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Abstract

Combining unbiased forecasts of continuous variables necessarily reduces the error

variance below that of the median individual forecast. However, this does not necessarily

hold for forecasts of discrete variables, or where the costs of errors are not directly related

to the error variance. This paper investigates empirically the benefits of combining forecasts

of outperforming shares, based on five linear and nonlinear statistical classification

techniques, including neural network and recursive partitioning methods. We find that

simple “Majority Voting” improves accuracy and profitability only marginally. Much

greater gains come from applying the “Unanimity Principle”, whereby a share is not held in

the high-performing portfolio unless all classifiers agree.
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1.            Introduction

This paper assesses the value of combining results from statistical classifiers, applied to the problem of

identifying high-performing shares on the London Stock Exchange. The classifications are based on

financial ratios drawn from the annual accounts of around 700 companies, and predictions are made

for the performance of these companies’ shares over 1-year holding periods during the years 1993-7.

The data are screened using linear discriminant analysis, and four nonlinear techniques – a

probabilistic neural network, a vector quantization procedure, an oblique recursive partitioning

method, and a rule induction algorithm.

The selection of potentially outperforming shares is the central task of fund management, so our

findings may be of direct interest to investment institutions. The stock selection problem also has a

number of characteristics that make it interesting from a research perspective. Combining unbiased

forecasts of a continuous variable like company earnings necessarily reduces the mean square error

below the error of a typical individual forecast (see, for example, Bates and Granger, 1969). There is

now a large literature measuring these benefits and discussing weighting schemes for combining

forecasts, much of it surveyed in Clemen (1969) and Diebold and Lopez (1995).

However, the target variable in stock selection is not continuous – a share is either in or out of the

portfolio - and this requires different combining methods based on voting rules. It is not obvious that

such rules will necessarily help. For example, most classification methods will correctly classify

“easy” cases, but only a few will succeed with “difficult” cases, which are therefore liable to be

filtered out by a majority vote. Moreover, the relevant measure of success in stock selection is not

accuracy but profitability, preferably adjusted for risk. For variables such as stock returns, which are

significantly non-normal, the returns from trading on point and directional forecasts are known to be

only weakly related to their accuracy (Leitch and Tanner, 1990). So the most profitable way to

combine any forecasts, and especially binary forecasts, is essentially an empirical matter.

The second section of the paper below sets out the principles that have informed our methodology for

classifying share returns. The third section reviews the classification methods we have used. The

fourth section introduces the data. The fifth section discusses methods of combining forecasts, and

presents our empirical results.

We find that all the classifiers can identify high and low performing stocks ex ante, to a statistically

significant degree, with a typical “hit-rate” of around 60%. This translates into an average return on

the portfolio of high-performing shares some 6-7% per annum above the 12% return to an equally-

weighted stock index. There is little difference in statistical performance and raw profitability across
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the different classifiers. Adjusting returns for market risk does reveal some differences, however, with

the recursive partitioning method outperforming discriminant analysis and the probabilitistic neural

network.

If the portfolio is restricted to shares classed as high by all the models, the average return rises to 12-

13% above the index. This sharp increase is achieved with lower transactions costs, since a much

smaller number of shares is traded. The actual and predicted high-yielding shares are riskier than

average. Adjusting for market risk reduces excess returns from the combined classifier to around 9%

per year, but this is still better than the best individual classifier. Our conclusion is that combining

classifiers is a potent source of excess returns in stock selection tasks. We discuss possibilities for

further refining the forecasts in the final section of the paper.

2. Methodology

The predictability of stock prices has been extensively researched over the past few decades. As a

result, we feel that certain general principles have now been established, and these have determined

our choice of forecasting method. The principles are as follows.

First, the efficient market theory has proved very robust (Fama, 1961; Fama, 1991). The central

proposition of the theory is that, because of the activity of profit-seeking speculators, expected returns

on shares will reflect their risk. It may be possible to identify in advance which shares will produce

returns higher than the general market index, but these shares will be riskier. It may also be possible

predict whether one year will be better than another for the stock market as a whole. But the high-

earning years will also be years of high risk, or high risk-aversion on the part of investors. In practice

the risks attaching to individual shares, and changes in market risk, are themselves hard to predict, so

that it is hard for forecasters to beat a random walk model of stock prices, and hence hard for investors

to find any portfolios which consistently beat the market index.

Second, there is nonetheless evidence of some predictability in stock prices beyond what might be

expected on the basis of the efficient market hypothesis. A series of studies has shown that some

characteristics of the financial structure of the company can predict returns. Fama and French (1995)

and others have suggested that company fundamentals like market capitalisation, and the ratio of the

market value of the firm to the book value of its assets, are (inversely) correlated with excess returns.

A series of studies has also argued that the time series of share price movements is not truly random.

For example, Lo and McKinlay (1988) argue that recent price trends tend to persist into the near future
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but reverse in the distant future, and Brock et. al. (1992) find that moving average trading rules used

by technical analysts yield excess profits.

