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Abstract
Objectives: We aimed to develop a network meta-analytic model for the evaluation of treatment effectiveness within predictive
biomarker subgroups, by combining evidence from individual participant data (IPD) from digital sources (in the absence of randomized
controlled trials) and aggregate data (AD).

Study Design and Setting: A Bayesian framework was developed for modeling time-to-event data to evaluate predictive biomarkers.
IPD were sourced from electronic health records, using a target trial emulation approach, or digitized Kaplan-Meier curves. The model is
illustrated using two examples: breast cancer with a hormone receptor biomarker, and metastatic colorectal cancer with the Kirsten Rat
Sarcoma (KRAS) biomarker.

Results: The model allowed for the estimation of treatment effects in two subgroups of patients defined by their biomarker status.
Effectiveness of taxanes did not differ in hormone receptor positive and negative breast cancer patients. Epidermal growth factor receptor
inhibitors were more effective than chemotherapy in KRAS wild type colorectal cancer patients but not in patients with KRAS mutant
status. Use of IPD reduced uncertainty of the subgroup-specific treatment effect estimates by up to 49%.

Conclusion: Utilization of IPD allowed for more detailed evaluation of predictive biomarkers and cancer therapies and improved pre-
cision of the estimates compared to use of AD alone. � 2023 The Author(s). Published by Elsevier Inc. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords: IPD network meta-analysis; Network meta-regression; Predictive biomarker; Colorectal cancer; Breast cancer; One-stage Bayesian hierarchical

model
1. Introduction

Predictive biomarkers and associated targeted therapies
are at the center of precision medicine; therefore, they are
of great interest to patients, researchers, pharmaceutical
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companies, and health-care decision-makers. Novel cancer
therapies are often more effective in patients who harbor a
specific biomarker, which may lead to greater gains for
such patients in terms of overall survival (OS) and/or
health-related quality of life. For example, the aromatase
inhibitors, such as letrozole and anastrozole, have shown
to be effective treatments in breast cancer patients who
are hormone receptor positive (HRþve) [1,2].

Randomized controlled trials (RCTs) are considered the
‘gold standard’ approach when evaluating treatment
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What is new?

Key findings
� We developed a one-stage Bayesian meta-analytic

model that estimates the relative treatment effects
in binary predictive biomarker subgroups simulta-
neously using time-to-event data.

What this adds to what was known?
� Combination of IPD and AD to inform effective-

ness of therapies has added value compared to us-
ing AD alone.

What is the implication and what should change
now?
� In the absence of IPD from published RCTs in

biomarker predictive subgroups, IPD can be
sourced by emulating target trials from electronic
health records or by digitizing Kaplan-Meier
curves.
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efficacy [3]. However, limitations due to cost, safety or
ethical considerations could hinder undertaking RCTs, thus
limiting their sizes or numbers. Information from multiple
RCTs comparing different treatments can be synthesized
using network meta-analysis (NMA) [4e6] to obtain esti-
mates of relative treatment effects of all competing
therapies.

In situations where RCTs report relative treatment ef-
fects within biomarker subgroups, NMA can be undertaken
within each subgroup. If the subgroup analysis is not re-
ported in the RCTs, but the proportion of patients recruited
within each subgroup is known, a network meta-regression
(NMR) could be considered [7,8]. Such analysis, however,
is prone to ecological bias [9]. When individual participant
data (IPD) are available, this issue can be alleviated by car-
rying out an IPD NMA [10] or they can be combined with
aggregate data (AD) to estimate the treatment effects
[11,12].

Proctor et al. [13] developed an NMR method for
combining evidence from IPD and AD to estimate the indi-
rect treatment effect in binary biomarker subgroups using a
binary response from published RCTs. In this paper, we
build on this method by developing a one-stage IPD-AD
NMA model for the synthesis of IPD and AD to estimate
treatment effects on time-to-event outcomes within sub-
groups of patients harboring a specific biomarker type.
2. Materials and methods

This section discusses the source of data used in this
study, and our one-stage NMA model for estimating the
relative treatment effects within two biomarker subgroups
simultaneously by synthesising mixture of IPD and AD.
2.1. Illustrative examples and sources of data

The first example estimates the relative effectiveness of
therapies in advanced breast cancer (ABC) patients within
HRþve and hormone receptor negative (HR-ve) subgroups.
The HRþve subgroup includes patients who are progester-
one and/or estrogen positive, while the HR-ve subgroup in-
cludes patients who are progesterone and estrogen negative.
AD were extracted from a systematic review carried out by
Ghersi et al. [14], who investigated the effectiveness of tax-
anes (X) used as monotherapy or in combination with
chemotherapy (CX). The IPD were sourced by emulating
target trials from synthetic electronic health records
(EHRs). The target trial protocol and procedures are re-
ported in Appendix 1.

