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1Department of Statistics, University of Warwick, Coventry, CV4 7AL, aw.s.kendall@warwick.ac.uk
2School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK,
bm.majka@hw.ac.uk
3Department of Statistics, University of Warwick, Coventry, CV4 7AL, ca.mijatovic@warwick.ac.uk

We study optimal Markovian couplings of Markov processes, where the optimality is understood in terms of
minimization of concave transport costs between evaluations of the coupled processes at corresponding times.
We provide explicit constructions of such optimal couplings for one-dimensional finite-activity Lévy processes
(continuous-time random walks) whose jump distributions are unimodal but not necessarily symmetric. Remark-
ably, the optimal Markovian coupling does not depend on the specific concave transport cost. To this end, we
combine McCann’s results on optimal transport and Rogers’ results on random walks with a novel uniformization
construction that allows us to characterize all Markovian couplings of finite-activity Lévy processes. In particular,
we show that the optimal Markovian coupling for finite-activity Lévy processes with non-symmetric unimodal
Lévy measures has to allow for non-simultaneous jumps of the two coupled processes.
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1. Introduction
This paper considers Markovian couplings of a finite activity Lévy process (“continuous-time random
walk” for which we always assume the holding times to be i.i.d. exponentials) 𝑋 , started at 0 and
𝑎 > 0 respectively. We show that if the jump distribution is unimodal then there is a unique Markovian
coupling (𝑋, 𝑍) with 𝑍0 = 𝑋0 + 𝑎, based on the anti-monotonic rearrangement construction described
in [41], such that for any 𝑡 > 0, the expected cost E [𝜙( |𝑋𝑡 − 𝑍𝑡 |)] is simultaneously minimized for all
bounded concave increasing cost functions 𝜙 : [0,∞) → [0,∞). If the jumps are symmetric then this
optimal Markovian coupling can be viewed as a reflection coupling. However, our arguments apply
to all unimodal non-symmetric jump distributions, even as extreme as exponential (where all jumps
are non-negative). In the latter case the optimal Markovian coupling involves the processes jumping
independently till crossover, when they couple.

Recall that a coupling of two probability measures 𝜇1 and 𝜇2, defined respectively on Polish measure
spaces (𝐸1,E1) and (𝐸2,E2), is a probability measure 𝜇 defined on the product space (𝐸1 × 𝐸2,E1 ⊗
E2) with marginals 𝜇1 and 𝜇2. If we consider two canonical random variables 𝑋 and 𝑌 on (𝐸1,E1, 𝜇1)
and (𝐸2,E2, 𝜇2), respectively, then any coupling 𝜇 of 𝜇1 and 𝜇2 specifies a law of a random vector
(𝑋 ′,𝑌 ′) on (𝐸1 × 𝐸2,E1 ⊗ E2), which we also call a coupling of the random variables 𝑋 and 𝑌 .
These definitions extend naturally to any finite number of measures or random variables [47, Chapter
3, Section 3]. Furthermore, by considering random variables on (𝐸 𝐼 ,E⊗𝐼 ) for a time index set 𝐼, we
can consider couplings of (𝐸,E)-valued stochastic processes indexed by 𝐼 [47, Chapter 4].

The question “what is the best possible coupling?” clearly depends on context and the chosen notion
of optimality. In the context of couplings of stochastic processes, the most widespread criterion of
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optimality uses the notion of a maximal coupling, which is a coupling that minimizes the meeting
time of the two coupled processes started from different initial positions [2,3,21,23,24,26,29,30,42].
Through the classical coupling inequality [36], the problem of minimizing the meeting time is closely
related to the problem of obtaining sharp upper bounds on the total-variation distance between time-
marginal distributions of the coupled processes.

In recent years, couplings have found numerous novel applications to the problem of quantifying
convergence rates of Markov processes in other probabilistic metrics, in particular the Wasserstein
distances. This has been an active area of research in stochastic analysis [18,19,37–39], computational
statistics [4,20,40] and machine learning [7,11–13,27]. These applications focus on different optimality
criteria for couplings, related to the optimal transport interpretation of the Wasserstein distances [8,
22,34]. To see this, recall that the 𝐿𝑝-Wasserstein distance is defined for any 𝑝 ≥ 1, and for any two
probability measures 𝜇1 and 𝜇2 on a measure space (𝐸,E), by

𝑊dist, 𝑝 (𝜇1, 𝜇2) =
(

inf
𝜋∈Π (𝜇1 ,𝜇2 )

∫
𝐸×𝐸

dist(𝑥, 𝑦)𝑝𝜋(d 𝑥 d 𝑦)
)1/𝑝

, (1)

where dist is a metric on (𝐸,E) and Π(𝜇1, 𝜇2) is the set of all couplings of 𝜇1 and 𝜇2. By (1), any
coupling (𝑋𝑡 ,𝑌𝑡 )𝑡≥0 of two stochastic processes (𝑋𝑡 )𝑡≥0 and (𝑌𝑡 )𝑡≥0 on (𝐸,E) provides an upper bound
on the Wasserstein distance between their time-marginal distributions L(𝑋𝑡 ) and L(𝑌𝑡 ) for any 𝑡 ≥ 0:

𝑊dist, 𝑝 (L(𝑋𝑡 ),L(𝑌𝑡 )) ≤ (E [dist(𝑋𝑡 ,𝑌𝑡 )𝑝])1/𝑝
.

Sharp upper bounds on such Wasserstein distances arise by minimizing the quantity E [dist(𝑋𝑡 ,𝑌𝑡 )𝑝]
over all processes (𝑋𝑡 ,𝑌𝑡 )𝑡≥0 from a given class of couplings. General results guarantee existence of
the optimal coupling for lower semi-continuous metrics dist ([31, Theorem 2.19] or [48, Chapter 4]);
however these results are non-constructive and hence do not yield quantitative bounds on 𝑊dist, 𝑝 . For
a discussion on uniqueness of optimal couplings, see e.g. [48, Chapter 10]. In this paper we discuss
explicit constructions of optimal couplings, forcing us to consider a more specific setting and in partic-
ular to focus on a specific class of couplings. A natural requirement for the choice of such a class is that
both the coupled processes should respect an appropriate common filtration. Definition 2.1 below for-
malizes this by introducing the notions of immersion couplings and Markovian couplings. We focus on
the case of 𝑝 = 1 and a specific class of metrics dist(𝑥, 𝑦) = 𝜙( |𝑥− 𝑦 |) based on continuous concave cost
functions 𝜙 : [0,∞) → [0,∞). In particular our results cover metrics of the form dist(𝑥, 𝑦) = |𝑥− 𝑦 |𝛾 for
𝛾 ∈ (0,1). We would like to remark that one can naturally consider a related problem of finding sharp
lower bounds on𝑊dist, 𝑝 , by considering a dual representation of Wasserstein distances [48, Chapter 6],
which, however, is beyond the scope of the present paper.

The task of finding optimal immersion couplings is non-trivial, even for discrete-time processes, (in
which case a general coupling can be specified by iteratively coupling the transition (jump) distributions
of two processes step-by-step). Rogers [44] considered the problem of identifying the one-step optimal
coupling for one-dimensional random walks with unimodal jump distributions, and characterised this
in terms of a joint cumulative distribution function: he then showed the resulting random walk coupling
was optimal (amongst Markovian couplings) over all time and for a wide range of bounded convex pay-
off functions. The present paper uses a different characterisation to generalize [44] mildly to the case of
one-dimensional Markov chains with non-symmetric unimodal jump distributions perhaps with atoms
at the modes. This generalisation is useful when moving to continuous-time processes (Section 3).

For more general Markov processes with symmetric transition kernels, it seems to be estab-
lished folklore that applying a symmetrized version of McCann’s [41] anti-monotonic rearrangement
(AMR) coupling is the preferred choice for concave costs, even in multi-dimensional isotropic settings
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[11,18,20,38]. However, optimality has been established only for (one-dimensional) probability mea-
sures [41], not in the context of general stochastic processes. If the transition kernels are not symmetric
then the general case becomes very complicated and no general optimality results have been consid-
ered. Without imposing any geometric conditions on transition probabilities, the only natural solution
for a step-by-step coupling of stochastic processes seems to be to preserve the common mass of their
jump measures and to couple the remaining mass independently: the basic coupling [10, Example 2.10].
Luo and Wang [37] proposed the refined basic coupling, preserving only half of the common mass of
the jump measures, and coupling the remainder (the non-common mass) synchronously rather than
independently, but imposing a different transformation on the second half of the common mass. This
construction is typically non-optimal but permits useful upper bounds on the Wasserstein distances be-
tween time-marginals of various stochastic processes [28,33–35] without needing restrictive conditions
on transition distributions. Determining the optimal coupling in general seems too ambitious a goal for
now.

Even in settings where an optimal coupling is available for given probability measures, constructing
an optimal coupling for stochastic processes having such measures as their jump distributions can be
highly non-trivial, especially in continuous-time. A significant part of the problem is the need to work
with general characterisations of all possible Markovian couplings of stochastic processes from a given
class. Such characterisations have been used in coupling diffusions or birth-death processes [9], but
have not yet been exploited for general pure jump Lévy processes [34, discussion in Section 4].

The present paper discusses explicit constructions of optimal Markovian couplings in the case of one-
dimensional discrete-time Markov chains and continuous-time finite-activity Lévy processes whose
jump distributions are unimodal (but not necessarily symmetric). To this end, Section 2 revisits results
from [41] and [44] to provide a new construction of McCann’s AMR coupling, via the Skorokhod rep-
resentation. Methods from [44] establish optimality for AMR, first for couplings of individual random
variables and then for Markov chains (Theorem 2.11, which is our main optimality result in discrete
time). Section 2 ends with Example 2.13 that illustrates the necessity of unimodality for the type of
optimality results considered in the present paper. Section 3 then introduces a novel uniformization
construction for immersion couplings of finite activity Lévy processes (Theorem 3.1), permitting ap-
plication of modified arguments from Section 2 in the case of continuous time. The final result, Theo-
rem 3.2, constructs an optimal coupling of finite-activity Lévy processes with a unimodal Lévy measure
𝜈 (i.e., with jumps distributed according to 𝜈/𝜈(R)), using step-by-step application of the AMR cou-
pling to the processes’ counterparts with jump measures 1

2𝜈 (R) 𝜈 +
1
2𝛿0. This final observation leads to a

conclusion that, for optimal couplings of finite-activity Lévy processes with non-symmetric unimodal
Lévy measures, some non-zero jumps of the first coupled process may correspond to zero jumps of the
second, and vice versa; so optimally coupled processes need not jump simultaneously.

2. Optimal Markovian coupling for Markov chains

As indicated in the introduction, we need to consider couplings which simultaneously respect a com-
mon filtration to which both random processes are adapted, but such that the coupling construction does
not “look into the future” [6, Section 1]. We use the expressive and concise language of martingales:

Definition 2.1 (Immersion and Markovian couplings for random processes). Consider two ran-
dom processes 𝑋 and 𝑌 taking values in a Polish space (𝐸,E), defined on the same probability space
(Ω,F ,P) and adapted to a common filtration of 𝜎-algebras {F𝑡 : 𝑡 ≥ 0}. We suppose here and through-
out that the filtration is regularized, in the sense that F𝑡 =

⋂
𝑠>𝑡 F𝑠 and moreover for all 𝑡 ≥ 0 the 𝜎-

algebra F𝑡 contains all P-null sets. We say that (𝑋,𝑌 ) is an immersion coupling (synonyms: faithful
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coupling [45], co-adapted coupling [14,15]) if the following holds: All martingales for the natural fil-
tration of 𝑋 are also martingales in the common filtration {F𝑡 : 𝑡 ≥ 0}, similarly all martingales for the
natural filtration of 𝑌 are also martingales in the common filtration {F𝑡 : 𝑡 ≥ 0}. If additionally (𝑋,𝑌 )
is Markovian in the common filtration then we say (𝑋,𝑌 ) is a Markovian coupling.

