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Abstract
A timely warning system for debris-flow mitigation in mountainous areas is vital to 
decrease casualties. However, the lack of rainfall monitoring stations and coarse resolution 
of satellite-based observations pose challenges for developing such a debris-flow warning 
model in data-scarce areas. To offer an effective method for the generation of precipita-
tion with fine resolution, a machine learning (ML)-based approach is proposed to estab-
lish the relationship between precipitation and regional environmental factors (REVs), 
including normalized difference vegetation index (NDVI), digital elevation model (DEM), 
geolocations (longitude and latitude) and land surface temperature (LST). This approach 
enables the downscaling of 3B42 TRMM precipitation data, providing fine temporal and 
spatial resolution precipitation data. We use PERSIANN-Cloud Classification System-
Climate Data Record (PERSIANN-CCS-CDR) data to calibrate the downscaled results 
using geographical differential analysis (GDA) before applying the calibrated results in a 
case study in the Gyirong Zangbo Basin. After that, we calculate the rainfall thresholds of 
effective antecedent rainfall (Pe)—intraday rainfall (Po) based on the calibrated precipita-
tion and integrate these thresholds into a susceptibility map to develop a debris-flow warn-
ing model. The results show that (1) this ML-based approach can effectively achieve the 
downscaling of TRMM data; (2) calibrated TRMM data outperforms the original TRMM 
and downscaled TRMM data, reducing deviations by 55% and 57%; (3) the integrated 
model, incorporating rainfall thresholds, outperforms a single susceptibility map in provid-
ing debris-flow warnings. The developed warning model can offer dynamic warnings for 
debris flows that may have been missed by the original warning system at a regional scale.
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1  Introduction

Debris flows possess significant destructive potential, leading to substantial damage to both 
infrastructure and residential areas (Goto et al. 2021). Around 100 countries worldwide are 
vulnerable to severe debris flows, resulting in an annual toll of approximately 1200 fatali-
ties (Papathoma-Köhle et  al. 2017). The statistical data reveal a total of 213 debris-flow 
events with 77,779 fatalities across 38 countries from 1950 to 2011 (Dowling and Santi 
2014). Therefore, it is imperative to issue timely warnings for debris flows to decrease 
the possible losses of human lives and properties. Susceptibility maps can offer valuable 
insights into the likelihood of debris-flow occurrences within specific terrain zones (Fell 
et al. 2008). These maps can provide a detailed quantitative scenario, but it is worth not-
ing that their utility is constrained by their static nature, rendering them unable to predict 
specific locations and dates, as highlighted by Segoni et al. (2016). Debris-flow initiation 
primarily relies on rainfall patterns (Crosta and Frattini 2001). Consequently, the rainfall 
threshold has been embraced as an effective predictive measure for debris flows (Hardwick 
Jones et al. 2010; Nikolopoulos et al. 2014; Staley et al. 2017). The synergy of susceptibil-
ity maps and rainfall thresholds can contribute to the development of a dynamic tempo-
ral forecasting model capable of delivering daily temporal resolution alongside a very fine 
spatial resolution (Segoni et al. 2018).

Therefore, calculating the rainfall thresholds is critical to improve the debris-flow warn-
ing system. In this context, the acquisition of precise and dependable precipitation data 
characterized by high spatial and temporal resolutions assumes paramount importance in 
the realm of hydrological forecasting and hazard mitigation (Yilmaz et al. 2005; Sun et al. 
2018). In most cases, the determination of precipitation rates depends on gauge records 
(Kidd 2001; Calvello et  al. 2015), which can be very difficult in rural and mountainous 
areas with fewer gauge stations. The development of satellite-based technology, such as 
Tropical Rainfall Measuring Mission (TRMM), offers an alternative to access precipitation 
data in data-scarce regions (Ashouri et al. 2015). However, the inherent limitation of the 
low spatial resolution (0.25°) fails to satisfy the need for reliable precipitation estimation. 
Therefore, an effective spatially downscaling method is required before the TRMM data 
can be used for rainfall threshold calculation.

Many methods have been proposed to downscale the TRMM data by establishing the 
relationship between the regional environmental variables (REVs) and precipitation (Chen 
and Brissette 2014). For instance, the quantification of vegetation growth through the nor-
malized difference vegetation index (NDVI) has been used as a proxy to reflect the spatial 
precipitation variations (Immerzeel et al. 2005). An empirical function was developed to 
characterize the NDVI—precipitation relationship (Immerzeel et al. 2009). However, only 
one factor cannot support the effective downscaling of TRMM data. Therefore, further 
studies were conducted by integrating both NDVI and DEM into regression relationship 
development to achieve the downscale of TRMM data (Jia et al. 2011; Park 2013). Fur-
thermore, geolocations (longitude and latitude) were considered to add geography informa-
tion to the spatial relationships using regression models, such as the multi-linear regression 
model, geologically weighted regression (GWR), and geologically weighted regression 
Kriging (GWRK) (Sachindra et al. 2013; Chen et al. 2018; Wang et al. 2022). For better 
quality of downscaling results, land surface temperature (LST) is selected here as a factor 
due to its significant relationship with precipitation (Trenberth and Shea 2005). Moreover, 
the impact of the slope aspect on precipitation intensity has been addressed in mountainous 
areas, recognizing that reduction in the slope aspect can induce a topographic lifting effect 
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on airflow, subsequently increasing rainfall intensity (Fang et al. 2013). However, the tradi-
tional regression models, exponential, and power equations prove inadequate in capturing 
the intricate relationships between REVs and precipitation (Jing et  al. 2016). Therefore, 
there is a pressing need for the development of a more effective method to comprehen-
sively delineate the spatial of precipitation and thereby benefit hazard mitigation in moun-
tainous areas. Considering the advantages of rapid processing speed, large-scale data pro-
cessing ability and support for customized loss functions, an ensemble machine learning 
model (extreme gradient boosting (XGBoost)) is introduced to achieve spatial downscaling 
of TRMM to 1 km. The machine learning methods have demonstrated their proficiency in 
establishing complicated and hidden relationships between a group of input variables and 
output results without considering the distribution characteristics of input variables (Khos-
ravi et al. 2021; Segoni et al. 2015).

