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ABSTRACT

Suppose that M is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in Cn. We
show that if M has a blow-down given by the static union of two Lagrangian subspaces with distinct Lagrangian angles
that intersect along a line, then M is a translator. In particular in C2, all almost calibrated, exact, ancient solutions of
Lagrangian mean curvature flow with entropy less than 3 are special Lagrangian, a union of planes, or translators.

1. Introduction

An important problem in complex and symplectic geometry is to find special La-
grangian submanifolds in Calabi–Yau manifolds. Szmoczyk [26] showed that the mean
curvature flow preserves the class of Lagrangian submanifolds in Calabi–Yau manifolds,
and so one can attempt to use the flow to deform any Lagrangian into a special La-
grangian. The Thomas–Yau conjecture [28], motivated by mirror symmetry [27], pre-
dicts that this is indeed possible, assuming that the initial Lagrangian satisfies a certain
stability condition. More recently Joyce [20] formulated a detailed conjectural picture,
relating singularity formation along the Lagrangian mean curvature flow to Bridgeland
stability conditions.

To motivate our main result, recall that along the mean curvature flow of zero-
Maslov Lagrangians, all tangent flows at singularities are given by unions of minimal
Lagrangian cones, according to Neves [23]. In particular all such tangent flows are sin-
gular, or have higher multiplicity. In order to understand how such singularities form, it
is therefore crucial to study a general class of ancient solutions of the flow, such as Type
II blow-ups.

The simplest ancient solutions are those whose blow-down at −∞ is special La-
grangian. In this case [22, Proposition 4.5] implies that the ancient solution itself is special
Lagrangian, and in particular static. Our main result is the following, addressing the next
simplest situation. See Section 2 for the basic definitions.

Theorem 1.1. — Let P1,P2 ⊂ Cn be Lagrangian subspaces which intersect along a line � and

have distinct Lagrangian angles. Let M be a smoothly immersed, ancient, Lagrangian Brakke flow in Cn

with uniformly bounded area ratios. Assume further that M is exact and zero-Maslov with uniformly

bounded variation of the Lagrangian angle. For n ≥ 3 assume in addition that M is almost calibrated.

If M has a blow-down at −∞ given by the static flow consisting of the union P1 ∪ P2, then

M is a translator.

Remark 1.2. — For the definition of a smoothly immersed Brakke flow, see Defini-
tion A.1. Note that a mean curvature flow F : Mn × I → Rn+m where I � t → F(·, t) is a
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smooth family of proper immersions is an example of a smoothly immersed Brakke flow.
The benefit of the notion of smoothly immersed Brakke flows is that it does not require a
global parametrisation and thus the condition is preserved by local smooth convergence.
In the Appendix we show that the weighted monotonicity formula naturally extends to
this setting, allowing weights with polynomial growth.

Two possibilities for the translator in Theorem 1.1 are the static flows given by
unions of translates of P1 and P2, and the non-trivial translators constructed by Joyce–
Lee–Tsui [21], which play an important role in Joyce’s conjectural picture [20]. It is an
interesting question whether there are any more possibilities.

Combining Theorem 1.1 with the work in [22] shows the following. (Again, see
Section 2 for the definitions.)

Corollary 1.3. — For 0 < T < ∞, let (Lt)0≤t<T be a smooth, properly immersed, maximal,

rational, almost calibrated Lagrangian mean curvature flow in C2 with entropy less than 3. Then any

Type II blow-up at a singular point (x0,T) is either special Lagrangian (and given in [22, Theorems

1.1 and 1.3]) or a non-trivial translator.

This results follows from Theorem 1.1 since for a zero-Maslov ancient solution
of the flow in C2 with entropy less than 3 the only possible blow-downs are a union of
two planes. If the two planes have the same Lagrangian angle, then [22, Theorem 1.1
or Theorem 1.3] applies. If the two planes have different Lagrangian angle, then using
[22, Proposition 4.1] the planes must meet along a line, and Theorem 1.1 applies. An
analogous result holds also for Lagrangian mean curvature flow in a compact Calabi–Yau
surface under a suitable rationality assumption, such as in Fukaya [16, Definition 2.2], at
singularities with density less than 3.

In singularity analysis it is important to consider arbitrary blow-up limits of the
flow, not just those that are smooth. Theorem 5.1 provides an extension of Theorem 1.1
in the case n = 2 to Brakke flows obtained as blow-up limits of smooth flows.

Recently there has been great progress in classifying ancient solutions of geomet-
ric flows such as Ricci flow and mean curvature flow (see e.g. [2–5, 10]). A crucial new
difficulty in our work is that the blow-down P1 ∪ P2 is singular along the line of inter-
section �. As a result, an approach based on the analysis of the linearized operator on
the blow-down faces substantial difficulties. An earlier result characterizing translators
among eternal solutions to the mean curvature flow of hypersurfaces is due to Hamil-
ton [17], relying on a differential Harnack estimate. It is not known if this approach can
be extended to higher codimension flows. Our approach is completely different and re-
lies on additional structure present in the Lagrangian setting. In particular, translators
are characterized by the condition that one of the coordinate functions, w, is a linear
combination of 1 and the Lagrangian angle θ , i.e. w = a + bθ , see Proposition 2.10. The
function w is an ancient solution of the heat equation along M, and the basic idea of
the proof is to obtain information about w through solutions of the heat equation on
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the possible blow-downs. This is related to work of Colding–Minicozzi [8] on mean cur-
vature flow, and also to earlier works on harmonic functions [6, 11] and holomorphic
functions [12].

To illustrate the basic ideas, suppose that n = 2 and let w be a coordinate function
vanishing on P1 ∪ P2. Define z so that on C2 we have ∇w = J∇z, i.e. the line � is parallel
to ∇z. Let x be a coordinate function vanishing on P1, but not on P2 and similarly y a
coordinate vanishing on P2 but not on P1. The ancient solutions of the heat equation on
P1 ∪ P2 with at most linear growth, allowing a different smooth solution on each plane,
are spanned by 1, θ , x, y, z, zθ (see Lemma 3.6). Here θ is simply a different constant
on each plane. At the same time, 1, θ and the coordinate functions x, y, z, w are ancient
solutions of the heat equation on our ancient flow M.

The first main step of the proof is to show that either M is a translator, or along a
suitable sequence of scales t → −∞, the normalized projection of w orthogonal to x, y,
z converges to zθ on the blow-down P1 ∪ P2 (see Proposition 3.12). The main technical
difficulty at this stage is that the singular set given by the line � has codimension one in
P1 ∪ P2, and we need to exploit that the angle θ takes on different values on P1 and P2 in
order to pass solutions of the heat equation along M to solutions on P1 ∪ P2 in the limit.
This is the content of Proposition 3.7.

The proof of Theorem 1.1 is completed using Proposition 4.5, based on the idea
that if along the flow w behaves like zθ at some scale, then the flow must break into two
pieces, which roughly look like the two planes P1, P2 rotated in such a way that their
intersections with the unit spheres are linked. Here the fact that θ is a different constant
on each plane P1, P2 is crucial. This linking behaviour is used to show that the flow must
have a point of density two, but the monotonicity formula then implies that the flow is a
static union of planes.

2. Preliminaries

In this section we introduce various key definitions and notation that we shall re-
quire throughout the article. In particular, we introduce the set-up for our study.

2.1. Lagrangians in Cn. — We first recall some basic definitions concerning La-
grangian submanifolds in Cn.

Definition 2.1. — An oriented Lagrangian L in Cn is zero-Maslov if there exists a function

θ on L (called the Lagrangian angle) so that

�|L = eiθ dVolL,

where � = dz1 ∧ · · · ∧ dzn is the standard holomorphic volume form on Cn and dVolL is the Rieman-

nian volume form of L. We then have H = J∇θ , where H is the mean curvature vector of L and J is
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the complex structure on Cn. We further say that L is almost calibrated if θ can be chosen so that

sup θ − inf θ ≤ π − ε.

for some ε > 0.

Definition 2.2. — An oriented Lagrangian L in Cn is exact if there exists a function β on L
so that

Jx⊥ = ∇β,

where x⊥ is the normal projection of the position vector x ∈ Cn. Equivalently,

dβ = λ|L,
where λ is the Liouville form on Cn, which is a 1-form on Cn so that 1

2λ is a primitive for the Kähler

form ω on Cn. The Lagrangian L is rational if the set λ(H1(L,Z)) is discrete in R. An exact

Lagrangian is clearly rational.

2.2. Spacetime track. — Throughout we consider a smooth, zero-Maslov, exact, an-
cient solution to Lagrangian mean curvature flow (LMCF)

(−∞,0) � t → Lt ⊂ Cn

which evolves with normal speed given by H, with uniformly bounded variation of the
Lagrangian angle. We assume that Lt has uniformly bounded area ratios, i.e. there exists
C > 0 such that

sup
x,t

Hn(Lt ∩ B(x, r)) ≤ Crn for all r > 0,

where B(x, r) is the Euclidean ball of radius r about x ∈ Cn. We call

M := {Lt × {t} | t ∈ (−∞,0)} ⊂ Cn × R

the spacetime track of the flow, and write M(t) = Lt .

Remark 2.3. — For n > 2 we will additionally need to assume that the flow M is
almost calibrated, so that one can apply the structure theory in [22] and [24].

Since our focus is on planes arising as blow-ups or blow-downs, it is useful to con-
sider them as trivial static flows as follows.

Definition 2.4. — For a pair of n-dimensional planes P1,P2 ⊂ Cn, we let MP1∪P2 denote the

static flow corresponding to P1 ∪ P2.



ANCIENT SOLUTIONS AND TRANSLATORS OF LMCF

2.3. Rescalings. — It will be useful to perform parabolic rescalings of our flows, so
we shall introduce the following notation.

