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An Order-Theoretic Perspective on Modes and Maximum A Posteriori
Estimation in Bayesian Inverse Problems\ast 

Hefin Lambley\dagger and T. J. Sullivan\ddagger 

Abstract. It is often desirable to summarize a probability measure on a space X in terms of a mode, or MAP
estimator, i.e., a point of maximum probability. Such points can be rigorously defined using masses
of metric balls in the small-radius limit. However, the theory is not entirely straightforward: the
literature contains multiple notions of mode and various examples of pathological measures that
have no mode in any sense. Since the masses of balls induce natural orderings on the points of X,
this article aims to shed light on some of the problems in nonparametric MAP estimation by taking
an order-theoretic perspective, which appears to be a new one in the inverse problems community.
This point of view opens up attractive proof strategies based upon the Cantor and Kuratowski
intersection theorems; it also reveals that many of the pathologies arise from the distinction between
greatest and maximal elements of an order, and from the existence of incomparable elements of X,
which we show can be dense in X, even for an absolutely continuous measure on X =\BbbR .

Key words. Bayesian inverse problems, local behavior of measures, maximum a posteriori estimation, modes
of probability measures, orders on metric spaces
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1. Introduction. In diverse applications such as statistical inference and the analysis of
transition paths of random dynamical systems it is desirable to summarize a complicated
probability measure \mu on a space X by a single distinguished point x \star \in X that is, in some
sense, a ``point of maximum probability"" under \mu ---i.e., a mode or, in the Bayesian context,
a maximum a posteriori (MAP) estimator. Many optimization-based approaches to inverse
problems (e.g., Tikhonov regularization of the misfit) aim to calculate or approximate modes,
at least heuristically understood. Over the last decade, it has become common to define
modes in terms of masses of metric balls in the limit as the ball radius tends to zero, since
this makes sense even when X is a very general---possibly infinite-dimensional---space, as is
often the case for modern inference problems [26].

\ast Received by the editors December 21, 2022; accepted for publication (in revised form) May 14, 2023; published
electronically October 20, 2023.

https://doi.org/10.1137/22M154243X
Funding: This work has been partially supported by the DFG through project 415980428. The first author

is supported by the Warwick Mathematics Institute Centre for Doctoral Training and received funding from the
University of Warwick and the UK Engineering and Physical Sciences Research Council (grant EP/W524645/1).

\dagger Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom (hefin.lambley@warwick.
ac.uk).

\ddagger Mathematics Institute and School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom,
and Alan Turing Institute, 96 Euston Road, London, NW1 2DB, United Kingdom (t.j.sullivan@warwick.ac.uk).

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

1195

D
ow

nl
oa

de
d 

10
/2

0/
23

 to
 1

93
.6

0.
22

0.
25

3 
by

 T
im

 S
ul

liv
an

 (
t.j

.s
ul

liv
an

@
w

ar
w

ic
k.

ac
.u

k)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M154243X
https://gepris.dfg.de/gepris/projekt/415980428
mailto:hefin.lambley@warwick.ac.uk
mailto:hefin.lambley@warwick.ac.uk
mailto:t.j.sullivan@warwick.ac.uk


1196 HEFIN LAMBLEY AND T. J. SULLIVAN

However, this ``small balls"" theory of modes is not entirely straightforward. There are vari-
ous definitions---e.g., the strong mode of [9], the generalized strong mode of [7], the weak mode
of [16]---with various subtle distinctions among them. Even the existence theory for modes is
not entirely straightforward: there are already examples in the literature, and this article will
supply further examples, of relatively simple probability measures that have no mode. It can
even be the case that the average of two disjointly supported unimodal probability measures
may have no mode.

The purpose of this article is to formulate the notion of a mode in an order-theoretic
manner and thereby to clarify some of these pathologies in the theory of modes. We claim
that this is a natural step to take in view of the heuristic understanding of modes as ``most
probable points.""

With an order-theoretic point of view, many of the difficulties can be seen to arise from
the distinction between greatest and maximal elements of a preordered set (X,\preccurlyeq ) when the
preorder \preccurlyeq is not total, i.e., when there exist incomparable x,x\prime \in X for which neither x \preccurlyeq 
x\prime nor x \succcurlyeq x\prime holds. Simply put, a greatest element must dominate every other element
of X, whereas a maximal element need only dominate those with which it is comparable;
for a total preorder, maximal and greatest elements coincide. Motivated by the needs of
inverse problems theory, current notions of modes correspond to greatest elements. However,
many preorders lack maximal elements, and even those that have maximal elements may lack
greatest elements; this is exactly the situation of the examples discussed in Example 5.7 and
Theorem 5.11. Thus, one might argue that current notions of mode are order-theoretically
``too strong,"" and perhaps maximal elements should be considered as modes, but possibly
these are ``too weak"" for the needs of applications communities. We hope that the present
article will stimulate discussion on this point.

Outline of the paper. The rest of this paper is structured as follows.
Section 2 sets out basic notation for the rest of the paper, including a brief recap of

necessary concepts from functional analysis, measure theory, and order theory.
Section 3 gives an overview of related work in this area, in particular the ``small balls""

approach to defining MAP estimators for nonparametric statistical inverse problems.
Section 4 introduces and analyzes the total preorder \preccurlyeq r on X induced by the \mu -measures

of metric balls of fixed radius r > 0. Because the preorder \preccurlyeq r is total, its maximal elements are
also greatest and can be seen as approximate ``radius-r modes"" for \mu . We are able to provide
several criteria for the existence of such radius-r modes x \star r (Theorem 4.6) as well as examples
of measures that admit none (Examples 4.7 and 4.8). As a prelude to the next section, we
also consider the convergence of x \star r as r\rightarrow 0 (Theorems 4.11 and 4.12).

In section 5 we attempt to take the limit as r \rightarrow 0 of the preorders \preccurlyeq r to define a
preorder \preccurlyeq 0 whose greatest elements will be weak modes of \mu . However, because the preorder
\preccurlyeq 0 is not total, the distinction between greatest and maximal elements becomes important.
Incomparable maximal elements are particularly troubling because their maximality means
that one would like to think of them as candidate modes, yet their incomparability means
that one cannot actually say which is ``most probable"" and hence a bona fide mode, as in
Example 5.7. We show that antichains (collections of mutually incomparable elements) can
be topologically dense in X even when \mu is absolutely continuous with respect to Lebesgue
measure on X \subseteq \BbbR (Theorem 5.11). We also show that measures with a continuous Lebesgue

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

0/
23

 to
 1

93
.6

0.
22

0.
25

3 
by

 T
im

 S
ul

liv
an

 (
t.j

.s
ul

liv
an

@
w

ar
w

ic
k.

ac
.u

k)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1197

density may have incomparable elements, but never incomparablemaximal elements (Example
5.9 and Proposition 5.14).

Section 6 gives some closing remarks, while technical supporting results can be found
in section SM1, and section SM2 discusses some alternatives to the limiting preorder \preccurlyeq 0 of
section 5 and illustrates their shortcomings.

2. Problem setting and notation.

2.1. Spaces of interest. Throughout, unless noted otherwise, X will be a metric space
with metric d; we write B(X) for its Borel \sigma -algebra, i.e., the one generated by the closed balls
Br(x) := \{ x\prime \in X | d(x,x\prime ) \leqslant r\} , x \in X, r \geqslant 0; we also write \r Br(x) := \{ x\prime \in X | d(x,x\prime ) < r\} 
for the corresponding open ball. We will often assume that X is complete and separable, and
occasionally we will specialize to the case of X being a separable Banach or Hilbert space.

2.2. Measures of noncompactness and intersection theorems. Our approach in section
4 will make much use of measures of noncompactness and intersection theorems; see [24,
sections 7.5--7.8] for a thorough treatment of these concepts and their properties.

Briefly, given A\subseteq X, its separation (or Istr\u a\c tescu) measure of noncompactness is

(2.1) \gamma (A) := inf

\left\{   r\geqslant 0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| there is no (xn)n\in \BbbN \subseteq A with inf
m,n\in \BbbN 
m \not =n

d(xm, xn)\geqslant r

\right\}   .

This is an increasing function with respect to inclusion of sets, is finite precisely when A is
bounded, and is zero precisely when A is precompact. The function \gamma is bi-Lipschitz equivalent
with several other measures of noncompactness such as the set (or Kuratowski) measure of
noncompactness and the ball (or Hausdorff) measure of noncompactness.

Theorem 2.1 (generalized intersection theorem). Let (An)n\in \BbbN be a decreasingly nested se-
quence of nonempty, closed subsets of a topological space X and let A :=

\bigcap 
n\in \BbbN An.

(a) (Cantor) If each An is compact, then A is nonempty and compact.
(b) (Cantor) If X is a complete metric space and diam(An) \rightarrow 0 as n \rightarrow \infty , then A is a

singleton.
(c) (Kuratowski) If X is a complete metric space and \gamma (An) \rightarrow 0 as n \rightarrow \infty , then A is

nonempty and compact.

2.3. Measure-theoretic concepts. Given a metric space X, P(X) denotes the set of all
probability measures on B(X). Absolute continuity of \mu with respect to \nu is denoted \mu \ll \nu .
The topological support of \mu \in P(X) is

(2.2) supp(\mu ) := \{ x\in X | for all r > 0, \mu (Br(x))> 0\} ,

which is always a closed subset of X, and is nonempty when X is separable (or, equivalently,
second countable or Lindel\"of) [2, Theorem 12.14].

The n-dimensional Lebesgue measure on \BbbR n will be denoted \lambda n.
The quantity \mu (Br(x)) will play a major role in this work, especially when thought of as

a function of r > 0 for various choices of x\in X; we shall call the map r \mapsto \rightarrow \mu (Br(x)) the radial
cumulative distribution function (RCDF) and some of its key properties are given in Lemma
SM1.1 and Corollary SM1.4.
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1198 HEFIN LAMBLEY AND T. J. SULLIVAN

2.4. Order-theoretic concepts. We summarize here some basic terms from order theory;
for a comprehensive introduction to order theory, see, e.g., [10].

In the course of this work, the set X will be equipped with various preorders \preccurlyeq , i.e.,
relations satisfying both

(a) reflexivity : for all x\in X, x\preccurlyeq x; and
(b) transitivity : for all x, y, z \in X, if both x\preccurlyeq y and y\preccurlyeq z, then x\preccurlyeq z.

For any such preorder, we will write x\asymp x\prime if both x\preccurlyeq x\prime and x\succcurlyeq x\prime hold true, in which case
x and x\prime are called equivalent1 in the preorder; we write x\prec x\prime if x\preccurlyeq x\prime but x \not \succcurlyeq x\prime .

If at least one of x\preccurlyeq x\prime and x\succcurlyeq x\prime holds true, then we call x and x\prime comparable; if neither
holds, then we call them incomparable and write x \| x\prime . A preorder \preccurlyeq is total or linear if
there are no incomparable elements. A subset of X on which \preccurlyeq is total is called a chain, and
a subset for which every two distinct elements are incomparable is called an antichain.

We highlight and contrast two notions of a ``biggest"" element for a preorder.

Definition 2.2. Let X be a set equipped with a preorder \preccurlyeq .
(a) g \in X is a greatest element if, for every x\in X, g\succcurlyeq x.
(b) m \in X is a maximal element if, whenever x \in X is such that m \preccurlyeq x, it follows that

m \succcurlyeq x (and hence m \asymp x). Equivalently, m is maximal if there is no x \in X with
x\succ m.

(c) u\in X is an upper bound for A\subseteq X if, for all x\in A, u\succcurlyeq x.

Note in particular that a greatest element is also a maximal element, but it must addi-
tionally be comparable to (and dominate) every element of X. On the other hand, a maximal
element is only required to dominate those elements of X with which it is comparable, and
those elements could constitute a rather small subset of X.

