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Due to errors introduced in the production process we would
like to correct the following sentences:

The first line of the abstract should read ‘A converse KAM
method for 3D vector fields, establishing regions through
which pass no invariant 2-tori transverse to a given direction
field, is tested on some helical perturbations of an axisymmet-
ric magnetic field in toroidal geometry.’

The second sentence of the third paragraph of section 2
should read ‘Although it is not straightforward, in the next sub-
section we describe the coordinate system, which requires first
considerations onB (in particular, its toroidal componentBφ).’

The first sentence of the third paragraph following the-
orem 3.1 should read: ‘For our examples it is simplest
if the chosen metric is diagonal in adapted toroidal
coordinates.’

The third sentence of the second paragraph of section 4
should read ‘Counting the initial conditions that are detec-
ted by the method allows one to approximately bound from
below the area (which in symplectic coordinates represents
the toroidal flux) not occupied by tori transverse to the chosen
direction.’

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

The paragraph above equation (13) should read ‘In all the
examples throughout this section and elsewhere, we take the
following values and function for the vector potential (6).’

The captions to figures 8 and 11 should both refer to
example 2, not example 1.

The last sentence of the third-to-last paragraph of the con-
clusions section 5 should read ‘Issues arisingwill be somewhat
similar to those for the planar circular restricted three-body
problem, treated in [6].’

The sixth paragraph of appendix B should read
‘Complications arise when the manifold comes with a
Riemannian metric, because that allows firstly to introduce
the idea of unit vectors and secondly to convert between vec-
tor fields and 1-forms.’
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Abstract
A converse KAM method for 3D vector fields, establishing regions through which passes no
invariant 2-tori transverse to a given direction field, is tested on some helical perturbations of an
axisymmetric magnetic field in toroidal geometry. It finds regions corresponding to magnetic
islands and chaos for the fieldline flow. The minimization of these regions is proposed as a tool
to help in the design of plasma confinement devices of tokamak and stellarator type.

Keywords: magnetic field, flux surface, converse KAM method

(Some figures may appear in colour only in the online journal)

1. Introduction

KAM theory provides sufficient conditions for the existence
of invariant tori in Hamiltonian systems. In particular, many
invariant tori persist from generic integrable Hamiltonian sys-
tems under smooth and small enough perturbations (for a
semi-popular introduction, see [1]). Nevertheless, it is still
hard to prove the existence of a realistic fraction of the tori
that is suggested to exist by numerical simulations, e.g. [2].

An alternative approach is to determine regions through
which no invariant tori of a given class pass. Termed converse
KAM theory [3, 4], it is much easier to implement than KAM
theory and gives close to optimal conclusions without excess-
ive computation.

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

The present work is an application to magnetic fields of
converse KAM theory, as extended in [5] to allow more gen-
eral classes of tori than the earlier references and to treat 3D
vector fields rather than positive-definite Lagrangian systems.
It follows the main points of the implementation presented
in [6], which was for the planar circular restricted three-body
problem on level sets of the Jacobi constant.

The case studied in this work is magnetic fields in tor-
oidal configurations; in particular, the identification of regions
through which no invariant tori (flux surfaces) pass of a given
class. We define a class of tori by specifying a direction
field almost everywhere and asking for tori that are trans-
verse to that direction field. The principal choice of the direc-
tion field is the gradient of a suitable notion of distance from
a closed fieldline (magnetic axis), with respect to a chosen
metric.

Our method uses the magnetic flux-form as principal rep-
resentation of a magnetic field. Given a vector field B pre-
serving a volume-form Ω, its flux-form is β = iBΩ. The integ-
ral
´
Sβ over any surface S (with boundary allowed) represents

the magnetic flux through that surface. Appendix A presents a
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summary of the relevant background. For a tutorial on the use
of differential forms in plasma physics, see [7].

In section 2, we introduce the magnetic fields to be studied
in this paper. In section 3, we explain how to apply the con-
verse KAMmethod tomagnetic fields. In section 4, we present
the results of a numerical implementation of the method on
the chosen fields. Section 5 discusses the results. Finally,
three appendices give pedagogical introductions to some of the
mathematics.

2. Toroidally helical magnetic fields

The magnetic fields that we choose to illustrate the converse
KAM method are perturbations of a circular tokamak field by
helical modes, based on [8]. They have the advantages that:

1. There is an explicit magnetic axis and an easily specified
class of tori that surround it.

2. With a single helical mode, the field is still integrable,
but has a computable island; the invariant tori outside the
island all belong to the chosen class and none of those
inside the island do, so the method can be tested on its
ability to detect the island.

3. With more than one helical mode, the field can be expected
to have the typicalmix of invariant tori of the original class,
islands, and chaos, so the method can be tested on such
cases.

4. They show how to handle fields presented in non-trivial
coordinate systems, which is the typical case for tokamak
and stellarator fields.

Given a coordinate system (x1,x2,x3), we will express a
magnetic field B in terms of its contravariant components Bi,
rather than its physical ones; they differ by length factors (see
appendix B for a summary about components of vector fields
in curvilinear coordinates). An advantage is that the equations
of motion for fieldline flow are just ẋi = Bi(x); here ‘time’ is
to be understood along the magnetic field lines.

Our fields are simplest described and treated in an adap-
ted toroidal coordinate system (ψ,ϑ,ϕ), which is a variant
of the standard toroidal coordinates (r,θ,ϕ). While it is not
straightforward to describe the coordinate system, it requires
first considerations on B; in particular, its toroidal compon-
ent Bϕ, which we do in the next subsection. This might seem
demanding, but working in a non-trivial coordinate system is
likely to be part of any application to realistic fields.

First, we recall the standard toroidal coordinates (r,θ,ϕ).
They are related to Cartesian coordinates (x,y,z) through

x= Rsinϕ, y= Rcosϕ, z= rsinθ,

where

R= R0 + rcosθ,

for some R0 > 0 and 0⩽ r< R0. As shown in figure 1, R0 is
the radius of the magnetic axis and R represents the cylindrical
radius relative to the z-axis. In these coordinates, the metric
tensor is represented by the matrix diag(1,r2,R2).

Figure 1. Toroidal coordinates.