Definition 2.5. — For λ > 0 we shall denote the parabolic rescaling

Dλ : Cn × R → Cn × R, (x, t) → (λx, λ2t) .

Note that for a (Lagrangian) mean curvature flow M, we have that DλM is again a (Lagrangian)

mean curvature flow.

It turns out to be helpful to consider a further rescaling, which turns self-similarly
shrinking solutions into static points of the flow.

Definition 2.6. — The rescaled flow is

R � τ → Lτ := e
τ
2M(−e−τ ) = e

τ
2 L−e−τ

which evolves with normal speed

(2.1) H + x⊥

2
.

We recall Huisken’s monotonicity formula [18]:

(2.2)
d

dt

∫
Lt

f ρx0,t0 dHn =
∫

Lt

(∂t f − f )ρx0,t0 dHn

−
∫

Lt

f

∣∣∣∣H − (x − x0)
⊥

2(t − t0)

∣∣∣∣
2

ρx0,t0 dHn ,

for t < t0, where f is a smooth function on Lt with (uniformly) compact support, and

ρx0,t0(x, t) = (4π(t0 − t))−n/2 exp
(

−|x − x0|2
4(t0 − t)

)

is the backwards heat kernel (centred at (x0, t0)). For an extension to the non-compact
setting (suitable for the current set-up) and functions f with at most polynomial growth
see Proposition A.3. The density of a point (x0, t0) along the flow Lt is defined to be

�(x0, t0) = lim
t↗t0

∫
Lt

ρx0,t0 dHn.

Recall also the entropy μ(L) defined by Colding–Minicozzi [7]:

μ(L) = sup
x0∈Cn, r>0

1
(4π r)n/2

∫
L

e−
|x−x0|2

4r dHn.
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By virtue of Huisken’s monotonicity formula, t → μ(Lt) is non-increasing along any n-
dimensional mean curvature flow in Cn.

2.4. Set-up. — We now describe the main set-up that we shall have throughout the
article. In particular, this will be useful to fix notation.

We consider two oriented Lagrangian planes P1,P2 ⊂ R2n = Cn which intersect
along an oriented (real) line � through 0. Suppose further that P1, P2 have distinct La-
grangian angles, which we denote by θ 1, θ 2. (Note that this must be the case if n = 2.)
Changing the Lagrangian angles by a fixed constant, we can in addition assume that
θ 1 = −θ 2.

We assume that the unit vector in the direction of � is given by ez, corresponding
to the (real) coordinate z. We let ew = Jez, corresponding to the real coordinate w, noting
that ew is necessarily orthogonal to P1 ∪ P2. We will think of w as the “height” function,
since w = 0 on P1 ∪ P2. We choose coordinates x1, . . . , x2n−2 such that x1, . . . , xn−1,w

vanish along P2 and xn, . . . , x2n−2,w vanish along P1.
Our key assumption is that our ancient solution M to LMCF has a blow-down at

−∞ given by P1 ∪ P2, i.e.

(2.3) Dλi
(M) ∩ {t < 0} ⇀MP1∪P2 ∩ {t < 0}

for λi ↘ 0, where the convergence is in the sense of Brakke flows. We note that this is
equivalent to the assumption that the sequence of smooth flows

(−∞,0) � t → Li
t = λiLλ−2

i t

for t < 0 converges weakly to the (immersed) static flow (−∞,0) � t → P1 ∪ P2.
At this point we make the following observation about blow-downs of M.

Proposition 2.7. — Let M be an ancient solution to Lagrangian mean curvature flow as above

satisfying (2.3), so has blow-down at −∞ given by P1 ∪ P2 and for n ≥ 3 is almost calibrated. Then

all blow-downs at −∞ of M are unions of two multiplicity one planes which meet along a subspace L
of dimension m ∈ {1, . . . , n − 1} and have Lagrangian angles θ 1, θ 2.

Proof. — We have the set of angles {θ 1, θ 2} for two multiplicity one planes in one
blow-down and the set of angles is the same for any blow-down by [22, Theorem 3.1].
Therefore, since θ 1 �= θ 2, and by (2.3) the (Gaussian) density at −∞ is two, any blow-
down has to consist of two distinct unit multiplicity planes with the given angles. Again
using θ 1 �= θ 2, the case that a blow-down is a pair of transverse planes is ruled out since
in this case [22, Proposition 4.1] would force the ancient solution M to be the static
flow consisting of the two transverse planes, which contradicts one blow-down being two
planes meeting along a line. �
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2.5. Translators. — There is a smooth, connected, zero-Maslov (in fact, almost cal-
ibrated), exact, ancient (in fact, eternal) solution to Lagrangian mean curvature flow in Cn

whose blow-down at −∞ is P1 ∪ P2, which is a translator constructed by Joyce–Lee–Tsui
[21]. We recall the definition of a translator as follows.

Definition 2.8. — A translator (in the ez direction) is a solution of LMCF satisfying

(2.4) H = κe⊥
z

for some κ �= 0 at some (and therefore any) time. (In fact, we can rescale the translator and change its

orientation so that any κ �= 0 can be realised).

Suppose we have a zero-Maslov translator satisfying (2.4). Since H = J∇θ , where
θ is the Lagrangian angle, ez = −Jew and thus e⊥

z = −JeT
w, we deduce that

(2.5) θ + κw = c

for some κ �= 0 and constant c (on each component of the translator).

Remark 2.9. — It is worth noting that any Lagrangian plane P so that ez is tangent
to P will give a trivial example of a Lagrangian translator, since it will satisfy (2.4).

Using (2.5) we deduce the following result.

Proposition 2.10. — If the flow M satisfies (2.3), so has blow-down at −∞ given by P1 ∪P2

and for n ≥ 3 is almost calibrated, then it is a translator in the ez direction if and only if on each

component of M the height satisfies

(2.6) w = a + bθ

for some constants a and b.

Proof. — If M is a translator in the ez direction then (2.6) is satisfied by (2.5).
We now suppose that (2.6) is satisfied on M. If b �= 0 we deduce that M is a

translator by differentiating (2.6) along M(t) for each t, which yields H = b−1e⊥
z .

If b = 0 then w is constant on each component of M and so ez is tangent to M as
the flow is Lagrangian. Hence, M splits as M′ × R, where M′ is an ancient solution to
Lagrangian mean curvature flow in Cn−1.

If n ≥ 3, then M′ is almost calibrated and by (2.3) has a blow-down at −∞ given by
P′

1 ∪P′
2 (where Pi = P′

i ×�). Note that P′
1, P′

2 are transverse, but have different Lagrangian
angle. Then [22, Proposition 4.1] implies that M′ =M′

P′
1∪P′

2
and thus M=MP1∪P2 .

If n = 2, then M′ is an ancient solution γ to curve shortening flow in R2, which
has a blow-down at −∞ which is a pair of non-parallel lines. We now show that γ must
in fact be the asymptotic lines.
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Lemma 2.11. — Let γ = (γ (t))−∞<t<T be an ancient smooth curve shortening flow in R2.

Assume that a blow-down Dλi
(γ ) (for λi ↘ 0) is either a pair of unit density static lines �1 ∪ �2

meeting at one point or a single unit density line. Then the flow γ is the static line(s).

Proof. — The case where the blow-down is a single unit density line follows from
the monotonicity formula, so we only consider the case of a pair of transverse lines in the
blow-down.

If γ were almost calibrated, then the classification of almost calibrated ancient
solutions to Lagrangian mean curvature flow in [22, Proposition 4.1] implies that γ must
be the lines, since they have distinct angles.

Let γi :=Dλi
(γ ). Using the right-hand side of the integrated monotonicity formula

((2.2) with f = 1) and Fatou’s lemma we can pick a time t < 0 (and a subsequence in i)
such that on γi(t) the curvature of the curve is locally uniformly bounded in L2. This
implies locally uniform convergence in C1,α from which it follows that, for i and R suffi-
ciently large, γi(t)∩BR(0) is given by the union of two small C1,α graphs over (�1 ∪�2)(t).
Since the flow is smooth (and using the pseudolocality result [19, Theorem 1.5]), this de-
scription of the flow has to persist for a short time. We deduce that the flow has a point
with Gaussian density two (where the two graphs intersect) and thus the flow is backwards
self-similar around that point. Since we have assumed that one blow-down is �1 ∪ �2, the
result follows. �

By Lemma 2.11 we deduce that each component of M is a plane which has ez

tangent to it, and hence M is trivially a translator. �

3. The drift heat equation

It is well known that the functions 1, θ and the coordinate functions xi all satisfy the
heat equation along the mean curvature flow. Along the rescaled flow we instead consider
rescaled coordinate functions as follows.

Definition 3.1. — For any coordinate function xi on Cn we have the rescaled coordinate
function

x̃i = e−τ/2xi

along the rescaled flow Mτ . In particular, we have the rescaled height w̃ = e−τ/2w.

Using the above definition, the next result, which is key for our purposes, follows
from a straightforward rescaling.
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Lemma 3.2. — The functions 1, θ and the rescaled coordinate functions x̃i satisfy the drift heat

equation

(3.1)
∂ f

∂τ
=L0f

along the rescaled flow, where

(3.2) L0f := f − 1
2
〈x,∇f 〉

is the drift Laplacian.

Note that, when computing derivatives ∂ f

∂τ
, the rescaled flow has velocity H + 1

2x⊥.
We will compare solutions of the drift heat equation along the rescaled flow with

solutions on the blow-downs. By Proposition 2.7 all possible blow-downs are unions P′
1 ∪

P′
2 of two n-dimensional subspaces of Cn meeting along a subspace of dimension less than

n. We therefore study solutions of (3.1) on Euclidean spaces.
On an n-dimensional space P = Rn we define the drift heat equation and drift

Laplacian by (3.1) and (3.2). For a solution f (x, τ ) of the drift heat equation on P, we
define the weighted norm ‖f ‖τ by

(3.3) ‖f ‖2
τ =

∫
P

f (x, τ )2e−|x|2/4.