The most famous statement about the existence of maximal elements is Zorn's lemma:
under the axiom of choice, if (X,\preccurlyeq ) is a preordered space in which every chain Y \subseteq X has an
upper bound, then X has at least one maximal element. However, Zorn's lemma says nothing
about the existence of greatest elements.

We write \uparrow Y := \{ x \in X | x \succcurlyeq y for some y \in Y \} for the upward closure of Y \subseteq X and
further write, for y \in X, \uparrow y := \uparrow \{ y\} = \{ x\in X | x\succcurlyeq y\} , so that \uparrow Y =

\bigcup 
y\in Y \uparrow y.

Finally, since many of the preorders we consider will be parametrized by radius r \geqslant 0,
we will write \preccurlyeq r for the preorder, \| r for the induced relation of incomparability, \uparrow r Y for the
upward closure of Y with respect to \preccurlyeq r, etc.

3. Overview of related work. Modes, loosely understood as points of maximum proba-
bility, arise in many areas of pure and applied mathematics. Two application domains where
modes are particularly prominent are the analysis of the transition paths of random dynamical
systems and the Bayesian approach to inverse problems.

The random dynamical systems setting is exemplified by mathematical models of chemical
reactions using diffusion processes. One is typically interested in the (rare) transitions of the
process from one energy well or metastable state to another, and in particular one wishes to
understand the transition paths that a diffusion process is most likely to take. This amounts

1A preorder \preccurlyeq is called a partial order if it is antisymmetric, i.e., if x\asymp x\prime =\Rightarrow x= x\prime , but almost none of
the preorders that we consider will actually be partial orders.
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1199

to a study of the modes of the law \mu of the diffusion process on the associated path space X;
e.g., for a molecule consisting of n atoms in three-dimensional space, X =C([0, T ];\BbbR 3n). The
modes of \mu are understood as minimum-action paths, and the behavior of \mu near the mode is
quantified using Freidlin--Wentzell theory or large deviations theory [11, 13, 14].

In the Bayesian approach to inverse problems [17, 26], the reconstruction of an X-valued
parameter of interest from observed Y -valued data is expressed in the form of a probability
measure \mu \in P(X), the posterior distribution. In many modern inverse problems, particularly
those coupled to partial differential equations, the space X is an infinite-dimensional function
space or a high-dimensional discretization of such a space, e.g., via a system of finite elements.

The posterior measure \mu arises from three ingredients: a prior measure \mu 0 \in P(X), which
encodes (subjective) beliefs about the parameter that are held in advance of knowing the
observation mechanism or the specific data that are observed; a likelihood model, i.e., a family
of probability measures L( \cdot | x)\in P(Y ), one for each x\in X, which models how observed data
would be expected to arise if the parameter value x were the truth; and a specific observed
instance of the data, a point y \in Y . Strictly speaking, the posterior measure \mu is defined as
the disintegration (conditional distribution) of the joint measure \nu (dx,dy) :=L(dy| x)\mu 0(dx)\in 
P(X \times Y ) along the y-fiber [6]. For simplicity, however, we often concentrate on the case
that \mu has a density with respect to \mu 0 given by Bayes' formula,

(3.1) \mu (dx) =
exp( - \Phi (x;y))\mu 0(dx)\int 

X exp( - \Phi (x\prime ;y))\mu 0(dx\prime )
,

where \Phi : X\times Y \rightarrow \BbbR is called the potential. In simple settings with dimY <\infty , the Lebesgue
probability density of L( \cdot | x) is proportional to exp( - \Phi (x; \cdot )) and \Phi can be interpreted as a
nonnegative misfit functional. The case of infinite-dimensional data, dimY =\infty , is consider-
ably more subtle and does not generally admit a density for \mu with respect to \mu 0 as in (3.1);
see, e.g., [26, Remark 3.8] and [21, Remark 9].

Since the full posterior distribution \mu can be a rather intractable object, it is often desirable
to have access to a convenient point summary: the two principal such point estimators are the
conditional mean estimator (i.e., the mean of \mu ) and a maximum a posteriori estimator (i.e.,
a mode, or point of maximum probability, for \mu ), and here we focus on this second approach.
Heuristically, at least when X = \BbbR d, a MAP estimator is just an essential maximizer of the
Lebesgue density of \mu , i.e. a minimizer of the sum of \Phi ( \cdot ;y) and the negative logarithm of
the Lebesgue density of \mu 0. However, this definition is not effective if we have no access to
Lebesgue densities; in particular, it makes no sense when dimX =\infty [27].

To handle the general infinite-dimensional case, various definitions of modes/MAP esti-
mators have been advanced over recent years, and we summarize them here.2 One approach
[12] is to understand a mode of the path measure \mu of a diffusion process as a minimizer of
the Onsager--Machlup (OM) functional I\mu of \mu , which is defined by the relation

(3.2) lim
r\rightarrow 0

\mu (Br(x))

\mu (Br(x\prime ))
=

exp( - I\mu (x))

exp( - I\mu (x\prime ))
for x,x\prime \in X.

2The definitions of [7, 9, 16] were all stated in the case of a separable Banach space X, but they generalize
easily to the metric setting, as given here. Also, their definitions used open rather than closed balls.
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D
ow

nl
oa

de
d 

10
/2

0/
23

 to
 1

93
.6

0.
22

0.
25

3 
by

 T
im

 S
ul

liv
an

 (
t.j

.s
ul

liv
an

@
w

ar
w

ic
k.

ac
.u

k)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1200 HEFIN LAMBLEY AND T. J. SULLIVAN

In some sense, I\mu is a formal negative log-density for \mu , but it is in general only a partially
defined extended-real-valued function. For example, the OM functional of a Gaussian measure
on a Hilbert space is finite only on the Cameron--Martin space. The rigorous interpretation
of modes as minimizers of I\mu requires considerable care, especially since in some cases it is
not even possible to assign +\infty as an exceptional value for I\mu : the ratio in (3.2) may oscillate
and fail to converge as r\rightarrow 0.

A strong mode of \mu was defined by [9] to be any x \star \in X such that

lim
r\rightarrow 0

\mu (Br(x
 \star ))

Mr
= 1,(3.3)

Mr := sup
x\in X

\mu (Br(x)).(3.4)

(By Corollary SM1.2, separability of X ensures that supp(\mu ) \not = \varnothing and Mr > 0.) Any strong
mode must lie in supp(\mu ), and the ratio in (3.3) is at most 1 for every choice of x \star \in X, so

(3.5) x \star is a strong mode \Leftarrow \Rightarrow lim inf
r\rightarrow 0

\mu (Br(x
 \star ))

Mr
\geqslant 1 \Leftarrow \Rightarrow limsup

r\rightarrow 0

Mr

\mu (Br(x \star ))
\leqslant 1.

However, [7] observed that even elementary absolutely continuous measures on \BbbR such as
\mu (E) :=

\int 
E\cap [ - 1,1]| x| dx do not have strong modes, even though the Lebesgue density of \mu is

clearly maximized at \pm 1. Therefore, they call x \star \in X a generalized strong mode if, for every
positive null sequence (rn)n\in \BbbN , there exists a sequence (xn)n\in \BbbN converging to x \star such that

(3.6) lim
n\rightarrow \infty 

\mu (Brn(xn))

Mrn

= 1.

Motivated by (3.5), x \star \in supp(\mu )\subseteq X is called a weak mode [16] if3

(3.7) limsup
r\rightarrow 0

\mu (Br(x
\prime ))

\mu (Br(x \star ))
\leqslant 1 for all x\prime \in X.

As a point of terminology, [16] were primarily interested in the restricted case that x\prime \in x \star +E,
where x \star \in E and E is a topologically dense linear subspace of a Banach space X, and [23]
later called this case an E-weak mode. Conversely, [3] call x \star satisfying (3.7) a global weak
mode. Since we are only going to consider global weak modes, we can simply call them weak
modes without any ambiguity.

Under the assumption that the OM functional I\mu of \mu is real-valued on \varnothing \not =E \subseteq X and

(3.8) for some x\in E and all x\prime \in X \setminus E, lim
r\rightarrow 0

\mu (Br(x
\prime ))

\mu (Br(x))
= 0,

which [3, Definition 3.1] call property M(\mu ,E), I\mu can be regarded as having the value +\infty 
on X\setminus E and weak modes are precisely minimizers of this extended version of I\mu . This en-
abled [3, 4] to establish a stability and convergence theory for weak modes in terms of the

3In fact, [16] used ``lim"" in place of ``limsup"" in (3.7), implicitly assuming the existence of the limit.
However, as [3] observe, this yields an unsatisfying definition because it excludes the case in which the ratio
oscillates, while remaining bounded away from unity, from being a weak mode. The desirable implication
``strong mode =\Rightarrow weak mode"" fails for the original ``lim"" version of the definition, but holds for the ``limsup""
version.
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1201

\Gamma -convergence and equicoercivity of the associated OM functionals.4 Furthermore, as we show
below in Lemma 5.3, weak modes are exactly the greatest elements of a natural preorder \preccurlyeq 0

on X, namely the one induced by the limiting ratios of masses of balls in the small-radius
limit (Definition 5.1).

There are also local versions of the strong and weak modes [1], in which x \star is only compared
to points in a sufficiently small ball B\delta (x

 \star ), \delta > 0, analogous to local maximizers of the
Lebesgue probability density function/local minimizers of the OM functional.

For \mu of the form (3.1) with \mu 0 Gaussian andX Hilbert, [9] proved that \mu has a strong mode
by studying maximizers of the radius-r ball mass x \mapsto \rightarrow \mu (Br(x)) for fixed r > 0---which we call
radius-r modes in section 4---and arguing that a sequence of such maximizers must converge
to a strong mode. The arguments of [9] assume the existence of radius-r modes without proof;
in subsection 4.2, we prove results on the existence of radius-r modes in various settings but
also provide examples that have no such radius-r modes. Despite the contributions of [9],
[19], and [18], among others---and our own offerings---a surprising amount is still unknown
about the existence of radius-r modes, let alone weak and strong modes, even for ``nicely""
reweighted Gaussian measures on Banach spaces.

4. The positive-radius preorder.

4.1. Definition and basic properties. A probability measure on a metric space X induces
a family of preorders on X, one for each positive radius, in a very straightforward way.

Definition 4.1 (positive-radius preorder). Let X be a metric space and let \mu \in P(X). For
each r > 0, define a relation \preccurlyeq r on X by

x\preccurlyeq r x
\prime \Leftarrow \Rightarrow \mu (Br(x))\leqslant \mu (Br(x

\prime )).(4.1)

It is almost trivial to verify that \preccurlyeq r satisfies the axioms for a preorder. We will write
x \asymp r x

\prime if both x \preccurlyeq r x
\prime and x \succcurlyeq r x

\prime hold, and x \| r x\prime if neither x \preccurlyeq r x
\prime nor x \succcurlyeq r x

\prime holds. In
fact, though, incomparability never arises for this preorder: totality of the usual order \leqslant on
\BbbR implies totality of \preccurlyeq r on X. Totality implies that the maximal and greatest elements of X
with respect to \preccurlyeq r coincide (Lemma 4.3), which simplifies the discussion considerably.

Upward closures with respect to \preccurlyeq r are notably well behaved. In particular, Lemma 4.2(b)
says that the relation \preccurlyeq r is upper semicontinuous [2, p. 44].

Lemma 4.2 (closedness, boundedness, and noncompactness of upward closures). Let X be a
metric space, let \mu \in P(X), and fix r > 0.

(a) For each t\geqslant 0, \{ x\prime \in X | \mu (Br(x
\prime ))\geqslant t\} is closed.

(b) For each x\in X, \uparrow r x := \{ x\prime \in X | x\prime \succcurlyeq r x\} is closed.
(c) For each t > 0, \{ x\prime \in X | \mu (Br(x

\prime )) \geqslant t\} is bounded, with separation measure of
noncompactness \gamma (\{ x\prime \in X | \mu (Br(x

\prime ))\geqslant t\} )\leqslant 2r.
(d) For each x\in X with \mu (Br(x))> 0, \uparrow r x is bounded with \gamma (\uparrow r x)\leqslant 2r.