Strictly we should speak of Markovian immersion couplings: however the abbreviated term “Marko-
vian coupling” is now established in the literature. For optimal couplings the distinction between
Markovian and immersion is not major: optimal immersion couplings will often be Markovian by virtue
of maximizing the optimality criterion at each step of time (see the proof of Theorem 2.11 below). For
further discussion see [1,32].

When considering optimality, it is an advantage to restrict the attention to the classes of immersion or
Markovian couplings, since these typically permit explicit constructions using tools such as stochastic
calculus. For this reason such couplings are currently widely used for quantifying convergence rates
of Markov processes in the stochastic analysis / machine learning literature (cf. the references in the
introduction). In the following we seek couplings which are optimal among the class of immersion or
Markovian couplings.

We work with the following notion.

Definition 2.2 (Optimal (immersion) Coupling). Consider an immersion coupling of two Markov
processes 𝑋 and 𝑌 taking values in a Polish space (𝐸,E). We say that this is an optimal (immersion)
coupling (for a specified loss function 𝜙 : 𝐸 × 𝐸 → [0,∞) vanishing on the diagonal) if

E
[
𝜙(𝑋 (𝑡 + 𝑠),𝑌 (𝑡 + 𝑠))

��� 𝑋 (𝑠),𝑌 (𝑠)]
is minimized amongst all immersion couplings of 𝑋 and𝑌 for all 𝑡, 𝑠 ≥ 0 and all possible 𝑋 (𝑠),𝑌 (𝑠). In
a mild abuse of terminology, if the minimizing coupling is Markovian we call it an optimal Markovian
coupling.

Generally the optimal coupling depends greatly on the specific function 𝜙 being considered. We con-
sider the special case for which the Polish state space is the real line R, and we require that optimality
holds simultaneously for all choices of 𝜙(𝑥, 𝑦) = 𝜙( |𝑥 − 𝑦 |) for concave continuous 𝜙 : [0,∞) → [0,∞)
vanishing at zero. Note that [41] considers this type of simultaneous convex-cost optimality for cou-
plings of probability measures. Note also that 𝜙(𝑥, 𝑦) = |𝑥 − 𝑦 |𝑝 is a rather unsatisfactory cost when
𝑝 ≥ 1: if 𝑝 = 1 then too many couplings are optimal [8, Theorem 3.8]; for 𝑝 > 1 the optimal coupling
is synchronous [22, Thm 3.7; 29, Thm 1.1]. The concave case (0 < 𝑝 < 1) is more interesting.

The concept of an anti-monotonic rearrangement (AMR) coupling of probability measures [41] is
fundamental for our optimality proofs. A useful tool for this is the Skorokhod representation. Note that
we employ the Skorokhod representation to describe AMR, in order to be able to handle general cases
where the coupled measures are not necessarily absolutely continuous. When the coupled measures
have densities, AMR admits a simpler description, cf. Section 2.2.1.

2.1. Skorokhod representation

Recall that the Skorokhod representation generates a copy of a given scalar random variable 𝑋 using
its distribution function 𝐹 (𝑥) = P[𝑋 ≤ 𝑥] and a Uniform(0,1) random variable 𝑈. We use the fact that
distribution functions are themselves càdlàg (continue à droite, limite à gauche), i.e., they are right-
continuous with left limits. The functional inverse of 𝐹 need not exist; adequate (though non-unique)
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substitute inverses can be defined as follows [50, Section 3.12, for example]:

𝐹−1,+ (𝑧) = inf{𝑥 : 𝐹 (𝑥) > 𝑧} = sup{𝑥 : 𝐹 (𝑥) ≤ 𝑧} , (2)

𝐹−1,− (𝑧) = inf{𝑥 : 𝐹 (𝑥) ≥ 𝑧} = sup{𝑥 : 𝐹 (𝑥) < 𝑧} .

Set 𝑋+ = 𝐹−1,+ (𝑈) and 𝑋− = 𝐹−1,− (𝑈). Then P[𝑋+ ≠ 𝑋−] = 0 and P[𝑋− ≤ 𝑥] = P[𝑋+ ≤ 𝑥] = 𝐹 (𝑥).
Consequently a copy of 𝑋 can be generated using a substitute inverse of the cumulative distribution

function 𝐹 as above, and it does not matter which of the possible substitute inverses is employed.
Indeed, if 𝐹 is continuous then direct arguments show that 𝐹 (𝑋+) = 𝐹 (𝑋−) =𝑈.

2.2. McCann’s anti-monotonic rearrangement (AMR) coupling

McCann [41] discusses an anti-monotonic rearrangement coupling (AMR coupling) between two dis-
tribution functions 𝐹1 and 𝐹2 defined on the real line. If 𝑋 and𝑌 are the random variables implementing
the coupling, then (conditional on 𝑋 ≠ 𝑌 ) the random variables 𝑋 and 𝑌 are antithetically coupled, in
the sense that 𝑋 and 𝑌 are negatively associated (the informal notion of “antithetic coupling” corre-
sponds to the notion of “antithetic simulation” [25]).

We consider only the particular case, in which 𝐹2 stochastically dominates 𝐹1:

𝐹1 (𝑥) ≥ 𝐹2 (𝑥) for all 𝑥 ∈ R .

This stochastic domination is related to a condition of McCann [41, Proposition 2.12], where one of
two measures is required to vanish on a connected set, while the other vanishes on its complement,
after removing their common mass (the difference is that McCann works on the circle, while we work
on the line). We further require that for each value ℓ ≥ 0 the super-level set

𝑆ℓ = {𝑥 ∈ R : 𝐹1 (𝑥) − 𝐹2 (𝑥) ≥ ℓ} (3)

should be either connected (hence an interval) or empty: elementary properties of distribution functions
show that the interval 𝑆ℓ is non-increasing in ℓ and is bounded for positive ℓ. Note that the connected-
ness assumption will be satisfied for our main example, where 𝐹1 corresponds to a (weakly) unimodal
probability distribution, and 𝐹2 is a translation of 𝐹1, cf. Section 2.3. It follows that we can find 𝜁
such that 𝜁 ∈ 𝑆ℓ for all ℓ < ℓmax = sup𝑥∈R (𝐹1 (𝑥) − 𝐹2 (𝑥)). Indeed, since 𝑆ℓ is connected and bounded,
and must be non-empty if ℓ < ℓmax, removing 𝑆ℓ from R leaves a complement consisting of two (dis-
joint) connected components: R \ 𝑆ℓ = 𝐶1

ℓ
⊔𝐶2

ℓ
. Both components, being connected, are half-infinite

(closed or open) intervals. We define disjoint half-infinite intervals 𝐶1 and 𝐶2 by 𝐶1 = ∪ℓ<ℓmax𝐶
1
ℓ

and
𝐶2 = ∪ℓ<ℓmax𝐶

2
ℓ
. Choose 𝜁 to be the right end-point of 𝐶1: note that 𝐶1 ⊆ (−∞, 𝜁] and 𝐶2 ⊆ [𝜁,∞).

However, we note that equality cannot hold for both these inclusions, and may not hold in either.
The interval 𝑆ℓ is non-increasing in ℓ, so the difference 𝐹1 (𝑥) − 𝐹2 (𝑥) must be non-decreasing when

𝑥 < 𝜁 and non-increasing when 𝑥 ≥ 𝜁 . Note that 𝐹1 and 𝐹2 are cádlág (so we can include 𝑥 = 𝜁 in the
non-increasing range), but need not be continuous, so we cannot assume that 𝐹1 (𝜁) − 𝐹2 (𝜁) = ℓmax.

It is now convenient to switch to the language of probability measures. Recall that if 𝜇1 and 𝜇2 are
two non-negative measures then their meet is defined by

(𝜇1 ∧ 𝜇2) (𝐴) = sup{𝜇1 (𝐵) ∧ 𝜇2 (𝐵) : 𝐵 ⊆ 𝐴, 𝐵 ∈ E} .

Consider the Hahn-Jordan decomposition for the signed measure 𝜇1 − 𝜇2 = 𝑝𝜈1 − 𝑝𝜈2, where 𝜇1 is the
probability measure corresponding to 𝐹1 and 𝜇2 is the probability measure corresponding to 𝐹2. Here
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1 − 𝑝 is the total mass of 𝜇1 ∧ 𝜇2, while

𝑝𝜈1 = 𝜇1 − (𝜇1 ∧ 𝜇2) , and 𝑝𝜈2 = 𝜇2 − (𝜇1 ∧ 𝜇2) .

Thus 𝑝 ∈ [0,1] while 𝜈1 and 𝜈2 are probability measures of disjoint support. The stochastic domination
together with connectedness of the super-level sets (3) implies that the non-negative measures 𝑝𝜈1 and
𝑝𝜈2 of the Hahn-Jordan decomposition are supported on the disjoint half-infinite intervals 𝐶1 and 𝐶2.

Define a third probability measure 𝜈∗ by (1 − 𝑝)𝜈∗ = 𝜇2 ∧ 𝜇1 = 𝜇2 − 𝑝𝜈2 = 𝜇1 − 𝑝𝜈1. By stochastic
domination,

(1 − 𝑝)𝜈∗ ((−∞, 𝑥]) = 𝐹1 (𝑥) − 𝐹2 (𝑥) for all 𝑥 ∈ R .

McCann’s AMR coupling is a maximal coupling of random variables 𝑋 and 𝑌 with distribution
functions 𝐹1 and 𝐹2, implementing the representation implied by the Hahn-Jordan decomposition

𝜇1 = (1 − 𝑝)𝜈∗ + 𝑝𝜈1 ,

𝜇2 = (1 − 𝑝)𝜈∗ + 𝑝𝜈2

in an anti-monotonic manner, using a single Uniform(0,1) random variable𝑈 as follows:

1. If𝑈 ≥ 𝑝 then use the Skorokhod representation (and the notation of (2)) to generate

𝑋 =𝑌 = (𝐺∗)−1,+ ((𝑈 − 𝑝)/(1 − 𝑝)) , (4)

where (𝐺∗)−1,+ is the substitute inverse of the distribution function 𝐺∗ determined by 𝐺∗ (𝑥) =
𝜈∗ ((−∞, 𝑥]) for all 𝑥 ∈ R;

2. If on the other hand𝑈 < 𝑝 then use the Skorokhod representation twice over to generate

𝑋 = (𝐺1)−1,+ (𝑈/𝑝) , (5)

𝑌 = (𝐺2)−1,+ ((𝑝 −𝑈)/𝑝) ,

where (𝐺𝑖)−1,+ for 𝑖 ∈ {1,2} are the substitute inverses of the distribution functions 𝐺𝑖 which are
determined by 𝐺𝑖 (𝑥) = 𝜈𝑖 ((−∞, 𝑥]) for all 𝑥 ∈ R;

Note that instead of (𝐺∗)−1,+, (𝐺1)−1,+ and (𝐺2)−1,+, we could have used (𝐺∗)−1,− , (𝐺1)−1,− and
(𝐺2)−1,− , respectively. Hence the AMR coupling depends on the choice of the substitute inverse
used in the Skorokhod representation, as explained in Section 2.1. If 𝑋 ≠ 𝑌 then (5) delivers an anti-
monotonic relationship between 𝑋 and 𝑌 via 𝑈: as 𝑈 increases it is the case that 𝑋 is non-decreasing
and 𝑌 is non-increasing. However in general we cannot infer that 𝑌 is an anti-monotonic function of 𝑋;
if 𝐺1 or 𝐺2 have jumps then this may not be the case.

