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Abstract

The observations from the Dark Energy Spectroscopic Instrument (DESI) will significantly increase the numbers of
known extremely metal-poor stars by a factor of ∼10, improving the sample statistics to study the early chemical
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evolution of the Milky Way and the nature of the first stars. In this paper we report follow-up observations with
high signal-to-noise ratio of nine metal-poor stars identified during the DESI commissioning with the Optical
System for Imaging and Low-Resolution Integrated Spectroscopy (OSIRIS) instrument on the 10.4 m Gran
Telescopio Canarias. The analysis of the data using a well-vetted methodology confirms the quality of the DESI
spectra and the performance of the pipelines developed for the data reduction and analysis of DESI data.

Unified Astronomy Thesaurus concepts: Spectroscopy (1558); Field stars (2103); Milky Way formation (1053)

1. Introduction

Only hydrogen, helium, and traces of lithium nuclei were
formed in primordial nucleosynthesis, completed 20 minutes
after the Big Bang. Lithium and beryllium formed later in
substantial amounts from spallation processes between helium,
carbon, nitrogen, oxygen nuclei, and cosmic rays, but heavier
elements come mainly from burning in stars or explosive
nucleosynthesis. When the first stars formed 300–500Myr after
the Big Bang, they were made out of pristine gas, unpolluted
by metals.

Simulations show that making stars from zero-metallicity
molecular clouds is challenging (e.g., Greif et al. 2011; Stacy &
Bromm 2014). The fragmentation and collapse of the clouds is
greatly enhanced by radiative cooling from carbon and oxygen
atoms, unavailable for the first generation of stars (Bromm &
Larson 2004). This was thought to lead to a top-heavy stellar
mass function, missing entirely the low-mass stars that may
survive until today (Clark et al. 2011). Searches for very low-
metallicity stars prior to 2010 had provided very few objects at
metallicities lower than [Fe/H]=−4 (Norris et al. 2013), i.e.,
10,000 times less iron than in the Sun, in all cases with
extremely large carbon enhancements that favored radiative
cooling.

In 2011 a star was discovered with an iron abundance
[Fe/H]=−5 but a solar carbon-to-iron ratio (Caffau et al.
2011). This object demonstrated that calculations of star
formation predicting it was not possible to form low-mass
stars with a global metallicity [Z/H]<−4 (e.g., Bromm &
Loeb 2003; Frebel et al. 2007) might be inaccurate. Since then
a second example with very similar chemistry has been found
(Starkenburg et al. 2018), and multiple theories have been
proposed for the formation of low-mass stars from clouds with
no metals (e.g., Stacy et al. 2016). A single supernova event
can pollute a volume with a radius of 10 pc to [Fe/H]∼−3
(Bertran de Lis et al. 2016). Lower metallicities are possible for
gas densities lower than the typical values found in molecular
clouds, an asymmetric supernova explosion, or mass fall-back
onto a leftover black hole. Fall-back, in particular, can explain
the extreme abundances of carbon in the most metal-poor stars
(e.g., Umeda & Nomoto 2003; Iwamoto et al. 2005; Joggerst
et al. 2009).

The chemical abundances of the most metal-poor stars give
us critical information on the nucleosynthetic yields for the first
stars and their supernovae, as well as on the early stages of
assembly of the Galaxy and its chemical evolution. But given
the vast volume and limited mixing in the interstellar medium
in those early phases, a significant spread is expected, and
therefore it is essential to build a significant sample of
extremely metal-poor (EMP) stars, and in particular those with
the lowest metallicities. The majority of EMP stars associated
with the Milky Way are expected to be part of the stellar halo
population (see, e.g., Starkenburg et al. 2017; Chen et al.
2023). Therefore, wide-area surveys at high Galactic latitudes
are most efficient at enlarging our samples.

There are only ;10 stars known at [Fe/H]�−5, and
roughly half of them were identified with data from the Sloan
Digital Sky Survey (SDSS; York et al. 2000). Other surveys
such as RAVE (Kunder et al. 2017) or LAMOST (Cui et al.
2012), with samples of millions of stars, have contributed
significant numbers of metal-poor stars, but are not particularly
suited for exploring the most metal-poor domain. These will be
enhanced by new projects such as the ongoing GALAH (Buder
et al. 2021; Da Costa et al. 2023) and Gaia RVS (Gaia
Collaboration et al. 2023) surveys, or the upcoming WEAVE
(Jin et al. 2023) and 4MOST (de Jong et al. 2022) surveys. In
addition to these, the Dark Energy Spectroscopic Instrument
(DESI), pursuing a five-year survey with a primary focus on
cosmology (Levi et al. 2013), is now building a spectroscopic
database that will soon exceed in size those from all its
predecessors (DESI Collaboration et al. 2016a, 2016b, 2022).
While the DESI survey focuses mainly on cosmological
studies, a component of the bright-time survey is dedicated to
observations of Milky Way targets (Allende Prieto et al. 2020;
Cooper et al. 2023). Based on the yields from the SDSS, we
can expect the DESI survey by 2024 to increase the number of
known stars with [Fe/H]�−5 by an order of magnitude.
The commissioning of DESI took place between 2019 and