4Frustratingly, while there are some situations in which strong modes can be characterized as minimizers of
OM functionals [1, 9], there are also situations in which this correspondence breaks down, even when property
M(\mu ,E) holds [3, Example B.5].
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1202 HEFIN LAMBLEY AND T. J. SULLIVAN

Proof. Claim (a) is immediate from the upper semicontinuity of the map x \mapsto \rightarrow \mu (Br(x))
(Lemma SM1.1(a)), and (b) is a special case of claim (a).

Now fix t > 0 and suppose for a contradiction that (xn)n\in \BbbN is an unbounded sequence
in \{ x\prime \in X | \mu (Br(x

\prime )) \geqslant t\} . By passing to a subsequence if necessary, we may assume that
d(xn, xn\prime )> 2r for all distinct n,n\prime \in \BbbN . We thus obtain the contradiction that

1 = \mu (X)\geqslant \mu 

\Biggl( \biguplus 
n\in \BbbN 

Br(xn)

\Biggr) 
=
\sum 
n\in \BbbN 

\mu (Br(xn))\geqslant 
\sum 
n\in \BbbN 

t=\infty .

This shows that \{ x\prime \in X | \mu (Br(x
\prime ))\geqslant t\} must be bounded and also that it admits no infinite

subset with separation 2r, thus establishing (c), of which (d) is a special case.

4.2. Existence and absence of greatest elements. Our first aim is to establish existence
of greatest elements for \preccurlyeq r, which we also call radius-r modes. Such points can be seen as
approximate modes5 with respect to the positive radius/spatial resolution r; only in the next
section will we attempt to take the limit as r\searrow 0.

Lemma 4.3 now gives several equivalent conditions for a point to be a radius-r mode. The
intersection criterion (d) will prove especially helpful in what follows, in the sense that we
establish existence of radius-r modes by showing that intersections of this type are nonempty.

Lemma 4.3 (characterization of radius-r modes). Let X be any metric space, let \mu \in P(X),
and let r > 0. As in (3.4), let Mr := supx\in X \mu (Br(x)). Then the following are equivalent and
if one (and hence any) holds, then x \star r \in X is called a radius-r mode:

(a) x \star r is a \preccurlyeq r-maximal element;
(b) x \star r is a \preccurlyeq r-greatest element;
(c) x \star r \in 

\bigcap 
x\in X \uparrow r x;

(d) x \star r \in 
\bigcap 

n\in \BbbN \uparrow r xn for some sequence (xn)n\in \BbbN \subseteq X with \mu (Br(xn))\nearrow Mr as n\rightarrow \infty ;
(e) \mu (Br(x

 \star 
r)) =Mr.

Proof. ((a)\Leftarrow \Rightarrow (b)) This equivalence holds because \preccurlyeq r is a total preorder.
((b)\Leftarrow \Rightarrow (c)) This equivalence is simply a restatement of the definition of being greatest.
((c) =\Rightarrow (d)) This implication is obvious, since

\bigcap 
n\in \BbbN \uparrow r xn \supseteq 

\bigcap 
x\in X \uparrow r x.

((d) =\Rightarrow (e)) Let (xn)n\in \BbbN be a sequence inX with \mu (Br(xn))\nearrow Mr and let x \star r \in 
\bigcap 

n\in \BbbN \uparrow r xn.
Then, for each n, \mu (Br(x

 \star 
r)) \geqslant \mu (Br(xn)), and taking the limit as n \rightarrow \infty shows that

\mu (Br(x
 \star 
r))\geqslant Mr. The definition of Mr implies that \mu (Br(x

 \star 
r))\leqslant Mr, and so \mu (Br(x

 \star 
r)) =Mr.

((e) =\Rightarrow (b)) Suppose that x \star r has \mu (Br(x
 \star 
r)) =Mr. Then, for any x \in X, \mu (Br(x))\leqslant Mr,

i.e., x\preccurlyeq r x
 \star 
r . Thus, x

 \star 
r is \preccurlyeq r-greatest.

A very simple existence result for radius-r modes is the following.

Proposition 4.4 (existence of radius-r modes in compact spaces). Let X be a compact metric
space, let \mu \in P(X), and let r > 0. Then \preccurlyeq r has at least one radius-r mode x \star r \in X.

Proof. This is a special case of Theorem 4.6(a), and it also follows from [2, Theorem 2.44],
but a self-contained proof is given by observing that the map \mu (Br( \cdot )) : X \rightarrow [0,1] is upper

5The intuition that radius-r modes are approximate modes must be treated skeptically. For example,
consider \mu \in P(X) with bimodal continuous Lebesgue density \rho (x)\propto max\{ 0,1 - 4(x - 1)2\} +max\{ 0,1 - 4(x+
1)2\} , for which a radius-1 mode is located at 0, which is neither a maximizer of \rho nor even in supp(\mu ).

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

0/
23

 to
 1

93
.6

0.
22

0.
25

3 
by

 T
im

 S
ul

liv
an

 (
t.j

.s
ul

liv
an

@
w

ar
w

ic
k.

ac
.u

k)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1203

semicontinuous (Lemma SM1.1(a)) and hence has at least one global maximizer x \star r in the
compact space X.

We now adopt a very different approach to establishing the existence of radius-r modes,
one based on applying intersection theorems to upward closures with respect to \preccurlyeq r. We begin
with a very general lemma; when Lemma 4.5 is used in practice, \scrT will often be the metric
topology, but another useful case is the weak topology of a Banach space.

Lemma 4.5. Let X be a separable metric space, \mu \in P(X), and r > 0. Suppose that \scrT is
a topology on X such that, for some sequence (xn)n\in \BbbN \subset X with \mu (Br(xn))\nearrow Mr > 0, \uparrow r xn
is \scrT -closed and \scrT -compact for all sufficiently large n. Then the set \frakM r of radius-r modes for
\mu is nonempty, \scrT -compact, and \frakM r =

\bigcap 
n\in \BbbN \uparrow r xn.

Proof. Separability of X implies that Mr > 0. Let (xn)n\in \BbbN be such that \mu (Br(xn))\nearrow Mr

as n \rightarrow \infty . The sets \uparrow r xn are nonempty; since the sequence (\mu (Br(xn)))n\in \BbbN is increasing,
\uparrow r xn+1 \subseteq \uparrow r xn for each n, i.e., they are decreasingly nested; by hypothesis, for sufficiently
large n, they are also \scrT -closed and \scrT -compact. Therefore, by Cantor's intersection theorem
(Theorem 2.1(a)), their intersection is nonempty and \scrT -compact. This intersection is precisely
the set \frakM r of radius-r modes, as already shown by Lemma 4.3.

Theorem 4.6 (existence of radius-r modes). Let X be a separable metric space, \mu \in P(X),
and r > 0. Let \frakM r denote the set of radius-r modes for \mu .

(a) Suppose that X has the Heine--Borel property, i.e., that every closed and bounded subset
of X is compact. Then \frakM r is nonempty and compact.

(b) Suppose that X is complete and that \mu is a doubling measure, i.e., there exists a
constant C > 0 such that \mu (B2r(x))\leqslant C\mu (Br(x)) for all x\in X and r > 0. Then \frakM r is
nonempty and compact.

(c) Suppose that X is complete and there exists a point o\in X and a function f : (0,\infty )2 \rightarrow 
(0,\infty ) such that

(4.2) for all x\in BR(o), \mu (B\delta (x))\geqslant f(\delta ,R)> 0.

Then \frakM r is nonempty and compact.
(d) Suppose that X is complete and that there exists (xn)n\in \BbbN with \mu (Br(xn)) \nearrow Mr and

\gamma (\uparrow r xn)\rightarrow 0 as n\rightarrow \infty . Then \frakM r is nonempty and compact.
(e) Suppose that X is complete and that there exists (xn)n\in \BbbN with \mu (Br(xn)) \nearrow Mr and

diam(\uparrow r xn)\rightarrow 0 as n\rightarrow \infty . Then \frakM r is a singleton.
(f) Suppose that X is a Banach space and that there exists (xn)n\in \BbbN with \mu (Br(xn))\nearrow Mr

and that \uparrow r xn is weakly compact for all sufficiently large n. Then \frakM r is nonempty
and weakly compact.

(g) Suppose that X is a reflexive Banach space and that there exists (xn)n\in \BbbN such that
\mu (Br(xn))\nearrow Mr and \uparrow r xn is convex for all sufficiently large n. Then \frakM r is nonempty,
weakly compact, and convex.

Proof.
(a) Lemma 4.2 ensures that every upward closure \uparrow r x, x \in X, is closed and bounded in

the metric topology on X. The claim now follows from Lemma 4.5.
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1204 HEFIN LAMBLEY AND T. J. SULLIVAN

(b) By [5, Proposition 3.1], any complete metric space with a doubling measure has the
Heine--Borel property. The claim now follows from (a).

(c) Let R> 0 and \delta > 0 be arbitrary. The lower bound (4.2) implies that there cannot be
an infinite set of pairwise-disjoint balls B\delta (xn), n \in \BbbN , with centers xn \in BR(o) since,
if there were, then we would obtain the contradiction

1\geqslant \mu (BR+\delta (o))\geqslant \mu 

\Biggl( \biguplus 
n\in \BbbN 

B\delta (xn)

\Biggr) 
=
\sum 
n\in \BbbN 

\mu (B\delta (xn))\geqslant 
\sum 
n\in \BbbN 

f(\delta ,R) =\infty .

Since \delta > 0 was arbitrary, \gamma (BR(o)) = 0, i.e., BR(o) is compact. Now, given any closed
and bounded set A \subseteq X, choose R > 0 large enough that A \subseteq BR(o) to see that A
must be compact. Therefore, X has the Heine--Borel property. The claim now follows
from (a).

(d) The claim follows from Kuratowski's intersection theorem (Theorem 2.1(c)).
(e) As already observed, by Lemma 4.2, each upward closure \uparrow r xn is both closed and

bounded in the metric topology and they are decreasingly nested. Since X is complete,
Cantor's intersection theorem (Theorem 2.1(b)) yields that \frakM r =

\bigcap 
n\in \BbbN \uparrow r xn = \{ x \star r\} 

for some x \star r \in X.
(f) This is simply Lemma 4.5 in the special case that \scrT is the weak topology of the

separable Banach space X.
(g) Each closed, bounded, and convex subset of the separable, reflexive Banach space X

is necessarily weakly compact, and so the claim follows from (f).

Theorem 4.6 is by no means universally applicable, and indeed there are measures that
have no radius-r modes, as the next two examples show.

Example 4.7 (an atomic measure with no radius-r mode for 1 \leqslant r < 2). Let X = \BbbN be
equipped with the following variant of the discrete metric:

(4.3) \Delta (k, \ell ) :=

\left\{     
0 if k= \ell ,

2 if min\{ k, \ell \} is odd and max\{ k, \ell \} =min\{ k, \ell \} + 1,

1 otherwise.

In the space (X,\Delta ), distinct points are a unit distance apart, with the exception of each
odd number and its successor, which are doubly spaced. Equip this space with the measure
\mu :=

\sum 
k\in \BbbN 2

 - k\delta k \in P(X), where \delta k is the unit Dirac measure centered at k. For arbitrary
k \in \BbbN ,

\mu (B1(2k - 1)) = \mu (X \setminus \{ 2k\} ) = 1 - 2 - 2k,(4.4)

\mu (B1(2k)) = \mu (X \setminus \{ 2k - 1\} ) = 1 - 2 - (2k - 1).(4.5)

Both (4.4) and (4.5) show that M1 = 1; (4.4) shows that no odd number is a radius-1 mode;
(4.5) shows that no even number is a radius-1 mode. Thus, \mu has no radius-1 mode at all.