2.2.1. AMR for absolutely continuous distributions

In the case where 𝐹1 and 𝐹2 have densities ( 𝑓1 and 𝑓2 respectively) then McCann’s AMR coupling
admits a more direct description. In that case 𝐹1 and 𝐹2 are continuous, while 𝐶1

ℓ
and 𝐶2

ℓ
are half-

infinite closed intervals with 𝜁 defined as above. Moreover we have 𝐶1 = (−∞, 𝜁) and 𝐶2 ⊆ (𝜁,∞),
while 𝐹1 (𝜁) − 𝐹2 (𝜁) = ℓmax by continuity of 𝐹1 and 𝐹2.

In this case of densities, the coupled copy 𝑌 may then be constructed in terms of 𝑋 and a different
auxiliary random variable𝑈, with𝑈 being Uniform(0,1) independent of 𝑋 . Set

𝑌 =

{
𝜌𝐹1 ,𝐹2 (𝑋) when𝑈 ≥ ( 𝑓2 (𝑥) ∧ 𝑓1 (𝑥))/ 𝑓1 (𝑥) ,
𝑋 when𝑈 < ( 𝑓2 (𝑥) ∧ 𝑓1 (𝑥))/ 𝑓1 (𝑥) .
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Figure 1: Anti-monotonic rearrangement. In the two uncoupled regions (left and right) the banding
indicates the use of anti-monotonic rearrangement to map vertical strips in the left region to vertical
strips in the right region and vice versa.

Here 𝜌𝐹1 ,𝐹2 :𝐶1 →𝐶2 is the anti-monotonic rearrangement function, defined for 𝑥 ∈ 𝐶1 by

𝜌𝐹1 ,𝐹2 (𝑥) = inf
{
𝜌 :

∫ ∞

𝜌

( 𝑓2 (𝑡) − 𝑓1 (𝑡)) d 𝑡 =
∫ 𝑥

−∞
( 𝑓1 (𝑡) − 𝑓2 (𝑡)) d 𝑡

}
. (6)

Since 𝐹1 and 𝐹2 are continuous, it follows that

𝜁 ∈ {𝑥 ∈ R : 𝐹1 (𝑥) − 𝐹2 (𝑥) = ℓmax} ≠ ∅ . (7)

Moreover, if 𝜁 ∈ {𝑥 : 𝐹1 (𝑥) − 𝐹2 (𝑥) = ℓmax} then from (6) we may deduce that∫ 𝜁

−∞
( 𝑓1 (𝑡) − 𝑓2 (𝑡)) d 𝑡 = 𝐹1 (𝜁) − 𝐹2 (𝜁) = (1 − 𝐹2 (𝜁)) − (1 − 𝐹1 (𝜁)) =

∫ ∞

𝜁

( 𝑓2 (𝑡) − 𝑓1 (𝑡)) d 𝑡 .

Furthermore,
∫ 𝜁

𝑢
( 𝑓2 (𝑡) − 𝑓1 (𝑡)) d 𝑡 is always negative when 𝑢 < 𝜁 , since then 𝑢 ∈ 𝐶1

ℓ
for some ℓ < ℓmax.

Therefore 𝜁 = 𝜌𝐹1 ,𝐹2 (𝜁).

2.3. Unimodality and the measure-majorization of shifts

We plan to apply AMR to produce optimal Markovian couplings of two copies of a Markov chain
(𝑋𝑘)∞𝑘=0 started from two different initial points. To this end, we will need to couple transition prob-
abilities of (𝑋𝑘)∞𝑘=0 with their respective counterparts shifted by 𝑎 for any 𝑎 > 0. Note that this cor-
responds to coupling jump distributions of two processes with different starting points (separated by
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𝑎 > 0). To prepare for this, we discuss a general definition of (weak) unimodality which makes no
explicit reference to probability densities.

Theorem 2.3. Suppose a distribution function 𝐹 corresponds to a random variable 𝑋 such that for all
𝑥 > 0 there exists 𝑎(𝑥) ∈ (0, 𝑥) such that

P[𝑋 + 𝑥 ∈ 𝐸] ≥ P[𝑋 ∈ 𝐸] for measurable 𝐸 ⊂ [𝑎(𝑥),∞) ,

P[𝑋 − 𝑥 ∈ 𝐸] ≥ P[𝑋 ∈ 𝐸] for measurable 𝐸 ⊂ (−∞,−𝑎(𝑥)] .

Then the probability law corresponding to 𝐹 can be expressed as a mixture of (a) a probability density
𝑓 which is (weakly) unimodal at 0 and (b) a Dirac mass at 0.

Here “weakly unimodal” at 𝑦 ∈ R means that there is a version of the density 𝑓 which is non-
decreasing on (−∞, 𝑦) and non-increasing on (𝑦,∞).

It is convenient to prove a measure-theoretic version of Theorem 2.3. Consider two measures 𝜇1
and 𝜇2 defined on a 𝜎-algebra A. For any measurable 𝐺 ⊂ R, the notation 𝜇1 |𝐺 ≥ 𝜇2 |𝐺 means that
𝜇1 (𝐴) ≥ 𝜇2 (𝐴) for any 𝐴 ∈ A such that 𝐴 ⊂ 𝐺. For 𝑥 ∈ R let 𝛿𝑥 denote the Dirac mass at 𝑥, so that the
convolution measure 𝛿𝑥 ∗ 𝜈 is the shift of 𝜈 by 𝑥.

Theorem 2.4. Suppose a non-negative measure 𝜈 on R satisfies the following majorization relation-
ship: for all 𝑥 > 0 there exists 𝑎(𝑥) ∈ (0, 𝑥) such that

(𝛿𝑥 ∗ 𝜈) | [𝑎 (𝑥 ) ,∞) ≥ 𝜈 | [𝑎 (𝑥 ) ,∞) , (8)

(𝛿−𝑥 ∗ 𝜈) | (−∞,−𝑎 (𝑥 ) ] ≥ 𝜈 | (−∞,−𝑎 (𝑥 ) ] .

Then 𝜈 has a density 𝑓 on R \ {0}, which can be chosen to be càdlàg non-decreasing on (−∞,0) and
càglàd non-increasing on (0,∞). We say that (the density component of) 𝜈 is weakly unimodal.

Thus the majorization condition (8) actually corresponds to weak unimodality of the density at 0.
For weak unimodality at an arbitrary 𝑦 ∈ R, one would need to consider 𝑎(𝑥) ∈ (𝑦, 𝑦 + 𝑥) for 𝑥 > 0, etc.
The proof of Theorem 2.4 can be found in Section 4.

2.4. Optimal Wasserstein coupling for concave costs

In order to prove optimality for suitable AMR couplings we apply the results of Section 2.3 to prob-
ability distributions 𝐹 and 𝐺 on R such that 𝐹 is a mixture of a Dirac mass at 0 with an absolutely
continuous distribution whose density is weakly unimodal at 0, while 𝐺 is a right-shift of a (possibly
different) distribution of the same form.

We further suppose that there exists 𝜁 ∈ R with the property that the function 𝐹 − 𝐺 is strictly
increasing on (−∞, 𝜁] and strictly decreasing on [𝜁,∞), cf. (7). This is automatically true if 𝐹 is
strictly unimodal and 𝐺 is a shift of 𝐹 to the right.

As discussed at the beginning of Section 2, we are interested in finding couplings that minimize
concave cost functions. However in this subsection it is convenient to focus on the equivalent problem
of maximizing convex payoffs (see the discussion before Lemma 2.10 for further comments on this
equivalence). To this end, we apply the methods from [44] to McCann’s AMR coupling defined in
Section 2.2. Note that [44] considers a convex-monotone coupling defined in a completely different
way, see (2) therein. However, [44, Lemma 1] combines with the optimality result below (which implies
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uniqueness of the optimal coupling by Remark 2.7) to show that the AMR coupling is the same as the
convex-monotone coupling if the distribution 𝐹 is strictly unimodal and 𝐺 is a right-shift of 𝐹. In
general the two definitions are very different: AMR can be interpreted in many different ways in non-
unimodal situations [41] while the convex-monotone coupling is well-defined in such cases.

By the definition of the AMR coupling (𝑋,𝑌 ) from Section 2.2, for any 𝑎 < 𝑏 ≤ 𝜁

P
[
(𝑋,𝑌 ) ∈ (𝑎, 𝑏]2, 𝑋 =𝑌

]
= P [𝑋 ∈ (𝑎, 𝑏], 𝑋 =𝑌 ] =𝐺 (𝑏) −𝐺 (𝑎) (9)

and for any 𝜁 < 𝑎 < 𝑏

P
[
(𝑋,𝑌 ) ∈ (𝑎, 𝑏]2, 𝑋 =𝑌

]
= P [𝑌 ∈ (𝑎, 𝑏], 𝑋 =𝑌 ] = 𝐹 (𝑏) − 𝐹 (𝑎) . (10)

Thus for any 𝑎 ≤ 𝜁 < 𝑏

P
[
(𝑋,𝑌 ) ∈ (𝑎, 𝑏]2, 𝑋 =𝑌

]
=𝐺 (𝜁) −𝐺 (𝑎) + 𝐹 (𝑏) − 𝐹 (𝜁) .

Now 𝐹 and 𝐺 are not necessarily diffuse, so (6) cannot be applied to define a mapping 𝜌𝐹,𝐺 (𝑥) for
all 𝑥 ∈ R. However, for any 𝑥 < 𝜁 such that 𝐹 does not have an atom at 𝑥 (i.e., for any 𝑥 ≠ 0 in the setting
of this section), we can define a real number AMR(𝑥) ≥ 𝜁 by

AMR(𝑥) = inf{𝑦 > 𝜁 : 𝐹 (𝑥) −𝐺 (𝑥) ≥ 𝐹 (𝑦) −𝐺 (𝑦)} .

So for any 𝑎 such that 𝑎 ≤ 𝜁 < 𝑏 and 𝐹 does not have an atom at 𝑎, if 𝑎 < 𝑋 < 𝑌 and 𝑏 > AMR(𝑎),
then 𝑌 ≤ 𝑏. Thus if 𝑎 ≤ 𝜁 < 𝑏 and 𝑏 > AMR(𝑎) then

P
[
(𝑋,𝑌 ) ∈ (𝑎, 𝑏]2, 𝑋 < 𝑌

]
= P [𝑎 < 𝑋 ≤ 𝜁 < 𝑌 ≤ 𝑏] = P [𝑎 < 𝑋 ≤ 𝜁, 𝑋 < 𝑌 ]

= (𝐹 (𝜁) − 𝐹 (𝑎)) − (𝐺 (𝜁) −𝐺 (𝑎)) .
(11)

Similarly, for any 𝑎 such that 𝑎 ≤ 𝜁 < 𝑏 and 𝐹 does not have an atom at 𝑎, if 𝑏 ≤ AMR(𝑎) then

P
[
(𝑋,𝑌 ) ∈ (𝑎, 𝑏]2, 𝑋 < 𝑌

]
= P [𝑎 < 𝑋 ≤ 𝜁 < 𝑌 ≤ 𝑏] = P [𝜁 < 𝑌 ≤ 𝑏, 𝑋 < 𝑌 ]

= (𝐺 (𝑏) −𝐺 (𝜁)) − (𝐹 (𝑏) − 𝐹 (𝜁)) .
(12)

Note that the corresponding probabilities are zero in all the other possible cases of 𝑎 and 𝑏, so long as
𝑎 and 𝑏 respectively avoid the atoms of 𝐹 and 𝐺.

We need the following technical result, whose proof is adapted from that of Lemma 1 in [44] and
can be found in Section 4.

Lemma 2.5. For any coupling of random variables 𝑋 and 𝑌 and for any 𝑐 > 0 we have

E
[
(𝑐 − |𝑋 −𝑌 |)+

]
=

∫ ∞

−∞
P
[
(𝑋,𝑌 ) ∈ (𝑡 − 𝑐, 𝑡]2

]
d 𝑡 .