The second example aimed to estimate the treatment ef-
fects of therapies targeted on Vascular Endothelial Growth
Factor (VEGF) and epidermal growth factor receptor
(EGFR) administered to patients with metastatic colorectal
cancer (mCRC) within patient defined by the Kirsten Rat
Sarcoma (KRAS) biomarker - either wild type (WT) or
mutant (MT) KRAS status. Summary data for the mCRC
example were obtained from the systematic review by Poad
et al. [15], who reported the efficacy of anti-VEGF thera-
pies plus C (VEGF þ C) vs. C and anti-EGFR therapies
plus C (EGFR þ C) vs. C. All RCTs reported aggregate
level data. However, IPD were obtained from trials of
EGFR þ C by digitizing the Kaplan Meier curves for sub-
groups of patients (with KRAS-WT and KRAS-MT) using
the method by Guyot et al. [16].

In both case studies, the end point of interest was OS
measured as hazard ratios (HRs). Data for both examples
and the relevant references are listed in Appendix 1. The
selected examples were partly based on the availability of
the dataset but also on our previous knowledge of the two
examples. We were aware of the predictive property of
the KRAS biomarker for the effectiveness of EGFR inhib-
itors in colorectal cancer [17] and therefore we used this as
a good illustrative example of the method. For the ABC
case study, we were aware, from previous review by
Umemneku-Chikere et al. [2], that the effect of treatment
in the subgroups of hormone receptor is underreported, so
utilizing EHR data aimed to extend the evidence base that
would include IPD with more detailed level of information
on the biomarker.
2.2. Network meta-analytic model

Our one-stage NMA model allows for the simultaneous
synthesis of data at either aggregate level or individual
participant level. Information on the biomarker status is
included directly from studies with IPD available and as
the proportion of biomarker positive patients where only
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ADs were available. The model assumes that no subgroup
analyses were reported for treatment effects within the
biomarker groups, but such information can be easily incor-
porated in the model by treating the subgroups as individual
studies with proportions of biomarker positive equal to one
or zero. The first part of the model describes the contribu-
tion of the IPD to the model, the second part describes how
the AD are modeled and this is followed by a discussion of
how the two parts of the model are combined.

2.2.1. Part I: NMA model for IPD studies
To model the treatment effect at IPD, we model time-to-

event data assuming a Weibull distribution. This is a flex-
ible distribution which reduces to an exponential distribu-
tion in the presence of constant hazard, but the model
could be adapted easily by assuming alternative distribu-
tions. For patient i in study j, time-to-event follows a Wei-
bull distribution with a shape parameter gj and a scale
parameter lij
tij|Weibull
�
gj;lij

�
: ð1Þ
The log hazard (lij), depends on the biomarker status Xij

of the patient (with Xij50 for biomarker negative patients
and Xij51 for biomarker positive patients) and the treatment
they receive Tij (zero for the baseline treatment k and one for
the active treatment arm l that are specific to study j);
log
�
lij
�
5 m�ve;jþbijXijþ d�ve;j;klTij þDj;kl Xij � Tij

ð2Þ

In this regression model, m�ve;j and d�ve;j;kl are the baseline
treatment effect and the relative treatment effect (log haz-
ard ratio of treatment l vs. k) respectively, in study j for
biomarker negative patients. For biomarker positive pa-
tients, the baseline and relative treatment effects in the
study j are mþve;j and dþve;j;kl respectively, such that:
bij 5 mþve;j � m�ve;j ð3Þ

and
Dj;kl 5 dþve;j;kl � d�ve;j;kl ð4Þ

Treatments k and l are specific to study j. The relative

effects are assumed exchangeable within each biomarker
subgroup (and within each treatment contrast), thus:
d�ve;j;kl|N
�
md�ve;kl;t

2
�
and dþve;j;kl|N

�
mdþve;kl;t

2
�

As in standard NMA, the mean effects md�ve;kl and
mdþve;kl within each treatment contrast l vs. k are assumed
to satisfy the consistency assumption, namely:
md�ve;kl 5 d�ve;l � d�ve;k ð5Þ
mdþve;kl 5 dþve;l � dþve;k ð6Þ