With the aim of providing timely warnings for the occurrence of debris flows in 
mountainous areas with scarce data, we propose an ML-based approach to downscale 
TRMM data to a daily temporal scale with a spatial resolution of 1  km. Then, the 
downscaled precipitation data are calibrated by employing PERSIANN-CCS-CDR 
data, enabling the utilization of calibrated precipitation data for the derivation of a 
rainfall threshold equation based on the relationship of effective antecedent rainfall 
(Pe) and intraday rainfall (Po). After that, we integrate the rainfall thresholds with sus-
ceptibilities to establish a debris-flow warning model in the Gyirong Zangbo Basin, 
Tibet Tibetan Autonomous Region, China. Finally, we propose the implementation of 
an integrated matrix designed to deliver dynamic debris-flow warnings, with updated 
effective antecedent rainfall serving as a critical input parameter. The findings of this 
study offer a valuable source of guidance and scientific support for debris-flow warn-
ing and mitigation at a regional scale.

2 � Methodology

The unstable accuracy of TRMM data in different areas has been addressed (Cheema 
and Bastiaanssen 2012). In this paper, an ML-based method is proposed for TRMM 
downscaling. After that, the downscaled TRMM data is calibrated using either rain 
gauge observations or Precipitation Estimation from Remotely Sensed Information 
using Artificial Neural Networks-Cloud Classification System-Climate Data Record 
(PERSIANN-CCS-CDR) due to the lack of rain gauge monitoring stations in moun-
tainous areas. This dataset was developed by merging PERSIANN-CCS and Global 
Precipitation Climatology Project (GPCP) monthly precipitation observations. We are 
aware that the uncertainty and deviation of the PERSIANN-CCS-CDR product can-
not be avoided. However, this dataset can provide an alternative for calibrations due 
to lacking rain gauge stations. This is because this dataset has been proven to perform 
well in capturing extreme events after the evaluations using ground and other satellite 
observations, which is significant for debris-flow analysis (Hsu et  al. 2020). Finally, 
the calibrated TRMM data are used to calculate rainfall thresholds, which is integrated 
with a susceptibility map to establish a warning model for dynamic debris-flow fore-
casting at a regional scale. The flowing chart of precipitation downscaling and warning 
model development is shown in Fig. 1.
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2.1 � Downscaling of 34B2 TRMM precipitation data

In this paper, NDVI, DEM, slope aspect, longitude, latitude, and LST are selected to 
spatially explain the spatial variation of the precipitation (Immerzeel et al. 2005; Tren-
berth and Shea 2005). The NDVI, LST, and geolocations are all MODIS products, and 
DEM is downloaded from the ‘Geospatial Data Cloud’ with a spatial resolution of 90 m. 
The slope aspect is derived from DEM using GIS. The downloaded monthly NDVI0.01° 
is resampled to the spatial resolution of 0.25°. Subsequently, the monthly NDVI0.25° 
is accumulated to seasonal NDVI0.25° since the significant relationship between the 
REVs0.25° and precipitation0.25° exists on a seasonal timescale (Chen and Li 2020). 
Additionally, the downloaded LST0.01° and DEM0.01° are all resampled to the spatial res-
olution of 0.25° to ensure consistency across variables. As a result, the aspect0.25° can be 
generated based on DEM0.25° using the GIS tool ‘Surface’.

Preceding the downscaling of precipitation using these factors, a correlation analysis 
is performed to assess their efficacy in capturing the spatial variations inherent in pre-
cipitation patterns. Following this initial evaluation, we employ the XGBoost algorithm 
to predict the seasonal precipitation0.01° with the input of REVs0.01°. To enhance the 
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Fig. 1   Flowchart of the development of a regional warning model for debris flows
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stability of the prediction model, we undertake a data pre-processing step wherein the 
input data are normalized to fall within the range of 0.01 and 0.99:

where xnor represents the normalized data. U and L are the upper and lower normaliza-
tion bounds, respectively. Furthermore, in the process of generating daily precipitation0.01°, 
the assumption is introduced that the ratio of daily precipitation0.25° to seasonal 
precipitation0.25° is equivalent to the ratio of spatially downscaled daily precipitation0.01° 
to seasonal precipitation0.01°. Therefore, this implies that the ratio of TRMM precipitation 
of the i-th day to the seasonal accumulation is equal to the predicted TRMM precipitation 
of the i-th day to seasonal TRMM0.01°. This assumption forms a fundamental basis for our 
approach to deriving high-resolution daily precipitation data.

where Daily TRMM0.01◦

i
(u, s) represents the daily precipitation of seasons (spring, summer, 

autumn, and winter) at location u.