2020, split into two phases separated by a shutdown caused by
the Covid-19 pandemic. After Survey Validation (DESI
Collaboration et al. 2023a), the DESI survey began in 2021
May. As of this writing, over 20 million spectra of galaxies and
stars have been gathered by DESI and the observations
continue at a good pace. A number of metal-poor stars
observed during the commissioning phase were identified for
follow-up with Gran Telescopio Canarias (GTC). The purpose
of these observations was to check the data quality and the
performance of the DESI data reduction and analysis pipelines
with data of high signal-to-noise ratio obtained using a well-
known instrumental setup and data analysis procedures. In this
paper we report on these observations and compare the results
from the two instruments.

2. DESI Targets

The DESI focal plane is set at the primary focus of the historic
4 m Mayall Telescope at Kitt Peak National Observatory. The
focal plane has a field of view roughly 3°.2 in diameter (DESI
Collaboration et al. 2022), populated by 5000 robotic positioners
that lead as many fibers to the desired target positions (Silber
et al. 2023). These fibers feed 10 identical spectrographs, each
with three cameras, B, R, and Z, covering the ranges 360–
580 nm, 576–762 nm, and 752–982 nm, respectively, at an
FWHM resolution of about 0.18 nm (or a resolving power
R≡ λ/FWHM(λ) of about 2000 on the blue edge, increasing to
nearly 6000 at the red end). A detailed description of the
instrument and the experiment can be found in the papers cited
above, supplemented by several others already published or in
preparation (Zou et al. 2017; Dey et al. 2019; Guy et al. 2023;
Miller et al. 2023; Raichoor et al. 2023; Schlafly et al. 2023).
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The DESI survey prioritizes the mapping of the redshift
distribution of luminous galaxies and quasars. When observing
conditions make this unachievable (e.g., when the Moon is
bright) the focus changes to nearby galaxies and stars. The
DESI target selection is based on the public Legacy Surveys
(Dey et al. 2019). Preliminary target selection details were
published in 2020 (Allende Prieto et al. 2020; Raichoor et al.
2020; Ruiz-Macias et al. 2020; Yèche et al. 2020; Zhou et al.
2020), and several updates are available (Hahn et al. 2023;
Chaussidon et al. 2023; Cooper et al. 2023; Raichoor et al.
2023; Zhou et al. 2023). A discussion of the data quality as
assessed from visual inspection can be found in Lan et al.
(2023) and Alexander et al. (2023). The DESI Early Data
Release (DESI Collaboration et al. 2023b) and the Siena
Galaxy Atlas (Moustakas et al. 2023) are now publicly
available.

The DESI stellar bright-time program is known as the Milky
Way Survey (Cooper et al. 2023). Additional stellar spectra are
associated to spectrophotometric calibrators (F- and A-type
stars, plus white dwarfs), and the Backup program, which
focuses on stars with g< 16, is active when the survey speed
degrades significantly due to poor observing conditions,
including morning and evening twilight. There are also some
secondary programs including stars approved by the DESI
collaboration. The commissioning data discussed in this paper
were obtained under a wide range of conditions and in some
cases when the instrument was not fully functional, but the
observations discussed here can be considered as representative
of the range in the main survey.

Observing time on GTC was requested for 10 metal-poor
stars with g∼ 16 at high spectral resolution using HORuS
(Allende Prieto 2021, with a resolving power R ∼ 25,000) and
nine fainter stars with g∼ 17–18 at lower resolution with
OSIRIS48 (Cepa 2010, R∼ 2400), selected among the most
metal-poor stars in the commissioning data. Only the OSIRIS
fraction of the requested time was granted and these are the
stars discussed in this paper. The sample of OSIRIS/GTC
observed stars provides a good benchmark to test the
performance of the various versions of the DESI stellar
pipelines.

Our sample is given in Table 1 and consists of nine stars,
plus the ultra-metal-poor star J1313−0019 (Allende Prieto
et al. 2015a), with [Fe/H] ∼−5, which was not observed by
DESI but was nonetheless included in the OSIRIS sample to
get a solid reference for the atmospheric parameters inferred
from this instrument. In Figure 1 we show in blue six DESI

spectra of three of the stars studied. Two of these targets have
been observed more than once under different conditions or
target selections. The top left panel corresponds to DESI target
ID 39628465179202835, the middle and bottom panels on the
left correspond to target 39627757558173121, and the three
panels on the right to 39627787731995518. The red lines
correspond to the best-fitting models from the DESI Milky
Way Survey RVS pipeline, optimized to derive radial velocities
for DESI data. Figure 2 shows the same spectra, continuum-
normalized as analyzed by the SP pipeline, optimized for the
determination of chemical abundances, and the best-fitting
models from this pipeline, limited to the 370–450 nm region to
facilitate visual inspection. These two pipelines are described in
more detail in Section 5 and in the overview paper by Cooper
et al. (2023).