As an immediate corollary, it follows that

E
[
(𝑐 − |𝑋 −𝑌 |)+

]
≤
∫ ∞

−∞

(
P [𝑡 − 𝑐 < 𝑋 ≤ 𝑡] ∧ P [𝑡 − 𝑐 < 𝑌 ≤ 𝑡]

)
d 𝑡 .
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We will now show that the upper bound is actually obtained by the coupling by anti-monotone re-
arrangement defined in Section 2.2, i.e., we will show that, since the AMR coupling (𝑋,𝑌 ) satisfies
(9)-(12), for Lebesgue-almost all 𝑡, then in this particular case

P
[
(𝑋,𝑌 ) ∈ (𝑡 − 𝑐, 𝑡]2

]
= min{𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐), 𝐺 (𝑡) −𝐺 (𝑡 − 𝑐)} . (13)

In the sequel, condition (13) is needed only for Lebesgue-almost all 𝑡 ∈ R since we are interested in
values of the expressions in (13) after integration with respect to 𝑡. So it suffices to show that (13) holds
only for 𝑡 and 𝑐 such that 𝐹 does not have an atom at 𝑡 − 𝑐 (so that (11) and (12) apply for 𝑎 = 𝑡 − 𝑐).

Consider the case of 𝑡 − 𝑐 < 𝜁 ≤ 𝑡. Then we have

P
[
(𝑋,𝑌 ) ∈ (𝑡 − 𝑐, 𝑡]2

]
=

P [𝑡 − 𝑐 < 𝑋 ≤ 𝜁, 𝑋 =𝑌 ] + P [𝜁 < 𝑌 ≤ 𝑡, 𝑋 =𝑌 ] + P [𝑡 − 𝑐 < 𝑋 ≤ 𝜁 < 𝑌 ≤ 𝑡] .

Applying (9) and (10), the first two summands on the right add up to

𝐺 (𝜁) −𝐺 (𝑡 − 𝑐) + 𝐹 (𝑡) − 𝐹 (𝜁) .

If 𝑡 > AMR(𝑡 − 𝑐), then we can apply (11) to show that the third summand equals

𝐹 (𝜁) −𝐺 (𝜁) +𝐺 (𝑡 − 𝑐) − 𝐹 (𝑡 − 𝑐) ,

while if 𝑡 ≤ AMR(𝑡 − 𝑐) then by (12) the third summand is equal to

𝐹 (𝜁) −𝐺 (𝜁) +𝐺 (𝑡) − 𝐹 (𝑡) .

Note that if 𝑡 ≤ AMR(𝑡 − 𝑐) then 𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐) ≥ 𝐺 (𝑡) − 𝐺 (𝑡 − 𝑐), while if 𝑡 > AMR(𝑡 − 𝑐) then
𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐) ≤ 𝐺 (𝑡) − 𝐺 (𝑡 − 𝑐), and hence addition yields (13). The other cases can be checked
more directly, as the equivalent of the third summand is then zero.

We have proved the following result:

Lemma 2.6. Let 𝐹 and 𝐺 be cumulative distribution functions. Suppose that there exists 𝜁 ∈ R with
the property that the function 𝐹 −𝐺 is strictly increasing on (−∞, 𝜁] and strictly decreasing on [𝜁,∞).
Then for any 𝑐 > 0, the AMR coupling (𝑋,𝑌 ) is the optimal coupling in the sense of maximizing the
payoff function E [(𝑐 − |𝑋 −𝑌 |)+].

Remark 2.7. From the argument above, it is evident that any coupling (𝑋,𝑌 ) satisfying (13)
must also satisfy (9)-(12) and, as a consequence, must be defined via (4)-(5). This shows that the
AMR coupling given by (4)-(5) is essentially the unique coupling (𝑋,𝑌 ) maximizing the payoff
function E [(𝑐 − |𝑋 −𝑌 |)+]. This has to be understood in the sense that any coupling maximizing
E [(𝑐 − |𝑋 −𝑌 |)+] must satisfy (4)-(5), however, conditions (4)-(5) themselves are only unique up to
the choice of the Skorokhod representation as explained in Section 2.1. In particular, for 𝐹 and 𝐺 with
atoms, there will be more than one “version” of AMR satisfying (4)-(5).

Intuitively, it is clear that any candidate for the optimal coupling should put the common mass
together with the maximal probability, and hence identifying the optimal coupling for a given cost
comes down to specifying what happens with the remaining mass. As explained in [41], the intuition
for why AMR is the optimal coupling for minimizing concave costs (or maximizing convex payoffs)
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is that for a concave cost, it is more efficient to have a transport map with one long and one short
transport, rather than a transport map with two transports of average length.

From now on we will focus on the special case of𝐺 = 𝐹𝑎 for 𝑎 > 0, where we define 𝐹𝑎 (𝑥) = 𝐹 (𝑥−𝑎)
for all 𝑥 ∈ R. Notice that in this case the AMR coupling (𝑋,𝑌 ) of random variables with distributions
𝐹 and 𝐹𝑎 depends only on 𝑋 and 𝑎 and hence we will denote it by (𝑋,AMR𝑎 (𝑋)).

In order to proceed, we need the following lemma. Its proof is a reformulation of the proof of
Lemma 2 in [44], and is included in Section 4 for completeness.

Lemma 2.8. Fix a random variable 𝑋 whose distribution is weakly unimodal. For any 𝑎, 𝑐 > 0 con-
sider the function 𝜓 defined by

𝜓(𝑎, 𝑐) = sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

E
[
(𝑐 − |𝑋 −𝑌 |)+

]
, (14)

where L(𝑌 ) is the law of the random variable 𝑌 . Then it is the case that

𝜓(𝑎, 𝑐) + 𝑎 = 𝜓(𝑐, 𝑎) + 𝑐 .

As a consequence [44, Lemma 2 and the following discussion] the function

𝑎 ↦→ sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

E
[
(𝑐 − |𝑋 −𝑌 |)+

]
is convex. However a more general result can be obtained (for the proof see Section 4):

Lemma 2.9. Let 𝜑 : R+ → R+ be a bounded continuous convex and non-increasing function. Then

𝑎 ↦→ sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

E [𝜑( |𝑋 −𝑌 |)]

is bounded, continuous, convex, and non-increasing.

The representation E [𝜑( |𝑋 −𝑌 |)] = lim𝑛→∞
∑𝑛

𝑖=1 E
[
𝜆𝑛
𝑖
(𝑐𝑛

𝑖
− |𝑋 −𝑌 |)+

]
obtained in the proof (see

(22)) permits extension of the optimality result for AMR (Lemma 2.6) to all bounded, continuous,
convex, decreasing functions 𝜑. Note further, that the optimization problem of maximizing the pay-
off E [𝜑( |𝑋 −𝑌 |)] for such 𝜑 is equivalent to the problem of minimizing the cost E [Φ( |𝑋 −𝑌 |)] for
bounded, continuous, concave, increasing functions Φ, and hence the AMR coupling solves this min-
imization problem for such Φ. This property of AMR extends to unbounded, continuous, concave, in-
creasing costs Φ, so long as it is assumed that the random variable 𝑋 in the optimization problem (and
hence also 𝑌 ) has finite first moment (or even a weaker condition E [Φ( |𝑋 |)] <∞). Indeed, Φ specified
above can be approximated by a sequence of bounded functions Φ𝑛 (satisfying all the remaining prop-
erties of Φ), for which AMR solves the corresponding optimization problem by the discussion above.
Then, due to the assumption on the finite moment of 𝑋 , the monotone convergence theorem can again
be applied to obtain

E [Φ( |𝑋 −𝑌 |)] = lim
𝑛→∞

E [Φ𝑛 ( |𝑋 −𝑌 |)] ,

permitting the conclusion that AMR solves the optimization problem for Φ:

Lemma 2.10. Let 𝐹 and 𝐺 be cumulative distribution functions such that there exists 𝜁 ∈ R so that
the function 𝐹 − 𝐺 is strictly increasing on (−∞, 𝜁] and strictly decreasing on [𝜁,∞). Let Φ be a
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continuous, concave, increasing cost function (possibly unbounded). Finally, suppose E[Φ( |𝑋 |)] <∞
if 𝑋 is a random variable with distribution function 𝐹. Then the AMR coupling (𝑋,𝑌 ) is the unique
optimal coupling (in the sense of Remark 2.7) minimizing the payoff function E[Φ( |𝑋 −𝑌 |)].

We stress that the unimodality of the distribution of 𝑋 is crucial for the existence of a single coupling
optimal for all such costs (see Example 2.13).

In the sequel we extend this optimality result to cover suitable stochastic processes, namely random
walks and finite-activity Lévy processes.

In the remainder of this section, let us focus on random walks with unimodal jumps. To this end, let
𝜙 be a convex, bounded, continuous, decreasing function as above and let (𝑋𝑘)∞𝑘=0 be a Markov chain
with a family of transition kernels 𝑝 = {𝑝(𝑥, ·)}𝑥∈R, where 𝑝(𝑥, 𝐴) = P(𝑋𝑛 ∈ 𝐴|𝑋𝑛−1 = 𝑥) for all 𝑛 ≥ 1,
i.e., the process (𝑋𝑘)∞𝑘=0 is assumed to be time-homogeneous. Following Section 2.3, we assume that
each measure 𝑝(𝑥, ·) for any 𝑥 ∈ R is a mixture of a Dirac mass at 0 and a density which is strictly
unimodal at 0. For any 𝑎 > 0, any 𝑛 ≥ 1 and any 𝑙 ∈ {0, . . . , 𝑛 − 1} we define

𝜓
𝜙

𝑛,𝑙
(𝑎) = supE [𝜙( |𝑋𝑛 −𝑌𝑛 |) : |𝑋𝑙 −𝑌𝑙 | = 𝑎] ,

where the supremum is taken over all immersion couplings (𝑋𝑘 ,𝑌𝑘)∞𝑘=𝑙 of two copies of (𝑋𝑘)∞𝑘=0 such
that |𝑋𝑙 − 𝑌𝑙 | = 𝑎. Observe that, due to time-homogeneity and the fact that we work with immersion
couplings, 𝜓𝜙

𝑛,𝑙
(𝑎) = 𝜓𝜙

𝑛−𝑙,0 (𝑎) = 𝜓
𝜙

𝑛−𝑙 (𝑎) depends only on the value of the difference 𝑛 − 𝑙 rather

than on the individual values of 𝑛 and 𝑙. In other words, 𝜓𝜙

𝑛,𝑙
(𝑎) is the supremum of the distance

E [𝜙( |𝑋𝑛−𝑙 −𝑌𝑛−𝑙 |)] taken over all immersion couplings of Markov chains with the transition kernels
𝑝, such that |𝑋0 −𝑌0 | = 𝑎.

Theorem 2.11. Let (𝑋𝑘)∞𝑘=0 be a Markov chain with transition kernels 𝑝 as specified above. Let
(𝑍 𝑙,𝑎

𝑘
)∞
𝑘=𝑙

be a Markov chain such that |𝑍 𝑙,𝑎
𝑙

− 𝑋𝑙 | = 𝑎 and for all 𝑘 > 𝑙 the random vector (𝑋𝑘 , 𝑍
𝑙,𝑎

𝑘
),

conditional on (𝑋𝑘−1, 𝑍
𝑙,𝑎

𝑘−1), is an AMR coupling of random variables defined as in (4)-(5). Then, for
any convex, bounded, continuous, decreasing function 𝜙, any 𝑛 ≥ 1 and any 𝑙 ∈ {0, . . . , 𝑛 − 1},

𝜓
𝜙

𝑛,𝑙
(𝑎) = E

[
𝜙( |𝑋𝑛 − 𝑍 𝑙,𝑎𝑛 |)

]
.