By [9, Theorem 0.6] the function log‖f ‖τ is convex in τ , and it is linear if and only if
f is homogeneous, i.e. f (x, τ ) = e−λτ h(x), where h is an eigenfunction of L0 with eigen-
value λ. In this case log‖f ‖2

τ = −2λτ + log‖h‖2 and we say that f has degree 2λ. The
eigenfunctions of the Ornstein–Uhlenbeck operator L =  − x · ∇ on Euclidean space
are well-studied, see e.g. Bogachev [1, Chap. 1]. The eigenvalues of L are non-negative
integers k, and the corresponding eigenfunctions are degree k homogeneous polynomials
given by products of Hermite polynomials. If Hk is an eigenfunction of L with eigenvalue
k, then the function hk(x) = Hk(x/

√
2) is an eigenfunction of L0 with eigenvalue k/2.

This leads to the following.

Lemma 3.3. — Let P = Rn and let xi be coordinate functions on P. The eigenvalues of L0 on

P are given by non-negative half integers, and so the homogeneous solutions of the drift heat equation on P
have non-negative integer degrees. The homogeneous solutions with degree 0 are the constants, while those

with degree 1 are spanned by the rescaled coordinate functions e−τ/2xi.

We will be interested in solutions to the drift heat equation on the blow-downs
P′

1 ∪ P′
2, where P′

j are two distinct n-dimensional subspaces of Cn. We define these as
follows.
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Definition 3.4. — A solution of the (drift) heat equation on P′
1 ∪ P′

2 is a pair u = (u1, u2),

where uj is a solution of the (drift) heat equation on P′
j . We define the weighted norm ‖u‖τ of u by

‖u‖2
τ = ‖u1‖2

τ + ‖u2‖2
τ .

We observe that the function θ , equal to the constant θ j on P′
j , is a solution of the

(drift) heat equation on P′
1 ∪ P′

2 in this sense. Note that we can see u = (u1, u2) as one
solution to the (drift) heat equation on the (immersed) shrinker P′

1 ∪ P′
2, so we still have by

[9, Theorem 0.6] that log‖u‖τ is convex, and it is linear if and only if u is homogeneous.
Lemma 3.3 implies the following.

Lemma 3.5. — On any blow-down P′
1 ∪P′

2 the homogeneous solutions of the drift heat equation

have non-negative integer degrees.

Recall our basic assumption that one blow-down is given by P1 ∪ P2, where P1 ∩
P2 = � is a line. Recall the coordinates x1, . . . , x2n−2, z,w as chosen in Section 2.4, where
the coordinate along � is z and w is the height function vanishing along P1 ∪ P2. We then
have the following, which also uses the assumption that the Lagrangian angles of P1 and
P2 are different.

Lemma 3.6. — The degree 0 solutions of the drift heat equation on P1 ∪ P2 are spanned by

1, θ . The degree 1 solutions are spanned by e−τ/2x1, . . . , e−τ/2x2n−2 and e−τ/2z, e−τ/2zθ .

Proof. — The degree 0 solutions on P1 ∪ P2 are given by pairs (c1, c2) of constants.
These are spanned by the functions 1, θ since θ equals two distinct constants θ j on the
subspaces Pj .

The degree 1 solutions on P1 ∪ P2 are given by pairs (f1, f2) of linear functions on
Cn restricted to the subspaces. According to our choice of coordinates in Section 2.4, f1
is in the span of x1, . . . , xn−1, z and f2 is in the span of xn, . . . , x2n−2, z. Since x1, . . . , xn−1

vanish on P2, and xn, . . . , x2n−2 vanish on P1, the collection of functions x1, . . . , x2n−2 on
P1 ∪ P2 define the pairs (xi,0) and (0, xj), where 1 ≤ i ≤ n − 1 and n ≤ j ≤ 2n − 2. At
the same time z, zθ contain the pairs (z,0) and (0, z) in their span (again since θ takes
distinct values on P1, P2). �

3.1. Limits of solutions of the heat equation. — In this subsection we show that if we are
given a solution u of the heat equation along the ancient mean curvature flow M, and
a sequence of rescalings of M converging to a blow-down P′

1 ∪ P′
2 given by a union of

distinct n-dimensional subspaces, then along a subsequence we can extract a normalized
limit of u, determining a solution of the heat equation on both planes separately.

Standard methods allow us to extract limits on compact sets away from the inter-
section E = P′

1 ∩ P′
2, and in the limit we obtain solutions of the heat equation on P′

j \E for
j = 1,2, which are in L∞ across E. The main difficulty is that E may have codimension 1
in P′

j and codimension 1 sets are not removable for solutions of the heat equation. (Con-
sider for instance the solution given by two different constants on the lower and upper
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half planes.) To overcome this issue it is crucial that the angle θ differs on the two sub-
spaces (which we have by Proposition 2.7), while at the same time the space-time integral
of |∇θ |2 converges to zero as we approach the blow-down. This allows us to show that
the solutions that we obtain in the limit on P′

j \ E are distributional solutions across E,
and hence smooth.

To state the result, let Li
t be a sequence of smooth solutions of LMCF in Cn de-

fined for t ∈ [−1,0]. We assume that the Li
t have Euclidean area growth and uniformly

bounded Lagrangian angles. We assume that Li
t ⇀ P′

1 ∪ P′
2 weakly as i → ∞, where as

above P′
j are n-dimensional subspaces meeting along a subspace E of dimension at most

n − 1. Here, as usual, we view P′
1 ∪ P′

2 as a static flow. For the definition of functions with
polynomial growth we refer the reader to Definition A.2.

Proposition 3.7. — In the setting above, for each i, let ui be a solution to the heat equation on Li
t

for t ∈ [−1,0], with at most polynomial growth. Assume further that there is a uniform C > 0 so that

(3.4)
∫

Li−1

u2
i e−|x|2/4 < C.

Then, after passing to a subsequence, we have ui → u where u = (u1, u2) is a solution of the heat

equation on the union P′
1 ∪ P′

2 for t ∈ (−1,0] in the sense of Definition 3.4. The convergence ui → u

here means smooth convergence on compact subsets of (−1,0] × Cn \ E, i.e. on compact subsets away

from t = −1 and away from the intersection P′
1 ∩ P′

2.

Proof. — We have

(∂t − )u2
i = −2|∇ui|2.

We apply the monotonicity formula (2.2) (see Proposition A.3) to u2
i with different centers

(x0, t0) in Cn × (−1,0]. Using the uniform bound (3.4) we find that for any R > 0 there
is a constant CR > 0 so that

(3.5)

sup
BR(0)×[−1+R−1,0]

|ui| < CR,

∫ 0

−1+R−1

∫
BR(0)∩Li

t

|∇ui|2 < CR.

Let θi be the Lagrangian angle on Li
−1 and θ 1 �= θ 2 the (constant) Lagrangian

angles on P′
1, P′

2. As in [23, Theorem A], we have that for all s ∈ (−1,0), f ∈ C2(R) and
compactly supported smooth functions φ,

lim
i→∞

∫
Li

s

f (θi)φ =
2∑

j=1

∫
Pj

f (θ j)φ.
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Since θ 1 �= θ 2, we can choose f ∈ C2(R) such that f (θ 1) = 1 and f (θ 2) = 0, and we fix
such a function f for the rest of the proof.

We also fix a smooth function χ compactly supported in BR(0) × (−1,0). Then
we have

(3.6)
d

dt

∫
Li

t

f (θi)uiχ =
∫

Li
t

f ′(θi)(θi)uiχ +
∫

Li
t

f (θi)(ui)χ +
∫

Li
t

f (θi)ui∂tχ

−
∫

Li
t

f (θi)ui〈J∇θi,Dχ〉 −
∫

Li
t

f (θi)uiχ |∇θi|2,

where D denotes the ambient derivative on Euclidean space, using the fact that both
ui and θi solve the heat equation on Li

t and H = J∇θi . Note that, since χ has compact
support, we may use (3.5) and the fact that the (spacetime) L2-norm of |H| = |∇θi| goes
to zero as i → ∞ (see [23, Lemma 5.4]) to deduce that

∫ 0

−1

∫
Li

t

f ′(θi)(θi)uiχdt −
∫ 0

−1

∫
Li

t

f (θi)ui〈J∇θi,Dχ〉dt

−
∫ 0

−1

∫
Li

t

f (θi)uiχ |∇θi|2dt → 0 as i → ∞.

Therefore, since χ has compact support in BR(0) × (−1,0), if we integrate (3.6)
with respect to t on [−1,0], we have that

(3.7)
∫ 0

−1

∫
Li

t

f (θi)ui∂tχdt = −
∫ 0

−1

∫
Li

t

f (θi)(ui)χdt + εi,

where εi → 0 as i → ∞. (Note that εi will depend on χ .) Integrating by parts on the
right-hand side of (3.7) we get

(3.8)
∫ 0

−1

∫
Li

t

f (θi)ui∂tχdt =
∫ 0

−1

∫
Li

t

f (θi)〈∇ui,∇χ〉dt

+
∫ 0

−1

∫
Li

t

f ′(θi)χ〈∇ui,∇θi〉dt + εi.

Again from (3.5) and the fact ∇θi converges to zero in L2 (in spacetime), we may absorb
the second integral on the right-hand side of (3.8) into εi . We can then integrate by parts
in the first term on the right-hand side of (3.8) and absorb another term involving ∇θi by
the same argument into εi to get

(3.9)
∫ 0

−1

∫
Li

t

f (θi)ui∂tχdt = −
∫ 0

−1

∫
Li

t

f (θi)uiχdt + εi.
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Recall that f (θ 1) = 1 and f (θ 2) = 0. Since the ui are uniformly bounded on the sup-
port of χ by (3.5), and we have good convergence away from the line � = P1 ∩ P2, the
contribution as we pass to the limit as i → ∞ in (3.9) near the singular set � is negligi-
ble. Therefore, we can pass to the limit in (3.9) along a subsequence, and get that the
subsequential limit u1 of the ui on P1 satisfies

∫ 0

−1

∫
P1

u1∂tχdt = −
∫ 0

−1

∫
P1

u1χdt.