3. OSIRIS Observations

The OSIRIS spectrograph mounted on the 10.4 m GTC at
the Roque de los Muchachos Observatory in La Palma, Canary
Islands, was used in longslit mode over the period 2021
January 19–24. The setup adopted grating 2500U, covering the
344–461 nm range, a 1 0 slit, and 2× 2 binning, leading to a
resolving power of R∼ 2400. The detector was the default
device CCD1+ CCD2_A. To facilitate the removal of cosmic
rays several exposures of between 900 and 1400 s were taken
for each object (see Table 1). As already mentioned, we also
observed the ultra-metal-poor star J1313−0019 (Allende Prieto
et al. 2015b; Frebel et al. 2015). This program, 87-MULTI-
PLE-2/2, was completed in a total of 15 hr. Data reduction was
performed with the onedspec package within IRAF
(Tody 1986, 1993). Bias and flat-field correction, extraction,
sky subtraction, and wavelength calibration were performed in
the standard way by using HgAr, Ne, and Xe calibration lamps.
All the spectra were corrected for barycentric velocity
calculated with rvcorrect.

4. Analysis of the OSIRIS–GTC Observations

4.1. Radial Velocities

To derive radial velocities (RVs) an OSIRIS spectrum of
G64−12, a well-known metal-poor star analyzed in Aguado
et al. (2017a), with Teff= 6393 K, =glog 4.8, [Fe/H]=−3.2,
and [C/Fe]=+1.0, was used as a template. First, we used the
IRAF task fxcor. We computed the cross-correlation function
(CCF) for each individual spectrum. Using these first estimates
of the RV of each individual spectrum we computed an average
spectrum of each star, which was subsequently analyzed with a

Table 1
Stars Observed for This Program with OSIRIS on GTC, and Their Inferred Atmospheric Parameters (See Text)

Name/DESI Target ID R.A. (deg) Decl. (deg) g (mag) Texp (s) S/N @450 nm Teff (K) logg [Fe/H] [C/Fe] RV (km s−1)

J1313–0019 198.362018 −0.32817 16.4 3 × 1350 168 5294 1.0 −5.03 3.77 263.9 ± 15
39627757558173121 180.676872 −1.23083 17.5 3 × 1200 100 5857 5.0 −2.89 0.51 35.8 ± 15
39627787731995518 179.145769 −0.08047 18.2 6 × 1200 85 5538 1.0 −3.25 2.02 −107.0 ± 15
35186036195721514 133.137090 11.39200 18.0 6 × 1000 140 6331 5.0 −3.64 1.80 −2.7 ± 15
35186077543172120 133.380322 13.22537 16.8 4 × 900 89 4652 5.0 −3.34 −0.04 305.8 ± 15
35186313011398455 157.980376 23.47101 18.2 3 × 1200 80 6438 5.0 −2.83 2.40 76.1 ± 15
35186395165230796 168.464724 27.22502 18.1 6 × 1200 125 6395 5.0 −2.93 <1.0 29.7 ± 15
39628465179202835 196.004469 29.29881 17.9 6 × 800 78 4666 4.2 −3.46 0.23 −47.4 ± 15
39633286363875367 214.592028 52.51449 18.3 6 × 1400 78 5920 3.8 −2.86 <1.00 −68.8 ± 15
39633315233267986 216.459371 54.39352 18.2 6 × 1200 121 6351 5.0 −2.75 0.79 −118.6 ± 15

48 Optical System for Imaging and Low-Resolution Integrated Spectroscopy.
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grid of models to derive the best-fit stellar parameters and
metallicity (see Section 4.2).

Due to the variety of stellar temperatures in our sample,
ranging from about 4650 to 6440 K, we decided to use the best-
fitting FERRE synthetic spectra as templates to recompute the
RV of each individual spectrum (see Figure 3). To do that we
used our own IDL-based automated code, which normalizes
both the synthetic and observed OSIRIS spectra using a
running mean filter with a width of 30 pixels. The CCF was
built using almost the whole OSIRIS spectral range in the
current setup from 3760 to 4450Å with a window of
2000 km s−1, in a similar manner to Arentsen et al. (2023).
The CCF has a similar shape to those of the strong features of
the OSIRIS medium-resolution spectra such as the H I Balmer
lines, the Ca II H and K lines and the CH G band with the
adopted normalization procedure, which gives an oscillating
pattern at the continuum of the CCF distinct from a Gaussian
shape. To fit the whole CCF profile we employed a Gaussian
model plus a second-order polynomial function. We finally
derived the RV from a parabolic fit using the six points closest
to the CCF peak.