Similar arguments also show that \mu has no radius-r mode for 1 \leqslant r < 2; for r \geqslant 2, every
point of X is a radius-r mode; for 0< r < 1, the point 1\in X is the unique radius-r mode.
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1205

It is interesting to relate this example to Theorem 4.6. In this setting, for each k \in X,
\uparrow 1 k\supseteq \{ k, k+2, k+4, . . .\} . This set is noncompact with \gamma (\uparrow 1 k)\geqslant 1, since it contains an infinite
1-separated sequence. Thus, neither Theorem 4.6(a) nor (d) can apply. Also, although the
space (X,\Delta ) is complete,6 Theorem 4.6(e) does not apply because diam(\uparrow 1 k)\geqslant 1.

Example 4.8 (a nonatomic measure with no radius-r mode for any 0< r < 1/8). Building
on the ideas of Example 4.7, consider the space

X :=

\Biggl\{ 
(\xi , k,m)\in \BbbR \times \BbbN 2

\bigm| \bigm| \bigm| \bigm| \bigm| | \xi | \leqslant 2 - k - m - 1

\Biggr\} 
,(4.6)

equipped with the metric d and probability measure \mu given by

d((\xi , k,m), (\eta , \ell ,n)) :=

\left\{     
2 if m \not = n,

2 - m\Delta (k, \ell ) if m= n and k \not = \ell ,

| \xi  - \eta | if m= n and k= \ell ,

(4.7)

\mu 

\left(  \biguplus 
k,m\in \BbbN 

(Ek,m \times \{ k\} \times \{ m\} )

\right)  :=
1

Z

\sum 
k,m\in \BbbN 

\sigma  - m\lambda 1(Ek,m \cap [ - 2 - k - m - 1,2 - k - m - 1]),(4.8)

for Ek,m \in B(\BbbR ), where \lambda 1 is one-dimensional Lebesgue measure, 1/2 < \sigma < 1 is a scaling
parameter, and the normalization constant is Z :=

\sum 
m\in \BbbN (2\sigma )

 - m \in (1,\infty ).
Now let 0< r < 1/8 be arbitrary and let n\in \BbbN be uniquely determined by 2 - n \leqslant r < 2 - n+1.

We now determine Mr and whether or not it can be attained by the masses of balls Br(x),
where x= (\xi , k,m) has m= n, m<n, or m>n, respectively. Note that, since r < 2, the first
case of (4.7) implies that Br(x)\subseteq \BbbR \times \BbbN \times \{ m\} .

(i) First suppose that m= n. For odd k \in \BbbN ,

\mu (Br(x)) = \mu (\BbbR \times (\BbbN \setminus \{ k+ 1\} )\times \{ m\} ) = (2\sigma ) - m

Z
(1 - 2 - (k+1)).

Taking the limit as k\rightarrow \infty shows that Mr \geqslant 
(2\sigma ) - n

Z but that no such ball realizes this
supremal mass. The case of even k is similar, just as in Example 4.7.

(ii) For m>n, since Br(x)\subseteq \BbbR \times \BbbN \times \{ m\} , it follows that x is not a radius-r mode because

\mu (Br(x))\leqslant 
(2\sigma ) - m

Z
<

(2\sigma ) - n

Z
\leqslant Mr.

(iii) If m < n, then r < 2 - n < 2 - m, and so the second case of (4.7) ensures that Br(x) \subseteq 
\BbbR \times \{ k\} \times \{ m\} . The mass of such a ball is maximized by the case \xi = 0, k = 1,
m= n - 1, in which case the ball (which is a single line segment) has mass

6Just as in the case of the discrete metric, in this space, the properties of being a Cauchy sequence, being
a convergent sequence, and being eventually constant all coincide.
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1206 HEFIN LAMBLEY AND T. J. SULLIVAN

\mu (Br(x)) =
\sigma  - m

Z
\lambda 1([ - r, r]\cap [ - 2 - k - m - 1,2 - k - m - 1])

\leqslant \sigma 
\sigma  - n

Z
\lambda 1([ - 2 - n,2 - n]\cap [ - 2 - n - 1,2 - n - 1])

= \sigma 
(2\sigma ) - n

Z
<

(2\sigma ) - n

Z
,

where the last inequality follows from the fact that \sigma < 1.
Hence, Mr =

(2\sigma ) - n

Z but \mu (Br(x))<Mr for all x\in X, i.e., \mu has no radius-r mode.

Thus, while Theorem 4.6 on the existence of radius-r modes covers a variety of well-
behaved spaces and measures, Examples 4.7 and 4.8 show that existence cannot be guaranteed
for general spaces and measures.

Before moving on, we mention one interesting intermediate case, motivated by applications
to inverse problems, namely countable product measures on weighted \ell p spaces (and isometric
linear images of such spaces). This is a broad class that includes Gaussian, Besov [8, 22],
and Cauchy measures [28]. It turns out that reweightings of such measures always have
radius-r modes, i.e., Bayesian posteriors with such measures as priors always have radius-r
MAP estimators. We defer the precise statements to Theorem SM1.8 and Corollary SM1.9 in
subsection SM1.2 because they do not have a particularly order-theoretic flavor.

Also, while we do prove the existence of radius-r modes, we do not consider taking limits
as r \rightarrow 0 to obtain true MAP estimators for such posteriors. The main difficulty here lies in
proving that such a family (x \star r)r>0 is bounded, so that a weakly convergent subsequence can
be extracted; this is not true in general, so one must argue using properties of the prior and
likelihood (e.g., when the prior is Gaussian or Besov).

Indeed, the whole question of taking limits of radius-r modes is a sensitive one and is the
topic of the next section.

4.3. Convergence of greatest and near-greatest elements. If radius-r modes x \star r do exist
for each r > 0, it is then natural to ask whether sequences of radius-r modes can approximate
true modes, e.g., strong or weak modes. This approach is used by [9, Theorem 3.5] to obtain
strong modes for Bayesian posteriors arising from Gaussian priors.

However, we have seen that existence of radius-r modes can be difficult to prove, and in
some cases no radius-r modes exist (Examples 4.7 and 4.8). Taking limits of radius-r modes
is also problematic for more general measures: the limit need not be a strong or weak mode,
and not every mode can be represented as the limit of radius-r modes. Thus, one cannot
hope to use the approach of taking limits of radius-r modes to find true modes if there is no
correspondence between modes and limits of radius-r modes. Nevertheless, we show that some
of the difficulties can be overcome using asymptotic maximizing families (AMFs) as proposed
by [18].

To illustrate the problem and motivate the introduction of AMFs, we first give an example
of a measure with a bounded and continuous Lebesgue density possessing a mode that cannot
be represented as the limit of radius-r modes. The problem here is that balls around the
points \pm 1 have asymptotically equivalent mass, but each ball around +1 has slightly more
mass than the corresponding ball around  - 1; as a result, +1 ``hides"" the other mode  - 1.
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1207

(a) Unnormalised density (4.9) of the measure in
Example 4.9. The point +1 is the unique radius-r
mode for all sufficiently small r.

(b) The ratio µ(Br(+1))/µ(Br(−1)) converges to 1 as
r → 0, but it is strictly greater than 1 for any
r > 0.

Figure 4.1. Not every strong mode is the limit of a sequence of radius-r modes: in Example 4.9,  - 1 is a
strong mode but +1 is the unique radius-r mode for all small r.

Example 4.9. Define \mu \in P(\BbbR ) by the Lebesgue density as shown in Figure 4.1, given by

(4.9) \rho (x)\propto max\{ 1 - (x - 1)2,0\} +max\{ 1 - (x+ 1)2  - (x+ 1)4,0\} .

When r is sufficiently small, \mu (Br(+1)) = 2r - 2
3r

3 and \mu (Br( - 1)) = 2r - 2
3r

3 - 2
5r

5, so there is
a unique radius-r mode at +1. However, +1 and  - 1 are both strong modes: +1 is a radius-r
mode for all sufficiently small r, so it is a strong mode (Theorem 4.11) and  - 1 is a strong
mode because

lim
r\rightarrow 0

\mu (Br( - 1))

Mr
= lim

r\rightarrow 0

\mu (Br(+1))

Mr
lim
r\rightarrow 0

\mu (Br( - 1))

\mu (Br(+1))
= 1.

Instead of representing modes as limits of radius-r modes---which might not be possible---
one may consider families of points that are nearly greatest, which always exist, and try to
take limits of such families.

Definition 4.10. Let X be a metric space and let \mu \in P(X). A net (xr)r>0 \subseteq X is an AMF
if there exists a positive function \varepsilon with limr\rightarrow 0 \varepsilon (r) = 0 and

(4.10)
\mu (Br(xr))

Mr
\geqslant 1 - \varepsilon (r) for all r > 0.

Note that every measure admits an AMF satisfying (4.10), even if the function \varepsilon is specified
in advance, which is sometimes advantageous.

The following results shed light on the subtleties involved in taking limits of radius-r
modes, or, more generally, AMFs.

Theorem 4.11. Let X be a separable metric space and let \mu \in P(X).
(a) If (x \star )r>0 is an AMF with x \star \in X fixed, then x \star is a strong mode.
(b) If x \star is a radius-r mode for all small enough r > 0, then x \star is a strong mode.
(c) If the AMF (x \star r)r>0 converges to x \star , then x \star is a generalized strong mode.
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1208 HEFIN LAMBLEY AND T. J. SULLIVAN

Proof.
(a) As \mu (Br(x

 \star ))\geqslant (1 - \varepsilon (r))Mr, it is immediate that x \star is a strong mode, because

1\geqslant lim
r\rightarrow 0

\mu (Br(x
 \star ))

Mr
\geqslant lim

r\rightarrow 0
(1 - \varepsilon (r)) = 1.

(b) This is immediate from (a) as (x \star )r>0 forms an AMF.
(c) This is precisely [7, Lemma 2.4].

The claim in (c)---which requires that the net (x \star r)r>0 converges to x \star along every
subsequence---cannot be made stronger without additional hypotheses: the limit x \star need
not be a strong or weak mode (as can be seen in Example 5.4(a), for which x \star = 1 is the
limit of an AMF which is neither a strong mode nor a weak mode). Furthermore, one cannot
weaken the hypotheses of (c) further: the points \pm 1 in Example 5.7 are limit points of an
AMF but they are not even generalized modes.

The general question of classifying measures \mu for which limits of radius-r modes are strong
modes is still open, although [9] show that reweightings of Gaussian measures on Hilbert spaces
enjoy this property, and [18] show the same for some Gaussian measures on sequence spaces.

Under an additional nesting assumption, intersection arguments can be applied to AMFs
to yield the existence of several kinds of modes.

Theorem 4.12 (AMFs and strong modes). Let X be a complete and separable metric space
and let \mu \in P(X). Let (xr)r>0 be any AMF, i.e., any net satisfying (4.10), and let I :=\bigcap 

r>0 \uparrow r xr. Then
(a) I \subseteq supp(\mu );
(b) every x \star \in I is a strong (and hence weak and generalized strong) mode for \mu ;
(c) and if also

(4.11) 0< r\leqslant s =\Rightarrow \uparrow r xr \subseteq \uparrow s xs,

then I is nonempty and compact.

Proof. Let x \star \in I. For all sufficiently small r > 0, it follows that \mu (Br(x
 \star ))\geqslant \mu (Br(xr))\geqslant 

Mr(1 - \varepsilon (r)) > 0, and so x \star \in supp(\mu ), which establishes (a). Furthermore, since x \star \in \uparrow r xr
for each r,

1\geqslant 
\mu (Br(x

 \star ))

Mr
\geqslant 

\mu (Br(xr))

Mr
\geqslant 1 - \varepsilon (r).

