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AI-enabled routine H&E image based prognostic marker for
early-stage luminal breast cancer
Noorul Wahab1, Michael Toss2,3, Islam M. Miligy2,4, Mostafa Jahanifar1, Nehal M. Atallah2,4, Wenqi Lu1, Simon Graham1,5, Mohsin Bilal1,
Abhir Bhalerao1, Ayat G. Lashen 2,4, Shorouk Makhlouf 2,6, Asmaa Y. Ibrahim2, David Snead5,7, Fayyaz Minhas 1,
Shan E. Ahmed Raza 1, Emad Rakha2 and Nasir Rajpoot 1,5,7✉

Breast cancer (BC) grade is a well-established subjective prognostic indicator of tumour aggressiveness. Tumour heterogeneity and
subjective assessment result in high degree of variability among observers in BC grading. Here we propose an objective
Haematoxylin & Eosin (H&E) image-based prognostic marker for early-stage luminal/Her2-negative BReAst CancEr that we term as
the BRACE marker. The proposed BRACE marker is derived from AI based assessment of heterogeneity in BC at a detailed level
using the power of deep learning. The prognostic ability of the marker is validated in two well-annotated cohorts (Cohort-A/
Nottingham: n= 2122 and Cohort-B/Coventry: n= 311) on early-stage luminal/HER2-negative BC patients treated with endocrine
therapy and with long-term follow-up. The BRACE marker is able to stratify patients for both distant metastasis free survival
(p= 0.001, C-index: 0.73) and BC specific survival (p < 0.0001, C-index: 0.84) showing comparable prediction accuracy to
Nottingham Prognostic Index and Magee scores, which are both derived from manual histopathological assessment, to identify
luminal BC patients that may be likely to benefit from adjuvant chemotherapy.
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INTRODUCTION
Breast cancer (BC) is the most common cancer in women with an
estimated 2.3 million cases and 0.7 million deaths reported
worldwide in 20201. BC is a heterogeneous disease with different
molecular subtypes, variable morphology presentation, behaviour
and response to therapy2,3. With the introduction of endocrine
therapy, the prognosis of early-stage oestrogen receptor positive
(ER+) and human epidermal growth factor receptor 2 negative
(HER2−) BC, which comprises approximately 40% of BC4, has
improved5 but in about 20% of the cases the decease can still
recur post-treatment6. Because some of the patients in this early-
stage luminal BC will benefit from adjuvant chemotherapy while
others will only require endocrine therapy, it is important to risk-
stratify these patients for better treatment management7,8.
Stratification of patients into risk groups based on their survival
outcome is key for personalised treatment and therapeutic
interventions and, therefore, identification of clinicopathological
factors and biomarkers is important area of clinical research9,10.
Despite several advancements in BC diagnosis and manage-

ment, the existing risk stratification tools are subjective and
unable to cope with the highly heterogenous morphology of the
BC histology. Current BC management relies on the availability of
robust clinical and pathological prognostic factors to support
clinical management decision making. The Nottingham grading
system (NGS)11, which comprises the assessment of three
morphological features (tubule formation, mitotic count and
nuclear pleomorphism), is a well-established prognostic marker
in BC that is recommended by the World Health Organisation and
other national and international organisations12,13 as the gold
standard BC grading system. NGS is a simple and cost-effective
prognostic tool that was recently incorporated into the tumour-

node-metastasis (TNM) stage system (prognostic stage)14. How-
ever, NGS still relies on subjective assessment of histology samples
which needs to be resolved for reproducible, robust and reliable
patient stratification.
Though NGC being an established prognostic marker its

performance in predicting the outcome of the clinically indeter-
minate group of early-stage luminal BC is still non-optimal.
Reproducibility concerns have been raised due to inter-observer
disagreement regarding grade components and the complexity of
intra-tumour heterogeneity15,16. Therefore, molecular tests includ-
ing multigene assays such as Oncotype DX(ODX)17 and PAM5018

are increasingly used to risk stratify this group of BC. However, the
relatively high cost and turnaround time and the relatively low
concordance between assays makes the development of objec-
tive, reproducible and reliable alternative methods such as AI-
based prognostic tools highly warranted.
Deep learning (DL) based analysis of haematoxylin & eosin

(H&E) stained histology scanned slide has produced remarkable
results for objective assessment of morphological features19–26.
Several studies27–31 have adapted DL for survival analysis,
including an ensemble of deep convolutional neural network
(CNN) models for risk stratification of BC32. Recently, other
studies33,34 have been focused on the importance of developing
image-based tools to risk stratify the clinically indeterminate risk
class of BC. The correlation of ODX and mitotic count has been
previously demonstrated in different studies35,36 whereas some
studies have reported a combination of image-based features with
clinicopathological variables37,38. Though some studies36,39 have
shown that different structures, tissue types and cells types have
prognostic importance but a comprehensive phenotyping of such
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structures and their relationship with survival outcome is less
studied especially for luminal early stage BC.
In this study, we show that the DL-based automated

phenotyping of BC can provide a cost-effective and reproducible
prognostic tool. Using whole slide images (WSIs) of a large well
characterised cohort of luminal early stage BC, we develop an AI-
based BRACE marker to capture tumour and stromal hetero-
geneity and mitotic activity in a quantitative and reproducible
manner (Fig. 1). In addition to objectively quantifying the stromal
and pleomorphic heterogeneity and digital mitotic score, the
proposed marker utilises the spatial composition of digital local
tumour grading (Tumour Grade Composition (TGC)) as opposed to
a single case-level grade. The method is validated for prognos-
tication of early-stage luminal breast cancer on an external cohort.
Development of such AI-based markers will provide new research
alternatives leading to integrated solutions along with gene
expression profiling.