The statistical uncertainty of the centroid of the parabolic fit
is typically under 1 km s−1, significantly below the pixel size of
∼0.57 Å pixel−1 (∼42 km s−1). We also applied a running
median filter that minimizes the oscillating pattern and allows a
better fit of the CCF using a Gaussian, although in this case we
also adopted the parabolic fit of the CCF peak. Using the mean
or the median normalization schemes provides differences of
less than 1.5 km s−1 for the parabolic fits, and less than
3 km s−1 for the Gaussian fits, respectively. The OSIRIS
spectra do not include any telluric or sky lines useful to correct
for instrument variability. The results of the OSIRIS spectra
show intranight RV variations with standard deviations in the
range 6.5–15 km s−1, and RV variations from different nights
with standard deviations in the range 4–17 km s−1. Therefore,
we adopted a floor of 15 km s−1 to the RV uncertainties, which

may reflect the systematic RV uncertainty due to instrument
flexures, pointing, guiding RV drifts, etc. We provide the final
derived RVs from the weighted mean of the individual RVs of
each target using the normalization with a running median filter
in Table 1. We note that the RV of the target SDSS J1313
−0019 is consistent with the recent accurate RV of
273.984± 0.054 km s−1 derived using the ESPRESSO
spectrograph (Aguado et al. 2022).

4.2. Stellar Parameters and Metallicities

To derive stellar parameters, i.e., effective temperature (Teff),
surface gravity ( glog ), overall metallicity ([Fe/H]), and
carbon-to-iron ratio ([C/Fe]), we used the FERRE code
(Allende Prieto et al. 2006a) and followed the methodology
described in Aguado et al. (2016, 2017a, 2017b). We employed
two similar libraries of stellar spectra spanning slightly
different stellar parameter ranges (Aguado et al. 2017b;
Arentsen et al. 2020) computed with the ASSET code
(Koesterke et al. 2008) and Kurucz model atmospheres
(Mészáros et al. 2012).
In these libraries a constant value [α/Fe]=+0.4 is assumed,

which reduces the number of free parameters to four. This
approximation is helpful, given that the information that can
obtained at this modest resolution for very metal-poor stars is
mostly limited to calcium, and at the same time is valid for the
vast majority of metal-poor stars in the Galaxy. For example,
SMSS J160540.18-144323.1 (Nordlander et al. 2019) with
[Fe/H] ;−6.2 shows [Ca/Fe]=+0.4± 0.2, though larger
values for Mg ([Mg/Fe]= 0.6± 0.2) and Ti ([Ti/Fe]=
0.8± 0.2), and SDSS J1313–0019 (Frebel et al. 2015) with
[Fe/H] ;−5 exhibits [Ca/Fe]= 0.32± 0.07. In fact, Jeong
et al. (2023) report calcium abundances for 13 stars in the range
−4< [Fe/H]< –2, and they show an average [Ca/Fe] of
0.31± 0.18, where the quoted uncertainty corresponds to the
standard deviation for the sample.

Figure 1. The DESI spectra of three of the candidates in our sample (blue lines) and the best fits (red) from the RVS pipeline. Two of the targets have been observed
more than once, under different conditions or target selection schemes. The numerical DESI target identifications are indicated, as well as the survey (sv1 and sv3
stand for the first and third phases of the Survey Validation), observing conditions or program (bright/dark sky), and healpix number (Górski et al. 1999). All the data
shown in this figure, and all the other figures of the paper, are available from the Zenodo repository at doi:10.5281/zenodo.8020840 (Version 2).
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The grids of synthetic spectra were smoothed to the OSIRIS
resolution (R ∼ 2400). Then we normalized both the data and
the grids, with a running mean filter of 25 pixels. FERRE is
able to find the best fit by using the Boender–Timmer–Rinnoy–
Kan (BTRK) algorithm (Boender et al. 1982), interpolating
between nodes of the grids to derive the best set of values. Both
grids are basically the same but one of them goes down to
metallicity [Fe/H]=−6 and is suitable for ultra-metal-poor
stars like SDSS J1313−0019. Despite the high quality of the
OSIRIS data it is not always possible to derive reliable [C/Fe]
at this resolution. Stellar parameters and carbon abundance play
an important role here. This issue is investigated in depth in
Aguado et al. (2019b) and we use the sensitivity curves they
published and discriminate between reliable values and upper
limits. The results of this analysis are summarized in Table 1.
The derived uncertainties (ΔTeff=±120 K, D = glog 0.6,
D = [ ]Fe H 0.2, and D = [ ]C Fe 0.3) are calculated from
the internal FERRE statistical errors combined with the
systematics estimated in Aguado et al. (2017b).

In Figure 3 we show the OSIRIS spectra from our sample of
EMP candidates (black lines) and the best fit derived with
FERRE, color-coded by temperature with blue indicating
warmer and red cooler. The high quality of the OSIRIS data
together with the clear CH absorptions in the G band makes it
possible to derive carbon abundances and accurate metallicities
in the majority of the cases.