This means that the limit u1 is a bounded distributional solution of the heat equation on
P1 so it follows that u1 is a classical solution on P1.

Repeating the argument starting with the subsequence converging to u1 on P1 and
changing the choice of function f so that it takes the value 1 on θ 2 and 0 on θ 1 yields the
result. �

Since the drift heat equation and usual heat equation are related by rescaling,
one can apply Proposition 3.7 to sequences of solutions of the drift heat equation along
rescaled mean curvature flows. In particular, suppose that we have a sequence of rescaled
flows Mi

τ , for τ ∈ [−1,0], converging to P′
1 ∪ P′

2 weakly. Recall the weighted L2-norm
defined in (3.3) and let ui be solutions of the drift heat equation on Mi

τ , with ‖ui‖−1 ≤ 1,
and such that the ui have polynomial growth. Proposition 3.7 implies that after passing to
a subsequence we have ui → u, for a solution u of the drift heat equation on P′

1 ∪ P′
2 for

τ ∈ (−1,0]. We have the following additional information, saying that for τ > −1 the
weighted L2-norms of the ui cannot concentrate near E and near infinity.

Lemma 3.8. — Under the setup above we have

(3.10) ‖u‖τ = lim
i→∞

‖ui‖τ ≤ lim inf
i→∞

‖ui‖−1,

for τ ∈ (−1,0].
Proof. — The inequality ‖ui‖τ ≤ ‖ui‖−1 for τ > −1 follows immediately from the

monotonicity formula (2.2) and the observation that (∂t − )u2
i ≤ 0.

For r,R > 0 let us write Ar,R = BR(0)\Br(E), where E = P′
1 ∩P′

2 and Br(E) denotes
the r-neighbourhood of E. Let δ > 0. From Proposition 3.7 we know that for any r,R > 0,
and τ ∈ [−1 + δ,0] we have

lim
i→∞

∫
Mi

τ ∩Ar,R

u2
i e−|x|2/4 =

∫
(P′

1∪P′
2)∩Ar,R

u2 e−|x|2/4.

To prove (3.10) it is enough to show that for any ε, δ > 0, there are r,R > 0 such that for
all i and τ ∈ [−1 + δ,0] we have∫

Mi
τ \Ar,R

u2
i e−|x|2/4 < ε.
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First, using the log Sobolev inequality due to Ecker [13, Theorem 3.4], we have a p > 1,
depending on δ > 0, such that

(∫
Mi

τ

|ui|2pe−|x|2/4

)1/p

< C,

for a uniform C, as long as τ ∈ [−1+δ,0]. It follows using Hölder’s inequality that, given
R > 0, we have

∫
Mi

τ \BR(0)

|ui|2 e−|x|2/4 ≤ C
(∫

Mi
τ \BR(0)

e−|x|2/4

)1−1/p

,

and so using the Euclidean area bounds for Mi
τ we can find an R (depending on δ, ε)

such that

(3.11)
∫

Mi
τ \BR(0)

|ui|2 e−|x|2/4 ≤ ε

2
,

for τ ∈ [−1 + δ,0].
Viewing R (and δ) as fixed, the uniform bound in (3.5) implies that if r is sufficiently

small (depending on ε, δ, R), then∫
Mi

τ ∩BR(0)∩Br(E)

|ui|2e−|x|2/4 <
ε

2
.

Combined with (3.11) this implies∫
Mi

τ \Ar,R

|ui|2e−|x|2/4 < ε,

as required. �

3.2. Three annulus lemma. — A well-known method for controlling the growth of
solutions of PDEs is the three annulus lemma, see for example [25]. In this subsection we
prove a version of the three annulus lemma for solutions of the drift heat equation along
the rescaled flow. We use an argument by contradiction, similar to Simon [25], based on
the monotonicity of frequency shown by Colding–Minicozzi [9]. Related ideas are also
applied in [8].

In this subsection we assume that Lτ is a rescaled Lagrangian mean curvature flow
such that, along a sequence τi → −∞, we have Lτi

⇀ P1 ∪ P2. In addition we assume, as
before, that the Lτ have uniformly bounded area ratios, uniformly bounded Lagrangian
angle and are almost calibrated for n ≥ 3.

Proposition 3.9. — For any s /∈ Z there is a T0 = T0(s) > 0 with the following property.

Suppose that u is a solution of the drift heat equation (3.1) on the rescaled flow Mτ for τ ∈ [−T −
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2,−T] with T > T0, such that u has polynomial growth. If in addition we have that the weighted

L2-norm defined in (3.3) satisfies

‖u‖−T−1 ≥ es/2‖u‖−T,

then we also have

‖u‖−T−2 ≥ es/2‖u‖−T−1.

Proof. — We argue by contradiction. Suppose that there is a sequence of solutions
ui to (3.1) on intervals [−Ti − 2,−Ti] with Ti → ∞, such that

(3.12) ‖ui‖−Ti−1 ≥ es/2‖ui‖−Ti
,

but

(3.13) ‖ui‖−Ti−2 < es/2‖ui‖−Ti−1.

By rescaling we can assume that ‖ui‖−Ti−1 = 1 for all i. It follows from (3.13) that then
‖ui‖−Ti−2 < es/2. We can apply Proposition 3.7 to time translations of the ui , and along a
subsequence we can extract a limit u satisfying the drift heat equation along a blow-down
P′

1 ∪ P′
2 of the flow Lτ on the interval (−2,0]. Using (3.10) we have

(3.14) ‖u‖−1 = 1,

and at the same time the local uniform convergence of ui to u, together with (3.12) and
(3.13), implies

(3.15) ‖u‖0 ≤ e−s/2, ‖u‖τ ≤ es/2 for all τ ∈ (−2,0].
By [9, Theorem 0.6] we know that log‖u‖2

τ is convex. From (3.14) and (3.15) it follows
that log‖u‖2

τ is linear with slope s. By [9, Theorem 0.6] u must be homogeneous with
degree s. By Lemma 3.5 the homogeneous solutions on any blow-down have integer
degrees, so since s /∈ Z, we have a contradiction. �

We can use the three annulus lemma to extract the leading order behaviour of
ancient solutions to the heat equation as follows.

Proposition 3.10. — Suppose that u is a non-zero solution of the drift heat equation along the

rescaled flow Mτ for τ ∈ (−∞,0], with polynomial growth. Suppose that for some C, d > 0 we have

‖u‖2
τ ≤ Ce−dτ for all τ < 0. Let τi → −∞ be integers. Up to choosing a subsequence we have the

following. The translated (rescaled) flows Li
τ = Mτ−τi

converge weakly to a blow-down P′
1 ∪ P′

2, and

the normalized translated solutions

ui(τ ) = ‖u‖−1
τi

u(τ − τi)
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converge to a non-zero homogeneous solution u of the drift heat equation on P′
1 ∪ P′

2 for τ ∈ [−2,0].
The convergence is locally smooth on [−2,0] away from P′

1 ∩ P′
2, and also in L2 as in (3.10).

Proof. — Let s0 > d for some s0 /∈ Z. We claim that there is a τ0 < 0 such that we
then have

(3.16) ‖u‖τ−1 ≤ es0/2‖u‖τ

for all τ < τ0. If this were not the case, then Proposition 3.9 would imply that in fact
‖u‖τ−k ≥ es0/2‖u‖τ−k+1 for all integers k > 0 and some τ , but this would eventually con-
tradict the assumption ‖u‖2

τ−k ≤ Ce−d(τ−k).
The growth condition (3.16) together with the normalization of ui implies that

‖ui‖−3 ≤ e3s0/2. Using Proposition 3.7 we can extract a limit u along a subsequence on
P′

1 ∪ P′
2. The convergence is locally smooth on (−3,0] away from P′

1 ∩ P′
2, and using

Lemma 3.8 the convergence is in L2 for τ ∈ [−2,0] as required.
It remains to argue that u is homogeneous. For this note that Proposition 3.9 im-

plies that for any s /∈ Z one of the following must hold:

(1) ‖u‖τ−1 ≥ es/2‖u‖τ for all sufficiently negative integers τ ,
(2) ‖u‖τ−1 ≤ es/2‖u‖τ for all sufficiently negative integers τ ,

since if (1) holds for some sufficiently negative τ then it must hold for τ − k for all integers
k > 0 by Proposition 3.9 as well. It follows that there is some s1 ∈ R such that (1) holds for
all s < s1, and (2) holds for all s > s1. We deduce that in the limit we have

‖u‖−2 = es1/2‖u‖−1, ‖u‖−1 = es1/2‖u‖0.

The convexity of log‖u‖τ then implies that log‖u‖τ is linear, from which it follows that u

is homogeneous. �

We will also need the following variant of the three annulus lemma, similar to
Donaldson–Sun [12, Proposition 3.11].

Proposition 3.11. — Let V≤1 be the space of solutions of the drift heat equation along Mτ given

by the span of 1, θ and e−τ/2xi for the coordinate functions xi. Let V ⊂ V≤1 be any subspace and let u

be a solution of the drift heat equation along Mτ with polynomial growth. Suppose that there is a constant

C > 0 such that

(3.17) ‖u‖2
τ ≤ Ce−3τ/2, for all τ < −1.