RESULTS
To estimate the BRACE marker first the ductal carcinoma in situ
(DCIS) regions were filtered. Second, tumour rich areas were
identified from tumour cell detections. This step identified regions
of interest (ROI) for digital mitotic counting as well as predicting
local tumour grades and nuclear pleomorphism in the tumour rich
areas. Third, tissue regions were segmented to quantify stromal
cell density and tumour area percentage. Finally, the tumour
grade composition, local variations in nuclear pleomorphism and
stroma cell density, digital mitotic count and tumour area
percentage were used for survival prediction (Fig. 1). Note that
tissue area was selected by thresholding but this step is not shown
in the figure to keep it simple.

AI-based WSI phenotyping
Two well-characterised retrospective cohorts (Supplementary
Table 1) with endocrine therapy were used for model construction
for analysis of two endpoints i.e. distant metastasis free survival
(DMFS) and BC specific survival (BCSS), with data splits detailed in
supplementary Fig. 1. BC WSI contains a rich heterogeneous
phenotype including tumour morphology, stromal variations,
mitotic activity, tumour infiltrating lymphocytes (TILs) etc. The
power of AI was utilised to explore a range of features
(Supplementary Table 2) related to six main categories: (a) Tumour
morphology (grade, pleomorphism), (b) tumour-stroma relation-
ship, (c) TILs quantification, (d) heterogeneity in terms of tumour,
stroma and TILs, (e) mitotic cell counting, and (f) counts/ratios of
different nuclei. Following feature selection (see ‘Feature selection’
for details), the final features included: digital local grade
composition in the form of local grade 1 percentage (LG1 %),
LG2 %, LG3 %, tumour area %, pleomorphic contrast, stromal
contrast, co-occurrences of stromal nuclei patches with low
density, and digital mitotic score.
Figure 2 shows examples of stromal contrast and nuclear

pleomorphic contrast for two WSIs (Fig. 2c) with a low and a high
BRACE risk score. Contrast measures the local variation in a feature
where a low value represents less variations and a high value
represents more variations. Higher stromal contrast (score =
20.81; Fig. 2d) and low pleomorphic contrast (score = 0.065;
Fig. 2e) is associated with good prognosis (BRACE risk score =
0.249) where as low stromal contrast (score = 10.16) and high
pleomorphic contrast (score = 12.58) is associated with bad
prognosis (BRACE risk score = 10.38). Similarly, Fig. 3 shows digital
tumour grade composition and mitotic count features. Higher
percentage of LG3 (77%; Fig. 3b) and higher digital mitotic count
(count = 60; Fig. 3c) are associated with poor prognosis (BRACE
risk score = 10.38).

Fig. 1 Proposed BRACE marker workflow for breast cancer survival prediction. DCIS regions are filtered for exclusion in the following steps;
Tumour Detector segments and classify nuclei for tumour rich area identification/ROI selection; prediction of local grade composition (digital
local grade LG1–3) and pleomorphism by Local Grade Predictor which is trained in a supervised way by using clinical grade as WSI-level label;
Tissue region segmentation by Region Segmentor to quantify stromal cell density and tumour area percentage; Using the extracted features
to form BRACE marker for survival prediction.
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DCIS filter and Region Segmentor
Tissue area was segmented using thresholding and morpholo-
gical operations. DCIS filter (a trained CNN model) distinguished
between invasive tumour regions and DCIS and achieved
average F1 scores of 0.713 and 0.9 for invasive tumour and
DCIS segmentation (Supplementary Table 3), respectively.
Supplementary Fig. 2a shows an example of WSI-level tumour
and DCIS segmentation output. Similarly, Region Segmentor
(another trained CNN model) performed semantic segmentation
of stromal and other non-ROI regions (fats, normal, blood vessels,
artifacts) and achieved a dice score of 0.76 for stroma and 0.69

for other regions (Supplementary Table 3). The trained models
were used to generate segmentation masks for the WSIs
(Supplementary Fig. 2b).

Tumour-rich area identification (Tumour Detector)
Tumour Detector (Supplementary Fig. 3; a cell segmentation and
classification model) was used to generate WSI-level nuclei-
contours (used to measure tumour-nuclei morphology) and types
(to get tumour-nuclei density). The output of this module was
then used for ROI selection for training the TGC module (Local
Grade Predictor) and for counting mitotic figures. Supplementary

Fig. 2 Stromal contrast and nuclear pleomorphism features. a Sample patches/areas of low, medium and high stomal cell density used to
calculate stromal contrast in (d). b sample patches of low, medium and high nuclear pleomorphism used to calculate pleomorphic contrast in
(e). c Two WSIs with their corresponding BRACE risk scores. d Stromal cell density for calculation of stromal contrast. e Nuclear pleomorphism
used for calculation of pleomorphic contrast.
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Table 4 lists the three-folds cross-validation performance of
different CNN models where Tumour Detector achieved the best
F1 score of 0.79 in comparison to other models.

AI-based prediction of grade composition (Local Grade
Predictor)
Despite the fact that there is intra-tumour heterogeneity2,40,41, a
single grade is often assigned to the entire BC case. Local Grade
Predictor performed AI based grade prediction of individual
patches within the WSI to capture variations due to intra-tumour
heterogeneity. Tumour Detector was utilised to select an ROI
based on tumour nuclei density, size and shape and instead of
using patches from all over the WSI, patches from the selected
ROIs were used to train Local Grade Predictor. Based on a linear
support vector machine (SVM) trained with the proportions of
digital local grades to predict the clinical grade of each WSI, the
selection of ROI based on tumour nuclei density, size and shape
improved receiver operating characteristic area under the curve
(ROC-AUC) from 0.65 ± 0.023 (for baseline random ROIs) to
0.83 ± 0.014 (Supplementary Table 3). Another strategy where
ROIs were selected from areas with maximum tumour tissue
produced ROC-AUC of 0.79 ± 0.011. TGC considered local intra-
tumour heterogeneity based on the proportion of areas in a given
WSI that can be associated with grade 1–3. Supplementary Fig. 4
shows the association of the clinical grade and its components
(mitotic score, tubule formation, and nuclear pleomorphism) with
the TGC for both internal and external validation cohorts. It can
also be observed that the Local Grade Predictor model does not

only learn the overall grade but it also learnt the heterogeneity of
clinical grade. LG1 predictions were present for all the three
grades showing that at least some of the areas in most of the WSIs
is similar to Grade 1.