Proof. By construction (𝑋, 𝑍 𝑙,𝑎) is an immersion coupling, and indeed a Markovian coupling.
The proof uses mathematical induction (following the ideas of dynamic programming and the Bell-

man principle): at level 𝑛 ≥ 1 the inductive hypothesis is that for any bounded convex continuous de-
creasing 𝜙, and for any 𝑚 = 1, . . . , 𝑛, the supremum 𝜓

𝜙
𝑚 (𝑎) is realized using the iterated AMR coupling

(𝑋, 𝑍) with 𝑋0 − 𝑍0 = 𝑎: moreover 𝜓𝜙
𝑚 itself is then also convex decreasing.

Consider an immersion coupling (𝑋,𝑌 ) such that 𝑌0 − 𝑋0 = 𝑎 > 0 (the case 𝑎 < 0 follows by ex-
changing rôles of 𝑋 and 𝑌 ). Consider the first level 𝑛 = 1 of the inductive hypothesis. It follows from
Lemmas 2.9 and 2.10 that, for any bounded convex continuous decreasing 𝜙, the supremum 𝜓

𝜙

1 (𝑎)
is realized using the single-jump AMR coupling (𝑋, 𝑍) with 𝑋0 − 𝑍0 = 𝑎: moreover 𝜓𝜙

1 inherits the
convex decreasing property of 𝜙 = 𝜓𝜙

0 . Thus case 𝑛 = 1 of the induction is valid.
Suppose the inductive hypothesis is valid at level 𝑛 − 1. To prove level 𝑛 it suffices to show that

𝜓
𝜙
𝑛 (𝑎) = sup{E [|𝜙( |𝑋𝑛 −𝑌𝑛 |) |] ; |𝑋0 −𝑌0 | = 𝑎 and (𝑋,𝑌 ) is an immersion coupling}

is maximized by taking 𝑌 = 𝑍0,𝑎, and that 𝜓𝜙
𝑛 is convex decreasing. For brevity we write 𝑍0,𝑎 = 𝑍 .



Optimal Markovian coupling for finite activity Lévy processes 13

We argue as follows, First, use iterated conditional expectation and the definition of 𝜓𝜙

𝑛−1:

E [𝜙( |𝑋𝑛 −𝑌𝑛 |)] = E [E [𝜙( |𝑋𝑛 −𝑌𝑛 |) | F1]] ≤ E
[
𝜓
𝜙

𝑛−1 ( |𝑋1 −𝑌1 |)
]
,

where {F𝑛 : 𝑛 ≥ 0} is the common filtration from the definition of (𝑋𝑛,𝑌𝑛) as an immersion coupling.
The inequality above is a consequence of the definition of 𝜓𝜙

𝑛−1 and the fact that immersion coupling
respects conditional expectations. Now employ the inductive hypothesis at level 1 based on 𝜓𝜙

𝑛−1 rather
than 𝜙:

E
[
𝜓
𝜙

𝑛−1 ( |𝑋1 −𝑌1 |)
]
≤ E

[
𝜓
𝜙

𝑛−1 ( |𝑋1 − 𝑍1 |)
]
.

Finally apply iterated conditional expectation and the inductive hypothesis at level 𝑛 − 1:

E
[
𝜓
𝜙

𝑛−1 ( |𝑋1 − 𝑍1 |)
]
= E [E [𝜙( |𝑋𝑛 − 𝑍𝑛 |] | F1] = E [𝜙( |𝑋𝑛 − 𝑍𝑛 |)] .

Additionally

𝜓
𝜙
𝑛 ( |𝑋0 − 𝑍0 |) = E [𝜙( |𝑋𝑛 − 𝑍𝑛 |)] = E

[
𝜓
𝜙

𝑛−1 ( |𝑋1 − 𝑍1 |)
]
,

so the convex decreasing property of 𝜓𝜙

𝑛−1 is inherited by 𝜓𝜙
𝑛 . This completes the proof of the inductive

step, and so the result follows.

By the equivalence of the maximization problem for convex payoffs and the minimization problem
for concave costs, Theorem 2.11 solves the optimization problem described in Section 1 for Markov
chains with unimodal transition probabilities (possibly with Dirac mass at the mode). An additional
assumption of E [Φ( |𝑋𝑘 |)] <∞ for all 𝑘 ≥ 1 is required for unbounded concave costs Φ (Lemma 2.10).

Remark 2.12. Note that our optimality result for the unimodal non-symmetric case is inherently one-
dimensional: in the multi-dimensional setting it is not obvious even how to characterize the concept
of unimodality, and, as we will demonstrate in Example 2.13, without unimodality it is impossible
to obtain optimality results of the type discussed above. However, in the multi-dimensional unimodal
symmetric absolutely continuous case, i.e., when 𝜇(𝑑𝑥) = 𝜇( |𝑥 |)𝑑𝑥, the relevant optimization problem
is easily reduced to the one-dimensional setting (since we can assume without loss of generality that the
measure 𝜇 and its shift by 𝑎 ∈ R𝑑 differ only in the first coordinate), and the AMR coupling reduces to
the reflection coupling. Hence, as a consequence of our result, we can confirm the established folklore
that the multidimensional reflection coupling is in fact the optimal coupling for concave costs in the
rotationally symmetric setting (cf. the discussion in the introduction).

2.5. Example: necessity of unimodality

If unimodality fails then the optimal coupling may depend on the cost function.

Example 2.13. [Two-point equiprobable distribution] Suppose 𝑋 has a two-point equiprobable distri-
bution with probability masses of 1/2 each, located at 0 and 1. Suppose 𝑌 has the same distribution,
but shifted 𝛼 units to the right for some 𝛼 > 0, thus with probability masses located at 𝛼 and 1 + 𝛼.
Consider two extreme forms of coupling:

1. Synchronous coupling, based on the transportation plan sending 0 to 𝛼 and 1 to 1 + 𝛼.
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2. Anti-monotonic rearrangement (which is equivalent here to a reflection coupling, since the distri-
butions are symmetric), based on the transportation plan sending 0 to 1 + 𝛼 and 1 to 𝛼;

Evaluate these couplings using a concave cost based on 𝑐𝛾 (𝑥, 𝑦) = |𝑥 − 𝑦 |𝛾 , with 𝛾 ∈ (0,1). Consider
the difference of the cost under plan 2 minus cost under plan 1 as a function of 𝛼:

𝑓 (𝛼) = (1 + 𝛼)𝛾 + |1 − 𝛼 |𝛾 − 2𝛼𝛾 .

It is an exercise to verify that the function 𝑓 (𝛼) is always positive for 𝛼 ≥ 1, for all values of 𝛾 ∈ (0,1).
Hence, for 𝛼 ≥ 1, the cost under plan 1 is less than the cost under plan 2 and hence the synchronous
coupling is the preferred choice. On the other hand, numerical solution of the equation 𝑓 (𝛼) = 0 for
𝛼 ∈ (0,1) and 𝛾 ∈ (0,1) shows that the optimal strategy is always reflection if 𝛼 ≤ 0.7071 . . . , whereas
for 0.7071 . . . < 𝛼 < 1 the optimal strategy depends on the choice of 𝛾 ∈ (0,1).

3. Optimal Markovian coupling for finite-activity Lévy processes

This section employs a uniformization procedure for finite-activity Lévy processes (i.e., compound
Poisson processes), which generalizes the uniformization procedure for finite state-space continuous-
time Markov chains [46, Section 6.7]. It permits representation of any immersion coupling of finite-
activity Lévy processes with a Lévy measure 𝜈 of mass 𝜈(R) <∞, in terms of a Poisson process with
intensity 2𝜈(R) supplying jump times for both the coupled processes. This in turn permits extension of
the optimality result from the previous section from Markov chains to finite-activity Lévy processes.

Let (𝑋𝑡 ,𝑌𝑡 )𝑡≥0 be an immersion coupling of two copies of a real-valued compound Poisson process
with a Lévy measure 𝜈, adapted to a common filtration (F𝑡 )𝑡≥0. Then there exist Poisson processes
(𝑁1

𝑡 )𝑡≥0 and (𝑁2
𝑡 )𝑡≥0 with intensity 𝜈(R) and two sequences of i.i.d. random variables (𝑍1

𝑖
)∞
𝑖=1, (𝑍2

𝑖
)∞
𝑖=1

with L(𝑍 𝑗

𝑖
) = 𝜈/𝜈(R) for 𝑖 ∈ N+, 𝑗 ∈ {1,2}, respectively independent of (𝑁1

𝑡 )𝑡≥0 and (𝑁2
𝑡 )𝑡≥0, with

𝑋𝑡 = 𝑋0 +
𝑁1
𝑡∑︁

𝑖=1

𝑍1
𝑖 and 𝑌𝑡 =𝑌0 +

𝑁2
𝑡∑︁

𝑖=1

𝑍2
𝑖 . (15)

Note that (𝑍1
𝑖
)∞
𝑖=1 and (𝑍2

𝑖
)∞
𝑖=1 are both i.i.d. sequences, but usually (except in the case of the indepen-

dent coupling), the random variables 𝑍1
𝑖

and 𝑍2
𝑖

are dependent for any fixed 𝑖 ≥ 1. Moreover,

𝑁1
𝑡 =

∞∑︁
𝑖=1

1{𝜏1
𝑖
≤𝑡 } and 𝑁2

𝑡 =

∞∑︁
𝑖=1

1{𝜏2
𝑖
≤𝑡 } ,

with sequences of random variables (𝜏 𝑗
𝑖
)∞
𝑖=1 for 𝑗 ∈ {1,2}, such that L(𝜏 𝑗

𝑖
− 𝜏 𝑗

𝑖−1) = Exp(𝜈(R)) for any
𝑖 ≥ 2, and all the random variables 𝜏 𝑗

𝑖
− 𝜏 𝑗

𝑖−1 for 𝑖 ≥ 2 are mutually independent. We also write

𝑋𝑡 = 𝑋0 +
∞∑︁
𝑖=1

1{𝜏1
𝑖
≤𝑡 }𝑍

1
𝑖 and 𝑌𝑡 =𝑌0 +

∞∑︁
𝑖=1

1{𝜏2
𝑖
≤𝑡 }𝑍

2
𝑖 .

If necessary, we enrich the underlying common filtration (F𝑡 )𝑡≥0 to ensure the existence of a Poisson
process Ψ of rate 𝜈(R) and Uniform(0,1) random variables 𝑀1, 𝑀2, . . . , independent of each other
and of the finite activity Lévy processes, but appropriately adapted to the common filtration.
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Theorem 3.1. In the above situation, enriching the underlying common filtration as above if necessary,
there exist a Poisson process (𝑁𝑡 )𝑡≥0 with intensity 2𝜈(R) and two sequences of i.i.d. random variables
(𝑍1

𝑖
)∞
𝑖=1 and (𝑍2

𝑖
)∞
𝑖=1 with L(𝑍 𝑗

𝑖
) = 1

2𝛿0 + 1
2𝜈 (R) 𝜈 such that

𝑋𝑡 = 𝑋0 +
𝑁𝑡∑︁
𝑖=1

𝑍1
𝑖 and 𝑌𝑡 =𝑌0 +

𝑁𝑡∑︁
𝑖=1

𝑍2
𝑖 . (16)

Moreover, both (𝑍1
𝑖
)∞
𝑖=1 and (𝑍2

𝑖
)∞
𝑖=1 are independent of (𝑁𝑡 )𝑡≥0, though again the random variables

𝑍1
𝑖

and 𝑍2
𝑖

are typically dependent for any fixed 𝑖 ≥ 1.