2.1. Construction of adapted coordinates

Following [8], we introduce coordinates (ψ,ϑ) to make the
restriction βT of the magnetic flux-form β to a poloidal section
(ϕ = constant) take the form

βT = dψ ∧ dϑ, (1)

where ∧ denotes the exterior product of differential forms (see
[7] for a tutorial). First, we define ψ as the toroidal magnetic
flux across a poloidal disk of radius r about a point of the mag-
netic axis, divided by 2π. Thus, integrating

βT = rRBϕ dr∧ dθ, (2)

over a poloidal disk of radius r yields ψ. Then, ϑ can be con-
structed by equating (1) and (2), i.e. the condition

rRBϕ dr∧ dθ = dψ ∧ dϑ. (3)

Therefore the transformation (r,θ) 7−→ (ψ,ϑ) basically
relies on the toroidal component Bϕ. We choose our magnetic
fields to all have

Bϕ =
B0R0

R2
(4)

with B0 > 0. This gives a simple but realistic form for Bϕ, cor-
responding to an external poloidal current 2πR0B0/µ0. Hence,
we arrive at [8, 9]

ψ = B0R0

(
R0 −

√
R2
0 − r2

)
tan

ϑ

2
=

√
R0 − r
R0 + r

tan
θ

2
.

(5)

Note that ψ ∼ B0r2/2 as r/R0 −→ 0, ψ is restricted to non-
negative values less thanB0R2

0, and has a coordinate singularity
at 0.

The magnetic flux-form β plays a key role in the applica-
tion of the converse KAM method, so it is useful to simplify
its expression by suitable coordinates. Here, we focus on the
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restriction βT of β to poloidal sections because we will see
that, for our examples, we can implement the method using
only βT. For a more general implementation, it is essential to
use the full flux-form β.

Remark 2.1. Another way of thinking of (ψ,ϑ) and βT is
related to the standard Hamiltonian formulation of magnetic
fields. The latter typically uses ϕ as time along the field lines,
assuming Bϕ 6= 0. Field line flow can then be written as a
time-dependent Hamiltonian system with Hamiltonian func-
tion H=−Aϕ (A being the vector potential, see below) and
symplectic form ω = βT. Thus, bringing (2) to the form (1)
simply amounts to finding the canonical coordinates (ψ,ϑ) for
ω. The Hamiltonian treatment is neither necessary nor simpler
for either the converse KAM or the helical fields we use. The
flux-form β is key instead.

2.2. Magnetic fields studied

To enforce volume-preservation by the fieldline flow, we spe-
cify B as the curl of a vector potential A. In terms of the cov-
ariant components of A, the contravariant components of B are
given by

Bi =
1√
|g|
ϵijk∂jAk,

where ϵ is the Levi-Civita symbol and |g| is the determinant
of the matrix g representing the metric tensor, ds2 = gijdxi dxj.
In our adapted toroidal coordinates, the volume factor

√
|g| is

1/Bϕ = R2/(B0R0). This can be shown without finding g, by
computing the volume-form Ω= dx∧ dy∧ dz= rR dr∧ dθ∧
dϕ and using (3)–(4) for the toroidal flux.

We take a vector potential with helical modes introduced in
its toroidal component, of the form (in covariant components)

Aψ = 0

Aϑ = ψ

Aϕ =−

[
w1ψ+w2ψ

2

+
∑
m,n

εmnψ
m/2fmn(ψ)cos(mϑ− nϕ + ζmn)

]
, (6)

where w1 ∈ R, w2 6= 0, m,n are integers with m⩾ 2, fmn are
smooth functions and ζmn arbitrary phases. The factor ψm/2 is
used to make the resulting vector potential smooth at ψ= 0
(this was not done in [8] but its authors were interested there
only in the neighbourhoods of islands). The coefficientw2 pro-
duces shear. Extensions to examples with a change of sign of
shear can be achieved by adding a term w3ψ

3; that would be
a good next test case for the method, because in contrast to
[4], the method here does not require shear, but we leave it for
future work.

The vector potential (6) gives rise to the magnetic field
B= (B0R0/R2)Vwhere the components of the auxiliary vector
field V are

Vψ =
∑
m,n

mεmnψ
m/2fmn(ψ)sin(mϑ− nϕ + ζmn)

Vϑ = w1 + 2w2ψ +
∑
m,n

εmnψ
m/2−1

×
[
m
2 fmn(ψ)+ψ f ′mn(ψ)

]
cos(mϑ− nϕ + ζmn)

Vϕ = 1. (7)

The cylindrical radius R occurring in the conversion from V to
B can be expressed in our adapted coordinates via

R=
R2
0 − r2

R0 − rcosϑ

with

r=

√
2
ψ

B0
− ψ2

B2
0R

2
0

,

but we can avoid the conversion by applying the converse
KAM method to V rather than B, as will be explained.

Because we takem⩾ 2, the fields all have ψ= 0 as a closed
fieldline as claimed, which we call the magnetic axis.

We define the principal class of tori to be the differentiable
tori that are transverse to ∇ψ. For example, with no helical
modes, the field is integrable with integral ψ and the invariant
tori ψ = constant belong to the principal class. So do all C1-
small deformations of them. Specifying∇ψ entails a choice of
Riemannian metric, but there is no need to use the Euclidean
one, especially as in the adapted toroidal coordinates its com-
putationwould add extra work. It is preferable to choose amet-
ric so that ∇ψ is in the same direction as ∂ψ (see appendix B
for the distinction; in particular, this fails for the Euclidean
metric: the adapted toroidal coordinates are not orthogonal).
Then, the principal class of tori consists of the graphs of ψ as
a differentiable function of (ϑ,ϕ). However, we keep the more
general specification ∇ψ for flexibility.

The last ingredient to describe is the full magnetic flux-form
β (as opposed to just its restriction βT to poloidal sections).
This is defined by β = iBΩ where Ω is the volume form, or
equivalently by β = dA♭, where

A♭ = Aψ dψ +Aϑdϑ+Aϕ dϕ

(it is better to think of the vector potential A as a 1-form poten-
tial A♭ for β). Thus

β = Vψ dϑ∧ dϕ +Vϑdϕ ∧ dψ +Vϕ dψ ∧ dϑ.

Because Vϕ = 1, we see that restricted to a poloidal section,
β = βT = dψ ∧ dϑ, as claimed earlier.

2.2.1. Single helical mode. A nice feature of our chosen
form of the field is that with a single helical mode, the field
is still integrable [8]. Indeed, it has the invariant (i.e. integral
of motion)

Ψ =−nψ−mAϕ . (8)

3
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Figure 2. Level sets of Ψ on the poloidal section ϕ= 0 for (m,n) = (2,1) and standard values given by (13), in Cartesian (left) and
symplectic (right) coordinates.

This can be checked directly. Alternatively, it can be derived
from the symmetry u= n∂ϑ+m∂ϕ, as follows. The vector
field u preserves the components Aψ,Aϑ,Aϕ in (6), and there-
fore A♭, i.e. LuA♭ = 0. Thus, the rate of change of u ·A along
B is

LB(u ·A) = iBdiuA
♭ = iB(Lu− iud)A

♭ = iB(LuA
♭− iuiBΩ) = 0,

meaning Ψ =−u ·A is conserved by B. This result holds not
only for fields with a single helical mode, but also for any field
with potential (6) in which Aϕ is a function of only ψ and a
single combination mϑ− nϕ of the angle variables. Note that
although β is invariant under u, since Luβ = dLuA♭ = 0, the
magnetic field B itself is not, as u is not volume-preserving.