2.2 � Calibration of downscaled precipitation data

In this paper, the geographical differential analysis (GDA) is employed to calibrate the 
TRMM data (Cheema and Bastiaanssen 2012). The equations of the GDA method are as 
follows:

where ΔR(x,y) is the rainfall difference between the satellite and rain gauge data at a given 
point. RTRMM(x,y) represents the TRMM data, and RGAU(x,y) is the rain gauge observations 
or PERSIANN-CCS-CDR data at a specific location (x, y). ΔRGAU(x,y)ip is the difference 
map after spatial interpolation. RCal is the calibrated value. First, the dissimilarity between 
the TRMM data and the gauge observations is quantified following the equation detailed 
in Eq.  (3). Subsequently, for the purpose of generating the difference map ( ΔR(x,y)ip ), an 
interpolation method is adopted due to its simplicity and robustness (Brouder et al. 2005; 
Ahrens 2006; Babak and Deutsch 2009), namely inverse distance weighting (IDW) method. 
The determination of the optimal number of neighboring stations to be considered in the 
IDW interpolation process is carried out in accordance with the guidelines established by 
Babak and Deutsch (2009). Finally, the calibrated results can be derived through the appli-
cation of Eq. (5). This systematic approach allows for the refinement and alignment of the 
TRMM precipitation data with the PERSIANN-CCS-CDR dataset or gauge observations, 
enhancing the reliability and accuracy of the results.

(1)xnor =
x −min(x)

max(x) −min(x)
(U − L) + L

(2)

RTRMM0.25o

i
(u, s) =

Daily TRMM0.25o

i
(u, s)

Seasonal TRMM0.25o (u, s)
=

Daily TRMM0.01o

i
(u, s)

Seasonal TRMM0.01o

i
(u, s)

= RTRMM0.01o

i
(u, s)

(3)ΔR(x,y) = RTRMM(x,y) − RGAU(x,y)

(4)ΔR(x,y)ip = ΔR(x,y)

(5)RCal = RTRMM − ΔR(x,y)ip
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2.3 � Evaluation of downscaling performance

Nash–Sutcliffe efficiency (NSE) and standard error of estimates (SEE) are used to evaluate the 
calibration performance of the GDA (Nash and Sutcliffe 1970):

where RGAU(x,y) is the mean value of gauge observations, and n is the total number of obser-
vations. NSE ranges from − ∞ and 1. SEE measures the deviation of the calibrated values 
to the gauge observations.

Apart from the NSE and SEE, the other two methods that are used to evaluate the downs-
caling and calibration performance are shown as follows (Valderrama and Alvarez 2005):

where yTRMM represents the TRMM data, and yGAU​ is the rain gauge station value. The 
%Averd and Abs. %Averd are both employed here because the %Averd can reveal the true 
positive and negative deviations. However, there is no indication of how big these devia-
tions are. To address this limitation, the Abs. %Averd serves as a complementary metric, 
offering insights into the actual deviations. Furthermore, although the %Averd and Abs. 
%Averd can reflect the percentage-based deviations, they cannot provide a comprehensive 
account of the actual deviation values. To rectify this, the root-mean-square error (RMSE) 
and mean absolute error (MAE) are introduced here. These additions to our analysis 
provide a more comprehensive assessment of the deviations present in the dataset, thus 
enhancing the robustness and completeness of our evaluation.

(6)NSE = 1 −

∑n

i=1
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�2

∑n
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2.4 � Integration of rainfall thresholds and a susceptibility map

After the performance assessment of the proposed method, the effective antecedent rain-
fall–intraday rainfall (Pe − Po) relationship is established to calculate the rainfall thresholds. 
The method for calculating the effective antecedent daily precipitation is (Guo et al. 2013):

where Pe is the effective antecedent rainfall. Pi is the daily precipitation on the i-th day pro-
ceeding to the debris-flow event (1 < i < n), and Ki is a decay coefficient due to evaporation. 
Ki = 0.84 has been suggested by many studies (Ni et al. 2010; Guo et al. 2013).

To further improve the efficiency of debris-flow susceptibility, we establish an opti-
mized warning model that integrates a susceptibility map with rainfall thresholds. There-
fore, a hybrid machine learning model (certainty factor—genetic algorithm—support vec-
tor classification (CF-GA-SVC)) is employed to produce the susceptibility map (Qiu et al. 
2022). Our approach is grounded in the premise that the debris flows may be triggered at 
a lower susceptibility level, even in the face of escalating rainfall severity (Segoni et  al. 
2015). In this case, if an area exhibits a low rainfall threshold level (R1), the occurrence 
of debris flows is contingent upon classifying this area as having a very high susceptibil-
ity (S4). Conversely, regions characterized by low rainfall thresholds (R1 and R2) and low 
susceptibility (S1 and S2), as detailed in Table 1, are deemed less prone to debris flows. 
This integrated scheme underscores the importance of considering both susceptibility and 
rainfall thresholds in the evaluation of debris flows.

3 � Study area and data

Gyirong Zangbo Basin, serving as the only channel of land trade between Nepal and 
China, is selected as the study area (Fig. 2). It is located in the southwestern part of 
Tibet. This area contains two towns with a total area of 2.12 × 103 km2. The north-
ern part of this area belongs to the semiarid plateau climate zone with seasonal wind, 
causing the annual average temperature of 2 degrees Celsius. The dry climate in this 
region limits the precipitation, ranging from 300 to 600 mm each year, and large areas 
of weathered rocks with low compression strength and shear strength are caused. How-
ever, the annual precipitation in the southern part can reach almost 1000 mm due to the 
subtropical monsoon climate. The Himalayan Mountains block the northward warm air 
from the Indian Ocean, allowing the southern part to be one of the rainfall centers in 

(12)Pe =

n∑

1

Pi ⋅ Ki

Table 1   Integrated matrix which combines the rainfall thresholds and susceptibility levels

H1 is very low hazard; H2 is low hazard; H3 is high hazard; H4 is very high hazard

Rainfall thresholds Susceptibility

Very low (S1) Low (S2) High (S3) Very high (S4)

