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A family F of sets is union-closed if the union of any two sets 
from F belongs to F . The union-closed sets conjecture states 
that if F is a finite union-closed family of finite sets, then there 
is an element that belongs to at least half of the sets in F . 
The conjecture has several equivalent formulations in terms 
of other combinatorial structures such as lattices and graphs. 
In its whole generality the conjecture remains wide open, but 
it was verified for various important classes of lattices, such 
as lower semimodular lattices, and graphs, such as chordal 
bipartite graphs. In the present paper we develop a Boolean 
approach to the conjecture and verify it for several classes of 
Boolean functions, such as submodular functions and double 
Horn functions.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let U be a finite set (the universe) and F ⊆ 2U a set system, i.e. a family of subsets 
of U . F is union-closed if for any two sets A, B ∈ F the union A ∪B belongs to F . The 
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following conjecture is known as union-closed sets conjecture and sometimes is referred 
to as Frankl’s conjecture.

Conjecture 1. Any finite union-closed family F �= {∅} of finite sets contains an element 
that belongs to at least half of the sets in the family.

For an equivalent formulation, let us say that F is intersection-closed if for any two 
sets A, B ∈ F the intersection A ∩B belongs to F . Also, assume without loss of generality 
that every element of the universe appears in at least one set of F . Then F is intersection-
closed if and only if the family {U−A : A ∈ F} is union-closed. Therefore, Conjecture 1
admits the following equivalent formulation.

Conjecture 2. Any finite intersection-closed family of at least two finite sets contains an 
element that belongs to at most half of the sets in the family.

The conjecture admits various other equivalent formulations, in particular, in the 
language of lattice theory [8] and in the terminology of graph theory [2].

In spite of its simple formulation, the conjecture is wide open and was verified only 
for some special classes of sets, lattices or graphs. In the present paper, we develop a 
Boolean approach to the conjecture and verify it for several classes of Boolean functions, 
such as submodular functions and double Horn functions.

2. Horn Boolean functions

Let F be an intersection-closed family over the universe U = {x1, x2, . . . , xn}, and let 
A ∈ F be a member-set of F , i.e. a subset of U that belongs to F . We represent A by its 
characteristic vector cA, i.e. a 0-1 vector of length n in which the i-th coordinate equals 
1 if and only if xi ∈ A. This allows us to interpret F as a Boolean function over variables 
{x1, x2, . . . , xn} whose false points are precisely the member-sets of F . According to the 
following theorem proved in [7] (also see [3]) this is a Horn function.

Theorem 1. A Boolean function is Horn if and only if the set of its false points is closed 
under conjunction.

We denote the set of false points of a Horn Boolean function f by F = F (f). Adapting 
set theory terminology, we will say that a variable xi belongs to a Boolean point X ∈
{0, 1}n if it appears in X with xi = 1, i.e. if the i-th coordinate of X equals 1. Therefore, 
in the terminology of Boolean functions Frankl’s conjecture can be restated as follows: 
any Horn Boolean function with at least two false points contains a variable that belongs 
to at most half of the false points of the function.

We denote the set of true points of a Horn Boolean function f by T = T (f) and 
associate with T one more set system, denoted T , over the same universe U , such that 
a set A ⊆ U belongs to T if and only if the characteristic vector cA belongs to T .
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We observe that a variable belongs to at most half of the false points if and only if it 
belongs to at least half of the true points of the function, which suggests that the relation 
between F and T is similar to the relation between intersection-closed and union-closed 
families. However, in general T is neither intersection-closed nor union-closed.

In the terminology of set systems, an element that appears in at least half of the 
member-sets is known as abundant and an element that appears in at most half of the 
member-sets is known as rare. In the terminology of Boolean functions, every variable 
that is abundant for true points is rare for false points, and vice versa. In our study of 
Boolean functions we will frequently switch between the two roles of the same variable. 
To avoid any ambiguities, we will call such a variable good, i.e. a variable is good if it 
belongs to at most half of the false points, or equivalently, if it belongs to at least half of 
the true points of the function. In this terminology Frankl’s conjecture can be restated 
as follows.

Conjecture 3. Any Horn Boolean function with at least two false points contains a good 
variable.

We will say that a Horn Boolean function satisfies Frankl’s conjecture if it satisfies 
Conjecture 3.