For any τ let �τ u := u − f , where f ∈ V and u − f is orthogonal to V at time τ :

〈u − f , g〉τ :=
∫

Mτ

(u − f )g e−|x|2/4 = 0, for all g ∈ V.
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Given s /∈ Z, there is a T0 > 0 with the following property. If

‖�−T−1u‖−T−1 ≥ es/2‖�−Tu‖−T

for some T > T0, then

‖�−T−2u‖−T−2 ≥ es/2‖�−T−1u‖−T−1.

Proof. — The proof is by contradiction, similar to that of Proposition 3.9. Suppose
that we have a sequence Ti → ∞ and corresponding ui such that

(3.18) ‖�−Ti−1ui‖−Ti−1 ≥ es/2‖�−Ti
ui‖−Ti

,

and at the same time

(3.19) ‖�−Ti−2ui‖−Ti−2 < es/2‖�−Ti−1ui‖−Ti−1.

Let vi = �−Ti−2ui , so that vi is orthogonal to V at τ = −Ti − 2. By scaling we can
assume that ‖vi‖−Ti−1 = 1. It follows that ‖�−Ti−1vi‖−Ti−1 ≤ 1, and so by (3.19) we have
‖vi‖−Ti−2 ≤ es/2. We claim that for sufficiently large i we also have

(3.20) ‖vi‖−Ti−3 ≤ e4/5‖vi‖−Ti−2.

If (3.20) did not hold, Proposition 3.9 would imply that for some constant C > 0 and
for all integers k > 3 we would have ‖vi‖−Ti−k ≥ C−1e4k/5. At the same time vi = ui − fi
for some fi ∈ V, and since both ui and fi satisfy an estimate of the form (3.17), we get a
contradiction. Thus (3.20) holds, and so we have a uniform bound ‖vi‖−Ti−3 ≤ es/2+4/5.

Applying Proposition 3.7 we have that, along a subsequence and after time trans-
lations, the vi converge to a limit solution v of the drift heat equation on a blow-down
P′

1 ∪ P′
2 for τ ∈ (−3,0]. It follows using (3.10) that ‖v‖−2 ≤ es/2 and ‖v‖−1 = 1.
We claim that we also have

(3.21) ‖v‖0 ≤ e−s/2,

in which case we will reach a contradiction just like in the proof of Proposition 3.9. Note
that the new difficulty is that we only have the bound ‖�−Ti

vi‖−Ti
≤ e−s/2, and the norm

of vi can be larger than that of its projection �−Ti
vi .

To see that (3.21) holds we show that under our assumption that vi is orthogonal to
V at time −Ti −2, we have that vi is also approximately orthogonal to V at time −Ti . Let
g ∈ V and consider normalizations gi of g such that ‖gi‖−Ti

= 1. By Proposition 3.10, after
taking a further subsequence we can assume that the gi converge to a homogeneous limit
g on P′

1 ∪ P′
2, on the time interval [−2,0], satisfying the drift heat equation. We can apply

the L2-convergence (3.10) to vi ± gi , together with our assumption 〈vi, gi〉−Ti−2 = 0 to find
that 〈v, g〉−2 = 0. Since g is homogeneous, this implies that 〈v, g〉τ = 0 for all τ ∈ [−2,0].
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It follows from the L2-convergence we have 〈vi, gi〉−Ti
→ 0. Since this applies to all g ∈ V,

we find that

lim
i→∞

‖�−Ti
vi‖−Ti

‖vi‖−Ti

= 1,

and it follows that ‖v‖0 ≤ e−s/2. This leads to a contradiction as discussed above. �

Let us use coordinates x1, . . . , x2n−2, z,w as in Section 2.4. Recall that a blow-
down of our ancient rescaled flow Mτ along a sequence of scales τi → −∞ is given by
P1 ∪P2, where P1 ∩P2 = � is a line, the coordinate w vanishes on P1 ∪P2 and J∇z = ∇w.
Without loss of generality we can assume that the τi are all integers. Let us write Li

t for
the corresponding sequence of flows for t ∈ [−2,0) converging weakly to P1 ∪ P2. We
then have the following dichotomy.

Proposition 3.12. — Either we have that w = a + bθ for some constants a, b along our flow

Lt , so Lt is a translator, or up to choosing a subsequence of the τi we can find a sequence of linear functions

φi ∈ Span{x1, . . . , x2n−2, z} with φi → 0 and a sequence σi → 0 such that along the sequence Li
t

converging to P1 ∪ P2 we have

σ−1
i (w − φi) → zθ as i → ∞,

where the convergence is in L2 and locally uniformly away from the line �.

Proof. — Recall Definition 3.1 and let V = Span{1, θ, x̃1, . . . , x̃2n−2, z̃}.
Suppose first that the rescaled height w̃ is in V. Note that Mτi

⇀ P1 ∪ P2 and w

vanishes on P1 ∪ P2, but non-trivial linear combinations of x1, . . . , x2n−2, z do not vanish
on P1 ∪ P2. This implies that we must have w̃ = a + bθ for constants a, b. By Proposi-
tion 2.10 the flow Lt is a translator.

Suppose now that w̃ is not in V. We apply Proposition 3.11 to w̃ along the flow
with V as chosen. For any integer k < 0 let us write

w̃k = �kw̃

‖�kw̃‖k

.

Note that by our assumption �kw̃ �= 0 for all k. Using Proposition 3.11 together with
the argument in the proof of Proposition 3.10 we find that along a subsequence ki =
τi → −∞, time translations of the w̃ki

converge to a homogeneous solution w of the drift
heat equation on P1 ∪ P2, which is orthogonal to the solutions 1, θ, x̃1, . . . , x̃2n−2, z̃. At the
same time the growth rate of w can be at most degree 1, so by Lemma 3.6 we must have
w = ce−τ/2zθ for a non-zero constant c.

To finish the proof we need to consider how the w̃k are related for different k. By
definition we have

(3.22) w̃k = γkw̃k+1 + ak + bkθ + Fk,
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where γk , ak , bk are constants, and Fk ∈ Span{x̃1, . . . , x̃2n−2, z̃}. Using Proposition 3.11,
and arguing as in the proof of Proposition 3.10, we know that for any subsequence kj →
−∞ there is a further subsequence along which the w̃kj

(translated in time) converge to a
homogeneous solution along some blow-down P′

1 ∪P′
2, with degree 1 which is orthogonal

to V. Since ‖w̃k‖k = 1 for all k, it follows that γk → e−1/2 and ‖ak‖k,‖bkθ‖k,‖Fk‖k → 0
as k → −∞. Note that the norms ‖1‖k , ‖θ‖k are uniformly bounded away from 0 and
∞ for all k, using the fact that on all blow-downs P′

1 ∪ P′
2 the angle θ equals the same

constants θ 1, θ 2 on the two subspaces P′
1, P′

2. Therefore ak, bk → 0.
Let us define the constants μk by μ0 = 1 and γk = μk+1/μk for all sufficiently

negative integers k. From (3.22) we have

μkw̃k = μk+1w̃k+1 + μk(ak + bkθ) + μkFk,

and so

(3.23) w̃k = μ−1
k w̃0 + μ−1

k

k∑
i=−1

μi(ai + biθ) + μ−1
k

k∑
i=−1

μiFi.

Using that μk+1/μk → e−1/2 and ak, bk → 0, it follows that

(3.24)

∥∥∥∥∥μ−1
k

k∑
i=−1

μi(ai + biθ)

∥∥∥∥∥
k

→ 0.

At the same time, since w̃0 is the normalized L2-projection of w orthogonal to V (at time
τ = 0), we have w̃0 = c0w̃ + c1 + c2θ + F, where c0, c1, c2 are constants with c0 �= 0 and
F ∈ Span{x̃1, . . . , x̃2n−2, z̃}. Using (3.23) and (3.24) we can write

μ−1
k c0(w̃ − φ̃k) = w̃k + Ek,

where ‖Ek‖k → 0 and φ̃k is in the span of x̃1, . . . , x̃2n−2, z̃. Along our subsequence ki we
have w̃ki

→ w = ce−τ/2zθ , and so as required we obtain a sequence Li
t converging to

P1 ∪ P2, and σi �= 0, φi ∈ Span{x1, . . . , x2n−2, z} satisfying

σ−1
i (w − φi) → zθ.

It remains to show that σi, φi → 0. Note that since w vanishes on P1 ∪ P2, on Li
−1 we

have ‖w‖Li−1
→ 0 as i → ∞, while ‖xj‖Li−1

and ‖z‖Li−1
are bounded away from 0 and ∞.

It follows that if φi �→ 0, along a subsequence, then also σi �→ 0 along this subsequence,
and we would have σ−1

i φi → zθ in L2, but this contradicts the fact that on P1 ∪ P2 the
function zθ is L2-orthogonal to x1, . . . , x2n−2, z. Therefore we must have φi → 0, which
implies that ‖w − φi‖Li−1

→ 0 and so σi → 0 as well. �
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In the next section we will show using a topological argument that the second
alternative in Proposition 3.12 leads to a contradiction. This will complete the proof of
our main result.

4. Linking argument

In this section we use a topological argument to rule out the second alternative in
Proposition 3.12. Throughout this section we let (−∞,0) � t → Lt ⊂ Cn be a smooth,
exact, ancient solution of LMCF with uniformly bounded area ratios and Lagrangian
angle and which is almost calibrated for n ≥ 3. Recall that for a positive sequence λi → 0,
we consider the sequence of parabolically rescaled flows

(−∞,0) � t → Li
t = λiLλ−2

i t .

We assume that as i → ∞ the flows t → Li
t converge weakly to the static flow (−∞,0) �

t → P1 ∪P2, where P1, P2 are n-dimensional Lagrangian subspaces meeting along a line �.
We write θ j for the Lagrangian angles of Pj as before, where θ 1 = −θ 2.

Since the Li
t are exact, they admit primitives βi of the Liouville form as in Defini-

tion 2.2. We have the following (see Neves [23, Proposition 6.1]).