Low (R1) H1 H1 H2 H3
Medium (R2) H1 H2 H3 H4
High (R3) H2 H3 H4 H4
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Tibet and benefit the vegetation growth. In terms of the characteristics of geological 
structure in this area, the collision and squeezing between the Indian Plate and the Eur-
asian Plate give birth to the Himalayas and form a series of large-scale faults. These 
fault zones not only impact the trend and flow of rivers, but also control the devel-
opment and distribution of natural hazards. Gyirong Zangbo Basin spans the south-
ern part of the Karakoram Range and the higher Himalayas, belonging to the North 
Himalayan tectonic belt. The unique quaternary geological environment provides an 
appropriate hazard-inducing environment due to large areas of unstable slopes caused 
by deep-cutting erosion of rivers and human activities. Therefore, the studies of debris 
flows can benefit the recognition and mitigation of debris flows along the North Hima-
layan tectonic belt.

Due to the complicated geological conditions and appropriate hazard-pregnant envi-
ronment in this area, the occurrence of debris flows is frequent. However, the absence 
of rain gauge stations presents a significant obstacle to the formation of effective haz-
ard mitigation measurements, leading to the unavailability of reliable precipitation data 
for timely warnings. Therefore, generating a reliable warning map of debris flows is an 
urgent need. To address this challenge, we employ PERSIANN-CCS-CDR data for the 
calibration of downscaled TRMM data. Furthermore, we utilize historical debris-flow 
data from the summer of 2007 (SGESI 2018) to facilitate the downscaling and calibra-
tion processes. This selection is motivated by our objective to improve the existing 
susceptibility map through the integration of rainfall threshold information. For our 
case study, we focus on the summer of 2007, as it represents a period when the highest 
levels of precipitation occurred during the rainy season (Fig. 3). Consequently, precipi-
tation downscaling and validation in the 2007 summer became imperative to obtain the 
effective antecedent rainfall and intraday rainfall of the historical debris flows. Fur-
thermore, the debris flows in 2006 summer are used to validate the merging results of 
the susceptibility map and rainfall thresholds. This comprehensive approach is instru-
mental in ensuring the effectiveness and accuracy of our analysis.

Fig. 2   Geographic location of Gyirong Zangbo Basin and landforms of this area
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4 � Results

4.1 � Downscaling of TRMM0.25° data

The spatial distribution of the REVs0.25° and seasonal precipitation0.25° in 2007 summer is 
presented in Fig. 4. The data with a coarse resolution are used to train the prediction model. 
To increase the robustness of this model, the input data cover a wide area of 1.8 × 105 km2 
so that enough data can be used to train the model.

Furthermore, to ascertain the spatial relationship between each REV and precipitation at 
a coarse resolution, correlation analysis is conducted to determine their suitability as indi-
cators for representing precipitation spatial variations. Our findings reveal that the DEM 
exhibits the strongest correlation with precipitation, characterized by the highest r (Per-
son’s coefficient) value of 0.857. Similarly, the other three REVs, including NDVI, LST 
and Lat (latitude), all present robust correlations with precipitation, with r values exceed-
ing 0.7. In contrast, only a moderate correlation is found between Lon (longitude) and 
precipitation with r = 0.4, while no discernible correlation is identified between the aspect 
and precipitation in this geographic context. Therefore, the slope aspect is excluded from 
model training. This analysis is consistent with the conclusion of Chen et al. (2020) who 
emphasized the impact the aspect has been overemphasized in TRMM downscaling. As for 
Lon, sensitivity analysis is imperative to assess its contribution to enhancing the prediction 
accuracy of seasonal precipitation0.01°. The seasonal REVs0.01° are prepared to predict sea-
sonal precipitation0.01° based on the established relationship at a spatial resolution of 0.25° 
(Fig. 5). The prepared data are divided into a training set and a validation set with a ratio of 
0.7, with 70% allocated for model training and the remaining 30% for validation purpose.

The importance of Lon can be evaluated and ranked by quantifying the increase in 
prediction error resulting from the permutation of ‘out-of-bag’ OOB data exclusively 
for that variable while keeping all others unchanged (Liaw and Wiener 2002). The pre-
diction results are shown in Fig.  6, clearly demonstrating that the absence of Lon leads 
to an escalation in prediction error. Therefore, despite the absence of a strong correlation 
between the longitude and precipitation, it is evident that the contribution of this variable 
should not be disregarded. Specifically, approximately 81.5% of the prediction errors fall 

Fig. 3   Change of annual precipitation and monsoon rainfall in this study area
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within the range of − 10 and 10 mm, but this proportion decreases to 70.1% (as denoted 
by the red dash lines in Fig. 7) when Lon is excluded from precipitation prediction. Conse-
quently, the longitude is retained as a training feature for the prediction model. However, it 
is necessary to note that the introduction of additional variables does not invariably yield a 
reduction in prediction error. For example, another weather-related factor, evapotranspira-
tion (ET), can effectively reflect the precipitation variations at seasonal, century and even 
longer time scales (Council 1998). In contrast, its impact may vary across distinct regions. 
The increased precipitation leads to a small increase in ET (Garbrecht et al. 2004). In our 

(a) Seasonal NDVI0.25° (b) Seasonal DEM0.25°

(c) Seasonal aspect0.25° (d)Seasonal LST0.25°

(e) Seasonal precipitation0.25°

Fig. 4   Spatial distribution of the seasonal REVs0.25° and downloaded TRMM0.25° data in 2007 summer
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preliminary studies, we observed that the inclusion of ET in model development failed to 
diminish prediction errors. In fact, upon incorporating ET, the model yielded an R-squared 
value of 0.91, notably lower than the R-squared of model training (0.98) when excluding 

(a) Seasonal NDVI0.01° (b) Seasonal DEM0.01°

(c) Seasonal LST0.01°

Fig. 5   Input REVs0.01° of 2007 summer for precipitation prediction

Fig. 6   Results of the sensitiv-
ity analysis after removing the 
longitude
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ET from model development. As a result, only 75.2% of prediction errors fell within the 
range of − 10 to 10 mm. The reason behind the error increasing might be due to the intro-
duction of noise information associated with ET, which adversely affected model training. 
Therefore, ET is not selected as one of the indicators for prediction purposes.