For each biomarker subgroup. The parameters

d�ve;k; d�ve;l; dþve;k; dþve;l are so called basic parameters,
specific to the biomarker group, representing the effect of
treatments k or l relative to the reference treatment in the
network numbered as 1 and d�ve;1;dþve;1 5 0. In our imple-
mentation, prior distributions placed on the parameters spe-
cific to this part of the model are:
gj|Gamma ð1;0:01Þ
mþve;j|Nð0;100Þ;m�ve;j|Nð0;100Þ
2.2.2. Part II: NMA model for AD studies
To allow for the assumption of normality of the treat-

ment effects (yj;kl), these were represented using the log
hazard ratio scale and were then used in the model along
with the corresponding standard deviations (sj). We incor-
porated the information on the proportion of patients that
are biomarker positive through the NMR. The normally
distributed treatment effect (yj;kl) for each study j is an es-
timate of a true treatment effect dj;kl, such that:
yj;kl|N
�
dj;kl;s

2
j

�

Between two treatment arms comparing treatments k
and l (ksl and k; l5 1;.; nt, with nt e number of treat-
ments in the network). The true effects are assumed to
follow a common distribution within each treatment
contrast kl
dj;kl| N
�
mdj;kl;t

2
�

With
mdj;kl 5 d�ve;l � d�ve;k þ ðbl � bkÞ � pposj; ð7Þ

The basic parameters d�ve;k and d�ve;l correspond to the

effects of treatments k and l in the biomarker negative
group, as in the first part of the model for IPD studies.
The parameters bl and bk are the study-level metaregres-
sion coefficients corresponding to the proportion of
biomarker positive participants in study j, denoted pposj.
This results in the basic parameters for the biomarker pos-
itive group being given by:
dþve;k 5 d�ve;k þ bk
dþve;l 5 d�ve;l þ bl
Prior distributions are placed on the parameters specific
to this part of the model:
bk;bl | Nð0;100Þ
2.2.3. Part III: combination of IPD and AD
We combined IPD and AD models via the shared basic

parameters d�ve;l, dþve;l, d�ve;k, dþve;k, which are informed
by both sets of studies. We place prior distributions on
the parameters common to both above parts of the model:
d�ve;k;d�ve;l| Nð0;100Þ
t |Uð0;2Þ



Fig. 1. Network diagram of RCTs (marked as AD) and target trials
(marked as IPD) for overall survival in the Breast Cancer case study.
The solid lines illustrate treatment comparisons that have been eval-
uated directly, and the dashed line corresponds to the indirect effect.
(For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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The WinBUGS code for the model is provided in
Appendix 2.

2.3. Application to illustrative examples

We analyzed the data in our illustrative examples using
three models. For the ABC example, Model 1 is the NMR
model described in Section 2.2.2 (with additional prior dis-
tributions listed in Section 2.2.3). It utilizes AD reported in
the RCTs alone. We explored the added value of using
external IPD from EHRs by incorporating the data in
Models 2 and 3. Model 2 is a two-stage IPD-NMA, where
in stage one we analyze IPD for each study independently
and use the resulting log HRs and corresponding standard
deviations, together with those from AD studies, as inputs
to NMR Model 1 [18]. When analyzing IPD for each study
j, we use the Weibull model described in Equations (1)e(4)
and by placing prior distributions:
d�ve;j;kl |Nð0;100Þ and dþve;j:kl|Nð0;100Þ

In addition to those for mþve;j, m�ve;j and gj.

Model 3 is a one-stage NMA, as described in Section
2.2.1e2.2.3 combining IPD and AD from all available
studies.

In the mCRC example, the IPD come from some of the
RCTs. We, therefore, include data from all studies in all
three models and illustrate the added value of more granu-
larity of information when utilizing IPD. Model 1 is the
two-stage NMR using mixed population on some of the
digitized IPD (EGFR þ C vs. C), Model 2 is the NMR of
RCTs data at AD level with biomarker subgroups for all
EGFR þ C trials, and Model 3 is our one-stage NMA.
3. Results

3.1. Breast cancer case study

Ten target trials were emulated (five comparing X vs. C
and five comparing CX vs. C). A summary table of the
target trials is reported in Appendix 1. AD from thirteen
RCTs was extracted from Ghersi et al. [14]. The RCTs
did not report subgroup analyses for the hormone receptor
biomarker status. All the IPD and AD studies have mixed
populations of HRþve and HR-ve patients. The IPD were
combined with AD, resulting in a network of 23 trials pre-
sented in Fig. 1.