Proof. We begin by constructing a suitable Poisson process (𝑁𝑡 )𝑡≥0 with intensity 2𝜈(R) given by

𝑁𝑡 =

∞∑︁
𝑖=1

1{𝜏𝑖≤𝑡 } ,

where the sequence (𝜏𝑖)∞𝑖=1 is such that the random variables 𝜏𝑖 − 𝜏𝑖−1 are mutually independent with
L(𝜏𝑖 − 𝜏𝑖−1) = Exp(2𝜈(R)) for all 𝑖 ≥ 2. Moreover, it will be the case that

𝑋𝑡 = 𝑋0 +
∞∑︁
𝑖=1

1{𝜏𝑖≤𝑡 }𝑍
1
𝑖 1{𝜏𝑖=𝜏1

𝑖
} and 𝑌𝑡 =𝑌0 +

∞∑︁
𝑖=1

1{𝜏𝑖≤𝑡 }𝑍
2
𝑖 1{𝜏𝑖=𝜏2

𝑖
} , (17)

so that 𝑍1
𝑖
= 𝑍1

𝑖
1{𝜏𝑖=𝜏1

𝑖
} and 𝑍2

𝑖
= 𝑍2

𝑖
1{𝜏𝑖=𝜏2

𝑖
} in the representation given by (16).

Let Ξ𝑖 be Poisson point processes on (0,∞) counting the jumps of (𝑁 𝑖
𝑡 )𝑡≥0 for 𝑖 ∈ {1,2}:

Ξ𝑖 (𝐴) = #{𝑡 ∈ 𝐴 : Δ𝑁 𝑖
𝑡 ≠ 0} .

Let 𝜆 = 𝜈(R) be the common intensity of (𝑁 𝑖
𝑡 )𝑡≥0 for 𝑖 ∈ {1,2}. Consider the point process Ξ defined

(as a counting process) by

Ξ(𝐴) = #{𝑡 ∈ 𝐴 : Δ𝑁1
𝑡 · Δ𝑁2

𝑡 ≠ 0} ,

counting the simultaneous jumps of (𝑁1
𝑡 )𝑡≥0 and (𝑁2

𝑡 )𝑡≥0. The counting process Ξ has an increasing
càdlàg compensator (Λ𝑡 )𝑡≥0 (see e.g. Chapter 7 of [17]). Since Ξ𝑡 ≤ Ξ1

𝑡 for all 𝑡 > 0, it follows that
Λ𝑡 ≤ 𝜆𝑡 for all 𝑡 > 0.

Hence the compensator (Λ𝑡 )𝑡≥0 is absolutely continuous w.r.t. the Lebesgue measure on R+: so there
exists a predictable process (𝜂𝑡 )𝑡≥0 with values in [0, 𝜆] such that Λ𝑡 =

∫ 𝑡

0 𝜂𝑠 d 𝑠.
Recall the independent Poisson point process Ψ with intensity 𝜆 on (0,∞),. Define a thinned ver-

sion Ψ̃ of Ψ as follows. Suppose the points of Ψ are 0 < 𝜏̃1 < 𝜏̃2 < . . ., deemed to be marked by the
independent Uniform(0,1) random variables 𝑀1, 𝑀2, . . . . Then set

Ψ̃ =
{
𝜏̃𝑖 : 𝑖 ∈ {1,2, . . .} and 𝑀𝑖 ≤ 𝜂 𝜏̃𝑖/𝜆

}
.

Hence Ψ̃ has the compensator (ΛΨ̃
𝑡 )𝑡≥0 given by ΛΨ̃

𝑡 =
∫ 𝑡

0 𝜂𝑠 d 𝑠, i.e., ΛΨ̃
𝑡 = Λ𝑡 for all 𝑡 ≥ 0.

Now define a counting process Υ by

Υ = Ξ1 + Ξ2 − Ξ + Ψ̃ .
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Hence the compensator (ΛΥ
𝑡 )𝑡≥0 of Υ is equal to

ΛΥ
𝑡 = 𝜆𝑡 +

∫ 𝑡

0
(𝜆 − 𝜂𝑠) d 𝑠 +

∫ 𝑡

0
𝜂𝑠 d 𝑠 = 2𝜆𝑡 .

Thus Υ is a Poisson process with intensity 2𝜆, following the arguments of [5] or [49, Theorem 2.3].
Moreover, Υ can be viewed as constructed as a sum of two point processes: Ξ1 and (Ξ2 − Ξ) + Ψ̃

which both have the compensator given by 𝜆𝑡 and hence are Poisson processes. Furthermore, Ξ1 and
(Ξ2 − Ξ) + Ψ̃ clearly do not have simultaneous jumps and hence they must be independent, using the
arguments of [43, Proposition XII-1.7] or [16, Proposition 5.3].

Set 𝑁𝑡 = Υ( [0, 𝑡]). By construction this is a Poisson counting process with intensity 2𝜈(R) for which
(17) holds with a sequence of (𝜏𝑖)∞𝑖=1 obtained by counting the points of Υ. Moreover, due to the
independence of Ξ1 and (Ξ2 − Ξ) + Ψ̃ (and, respectively, the independence of Ξ2 and (Ξ1 − Ξ) + Ψ̃),
it follows that 𝑍1

𝑗
= 𝑍1

𝑗
1{𝜏 𝑗=𝜏

1
𝑗
} and 𝑍2

𝑗
= 𝑍2

𝑗
1{𝜏 𝑗=𝜏

2
𝑗
} for all 𝑗 ≥ 1 have the distribution 1

2𝛿0 + 1
2𝜈 (R) 𝜈,

since for any 𝑢 ∈ R

E
[
𝑒
𝑖⟨𝑢,𝑍𝑘

𝑗
⟩
]
= E

[
𝑒
𝑖⟨𝑢,𝑍𝑘

𝑗
1{𝜏𝑗=𝜏𝑘𝑗 }

⟩
1{𝜏 𝑗=𝜏

𝑘
𝑗
}

]
+ E

[
𝑒
𝑖⟨𝑢,𝑍𝑘

𝑗
1{𝜏𝑗=𝜏𝑘𝑗 }

⟩
1{𝜏 𝑗≠𝜏

𝑘
𝑗
}

]
=

1
2
E
[
𝑒
𝑖⟨𝑢,𝑍𝑘

𝑗
⟩
]
+ 1

2
E
[
𝑒𝑖⟨𝑢,0⟩

]
=

1
2
E
[
𝑒
𝑖⟨𝑢,𝑍𝑘

𝑗
⟩
]
+ 1

2
,

(18)

for all 𝑗 ≥ 1 and 𝑘 ∈ {1,2}, using the independence of 𝑍 𝑘
𝑗

from both 𝜏𝑗 and 𝜏𝑘
𝑗
. Note that P(𝜏𝑗 = 𝜏𝑘𝑗 ) =

P(𝜏𝑗 ≠ 𝜏𝑘𝑗 ) = 1/2, arising directly from the construction of (𝑁𝑡 )𝑡≥0.

Note also that the mutual independence of (𝑍1
𝑗
)∞
𝑗=1 follows from the mutual independence of (𝑍1

𝑗
)∞
𝑗=1

combined with the mutual independence of the events {𝜏𝑗 = 𝜏1
𝑗
} for all 𝑗 ≥ 1.

To show that the process (𝑁𝑡 )𝑡≥0 and the event {𝜏𝑗 = 𝜏1
𝑗
} are independent for any 𝑗 ≥ 1, we first

show that 𝑍1
1 = 𝑍1

11{𝜏1=𝜏
1
1 }

is independent of 𝜏1. Then the assertion follows easily by induction. Note
that for any 𝑢1, 𝑢2 ∈ R,

E
[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩
]
= E

[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩1{𝜏 𝑗=𝜏

𝑘
𝑗
}

]
+ E

[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩1{𝜏 𝑗≠𝜏

𝑘
𝑗
}

]
= 2 × E

[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩1{𝜏 𝑗=𝜏

𝑘
𝑗
}

]
,

(19)

since E
[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩1{𝜏 𝑗=𝜏

𝑘
𝑗
}

]
= E

[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩1{𝜏 𝑗≠𝜏

𝑘
𝑗
}

]
, following from the construction

of (𝑁𝑡 )𝑡≥0 as a sum of two independent, identically distributed point processes. Hence for any 𝑢1,
𝑢2 ∈ R

E
[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩
]
= E

[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩1{𝜏 𝑗=𝜏

𝑘
𝑗
}

]
+ E

[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,0⟩1{𝜏 𝑗≠𝜏

𝑘
𝑗
}

]
=

1
2
E
[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩
]
+ E

[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩1{𝜏 𝑗≠𝜏

𝑘
𝑗
}

]
=

1
2
E
[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩

]
E
[
𝑒𝑖⟨𝑢2 ,𝑍

1
1 ⟩
]
+ 1

2
E
[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩

]
= E

[
𝑒𝑖⟨𝑢1 ,𝜏1 ⟩

]
E
[
𝑒𝑖⟨𝑢,𝑍

1
1 ⟩
]
,
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where the second step uses (19), the third step uses the independence of 𝜏1 and 𝑍1
1 for the first term

and an argument analogous to (19) for the second term, and the last step uses (18) for 𝑗 = 𝑘 = 1. This
implies the independence of 𝑍1

1 and 𝜏1 and completes the proof.

It is now possible to determine the optimal immersion coupling of two copies of a compound Poisson
process with a Lévy measure 𝜈 having a strictly unimodal density. Based on Theorem 3.1, and possibly
enriching the filtration using a marked Poisson process as in the statement of Theorem 3.1, any such
coupling (𝑋𝑡 ,𝑌𝑡 )𝑡≥0 can be represented as in (16). This permits the interpretation of (𝑋𝑡 ,𝑌𝑡 )𝑡≥0 as
a coupling of two processes always jumping simultaneously, albeit with a jump distribution which is
different from the original, obtained by mixing the original with a Dirac mass at 0.

Given an immersion coupling (𝑋𝑡 ,𝑌𝑡 )𝑡≥0 as described above, with |𝑋0 − 𝑌0 | = 𝑎, define a Markov
chain ( 𝑋̄𝑘)∞𝑘=0 derived from the jumps of (𝑋𝑡 )𝑡≥0 by requiring that

𝑋̄𝑘 = 𝑋0 +
𝑘∑︁
𝑗=1

𝑍1
𝑗

for 𝑘 ≥ 0. Based on ( 𝑋̄𝑛)∞𝑛=0, construct a Markov chain (𝑍̄0,𝑎
𝑘

)∞
𝑘=0 starting from 𝑌0 which is step-by-

step AMR-coupled to ( 𝑋̄𝑛)∞𝑛=0, as in the proof of Theorem 2.11. Namely, set 𝑍̄0,𝑎
0 =𝑌0 (which implies

| 𝑋̄0 − 𝑍̄0,𝑎
0 | = 𝑎) and require that for any 𝑘 ≥ 1 the random vector (𝑋𝑘 − 𝑋𝑘−1, 𝑍̄

0,𝑎
𝑘

− 𝑍̄0,𝑎
𝑘−1) is an AMR

coupling defined as in (4)-(5). Denote the jumps of (𝑍̄0,𝑎
𝑘

)∞
𝑘=0 by

Δ𝑍̄
0,𝑎
𝑘

= 𝑍̄
0,𝑎
𝑘

− 𝑍̄0,𝑎
𝑘−1

for 𝑘 ≥ 1. Finally, also define a compound Poisson process (𝑍0,𝑎
𝑡 )𝑡≥0 based on these jumps, with the

same driving Poisson process as for (𝑋𝑡 )𝑡≥0, i.e.,

𝑍
0,𝑎
𝑡 = 𝑍̄

0,𝑎
0 +

𝑁𝑡∑︁
𝑘=1

Δ𝑍̄
0,𝑎
𝑘

. (20)

Note that (𝑍0,𝑎
𝑡 )𝑡≥0 is in fact constructed from (𝑋𝑡 )𝑡≥0 by coupling all the jumps one-by-one using the

AMR procedure. However, for our argument it is crucial that this procedure is applied to the extended
jump distributions 1

2𝜈 (R) 𝜈 +
1
2𝛿0 rather than just to 1

𝜈 (R) 𝜈, cf. Figure 2. From this construction it is

the case that |𝑋0 − 𝑍0,𝑎
0 | = 𝑎 and, since the random variables Δ𝑍̄

0,𝑎
𝑘

and 𝑍2
𝑘

have the same law for
each 𝑘 ≥ 1 (and 𝑍̄

0,𝑎
0 = 𝑌0), it follows that (𝑍0,𝑎

𝑡 )𝑡≥0 and (𝑌𝑡 )𝑡≥0 have the same finite-dimensional
distributions.