In general, the integral gives rise to a family of invariant
tori of the principal class and (if the signs are appropriate) a
family that foliates an island. See figure 2 for an example on a
poloidal section.

To help orient the reader, we plotted this figure first in
Cartesian coordinates, but in the future we will just plot in
‘symplectic’ coordinates

ỹ=
√
2ψ/B0 cosϑ

z̃=
√
2ψ/B0 sinϑ

(9)

on the poloidal section ϕ= 0. Near the magnetic axis, this is a
small distortion (especially for large aspect ratio r/R0 −→ 0)
of the true yz-plane x= 0, but with area equal to the toroidal
flux and the magnetic axis shifted to the origin.

In particular, form= 2 and f(ψ) = f0 + f1ψ, completing the
square shows that the tori are the components of the sets where

(
ψ− n/2−w1 − εf0 cosζ

2(w2 + εf1 cosζ)

)2

=
Ψ

2(w2 + εf1 cosζ)
+

(n/2−w1 − εf0 cosζ)2

4(w2 + εf1 cosζ)2
, (10)

with ζ = 2ϑ− nϕ+ ζ2n. These are graphs of ψ as a function
of (ϑ,ϕ) if and only if the righthand side is everywhere pos-
itive. Supposing w2 > 0, w1 < n/2, (n/2−w1)f1 + 2w2f0 6= 0
and ε> 0 is small enough, we obtain the island explicitly as
the set where

Ψ ⩽−1
2
(n/2−w1 − εf0)2

w2 + εf1
. (11)

The formula for other combinations of signs can be obtained if
desired, but if |(n/2−w1)f1 + 2w2f0|< ε there is a more com-
plicated island with four critical points. Note that the tori out-
side the island might not all be transverse to ∇ψ if the metric
is not well chosen and ε is not small, but they are transverse to
∂ψ. This explains our preference for a metric such that ∇ψ is
in the direction of ∂ψ.

3. Converse KAM for magnetic fields

The basic idea of converse KAM methods is to consider how
infinitesimal displacements (‘tangent vectors’ in mathematical
terminology) rotate under a flow. If a 3D flow has an invariant
orientable surface of a given class, then it prevents infinites-
imal displacements from rotating from one side of it to the
other. So if an infinitesimal displacement from some traject-
ory rotates incompatibly with this restriction, then there is no
invariant surface containing that trajectory.

To make this precise, we have to specify a class of surfaces,
in particular tori, and make clear what qualifies as rotating
from one side to the other for all candidate tori in this class.
We achieve these by choosing a ‘direction field’ ξ and a 1-
form λ, both to be explained below, and using the magnetic
flux-form β. In the special case of fields with ‘stellarator sym-
metry’ we explain how to streamline themethod for symmetric
trajectories.

The converse KAM theory in continuous time was first
developed for Hamiltonian systems. It is standard knowledge

4
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that magnetic fields can be regarded as Hamiltonian systems
(appendix C describes the way we prefer to do this), but it is
more straightforward to work directly with the magnetic flux-
form.

3.1. Direction field

For a vector field B on an oriented 3D space, the converse
KAM method of [5] eliminates regions through which there
pass no invariant tori of B transverse to a given 1D foliation.
A continuous choice of orientation can be assigned to the
leaves of the foliation and thus a continuous choice of non-
zero vectors ξ tangent to the foliation can be made, indicat-
ing the orientation. Because only the direction matters, not the
magnitude, we call ξ a direction field (in standard differential-
geometric terminology, ξ is the distribution associated to the
foliation).

As presented in the previous section, we choose the dir-
ection field for the principal class of tori in our examples to
be ∇ψ with respect to some metric (which need not be the
Euclidean one). In practice, we chose the metric to make ξ be
in the direction of ∂ψ, so that we can be sure of the classi-
fication of tori for integrable fields with one helical mode. We
present the method for general∇ψ, however, for compatibility
with [6] and potential applications to include island tori where
we’d replace ψ by Ψ of equation (8), and to guiding-centre
motion.

An important extension is required, however, to cater for
classes of tori around a magnetic axis. Namely, we allow the
direction field ξ to have zeroes. For example, this is the case
for∇ψ on the magnetic axis. Note that if a torus is transverse
to ξ then a fortiori it does not intersect the zero-set of ξ.

3.2. Nonexistence condition

The method of [5] gives a sufficient condition for the non-
existence of invariant tori of a 3D vector field through a given
point, transverse to a direction field ξ. Here, we describe its
adaptation to magnetic fields B. We will assume B is nowhere
zero in the domain of interest; equivalently, the kernel of β is
one-dimensional at every point.

Before we start, for any positive function f, the vector field
V= B/f has the same invariant tori as B. So it is a good idea
to choose a function f to simplify the expression of V. See
the previous section, for example. In general, V no longer pre-
serves the same volume-formΩ asB but it preserves the related
volume-form fΩ. Also, the important relation iBβ = 0 is inher-
ited by V: iVβ = 0. We will treat B in what follows, but one
should bear in mind this possibly useful pre-processing.

Given an initial point s0 = s(0) in 3D space, take the initial
tangent vector ηs0 = ξs0 . For t positive or negative, compute
the propagation of s(t) and ηs(t) under the dynamics ṡ= B(s)
and the linearized dynamics η̇s = DBs ηs, respectively. If there
is an invariant torus T passing though s0 that is transverse to ξ,
then ηs(t) must stay on the same side of T for all t. In particular,

ηs is never of the form c1ξs+ c2Bs with c1 < 0. Checking this
condition can be broken down into two steps:

(i) Examine if (ηs, ξs,Bs) pass through a case of linear
dependence.

(ii) If so, examine the sign of c1.

If one finds a time at which the stated vectors are linearly
dependent with c1 < 0 then the given trajectory does not lie on
any invariant torus transverse to the given field ξ.

The conditions (i) and (ii) are stopping criteria for the integ-
ration of s(t) and ηs(t). To detect them, we follow the ‘gen-
eral’ formulation of [6]. In the present context, this uses the
magnetic flux-form β for (i) and a 1-form λ for (ii) such that
λ(B) = 0 and λ(ξ)> 0 (except on zeroes of ξ). The reason that
β suffices here (instead of the symplectic form on the energy
levels used in [6]) is thatB belongs to the kernel of β, hence the
triple product of (ηs, ξs,Bs) using the standard volume-form
Ω= |B|−2B♭ ∧β reduces to β(ηs, ξs). Therefore, the general
formulation translated to magnetic fields says that

Theorem 3.1. Given initial conditions s0 = s(0), choose ini-
tial vector ηs0 = ξs0 . If there is a time t such that at s= s(t):
(i) β(ηs, ξs) changes sign, and (ii) λ(ηs)< 0, then there is no
invariant torus through s0 transverse to ξ.