Digital mitotic count
A stain-robust mitotic detection model42 was used to detect
mitotic figures. Mitotic figures were detected in an ROI from each
WSI selected based on the same criteria as for training the Local
Grade Predictor. The mitotic detection model first segmented
potential mitotic figures and then refined the classification via a
deep learning classifier. To assign a mitotic score to a WSI, an ROI
from the WSI was passed through the model and the mitotic
count was then used to decide the score. To reduce the effect of
any under- or over-detections the counts were discretised to get a
digital mitotic score from 1 to 3.

Stromal and pleomorphic contrast
Stromal nuclei detection from Tumour Detector were used to
construct a co-occurrence matrix (CM; Supplementary Fig. 5)
where each entry represented the number of times a patch
containing certain number of stromal nuclei co-occurred with
another patch containing certain number of stromal nuclei. The
CM was then used to calculate WSI-level contrast which quantified
the local stromal variations. Another stromal nuclei related feature
was also calculated which quantified the co-occurrences of
patches with low stromal density. Similarly, the patch-level

Fig. 3 Tumour grade composition and mitotic counting features. a Two WSIs with their corresponding BRACE risk scores. b digital tumour
grade composition showing percentage of each grade in a WSI. c Mitotic counts in a sample area extracted from an ROI. Mitotic figures are in
yellow circles.
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pleomorphic predictions from Local Grade Predictor were used to
construct a CM containing entries for local pleomorphism which
was then summarised at WSI-level as pleomorphic contrast.

Survival analysis
The selected features i.e. TGC (LG1%, LG2%, LG3%), percentage of
tumour area, pleomorphic contrast, stromal contrast, co-
occurrences of stromal nuclei patches with low density, and
digital mitotic score, were combined by Cox proportional hazard
regression model to generate BRACE risk score. Supplementary
Fig. 6 shows the contribution of each component of BRACE marker
where higher percentages of LG1 and higher stromal contrast are
associated with better outcomes whereas higher percentages of
LG3, higher pleomorphic contrast, higher mitotic score and larger
tumour area percentages are associated with worse outcomes.
Table 1 shows the outcome results (P value of the log-rank test,
Concordance or C-Index, and hazard ratio (HR) with 95%
confidence interval (CI)) of the proposed BRACE marker and other
clinical features on internal and external validation sets when used
for stratifying patients into high-risk and low-risk groups in terms
of DMFS and BCSS. In comparison to clinical grade, BRACE
produced higher C-Indices (with significant P values of the log-
rank test) for both DMFS and BCSS especially when generalising to
the external cohort. Supplementary Table 5 shows the outcome
results of BRACE on the discovery set. For comparison, Supple-
mentary Table 6 also lists the outcome results of a larger set of
features excluding the features included in BRACE. Similarly, to
compare with a simple baseline DL model Supplementary Table 7
shows the outcome results of ResNet-18 (pretrained on ImageNet)
used to extract features from the same set of patches as BRACE
and a clear drop in performance was noted in comparison to
BRACE.
No clear effect of the scanner type on prediction accuracy was

observed for the compared features (Supplementary Table 8). For
example, for BCSS, both Grade and BRACE produced higher
C-Indices on cases scanned with Pannoramic scanner as compared
to Philips scanner whereas for NPI it was the other way around.

For DMFS, C-Index of Grade was almost the same for both the
scanners. Overall, NPI’s predictions were better for Philips scanner
whereas both Grade and BRACE performed better for Pannoramic
scanner. The effect of scanner type might become more obvious
when studied in a larger cohort with sufficient number of events.
In another experiment two components of NPI i.e. lymph node

status and invasive tumour size were included in BRACE (this
experiment is denoted by BRACE* to differentiate from main
BRACE). Except for DMFS (LN 0–3) of external validation set,
BRACE* showed comparable or improved prediction performance
for both DMFS and BCSS in internal as well as external validation
sets (Supplementary Table 9).
Figure 4 shows Kaplan–Meier (KM) curves for DMFS in LN−

cases using different clinicopathological features and BRACE
marker on internal as well as external validation cohorts. The
number of events in the high-risk group (n= 16) and low-risk
group (n= 7) of BRACE were almost the same as in the NPI high-
and low-risk groups but for clinical grade the proportion of the
events was 11 (high-risk) to 12 (low-risk). This trend was more
evident for the clinical grade on the external cohort where the
number of events in the low-risk group were more (n= 9) than in
high-risk group (n= 4) suggesting the limitation of a discrete
grade risk score in stratification. Supplementary Fig. 7 and 8 shows
KM curves for DMFS and BCSS, respectively, in the discovery set.
Similarly, Supplementary Figs. 9–11 shows KM curves for DMFS
(LN 0–3), BCSS (LN−), and BCSS (LN 0–3), respectively, in the
validation sets.

Identification of high-risk patients for additional
chemotherapy
A feature of BRACE marker is that it has shown the ability to
predict high-risk patients who could benefit from additional
chemotherapy. To test the predictive ability of BRACE marker, we
compared the KM curves of high-risk group predicted by our
model with the actual survival curve of patients who received
additional chemotherapy. Figure 5a, b shows the actual survival of
patients treated with endocrine therapy only and those treated

Table 1. Results on internal and external validation sets.