Third, these kinds of patterns have proved unstable over time. Small companies and “value” shares

seem to perform well in recovery years, and in years of high inflation and low real interest rates. But

they do badly in recession years, and in the recent period of low inflation (Fama and French, 1996).

One corollary of this is that if rules exist, they are probably complex. There is now an industry looking

for more complex “style rotation” relationships, between share returns, accounting ratios, price

momentum, and the state of the economy (see, inter alia, Arnott and Copeland, 1985; Sharpe, 1992;

Asness, 1997). A second corollary is that if rules can be extracted from data, most weight should be

given to recent data. This is a conclusion of most empirical studies of forecasting accuracy in the

broader domain of business forecasting, notably Makridakis et. al. (1982). A third corollary is that

statistical methods should be preferred to judgmental methods in searching for and applying rules. The

judgments of fund managers in this complex environment are notoriously unreliable. The average

mutual fund underperforms the index, and there is little evidence that any fund can perform

consistently above average (Jensen, 1968; Ippolito, 1989).

Fourth, it is worth combining the forecasts from a number of unbiased forecasting methods (Bates and

Granger, 1969). In conventional forecasting tasks, the gains have proved substantial. Combined time

series forecasts outperform all of their components in many of the business forecasting experiments in

Makridakis et. al. (1982), and consensus forecasts of economic aggregates typically outperform about

70-80% of the constituent forecasts (McNees, 1992). Batchelor and Dua (1995) show that these gains are

greatest if heterogeneous forecasters are combined.

This interest in combining has in recent years extended to classification problems, with investigations of

the power of “committees of neural networks”, and “mixtures of experts” (see Breiman et. al., 1982;

Hansen and Salamon, 1990; Xu et. al. 1992; Krogh and Vedelsby, 1995; Heath et. al. 1996). Results

from combining classifiers have not been uniformly encouraging. However, these studies usually

combine homogeneous models - an example is the use of bootstrap aggregation or “bagging” and

“boosting” (Breiman, 1994) to generate sets of neural networks with slightly different architectures. Our

exercise is very different and potentially more productive, in that we are combining heterogeneous

models, rather than closely related members of the same family of classifiers.

Finally, it is important to control trading costs and price slippage. Many of the profits which appear to

be generated by statistical trading rules are eaten up once trading costs are taken into account (see

Brock et. al., 1992 and Pesaran and Timmerman, 1995), and rankings of net returns to mutual funds
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tend to be inversely correlated with their operating costs. All this argues for investment rules that

involve infrequent trading, in a relatively small number of liquid stocks.

3.          Classification Methods

The purpose of a classification method is to predict the class to which some new observation belongs,

based on data on attributes of known members of possible classes. In our case, we are interested in

whether a particular share should be classed as potentially high-return (H), or not (L). Our data are the

past returns on a sample of shares, and associated “fundamental” information on the financial state of the

companies issuing these shares. We prefer this to the more conventional approach of making point

predictions of the expected return to shares, on two grounds. First, having a fuzzy, qualitative, target

variable respects the fragility of the relationships between share returns and fundamental factors

discussed above. Second, from the viewpoint of an investor, the primary requirement is a simple buy or

sell decision.

Classification problems arise naturally in many branches of the natural and social sciences. The

traditional approach to solving such problems is the linear discriminant analysis developed by Fisher

(1936), and this is the first technique which we apply below. However, advances in theory and

computing power over the past two decades mean that a huge array of alternative techniques is now

available, many surveyed in Hand (1997). Some of these are statistical, but semi- or non-parametric,

and potentially capable of uncovering nonlinear structures in data. In our study these are represented

by learning vector quantization, and the probabililistic neural network (a kernel density estimator).

Some modern classification methods depend on the induction of logical rules, represented in our study

by a recursive partitioning algorithm, and the RIPPER rule induction algorithm. Michie et. al. (1994)

conduct a forecasting competition which shows that although some computational algorithms are more

efficient than others, all types of classification method have something to offer, depending on the

nature of the data.

- Linear Discriminant Analysis(LDA)

Suppose yit is the 1-year-ahead return on some share i bought at time t, and xit = [ x1it x2it … xnit ] the

vector of standardised attributes for company i which are known at t. Based on rankings of returns in

excess some benchmark index, we assign returns yit to class Cit =  H or L, depending on whether or not

returns exceed some threshold percentile. The problem is to predict the class of yit given current

information xit on company i, and information on the classes Cjt-k and related information xjt-k of all
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shares in some earlier  “training set” of data. The success of the classification method will be judged by

tracking the returns to the portfolio consisting only of shares classed as H.

The idea of linear discriminant analysis is to search for a rule of the form

  Cit =  H or L according as zit = w0  + w!xit > 0 or " 0               (1)

The parameter vector w = [w0, w1, …, wn] is chosen so as to maximise D = (w!xH
 - w!xL

)/ w!Sw,

where x
H
 and x

L
 are the means of the high and low performing groups in the training set, and S is the

estimated (common) within-group covariance matrix. In financial applications, zit is often called the

“z-score” of observation xit.