Thus, we can mark s0 (and indeed its whole forward and
backward orbit) as a point in the region of nonexistence of the
desired class of invariant tori. In other words, we can eliminate
s0 (and its orbit) from being on invariant tori of the given class.

To apply this theorem, one needs to choose a 1-form λwith
the required properties. There is some freedom here. In the
case of ξ =∇ψ for some choice of metric, following the steps
from [6], we choose λ= dψ − kB♭, where k= B ·∇ψ/|B|2 =
Bψ/|B|2 and both B♭ and |B|2 are defined using the chosen
metric (B♭ is the 1-form such that for all vectors u, B♭u= B ·
u). By construction,λ(B) = 0 andλ(ξ)> 0 everywhere except
where ξ is parallel to B (by the Cauchy–Schwarz inequality).
In our case, Bϕ > 0 implies that the only places where ξ is
parallel to B are where ξ= 0, i.e. on the magnetic axis.

Our examples are simplest if the chosen metric is diagonal
in adapted toroidal coordinates. It is also best if the metric
makes dimensional sense. Thus, we use

ds2 =
1

2B0ψ
dψ2 +

2ψ
B0

dϑ2 +R2
0dϕ

2,

which approximates the Euclidean metric near the magnetic
axis.

In the vector calculus notation, the two quantities in the-
orem 3.1 are expressed as β(η,ξ) = ξ ·βη and λ(η) = η ·
(∇ψ− kB) for the aforementioned choice for λ, considering
β as a matrix (as described in appendix B), and · denoting the
dot product with respect to the metric used. Also, note that
η ·∇ψ = ηψ, independently of the metric.

Note that if we use V instead of B for our examples
then Vϕ = 1 implies that an initially poloidal vector remains

5
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poloidal. Assuming ξ is chosen to be poloidal, this means
firstly, the integration of tangent orbits does not require the
ϕ-component to be represented, and secondly, β needs evalu-
ating only on pairs of poloidal vectors, where it has the simple
form dψ ∧ dϑ. We applied the method to both B and V, the
first to demonstrate its general applicability, and the second to
speed up computations.

3.3. Using stellarator symmetry

The method of the previous subsection has a refinement for
systems that admit a time-reversal symmetry, as noted and
used in [4]. In the present context of magnetic field lines,
the equivalent is the ‘stellarator symmetry’ R : (r,θ,ϕ) 7−→
(r,−θ,−ϕ) [10], that translates to (ψ,ϑ,ϕ) 7→ (ψ,−ϑ,−ϕ).
The flow of a magnetic field B has stellarator symmetry if B
is R-antisymmetric, i.e. BR=−dRB, or equivalently B̃s̃ =
−Bs, where B̃= dRB and s̃=R(s). Although this hypothesis
narrows the magnetic fields that can be considered, it is a com-
monly assumed property in the fusion plasma literature and the
design of stellarators. If the phases ζmn are chosen zero then
our examples have stellarator symmetry.

For magnetic fields with stellarator symmetry and initial
conditions on a symmetry line (the half-lines of fixed points of
R, i.e. θ= 0 orπ,ϕ= 0 orπ, r> 0) it is possible to simplify the
test and speed up the computation by a factor of at least two,
as the backward trajectory is a reflection byR of the forwards
one. Only now we need to choose ξ to be R-symmetric, and
to take as initial condition anR-antisymmetric vector ηs0 (not
ξs0 as in the general formulation) on the symmetry semi-line,
independent of Bs0 .

The two steps of the non-existence condition are then
reduced to one, namely β(ηs, ξs) = 0 for some t> 0. This is
because if ηs0 evolves to ηs(t) for some t> 0 with β(ηs, ξs) = 0,
then ηs = c1ξs+ c2Bs for some c1,c2, and c1 6= 0 since η was
independent of B and independence is preserved by the evol-
ution. But, by reflection, ηs0 also evolves backwards in time
to η̃s̃ =−c1ξ̃s̃+ c2B̃s̃. As previously explained, the change in
sign of the component along ξ is incompatible with the exist-
ence of an invariant torus through s0 transverse to ξ.

Theorem 3.2. Let B and ξ be R-antisymmetric and R-
symmetric, respectively. Given initial conditions s0 = s(0) on
the symmetry lines, choose an initial R-antisymmetric vec-
tor ηs0 . If there is a time t such that β(ηs, ξs) changes sign
at a point s= s(t), then there is no invariant torus through
s0 = s(0) transverse to ξ.

To fix these ideas, we choose ξ = ∂ψ (equivalently, ψ∂ψ
to make it have a limit on the magnetic axis, as its magnitude
does not matter) and ηs0 = ∂ϑ. Then, they both lie in a poloidal
plane and so under the dynamics of V, ηs remains in a poloidal
plane and hence β can be simplified to dψ ∧ dϑ again.

4. Results

In this section, we apply the converse KAM method laid out
in section 3 to integrable and non-integrable cases of magnetic
fields of the type described in section 2. In particular, we apply

the method to find regions without invariant tori (that is, flux
surfaces) transverse to the ψ-direction. Eliminated from being
on such tori, they reveal magnetic islands and chaotic regions.

More specifically, theorem 3.1 is applied to regular grids of
initial conditions in symplectic coordinates (ỹ, z̃) (9) over the
plane ϕ= 0 for the magnetic fields given by (7). The resolu-
tion of the grid is 160× 160 initial conditions taken in each
sample. Counting the initial conditions that are detected by
the method allows to approximately bind from below the area
(which in symplectic coordinates represents the toroidal flux)
not occupied by tori transverse to the chosen direction.

Note that the areas are the same when computed in sym-
plectic coordinates (ỹ, z̃) or in (ψ,ϑ), because dỹ∧ dz̃= dψ ∧
dϑ. Because of this, the area S of nonexistence in the plane
ϕ= 0 can be estimated by counting the number of initial con-
ditions detected by theorem 3.1 on a regular grid over (ỹ, z̃,ϕ =
0). In other words, if S is the set of points detected by theorem
3.1 on aN×N regular grid over [ỹ0 −L, ỹ0 +L]× [̃z0 −L, z̃0 +
L], the area S is approximated by

S∼ 4L2

N2

N∑
i=1

N∑
j=1

1{(ỹi ,̃zj)∈S}. (12)

Also, theorem 3.2 is applied to the same magnetic fields,
however on a different set of initial conditions. As the method
requires orbits starting from stellarator-symmetric lines, the
initial conditions are taken uniformly in

√
2ψ/B0 along the

two semi-lines θ = 0,π (where z̃= 0) on the ϕ= 0 plane. In
particular, it uses a regular partition of 200 points of the inter-
val [−1,1] in the ỹ-axis. We could also have taken initial con-
ditions on the other two half-lines (θ = 0,π on ϕ = π), but
for the choice of signs of εmn that we use, we believe that
ϕ = 0, θ = 0 is ‘dominant’ in the sense that all the primary
island chains have an elliptic point on it, and this tends to max-
imise the set of eliminated trajectories.