Furthermore, in order to demonstrate the superiority of integrating machine learning 
into the downscaling of the TRMM precipitation, the geographically weighted regression 
(GWR) method is employed to conduct a comparative analysis with XGBoost (Fig. 7).

Figure  8 illustrates that this ML-based method performs better than the GWR method 
because 92.4% of prediction errors are between − 20 and 20 mm with the application of the 
ML-based method, while the GWR method achieves 83.5% of within the same range. Further-
more, the ML-based method outperforms GWR, with 81.5% of prediction error concentrated 
in the − 10 to 10 mm range, in contrast to GWR’s 61.5%. This difference in data processing 

Fig. 7   Predicted seasonal precipitation0.01° using two methods

Fig. 8   Comparison analysis 
results between the ML-based 
and GWR methods



Natural Hazards	

1 3

ability can be further underscored by the R-squared values of the two methods. The GWR 
method yields an R-squared value of 0.71, but the R-squared value of the ML-based method 
exceeds 0.9. Additionally, the six assessment indexes are employed to evaluate the perfor-
mances of ML-based and GWR methods (Table 2). Overall, the ML-based method shows its 
superiority in improving prediction accuracy when compared to the GWR method.

The downscaling processes for daily precipitation0.01°, applied to six selected debris-flow 
events, are shown in Fig. 9. To assess the effectiveness of this ML-based method in downscal-
ing the TRMM data, we extend the analysis to include debris-flow events not only within Gyi-
rong Zangbo Basin, but also in other regions of Gyirong county, denoted as locations a, b, c, 
d, e, and f. The catchments corresponding to these six debris-flow events are delineated to rep-
resent the predicted seasonal precipitation0.01°. On the basis of the prediction results in Fig. 9a, 
the daily precipitation0.01° is calculated based on Eq. (1), as shown in Fig. 9b. Then, the down-
scaled results undergo calibration using the PERSIANN-CCS-CDR data to refine the down-
scaled precipitation estimates (Fig. 9c). Compared to the downscaled daily precipitation0.01°, 
there are remarkable changes observed for these calibrated results. The most substantial altera-
tion occurs at the d location, where the maximum precipitation increases from 1 to 33 mm. 
The reason why the downscaled precipitation result is far less than the calibrated result can 
be speculated to be the underestimation of the satellite observations. The intermittent meas-
uring mode of TRMM may miss a high-intense rainfall event during the 3-h interval time. 
This deduction aligns with previous findings that the 3B42 TRMM data underestimates the 
precipitation in Himalayan regions with an altitude higher than 3100  m (Bharti and Singh 
2015; Ma et  al. 2017). The incorporation of PERSIANN-CCS-CDR data can fill this gap, 
as this dataset excels in capturing extreme rainfall events (Sadeghi et al. 2021). Furthermore, 
aside from measurement issues, the high-intense rainfall could also disturb the transmission 
of radio frequency radiations, potentially affecting TRMM satellite reception (Cheema and 
Bastiaanssen 2012). However, the utilization of the GDA method can be a supplement for 
the improvement of these issues because it accounts for spatial averages of nearby samples, 
thereby reducing errors.

4.2 � Site‑specific validation of data calibration

To evaluate the downscaling and calibration performance of TRMM data, the NSE and SEE 
indexes are employed. The six debris-flow events in session 4.1 reflect the downscaling effi-
ciency in different locations and dates.

Figure 10a illustrates that the calibration performances of the six debris-flow events are 
all accepted because the NSE values are between 0 and 1. These NSE values across vari-
ous locations serve as indicators of the effectiveness of the machine learning-based approach 
for downscaling TRMM data. Furthermore, the accuracies of the three sets of precipitation 
data are evaluated using SEE values (Fig. 10b). The original TRMM data exhibits the maxi-
mum deviation from the PERSIANN-CCS-CDR data. Notably, the original TRMM data 
exhibits unstable accuracy across different locations, marked by fluctuating SEE values. This 

Table 2   Performance evaluations between the two methods

Model RMSE MAE %Averd Abs.%Averd NSE SEE

ML-based method 2.68 2.39 21.68 40.60 0.75 5.43
GWR method 17.18 11.73 24.60 56.11 0.71 17.19
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Fig. 9   Spatially downscaling and 
calibration processes of 3B42 
TRMM data
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variability can be attributed to mountainous terrain, which introduces variations in radar beam 
reflectivity (Porcù et al. 2003) and yields non-uniform rainfall in these regions (Bookhagen 
and Burbank 2006). Applying machine learning can partially decrease the SEE values. Fur-
thermore, significant reductions in SEE values are observed following the calibration of the 
downscaled TRMM data with PERSIANN-CCS-CDR data. The minimum SEE is 0.08 mm 
at the d location, while the maximum deviation is 4.18 mm at a location. Overall, the machine 
learning method can achieve the downscaling of seasonal TRMM precipitation0.25° to seasonal 
precipitation0.01°, resulting in decreased SEE values. Concurrently, the calibration method, 
GDA, is reliable and effective in improving the TRMM estimation accuracy. In addition to 
the site-specific analysis, assessing calibration accuracy across different temporal scales is 
imperative.