Cohort-A (Validation set) Cohort-B

LN: Negative, Event: DMFS LN: Negative, Event: DMFS

Feature P value C-Index HR (95% CI) Feature P value C-Index HR (95% CI)

Grade 0.0017 0.68 ± 0.06 1.83 (1.21–2.76) Grade 0.0058 0.68 ± 0.07 2.16 (1.23–3.82)

NPI 0.0091 0.70 ± 0.06 2.00 (1.28–3.13) NPI 0.0180 0.75 ± 0.06 2.72 (1.42–5.21)

BRACE 0.0010 0.73 ± 0.06 1.46 (1.22–1.74) BRACE 0.0002 0.73 ± 0.06 1.22 (0.83–1.80)

LN: 0–3, Event: DMFS LN: 0–3, Event: DMFS

Grade <0.0001 0.68 ± 0.04 1.97 (1.41–2.76) Grade 0.0293 0.67 ± 0.05 1.93 (1.14–3.27)

NPI 0.0004 0.72 ± 0.05 1.45 (1.25–1.68) NPI 0.0094 0.75 ± 0.06 1.77 (1.29–2.43)

BRACE <0.0001 0.72 ± 0.05 1.49 (1.29–1.72) BRACE 0.0003 0.68 ± 0.07 1.23 (0.86–1.76)

LN: Negative, Event: BCSS LN: Negative, Event: BCSS

Grade <0.0001 0.74 ± 0.07 2.92 (1.72–4.96) Grade 0.0023 0.69 ± 0.07 2.29 (1.27–4.12)

NPI 0.0001 0.82 ± 0.05 3.06 (1.98–4.75) NPI 0.0069 0.76 ± 0.06 2.91 (1.49–5.68)

BRACE <0.0001 0.84 ± 0.04 1.58 (1.34–1.86) BRACE 0.0001 0.73 ± 0.06 1.24 (0.85–1.82)

LN: 0–3, Event: BCSS LN: 0–3, Event: BCSS

Grade <0.0001 0.72 ± 0.05 2.61 (1.75–3.90) Grade 0.0112 0.68 ± 0.06 2.06 (1.18–3.59)

NPI <0.0001 0.80 ± 0.04 1.54 (1.32–1.80) NPI 0.0085 0.74 ± 0.06 1.74 (1.24–2.44)

BRACE <0.0001 0.79 ± 0.04 1.57 (1.37–1.81) BRACE <0.0001 0.73 ± 0.06 1.28 (0.91–1.80)

Internal validation set (Cohort-A), external validation set (Cohort-B). P value (of the log-rank test), C-index and hazard ratio (HR) with 95% confidence interval
(CI) for the proposed BRACE marker and other clinical features for DMFS and BCSS on a subgroup of endocrine treated patients with LN− and LN 0–3 are
listed. Events are censored at 10 years. x ± sd for the C-Index represents one standard deviation of the mean over 1000 bootstrap runs.
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with additional chemotherapy in the whole Cohort-A. Figure 5c, d
show the overlap between the survival curves of predicted high-
risk group (in red) in endocrine therapy treated patients with
actual survival curves of high-risk chemotherapy treated patients
(in black) with no significant difference (DMFS: P= 0.26, BCSS:
P= 0.53) suggesting the ability of our marker to identify patients
who can benefit from additional chemotherapy. Patients in both
blue and red curves in Fig. 5c, d were treated only with endocrine
therapy. Similarly, Supplementary Fig. 12 shows the same analysis
but restricted to internal validation set.

Multivariate analysis
The prognostic significance of BRACE marker was further
investigated when adjusted for other clinicopathological variables
in a multivariate analysis. Figure 6 shows the forest plots from
multivariate Cox proportional hazard regression model for DMFS
(LN−) cases where the HR along with their 95% confidence
intervals are listed for both validation Cohort-A and Cohort-B.
BRACE marker was found to be independent prognostic variable
against other clinicopathological variables for DMFS in LN− cases
of Cohort-A (P= 0.04, HR= 2.79, CI: 1.04–7.48; Fig. 6a) as well as

Fig. 4 KM curves for LN− DMFS. KM curves for the high-risk (red line) and low-risk (blue line) groups of LN− DMFS as stratified by BRACE
marker and other clinicopathological variables on the validation sets (Cohort-A: n= 499; Cohort-B: n= 267). P values are for the log-rank test.
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Cohort-B (P= 0.02, HR= 4.68, CI: 1.22–18.04; Fig. 6b). Supplemen-
tary Fig. 13 shows Cohort-A forest plots for DMFS (LN 0–3) and
BCSS (LN− and LN 0–3) where BRACE marker showed prognostic
ability for DMFS (LN 0–3) cases (P= 0.006, HR= 3.09, CI: 1.39–6.87;
Supplementary Fig. 13a), BCSS (LN−) cases (P= 0.018, HR= 6.39,
CI: 1.37–29.83; Supplementary Fig. 13b) and BCSS (LN 0–3) cases
(P= 0.010, HR= 3.95, CI: 1.40–11.16; Supplementary Fig. 13c).
Grade was also found to be significant for BCSS (LN−) cases
(P= 0.006, HR= 6.12, CI: 1.70–22.03; Supplementary Fig. 13b) and
BCSS (LN 0–3) cases (P= 0.006, HR= 3.85, CI: 1.49–9.99; Supple-
mentary Fig. 13c).
Similarly, Supplementary Fig. 14 shows forest plots for DMFS

(LN 0–3) and BCSS (LN− and LN 0–3) on external Cohort-B. BRACE
marker was found to be independent prognostic variable against
other clinicopathological. For DMFS in LN 0–3 cases (P= 0.02,
HR= 4.17, CI: 1.31–13.32; Supplementary Fig. 14a), BCSS in LN−
cases (P= 0.02, HR= 5.38, CI: 1.32–22.00; Supplementary Fig. 14b),
and BCSS in LN 0–3 cases (P= 0.008, HR= 5.52, CI: 1.58–19.32;
Supplementary Fig. 14c). Grade was found to be not significantly
associated with survival in the external validation. These results
suggest that BRACE marker added information over and above
other clinicopathological variable including grade.

Comparison with Magee equation
The predictive ability of BRACE marker was indirectly compared in
terms of C-index with ODX risk score via the results of a previously
published study where New Magee equation 243 showed a
moderate correlation (Pearson’s correlation coefficient r= 0.604)
with ODX risk score. This equation is based on clinicopathological
variables including NPI, tumour size, ER HScore, PR HScore and
HER2 status. For Cohort-A PR HScore was missing for Magee
equation. On the validation set of Cohort-A, in comparison to
BRACE marker’s C-indexes of 0.73 ± 0.06 and 0.84 ± 0.04 for LN−
DMFS and BCSS, respectively, Magee equation produced
C-indexes of 0.69 ± 0.05 and 0.78 ± 0.04 suggesting better risk
ranking by the former.