Up to now, we just translated Frankl’s conjecture to a different language, but we did 
not discuss the advantage of this translation. In addition to possibility of playing simulta-
neously with two set systems in the search for a good element (variable), the importance 
of Boolean formulation is that Horn functions admit a very specific disjunctive normal 
form (DNF) representation. By definition, a Boolean function is a Horn function if it can 
be represented by a DNF in which every term contains at most one negated literal. We 
use this representation in order to verify Conjecture 3 for some special classes of Horn 
functions in Sections 4 and 5. All preliminary information can be found in Section 3. 
Section 6 concludes the paper with open problems.

3. Preliminaries

In this section, we fix terminology and notation and prove some preliminary results.
Given a Boolean function f and a variable x, we denote by f|x=0 and f|x=1 the 

restriction of f to x = 0 and to x = 1, respectively, i.e. these are the functions obtained 
from f by restricting it to the sets of Boolean points with x = 0 and x = 1, respectively. 
With this notation, good variables can be characterized as follows: a variable x of a 
function f is good

• if the number of true points of f|x=0 does not exceed the number of true points of 
f|x=1, or equivalently,

• if the number of false points of f|x=1 does not exceed the number of false points of 
f|x=0, or equivalently,
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• if there is an injective mapping from the set of true points of f|x=0 to the set of true 
points of f|x=1, or equivalently,

• if there is an injective mapping from the set of false points of f|x=1 to the set of false 
points of f|x=0.

A literal is either a Boolean variable or its negation. We will refer to literals as positive
or negative depending on whether they are unnegated or negated, respectively.

A term is a conjunction (product) of literals. Any variable that does not appear as a 
literal in a term t, neither positively nor negatively, will be called a free variable for t.

A term is linear if it consists of one literal, and quadratic if it consists of two literals. 
A term is Horn if it contains at most one negated literal, and pure Horn if it contains 
exactly one negated literal.

We will say that a term t covers a Boolean point X if t(X) = 1, i.e. t evaluates to 1 
at X. A term t is an implicant of a Boolean function f if every point covered by t is a 
true point of f . Also, t is a prime implicant of f if no proper subset of literals of t is an 
implicant of f .

A DNF is a disjunction of terms. A DNF is Horn if each of its terms is Horn, and it is 
pure Horn if each of its terms is pure Horn. A Horn function is a Boolean function that 
admits a Horn DNF representation. A pure Horn function is a Boolean function that 
admits a pure Horn DNF representation. It is not difficult to see that a Horn function f
is pure Horn if and only if f(1, 1, . . . , 1) = 0. If f is not pure Horn, then by changing its 
value at the point (1, 1, . . . , 1) from 1 to 0 we obtain a pure Horn function f ′ such that 
if f ′ has a good variable, then so does f . Therefore, Conjecture 3 is valid if and only if 
it is valid for pure Horn functions.

We now translate to the language of Boolean functions some facts that are known in 
non-Boolean terminology (see e.g. [1]).

Lemma 1. If Conjecture 3 holds for Horn functions without linear prime implicants, then 
it holds for all Horn functions.

Proof. If a Horn function f has a linear prime implicant x, then x is a good variable, 
because f|x=1 ≡ 1 and hence x does not belong to any false point. If f has a linear prime 
implicant x, then f|x=0 ≡ 1 and x belongs to every false point. In this case, f can be 
restricted to f|x=1, and a good variable for the function f|x=1 is also good for f . �
Lemma 2. Let f be a Horn function represented by a Horn DNF Df . If a variable x of 
f does not appear in Df negatively, then x is a good variable for f .

Proof. If the function f|x=0 does not have true points, then the number of false points 
of f containing x cannot be larger than the number of false points that do not contain 
x, and hence x is a good variable for f .

Now let X be a true point of f with x = 0, and let t be a term of Df with t(X) = 1. 
Then t does not contain x, since x does not appear in Df negatively. Therefore, for the 



V. Lozin, V. Zamaraev / Journal of Combinatorial Theory, Series A 202 (2024) 105818 5
point X ′ obtained from X by changing x to 1, we have t(X ′) = 1. This establishes an 
injective mapping φ : X → X ′ from the set of true points of f|x=0 to the set of true 
points of f|x=1, and shows that x is good. �

Lemmas 1 and 2 allow us to restrict ourselves to Horn functions that have no lin-
ear prime implicants and in which every variable appears negatively in all Horn DNFs 
representing f . We call such functions non-trivial.

The book [3] distinguishes four special classes of Horn functions: submodular func-
tions, bidual Horn functions, double Horn functions and acyclic Horn functions.