4.3 � Temporal deviation analysis

To assess the performance of the TRMM downscaling and calibration processes, the devia-
tions between the original TRMM (OriTRMM), downscaled TRMM (DownTRMM), and 
calibrated TRMM (CaliTRMM) are analyzed. Taking the debris-flow event in b location 
as an illustrative example (see Fig. 9 about the location of debris flow b), we analyze the 
deviations over the 30 days preceding the occurrence of this event. As shown in Fig. 11, 
CaliTRMM exhibits the smallest percentage average deviations, surpassing both Down-
TRMM and OriTRMM. Notably, the CaliTRMM underestimates precipitation compared 
to PERSIANN-CCS-CDR data. This underestimation is due to the application of the IDW 
method when generating the difference map (see Eq. (3)). The IDW method assumes that 
each given point exerts localized influence on its neighboring region, with influence dimin-
ishing as the distance from the given points to unknown areas increases. Therefore, the 
IDW method tends to underestimate the precipitation values in regions farther from the 
given points. Additionally, the deviations of CaliTRMM decrease by 55% and 57% when 
compared with the DownTRMM and OriTRMM (Abs.%Averd).

However, limitations persist when precise deviation values are expected, particularly on 
rainless days. For example, the OriTRMM might report 3 mm and 5 mm of 24-h rainfall 
at two distinct locations, respectively, but the PERSIANN-CCS-CDR data may indicate no 
observed rainfall at either location. As a result, both locations would yield an Abs.%Averd 

Fig. 10   Evaluation of ML-based method for downscaling the TRMM data in six different locations
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of 100%, failing to capture the exact deviations. To address this limitation and provide a 
more nuanced assessment, we employ RMSE and MAE metrics to quantify the exact devi-
ation values (Fig. 12).

Figure 12 illustrates a consistent variation trend in RMSEs and MAEs. The CaliTRMM 
performs the best when compared with the OriTRMM and DownTRMM. As evidenced by 
the proximity of RMSEs and MAEs to 0. Notably, CaliTRMM exhibits stable curves with 
only sporadic deviations in RMSE and MAE values on days 12, 22, and 30 (highlighted 

Fig. 11   Percentage average errors of 30 days before the occurrence of the debris-flow event in b location

Fig. 12   RMSEs and MAEs of 
30 days before the occurrence of 
the historical debris-flow event in 
b location
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in yellow boxes in Fig. 12). These outliers signify the inherent instability of TRMM data 
when the 24-h precipitation exceeds 15  mm. Conversely, OriTRMM and DownTRMM 
display notable fluctuations in RMSE and MAE on days 12, 22, 25, and 30, as shown in 
Fig. 12. Importantly, the utilization of PERSIANN-CCS-CDR proves effective in mitigat-
ing errors in mountainous regions, given its superiority ability to capture extreme rainfall 
events.

To further assess the efficiency of this method in estimating the precipitation across 
various time periods, the RMSEs and MAEs of the daily, monthly, and seasonal periods 
are analyzed (Fig. 13). This figure shows that the DownTRMM exhibits a similar variation 
trend to OriTRMM. However, a clear improvement can also be found for DownTRMM 
due to the decreasing of RMSEs and MAEs in the three temporal periods. Overall, the 
CaliTRMM consistently outperforms the other two datasets. Only slight differences in 
RMSE and MAE are discernible during the daily period for the three datasets. However, 
the RMSEs and MAEs of the OriTRMM, DownTRMM, and CaliTRMM all increase by 
approximately 95% when the temporal period extends to the monthly scale. This signifi-
cant increase can be attributed to the cumulative effect when aggregating daily measure-
ments into monthly rainfall (Chen et al. 2020). When the period is further extended to a 
seasonal scale, the rate of increase in RMSEs and MAEs diminishes significantly, drop-
ping to 58% for OriTRMM and 57% for DownTRMM, while CaliTRMM exhibits a much 
lower increase rate of only 29%. This disparity in increasing rates can be attributed to the 
machine learning method’s ability to establish a robust relationship between precipitation 
and REVs at a seasonal time scale.

Moreover, the calibration of DownTRMM with PERSIANN-CCS-CDR results in 
enhanced stability and accuracy of TRMM data. Although the RMSE and MAE values for 
CaliTRMM exhibit an increase when the daily data is accumulated to the monthly time-
scale, there are no significant fluctuations among the three different timescales. Further-
more, the rate of increase in RMSE and MAE decreases by 68.27% and 65.36%, when the 
monthly data are accumulated to a seasonal timescale. Therefore, an accuracy improve-
ment for 3B42 TRMM data can be achieved through data calibration using the GDA 
method. Consequently, the combined application of the ML-based method and GDA cali-
bration method mitigates the exacerbation of deviations to a certain extent. Furthermore, a 
seasonal timescale emerges as more suitable for spatial downscaling, as it aligns with our 

Fig. 13   RMSEs and MAEs between the PERSIANN-CCS-CDR and TRMM rainfall data (OriginalTRMM, 
DownscaledTRMM and ClibratedTRMM) for different periods
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approach to employ downscaled data for calculating the rainfall thresholds to improve the 
debris-flow warning system.