For the star J1313−0019 we derive Teff= 5294± 120 K, in
good agreement with the values inferred by Allende Prieto
et al. (2015b) and Frebel et al. (2015). The best value for
gravity is on the edge of the grid ( = glog 1.0 0.6) while the
preferred value from the cited original works is =glog 2.6.
Additionally, Aguado et al. (2017b) obtained =glog 3.6 from
a low-resolution ISIS49 spectrum. The most likely reason
FERRE drifts to a lower gravity is the limited spectral
information, given the shorter spectral range on the blue side

for the OSIRIS data. Both the ISIS and BOSS50 spectrographs
provide up to 15 nm wider coverage and include some Balmer
lines with relevant information to derive gravity.
The impact of this deviation in Teff and [Fe/H] is small, and

our result, [Fe/H]=−5.03± 0.2, is slightly lower than that of
Aguado et al. (2017b), [Fe/H]=−4.7, due the ∼200 K
difference in temperature. On the other hand, our inferred
metallicity is consistent with those from Frebel et al. (2015),
derived from Fe I lines observed with the MIKE51

spectrograph on the Magellan telescope.
Finally, the amount of carbon FERRE derives, [C/Fe]=

3.77± 0.3, is larger than the [C/Fe]= 2.96 reported by Frebel
et al. (2015). Such a difference is explained by the higher
temperature (by 200 K), which enhances CH dissociation and
the inferred carbon abundance, and the lower surface gravity
we derive from the low-resolution spectrum. The impact of

glog deviations when measuring carbon from low-resolution
spectroscopy was studied in detail in Aguado et al. (2019b)
and tends to increase the amount of carbon when the gravity
is underestimated, consistent with what we find. If we
force FERRE to include =glog 2.6 then we recover the same
[C/Fe] ratio.

5. Results from the DESI Pipelines

All DESI data are reduced by a pipeline that performs
wavelength calibration, flat-fielding, and spectral extraction
accounting for the 2D shape of the point-spread function, flux
calibration, fiber crosstalk correction, combination of multiple
exposures, and determination of spectral type and redshift/
radial velocity (Guy et al. 2023).
The stellar spectra are also processed by three pipelines

developed by the Milky Way Survey working group to
determine stellar radial velocities, atmospheric parameters,
and chemical abundances: the RVS, SP, and WD pipelines

Figure 2. The continuum-normalized spectra of the same stars as in Figure 1 (blue lines) and the best fits (red) from the SP pipeline, limited in this case to the
375–450 nm region.

49 Intermediate-dispersion Spectrograph and Imaging System.

50 Baryon Oscillation Spectroscopic Survey.
51 Magellan Inamori Kyocera Echelle.
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(Cooper et al. 2023). The RVS pipeline derives radial velocities
and atmospheric parameters (Teff, glog , [Fe/H], and [α/Fe])
using the RVSPEC code (Koposov 2019), based on Phoenix
models (Husser et al. 2013). Similarly, the SP pipeline derives
atmospheric parameters and the abundances of several
individual elements by means of the FERRE code (Allende
Prieto et al. 2006b). We should note that FERRE is the code
adopted for the analysis of GTC spectra; however, the
configuration chosen and actual models adopted differ between

the two analyses. The WD pipeline is focused on the
classification and the determination of the atmospheric
parameters (Teff and glog ) of white dwarfs.
The DESI reduction pipeline is continuously being

improved, and several internal data releases have been
produced, which are named after mountains or mountain
ranges: Andes, Blanc, Cascades, Denali, Everest, Fuji. Fuji has
been tagged for public liberation in the Early Data Release
(DESI Collaboration et al. 2023b) and contains commissioning

Figure 3. OSIRIS/GTC spectra (3750–4500 Å) of our stellar sample (black lines) and the best fits calculated with FERRE, color-coded by Teff (the bluer the hotter)
and sorted by decreasing [Fe/H]. The Balmer lines (yellow) and main metallic absorptions (purple) are highlighted. Above each spectrum the metallicity, effective
temperature, and carbon ratios are displayed. We also show the OSIRIS spectrum of SDSS J1313–0019 for comparison.
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and survey validation observations. The Milky Way Survey
pipelines have also been evolving with these internal data
releases, and we present the resulting analyses for each release
in Table 2. We have disregarded the Andes and Cascades
releases in our discussion since we did not have results from
both the SP and RVS pipelines for them.

Since the stars chosen for follow-up observations with GTC
were all observed in the DESI commissioning, and some of the
data were affected by issues that limited the instrument
performance, all of them appear in the catalogs from the early
data sets (e.g. Blanc) but some are missing in the newer ones,
which only include those reobserved after commissioning. In
our analysis we have only considered coadded spectra from any
given program. Individual exposures taken within a survey/
program pair (e.g., Survey Validation 1, 2, or 3; and the
Backup program) were coadded, but data from different
survey/program pairs were analyzed independently. We further
averaged multiple results obtained for any given star, reducing
them down to a single entry per star in Table 2.

