c) [23]. This local
www.sciencedirect.com
modification allowed for the investigation of dopamine
adsorption and electron-transfer kinetics at both the
modified and bare carbon regions in a single spatially
resolved SECCM experiment. SECCM has been applied
to reveal the effect of various chemical compositions
across a single material such as high-entropy alloy elec-
trocatalysts (Figure 3d). By correlating spatially resolved
electrocatalytic activity with EDS mapping, high-activity
multi-metal compositions in exemplary systems such as
RueRhePdeIrePt and CoeNieMoePdePt were
identified [77].
Current Opinion in Electrochemistry xxxx, xxx:xxx
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Figure 4

Schematic representation of some future research directions in correlative electrochemical multi-microscopy.
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SECCM has further been exploited to study local
properties in thin film electrode materials. For instance,
coupling SECCM imaging and time-of-flight SIMS
(ToF-SIMS) measurements enabled the probing of
heterogeneous pitting corrosion of NiO films on Ni in-
terfaces, highlighting Cl� penetration into the NiO
layer at susceptible breakdown sites [78]. The topog-
raphy of nanostructured BiVO4 thin films was found to
control photoelectrochemical activity by coupling
SECCM with spatially resolved optical spectroscopy

[79], which also allowed simultaneous mapping of
absorbance and band gap energy across the thin film
material. Correlative SECCM with EDS, XPS and AFM
enabled the identification of nanoscale porosity varia-
tions across thin films of amorphous MoSx associated to
heterogeneities in electrocatalytic activity [80]. Het-
erogeneous particle agglomerates of an FeeNeC cata-
lyst demonstrated similar spatially resolved oxygen
reduction reaction (ORR) performance when the ac-
tivity was normalized by electrochemical surface area,
depending on the material porosity [81].
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Conclusions and outlook
Correlative electrochemical multi-microscopy, with
SECCM at the center, is rapidly emerging as a trans-
formative tool for investigating propertyefunction re-
lationships in electrode materials, impacting many
research fields that relate to electrochemistry. In this
review, we have highlighted the power of this approach to
probe microscale and nanoscale physicochemical prop-
erties on a variety of electrode materials and reveal their
effect on electrochemical processes by coupling SECCM
Current Opinion in Electrochemistry xxxx, xxx:xxx
with complementary co-located characterization tech-
niques (Table 1). This new way of studying electroactive
components is set to accelerate the rational design of
tailored electrochemical interfaces, unlocking new pos-
sibilities across the electrochemistry discipline.

We anticipate significant advances in correlative elec-
trochemical multi-microscopy in the coming years, with
several key directions poised to shape the field (as
depicted in Figure 4). One direction involves further

integration of in-situ complementary techniques with
SECCM, enabling the dynamic acquisition of chemical
and structural information of materials [4] at scales
commensurate with SECCM. Techniques from optical
spectroscopy to mass spectroscopy should be amenable
to integrate with the SECCM platform. Enhancing the
throughput of correlative SECCM measurements can
also catalyze the field of big data electrochemistry [82].
The development of smart instrumentation, incorpo-
rating automatization, robotics, and artificial intelli-
gence [82,83] into both SECCM and complementary

techniques will play an important role in minimizing
manual input and enabling high-throughput correlative
electrochemical multi-microscopy [84]. This approach
has the potential to become a premier tool for acceler-
ating mechanistic understanding and automated mate-
rials discovery, particularly when used with
combinatorial electrochemistry [73], where each
SECCM measurement is conducted under different
experimental conditions. The future of correlative
electrochemical multi-microscopy is bright, introducing
a new era of rapid, efficient, and comprehensive research

in the field of electrochemical materials.
www.sciencedirect.com
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