Correlation with clinicopathological parameters
BRACE marker was significantly associated larger tumour size
(P < 0.0001), high tumour grade (P < 0.0001) including high
pleomorphism (P < 0.0001), low tubule formation (P < 0.0001),
and high mitotic scores (P < 0.0001). It also showed significant
association with high NPI score (P < 0.0001; Supplementary Table
10). It was significantly associated with lymph vascular invasion
(LVI) on Cohort-A but the association was not significant on

Fig. 5 KM curves for identifying cases for chemotherapy (Cohort-A). KM curves for actual survival in endocrine therapy only treated
(n= 2122) and endocrine+chemotherapy treated (n= 174) patients for endpoints DMFS (a) and BCSS (b). KM curves for high-risk (red line)
and low-risk (blue line) groups of LN 0–3 as stratified by BRACE marker for endpoints DMFS (c) and BCSS (d) in patients treated with endocrine
therapy only in discovery Cohort-A. With appropriate cut-off BRACE identified cases which could have benefited from additional
chemotherapy as shown by the overlap of the predicted high-risk curve (red line) with the actual survival curve (black line) of cases treated
with chemotherapy. BRACE-high and BRACE-low represents cases identified as high- and low-risk, respectively, by BRACE marker. P values are
for the log-rank test.
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Cohort-B. No associated was observed for different age groups,
menopausal status and different BC types.

DISCUSSION
The decision of chemotherapy administration to patients with
early-stage ER+/HER2− BC is critical to avoid unwarranted
chemotherapy side effects. The current methods in histopatholo-
gical analysis are mostly subjective or based on gene expression
profiling which is expensive and time consuming. In this study, we
developed an AI-based method (BRACE marker) which can identify
patients in need for chemotherapy in this intermediate risk group
using an objective and reproducible method reducing the effect
of variations present in manual clinical grading. Furthermore,
BRACE marker utilises H&E slides used in routine clinical practice,
so no extra sampling is needed saving labour and costs of gene
expression assays.
By using AI and image analysis, BRACE pipeline extracted a rich

set of features including tumour morphology, tumour–stroma
relationship, TILs quantification, phenotypic heterogeneity and
mitotic activity from H&E-stained breast cancer images. These
important biologically driven features cannot be objectively
quantified in accurate manner by current BC grading. Capturing
more detailed morphological patterns in the form of grade
proportions and the features based on such local grades when

combined with tumour area percentage, and pleomorphic and
stromal variations can help predicting DMFS and BCSS. BRACE
followed a bottom-up approach where pathologists’ supervision
in the form cellular and regional annotations was utilised so that
the results are explainable as well as appropriate for the
prognostication task. For example, the method can quantify how
much pleomorphic or stromal variation is present in a WSI or what
are the proportions of different grades along with their locality.
Our results on univariate analysis (Table 1) showed that the

proposed BRACE marker can rank (in terms of C-index) patients at
risk of distant metastasis as well as BC-specific death better than
conventional manual clinical grade and comparable to NPI. More
importantly these results suggested better generalisation of
BRACE marker to external cohort as compared to clinical grade.
From the multivariate analysis it was observed that BRACE marker
adds clinically relevant information over other clinicopathological
variables including tumour size, age at diagnosis, and grade.
Although, the Local Grade Predictor in our proposed pipeline was
trained in a supervised way by utilising the clinical grade as WSI-
level label, our BRACE marker ranked patients better in terms of
C-Indices in comparison to the clinical grade for the following
main reasons: (a) by training the local grade composition model
only on ROIs selected by a criteria of high tumour nuclei density
and high tumour nuclei eccentricity; (b) by capturing more
detailed morphological patterns in the form of local grades (grade

Fig. 6 Multivariate analysis for DMFS, LN− cases. Forest plots showing the HR with 95% confidence intervals (CI) and P values (of the log-
rank test) for BRACE marker when adjusted for other clinicopathological variables on DMFS (LN−) for internal validation set of Cohort-A
(n= 499) (a) and external validation set Cohort-B (n= 260) (b).
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proportions); (c) by incorporating tumour region proportion, and
pleomorphic and stromal variation.
Both inter- and intra-tumour heterogeneity have effects on

patients outcome and response to therapy2,3. These variations
include tumour differentiation, cellularity, stromal and immune
response, tumour architecture and histological tumour type. Such
heterogeneities pose challenges for quantification and hence
obtaining a single risk score for a case is not possible from visual
assessment. It has also been shown that high heterogeneity of
tumours is associated poor prognosis because of less immune cell
infiltration44. With the power of AI a detailed information can be
obtained in an objective manner and multiple features can be
integrated to a single score which can then be used for prognosis.
BRACE pipeline extracted a rich set of features from WSI which can
help in a plethora of further research explorations. BRACE
quantified the overall nuclear heterogeneity with in a WSI into
one score (Pleomorphic Contrast) where a higher score, i.e. more
local pleomorphic variations, was associated with poor prognosis
as also reported in previous studies2,3,44.
Stroma-to-tumour ratio (STR) has been shown to have

independent prognostic relevance in different tumours including
BC45,46. However, the relevance of STR still needs further research
in BC because some studies have shown association of high STR
with poor prognosis45 while other demonstrated good prog-
nosis46,47. These inconsistencies might be attributed to the
variations and subjectivity in the assessment of tumour stroma
as well as the heterogeneous nature of BC. BRACE feature set
included a quantitative assessment of stromal cell ecology and
entropy in terms of Stromal Contrast measuring the local
variations in stromal cells in a WSI and may provide an alternative
for STR quantification. High stromal cell variations was associated
with good prognosis and vice versa.
Another DL-based histological grading work (DeepGrade32)