Lemma 4.1. — We can choose the primitives βi along the flows Li
t such that

(∂t − )(βi + 2tθi) = 0.

Since |∇βi| = |x⊥| and Li
−1 converges to the union P1 ∪ P2 locally smoothly away

from �, we have that βi|Li−1
→ β j as i → ∞ locally smoothly on each plane Pj away from

�, for suitable constants β j . Similarly θi → θ j locally smoothly on Pj away from �, as
i → ∞. Given this, we make the following definition.

Definition 4.2. — Since the Li
t are exact, and almost calibrated for n ≥ 3, by [24, Theorem 4.2]

there exists a set E ⊆ (−2,0) of measure zero so that whenever s′ ∈ (−2,0) \ E , we have two

distinct connected components � i
1,s′ , � i

2,s′ of B3(0) ∩ Li
s′ (after possibly passing to a subsequence)

intersecting B2(0) and converging (as Radon measures) to the planes P1, P2 respectively in B2(0). Note

that there might be more connected components of B3(0) ∩ Li
s′ , but the components � i

1,s′ , � i
2,s′ are

uniquely determined, and the remaining components converge to zero as Radon measures.

Let s1 ∈ (−1/2,0) \ E so that b1 �= b2, where

(4.1) bj := cos(β j − 2(1 + s1)θ j).

This is always possible since θ 1 �= θ 2 and E has measure 0. We then let � i
j = � i

j,s1
∩ B2(0) in the

notation above.
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4.1. Approximate solutions of the heat equation. — We now prove our first key result,
which provides solutions of the heat equation, which on the two components � i

j , for
j = 1,2, approximate bjz pointwise.

Proposition 4.3. — Recall the notation of Definition 4.2. Let

(4.2) Bi = cos(βi + 2(t − s1)θi)

and let hi be the solution of the heat equation along Li
t with polynomial growth (see Proposition A.5) such

that at t = −1 we have hi = Biz. Then

(4.3) lim
i→∞

sup
�i

j ∩B2(0)

|bjz − hi| = 0 for j = 1,2,

where bj are the constants given in (4.1).

Remark 4.4. — The idea of Proposition 4.3 is that b̄jz defines a solution of the
heat equation on the union P1 ∪ P2, and we try to find solutions along the flows Li

t which
approximate it. Along the flows we do not have two components at each time converging
to the two planes, so we cannot directly define a function like b̄jz. However, in the limit
as i → ∞, the functions Bi approximate the constants bj on the two planes Pj . Biz only
approximately satisfies the heat equation as i → ∞ but should stay close to a genuine
solution hi with the same initial condition. In addition we have a good pointwise estimate
for the difference between Bi and the constants bj on the two components � i

j at the
specific time t = s1, as in Neves [24, Theorem 4.2].

Proof. — Let

(4.4) Ei = Biz − hi.

Our goal is to show that Ei is small as i becomes large. At t = −1 we have Ei = 0, so we
compute the evolution of Ei . We have

∇(βi + 2(t − s1)θi) = J(x⊥ + 2(s1 − t)H),

and since βi + 2(t − s1)θi satisfies the heat equation we get

(∂t − )Bi = |x⊥ + 2(s1 − t)H|2Bi.

Since |Bi| ≤ 1, at t = −1 we have |hi| ≤ (1 + |x|2). Using the maximum principle (see
Ecker–Huisken [15, Corollary 1.1], which applies to subsolutions that satisfy the mono-
tonicity formula) and the evolution equation (∂t − )(1 + |x|2) = −2n we find that
|hi| ≤ C(1 + |x|2) for t ∈ [−1,0) for a dimensional constant C > 0. Below the constant
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C may change from line to line but is independent of i, t. In particular we also have
|Ei| ≤ C(1 + |x|2).

Since z and hi satisfy the heat equation along the flow Li
t , we have the evolution

equation

(∂t − )Ei = |x⊥ + 2(s1 − t)H|2Biz − 2〈∇Bi,∇z〉.

We deduce that

|(∂t − )Ei| ≤ |x⊥ + 2(s1 − t)H|2(1 + |x|2) + 2|x⊥ + 2(s1 − t)H|.

From this, together with the estimate |Ei| ≤ C(1 + |x|2), we get

(4.5) (∂t − )E2
i ≤ 2|Ei||(∂t − )Ei| − 2|∇Ei|2
≤ 2|Ei||x⊥ + 2(s1 − t)H|2(1 + |x|2) + 4|Ei| |x⊥ + 2(s1 − t)H|
≤ E2

i + C(|x⊥|2 + (s1 − t)2|H|2)(1 + |x|4),

where we also used the estimate 4|Ei|b ≤ E2
i + 4b2 to get the last line.

Using that θi satisfies the heat equation and |∇θi| = |H|, as well as (∂t −)|x|4 ≤ 0,
we also have

(∂t − )(1 + |x|4)(t + 1)θ 2
i ≤ (1 + |x|4)θ 2

i − 2(1 + |x|4)(t + 1)|H|2
− 4(t + 1)θi〈∇θi,∇|x|4〉

≤ −(1 + |x|4)(t + 1)|H|2 + C(1 + |x|4)θ 2
i ,

for t ∈ (−1,0).
Let κ > 0 be small. Combining (4.5) with the previous inequality, for t ∈ (−1,0)

we have

(4.6) (∂t − )
(

e−tE2
i + (1 + |x|4)κ(t + 1)θ 2

i

)

≤ C(|x⊥|2 + (s1 − t)2|H|2)(1 + |x|4)
+ κC(1 + |x|4)θ 2

i − κ(t + 1)(1 + |x|4)|H|2.

Suppose that x0 ∈ B2(0) ∩ Li
s1

and denote by ρx0,s1 the backwards heat kernel cen-
tred at (x0, s1). For t ∈ (−1, s1) we have from (4.6), using the monotonicity formula (2.2),
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that

(4.7)
d

dt

∫
Li

t

(e−tE2
i + (1 + |x|4)κ(t + 1)θ 2

i )ρx0,s1

≤
∫

Li
t

C(|x⊥|2 + (s1 − t)2|H|2)(1 + |x|4)ρx0,s1

+ κC
∫

Li
t

(1 + |x|4)θ 2
i ρx0,s1

− κ(t + 1)

∫
Li

t

|H|2(1 + |x|4)ρx0,s1 .

Integrating (4.7) with respect to t from −1 to s1 yields:

(4.8) e−s1E2
i (x0, s1) + (1 + |x0|4)κ(s1 + 1)θ 2

i (x0, s1)

≤
∫

Li−1

e−tE2
i ρx0,s1 +

∫ s1

−1

∫
Li

t

C(|x⊥|2 + (s1 − t)2|H|2)(1 + |x|4)ρx0,s1dt

+ κC
∫ s1

−1

∫
Li

t

(1 + |x|4)θ 2
i ρx0,s1

− κ

∫ s1

−1

∫
Li

t

(t + 1)|H|2(1 + |x|4)ρx0,s1dt.

Note that Ei = 0 at t = −1 by the definition of hi , and hence the first term on the right-
hand side in (4.8) vanishes.

We now estimate the second term in (4.8). Note that for t ∈ [−1, s1 − κ] we have

(1 + |x|4)ρx0,s1(x, t) ≤ Cκρ0,0(x, t)

for some κ-dependent constant Cκ > 0, since s1 < 0 and thus ρx0,s1 will decay more
rapidly at infinity than ρ0,0 for any t ∈ [−1, s1 − κ]. Therefore,

(4.9)
∫ s1−κ

−1

∫
Li

t

C(|x⊥|2 + (s1 − t)2|H|2)(1 + |x|4)ρx0,s1dt

≤ Cκ

∫ 0

−1

∫
Li

t

(|x⊥|2 + |H|2)ρ0,0dt.
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We now notice that

(4.10)
∫ s1

s1−κ

∫
Li

t

C(s1 − t)2|H|2(1 + |x|4)ρx0,s1dt

≤ Cκ2

∫ s1

s1−κ

∫
Li

t

|H|2(1 + |x|4)ρx0,s1dt

≤ κ

2

∫ s1

s1−κ

∫
Li

t

(t + 1)|H|2(1 + |x|4)ρx0,s1dt,

where C > 0 is a constant and κ is chosen sufficiently small that (t + 1) ≥ 2Cκ for t ∈
[s1 − κ, s1]. Equation (4.10) shows that the integral on the left-hand side of the inequality
can be compensated for using the last term in (4.8).

Our remaining concern is

(4.11)
∫ s1

s1−κ

∫
Li

t

|x⊥|2(1 + |x|4)ρx0,s1dt ≤
∫ s1

s1−κ

∫
Li

t

|x|2(1 + |x|4)ρx0,s1dt

=
∫ s1

s1−κ

∫
Li

t∩B
κ−1/10 (0)

|x|2(1 + |x|4)ρx0,s1dt

+
∫ s1

s1−κ

∫
Li

t\B
κ−1/10 (0)

|x|2(1 + |x|4)ρx0,s1dt.