Taking the limit as r\rightarrow 0 throughout shows that x \star is a strong mode (and hence also a weak
and generalized strong mode) for \mu , establishing (b). (Alternatively, one may observe that
(x \star )r>0 is a constant AMF and appeal to Theorem 4.11(a).)

For (c), let (rn)n\in \BbbN be some null sequence of radii. The nesting hypothesis (4.11) im-
plies that I =

\bigcap 
n\in \BbbN \uparrow rn xrn . For each n, \uparrow rn xrn is nonempty and, by Lemma 4.2, is closed

and bounded with \gamma (\uparrow rn xrn) \leqslant 2rn. This, together with the nesting hypothesis (4.11)
and Kuratowski's intersection theorem (Theorem 2.1(c)), ensures that I is nonempty and
compact.
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1209

Remark 4.13.
(a) The nesting hypothesis (4.11), in conjunction with Lemma 4.2, ensures that the AMF

(xr)r>0---and indeed any family of greatest elements (x \star r)r>0---must be bounded. This
means that Theorem 4.12 does not apply to measures such as Example 5.4(b), for
which the radius-r modes ``escape to infinity"" as r \rightarrow 0. Hypothesis (4.11) also fails
for measures displaying oscillatory behavior of the kind discussed in Example 5.7.

(b) Theorem 4.12 is not sharp, in the sense that there can exist modes x \star /\in 
\bigcap 

r>0 \uparrow r xr.
See Example 4.9 for an example of this situation with

xr \equiv +1, \uparrow r xr = \{ +1\} , x \star = - 1 /\in 
\bigcap 
r>0

\uparrow r xr.

5. Preorders in the small-radius limit. One would like to think of x \star \in X as a mode of
\mu \in P(X) if x \star is a greatest or maximal element of X with respect to the preorder \preccurlyeq r ``in
the limit as r \rightarrow 0"" in some sense. However, is such a limiting preorder well defined? Must
this preorder have greatest or maximal elements?

In fact, there are several candidates for a small-radius limiting preorder and it appears
that each of them has at least one undesirable feature. This work will focus on the analytic
small-radius limiting preorder \preccurlyeq 0, to be defined shortly (Definition 5.1). This preorder has
the advantage that its greatest elements are weak modes; however, it has the disadvantage
that it is not total, i.e., the existence of greatest elements is not guaranteed, and indeed the
collection of incomparable elements may be rather large. We claim that this is a small price
to pay: we show in section SM2 that the alternative definitions are even more ill behaved.

5.1. Definition and basic properties.
Definition 5.1 (small-radius limiting preorder). Let X be a metric space and let \mu \in P(X).

Define a preorder \preccurlyeq 0 on X by

x\preccurlyeq 0 x
\prime \Leftarrow \Rightarrow limsup

r\rightarrow 0

\mu (Br(x))

\mu (Br(x\prime ))
\leqslant 1 \Leftarrow \Rightarrow lim inf

r\rightarrow 0

\mu (Br(x
\prime ))

\mu (Br(x))
\geqslant 1(5.1)

if both x,x\prime \in supp(\mu ). Additionally, as exceptional cases, x \preccurlyeq 0 x\prime is defined to be false for
x\in supp(\mu ) and x\prime /\in supp(\mu ), and x\preccurlyeq 0 x

\prime is defined to be true for x /\in supp(\mu ) and x\prime \in X.

It is relatively straightforward to verify that \preccurlyeq 0, as defined above, is a preorder on X; the
only subtleties are correct handling of points outside the support and the use of the upper
bound (but not equality)

(5.2) limsup
r\rightarrow 0

\mu (Br(x))

\mu (Br(y))

\mu (Br(y))

\mu (Br(z))
\leqslant limsup

r\rightarrow 0

\mu (Br(x))

\mu (Br(y))
limsup

r\rightarrow 0

\mu (Br(y))

\mu (Br(z))

when verifying transitivity. As usual, we will write x \asymp 0 x
\prime if both x \preccurlyeq 0 x

\prime and x \succcurlyeq 0 x
\prime hold,

and x \| 0 x\prime if neither x\preccurlyeq 0 x
\prime nor x\succcurlyeq 0 x

\prime holds.
The appeal of the preorder \preccurlyeq 0 is that its greatest elements are exactly the weak modes of

\mu , as defined in (3.7), as the next two results show.

Lemma 5.2 (properties of \preccurlyeq 0-maximal elements). Let X be separable and let \mu \in P(X).
(a) If x \star is \preccurlyeq 0-maximal, then x \star \in supp(\mu ).
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1210 HEFIN LAMBLEY AND T. J. SULLIVAN

(b) The point x \star \in supp(\mu ) is \preccurlyeq 0-maximal if and only if any x\in X satisfies either

(5.3) lim inf
r\rightarrow 0

\mu (Br(x))

\mu (Br(x \star ))
< 1 or lim

r\rightarrow 0

\mu (Br(x))

\mu (Br(x \star ))
= 1.

Proof.
(a) Suppose that x \star is maximal but, for a contradiction, suppose also that x \star /\in supp(\mu ).

As X is separable, take x \in supp(\mu ) \not = \varnothing . By the exceptional cases of Definition 5.1,
x \star \prec 0 x, contradicting the assumption that x \star is maximal.

(b) Let x,x\prime \in supp(\mu ). It is straightforward to verify from the definitions that

x\prec 0 x
\prime \Leftarrow \Rightarrow lim inf

r\rightarrow 0

\mu (Br(x))

\mu (Br(x\prime ))
< 1,(5.4)

x\asymp 0 x
\prime \Leftarrow \Rightarrow lim

r\rightarrow 0

\mu (Br(x))

\mu (Br(x\prime ))
= 1.(5.5)

Suppose first that x \star is maximal, and let x \in X be arbitrary. If x /\in supp(\mu ), then
\mu (Br(x)) = 0 for all sufficiently small r, so (5.3) holds. If x\in supp(\mu ), then maximality
of x \star implies that either x\prec 0 x

 \star or x\asymp 0 x
 \star , from which (5.3) follows.

Conversely, suppose that x \in X satisfies x \star \preccurlyeq 0 x. The exceptional cases in Defini-
tion 5.1 imply that x \in supp(\mu ). Hence, by (5.5), x \star \asymp 0 x, proving that x \star is \preccurlyeq 0-
maximal.

Lemma 5.3 (characterization of weak modes). Let X be separable and let \mu \in P(X). Then
the following are equivalent:

(a) x \star \in X is a weak mode for \mu ;
(b) x \star \in X is a \preccurlyeq 0-greatest element;
(c) x \star \in X is a \preccurlyeq 0-maximal element that is comparable with every other x\prime \in X.

Proof. ((a) =\Rightarrow (b)) Suppose that x \star is a weak mode for \mu . Then, by definition (see (3.7)),
it follows that x\preccurlyeq 0 x

 \star for each x \in supp(\mu ). As x \star \in supp(\mu ), any point x /\in supp(\mu ) satisfies
x\preccurlyeq 0 x

 \star by the special cases in the definition of \preccurlyeq 0.
((b) =\Rightarrow (a)) Suppose that x \star is a \preccurlyeq 0-greatest element. Then x \star \in supp(\mu ) by Lemma 5.2.

Hence, for x\prime \in supp(\mu ), (3.7) holds because x\prime \preccurlyeq 0 x
 \star . For x\prime /\in supp(\mu ), we obtain

\mu (Br(x
\prime ))

\mu (Br(x \star ))
= 0 for sufficiently small r,

proving that x \star is a weak mode.
((b)\Leftarrow \Rightarrow (c)) This is obvious, since the defining property of being greatest is exactly the

property of being maximal and globally comparable.

The preorder \preccurlyeq 0 does have some shortcomings. One is that, in contrast to \preccurlyeq r with r > 0
(Lemma 4.2), upward closures under \preccurlyeq 0 need be neither closed nor bounded.

Example 5.4.
(a) For an example of a nonclosed upward closure under\preccurlyeq 0, similar in spirit to the example

of [7] mentioned in section 3, let \mu \in P(\BbbR ) have the Lebesgue density \rho : \BbbR \rightarrow \BbbR ,
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1211

\rho (x) := 2x1[0 \leqslant x \leqslant 1], with supp(\mu ) = [0,1], and consider y \in \BbbR . If y < 0 or y > 1,
then y /\in supp(\mu ) and \uparrow 0 y =\BbbR . For 0\leqslant y \leqslant 1/2, \uparrow 0 y = [y,1], which is closed. However,
for 1/2 < y < 1,

lim
r\rightarrow 0

\mu (Br(1))

\mu (Br(y))
= lim

r\rightarrow 0

2r - r2

4yr
=

1

2y
< 1

and so \uparrow 0 y= [y,1), which is not closed. Finally, \uparrow 0 1 = [1/2,1], which is closed.
(b) For an example of an unbounded upward closure under \preccurlyeq 0, let \mu \in P(\BbbR ) have the

unbounded Lebesgue density \rho : \BbbR \rightarrow \BbbR ,

\rho (x) :=
\sum 
n\in \BbbN 

n1[n - 2 - n - 1

n \leqslant x\leqslant n+ 2 - n - 1

n ].

That is, \rho consists of a sum of disjoint indicator functions centred on the natural
numbers n\in \BbbN , each having mass 2 - n and height n. Then, for any x, y \in \BbbN with x> y,

lim
r\rightarrow 0

\mu (Br(x))

\mu (Br(y))
= lim

r\rightarrow 0

2xr

2yr
=

x

y
> 1

and so \uparrow 0 y\supseteq \BbbN \cap [y,\infty ).

Example 5.4 furnishes two examples of measures with no \preccurlyeq 0-maximal element, let alone
a \preccurlyeq 0-greatest element (weak mode), or strong mode. However, these examples are relatively
tame: there is no mode simply because any candidate mode x \star is dominated by some other
point x\prime . The real shortcoming and subtlety of \preccurlyeq 0 is that it is not total---that is, the order
admits incomparable elements---and we make this the topic of the next subsection.

5.2. Criteria for incomparability and comparability. For r > 0, totality of \preccurlyeq r followed
immediately from Definition 4.1. This is certainly not so obvious for \preccurlyeq 0. Indeed, what is im-
mediate from Definition 5.1 is that \preccurlyeq 0-incomparable elements can be characterized as follows.

Lemma 5.5 (incomparability in the limiting preorder). For x,x\prime \in X,

(5.6) x \| 0 x\prime \Leftarrow \Rightarrow x,x\prime \in supp(\mu ) and lim inf
r\rightarrow 0

\mu (Br(x))

\mu (Br(x\prime ))
< 1< limsup

r\rightarrow 0

\mu (Br(x))

\mu (Br(x\prime ))
.

In the other direction, we can give a (very strong) sufficient condition for two points to
be comparable under \preccurlyeq 0.

Lemma 5.6. Let X be any metric space and let \mu \in P(X). Suppose that on some interval
(0, r \star ), the function r \mapsto \rightarrow \mu (Br(x))/\mu (Br(x

\prime )) is uniformly continuous for x, x\prime \in supp(\mu ). Then x
and x\prime are \preccurlyeq 0-comparable.

Proof. The ratio function \mu (Br(x))/\mu (Br(x
\prime )) can be uniquely extended to a uniformly con-

tinuous function on [0, r \star ] [2, Lemma 3.11]. By continuity, the limit of the ratio function as
r\rightarrow 0 must exist; the result follows by Lemma 5.5.