related to BC survival analysis that was recently published is in line
with BRACE but differs from this work in the following aspects.
DeepGrade stratified only Grade 2 patients whereas BRACE
produced a composition of all grades along with other image-
based features. The main outcome for DeepGrade was recurrence-
free survival but for BRACE both DMFS and BCSS were the main
outcomes. BRACE followed a bottom-up approach (region
segmentation, cell segmentation and classification, followed by
features generation) for producing interpretable features as
compared to the only deep features of DeepGrade. Furthermore,
DeepGrade utilised an ensemble of twenty CNN models for grade
prediction whereas one CNN model was used for local grade
prediction in BRACE.
To achieve better stratification of patients, BRACE combined

multiple important histological features. This idea was supported
by a previous study35 analysing the correlation between ODX
score and DL based mitotic count. Using frequency of mitotic
figures, a linear SVM classified a patient as either a high- or low-
risk. Their analysis showed that mitotic count cannot be used
alone for risk stratification of intermediate risk group suggesting
addition of other pathologic features. The digital mitotic count of
BRACE was higher for high BRACE score than low BRACE score
(Supplementary Fig. 15) and a higher mitotic score corresponded
to higher risk which was again supported by the lower mean
number of mitoses in low ODX vs higher mean number of mitoses
in high ODX in their study35. The importance of mitotic figures for
predicting ODX was also shown in another study36.
For explainable results BRACE followed a bottom-up approach

where region and cell level information was used to generate high
level features in different categories. A similar approach was
adopted in another work36 where DL based features were
generated in three main categories related to structures, cell
types, and tissue types.
The ROI selection for training the local grade model in BRACE

was based on tumour cell density and eccentricity to ensure the

model learnt features representative of tumour patterns. A similar
approach of ROI selection was adopted in another work37 where
the ROIs for counting tumour and immune cells were based on
high tumour cell density. Their study also corroborated the benefit
of the usage of DL features in BRACE by reporting an
improvement in correlation with ODX score by adding DL feature
to Magee features. To generate interpretable model, feature
selection in this study37 was mainly based on domain knowledge.
Similarly, another work38 weighted the recurrence score predicted
from H&E image tiles by tile-level tumour likelihood and combined
with clinicopathological characteristics.
Unlike BRACE most of these studies used ODX score as a label

for training a regression model and combined DL features with
other clinicopathological parameters. A more related work39 in a
similar line as BRACE used DL to extract features related to the
three components of NGS and demonstrated it prognostic
significance.
Limitations of this study included its retrospective nature

because of the challenges associated with designing and
conducting prospective studies. However, the method was
validated on a large cohort of more than 2100 cases and its
generalisability was also validated on an external cohort. With the
availability of more data, a multicentric training and validation will
be more useful for developing a robust model. Tumour and
stromal architectures which could potentially add to a more
significant indicator were not included in this work. Furthermore,
due to unavailability of multigene assays, the method was
indirectly compared with ODX via previously published results of
Magee equation in terms of ranking the patients with C-index.
In conclusion, BRACE marker is an AI-based method which can

identify high-risk patients in the intermediate risk group of ER
+/HER2− with high significance, adds clinically relevant informa-
tion over routine manual histological features, and provides a
potential reproducible and cost-effective alternative to existing
gene-based methods. This work should encourage further
research in image-based prognostics in BC and other types of
cancer. Our future plan is to investigate other image-based
features such as the arrangements of tumour cells and stromal
structures and apply the proposed method to other types of
cancers (such as prostate). With access to multigene assays the
method could further be validated for predictiveness and even a
prospective study could also be designed for validation. H&E
image-based features could also be combined with features from
other stained images such as IHC as well as other clinicopatho-
logical features.

METHODS
Datasets
This study included a large well-characterised luminal (ER+/HER−)
BC cohort (n= 2122) who had received endocrine treatment,
without chemotherapy, collected from the Nottingham University
Hospital, Nottingham, UK from 1998–2020. This cohort (called
Cohort-A) was used for discovery and internal validation. To
validate the generalisability of BRACE marker, an external
validation cohort (n= 311), referred here as Cohort-B, with same
BC subgroup and clinicopathological data as Cohort-A was
collected from University Hospital Coventry and Warwickshire
(UHCW), Coventry, UK from 2011 to 2014. Distant metastasis-free
survival (DMFS), i.e. time from surgery to development of the
distant metastasis, and BC specific survival (BCSS), i.e. time from
initial diagnosis to the time of BC related death, were the two
endpoints of the analysis. Median follow-up duration for Cohort-A
for DMFS and BCSS was 80 and 83 months, respectively, whereas
for Cohort-B it was 96 months for both DMFS and BCSS.
Clinicopathological data (Supplementary Table 1) of female

patients with age at diagnosis varying from 20–92 years included:
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lymph node (LN) status, clinical histological grade, tumour size,
lympho-vascular invasion (LVI), Nottingham Prognostic Index
(NPI), progesterone receptor (PR) status, follow-up and treatment
data. Representative sections of formalin fixed paraffin embedded
tissue blocks of surgical excision specimens from each case were
H&E stained and scanned with Philips UFS scanner with 0.25 µm/
pixels at ×40 to produce WSIs (n= 1417). A subset of cases
(n= 705) were scanned using Pannoramic 250 Flash III; 3DHistech,
Budapest, Hungary. For each patient one H&E-stained WSI was
utilised for developing an AI-based BRACE marker for survival
prediction.
Cohort-A was divided into discovery (n= 1496) and internal

validation (n= 626) sets (Supplementary Fig. 1a). Three different
splits were formed from the discovery set for cross-validation
(Supplementary Fig. 1b). Supplementary Fig. 1b shows the detail
of Cohort-B. A subset of cases (n= 174) from the source hospital
of Cohort-A who received both endocrine and chemotherapy was
used as a control group. To keep the evaluation fully blinded the
survival times and events of validation sets were hosted on a
webserver.

Ethics statement
This study was approved by the Yorkshire & The Humber - Leeds
East Research Ethics Committee (REC Reference: 19/YH/0293)
under the IRAS Project ID: 266925. Data collected were fully
anonymised.