The first integral can clearly be estimated as

(4.12)
∫ s1

s1−κ

∫
Li

t∩B
κ−1/10 (0)

|x|2(1 + |x|4)ρx0,s1dt

≤ 2κ−6/10

∫ s1

s1−κ

∫
Li

t∩B
κ−1/10 (0)

ρx0,s1dt ≤ Cκ2/5

for some constant C > 0, using the uniform area bounds for Li
t . Using the area bounds

again for t ∈ [−1, s1], we can estimate our remaining spacetime integral by the integral
over an n-plane P for κ sufficiently small:

(4.13)
∫ s1

s1−κ

∫
Li

t\B
κ−1/10 (0)

|x|2(1 + |x|4)ρx0,s1dt

≤ C1

∫ 0

−κ

∫
P\B

κ−1/10(0)

|x|2(1 + |x|4)ρx0,0dt

≤ C2e−1/κ

for constants C1,C2 > 0.
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Combining (4.9)–(4.13) shows that, for κ sufficiently small, we have

(4.14)
∫ s1

−1

∫
Li

t

C(|x⊥|2 + (s1 − t)2|H|2)(1 + |x|4)ρx0,s1dt

≤ Cκ

∫ 0

−1

∫
Li

t

(|x⊥|2 + |H|2)ρ0,0dt

+ Cκ2/5 + κ

2

∫ s1

s1−κ

∫
Li

t

(t + 1)|H|2(1 + |x|4)ρx0,s1dt

for some constant C > 0 and a constant Cκ > 0 depending on κ .
Noting also that θ 2

i is uniformly bounded, we may therefore combine (4.8) and
(4.14) to obtain

(4.15) E2
i (x0, s1) ≤ Cκ

∫ 0

−1

∫
Li

t

(|x⊥|2 + |H|2)ρ0,0dt + Cκ2/5,

if κ > 0 is sufficiently small.
For fixed κ > 0, the first term on the right-hand side of (4.15) converges to zero as

i → ∞, as in [23, Lemma 5.4]. It follows that for any κ > 0 we can choose i sufficiently
large so that

E2
i (x0, s1) ≤ 2Cκ2/5.

By definition of Ei in (4.4), and the fact that Bi = cos(βi) at t = s1, we have that

(4.16) lim
i→∞

sup
B2(0)∩Li

s1

| cos(βi)z − hi| = 0.

As in [23, Lemma 7.3], we now use that the limiting behaviour of the functions
Bi in (4.2) as i → ∞ is t-independent. More precisely, for all φ with compact support in
B2(0) and f ∈ C2(R) we have

(4.17) lim
i→∞

∫
Li

s1

f (Bi)φ dHn = lim
i→∞

∫
Li−1

f (Bi)φ dHn.

On Li
s1

we have Bi = cos(βi) and so we have the pointwise bound |∇Bi| ≤ |x⊥|. Using
the Poincaré type inequality [23, Proposition A.1], we deduce that there are constants
b̂1, b̂2 such that sup�i

j ∩B2(0) |Bi − b̂j| → 0 as i → ∞. At the same time from (4.17) we find

that b̂j = bj for the constants in (4.1), since on Li
−1 we have Bi = cos(βi − 2(1 + s1)θi).

Note that by construction on Li
−1 we have βi → β j and θi → θ j on the plane Pj , locally

smoothly away from �. It follows then from (4.16) that limi→∞ sup�i
j ∩B2(0) |bjz − hi| = 0, as

required. �
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4.2. The linking argument. — Continuing the setup from the previous subsection, we
now show that indeed the second possibility in Proposition 3.12 leads to a contradiction,
if our flow t → Lt is smooth and embedded.

Proposition 4.5. — Suppose that we have φi ∈ Span{x1, . . . , x2n−2, z} with φi → 0 and a

sequence λi → 0 such that along the sequence Li
t we have

(4.18) ui = λ−1
i (w − φi) → zθ on P1 ∪ P2 as i → ∞,

where the convergence is in L2 and locally uniform away from �. Then for sufficiently large i the flow Li
t

is not embedded.

Remark 4.6. — Recall that � i
j are the components of B2(0) ∩ Li

s1
, as in Defini-

tion 4.2, and let us suppose for simplicity that Ci
j = � i

j ∩ ∂B1(0) are smooth (n − 1)-
dimensional submanifolds of the sphere (which can always be done by changing the ra-
dius of the ball slightly if necessary). The key to the argument is to show that the subman-
ifolds Ci

j in the (2n − 1)-sphere are linked for i sufficiently large, which implies that the
� i

j intersect in B2(0). Then Li
s1

cannot be embedded.

Proof. — Since θ equals the distinct constants θ 1, θ 2 on the planes P1, P2, by mod-
ifying the λi and adding multiples of z to the φi , we can assume for simplicity that

ui → bjz on Pj as i → ∞,

where bj are given in (4.1). The convergence is in L2, and locally uniform away from the
line �. We also assume without loss of generality that λi > 0.

Recall the notation of Definition 4.2 and Proposition 4.3. At t = −1 we have hi =
Biz by definition, and the function Bi converges in L2 and locally smoothly away from � to
the constants b̄j on the two planes. It follows that at t = −1 we have ‖ui − hi‖L2 = 0. The
monotonicity formula applied with points (x0, s1) for different x0 ∈ B2(0) then implies

lim
i→∞

sup
�i

j

|ui − hi| = 0.

Applying Proposition 4.3 then yields

lim
i→∞

sup
�i

j

|ui − bjz| = 0.

We deduce that, given any ε > 0, once i is sufficiently large we will have

(4.19) |w − φi − λibjz| < ελi on � i
j .

Suppose without loss of generality that b1 > b2 and choose

0 < ε < |b1 − b2|/100
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in (4.19). Let

b0 = (b1 + b2)/2

and, recalling that φi ∈ Span{x1, . . . , x2n−2, z}, define half-spaces

Hi
+ = {(x1, . . . , x2n−2, z,w) ∈ Cn : w > φi + λib0z},

Hi
− = {(x1, . . . , x2n−2, z,w) ∈ Cn : w < φi + λib0z}.

The inequality (4.19) implies that, for all i sufficiently large,

(4.20)
(� i

1 ∩ {z > 1/2}) ⊆Hi
+ and (� i

2 ∩ {z > 1/2}) ⊆Hi
−,

(� i
1 ∩ {z < −1/2}) ⊆Hi

− and (� i
2 ∩ {z < −1/2}) ⊆Hi

+.

In other words, the relative positions of the components � i
j in terms of the halfspaces Hi

±
must switch as we pass from z > 1/2 to z < −1/2.

We can choose R = 1 + δ for δ ≥ 0 small such that

(4.21) Ci
j = � i

j ∩ ∂BR(0)

are smooth. Our aim now is to show that the submanifolds Ci
j in ∂BR(0) are linked for

sufficiently large i, which will imply that the � i
j intersect in BR(0).

Consider the two points p−, p+ whose only non-zero entries are ±R in the z-
component in coordinates (x1, . . . , x2n−2, z,w) on Cn. So p−, p+ lie on � ∩ ∂BR(0) where
� = P1 ∩P2. Since the � i

j converge smoothly to Pj away from the singular line � as i → ∞,
we can assume that outside of B1/20(p±) the submanifolds Ci

j are smooth perturbations of
Pj ∩ ∂BR(0).

Any connected components of the Ci
j contained entirely inside B1/10(p±) must lie

in different half-spaces Hi
± by (4.20) for i sufficiently large, and so do not contribute to

the linking number of the Ci
j . We may therefore discard these components, if there are

any, and assume from now on that the Ci
j are connected.

For j = 1,2, let P̃i
j be the graph of w = φi + λibjz over Pj . Since φi, λi → 0, the P̃i

j

are small perturbations of the Pj for i sufficiently large. Moreover, since b1 �= b2 by (4.1)
we have that the P̃i

j intersect transversely at the origin. Hence, the spheres

(4.22) C̃i
j = P̃i

j ∩ ∂BR(0)

have linking number 1.
We now claim that, for i sufficiently large, the submanifolds Ci

j in (4.21) can be de-
formed to the C̃i

j in (4.22) without any crossings. Outside of the balls B1/20(p±) this is clear
since there the Ci

j are smooth perturbations of the C̃i
j . At the same time, for i sufficiently
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large, inside the balls B1/10(p±) the pairs of submanifolds {Ci
j, C̃i

j} are contained in dis-
joint half-spaces for j = 1,2 by (4.20), so the submanifolds in each pair can be deformed
to coincide without intersecting the submanifolds in the other pair.

We conclude that the linking number of the submanifolds Ci
j in (4.21) is therefore

also 1 for sufficiently large i, which implies that the flow is not embedded. �

5. Proof of main theorem

We first show that combining the results from Section 3.2 and Section 4.2 yields a
proof of the main theorem:

Proof of Theorem 1.1. — We can assume that the ancient flow M is defined for
t < 0. We note that the assumption that the flow has a blow-down given by the static
union of the planes P1 ∪ P2 implies that the entropy is bounded above by 2. This implies
that if the flow has an immersed point (x0, t0), then the monotonicity formula yields that
the flow is backwards self-similar around (x0, t0), i.e. the flow is given by the static flow
(MP1∪P2 + (x0, t0)) ∩ {t < 0}.

We can thus assume that M is embedded. Combining Proposition 3.12 and Propo-
sition 4.5 yields the statement. �

Since in many geometric applications it is essential to classify not only smooth
ancient solutions to mean curvature flow, but also more general Brakke flows arising as
limit flows, we also record the following extension of Theorem 1.1.

Theorem 5.1. — Let P1,P2 ⊂ C2 be Lagrangian subspaces which intersect along a line �

through 0. Let M be an ancient 2-dimensional Brakke flow which is the (weak) limit of smooth,

zero-Maslov, exact Lagrangian mean curvature flows (Li
t)−R2

i <t<0 defined on B(0,Ri) ⊂ Cn, where

Ri → ∞, with uniformly bounded variation of the Lagrangian angle and uniformly bounded area ratios.

If M has a blow-down at −∞ given by the static flow consisting of the union of the planes P1 ∪ P2,

then M is a smooth translator.

Proof. — We again assume that M is defined and non-vanishing for t < 0. Note
that the assumptions imply that M has uniformly bounded area ratios and is unit regular,
meaning that every point of Gaussian density one has a space-time neighbourhood where
the flow is smooth. Furthermore, as in the proof of Theorem 1.1, it follows that the
entropy is bounded above by 2. Assume now that there is a point (x0, t0) where the
Gaussian density of M is 2. Then as above we see that M= (MP1∪P2 + (x0, t0))∩{t < 0}
(using unit regularity to conclude that neither of the two planes can vanish before t = 0).