The results for the ABC example are reported in Fig. 2A
for the HR þ ve patients and Fig. 2B for the HR-ve pa-
tients. In Model 1, the treatment effects were obtained with
substantial uncertainty. The addition of data from EHRs in
Model 2 resulted in reduced uncertainty in both biomarker
subgroups. For example, in the HRþve subgroup, the HR
for CX vs. X was 1.10 (95% credible interval [CrI]: 0.62,
1.84) using AD alone, and 1.04 (95% Crl: 0.69, 1.56) when
IPD were included as AD. This corresponded to a 28.7%
reduction in the width of the CrI. However, there was a
further substantial reduction in uncertainty, of 49% in the
width of the CrI, when including data from the target trials
at IPD level (Model 3); to HR5 0.99 (95% Crl: 0.67, 1.29),
where there was direct information on biomarker status of
individual patients. Inclusion of target trial data at the
IPD level reduced uncertainty by 29% of the width of the
CrI compared to the two-stage approach. In the HR-ve pa-
tients, there was only a small reduction in uncertainty when
introducing EHR data at AD level; for example, 13.3%
reduction in the width of the CrI for CX vs. X (Model 2).
However, there was a substantial reduction in uncertainty
when utilizing data from target trials at IPD level (Model
3), with 33% reduction compared to using RCT data alone,
and 29.7% reduction compared to the two-stage approach.
The treatment effect estimates for all three treatment con-
trasts were similar for the HRþve and HR-ve patients
regardless of modeling strategy, indicating no predictive ef-
fect of the biomarker on the three therapies.

3.2. Colorectal cancer example

In this example, 15 RCTs were extracted from the re-
view by Poad et al. [15]. Five RCTs evaluated the treatment
effect of VEGF þ C vs. C and these studies recruited mixed
patients with KRAS-WT and KRAS-MT. 10 RCTs evalu-
ated the treatment effect of EGFR þ C vs. C and these
studies had either mixed or KRAS-WT patients only. All
datasets were combined to form a network plot (Fig. 3)
of 15 studies.

The results for the mCRC example are presented in
Fig. 4A for KRAS-WT patients and Fig. 4B for patients
with KRAS-MT. In contrast to the breast cancer example,
all available data were from RCTs and the results from
all models presented are based on the data from all 15
RCTs. We present the results of three analyses with gradual
increase of the level of information on the biomarker status.
When data from six trials of EGFR þ C were used to pro-
vide treatment effects for mixed biomarker populations
(along with the proportions of biomarker status) in a two-
stage NMR presented in Model 1, the treatment effects
for the subgroups were obtained with large uncertainty.
When including data at the subgroup level from all
EGFR þ C trials in Model 2, the uncertainty was



Fig. 2. Treatment effect estimates for overall survival in breast cancer example; (A) for the hormone receptor positive patients, and (B) for the hor-
mone receptor negative patients. Model 1: NMR of RCT data [Blue], Model 2: two-stage IPD NMA with effects for mixed biomarker population
calculated at the first stage [Green], and Model 3: one-stage IPD NMA [Red]. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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substantially reduced; especially for the treatment effects of
EGFR þ C vs. C, where more granularity of information
was introduced for the biomarker status. The results of
Model 2 correspond to the AD level NMR using effects re-
ported by the trials. The same results were obtained when
using IPD in two-stage IPD meta-analysis with subgroup
analyses conducted at the first stage (see Appendix 1).
Model 3 represents the results of one-stage IPD meta-
analysis where digitized data from the six RCTs of mixed
populations and four RCTs of KRAS-WT only were used
as IPD. Not much further improvement was noted and the
differences in the results compared to Model 2 are likely
due to normality assumption made when calculating stan-
dard errors for AD level NMR in Model 2.

There was a meaningful positive treatment effect of
EFGR þ C compared to C for the KRAS-WT patients with
HR 5 0.86 (95% CrI: 0.81, 0.95), but not for the KRAS-
MT patients (HR 5 1.03; 95% CrI: 0.91, 1.1) in the final
analysis.
Fig. 3. Network plot of RCTs for overall survival in the colorectal can-
cer case study. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
4. Discussion

We developed a one-stage NMA model that allows for
IPD to be combined with AD to estimate the treatment ef-
fects in subgroups of patients defined by a biomarker status.
This method uses a Bayesian framework to model time-to-
event outcomes such as OS or progression-free survival.
When subgroup analyses are not reported by RCTs, IPD
are required to disentangle information on treatment effec-
tiveness that may depend on the biomarker status. We uti-
lized two approaches to generating IPD; using EHRs or
digitizing Kaplan-Meier curves from RCTs that report such
curves for each biomarker subgroup. This exercise did not
uncover any predictive effect of the biomarker, but it did
show more precise estimates, and therefore potential of
the method for scenarios where RCT data are limited, in
particular pertaining to the biomarker status.