For the acyclic Horn functions, the validity of Conjecture 3 follows directly from the 
definition with the help of Lemma 2. To define this notion, let us associate with a pure 
Horn DNF φ representing a function f of n variables x1, . . . , xn a directed graph Gφ, 
the implicant graph, with vertex set {x1, . . . , xn} containing an arc (xi, xj) whenever φ
contains a term involving both xi and xj . A pure Horn function is called acyclic if Gφ

is acyclic. Since any acyclic graph contains a sink vertex, i.e. a vertex with no out-going 
arcs, we conclude with the help of Lemma 2 that every acyclic Horn function contains a 
good variable.

For submodular functions and double Horn (and more general) functions, we verify 
Conjecture 3 in Sections 4 and 5, respectively. For bidual Horn functions the conjecture 
remains open and we discuss it in Section 6.

4. Submodular functions

In this section we study a subclass of Horn functions known as submodular.

Definition 1. A function f(X) is called submodular if f(X∨Y ) ∨f(X∧Y ) ≤ f(X) ∨f(Y ).

To reveal a relationship between submodular functions and Horn functions, let us say 
that a Boolean function f(x1, . . . , xn) is co-Horn if the function f(x1, . . . , xn) is Horn. 
The following characterization of submodular functions was proved in [6].

Theorem 2. A Boolean function is submodular if and only if it is both Horn and co-Horn. 
All prime implicants of a submodular function are either linear or quadratic pure Horn.

Theorem 3. Submodular Boolean functions satisfy Frankl’s conjecture.

Proof. Let f(x1, x2, . . . , xn) be a submodular function. Without loss of generality we 
assume that f is non-trivial and that Df is a DNF representation of f in which every 
term is quadratic pure Horn.

Let Gf be the implicant graph associated with Df . Given a Boolean point X =
(α1, . . . , αn), we denote by Gf (X) a labelled graph obtained from Gf by assigning label 
αi to vertex xi for each i. It is not difficult to see that
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(∗) X is a true point of f if and only if there is an arc (or equivalently, a directed path) 
in Gf (X) from a 0-vertex (i.e. a vertex labelled 0) to a 1-vertex.

Now we contract each strongly connected component of Gf into a single vertex ob-
taining in this way a directed acyclic graph G∗

f . By Theorem 2, this graph represents 
a new submodular function f∗ with a DNF Df∗ whose terms correspond to the arcs of 
G∗

f .
For a vertex x of Gf we denote by cx the strongly connected component of the graph 

containing x. Note that cx is a subset of V (Gf ), as well as a vertex of G∗
f and a variable 

of f∗.
If X is a false point of f , then, according to (∗), within each strongly connected 

component of Gf (X) either all vertices are labelled 0 or all vertices are labelled 1. This 
can be viewed as a 0-1 labelling of the vertices of G∗

f , and we denote a labelled graph G∗
f

corresponding to a false point X of f by G∗
f (X). Also, since X is false, there is no directed 

path from a 0-vertex to a 1-vertex in G∗
f (X), since otherwise such a path could be found 

in Gf (X). Therefore, the 0-1 labelling of the vertices of G∗
f corresponding to a false point 

of f defines a false point of the function f∗. Similarly, a false point of f∗ corresponds to a 
false point of f . It is not difficult to see that this is a one-to-one correspondence, showing 
that |F (f)| = |F (f∗)|. Moreover, for any variable x of f , |F (f|x=0)| = |F (f∗

|cx=0)| and 
|F (f|x=1)| = |F (f∗

|cx=1)| in view of the above discussion.
Since G∗

f is acyclic, it contains sink vertices, i.e. vertices with no out-going arcs. Sink 
variables do not appear in Df∗ negatively and hence, by Lemma 2, each of them is a 
good variable of f∗.

Let x be a vertex of Gf such that cx is a sink vertex of G∗
f . Since cx is a good variable 

of f∗, we have |F (f∗
|cx=1)| ≤ |F (f∗

|cx=0)|. Therefore,

|F (f|x=1)| = |F (f∗
|cx=1)| ≤ |F (f∗

|cx=0)| = |F (f|x=0)|

and hence x is a good variable. �
5. Double Horn and more general functions

A Boolean function f is double Horn if both f and f are Horn. According to [4], double 
Horn functions admit a DNF representation where each variable appears negatively at 
most once. We will show that any such Horn function satisfies Frankl’s conjecture. More 
generally, we will verify the conjecture for Horn Boolean functions that admit a Horn 
DNF satisfying the following property, which we call dependency: for each variable x
there is a variable d(x) such that d(x) appears (positively) in every term containing 
x negatively. Clearly, any non-trivial Horn DNF containing each variable negatively at 
most once satisfies the dependency property.