6. Results and Discussion

A quick inspection of Figures 1 and 2 reveals that the DESI
observations span a significant range in signal-to-noise ratio.
This happens naturally due to the broad magnitude range and
single-valued effective exposure times (Guy et al. 2023) for the
entire focal plane, but also due to the existence of multiple
programs that take stellar spectra (dark-time observations,
Milky Way Survey, Backup program, etc.). Changing obser-
ving conditions are an additional source of spread in signal-to-
noise ratios, but the use of an exposure-meter mitigates this
effect.

The follow-up data taken at GTC and illustrated in Figure 3
have substantially higher signal-to-noise ratios. One should
also bear in mind that the analyses of both DESI and the

OSIRIS observations suffer from similar theoretical shortcomings
when it comes to producing accurate atmospheric parameters and
abundances, such as departures from local thermodynamic
equilibrium and hydrostatic equilibrium (Nordlund et al. 2009;
Allende Prieto 2016), as well as uncertainties in the atomic/
molecular data or other systematics affecting the const-
ruction of the model atmospheres adopted. These issues are
necessarily left out of the comparison, with the hope and
expectation that they will not prevent us from confirming that
DESI data can deliver observations free from systematic errors,
at least at the same level as other existing state-of-the-art
instruments.

6.1. Atmospheric Parameters

Looking at the results in Table 2 and comparing with the
reference atmospheric parameters included in Table 1, it is
apparent that the early (Blanc) results for some of the targets,
notably target ID 39633315233267986, were fairly discrepant
from those obtained in the more recent versions, which are
better aligned with the reference values. This is likely related to
a number of improvements made in the data reduction pipeline
after Blanc.
Table 3 shows the mean and standard deviation of the

differences between the various results from the DESI pipelines
and data releases, and those obtained from the analysis of the
OSIRIS data. The DESI spectrographs are fiber-fed and rest in
a temperature-controlled room. Furthermore, the presence of
prominent telluric lines in the wide DESI spectral range allows
for a determination of possible zero-points. On the other hand,
OSIRIS was mounted on the rotating Nasmyth-B focus of the
GTC, subject to variable forces and temperatures. (Since then
the instrument has been moved to the Cassegrain focus, but the
same caveats hold.) The velocities from DESI are the reference
here and the significant variations found are expected and are

Table 2
Atmospheric Parameters Derived by the DESI Milky Way Survey RVS and SP Pipelines for Various Data Releases

OSIRIS Blanc Denali Everest Fuji

Name Teff logg [Fe/H] Teff logg [Fe/H] Teff logg [Fe/H] Teff logg [Fe/H] Teff logg [Fe/H]

RVS
39627757558173121 5857 5.0 −2.89 5935 4.82 −3.00 5938 4.85 −2.97 5848 4.70 −3.04 5842 4.57 −2.86
39627787731995518 5538 1.0 −3.25 6138 4.84 −2.69 6167 4.66 −2.91 6181 4.78 −2.68 6162 4.80 −2.67
35186036195721514 6331 5.0 −3.64 6484 4.44 −4.00 ... ... ... ... ... ... ... ... ...
35186077543172120 4652 5.0 −3.34 4764 4.63 −2.89 ... ... ... ... ... ... ... ... ...
35186313011398455 6438 5.0 −2.83 6249 4.38 −2.25 ... ... ... ... ... ... ... ... ...
35186395165230796 6395 5.0 −2.93 6513 4.85 −3.00 ... ... ... ... ... ... ... ... ...
39628465179202835 4666 4.2 −3.46 4811 4.06 −3.00 ... ... ... 5071 5.93 −3.05 4812 4.41 −3.03
39633286363875367 5920 3.8 −2.86 6281 4.65 −3.02 6444 5.00 −2.60 6348 4.78 −2.62 6378 4.78 −2.58
39633315233267986 6351 5.0 −2.75 8190 3.78 −2.10 6563 4.97 −2.46 6463 4.78 −2.67 6441 4.72 −2.69

SP
39627757558173121 5857 5.0 −2.89 5942 5.00 −2.85 5841 5.00 −2.99 5819 4.65 −3.22 5822 4.81 −2.99
39627787731995518 5538 1.0 −3.25 6000 4.87 −2.75 6189 4.99 −2.68 6122 4.79 −2.65 6115 4.77 −2.65
35186036195721514 6331 5.0 −3.64 6508 4.65 −3.68 ... ... ... ... ... ... ... ... ...
35186077543172120 4652 5.0 −3.34 4636 4.94 −2.93 ... ... ... ... ... ... ... ... ...
35186313011398455 6438 5.0 −2.83 6325 4.38 −3.05 ... ... ... ... ... ... ... ... ...
35186395165230796 6395 5.0 −2.93 6385 4.77 −2.93 ... ... ... ... ... ... ... ... ...
39628465179202835 4666 4.2 −3.46 4460 4.17 −3.48 ... ... ... 4743 5.00 −3.11 4790 4.91 −3.04
39633286363875367 5920 3.8 −2.86 5694 4.16 −1.66 6342 4.89 −2.60 6336 4.84 −2.72 6360 4.84 −2.56
39633315233267986 6351 5.0 −2.75 5513 3.99 −2.45 6456 4.84 −2.62 6421 4.81 −2.81 6418 4.79 −2.80

Note. The missing data are related to commissioning observations not processed as part of internal data releases after Blanc. The parameters derived from the OSIRIS
spectra are copied from Table 1 for reference.
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attributed to systematics in the OSIRIS data. Therefore, for
clarity, radial velocities are not included in the comparison in
Table 3.