The figures that display the results of theorem 3.2 are fol-
lowed by Poincaré sections produced from the iteration of the
selected initial points. If any point is detected for nonexistence,
then so is its whole trajectory; thus, even though theorem 3.2
is restricted to symmetric initial conditions, it has implications
for a much larger set. However, estimating the areas occupied
by the detected points from the results of this formulation is
a more challenging problem, which we hope to address in the
future.

To cater for the possibility that the termination condition
is never reached on a trajectory, we choose a timeout tf . If
the timeout is reached, then the status of the chosen initial
condition is undecided. This, of course, should include all ini-
tial conditions that are on invariant tori of the given class, but
may include others for which more time would be required
to detect the nonexistence. Depending on the implementation,
the timeout values might not indicate how long the trajector-
ies were. Thus, in the figures, we also display the average of
the last computed value of ϕ divided by 2π, i.e. the average
number of toroidal laps.

For a trajectory, we denote by t∗ the time at which non-
existence was detected or tf if it was not detected. As ameasure
of non-existence of tori of a given class, figures show in hues

6
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Figure 3. Converse KAM results using theorem 3.1 for Example 1 with ε= 0.004 in symplectic coordinates (9). On the left, red =
nonexistence, blue = undetermined. On the right, hues vary from fast detection (red) to no detection at all (blue) within timeout. The white
curves are level sets of the invariant Ψ.

the relative time of detection, using the ratio q= t∗/tf of time
of detection to timeout.

In all the examples throughout this section and elsewhere,
we take the following values and functions for the vector
potential (6)

w1 = 1/4,

w2 = 1,

B0 = 1,

R0 = 2,

ζmn = 0,

f(ψ) = ψ−R2
0/B0.

(13)

As previously mentioned, the results in all the forthcoming
figures are presented over the poloidal plane ϕ= 0. Unless
stated otherwise, the timeout used is tf = 200, which amounts
to ∼32 laps around the z-axis.

4.1. Example 1: an integrable case

The first example considered corresponds to the magnetic field
derived from (6) for the resonance 2/1 (i.e. (m,n) = (2,1)).
That is,

Aϕ =−
[
ψ/4+ψ2 + εψ (ψ − 4)cos(2ϑ−ϕ)

]
. (14)

As explained in section 2.2.1, such a field is integrable, lying
on surfaces of constant Ψ =−ψ− 2Aϕ.

The results from the general formulation of theorem 3.1
applied to this case are shown in figure 3.

The choice of m= 2 allows an analytical expression for the
separatrix delimiting the island. It is given by (10) with the
limiting value of Ψ from (11). From this, we obtain the width
∆ψ for the island as a function of ϑ at given ϕ:

∆ψ =

√
(n/2−w1 − εf0 cosζ)2

(w2 + εf1 cosζ)2
− (n/2−w1 − εf0)2

(w2 + εf1)(w2 + εf1 cosζ)
,

with ζ = 2ϑ− nϕ. Recall that w2 corresponds to shear,
so if f1 = 0 we see the familiar behaviour ∆ψ ∼
2
√
εf0( n2 −w1)sin(ζ/2)/w2 for small perturbation ε. The area

SI of the island(s) can be computed by numerical integration
of
´
∆ψ dϑ. By our choice of coordinates, this is equal to its

toroidal flux.
Using (12), we calculate the area S of the nonexistence

region detected by theorem 3.1. In figure 4, we see it as a
function S= S(tf) of timeout tf. Recall that timeout units cor-
respond to tf/(2π) laps around the z-axis. As expected, the plot
shows that the value of the estimated area increases monoton-
ically with tf up to a limiting value that agrees with the island
area SI.

Note also that the time of first detection of the island can be
predicted: it is the time for a tangent vector at the centre of the
island to make one half of a poloidal revolution (this assumes
that the rotation number in the island decreases as distance
from the centre increases, else it would be detected earlier). In
terms of Greene’s residue R, which can be written as sin2(α/2)
for eigenvalues e±iα of the return map to a poloidal section, we
see that for small R (i.e. approximating R= (α2 )

2), the time tc
of first detection should be asymptotically

tc ∼ π
2 T/

√
R, (15)

where T is the time for one toroidal revolution.
Figure 5 shows the numerically computed residue for the

centre (and the x-point) of the island as a function of ε.
Using the V-field, the period of the island centre is 4π, thus
π
2 T≈ 19.74, and comparing with figure 4, we see that the for-
mula (15) gives a reasonable prediction of the first time of
detection of the island. Furthermore, for this example, we see
from figure 4 that more than half the area of the island has been
detected within twice the time of first detection.

The area S of the nonexistence region detected by theorem
3.1 as a function S= S(ε) of the perturbation parameter ε is
presented in figure 6 for different values of timeout tf. It shows
that the error of the estimation is reduced for small values of
ε as tf increases, but ultimately deviates for larger ε. The most
likely explanation of this behaviour is that our regular grid

7
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Figure 4. Nonexistence area S(tf) detected by theorem 3.1 of converse KAM for different values of ε for Example 1. The dashed lines
represent the corresponding island areas SI.

Figure 5. Greene’s residue of the island centre (red) and negative residue of the island x-point (blue) for example 1, as functions of ε.

does not have enough points in the magnetic island to give
a reliable estimation for this region of the parameter.

Figure 7 shows the converse KAM results now using the-
orem 3.2. Since this theorem can only be applied on symmetric
semi-lines, the results cannot be directly used to estimate the
nonexistence area. The left picture shows the relative times
of detection in terms of q= t∗/tf for initial conditions on the
partition of the semi-lines. The picture on the right shows the
Poincaré plot obtained from iteration of the selected initial
conditions for the given timeout tf. Compared to the one in

figure 3, it is worth noting that the time of first detection of the
island is now half as much, as expected.

4.2. Non-integrable examples

Next, we consider magnetic fields with more than one helical
term, derived from (6). The Poincaré section in all the forth-
coming examples displays features of typical near-integrable
systems: tori of different classes and chaotic regions near the
hyperbolic saddle of the resonances (magnetic islands). Both

8
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Figure 6. Nonexistence area S(ε) detected by theorem 3.1 of converse KAM for different values of tf for example 1, compared with the area
SI(ε) of the island.