Theorem 4. Let f be a non-trivial Boolean function that admits a Horn DNF D = Df

satisfying the dependency property. Then Frankl’s conjecture is valid for f .
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Proof. Each true point of f is covered by at least one term in D. To prove the theorem, 
we construct a binary matrix M with n rows corresponding to the variables of f and 
|T (f)| columns representing the true points of f . A good variable (if exists) corresponds 
to a row of the matrix containing at least as many 1s as 0s. To prove that such a variable 
exists, we will show that the entire matrix M contains at least as many 1s as 0s. To this 
end, we will map the set of 0s of M injectively to the set of 1s of M according to the 
following procedure. Consider a 0 in M and denote it by z. Also, we denote by i the row 
containing z and by X the column containing z. In other words, X is a true point with 
a zero in the i-th coordinate.

(a) If the true point X is covered by a term t of D for which xi is free, then the point 
X ′ obtained by switching the i-th coordinate to a 1 also is a true point covered by 
t and we map the zero z to the 1 in X ′ in the same row (coordinate). We call it a 
horizontal map.

(b) If X is not covered by any term of D for which xi is free, then it is covered by 
some term t containing xi negatively. According to the dependency property, t also 
contains (positively) the variable xj = d(xi), i.e. the j-th coordinate of X is a 1, 
in which case we map the zero z to the 1 in the j-th coordinate of X. We call it a 
vertical map (mapping a 0 to a 1 in the same column).

It remains to show that the mapping described above is injective. It is not difficult to 
see that no two horizontal maps send two different 0s to the same 1. The same is true 
for any two vertical maps. Indeed, when we apply a vertical map to a zero in column 
X, this zero represents a negative literal xi in some term t. Any other zero in the same 
column corresponds to a variable xj which is free for t, since otherwise either X is not 
a true point (if xj appears in t positively) or D is not a Horn DNF (if xj appears in t
negatively). Therefore, when we apply a vertical map to a zero in column X, all other 
zeros in the same column are mapped horizontally.

Now assume that a vertical map sends a zero z1 to a 1, denote it by u, and a horizontal 
map sends a zero z2 to the same u. We denote the row containing z1 by i and the column 
containing z1 (and u) by X1. Also, let j be the row containing z2 (and u) and let X2 be 
the column containing z2. Finally, let t1 be a term covering X1, as in the definition of 
the vertical map applied to z1, and let t2 be a term covering X2, as in the definition of 
the horizontal map applied to z2.

According to the definition of the horizontal map, X1 and X2 differ only in the j-th 
coordinate, and xj is free for t2, i.e. t2 also covers X1. Also, according to the definition 
of the vertical map, xi appears in t1 negatively, and xj = d(xi) appears in t1 positively. 
Since t2 does not contain xj , and t1 contains xj , the two terms t1 and t2 are different.

We know that t2 contains xi, since otherwise we had to apply a horizontal map to 
z1. Moreover, t2 contains xi negatively, because the i-th coordinate of both X1 and X2

is zero. But then, by the dependency property, t2 also contains (positively) xj , which is 
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not possible, since the j-th coordinate of X2 is zero, and t2 covers X2. This contradiction 
completes the proof. �
6. Concluding remarks and open problems

According to [1], one of the major obstacles for proving the conjecture is that we do 
not know where to expect a good element. Theorem 3 suggests that such an element 
should be expected in a strongly connected component C of the implicant graph, which 
becomes a sink vertex after contracting each strongly connected component to a single 
vertex. Theorem 4, on the other hand, suggests a possible way of proving the existence 
of a good element in C by showing that the matrix M of true points restricted to the 
elements of C contains at least as many 1s as 0s.

Taking into account the special role of duality in this topic, the next natural step 
towards proving the conjecture via a Boolean approach is to consider the class of bidual 
Horn functions studied in [5]. These are Horn functions f such that the dual of f is 
also Horn, where the dual of f is the function fd such that fd(X) = f(X) for all 
Boolean points X. We believe that this is the core step towards proving the conjecture. 
Even more specifically, we believe that the class of self-dual Horn functions, i.e. Horn 
functions f such that f = fd, which forms a proper subclass of bidual functions, is a key 
to cracking the conjecture. These are functions where an instance of the problem comes 
simultaneously in both forms: intersection-closed (over the false points) and union-closed 
(over the true points). Proving the conjecture for self-dual Horn functions seems to be a 
challenging problem.
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