The atmospheric parameters from DESI and OSIRIS show
significant discrepancies in the oldest data release considered
(Blanc), but then fairly good agreement in all the following
ones. This is likely due to (i) the removal of commissioning
observations for internal data releases after Blanc, and (ii) the
evolution of the software in the pipelines, both in the data
reduction pipeline and in the Milky Way Survey RVS and SP
stellar analysis pipelines.

The most relevant statistics for our study are the most recent
ones, those corresponding to Fuji—the data released in the
DESI Early Data Release (DESI Collaboration et al. 2023b).
These results indicate that there is good agreement, with small
zero-point differences and modest scatter, both at the level of
100 K for Teff, and <0.2 dex for glog as well as [Fe/H]. This is
true for both the RVS and SP pipelines.

The low scatter is smaller than the uncertainties expected for
the OSIRIS observations (the latter are 120 K for Teff, 0.6 dex
for glog and 0.2 dex for [Fe/H]); however, the expected
uncertainties include an estimate of systematic errors due to the
approximations involved in the analysis, and some of these
cancel out in the statistics given that they apply to the analysis
of both the OSIRIS and the DESI spectra. In addition, all the
DESI targets considered in this study appear to be dwarf stars,
which may hide systematic errors affecting giants, such as
those discussed in Section 4 for J1313−0019.

6.2. Elemental Abundances

The most recent version of the SP pipeline, which was run
on the Fuji data release, includes a preliminary determination of
individual abundances (C, Mg, Ca, and Fe), and therefore we
have estimates of the carbon and iron abundances for the stars
under study from DESI spectra. The analysis uses the same
model spectra as for the derivation of atmospheric parameters,
but for any given element the main atmospheric parameters
are frozen and only one parameter ([α/Fe] for α elements, or
[Fe/H] for the rest of the elements) is searched, computing χ2

using only sections of the spectra dominated by transitions
involving that element: atomic transitions or those of a
molecule that includes that element. Such a scheme has been
successfully adopted for the APOGEE survey (García Pérez
et al. 2016; Majewski et al. 2017).

We should stress that the iron abundances derived in this
manner are fundamentally different from the overall metallicity

(also named [Fe/H]) discussed in previous sections. The
overall metallicity is determined from lines of all metals, i.e.,
all elements with atomic number higher than 2. Despite iron
being the element that contributes most line absorption for most
late-type stars, other elements have a non-negligible weight
when performing these measurements. On the other hand, the
iron abundance discussed in this section is derived almost
exclusively from the strength of iron lines, to the extent that
they are unblended with other features. In a sense the iron
abundances derived in this manner can be considered a more
pure measurement and should be more representative of the
actual iron abundances in these stars.
Figure 4 illustrates the position of the targets in the [C/Fe]

versus [Fe/H] plane, based on the OSIRIS data. Two groups
are visible in this plot, one with carbon-to-iron values at the
level of about [C/Fe] ∼ 2, and another with lower values
([C/Fe] < 1). The increasing relative carbon enhancement at
lower metallicity is considered as the signature of mixing and
fall-back in the supernovae explosions of the first generation of
metal-free stars (Umeda & Nomoto 2003). The stars with lower
[C/Fe] in Figure 4 are not necessarily inconsistent with this
picture, since the mass range for the progenitors and the

Table 3
Statistics (Mean and Standard Deviation) for the Differences between the Parameters Derived from Various Data Releases and Pipelines (RVS or SP) with Respect to

Those Obtained for the Same Stars from the OSIRIS Observations

Data Set Pipeline Nstars 〈ΔTeff〉 σ(Teff) áD ñglog σ( glog ) 〈Δ[Fe/H]〉 σ(Fe)
(K) (K) (cm s−2) (cm s−2) (dex) (dex)

Blanc RVS 9 265.42 581.77 −0.44 0.37 0.15 0.35
Blanc SP 9 −168.23 284.25 −0.39 0.31 0.17 0.38
Denali RVS 4 209.10 101.65 −0.03 0.26 0.09 0.18
Denali SP 4 137.98 92.94 0.02 0.16 0.10 0.14
Everest RVS 5 170.74 101.30 0.10 0.53 0.12 0.17
Everest SP 5 76.54 104.39 −0.07 0.23 0.03 0.22
Fuji RVS 5 115.26 102.31 −0.23 0.21 0.17 0.12
Fuji SP 5 89.52 102.32 −0.07 0.18 0.13 0.18

Note. Data sets are ordered by age, oldest first.