WSI annotations for various morphological features
To develop DL models for nuclei detection and invasive tumour/
stroma/DCIS regions segmentation annotations were marked by
six experienced pathologists for different regions and nuclei
types48. Annotations were marked both at nuclei-level as well as
region-level. The main nuclei type annotations included tumour,
normal epithelial, stromal, and immune nuclei. Region annotations
included tumour, tumour associated stroma (TAS), DCIS and
lymphoid stroma etc. Annotations included in this study were
about 756 mm2 of tumour area, 395 mm2 of DCIS area, 360 mm2

of stromal area, and 123,924 tumour nuclei. These annotations
were used for training and evaluating the CNN models (DCIS filter,
Tumour Detector, Region Segmentor). For training Local Grade
Predictor the original slide-level clinical grade was used as a label.
The proportion of clinical grades were grade 1 (23%), grade 2
(57%), and grade 3 (20%).
Due to availability of annotations for selected set of cases and

the amount of data needed to train the different upstream
modules of the proposed pipeline, different subsets of Cohort-A
were used in training and validation (Supplementary Table 3).
However, it was made sure that the feature discovery was done
only on the discovery set. The trained models were applied to the
whole slide for generating different features.

DCIS filtering
The WSI at a low resolution was converted to HED
(Haematoxylin–Eosin–DAB) colour space and entropy was calcu-
lated for each colour channel using rank filter. The diaminobenzi-
dine (DAB) channel entropy was then subtracted from the sum of
H and E channels and Otsu thresholding was applied to the
resulting entropy. Different morphological operations (dilation,
erosion, hole filling)49 were performed to get the desired tissue
area. In order to exclude DCIS areas from the downstream analysis
an EfficientUnet-based semantic segmentation model (DCIS filter)
trained on pathologist annotated tumour and DCIS areas was
applied to the tissue area (Supplementary Fig. 2a). Predicted DCIS
areas were excluded from all the other downstream steps. All the
models were trained and validated only on the discovery sets and
the validation sets were only used for final validation.

Tissue region segmentation
To segment stromal and other tissue regions the Region
Segmentor was trained on patches from pathologist annotated
areas of tumour, stroma, fats, etc. and tissue masks were
generated for WSIs (Supplementary Fig. 2b). Note here that a
separate model was employed for the region segmentation so
that DCIS filter could concentrate more on accurate segmentation
of tumour and DCIS only instead of also including stromal and
other tissue regions (Supplementary Fig. 2c). As Region Segmentor
segmented out stromal regions irrespective of them being
associated with tumour, therefore to restrict to TAS only the
following four steps were taken: (1) Tumour regions segmented by
DCIC filter were combined with stromal regions segmented by
Region Segmentor; (2) for fast processing the mask size was
reduced by a factor of seven; (3) the tumour regions were dilated
to capture the TAS with a disc of radius 8 pixels followed by filling
the holes with a disc of radius 32 pixels; (4) any stroma captured in
the dilated tumour regions was considered as TAS for further
features calculation. Training parameters for Region Segmentor
were as follows: patch size: 512 × 512 with 96 pixels context on all
sides; batch size 8; learning rate 0.01 (initial five epochs), 0.001
(epoch 6–10), 0.0001 (epoch 11–30); momentum 0.9; cross entropy
loss. Other settings: input was normalised to [0,1] and different
augmentations (random brightness/contrast, random rotate,
median blur) were used during training with values of 0.5.

Tumour-rich area identification
To segment and classify different types of nuclei a state-of-the-art
HoVer-Net50 (an inference version also available at https://
github.com/simongraham/hovernet_inference) pretrained on the
BC subset of the PanNuke51 dataset was fine-tuned on the target
dataset resulting in Tumour Detector. As the nuclei-level annota-
tions on WSIs marked by the pathologists were in the form of
points, therefore, the segmentation masks generated by the
pretrained HoVer-Net were used in combination with the nuclei
types to further fine-tune the model on the target images. Input
patches (n= 3200) of size 256 × 256 pixels from the target domain
(discovery set of Cohort-A) were used for fine-tuning Hover-Net
(Supplementary Fig. 3a). An additional patches (n= 400) from
normal WSIs were used to augment the normal epithelial class. For
the first 2 epochs only the decoders were fine-tuned with a
learning rate of 0.0001 and for the subsequent 28 epochs both the
decoders and the encoder were fine-tuned with a learning rate of
0.00001. Based on threefold cross-validation performance listed in
Supplementary Table 4 Tumour Detector (i.e. the fine-tuned
Hover-Net) produced best F1 of 0.79 and this was used for nuclear
detection and classification. The trained model was then used to
generate WSI-level nuclei-contours and types. The output of this
module was used for ROI selection for training the Local Grade
Predictor and for mitosis detection.

Digital local tumour grade prediction
To train a DL Local Grade Predictor (Inception V352 enhanced by
adding two linear activation layers with ReLU activation and a fully
connected layer) for predicting TGC for a WSI, clinical grades at
WSI-level were available as labels/ground truth. But as diverse
regions (such as stroma, fats, etc.) were also present in a WSI
therefore training the model with a WSI-level label applied to all
the areas did not perform well. To reduce the heterogeneity of
region-level labels (i.e. a single WSI-level label assigned to all
regions) so that the model is trained on the most relevant areas
from the tissue, an automated approach for ROI selection was
employed. Tumour Detector was utilised to select an ROI based on
tumour nuclei density, size and shape and instead of using
patches from all over the WSI, patches from the selected ROIs
were used to train Local Grade Predictor. Each ROI was of size
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5600 × 5600 pixels (about 1344 µm) at 40× magnification. Patches
of size 512 × 512 pixels (about 123 µm) at 40× magnification from
the ROIs were used for training Local Grade Predictor to predict
TGC i.e. grade for an entire WSI at the patch-level.

ROI selection
Based on three folds cross-validation, different strategies were
evaluated for ROI selection including random ROI, ROI with
maximum tumour tissue, and ROI with high tumour nuclei density
and eccentricity and the last strategy was adopted because of its
highest ROC-AUC for predicting clinical grade for a WSI. This
empirical ROI selection criterion (eq1) gave more weightage to
areas with larger and more deformed tumour nuclei.