We can now prove the optimality result for the AMR coupling of finite-activity Lévy processes. Note
that it is expressed in terms of maximization of convex payoffs, but it equivalently solves the problem
of minimization of concave costs, as explained in the discussion below the proof of Lemma 2.9.

Theorem 3.2. Let (𝑋𝑡 )𝑡≥0 be a finite-activity Lévy process with a Lévy measure with strictly unimodal
density and let 𝑎 > 0. Let (𝑋𝑡 , 𝑍0,𝑎

𝑡 )𝑡≥0 be the AMR coupling defined by (20) and let 𝜙 : [0,∞) → [0,∞)
be a convex bounded continuous decreasing function. Then it is the case that

sup {E [𝜙( |𝑋𝑡 −𝑌𝑡 |) ; |𝑋0 −𝑌0 | = 𝑎 and (𝑋,𝑌 ) is an immersion coupling]} = E
[
𝜙( |𝑋𝑡 − 𝑍0,𝑎

𝑡 |)
]
.
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Figure 2: The anti-monotonic rearrangement in the case of a Lévy measure 𝜈1 with finite support,
having a non-symmetric unimodal density 𝑓1 with added Dirac mass (represented by the bold line) at
the mode (corresponding to the process (𝑋𝑡 )𝑡≥0) and its copy 𝜈2 with density 𝑓2 shifted to the right
by 𝑎 > 0 (corresponding to the process (𝑍0,𝑎

𝑡 )𝑡≥0). The figure can be also interpreted as an illustration
of the jump distribution of (𝑋𝑡 )𝑡≥0 (which is 𝜈1/𝜈1 (R)). Since the mass to the left of the mode of 𝑓1
is larger than the mass to the right of the mode, some non-zero jumps of (𝑋𝑡 )𝑡≥0 to the left will be
transformed into zero jumps of (𝑍0,𝑎

𝑡 )𝑡≥0. The underlying intuition is that when a unimodal probability
density is mixed with a probability mass at the mode so that the mass at the mode is not exceeded by
the mass of the resulting sub-probability density, then anti-monotonic rearrangement of the result with
its translates never extends across the modes. Thus the white subset of the left region is transported to
the right atom, while the white subset of the right region is transported to the left atom.

Proof. For any convex, bounded, continuous, decreasing function 𝜙 and for any immersion coupling
(𝑋𝑡 ,𝑌𝑡 )𝑡≥0 given by (16),

E [𝜙( |𝑋𝑡 −𝑌𝑡 |)] =
∞∑︁
𝑛=0

E

𝜙 ©­«
������(𝑋0 −𝑌0) +

𝑁𝑡∑︁
𝑗=1

(𝑍1
𝑗 − 𝑍2

𝑗 )

������ª®¬
�����𝑁𝑡 = 𝑛

 P[𝑁𝑡 = 𝑛]

=

∞∑︁
𝑛=0

E

𝜙 ©­«
������(𝑋0 −𝑌0) +

𝑛∑︁
𝑗=1

(𝑍1
𝑗 − 𝑍2

𝑗 )

������ª®¬
 P[𝑁𝑡 = 𝑛]

≤
∞∑︁
𝑛=0

E
[
𝜙( | 𝑋̄𝑛 − 𝑍̄0,𝑎

𝑛 |)
]
P[𝑁𝑡 = 𝑛] = E

[
𝜙( |𝑋𝑡 − 𝑍0,𝑎

𝑡 |)
]
,
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where the inequality uses the optimality result for the discrete-time case (Theorem 2.11). Taking the
supremum on the left hand side over all immersion couplings (𝑋𝑡 ,𝑌𝑡 )𝑡≥0 as described above, it follows
that that (𝑋𝑡 , 𝑍0,𝑎

𝑡 )𝑡≥0 is the optimal Markovian coupling.

Finally, we stress that the optimal Markovian coupling for compound Poisson processes constructed
above is unique. Indeed, if we take another optimal Markovian coupling ( 𝑋̂𝑡 ,𝑌𝑡 )𝑡≥0 given by

𝑋̂𝑡 = 𝑋0 +
𝑁̂𝑡∑︁
𝑖=1

𝑍̂1
𝑖 and 𝑌𝑡 =𝑌0 +

𝑁̂𝑡∑︁
𝑖=1

𝑍̂2
𝑖 ,

with a Poisson process (𝑁̂𝑡 )𝑡≥0 and i.i.d. sequences (𝑍̂1
𝑖
)∞
𝑖=1 and (𝑍̂2

𝑖
)∞
𝑖=1 obtained in an analogous way

as (𝑁𝑡 )𝑡≥0, (𝑍1
𝑖
)∞
𝑖=1 and (𝑍2

𝑖
)∞
𝑖=1 above, respectively, then by the argument in the proof of Theorem 3.2

and by the uniqueness of the optimal coupling for Markov chains, we conclude that for each 𝑖 ≥ 1 the
random variables 𝑍̂1

𝑖
and 𝑍̂2

𝑖
have to be coupled via the AMR procedure. This gives uniqueness in law

of the optimal Markovian coupling for continuous-time finite-activity Lévy processes.
To conclude, we briefly discuss two contrasting continuous-time examples.

Example 3.3. Consider the case of a finite activity Lévy process with symmetric jumps. The above
arguments show the optimal coupling is a “reflection coupling”: the jumps of one process are the
opposite of the jumps of the other till they both cross the midpoint between the starting points. At that
crossover time the “left” process jumps to the location of the “right” process and coupling occurs. By
arguments using the so-called recognition lemma [21, Lemma 20], this coupling is maximal amongst
all couplings, immersion or not.

Example 3.4. Consider the case of a finite activity Lévy process with exponential jumps (hence the
jumps are always positive). The above arguments show that, in the optimal coupling with starting points
𝑥 < 𝑦, the two coupled processes jump independently according to independent Poisson processes, till
the first time the “left” process jumps past the “right” process. At that crossover time the “right”
process is forced to jump to the location of the “left” process. However, arguments using the so-called
recognition lemma [21, Lemma 20] show that this coupling cannot be maximal.

Remark 3.5. As discussed in the introduction, in recent literature there have been plenty of other
constructions of couplings of Lévy processes [34,35,37,38]. Using the notation from those papers, in
the special setting where the Lévy measure 𝜈 has a density and hence we have access to the AMR
transformation 𝜌𝐹1 ,𝐹2 given by (6), the idea for the AMR coupling can be described as

(𝑥, 𝑦) →
{
(𝑥 + 𝑧, 𝑦 + 𝑧),

(
𝜈 ∧ 𝛿𝑦−𝑥 ∗ 𝜈

)
(𝑑𝑧)/𝜈(R)

(𝑥 + 𝑧, 𝑦 + 𝜌𝐹1 ,𝐹2 (𝑧))
(
𝜈 − 𝜈 ∧ 𝛿𝑦−𝑥 ∗ 𝜈

)
(𝑑𝑧)/𝜈(R) ,

where 𝑓1 in (6) is the density of the probability measure 𝜈/𝜈(R), and 𝑓2 is the density of its shift by
𝑦 − 𝑥. However, while this description can be used to characterise the coupling in discrete time, when
all the jumps happen simultaneously, it does not directly apply to the optimal coupling (𝑋𝑡 , 𝑍0,𝑎

𝑡 )𝑡≥0
in continuous time from Theorem 3.2, since that coupling applies the AMR construction to modified
jump distributions with added 𝛿0, thus allowing for non-simultaneous jumps of the coupled processes.
Note that for jump distributions with atoms, we do not have access to the straightforward form of the
AMR transformation (6) and we need to work with the Skorokhod representation. Note also that all the
couplings from [34,35,37,38] only used simultaneous jumps.
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Remark 3.6. Extending the optimality results presented in this paper to infinite activity Lévy processes
is a challenging problem. In the infinity activity case, one no longer has access to the representation
of the coupling via compound Poisson processes (16). However, jumps of Lévy processes can always
be characterised by Poisson random measures and this fact has been recently used to construct cou-
plings in the infinite activity case, see e.g. [38, Section 2.2] or [37, Section 2.2]. Employing such a
construction in our case seems non-trivial though, even in the setting of absolutely continuous jump
distributions, where the AMR transformation has a straightforward characterization given by (6) in
Section 2.2.1. Note that when 𝑓1 and 𝑓2 in (6) correspond to densities of infinite Lévy measures, one
would have to deal with the singularities arising due to their infinite mass. Hence the corresponding
infinite activity AMR coupling would have to be constructed as a solution to a singular non-elliptic
SDE with jumps, which creates numerous technical difficulties. Solving this problem falls beyond the
scope of the present paper and is left for future work.

4. Proofs of auxiliary results

Proof of Theorem 2.4. It suffices to treat the case of (0,∞): the case of (−∞,0) then follows by
applying the symmetry of reflection in 0. Firstly we establish existence of a density for 𝜈 | (0,∞) .

Fix 𝜀 > 0 and a set 𝐴 ⊂ [𝜀,∞). Then choose a bounded interval (0, 𝐻) ⊂ R of positive Lebesgue
measure such that 𝐴 ⊂ [𝑎(𝑥),∞) whenever 𝑥 ∈ (0, 𝐻). We can do this since 0 < 𝑎(𝑥) < 𝑥→ 0 as 𝑥 ↓ 0.

Now choose a Uniform(0, 𝐻) random variable 𝑈. Define a measure 𝜇 by 𝜇(𝐵) = E[(𝛿𝑈 ∗ 𝜈) (𝐵)].
Then 𝜇 has a density with respect to Lebesgue measure. For the density of𝑈 by ℎ = 𝐻−11(0,𝐻 ) , so

𝜇(𝐵) =
∫

ℎ(𝑥)𝜈(𝐵 − 𝑥) d 𝑥 =

∫
ℎ(𝑥)

∫
𝐵−𝑥

𝜈(d 𝑦) d 𝑥 =

∫ ∫
ℎ(𝑥)1𝐵−𝑥 (𝑦)𝜈(d 𝑦) d 𝑥

=

∫ ∫
ℎ(𝑥)1𝐵−𝑦 (𝑥) d 𝑥 𝜈(d 𝑦) =

∫ ∫
𝐵−𝑦

ℎ(𝑥) d 𝑥 𝜈(d 𝑦) .

Hence 𝜇(𝐵) = 0 for any Lebesgue null-set 𝐵 ⊂ R. Thus 𝜇 is an absolutely continuous measure.
Now observe that for any 𝑥 ∈ (0, 𝐻) we have (𝛿𝑥 ∗ 𝜈) |𝐴 ≥ 𝜈 |𝐴 (since 𝐴 ⊂ [𝑎(𝑥),∞)). Hence almost

surely (𝛿𝑈 ∗ 𝜈) |𝐴 ≥ 𝜈 |𝐴. This implies that 𝜇 |𝐴 ≥ 𝜈 |𝐴 so long as 𝐴 ⊂ [𝑎(𝑥),∞), hence that 𝜈 has a
density on 𝐴. This holds for all 𝜀 > 0 and 𝐴 ⊂ [𝜀,∞); therefore 𝜈 must have a density on all of (0,∞).