Figure 7. Converse KAM results using theorem 3.2 for example 1 with ε= 0.004, over the symmetrical semi-lines ϑ= 0,π (̃z= 0). Hues
vary from fast detection (red) to no detection at all (blue) within timeout; level sets of the invariant Ψ are superimposed (right). Relative
time of detection as a function of symmetrical initial position (left).

formulations, theorems 3.1 and 3.2, yield closely aligned res-
ults. Using a radial direction field, they are able to identify and
eliminate points (and in fact whole field lines) that do not lie
on tori of the original class. They do not distinguish, however,
between the ones lying on tori of another class or in chaotic
regions. However, if required, the use of a suitable foliation
centred on the elliptic field lines of an island chain could dif-
ferentiate between these two cases.

4.2.1. Example 2. The second example corresponds to the
magnetic field derived from (6) for two modes now, namely

the resonances 2/1 and 3/2 with same perturbation parameter
value ε21 = ε32 = ε. That is,

Aϕ =−
[
ψ/4+ψ2 + εψ(ψ− 4) [cos(2ϑ−ϕ)

+ψ1/2 cos(3ϑ− 2ϕ)
]]
. (16)

Following the same order as in the previous example, the con-
verse KAM results using the formulation of theorem 3.1 are
shown in figures 8–10.

Figure 8 shows the detection in symplectic coordin-
ates, using the same colour scheme as in figure 3. As we

9
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Figure 8. Converse KAM results using theorem 3.1 for example 1 with ε= 0.003 in symplectic coordinates (9). On the left,
red = nonexistence, blue = undetermined. On the right, hues vary from fast detection (red) to no detection at all (blue) within timeout.

Figure 9. Nonexistence area S(tf) detected by theorem 3.1 of converse KAM for different values of ε for example 2.

can see on the right, the different q-hues suggest the loc-
ation of the two magnetic islands corresponding to this
example.

Figure 9 shows the computed area S= S(tf) of nonexistence
from theorem 3.1 for the present example for different values
of the perturbation parameter ε. As in figure 4, we see that the
estimated area increases monotonically with tf and seems to
be approaching a limit.

Figure 10 shows the estimated area S= S(ε) of nonexist-
ence from theorem 3.1 now as a function of the perturbation
parameter ε for different values of timeout tf. The behaviour
seems to be not as simple as in figure 6 for the case of a single

resonance. A possible explanation for this may be the interac-
tion between the resonances as they grow with ε.

The converse KAM results using theorem 3.2 are shown in
figure 11. The left plot, compared to the one in figure 7, shows
an asymmetrical distribution of the relative time of detection q,
which is consistent with the resonances used in this example.

4.2.2. Example 3. The next example corresponds to the
magnetic field obtained from (6) for the resonances 2/1 again
and 5/4 now, with fixed value ε21 = 0.001 and varying value of
ε54 = ε. That is,

10
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Figure 10. Nonexistence area S(ε) detected by theorem 3.1 of converse KAM for different values of tf for example 2.

Figure 11. Converse KAM results using theorem 3.2 for example 1 with ε= 0.003, over the symmetrical semi-lines ϑ= 0,π (̃z= 0). Hues
vary from fast detection (red) to no detection at all (blue) within timeout (right). Relative time of detection as a function of symmetrical
initial position (left).

Aϕ =−
[
ψ/4+ψ2 +ψ (ψ − 4) [ε21 cos(2ϑ−ϕ)

+εψ3/2 cos(5ϑ− 4ϕ)
]]
. (17)

The converse KAM results using the formulation of the-
orem 3.1 are shown in figures 12–14. Figure 12 shows the
detection in symplectic coordinates for ε= 0.01, figure 13
shows the computed area S= S(tf) of nonexistence for the
present example for different values of the perturbation para-
meter ε, and figure 14 shows S= S(ε) for different val-
ues of timeout tf. The results behave as expected, except

for the particularity that the islands seem to be detec-
ted at relatively different times. This is noticeable in the
right plot of figure 12, where the resonance 5/4 is seen
mostly in the orange area, while the 2/1 has a green hue
instead. Larger timeout tf is required for the method to detect
magnetic islands of small amplitude (as quantified by the
residue).

The corresponding converse KAM results of theorem 3.2
are shown in figure 15. The results are similar to figure 11 for
example 2, besides the different relative detection time q for
each magnetic island that we see again.
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Figure 12. Converse KAM results using theorem 3.1 for example 3 with ε= 0.01 in symplectic coordinates (9). On the left, red =
nonexistence, blue = undetermined. On the right, hues vary from fast detection (red) to no detection at all (blue) within timeout.

Figure 13. Nonexistence area S(tf) detected by theorem 3.1 of converse KAM for different values of ε for example 3.
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Figure 14. Nonexistence area S(ε) detected by theorem 3.1 of converse KAM for different values of tf for example 3.

Figure 15. Converse KAM results using theorem 3.2 for example 3 with ε= 0.01, over the symmetrical semi-lines ϑ= 0,π (̃z= 0). Hues
vary from fast detection (red) to no detection at all (blue) within timeout (right). Relative time of detection as a function of symmetrical
initial position (left).

5. Conclusions

This paper reports on the numerical implementation of the
converse KAM method from [5] on some examples of mag-
netic fields. It has demonstrated that the method allows one to
identify many of the points that do not belong to any flux sur-
face of a given class. It has been shown to reach decisions in
relatively short times on these examples. In an example with
an integrable island, it detects a large fraction of the island

in a fieldline flow time of order π
2 T/

√
R (in the symmetric

formulation, or twice this for the general formulation), where
T is the time for one revolution around the z-axis and R is
Greene’s residue for the island. For fields with stellarator sym-
metry, it suffices to examine initial conditions just on the sym-
metry lines.

The method can be used to compute a good lower bound
for the toroidal flux that is not on flux surfaces of the desired
class. This is suitable for passing as an objective function to
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be included in optimisation of the design of stellarator fields.
One can also compute a lower bound on the volumenot on flux
surfaces of a given class, by integrating the return time with
respect to the toroidal flux over the detected points on a pol-
oidal section.

A crucial component of this method is the selection of a
suitable direction field transverse to the class of tori of interest.
Our examples have a natural one, which makes them a simple
test case. For a more general magnetic field, one would need to
determine the magnetic axis and a suitable direction field from
it, but the freedom to choose the direction field means that the
method could in principle be used for fieldswith a bean-shaped
cross-section, as in W7X. One could also be interested in the
survival of tori both around the magnetic axis and on a major
island. For example, for perturbations of an integrable field
with one helical mode, denoting by Ψ the conserved quant-
ity for the integrable case, one can use the direction field ∇Ψ,
with respect to some metric. For some discussion about how
to choose the direction field in other contexts, see [6, 11].