ROIscore ¼ Tumour nuclei count þ 2 x Tumour nuclei areað
´ x Tumour nuclei eccentricityÞ (1)

where x represents the mean of tumour nuclei (area or
eccentricity). Eccentricity measures how much a nuclei deviates
from being circular. An ROI of size 5600 × 5600 pixels (about
1344 µm) at ×40 magnification with the highest ROIscore was
selected from each WSI for training DL-based Local Grade
Predictor. While sliding an ROI-sized window over the WSI for
selecting the high score ROI an overlap of 50% was added.

Patch selection
The extracted ROIs were cut into smaller patches of size 512 × 512
pixels (about 123 µm) at ×40 magnification so they can fit into
computer memory to train Local Grade Predictor. To allow the
model to pay more attention to tumour morphology, patches
below a threshold of fifteen tumour nuclei were discarded. The
threshold was selected based on the discovery set of each of the
three splits.

Local Grade Predictor training
To train a model for predicting TGC, we enhanced the
performance of Inception V352 by adding two linear activation
layers with ReLU activation and a fully connected layer for
predicting the grade and pleomorphism for an input patch
(termed as Local Grade Predictor). The model used ImageNet53

pretrained weights for the unmodified layers. One ROI per WSI
from the discovery set of each split was used for training and the
validation set was used for model selection. Training parameters
for Local Grade Predictor were as follows: batch size 8; learning
rate 0.001; momentum 0.9; cross entropy loss. Other settings:
input was normalised using ImageNet mean and standard
deviation and different torchvision library’s augmentations were
used during training: random crop (default parameters), random
horizontal flip (P: 0.5), and colour jitter (brightness: 0.3, contrast:
0.3, saturation: 0.3, hue: 0.3). The trained model was then used to
predict TGC for an entire WSI at the patch-level.

Stromal and pleomorphic contrast
Spatial co-occurrence quantified the co-occurrence of two or more
structures (such as tumour cells with stromal cells) within a certain
distance in a patch of size 256 × 256 pixels. Once co-occurrence
matrices (CM) were constructed, different features were calculated
using the python library (skimage.feature.greycoprops-Scikit-
image). Two of the main features based on CM included stromal
cell contrast and pleomorphic contrast where contrast measures
local changes of a feature over the WSI. It ranges from 0 (a
constant image) to (size of CM—1). To calculate stromal contrast
the co-occurrence of each stromal cell, in each patch of size
256 × 256 pixels, with any other cell at eight different angles were
counted and put as entries in CM. A standard python library
(greycoprops) was used to calculate different properties (contrast,

dissimilarity, homogeneity, etc.) which served as a compact
summary of the CM for each WSI. Pleomorphic contrast was
calculated in a similar manner where the patch predictions in the
form of local pleomorphic 1 (LP1), LP2 and LP3 from Local Grade
Predictor were used to count the co-occurrence of these
predictions. Supplementary Fig. 5 further explains how CM was
constructed.

Feature selection
A set of features (n= 700) in different categories (Supplementary
Table 2) was extracted to identify features which could be
explained from clinical point of view and perhaps could also be
applied to other subgroups of BC. The prognostic importance of
the features for ER+/HER2− patients was assessed by Cox L1
regression in terms of C-Index, P value (of the log-rank test) and
HR on the discovery set and eight features (i.e. percentages of
digital local grade LG1%, LG2%, LG3%, percentage of tumour area,
pleomorphic contrast, stromal contrast, co-occurrences of stromal
nuclei patches with low density, and digital mitotic score) were
selected for final model development.
AI based grade has proven to be a prognostic marker for BC

survival prediction by identifying useful morphological pat-
terns32,54. To quantify grade at a detailed level and to put it in
relation with overall tumour area, BRACE included the percentages
of local grades and overall tumour percentage. Although nuclear
pleomorphism is an important component of BC grade but due to
high inter-observer variability16,55, it needs better quantification.
To subjectively quantify the overall nuclear heterogeneity with in
a WSI into a single score, BRACE included pleomorphic contrast
which measures the local variation in nuclear pleomorphism
where a low value represents less variations and a high value
represents more variations. Similarly, mitotic count has been a
well-known prognostic marker35,56,57 therefore its digital counter-
part has been included in BRACE. Recently, the importance of
stromal variations has also been found to be of prognostic
significance45,46,58–60. To represent a quantitative measure of
stromal cell ecology and entropy BRACE included stromal contrast
and co-occurrences of stromal nuclei patches with low density,
respectively.
It was noted that adding clinically relevant features from

Category C (related to TIL features) and other ML features from
Category F (different types of cell counts) did not add further
information. The former might be attributed to the unestablished
utility of TILs for the subgroup of ER+/HER2−, whereas the latter
would be less useful because of the difficulty of reducing high
variant cell counts to a single value at WSI-level.

Statistical analyses
To identify the prognostic ability of the proposed BRACE marker, a
Cox proportional hazard regression model (from lifelines package
for python - https://lifelines.readthedocs.io/en/latest/fitters/
regression/CoxPHFitter.html) was fitted on three different splits
of the discovery set. After the feature and parameter selection a
single model was fitted on the whole discovery set. Parameters for
the model were set as: estimation method (Breslow), L1 (0.5), L2
(0.5), and penalty (0.001). The fitted model was then evaluated on
the internal and independent external validation cohorts. The
regression coefficients were used to compute predictive risk score
for each patient. KM curves were used to show risk stratification
and a P value < 0.05 for two-tailed log-rank test was considered as
significant. Based on three splits discovery sets the cut off for
BRACE maker was set at 70th percentile. Similarly, for clinical
variables such as grade, grade 1–2 was taken as reference against
grade 3, whereas the cut off point for NPI was set at 60th
percentile. Forest plots were generated using R function ‘coxph’
and R-package ‘forestmodel’. Chi-square test was used for analysis
of categorical data.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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