The previous two lemmas hint at a way to construct concrete examples of measures with
incomparable points under \preccurlyeq 0: one must choose the masses around two points such that the
ratio of the masses of balls around such points oscillates as r\rightarrow 0.
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1212 HEFIN LAMBLEY AND T. J. SULLIVAN

We now construct such a measure on \BbbR with a Lebesgue density and two \preccurlyeq 0-incomparable
maximal points, neither of which is\preccurlyeq 0-greatest. (Subsection 5.3 will supply even more extreme
and general examples, but it is pedagogically useful to consider a simpler construction first.)
The idea is to construct a density so that the measure \mu \in P(\BbbR ) induced by it has a specific
behavior around the points x=\pm 1. In this case, the density is chosen so that r \mapsto \rightarrow \mu (Br(x))
piecewise linearly interpolates the function r \mapsto \rightarrow 

\surd 
r through either the interpolation knots

r = a - n with n \in \BbbN even or the interpolation knots r = a - n with n \in \BbbN odd, where a > 1
is chosen arbitrarily. It turns out that these mild perturbations of the integrable singularity
\rho (x)\propto | x|  - 1/2 produce ``incomparable modes.""

Example 5.7 (an absolutely continuous measure on \BbbR with incomparable maximal points
and neither weak nor generalized modes, after an example of I. Klebanov). Let X be any
Borel-measurable subset of \BbbR containing [ - 2,2]. Fix a > 1 and, as illustrated in Figure 5.1,
define \mu \mathrm{e}, \mu \mathrm{o} \in P(X) via their Lebesgue densities \rho \mathrm{e}, \rho \mathrm{o} : X \rightarrow [0,\infty ],

\rho \mathrm{e}(x) :=

\left\{         
0 if | x| > 1,

a
n/2(1 - a - 1)

2(1 - a - 2)
if a - 2 - n \leqslant | x| \leqslant a - n for even n\in \BbbN 0 :=\BbbN \cup \{ 0\} ,

\infty if x= 0,

and

\rho \mathrm{o}(x) :=

\left\{                   

0 if | x| > 1,

1 - a - 
1/2

2(1 - a - 1)
if a - 1 \leqslant | x| \leqslant 1,

a
n/2(1 - a - 1)

2(1 - a - 2)
if a - 2 - n \leqslant | x| \leqslant a - n for odd n\in \BbbN ,

\infty if x= 0,

so that the RCDFs are

\mu \mathrm{e}(Br(0)) =

\left\{         
1 if r\geqslant 1,

a - 1 - n/2 + (r - a - 2 - n)
a
n/2(1 - a - 1)

1 - a - 2
if a - 2 - n \leqslant r\leqslant a - n for even n\in \BbbN 0,

0 if r= 0,

and

\mu \mathrm{o}(Br(0)) =

\left\{                 

1 if r\geqslant 1,

a - 
1/2 + (r - a - 1)

1 - a - 
1/2

1 - a - 1
if a - 1 \leqslant r\leqslant 1,

a - 1 - n/2 + (r - a - 2 - n)
a
n/2(1 - a - 1)

1 - a - 2
if a - 2 - n \leqslant r\leqslant a - n for odd n\in \BbbN ,

0 if r= 0.

We now consider the probability measure \mu := 1
2\mu 

\mathrm{e}( \cdot +1)+ 1
2\mu 

\mathrm{o}( \cdot  - 1)\in P(X) with Lebesgue
density \rho := 1

2\rho 
\mathrm{e}( \cdot + 1) + 1

2\rho 
\mathrm{o}( \cdot  - 1).
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1213

(a) The RCDFs µe(Br(0)) and µo(Br(0)) (shown
on a linear scale) interpolate between the knots
a−n to give mild perturbations of the function
r 7→

√
r.

(b) The RCDFs µe(Br(0)) and µo(Br(0)) (shown
with a logarithmic scale for r) agree with the
function r 7→

√
r at the knots a−n for even n and

odd n respectively.

(c) The probability density functions ρe( · + 1)
and ρo( · − 1) have singularities which behave like
| · |−1/2 at −1 and +1 respectively.

(d) The ratio µ(Br(−1))/µ(Br(+1)) (shown with a
logarithmic scale for r) oscillates between α and
α−1 as r → 0, so the lim inf of the ratio is below
1 and the lim sup is above 1.

Figure 5.1. Illustration of the measures defined in Example 5.7 for the parameter choice a= 2.

We first observe that \pm 1 \succcurlyeq 0 x for any x \not = \pm 1. For sufficiently small r > 0, both \rho \mathrm{e} and
\rho \mathrm{o} are bounded above by a constant on Br(x) = [x - r,x+ r], so that \mu (Br(x))\leqslant cr for some
c\geqslant 0. On the other hand, by construction, both \mu (Br( - 1)) and \mu (Br(+1)) are asymptotically
equivalent to

\surd 
r/2 as r\rightarrow 0, from which it follows that \pm 1\succcurlyeq 0 x.

However,  - 1 and +1 are incomparable. Observe that, for r= a - n with n\in \BbbN even,

\mu (Br( - 1))

\mu (Br(+1))
= \alpha :=

a+ 1

2a1/2
> 1,

whereas for r = a - n with n \in \BbbN odd, this ratio of ball masses takes the value \alpha  - 1, and,
for all r > 0, it lies in the interval [\alpha  - 1, \alpha ], all of which can be verified easily from the
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1214 HEFIN LAMBLEY AND T. J. SULLIVAN

interpolation formulae for \mu \mathrm{e}(Br(0)) and \mu \mathrm{o}(Br(0)). Lemma 5.5 now implies that  - 1 \| 0 +1,
since

\alpha  - 1 = lim inf
r\rightarrow 0

\mu (Br( - 1))

\mu (Br(+1))
< 1< limsup

r\rightarrow 0

\mu (Br( - 1))

\mu (Br(+1))
= \alpha .

Thus, the preorder \preccurlyeq 0 induced by \mu has two incomparable maximal elements, namely \pm 1,
and has no greatest elements, and hence \mu has no weak modes (Lemma 5.3).

We now check that +1 and  - 1 are not generalized modes. Let rn := a - 2n, and suppose
that xn \rightarrow 1 as n \rightarrow \infty . Choose N large enough that, for all n \geqslant N , | xn  - 1| < 1/2 and
rn < 1/2. As the density \rho \mathrm{o}( \cdot  - 1) is a symmetric singularity around +1, it follows that
\mu (Brn(xn))\leqslant \mu (Brn(+1)). As Mrn = \mu (Brn( - 1)), we obtain that

lim inf
n\rightarrow \infty 

\mu (Brn(xn))

Mrn

\leqslant lim inf
n\rightarrow \infty 

\mu (Brn(+1))

Mrn

= \alpha  - 1 < 1.

This proves that +1 is not a generalized mode; a similar argument with (rn)n\in \BbbN = a - 2n+1

proves that  - 1 is not a generalized mode.
Finally, suppose that x \not = \pm 1, and let (rn)n\in \BbbN be any null sequence. Let \varepsilon := min\{ | x  - 

1| , | x + 1| \} . Suppose that xn \rightarrow x as n \rightarrow \infty . There must exist N \in \BbbN such that, for
all n \geqslant N , | xn  - 1| > \varepsilon /2 and | xn + 1| > \varepsilon /2. The Lebesgue density of \mu is bounded on
\BbbR \setminus (B\varepsilon /2(+1) \cup B\varepsilon /2( - 1)) by some constant C > 0, so \mu (Brn(xn)) \leqslant Crn for n \geqslant N . As

Mrn \in \Theta (r
1/2
n ) as n\rightarrow \infty , it follows that

lim inf
n\rightarrow \infty 

\mu (Brn(xn))

Mrn

= 0,

so x is not a generalized mode.

Example 5.7 illustrates a difficulty with weak modes, and one whose cause can be traced
to incomparability: if the space X is partitioned into disjoint positive-mass sets A and B,
existence of modes for \mu restricted to (or conditioned upon) A and B individually cannot
ensure existence of a mode for \mu , since the modes of \mu | A and \mu | B may be \preccurlyeq 0-incomparable.

Thus, while \pm 1 are intuitively modes and have Lebesgue density +\infty , the measure \mu has no
modes in any of the senses defined in section 3. We emphasize that one cannot simply declare
all points with Lebesgue density +\infty to be modes, since this would place all singularities of
the density on the same footing, which is clearly undesirable if one singularity is genuinely
``smaller"" than the other in the sense that the RCDFs around these points are, say,

\surd 
r and

2
\surd 
r, and so the smaller one ought not to be considered a mode.
As suggested in the introduction, this example could be interpreted as evidence that

maximal---rather than greatest---elements of a preorder are good candidates for modes. In-
deed, from the order-theoretic perspective, maximal elements appear to be just as reasonable
as greatest elements, and we hope that this encourages further study of whether maximal
elements are sufficient for applications.

The extension theorems of Szpilrajn [29] and Arrow (as proved by Hansson [15]) assert that
any nontotal preorder \preccurlyeq can be extended to a total preorder \preccurlyeq \prime . Thus, given the nontotality
of \preccurlyeq 0, one might hope to resolve all these issues by defining a mode of \mu to be a \preccurlyeq \prime 

0-greatest
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1215

element. Unfortunately, such a total extended preorder is not uniquely determined and so
such a definition of a mode would not be well defined: for the measure \mu of Example 5.7,
there are total extensions \preccurlyeq \prime 

0 of \preccurlyeq 0 yielding each of the three situations

 - 1\preccurlyeq \prime 
0 +1 \not \preccurlyeq \prime 

0  - 1, +1\preccurlyeq \prime 
0  - 1 \not \preccurlyeq \prime 

0 +1, and  - 1\asymp \prime 
0 +1.

That is, which (if any) of \pm 1 counts as a mode would seem to be a matter of personal choice.
Finally, we note that similar ideas could be used to construct incomparable points that

are not \preccurlyeq 0-maximal, but such examples have less importance for the theory of modes.

5.3. Absolutely continuous measures with dense antichains. Example 5.7 can be easily
extended to construct a measure \mu \in P(\BbbR ) with any finite number of mutually incomparable
\preccurlyeq 0-maximal elements, none of which are greatest elements. Indeed, it is natural to wonder
how bad the situation of incomparability can be, and in particular how large an antichain can
be. This section's main result, Theorem 5.11, shows that \mu may have a topologically dense
antichain consisting of maximal elements (and mutually incomparable would-be modes are
``nearly everywhere""), even when \mu has a Lebesgue density; from the perspective of geometric
measure theory, the notable point here is that there is no need to resort to singular measures.

We begin with the following straightforward proposition.

Proposition 5.8. Let X be a finite or discrete metric space and let \mu \in P(X). Then \preccurlyeq 0

has no incomparable elements.

Proof. Let x,x\prime \in supp(\mu ). As X is discrete, the measure \mu must be atomic, so

lim
r\rightarrow 0

\mu (Br(x))

\mu (Br(x\prime ))
=

\mu (\{ x\} )
\mu (\{ x\prime \} )

.

As the limit exists, the ratio does not oscillate on either side of unity as r\rightarrow 0, so comparability
of x and x\prime follows from Lemma 5.5.

Proposition 5.8 shows that any measure on a finite metric space induces a total order
\preccurlyeq 0. We now show that incomparability can arise even in very simple settings, such as in a
countable metric space or on the real line with a continuous, bounded Lebesgue density.

Example 5.9.
(a) Let X be the closure of the set \{  - 1 + 2 - n | n \in \BbbN \} \cup \{ 1  - 2 - n | n \in \BbbN \} with the

Euclidean metric inherited from \BbbR . Define the measure \mu \in P(X) by

\mu :=
1

Z

\infty \sum 
k=1

2 - 4k+1\delta 1 - 2 - 4k+1 + 2 - 4k - 1\delta  - 1+2 - 4k ,

where Z > 0 is a normalization constant. Then +1 and  - 1 are incomparable because

\mu (B2 - 4k+1(+1))

\mu (B2 - 4k+1( - 1))
=

(15Z) - 1 \times 2 - 4k+1

4\times (15Z) - 1 \times 2 - 4k+1
=

1

4
,(5.7)

\mu (B2 - 4k - 1(+1))

\mu (B2 - 4k - 1( - 1))
=

\mu (B2 - 4(k+1)+3(+1))

\mu (B2 - 4k - 1( - 1))
=

4\times (15Z) - 1 \times 2 - 4(k+1)+3

(15Z) - 1 \times 2 - 4k - 1
= 4.(5.8)
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1216 HEFIN LAMBLEY AND T. J. SULLIVAN

(b) Let X =\BbbR and define the densities

\Delta w,h(x) =

\Biggl\{ 
h
\Bigl( 
1 - | x| 

w

\Bigr) 
| x| \leqslant w,

0 otherwise,

which have total mass wh and are supported on the interval [ - w,w]. By analogy with
part (a), let \mu \in P(\BbbR ) have the continuous, bounded Lebesgue density

\rho (x) =
1

Z

\sum 
k\in \BbbN 

\Delta 2 - 4k+1,1(x - (1 - 2 - 4k+2)) +\Delta 2 - 4k - 1,1(x - ( - 1 + 2 - 4k)),

where Z > 0 is a normalization constant. As (5.7) and (5.8) remain true for the
measure \mu in this example, the points \pm 1 are incomparable.