Inclusion of external EHR data at IPD level to existing
published RCT data at aggregate level resulted in improved
precision (in terms of the width of the 95% CrIs) of treat-
ment effect estimates as seen in the ABC example. In the
mCRC example, the level of uncertainty reflected differ-
ences in granularity of information on the biomarker status
when using data from the same RCTs, with largest uncer-
tainty seen when treatment effects for mixed populations
were used in NMR and much reduced uncertainty when
treatment effects were obtained in subgroups for all RCTs.
Our one-stage model estimated similar results as the two-
stage NMA (with effects in all subgroups estimated in the



Fig. 4. Treatment effect estimates for overall survival in the metastatic colorectal cancer case study: (A) for KRAS WT biomarker subgroup, and (B)
for KRAS MT biomarker subgroup. Model 1: two-stage IPD NMA with effects for mixed biomarker populations in EGFR þ C trials calculated at the
first stage [Blue], Model 2: NMR of RCT data at AD level with biomarker subgroups for all EGFR þ C trials [Green], and Model 3: one-stage IPD
NMA [Red]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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first stage), supporting previous similar findings [19], as
well as AD level only NMR (where all AD represented sub-
groups). Thus, our one-stage NMA serves as alternative
approach to the two-stage NMA modeling approach and
may prove very useful when results in subgroups are not re-
ported but IPD for at least a proportion of studies are
available.

When a predictive biomarker is not known in early trials,
subgroup analyses are not performed, but access to IPD
from some RCTs may be possible and the method can be
useful to explore the effectiveness of the therapies in such
subgroups. Such scenario did apply to the KRAS biomarker
in mCRC; initially EGFR inhibitors were developed to
target EGFR biomarker in mCRC patients and KRAS sub-
groups were not reported. Only subsequently KRAS was
discovered as predictive biomarker in this setting and the
design of trials changed to either trial of mixed population
with subgroups reported or to enrichment trials of KRAS
WT patients alone [17]. Retrospective subgroup analyses
were then conducted on majority of the earlier trials. Before
such retrospective analysis is conducted, the method may
be useful if access to some IPD is possible. Estimates ob-
tained from the mCRC example support prior research
showing that EGFR therapies are effective in patients in
the KRAS-WT patients but not in patients with KRAS-
MT [17]. However, the use of digitized Kaplan-Meier
curves as a source of IPD may mean that there could be
some discrepancies with the original data.

Emulating trials from EHRs is still a relatively novel
approach, in the context of meta-analysis and a careful
consideration need to be given to issues of selection bias
and potential confounding. A recent study, aimed to
emulate 35 existing RCTs [20], has identified discrepancies
between the treatment effect estimates from emulated trials
and some of the corresponding original RCTs. Such dis-
crepancies could influence variability in the estimated treat-
ment effects when such estimates are incorporated in a
meta-analysis. These discrepancies may have been due to
issues with data quality or differences in patient popula-
tions, and occasionally issues with emulating a proxy to
placebo control arm. In addition, some of the variability
could be possibly attributed to changes in the EHRs given
the time of analysis. However, following the target trial pro-
tocol should ensure that the effect of any potential bias or
confounding is minimized. Another limitation is that the
IPD in the ABC example were emulated from a synthetic
dataset (Simulacrum) based on the Systemic Anti-Cancer
Treatment (SACT) dataset rather than from the original
SACT data. We used the data to illustrate our methodology,
but the estimates obtained may not be clinically meaning-
ful. Furthermore, where possible, use of IPD from RCTs
should be prioritized and EHRs could be considered an
alternative source of data. Our model is an NMR model;
hence it is prone to ecological bias. However, the availabil-
ity of IPD for a proportion of studies helps to alleviate this
issue.

In our method, we used a Weibull proportional hazards
regression model for our time-to-event data. Other para-
metric methods: for example, using exponential, gamma,
Gompertz or log-logistic distributions, could also be used.
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The model assumes proportional hazards, which is a known
limitation, but this could be relaxed by adopting an Accel-
erated Failure Time or flexible parametric modeling
approach.

Due to the star-shaped geometry of networks in both ex-
amples, it was difficult to assess the accuracy of the treat-
ment effect estimate for the indirect comparison. This is a
common issue in NMAwith star-shaped network, when as-
sessing consistency. The method, however, is applicable to
more robust network structures where methods are avail-
able for assessing consistency.
5. Conclusion

Inclusion of IPD in a one-stage approach to NMR of
time-to-event data allowed for increased precision in the
estimation of treatment effects within biomarker subgroups
compared to two-stage approach where only aggregate
level information on the biomarker status was available.
The method is particularly useful when subgroup analyses
according to the biomarker status are not reported.
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