The unimodality condition (8) is symmetric under reflection, so 𝜈 has a density 𝑓 on all of R \ {0}.
We now establish a weakly decreasing property of (a càglàd version of) the density of 𝜈 | (0,∞) .
Fix 𝑧 > 0 and argue from condition (8) that

𝑓 (𝑦 − 𝑧) ≥ 𝑓 (𝑦) for almost all 𝑦 > 𝑧 > 0 .

Indeed, if 𝑓 (𝑦 − 𝑧) < 𝑓 (𝑦) for 𝑦 ∈ 𝐴 ⊂ (𝑧,∞) with Leb(𝐴) > 0, then

(𝛿𝑧 ∗ 𝜈) (𝐴) =
∫
𝐴

𝑓 (𝑦 − 𝑧) d 𝑦 <
∫
𝐴

𝑓 (𝑦) d 𝑦 = 𝜈(𝐴) ,

which contradicts (8). So 𝑓 (𝑢) ≥ 𝑓 (𝑥) for almost all 𝑢, 𝑥 with 𝑢 < 𝑥 ∈ (0,∞), and (for almost all 𝑥 > 0)

𝑓 (𝑥) ≤ 𝑓 (𝑥) = ess inf{ 𝑓 (𝑢) : 0 < 𝑢 < 𝑥} .

Evidently 𝑓 (𝑥) is non-increasing in 𝑥 for 𝑥 > 0. The proof is completed if we can show that 𝑓 (𝑥) = 𝑓 (𝑥)
for almost all 𝑥 > 0, as we can then deduce that 𝑓 is a càglàd non-increasing version of 𝑓 on (0,∞).
This final step is a little more delicate.
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Consider a range (𝑎, 𝑎 +𝑇] ⊂ (0,∞), and fix 𝜀 > 0. Consider the set 𝑀𝑎,𝑇,𝜀 ⊂ (𝑎, 𝑎 +𝑇] given by

𝑀𝑎,𝑇,𝜀 = {𝑥 ∈ (𝑎, 𝑎 +𝑇] : 𝑓 (𝑥) < 𝑓 (𝑥) − 𝜀} ,

and suppose Leb(𝑀𝑎,𝑇,𝜀) > 0. Divide (𝑎, 𝑎+𝑇] into 𝐾 disjoint half-open intervals of equal length𝑇/𝐾
and suppose that 𝐿 of these intersect with 𝑀𝑎,𝑇,𝜀 in a set of positive measure; evidently 𝐿 × 𝑇/𝐾 ≥
Leb(𝑀𝑎,𝑇,𝜀). For such an interval 𝐼 = (𝑥, 𝑦] we know that Leb(𝐼 ∩ 𝑀𝑎,𝑇,𝜀) > 0 and therefore (by the
properties of ess inf and the monotonicity of 𝑓 )

𝑓 (𝑦) ≤ 𝑓 (𝑥−) − 𝜀 ,

where 𝑓 (𝑥−) = lim𝑧↑𝑥 𝑓 (𝑧). Hence 𝑓 must decrease by at least 𝜀 on such an interval 𝐼.
Summing over all intervals in the above decomposition of (𝑎, 𝑎 +𝑇], we deduce

𝑓 (𝑎−) − 𝑓 (𝑎 +𝑇) ≥ 𝐿𝜀 ≥ Leb(𝑀𝑎,𝑇,𝜀) (𝐾/𝑇)𝜀 .

But the left-hand side is bounded above by 𝑓 (𝑎−), so we may deduce

Leb(𝑀𝑎,𝑇,𝜀) ≤
𝑓 (𝑎−)
𝜀

𝑇

𝐾
.

Since 𝐾 can be chosen to be arbitrarily large, we deduce that Leb(𝑀𝑎,𝑇,𝜀) = 0. This holds for all 𝜀 > 0
and all 𝑎,𝑇 > 0. Hence 𝑓 (𝑥) = 𝑓 (𝑥) for almost all 𝑥 > 0, as required to complete the proof.

Proof of Lemma 2.5. The statement follows by direct manipulation of the integral:∫ ∞

−∞
P
[
(𝑋,𝑌 ) ∈ (𝑡 − 𝑐, 𝑡]2

]
d 𝑡 =

∫ ∞

−∞

(
P [𝑡 − 𝑐 < 𝑋 ≤ 𝑌 ≤ 𝑡) + P (𝑡 − 𝑐 < 𝑌 < 𝑋 ≤ 𝑡]

)
d 𝑡

= E

[∫ ∞

−∞

(
1{𝑌≤𝑡<𝑋+𝑐,𝑋≤𝑌 } + 1{𝑋≤𝑡<𝑌+𝑐,𝑌<𝑋}

)
d 𝑡
]

= E
[
(𝑋 + 𝑐 −𝑌 ) 1{𝑋≤𝑌 } + (𝑌 + 𝑐 − 𝑋) 1{𝑌<𝑋}

]
= E

[
(𝑐 − |𝑋 −𝑌 |)+

]
.

Proof of Lemma 2.8. We know that

𝜓(𝑎, 𝑐) = E
[
(𝑐 − |𝑋 − AMR𝑎 (𝑋) |)+

]
=

∫ ∞

−∞
(𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐)) ∧ (𝐹𝑎 (𝑡) − 𝐹𝑎 (𝑡 − 𝑐)) d 𝑡

=

∫ ∞

−∞
(𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐)) ∧ (𝐹 (𝑡 − 𝑎) − 𝐹 (𝑡 − 𝑐 − 𝑎)) d 𝑡 .

As a consequence of the weak unimodality of the law of 𝑋 , if the absolutely continuous part of 𝐹 has
a density 𝑓 , then for a given 𝑐 > 0 there exists a constant 𝜁 such that 𝑓 (𝜁) = 𝑓 (𝜁 − 𝑐) and the function
𝑡 ↦→ 𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐) increases up to 𝜁 and decreases afterwards. Hence, for Lebesgue-almost all 𝑎 and
𝑐 > 0, there exists 𝑡0 > 𝜁 such that

𝐹 (𝑡0) − 𝐹 (𝑡0 − 𝑐) = 𝐹 (𝑡0 − 𝑎) − 𝐹 (𝑡0 − 𝑎 − 𝑐) . (21)

and, for all 𝑡 ≤ 𝑡0,

(𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐)) ∧ (𝐹 (𝑡 − 𝑎) − 𝐹 (𝑡 − 𝑐 − 𝑎)) = 𝐹 (𝑡 − 𝑎) − 𝐹 (𝑡 − 𝑐 − 𝑎) ,
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whereas, for all 𝑡 > 𝑡0,

(𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐)) ∧ (𝐹 (𝑡 − 𝑎) − 𝐹 (𝑡 − 𝑐 − 𝑎)) = 𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐) .

Note that (21) may fail for some combinations of 𝑎 and 𝑐 since 𝐹 is allowed to have an atom. However,
as noted above, it is sufficient if (21) holds for Lebesgue-almost all 𝑎 and 𝑐. Furthermore, observe that
condition (21) is symmetric in 𝑎 and 𝑐 and hence if the roles of 𝑎 and 𝑐 in (14) are exchanged then the
same 𝑡0 = 𝑡0 (𝑎, 𝑐) is obtained. Letting 𝐹̄ (𝑡) = 1 − 𝐹 (𝑡) be the complementary distribution function,

𝜓(𝑎, 𝑐) =
∫ ∞

−∞
(𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐)) ∧ (𝐹 (𝑡 − 𝑎) − 𝐹 (𝑡 − 𝑐 − 𝑎)) d 𝑡

=

∫ 𝑡0

∞
(𝐹 (𝑡 − 𝑎) − 𝐹 (𝑡 − 𝑐 − 𝑎)) d 𝑡 +

∫ ∞

𝑡0

(𝐹 (𝑡) − 𝐹 (𝑡 − 𝑐)) d 𝑡

=

∫ 𝑡0−𝑎

𝑡0−𝑐−𝑎
𝐹 (𝑡) d 𝑡 +

∫ 𝑡0

𝑡0−𝑐
𝐹̄ (𝑡) d 𝑡

=

∫ 𝑡0−𝑐

𝑡0−𝑐−𝑎
𝐹 (𝑡) d 𝑡 +

∫ 𝑡0−𝑎

𝑡0−𝑐
𝐹 (𝑡) d 𝑡 +

∫ 𝑡0−𝑎

𝑡0−𝑐
𝐹̄ (𝑡) d 𝑡 +

∫ 𝑡0

𝑡0−𝑎
𝐹̄ (𝑡) d 𝑡

=

∫ 𝑡0−𝑐

𝑡0−𝑐−𝑎
𝐹 (𝑡) d 𝑡 + 𝑐 − 𝑎 +

∫ 𝑡0

𝑡0−𝑎
𝐹̄ (𝑡) d 𝑡 = 𝜓(𝑐, 𝑎) + 𝑐 − 𝑎 ,

where the fourth equality is true when 𝑎 < 𝑐, which can be assumed without loss of generality, and the
last equality follows from the fact that 𝑡0 (𝑎, 𝑐) = 𝑡0 (𝑐, 𝑎) as observed above.

Proof of Lemma 2.9. First observe that any bounded continuous convex and non-increasing function
𝜑 : R+ → R+ can be represented as

𝜑( |𝑥 − 𝑦 |) = lim
𝑛→∞

𝑛∑︁
𝑖=1

𝜆𝑛𝑖 (𝑐
𝑛
𝑖 − |𝑥 − 𝑦 |)+ ,

with positive constants 𝜆𝑛
𝑖
, 𝑐𝑛

𝑖
chosen to ensure that the sequence of functions 𝑓𝑛 (𝑥, 𝑦) =

∑𝑛
𝑖=1 𝜆

𝑛
𝑖
(𝑐𝑛

𝑖
−

|𝑥 − 𝑦 |)+ is increasing. Hence

E [𝜑( |𝑋 −𝑌 |)] = lim
𝑛→∞

𝑛∑︁
𝑖=1

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 −𝑌 |)+

]
(22)

(using the monotone convergence theorem). Moreover, for any pair of random variables (𝑋,𝑌 )

lim
𝑛→∞

𝑛∑︁
𝑖=1

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 −𝑌 |)+

]
≤ lim

𝑛→∞

𝑛∑︁
𝑖=1

sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 −𝑌 |)+

]
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and hence

sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

lim
𝑛→∞

𝑛∑︁
𝑖=1

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 −𝑌 |)+

]
≤ lim

𝑛→∞

𝑛∑︁
𝑖=1

sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 −𝑌 |)+

]
= lim

𝑛→∞

𝑛∑︁
𝑖=1

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 − AMR(𝑋) |)+

]
= E [𝜑( |𝑋 − AMR(𝑋) |)]

≤ sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

E [𝜑( |𝑋 −𝑌 |)] = sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

lim
𝑛→∞

𝑛∑︁
𝑖=1

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 −𝑌 |)+

]
,

where in the first equality above Lemma 2.6 is applied to a distribution function 𝐹 and its right shift
𝑥 ↦→ 𝐹 (𝑥 − 𝑎), with the resulting optimal AMR coupling denoted by (𝑋,AMR(𝑋)). This shows that

sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

lim
𝑛→∞

𝑛∑︁
𝑖=1

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 −𝑌 |)+

]
= lim

𝑛→∞

𝑛∑︁
𝑖=1

sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 −𝑌 |)+

]
.

Combining this equality with Lemma 2.8, we conclude that the function

𝑎 ↦→ sup
𝑌 :L(𝑌 )=L(𝑋+𝑎)

lim
𝑛→∞

𝑛∑︁
𝑖=1

E
[
𝜆𝑛𝑖 (𝑐

𝑛
𝑖 − |𝑋 −𝑌 |)+

]
is both bounded, continuous, and also convex, being a limit of a sequence of sums of bounded con-
tinuous convex functions. It is also non-increasing, since any bounded continuous convex function on
[0,∞) must be non-increasing. Combining this with (22) concludes the proof.
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