While Example 5.9(b) shows that even a measure with a continuous, bounded Lebesgue
density may have an antichain, we show in Proposition 5.14 that this antichain is never at the
``top"" of the order as in Example 5.7.

Examples such as Examples 5.7 and 5.9 can be extended to show that an antichain may
be countably infinite. To do so, we first introduce a family of ``coprime"" oscillatory RCDFs
to generalize the RCDFs \mu \mathrm{e} and \mu \mathrm{o} of Example 5.7.

Proposition 5.10 (a family of oscillatory RCDFs). Fix a > 1 and a natural number k \geqslant 2.
Construct the Lebesgue densities \rho k : \BbbR \rightarrow [0,\infty ] as in Figure 5.2(a), defined by

\rho k(x) :=

\left\{                   

0 if | x| >a - 1,
1
2a

n+1

2 if a - n - 1 < | x| \leqslant a - n for n\in \BbbN with k | n,
0 if a - n - 1 < | x| \leqslant a - n for n\in \BbbN with k | n+ 1,

1
2a

n

2

\biggl( 
1 - a - 1/2
1 - a - 1

\biggr) 
if a - n - 1 < | x| \leqslant a - n for n\in \BbbN with k \nmid n and k \nmid n+ 1,

\infty if x= 0,

and, given m> 0, define the corresponding truncated densities \rho k,m(x) := \rho k(x)1 [| x| \leqslant r(m)],
with the truncation radius r(m) chosen such that

r(m) := inf

\Biggl\{ 
s

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
Bs(0)

\rho k(t)dt=m

\Biggr\} 
.

Write \mu k,m for the measure on the real line with \mu k,m(\BbbR ) =m and Lebesgue density \rho k,m.
(a) The RCDF s \mapsto \rightarrow \mu k,m(Bs(0)) linearly interpolates between the knots

\{ (a - n, a - 
n/2) | n\in \BbbN , k \nmid n\} \cup \{ (a - n, a

1/2 - n/2) | n\in \BbbN , k | n\} \cup \{ (0,0)\} ,

until truncated at radius r(m) (Figure 5.2(b)) and has formula
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1217

(a) As in Example 5.7, the density ρk,m is based
on perturbations of the singularity | · |−1/2 and
has mass m.

(b) The RCDF µk,m(B · (0)) linearly interpolates
between the knots r = a−n, n ∈ N (marked as
circles) to obtain the desired perturbations of the
“growth rate”

√
r.

Figure 5.2. Example of a density \rho k,m and RCDF \mu k,m from Proposition 5.10 with a= 2.

\mu k,m(Bs(0)) =

\left\{                 

\mu k,m(Br(m)(0)) if s > r(m),

a
n+1

2 s if a - n - 1 < s\leqslant a - n for n\in \BbbN with k | n,
a - 

n

2 if a - n - 1 < s\leqslant a - n for n\in \BbbN with k | n+ 1,

1 - a - 1/2
1 - a - 1

\bigl( 
a

n

2 s+ a - 
n

2

\bigr) 
if a - n - 1 < s\leqslant a - n for n\in \BbbN with k \nmid n and k \nmid n+ 1,

0 if s= 0.

(b) In particular, if a - n \leqslant r(m),

\mu k,m(Ba - n(0)) =

\Biggl\{ 
a - 

n/2 if k \nmid n,
a
1/2 - n/2 if k | n.

(c) Given distinct coprime integers k, k\prime \geqslant 2 and arbitrary m,m\prime > 0,

lim inf
s\rightarrow 0

\mu k,m(Bs(0))

\mu k\prime ,m\prime (Bs(0))
< 1< limsup

s\rightarrow 0

\mu k,m(Bs(0))

\mu k\prime ,m\prime (Bs(0))
.

(d) Provided s\leqslant r(m), we have
\sqrt{} 

s/a \leqslant \mu k,m(Bs(0))\leqslant 
\surd 
as.

(e) The truncation radius satisfies r(m)\leqslant am2.

(f) The density \rho k satisfies \rho k(t)\leqslant t - 
1/2 for all t\in \BbbR .

Proof.
(a) The formula for the RCDF follows by integrating the density \rho k,m.
(b) The value at the knots a - n follows from (a).
(c) We exploit the fact that k and k\prime are coprime, so the sequence (ni)i\in \BbbN = (ik\prime  - 1)k\nearrow \infty 

is divisible by k but not k\prime , and the sequence (mi)i\in \BbbN = (ik - 1)k\prime \nearrow \infty is divisible by
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1218 HEFIN LAMBLEY AND T. J. SULLIVAN

k\prime but not k. For sufficiently large i, a - ni \leqslant min\{ r(m), r(m\prime )\} , and hence by (b) we
obtain

\mu k,m(Ba - ni (0))

\mu k\prime ,m\prime (Ba - ni (0))
=

a
1/2 - ni/2

a - 
ni/2

= a
1

2 .

Similarly, for i sufficiently large such that a - mi \leqslant min\{ r(m), r(m\prime )\} ,

\mu k,m(Ba - mi (0))

\mu k\prime ,m\prime (Ba - mi (0))
=

a - 
mi/2

a
1/2 - mi/2

= a - 
1

2 .

As these hold for all i sufficiently large, and a - ni and a - mi converge to zero, the
desired inequality follows.

(d) The lower bound follows because, for s\leqslant r(m),

\mu k,m(Bs(0))\geqslant \mu k,m(Ba - \lfloor  - \mathrm{l}\mathrm{o}\mathrm{g}a(s)\rfloor (0))\geqslant a - \lfloor  - \mathrm{l}\mathrm{o}\mathrm{g}a(s)\rfloor /2 \geqslant 
\sqrt{} 

s/a,

where the penultimate inequality uses (b); the upper bound is easily verified from the
construction of \mu k,m as a linear interpolation of the knots.

(e) As
\int 
Bs(0)

\rho k(t)dt\geqslant 
\sqrt{} 

s/a, it follows that
\int 
Bam2 (0)

\rho k(t)dt\geqslant m, and hence r\leqslant am2.

(f) This is easily verified from the expression for \rho k.

We now use Proposition 5.10 to show that a maximal antichain of a measure can be
topologically dense even in the apparently well-behaved case of an absolutely continuous
probability measure on the real line. Our example shows that the set of \preccurlyeq 0-maximal elements
might be very different to the set of \preccurlyeq 0-greatest elements: the measure we construct has a
dense set of maximal elements, yet it does not possess any greatest element because none of
those maximal elements is globally comparable.

In spirit, the idea is much the same as Example 5.7: center mutually incomparable com-
pactly supported singularities at a dense collection of points \{ qk\} k\in \BbbN . This is much more
subtle, however, as one must take care to ensure that the points qk are distant enough from
one another that the singularities neither interfere with each other nor accumulate too much
mass at a point outside of the dense set. Here, this is achieved by taking the qk to be
multiples of powers of two, a case that is easily analyzed but quite sparse. Indeed, we
write D for the set of dyadic rationals, which we write as the disjoint union over the lev-
els D\ell :=

\bigl\{ 
(2i - 1)2 - \ell | 1\leqslant i\leqslant 2\ell  - 1

\bigr\} 
. By a slight abuse of terminology, we also describe the

sum of the densities centered at points in D\ell as the \ell th level of the measure.

Theorem 5.11 (an absolutely continuous measure on \BbbR with a countable dense antichain).
Let \mu \in P(\BbbR ) have the Lebesgue density \rho : \BbbR \rightarrow \BbbR as shown in Figure 5.3, defined by

\rho (x) :=

\infty \sum 
\ell =1

2\ell  - 1\sum 
i=1

\rho k(\ell ,i),m(\ell )(x - q\ell ,i),

where \rho k,m is the density constructed in Proposition 5.10 with parameter a = 2; k(\ell , i) is the
(2\ell  - 1 + i - 1)th prime; m(\ell ) := 2 - 2\ell +1; and q\ell ,i := (2i - 1)2 - \ell \in D\ell . Then,
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ORDER-THEORETIC PERSPECTIVE ON MAP ESTIMATION 1219

(a) The density ρ is constructed as a sum of the
prototype densities ρk,m. The orange density is
ρ2,2−1( · − 1/2), and the grey densities are
ρ3,2−3( · − 1/4) and ρ5,2−3( · − 3/4).

(b) Approximation of the density, truncated at
the fifth level (i.e. with the densities centred at
all dyadic rationals of the form c2−n with n 6 5).

Figure 5.3. The density \rho from Theorem 5.11 for which the dyadic rationals are an antichain.

(a) the \ell th level of the measure \mu , consisting of all densities centered at points in D\ell , has
mass 2 - \ell , and hence \mu is a probability measure;

(b) the set of dyadic rationals D=
\bigl\{ 
(2i - 1)2 - \ell 

\bigm| \bigm| \ell \in \BbbN , 1\leqslant i\leqslant 2\ell  - 1
\bigr\} 
is a \preccurlyeq 0-antichain;

(c) every element of D is \preccurlyeq 0-maximal.

Proof.
(a) By construction, each density in level \ell has mass m(\ell ) = 2 - 2\ell +1, and there are 2\ell  - 1

densities, giving a total mass of 2 - \ell . It follows that \mu is a probability measure as\int 
\BbbR \rho (x)dx=

\sum 
\ell \in \BbbN 2

 - \ell = 1.
(b) Take distinct elements q\ell ,i, q\ell \prime ,i\prime \in D. It suffices to check that q\ell ,i \not \preccurlyeq 0 q\ell \prime ,i\prime , as one

can swap q\ell ,i and q\ell \prime ,i\prime to obtain that q\ell ,i \| 0 q\ell \prime ,i\prime . Asymptotically, \mu (Br(q\ell ,i)) \sim 
\mu k(\ell ,i),m(\ell )(Br(0)) as r \rightarrow 0, and likewise \mu (Br(q\ell \prime ,i\prime )) \sim \mu k(\ell \prime ,i\prime ),m(\ell \prime )(Br(0)) (Lemma
SM1.12(a)). The identity limsupr\rightarrow 0 f(r)g(r) = limsupr\rightarrow 0 f(r) limr\rightarrow 0 g(r) now yields

limsup
r\rightarrow 0

\mu (Br(q\ell ,i))

\mu (Br(q\ell \prime ,i\prime ))

= limsup
r\rightarrow 0

\mu k(\ell ,i),m(\ell )(Br(0))

\mu k(\ell \prime ,i\prime ),m(\ell \prime )(Br(0))
lim
r\rightarrow 0

\mu (Br(q\ell ,i))

\mu k(\ell ,i),m(\ell )(Br(0))

\mu k(\ell \prime ,i\prime ),m(\ell \prime )(Br(0))

\mu (Br(q\ell \prime ,i\prime ))

= limsup
r\rightarrow 0

\mu k(\ell ,i),m(\ell )(Br(0))

\mu k(\ell \prime ,i\prime ),m(\ell \prime )(Br(0))
> 1,

where the final line follows by the construction of the oscillatory RCDFs in Proposition
5.10(c) as k(\ell , i) and k(\ell \prime , i\prime ) are distinct primes. This proves that q\ell ,i \not \preccurlyeq 0 q\ell \prime ,i\prime as
claimed, from which incomparability follows.