Although the examples treated here are simple, they already
include ones that display a typical mix of islands and chaos.
A next goal is to report on applications of the method to
fields produced by the stellarator optimisation code SIMSOPT.
These are designed to be close to integrable, so the aim is to
detect and quantify the remaining deviations from integrabil-
ity, which requires an efficient method, as we believe is ours.

It would also be good to implement an extension of the
method called ‘killends’, which uses bounds on the slope of
invariant tori of a given class to extend the region through
which they cannot pass [5]. This can eliminate more points
without computing more trajectories. Indeed, it can result in
a saving on the total length of trajectories computed, because
in essence the trajectories from a grid of points in a transverse
section are computed for one revolution, whereas in the gen-
eral formulation used here, the trajectories from a grid were
computed until non-existence detected or timeout, which typ-
ically takes many revolutions.

The formulations presented can be extended to guiding-
centre motion, which is a 2-parameter family of 3D-systems,
parametrised by the magnetic moment µ and energy E. The 3D
space is the set of (x,v) ∈ R3 ×R satisfying 1

2mv
2 +µ|B(x)|= E,

where v represents the parallel velocity. The flux-form β is
replaced by eβ+md(vb♭), where b is the unit vector along
the magnetic field (e and m are the charge and mass of the
particle). One would have to choose appropriate classes of tori
for guiding-centre motion. These issues will be somewhat sim-
ilar to those for the planar circular restricted three-body prob-
lem, treated in [6].

In the magnetic field context, a similar method (‘phase rota-
tion’) was introduced byWhite [12] (see also figure 6.8 in [13])
and applied to guiding-centre motion in a magnetic field, but
in our opinion it needs some clarification. Firstly, it needs stat-
ing that the class of tori under consideration are the graphs of
functions P= Pζ(θ) in the given coordinate system. Secondly,
it is stated that the angle χ for the displacement vector between

orbits on different invariant tori cannot rotate by more than π,
but should specify that this means that relative to the vertical,
χ has to remain in (−π,π). Our method can be considered as
the limiting case from displacement to tangent vectors, which
may be more effective because the displacement vector from
a trajectory in an island to a trajectory with a different rota-
tion number might not rotate by more than π whereas an infin-
itesimal one will. Moreover, our method does not require a
Poincaré section, and extends to other classes of tori. White’s
method has the advantage relative to [4] that it does not require
shear, though it was realised some time ago that at least the 3D
case of [4] did not require shear (leading eventually to [5]).

The method can also be applied to other plasma physics
problems too. For example, for an interface in a stepped pres-
sure equilibrium to support a pressure jump, one needs an
invariant torus of the ‘pressure-jump’ Hamiltonian. Some con-
ditions under which none exist were determined by [14], but
it would be useful to extend them using the converse KAM
method. This would, for example, shed light on the work
of [15]. The standard direction field is the relevant one for
this problem, so it suffices to use [4] rather than the cur-
rent paper. Note that that paper applied the converse KAM
method to another plasma physics problem: the motion of a
charged particle in the field of two electrostatic waves. Further
plasma physics examples suggested by a reviewer include
time-dependent fields such as those arising from resonances
between particles and Alfvén modes [16] and the quasi-single-
helicity states reported in [17].

Data availability statement

The data that support the findings of this study are openly
available at the following URL/DOI: https://zenodo.org/
badge/latestdoi/655607720.

Acknowledgments

This work was supported by a grant from the Simons
Foundation (601970, RSM). We are grateful for the insight-
ful comments and suggestions from J Meiss, J Loizu, M
Landreman, E Paul and the reviwers.

Appendix A. Some pedagogy

A.1. Magnetic flux-form

It is common to define a magnetic field in 3D as a divergence-
free vector field B, but it can equivalently be defined as a closed
2-form β, where β(ξ,η) represents the magnetic flux through
the infinitesimal parallelogram spanned by the ordered pair of
tangent vectors (ξ,η) at a point. The relation between the flux-
form and the field is

β = iBΩ,
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where Ω is the volume-form (non-degenerate 3-form) with
respect to which B is divergence-free (divB= 0 if and only
if β is closed: dβ = 0). The formula says how to obtain
β from B: β(ξ,η) = Ω(B, ξ,η) = B · (ξ × η) in vector calculus
notation.

Conversely, given a 2-form β and a volume-form Ω in 3D,
one can obtain vector field B at any point by noting that the
kernel of β (kerβ = {u : iuβ = 0}) is non-zero because β is anti-
symmetric and dimension 3 is not even. Take any non-zero
u ∈ kerβ and extend to a basis (u,v,w); let B= β(v,w)

Ω(u,v,w)u. Then,
the resulting B does not depend on the choices of (u,v,w) and
satisfies iBΩ= β.

Note that representation of magnetic field lines by a closed
2-form β does not require the volume-form Ω. The fieldlines
are the integral curves of kerβ. All the volume-form does is to
define the speed at which B goes along them.

A.2. Vector potential

It is commonplace that for a 3D vector field B, divB= 0 iff there
exists a vector field A such that B= curlA. We explain here the
related result for 2-forms.

First, we note that the above statement is not quite true
for general 3D manifolds. One should strengthen the defini-
tion of a magnetic field from divB= 0 to

´
SB · dS= 0 for every

closed surface S (this is often called ‘absence of magnetic
monopoles’). The corresponding strengthening of the defini-
tion of a magnetic flux form β is that

´
Sβ = 0 for all closed

surfaces S.
It follows that there exists a 1-formα such that β = dα. Such

an α is called a potential for β. Given a vector potential A for B,
a potential for β is α= A♭, where A♭(ξ) = A · ξ for all tangents ξ.
Conversely, any potential α defines a vector potential A. Just as
A is non-unique up to the addition of any gradient (even multi-
valued), α is non-unique up to addition of any closed 1-form.
The relation β = dα is equivalent to B= curlA, but is simpler
because it makes no use of a Riemannian metric.

A.3. Integrable fields

We say a magnetic field B is integrable if there is a func-
tion Ψ with non-zero derivative almost everywhere such that
B ·∇Ψ = 0. It follows that the surfaces of constantΨ are invari-
ant under the fieldline flow.

Integrability is nicely addressed at the level of continu-
ous symmetries of potentials for the flux-form. If there is a
vector field u such that the Lie derivative Luα= df for some
function ζ then using Lu = iud+ diu on differential forms one
obtains

iuβ = dΨ,

with Ψ = f − iuα. This says that iuiBΩ= dΨ, so in particular
iBdΨ = 0 by antisymmetry of Ω. In vector calculus these rela-
tions are B× u=∇Ψ and B ·∇Ψ = 0. If u is independent of B
almost everywhere then dΨ ̸= 0 almost everywhere.