Figure 4. Carbon-to-iron ratio vs. iron abundance in the 10 stars from our
sample (red stars) together with metal-poor stars with carbon abundances from
the JINA database (blue circles; Abohalima & Frebel 2018). We also include
the 14 stars already known in the [Fe/H] < −4.5 regime (Christlieb et al. 2004;
Frebel et al. 2005; Norris et al. 2007; Caffau et al. 2011, 2016; Hansen
et al. 2014; Keller et al. 2014; Allende Prieto et al. 2015b; Bonifacio
et al. 2015; Aguado et al. 2018a, 2018b, 2019a; Nordlander et al. 2019;
González Hernández et al. 2020). The fraction of carbon-enhanced metal-poor
stars (CEMPs) in each regime are also shown.
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stochastic nature of the mixing and fall-back processes may
naturally lead to a large spread in carbon abundances
(Bonifacio et al. 2015). Chiaki et al. (2015) have modeled
the formation of the first stars considering the effect of dust
cooling in the protostellar cloud, and concluded that it is not
possible to form low-mass stars in the region highlighted in
Figure 4. The sample of stars currently available is consistent
with that regime, but the statistics are poor and DESI can play
an important role in enlarging the numbers of extremely metal-
poor stars with carbon determinations.

The [C/Fe] values returned by the SP pipeline, however, do
not show an agreement nearly as good as that found for [Fe/H]
in Table 2 for the same data release (Fuji). While the
approximate methodology adopted is expected to break down
for large deviations from the [C/Fe]= 0 value adopted in the
construction of the model grids, the reasons for the discre-
pancies found are of a different nature.

Early on during the commissioning of DESI it was found
that the blue collimators of the DESI spectrographs have an
imperfection in their coatings that induces an optical artifact
around 430 nm. The exact wavelength and the actual
distortions induced in the spectra vary from collimator to
collimator and somewhat as a function of time. An example of
this effect can be clearly seen in the middle left panel of
Figure 2. This issue makes it difficult to use DESI spectra to
infer carbon abundances from the CH band at 430 nm, which is
the main feature used to measure the abundance of this element
in medium-resolution optical spectra. Fortunately, the DESI
collimators are being replaced by others with identical
properties but without the 430 nm artifact.

The [Fe/H] values obtained with the same methodology
agree quite well with the OSIRIS determinations, with a mean
difference of 0.04 and a standard deviation of 0.14 dex, to be
compared with a mean difference of 0.13 and a standard
deviation of 0.18 dex found for the Fuji SP DESI determina-
tions of the global parameter [Fe/H].

We cannot use the OSIRIS observations to evaluate the
abundances of Mg and Ca from DESI spectra. The OSIRIS
observations do not offer useful Mg transitions that can be used
to derive the abundance of this element. In addition, as
explained in Section 4.2, a constant abundance ratio [α/Fe] is
assumed in the analysis of the OSIRIS data, which couples
strongly the inferred metallicity to the strength of the Ca II H
and K lines.

7. Conclusion

In this paper we report on the analysis of observations taken
with the OSIRIS spectrograph at the 10.4 m GTC of a sample
of metal-poor stars observed by DESI. The OSIRIS data have
lower spectral resolution and shorter wavelength coverage than
those offered by DESI, but a much higher signal-to-noise ratio,
and they benefit from a well-vetted data treatment and analysis
methodology customized for metal-poor stars.

The targets under consideration were chosen for being part
of the DESI commissioning observations, which in some cases
included some shortcomings or issues, but some of the targets
have since been reobserved by DESI. The DESI data analysis
pipelines have been evolving continuously since the instrument
started operations, and therefore multiple data releases,
corresponding to several observing periods, programs, and
versions of the data processing software, have been considered.

We find very good agreement between the atmospheric
parameters derived from DESI and OSIRIS data. In the most
recent incarnation of the DESI data, released as the DESI Early
Data Release, the inferred values of the stellar Teff, glog , and
[Fe/H] agree with the determinations from OSIRIS data to
better than about 100 K, 0.2 dex, and 0.2 dex, respectively.
This applies to both random and systematic errors, although
some of the latter may hide as they are shared by the analyses
of both the DESI and OSIRIS data. The results from the two
DESI Milky Way Survey pipelines, the SP and RVS branches,
agree fairly well, and therefore our conclusion applies to both.
The preliminary values of abundances of individual elements

provided by the DESI SP pipeline appear to be promising,
judging from the iron abundances obtained for these metal-poor
stars. The abundances of [Fe/H] show excellent agreement
with the OSIRIS values (mean difference of 0.04 dex and a
standard deviation of 0.14 dex), with even higher consistency
with them than the metallicities obtained in the global
simultaneous fitting of all atmospheric parameters. Although
we also have carbon abundances from the OSIRIS spectra,
those from DESI exhibit significant discrepancies, which we
associate with an artifact introduced at 430 nm by the DESI
collimators, which makes it difficult to derive reliable carbon
abundances from the CH band at the same wavelengths. The
collimators are progressively being replaced, and that will solve
this issue for future DESI observations.
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