We can thus assume that all Gaussian density ratios of M are strictly less than 2.
Neves structure theory [23] then implies that we obtain uniform local curvature bounds
along the sequence (Li

t)−R2
i <t<0, and thus the convergence is smooth. This yields that M
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is a smooth, ancient, zero-Maslov, exact Lagrangian mean curvature flow with uniformly
bounded variation of the Lagrangian angle and uniformly bounded area ratios. Theo-
rem 1.1 then implies the statement. �

Remark 5.2. — In the previous theorem one can also allow that the flows
(Li

t)−R2
i <t<0 are defined on the Riemannian manifolds (B(pi,Ri), gi) where B(pi,Ri) ⊂

R2n are geodesic balls with respect to gi and gi is a sequence of Calabi–Yau metrics on
B(p,Ri) converging smoothly to the standard Euclidean metric on Cn.
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Appendix: Smoothly immersed Brakke flows

In this appendix we give a definition of smoothly immersed Brakke flows and record that
the weighted version of Huisken’s monotonicity formula, see [14, Theorem 4.13], can be
extended to weights with polynomial growth. We recall Remark 1.2 for the relation with
properly immersed mean curvature flows.

Definition A.1 (Smoothly immersed Brakke flows). — We say that an n-dimensional (integral)

Brakke flow M in Rn+m, defined on a time interval I ⊂ R, is smoothly immersed if around every

point (x, t) ∈ Rn+m × I in the support suppM of the Brakke flow there exists an open space-time

neighbourhood U, such that the flow can be represented by a smoothly immersed mean curvature flow

in U. Note that this includes that the multiplicity θ(x, t) agrees with the number of sheets passing

through (x, t). If n = m we say that M is in addition Lagrangian if the local immersions can be

chosen to be Lagrangian.

Consider an n-dimensional, smoothly immersed Brakke flow M in Rn+m. We call
a map f a function on M if it assigns to each (x, t) ∈ suppM an unordered θ(x, t)-tuple
of real numbers. We say that such a function is continuous, smooth, etc. if locally it can be
represented by a continuous, smooth, etc. function on a suitable local immersion represent-
ing M.

Definition A.2 (Functions with polynomial growth). — We say that such a function f on M
has polynomial growth d ∈ N if for every interval J � I there exists a constant CJ such that for all

R > 0

(A.1) sup
suppM∩(BR(0)×J)

‖f (x, t)‖ ≤ CJ(1 + Rd) ,

where ‖f (x, t)‖ denotes the maximal possible absolute value of f at (x, t).

We recall that Ecker’s weighted version of Huisken’s monotonicity formula is given
by (2.2) for a (sufficiently smooth) function f on M with (uniform) compact support. We
can extend this as follows to a (sufficiently smooth) function with non-compact support.
Note that in the following we will do all calculations implicitly on the local immersions
representing the flow.

Proposition A.3. — Let M be an n-dimensional, smoothly immersed Brakke flow M in Rn+m

and let f be a smooth function on M. Let t1, t2 ∈ I with t1 < t2 < t0 and assume that

∫ t2

t1

∫ (
f 2 + ∣∣(∂t − ) f

∣∣)ρx0,t0 dμt dt < ∞ ,
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as well as f (·, t1) ∈ L1(ρx0,t0(·, t1) dμt1) and f (·, t2) ∈ L1(ρx0,t0(·, t2) dμt2). Then

(A.2)
∫

f ρx0,t0 dμt2 ≤
∫

f ρx0,t0 dμt1 +
∫ t2

t1

∫
(∂t − ) f ρx0,t0 dμt dt

−
∫ t2

t1

∫
f

∣∣∣∣H − (x − x0)
⊥

2(t − t0)

∣∣∣∣
2

ρx0,t0 dμt dt .

Proof. — Let η be an ambient cut-off function. We have

(∂t − )(ηf ) = η (∂t − ) f + f (∂t − )η − 2〈∇f ,∇η〉

and thus after integration by parts

(A.3)
∫

(∂t − )(ηf ) ρ dμt =
∫

η (∂t − ) f ρ dμt

+
∫

f
(
(∂t + )η + 2〈∇η, ∇ρ

ρ
〉
)

ρ dμt .

Recall that for an ambient function η one has at (x, t) ∈ suppM

(A.4) Mi
t
η = trTpMi

t
D2η + 〈Dη,HMi

t
〉 ,

where D is the standard ambient derivative and Mi
t is one of the sheets locally represent-

ing the flow. This implies (assuming η is independent of time)

(
∂t + Mi

t

)
η = trTpMi

t
D2η + 2〈Dη,HMi

t
〉 .

Recall further that the assumption of bounded area ratios implies that

∫ t2

t1

∫ ∣∣∣∣H − x⊥

2t

∣∣∣∣
2

ρ dμt dt ≤ C < ∞,

where H(x, t) = ∑θ(x,t)

i=1 HMi
t
(x, t) is the varifold mean curvature and the Mi

t are the sheets
passing through (x, t). Thus, again using bounded area ratios, we have

∫ t2

t1

∫
|H|2 ρ dμt dt ≤ C(t2) .
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The above gives

(A.5)

∣∣∣∣
∫

f
(
(∂t + )η + 2〈∇η, ∇ρ

ρ
〉
)

ρ dμt

∣∣∣∣
≤ C

∫
|f |

(
|D2η| + |∇η| |∇ρ|

ρ
+ |Dη||H|

)
ρ dμt

≤ C
(∫

|f |2ρ dμt

) 1
2
(∫ (

|D2η|2 + |∇η|2 |∇ρ|2
ρ2 + |Dη|2|H|2

)
ρ dμt

) 1
2

.

We now choose ϕ to be a cutoff function which is equal to one on B1(0) and vanishes
outside of B2(0) and let ηR(x) = ϕ(x/R). Integrating (A.3) from t1 to t2 with η = ηR

and letting R → ∞ (using (A.5) and the space-time integral bound on |H|2) gives the
result. �

Remark A.4. — For a smooth function f on M with polynomial growth such that
(∂t − )f also has polynomial growth the conditions of Proposition A.3 are satisfied.

We note that using polynomial barriers one obtains existence of caloric functions
with polynomial growth given initial data of polynomial growth. Furthermore, the above
monotonicity formula yields uniqueness. We record this in the following proposition. We
write Mt≥t0 for the restriction of the Brakke flow to I ∩ {t ≥ t0} and extend the definition
of a function with polynomial growth on supp(M) ∩ {(x, t0) |x ∈ Rn+m} in the obvious
way.

Proposition A.5. — Let M be an n-dimensional, smoothly immersed Brakke flow in Rn+m and

for t0 ∈ I let f0 be a smooth function on supp(M) ∩ {(x, t0) |x ∈ Rn+m} with polynomial growth.

Then there exists a unique smooth function f on Mt≥t0 of polynomial growth such that

(A.6) (∂t − )f = 0 and f |t=t0 = f0 .

Proof. — We first note that Proposition A.3 together with Remark A.4 yields
uniqueness as stated. For existence we have the following claim.

Claim. — Given R > 0 there exists a solution fR to (A.6) on (BR(0) × [t0, t0 + R2)) ∩
suppM such that for every 0 < r ≤ R

sup
suppM∩(Br(0)×[t0,t1])

‖fR‖ ≤ C0eC1(t1−t0)(1 + rd) ,

for some C1 > 0 just depending on n, m and d.

Note that the claim does not specify any boundary values at the spatial boundary.
From the claim, the existence follows, since interior higher order estimates imply that we
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can take a subsequential limit as R → ∞ to obtain the stated solution f . The convergence
of f to the initial data f0 as t ↘ t0 follows similarly from higher order interior estimates.

To prove the claim, let R > 0 be given. Note that since M is smooth there
exists K > 0 such that the mean curvature H of the flow is bounded by K > 0
on B4R(0) × [t0, t0 + R2]. Since M is smoothly immersed, there exists an (open) n-
manifold M and an immersion Ft0 such that Ft0 : M → Rn+m smoothly parametrises
M(t0)∩B3R(0). Furthermore we can smoothly extend Ft0 to a standard (immersed) mean
curvature flow Ft parametrising M for t ∈ [t0, t0 + δ] with δ := R/(2K): this follows from
the bound on H. Note further that M(t +δ)∩BR(0) ⊂ Ft+δ(M). This again follows from
the bound on H on B4R(0) × [t0, t0 + R2].

Let f0 be of polynomial growth of degree d such that for all r > 0

(A.7) sup
(x,t0)∈suppM∩(Br(0)×{t0})

‖f0(x)‖ ≤ C0(1 + rd) .

Choose R′ ∈ (2R,3R) such that U := F−1
t0

(BR′(0)) ⊂ M has smooth boundary. We can
then construct a solution f̂ to the heat equation (with respect to the induced metric gt

on M via Ft ) with initial value f0 and boundary value zero. Note that (A.4) together with
d ≥ 2 implies that there exists C1 > 0 such that C0eC1(t−t0)(1 + |x|d) is a supersolution to
the heat equation along the flow. Thus, by the maximum principle together with (A.7), as
well as the assumptions on the boundary data, we have

|f̂ (x, t)| ≤ C0eC1(t−t0)(1 + |F(x, t)|d) ,

for (x, t) ∈ U × [t0, t0 + δ]. Note that by restriction this yields a solution f to the heat
equation with the claimed bounds on M∩ (BR(0)×[t0, t0 + δ]). We can now repeat this
process, starting at t0 +δ where as initial data we take f̂ ◦F−1

t0+δ on Ft0+δ(U) ⊂ suppM(t0 +
δ) ∩ B4R(0) and zero on (suppM(t0 + δ) ∩ B4R(0)) \ Ft0+δ(U). Repeating this process
finitely many times yields the stated solution fR. �
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