Appendix B. Curvilinear coordinates & components

Magnetic fields are often presented in adapted coordinate sys-
tems, in particular to make an elliptic closed fieldline into
an origin for a toroidal system of coordinates with a radial
coordinate and two angle coordinates, and level sets of the res-
ulting radial coordinate to be approximate flux surfaces. Thus
it is important to be able to manipulate the components of the
field in such a coordinate system. Furthermore, for the applica-
tion of the converse KAMmethod it is natural to use the adap-
ted coordinate system to define the principal class of tori of
interest to be the tori that are transverse to each of the curves
of constant angle coordinates (though there is generally some
freedom in choice of origin of the angle coordinates as a func-
tion of radial coordinate, so there is not a unique prescription
and one might prefer gradient curves of the radial coordinate
with respect to some metric).

Thus, it is important to be able to apply the converse KAM
method in a general coordinate system. This requires an under-
standing of components of vector fields and differential forms
in a general coordinate system. We claim that it is simpler
to use covariant and contravariant components than physical
components. These are described in various places with par-
ticular reference to plasma physics, e.g. [18, appendix G2],
[13, chapter 1], but we feel it is helpful to give our own
perspective.

Let xi, i = 1, . . .d, be coordinates on an open subset U of a d-
dimensional manifold M (d= 3 in our case), i.e. differentiable
functions xi : U→ R whose derivatives dxi are linearly inde-
pendent at each point of U. A vector at a point is the velocity
of a smooth parametrised curve through the point. A covector
at a point of U is a linear map from vectors to R. A 1-form is a
smooth choice of covectors on U. Then any 1-form α on U can
be written uniquely as αi dxi (with summation convention) for
d functions αi : U→ R called the components of α (they are
often called ‘covariant components’).

The coordinate functions xi also induce a special set of vec-
tor fields ∂i on U, defined by thinking of them as differential
operators on smooth functions f : U→ R defined by ∂i f = ∂f

∂xi

keeping the other xj fixed (this is the rate of change of f(x(t))
along a curve with ẋi = 1 and ẋj = 0 for j ̸= i). The ∂i form a
basis at each point of U, called the covariant basis, so any vec-
tor field B on U can be written uniquely as Bi ∂i for d functions
Bi : U→ R, called the components of B (often called ‘contrav-
ariant components’). In particular, the equations for motion
along a vector field B in coordinate system (xi) are just dxi

dt = Bi.
The 1-forms dxi and vector fields ∂j are related by dxi (∂j) =

δij , the Kronecker-delta. Equivalently, ∂jx
i = δij .

Complications arise when the manifold comes with a
Riemannian metric, because that allows to first, to introduce
the idea of unit vectors and second,. to convert between vector
fields and 1-forms.

A Riemannian metric is a smooth choice of inner product
⟨,⟩ on each tangent space. In a coordinate system (xi), it can
be written as ⟨u,v⟩= gijui vj for a symmetric set of functions gij
forming a positive-definite matrix at each point. For a vector v
at a point, ∥v∥=

√
⟨v,v⟩ is called its length.
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In particular, ∥∂i∥=
√
gii. This leads to consider the norm-

alised basis ∂i /
√
gii for vectors at a point and hence the physical

components of a vector B, namely B̃i =
√
giiBi (no summation).

Most of the physics literature uses physical components, yet
they are somewhat artificial and lead to extra factors in many
formulae, e.g. for motion along a vector field, and grad, div
and curl.

Associated to a Riemannian metric is a natural bijection
between vectors and covectors. Given a vector v at a point,
define the covector v♭ by v♭(u) = ⟨v,u⟩ for all vectors u at the
point. Given a covector α at a point, define the vector α♯ by
⟨α♯,u⟩= α(u) for all tangents u. In components, (v♭)i = gijvj

and (α♯)i = gijαj, where gij are the matrix elements for the
inverse of the matrix with elements gij. For a vector field B,
the components of B♭ are called the covariant components of
B. For a 1-form α, the components of α♯ are called the con-
travariant components of α. Thus for example,

´
γ
B · dℓ along

a curve γ is
´
γ
B♭ =

´
γ
Bi dxi.

A notion that lies at the heart of this paper is the flux 2-form
β = iBΩ associated to any magnetic field B by a volume-form
Ω. In a Riemannian manifold there is a natural volume-form
up to sign (corresponding to a choice of orientation), namely
Ω=

√
|g|dx1 ∧ ·· · ∧ dxd, where |g| denotes the determinant of

themetric tensor gij. Thus, for d= 3, the components of the flux
form are given by βij =

√
|g|ϵijkBk (no summation), where ϵijk is

the Levi-Civita symbol. Note that they form a skew-symmetric
3× 3 matrix, hence degenerate, which has rank 2 wherever B
does not vanish.

Another issue particularly relevant to this paper is the use
of a vector potential for a divergence-free field B. It is usual
to consider the vector potential as a vector field A such that
B= curlA, but far more natural to consider it as a 1-form α= A♭

such that β = dα. Then

Bi = |g|−1/2 ϵijk
∂αk
∂xj

,

where ϵijk is equal to ±1 if ijk is an even or odd permutation of
123, or 0 if neither. Thus, the only place the metric enters this
representation is via the prefactor |g|−1/2, representing volume.
Contrast the formulae for curl in physical components!

Appendix C. Magnetic fields as Hamiltonian
systems

It is commonplace that magnetic fieldline flow can be con-
sidered as a Hamiltonian system. This is often done by assum-
ing the field has a component, say Bϕ, of constant sign and
then considering B as a non-autonomous Hamiltonian system
of one degree of freedom.

A tidier way, in our opinion, is to think of it as an
Arnol’d-Cartan Hamiltonian system. These are defined on
odd-dimensional manifolds by a closed 2-form β with 1D ker-
nel. The trajectories are the curves whose tangent everywhere
lies in kerβ. The speed (and direction) of motion along the
curves is not defined, but a continuous choice can be made.

The standard case is the dynamics of an autonomous
Hamiltonian system (M,ω,H) on a regular energy levelH−1(E),
whereM is a manifold of even dimension 2n, ω is a symplectic
form, H a smooth function, and E ∈ R is a regular value of H.
Then β is the restriction ωE of ω to H−1(E). In this case there is
a natural speed for the trajectories, namely that for V defined
by iVω =−dH on M. It has the property that

iVµE = ω
∧(n−1)
E /(n− 1)!, (18)

where µE is the energy-surface-volume defined to be the
restriction to H−1(E) of any (2n− 1)-form µ on M such that
µ∧ dH= ω∧n/n!. Indeed, given µE, (18) can be used to choose
the speed along kerωE.

Analogously, given a volume-form Ω in 3D and a closed
2-form β, a speed for B is determined by iBΩ= β.
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