(c) To show that q \in D is maximal, it suffices to check that q \not \preccurlyeq 0 x for any x\in [0,1]\setminus D; part
(b) proves that q \not \preccurlyeq 0 x when x\in D. To prove this, we must characterize the behavior of
the RCDF \mu (Br(x)); this depends on the properties of the binary representation of x
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1220 HEFIN LAMBLEY AND T. J. SULLIVAN

and in particular on a quantity we call the dyadic irrationality exponent \beta 2(x)\in [1,\infty )

(Definition SM1.10). If \beta 2(x) < 4, then \mu (Br(x)) \in o(r
1/2) (Lemma SM1.12(b)); as

\mu (Br(q)) \in \Theta (r
1/2) by the construction of the density centered at q, it follows that

q \not \preccurlyeq 0 x because

limsup
r\rightarrow 0

\mu (Br(x))

\mu (Br(q))
= 0.

If \beta 2(x)> 4, then x is approximated particularly well by a sequence of dyadic rationals,
so there exists a sequence of scales as r \rightarrow 0 such that the RCDF \mu (Br(x)) behaves
much like its approximating dyadic rational. In fact, this approximation is so good
that q \| 0 x (Lemma SM1.12(d)) for the same reason that two dyadic rationals are
incomparable. In the critical case \beta 2(x) = 4, there exist examples with q \| 0 x and
examples where x \prec 0 q, but in either case we can still verify that q \not \preccurlyeq 0 x (Lemma
SM1.12(c)) as required. This proves that no x \in [0,1] \setminus D can dominate any q \in D,
completing the proof.

Remark 5.12.
(a) The proof shows that the dyadic rationals do not form a maximal antichain in the

sense of setwise inclusion: points with \beta 2(x)> 4 are also incomparable with the dyadic
rationals; thus, the cardinality of a maximal antichain is at least \aleph 0. On the other
hand, the Lebesgue differentiation theorem implies that any antichain has Lebesgue
measure zero (see also Proposition 5.14(a)), so one cannot expect to find a larger
antichain in a measure-theoretic sense.

(b) Our construction is not limited to this specific dense set and enumeration, or even
to absolutely continuous measures on the real line; for example, one can reweight a
Gaussian measure on a separable Hilbert space H to have a similar RCDF to our
prototypical measures \mu k,m at the point 0, then place such measures at points in a
dense subset ofH. Another possibility is to argue as in Theorem 5.11 using \BbbQ \cap [0,1] as
the dense set; the behavior then depends on the usual number-theoretic irrationality
exponent7 instead of the dyadic irrationality exponent \beta 2(x), but one still obtains
a dense antichain containing all rationals in [0,1]. Some of the technical steps are
described in more detail in [20, section 7.3 and Appendix A].

5.4. Essential totality. The need for a \preccurlyeq 0-greatest element to be globally comparable is
a nontrivial one, and it can fail rather dramatically, e.g., when the maximal elements form a
dense antichain as in Theorem 5.11. Such examples could be criticized as somewhat artificial,
but we feel that they highlight the importance of checking for incomparability and developing
technical conditions on the measure which prevent it.

One could rule out incomparability if \preccurlyeq 0 were total, but this is not true in general, and
checking this condition is often difficult in practice. We propose a somewhat weaker condition,
where one can tolerate incomparability away from the ``top"" of the preorder, as long as any
candidate for a maximal element is also globally comparable.

7For further details about the irrationality exponent, traditionally denoted \mu (x), see, e.g., [25].
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Our condition of essential totality can be interpreted as an order-theoretic generalization
of the M -property of [3]; recall (3.8). A motivating example is that of a Gaussian measure \mu 
on an infinite-dimensional space X: the Cameron--Martin space H(\mu ) is an essentially total
subspace where a maximal element must lie, and any element of the Cameron--Martin space
is globally comparable using the OM functional and property M(\mu ,H(\mu )).

Definition 5.13. Let X be a metric space and let \mu \in P(X). A nonempty subset E \subseteq X is
\mu -essentially total if

(a) any two elements of E are comparable (i.e., E is a \preccurlyeq 0-chain);
(b) for any x\in E and x\prime \in X \setminus E, x\prime \preccurlyeq 0 x; and
(c) for any x\prime \in X \setminus E, there exists x\in E such that x\prime \prec 0 x.

Condition (b) says that if x \star \in E is an upper bound on E, then it is \preccurlyeq 0-greatest; (c) says
that no element in X \setminus E can be greatest. We emphasize, though, that there is no need for E
to be a large set in any measure-theoretic or topological sense.

Proposition 5.14 (examples of essentially total subsets).
(a) Suppose that X \subseteq \BbbR n is open and that \mu \in P(X) has continuous density \rho : X \rightarrow 

[0,\infty ) with respect to \lambda n. Then E := \{ x \in X | \rho (x) > 0\} is \mu -essentially total, and
I\mu (x) := - log\rho (x) is an OM functional with domain E.

(b) Suppose that \mu \in P(X) has an OM functional I\mu : E \rightarrow \BbbR and property M(\mu ,E) holds.
Then E is \mu -essentially total.

(c) Suppose more generally that \mu 0 \in P(X) has an OM functional I\mu 0
: E \rightarrow \BbbR and

property M(\mu 0,E) holds, and that \mu \in P(X) has Radon--Nikodym derivative

d\mu 

d\mu 0
(x)\propto exp( - \Phi (x))

for some locally uniformly continuous potential \Phi : X \rightarrow \BbbR . Then E is \mu -essentially
total, and I\mu (x) := I\mu 0

(x) +\Phi (x) is an OM functional for \mu .

Proof.
(a) The Lebesgue differentiation theorem implies that for any x\in X,

lim
r\rightarrow 0

\mu (Br(x))

\lambda n(Br(x))
= \rho (x).

For any x and x\prime \in E, one can pick r sufficiently small such that Br(x) and Br(x
\prime ) lie

in the open set X. This implies that \lambda n(Br(x)) = \lambda n(Br(x
\prime )), and so

(5.9) lim
r\rightarrow 0

\mu (Br(x))

\mu (Br(x\prime ))
= lim

r\rightarrow 0

\mu (Br(x))

\lambda n(Br(x))
lim
r\rightarrow 0

\lambda n(Br(x
\prime ))

\mu (Br(x\prime ))
=

\rho (x)

\rho (x\prime )
.

Hence, E is a chain and I\mu is an OM functional on E. When x\prime \in X \setminus E, one can still
apply the Lebesgue differentiation theorem to obtain

lim
r\rightarrow 0

\mu (Br(x
\prime ))

\lambda n(Br(x\prime ))
= 0,

so an argument similar to that in (5.9) proves that x\prime \prec 0 x for any x\in E.
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(b) The existence of an OM functional I\mu proves that E is a chain. Using the M -property
and [3, Lemma B.1], for x\prime \in X \setminus E and x\in E, we must have x\prime \prec 0 x, because

lim
r\rightarrow 0

\mu (Br(x
\prime ))

\mu (Br(x))
= 0.

(c) By [3, Lemma B.8], I\mu is an OM functional for \mu and property M(\mu ,E) holds. The
result follows by (b).

Proposition 5.15. Let X be a metric space and let \mu \in P(X). Suppose that \varnothing \not =E \subseteq X is
\mu -essentially total.

(a) Any \preccurlyeq 0-maximal element must lie in E and is \preccurlyeq 0-greatest.
(b) If \mu admits an OM functional I\mu : E \rightarrow \BbbR , then

x \star is \preccurlyeq 0-greatest \Leftarrow \Rightarrow x \star \in E and x \star minimizes I\mu .

Proof.
(a) A maximal element x \star must lie in E, or else one could find x \in E such that x \star \prec 0 x

by essential totality, contradicting the maximality of x \star . Conditions (a) and (b) of
essential totality together imply that x \star is globally comparable, so it must be greatest
(Lemma 5.3).

(b) Using the OM functional for E, one finds that

x \star \in E is an upper bound for E \Leftarrow \Rightarrow lim
r\rightarrow 0

\mu (Br(x))

\mu (Br(x \star ))
\leqslant 1 for all x\in E

\Leftarrow \Rightarrow e - I\mu (x)

e - I\mu (x \star )
\leqslant 1 for all x\in E

\Leftarrow \Rightarrow x \star minimizes I\mu .

If x \star is \preccurlyeq 0-greatest, then x \star \in E by (a), and the previous implications prove that x \star 

minimizes I\mu . Conversely, the definition of essential totality ensures that an upper
bound for E is \preccurlyeq 0-greatest, proving the reverse implication.

The variational characterization of weak modes as minimizers of the OM functional gen-
eralizes the result of [3, Proposition 4.1] to essentially total subsets. Specializing to the case
of a continuous Lebesgue density on an open set (Proposition 5.14(a)) recovers the intuitive
result that x \star is a weak mode if and only if it is a global maximizer of \rho . The situation is
more subtle if X is not open: the measure in Example 5.4(a) restricted to X = [0,1] has a
continuous Lebesgue density maximized at x \star = 1, but x \star is not a weak mode.

Proposition 5.14(c) on reweightings of well-behaved measures has the significant corollary
that maximal elements are always greatest when the measure is a Bayesian posterior as in (3.1)
arising from a Gaussian prior. This is highly reassuring from the perspective of applications:
pathological examples in the style of Theorem 5.11 with nongreatest maximal elements do not
occur in Bayesian posteriors for well-behaved inverse problems.

6. Closing remarks. This article has proposed that modes of probability measures should
be understood as greatest or maximal elements of preorders that are defined using the masses
of metric balls.
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At fixed radius r > 0, there is an obvious choice of total preorder, and the order-theoretic
point of view opens up attractive proof techniques for the existence of maximal/greatest
elements (radius-r modes) (Theorem 4.6). However, we have also seen that such radius-r
modes can fail to exist (Examples 4.7 and 4.8), which provides further justification for the use
of asymptotic maximizing families as proposed by [18], and we are able to contribute to the
convergence analysis of such families as r\rightarrow 0 (Theorems 4.11 and 4.12).

In the limit as r\rightarrow 0, there are several limiting preorders that one could consider. The one
on which we have focused, whose greatest elements are weak modes, is a nontotal preorder.
Indeed, we have shown that even absolutely continuous measures can admit topologically
dense antichains (Theorem 5.11), indicating that a measure must satisfy stringent regularity
conditions to be certain of having greatest elements, i.e., weak modes.

As noted in the introduction, we hope that this article will stimulate further discussion
in the community about the ``correct"" definition of a mode. We argue that there is a tension
between the order-theoretic desire for modes to be merely maximal elements of some preorder
and an application-driven desire for modes to be greatest elements. To some extent, this
tension can be avoided if one works only with particularly nice measures that display no oscil-
latory properties or that satisfy criteria such as essential totality, thus keeping all pathologies
away from the ``top"" of the preorder.

Further useful new definitions of modes may be introduced and one would hope that
they correspond to preorders. However, as explored in section SM2, it may well be that
such definitions only induce nontransitive relations. In such cases, the loss of transitivity
is not necessarily fatal, so long as it is kept away from the ``top"" of the relation, so that
maximal/greatest elements may be defined.

On a high level, it would be interesting to know whether or not there can exist a function
assigning to every (sufficiently well-behaved) measure \mu \in P(X) a total preorder \preccurlyeq \mu whose
maximal or greatest elements are useful modes for \mu . This would appear to be a major open
question that will involve much further investigation.

Acknowledgments. The authors would like to thank David Bate, Adam Epstein, Ilja
Klebanov, Florian Theil, and Philipp Wacker for helpful discussions.
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