4.4 � Rainfall thresholds calculation

A period of antecedent rainfall as long as 10 days can affect the water content of soil and, 
therefore, cause instability of slopes (Crozier 1999). But 9  days of effective antecedent 
rainfall shows a stronger correlation with intraday rainfall than the 10 days due to Pearson’s 
coefficient reaching 0.913. Therefore, n = 9  days is considered in this paper to establish 
the empirical relationship. The R2 and adjusted R2 of this regression equation are 0.90 and 
0.88, respectively, and the significant testing shows that the estimated coefficients are sta-
tistically significant since the P value is less than 0.05. The regression relationship can be 
represented by:

where Po is the intraday rainfall (mm), and Pe represents the accumulated effective ante-
cedent rainfall (mm). As shown in Fig. 14, the analysis of rainfall conditions for triggering 
the debris flows in the Gyirong area can rely on the line. For example, if a debris-flow 
event is expected to be triggered after heavy rainfall with the intraday rainfall reaching 
50 mm (Administration 2013), then the maximum allowable 9-day antecedent rainfall over 
the preceding 9  days would be at most 21.3  mm. Similarly, a 9-day antecedent rainfall 
event of 59.9 mm becomes a potential trigger for debris flows when the intraday precipita-
tion reaches 25 mm. Therefore, the likelihood of debris-flow occurrence escalates when the 
effective antecedent rainfall and intraday rainfall are getting closer to the regression line.

To further evaluate the performance of this empirical equation in providing warnings for 
the occurrence of debris flows in this area, the empirical relationships in previous studies 
(Table 3) are used to conduct a comparison analysis.

The calculated results using the four equations are fitted against the true values (Fig. 15). 
This figure illustrates that our study and Ni et al. (2010) (green line) perform better than Ni 
et al. (2010) (brown line) and Zhuang and Peng (2014) (yellow line) since the results of our 
study and Ni et al., (2010) are closer to the true values. Furthermore, our study achieves 

(13)Po = 466.2P−0.69
e

Fig. 14   Relationship between the 
effective antecedent rainfall and 
intraday rainfall
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a 9% reduction in average deviation percentage when compared to the results of Ni et al. 
(2010) (green line). Therefore, the equation developed in this study can perform well in 
mountainous areas that lack monitoring stations.

4.5 � Integration of rainfall thresholds and susceptibility map

A total of eleven causative factors are selected to generate a susceptibility map using the 
CF-GA-SVC model (Fig. 16). They are related to topographic (slope, aspect, height dif-
ference, and average channel gradient), ecological (NDVI), geological (lithology, distance 
to faults, distance to river networks, and seismic intensity), and meteorological conditions 
(annual precipitation and average annual temperature). The probability in this area ranges 
from 0.05 to 0.88, with a high susceptibility level classified in the range of 0.46 to 0.74, 
encompassing 20 catchments. Meanwhile, a very high susceptibility level, with prob-
abilities ranging from 0.74 to 0.88, includes 44 catchments. In general, both the southern 
and northern parts of this area face elevated debris-flow risks. To address this, the gen-
erated rainfall thresholds are integrated with this susceptibility map to develop a debris-
flow warning model. Based on the Hazards Investigation Report (SGESI 2018), there were 
seven recorded debris flows in this area from  July 26 to 30, 2006. To estimate the rainfall 
thresholds of the seven debris flows, 9 days of effective antecedent rainfall of each debris-
flow event is calculated (Fig. 17a).

As shown in Fig.  17a, the intraday rainfall of all the catchments is classified into 
three levels, which range from 21.0 to 97.5 mm. The catchments with R1 level require 

Table 3   Effective antecedent rainfall—intraday rainfall thresholds

Ro and Ra represent the intraday rainfall and effective antecedent rainfall, respectively. RA and RT are the 
effective antecedent rainfall and triggering rainfall amounts, respectively. AER and IR represent the effec-
tive antecedent rainfall and intraday rainfall

Equation Eq. Areas Source

Ro = 615.51Ra
−1.0194 (14) Luding county, Sichuan, China Ni et al. (2010)

Ro = 104.29Ra
−0.2772 (15) Hailuogou scenic spot, Sichuan, China

AER = 1099.2IR−1.2 (16) Xi’an, shanxi province, China Zhuang and Peng (2014)

Fig. 15   Comparison analysis of 
the rainfall thresholds
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a rainfall event of at least 67.8 mm for triggering debris flows, while debris flows may 
occur within the catchments with R3 level when the rainfall values range from 21.0 to 
38.6 mm. The rainfall data and generated susceptibility map are both resampled to a 
spatial resolution of 100 m since the spatial resolution of downscaled rainfall data is 
1 km (Segoni et al. 2016). The empirical equations provide warnings for four debris-
flow events and missed three events. However, integrating the susceptibility map and 
rainfall thresholds further improves the warning accuracy because the reclassified 
warning map forecasts five debris-flow events (Fig. 17b). Notably, a catchment in the 
southern part, initially classified as ‘R1 (Low hazard level)’ in Fig. 17a, is corrected 
as ‘High hazard (H3) in Fig. 17b.’ This correction underscores the efficacy of the inte-
grated map in improving debris-flow forecasting precision. Meanwhile, this map can 
also locate the debris-flow events and indicate the occurrence date when compared to 
the susceptibility map.

However, limitations still exist since this reclassified map misses one event. This 
error may be due to the lack of historical debris-flow data, which causes the deficiency 
of the susceptibility map in forecasting this debris-flow event. Overall, the valida-
tion results are positive, but the historical data used for validation are limited. There-
fore, further studies are essential before this integration method is used for a wider 
application.

Fig. 16   Susceptibility map of 
Gyirong Zangbo Basin
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5 � Discussion

The selection of explanatory variables and method for establishing a precipitation down-
scaling relationship is pivotal in regional analysis. NDVI has been widely used for the 
downscaling of precipitation because of its consistent response to spatial variation of pre-
cipitation at a regional and global scale (Onema and Taigbenu 2009). However, climatic 
variables such as precipitation and temperature exhibit complex, nonlinear variations in 
three dimensions, including elevation (DEM), longitude and latitude (Bryan and Adams 
2002). Therefore, NDVI, DEM, longitude, and latitude are considered by many stud-
ies (Jing et al. 2016; Elnashar et al. 2020). Nevertheless, the potential for a weak corre-
lation between precipitation and location has been suggested, aligning with our correla-
tion analysis findings (Chen et al. 2020). In this case, we conduct a sensitivity analysis to 
reveal the positive contribution of longitude to the accuracy improvement of precipitation 
downscaling. However, in the context of climate change, anthropogenic activities remark-
ably amplify the uncertainty in determining extreme rainfall events (Hardwick Jones et al. 
2010). This is because the intensity of heavy precipitation events increases with the rising 
of the temperature (Meehl et al. 2007). As a result, relying solely on NDVI, DEM, longi-
tude, and latitude may prove insufficient in capturing extreme climate events, resulting in 
unstable precipitation downscaling accuracy and complicating the computation of debris-
flow rainfall thresholds. To address this, we introduce land surface temperature (LST) as an 
additional factor alongside NDVI, DEM, Lon, and Lat, as a significant relationship exists 
between LST and precipitation (Wan et  al. 2004; Brunsell 2006; Chai et  al. 2021). LST 

Fig. 17   Rainfall thresholds and reclassified warning levels
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serves as a critical indicator in describing Earth’s surface energy balance, encompassing 
latent heat flux, net radiant energy, sensible heat flux, soil heat flux, and regional land sur-
face processes (Wan et al. 2004; Kalma et al. 2008).

In this study, the implementation of the XGBoost machine learning method proves 
highly effective in downscaling TRMM data, outperforming the GWR method. GWR, 
while acknowledged in prior studies for its superiority over multiple linear regression and 
exponential regression due to its incorporation of geological location information, falls 
short in handling large datasets. This limitation arises because the dataset’s size can expo-
nentially increase the computational demands of GWR. Consequently, to maintain process-
ing speed, GWR aggregates high-resolution data into coarser geographical units, thereby 
overlooking geographical details (Harris et al. 2010). However, this processing mode can 
cause unstable accuracy of downscaled precipitation data. Therefore, in order to solve this 
problem, distributed computation ability is required (Harris et al. 2010). The employment 
of XGBoost can avoid this problem because of its parallel and distributed computing abili-
ties (Chen and Guestrin 2016). More importantly, the large data processing capacity ena-
bles XGBoost to establish the complex relationship between REVs and precipitation at a 
spatial resolution of 0.25° and further utilize this relationship to predict the precipitation 
with a spatial resolution of 1 km.

In contrast to the extensively used grid units in previous debris-flow studies, our newly 
developed warning system employs individual catchments as the analysis units (Stavropou-
lou et al. 2010). Although the more rapid matrix subdivision can be achieved using grid 
units when compared with the application of catchments, they cannot effectively encom-
pass the topography and other environment-related information in the debris-flow analysis 
(Catani et al. 2005; Zou et al. 2019). This is because the initiation, mobility, and accumula-
tion of debris flows are complex processes influenced by geological, hydrological, and geo-
morphological factors within an independent catchment. Therefore, we adopt catchment 
units in this study to construct a dynamic warning map, integrating susceptibility maps 
and rainfall thresholds for real-time debris-flow warnings. In mountainous areas, the warn-
ing levels can be updated along with the new inputs of downscaled precipitation data cali-
brated by the PERSIANN-CCS-CDR dataset. The warning map can only be refreshed and 
clearly indicate the warning levels of each catchment in a specific area if precipitation data 
for that region is available. However, limitations still exist. For example, only daily precipi-
tation with a spatial resolution of 1 km rather than hourly precipitation is offered. The daily 
precipitation cannot indicate the occurrence time of debris flows, causing uncertainty in 
providing warnings for the local people. In contrast, the uncertainties cannot alter the fact 
that our studies improve the warning accuracy of debris-flow warnings and provide scien-
tific support for debris-flow mitigation in mountainous areas with scarce data.

6 � Conclusion

Our study introduces a hybrid ML-GDA method to generate the daily precipitation with 
a spatial resolution of 1 km at a regional scale based on NDVI, DEM, longitude, latitude, 
and LST. On the basis of the historical debris flows in 2007 summer, we apply this method 
to calculate the rainfall thresholds in the Gyirong Zangbo Basin. Then, the rainfall thresh-
olds are integrated into a susceptibility map to generate a debris-flow warning model defin-
ing four hazard levels, including H1, H2, H3, and H4. The main conclusions are as follows:
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(1)	 The application of the machine learning model, XGBoost, is effective to predict sea-
sonal precipitation with a spatial resolution of 0.01° based on the established relation-
ship between seasonal precipitation and season REVs with a spatial resolution of 0.25°.

(2)	 The ML-based method performs better than the GWR-based downscaling method in 
this area, and the calibrated TRMM data achieve an absolute deviation decreasing of 
57% when compared with the original TRMM data. Additionally, the RMSEs and 
MAEs of calibrated TRMM data are closer to 0.

(3)	 The integrated map successfully provides warnings for five debris-flow events in 2006 
summer in Gyirong Zangbo Basin, where seven debris-flow events were recorded from 
26 to 30th July. Meanwhile, the warning level of one debris-flow event increases from 
R1 (rainfall thresholds level) to H3 (warning levels).

Although the proposed method in this study can effectively downscale TRMM data 
and support the analysis of rainfall thresholds in data-scarce mountainous areas, the wide 
application still needs further studies to increase the robustness of the machine learning 
model. As a result, the increase in accuracy for the downscaled TRMM data can be further 
expected.
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