The LDA rule can be interpreted alternatively as assigning a quasi-likelihood f
H

it to observation xit

conditional on an elliptical distribution centred on the mean of observations classed as H in the

training set, and a corresponding likelihood f
L

it
 
from a distribution fitted to the L observations.

Observation xit is then classed as

Cit =  H or L according as f
H

it > f
L

it or " f
L

it (2)

That is, a new observation with unknown class is assigned to either H or L, depending on which

distribution gives it higher likelihood.

The LDA model provides a simple and fast algorithm that has been applied to a variety of problems in

finance, including bankruptcy and bond rating prediction (Altman, 1972, Kaplan and Urwitz, 1979).

But the model is restrictive in that it requires the independent variables to follow an elliptical

multivariate distribution, such as the Gaussian. Financial ratios of the kind used here are typically

highly skewed, flat, and/or dominated by outliers (Deakin, 1976; Frecka and Hopwood, 1983). For this

reason, it is worth looking at more flexible alternatives.

-    Learning Vector Quantization (LVQ)

The Learning Vector Quantization  procedure (Kohonen, 1988)  assumes that the distribution of each

class can be approximated not by a single elliptical distribution, but by a mixture of distributions. Figure

1 illustrates the idea for data with only two attributes, x1 (say, book-to-market ratio) and x2 (say size). In

all, 6 distributions have been superimposed on the scatter of data points, 3 centred on distinct clusters of
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H ( ) observations, and 3 centred on clusters of L ( ) observations. The ellipses around the centre of

each cluster join points with equal likelihood in that cluster, or strictly equal distance from the cluster

mean. The space is partitioned into H and L regions by lines connecting points of equal distance from

neighbouring means, a “Voronoi tessellation”. With only 2 clusters, this model collapses to the LDA,

with a single straight-line discriminant function along which z = 0. As the number of clusters is

increased, the model becomes more general, and the frontier between H and L need not be linear, as

shown by the firm line in the Figure. Indeed all the H cases need not even be in contiguous clusters.

This is equivalent to k-means cluster analysis in a “supervised” form where the classes to which the data

clusters belong are known in advance. The Kohonen LVQ algorithm is a computationally convenient

way of implementing the supervised k-means model, though not necessarily the most accurate

(Balakrishnan et. al., 1994). In the LVQ algorithm, a small number k of prototype “codebook vectors”

are identified by sampling in the training set, and these are taken as provisional centres of the

distributions. Each element of the training set is compared in turn with the existing codebook vectors,

and assigned to the nearest. The mean of that distribution is then moved closer to or further from the new

element, depending on whether the new element is or is not of the same class as the nearest codebook

vector.

Formally, suppose the new element xit is the s-th observation in the training set, and the nearest codebook

vector is, after considering s-1 training set elements pj{s-1}. Let # s = 1 if xit is the same class as pj and # s

= –1 if it is a different class. Then the codebook vector is adjusted as

pj{s} = #s$s xit  + (1 - #s$s) pj{s-1}                                     (3)

That is, the existing mean is weighted together with the new vector, with weights corresponding to some

empirically determined “learning rate” $s. This process is continued for all of the training set data. If

necessary, the whole cycle can be repeated, until a stable set of classes emerges.

Algorithms of this kind have been little applied in finance, though the LVQ performs relatively well in

the benchmarking studies of Michie et. al. (1994) which does include data sets on bank lending

decisions. In more complex versions, the learning rate may depend inversely on the number of

observations already in the class, and in the adaptive k-means model of Dubes and Jain (1976), the

Voronoi tessellations are replaced by soft transitions, by explicitly defining a Gaussian kernel at the

centre of each cluster. Both the means and variances are then adjusted as the algorithm steps through the

training data.
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- Probabilistic Neural Network (PNN)

The probabilistic neural network represents an extreme generalisation of the k-means model along these

lines. In the PNN, the number of clusters k is set equal to n, the training sample size. So whereas linear

discriminant analysis positions two elliptical distributions over the means of the two groups, and the k-

means model positions k distributions over the data, the probabilistic neural network starts by positioning

separate distributions, which may take any reasonable form, over every data point. A new observation is

then assigned to one class or the other depending on which set of distributions is closer, on the basis of a

distance criterion like (2).

Specifically, suppose there are m
H
 observations in class H. The distance of new observation xit from the

H class is simply the average of distances from all the individual members xjt-k % H, as

  ( ) ( )d
H

x it
m

H
f x it x jt k

j H

= &
%

'
1

,                                  (4)

The most popular choice for the distance measure is the Gaussian function

( )f x it x jt k

x it x jt k
,

.
exp& = &

& &
(

)

*
*

+

,

-
-

1

2

2

2
2. / /

 (5)

This procedure gives a kernel density estimator for the class of H shares, using a multivariate kernel with

a mixture of identical Gaussian distributions positioned at each of the training sample points (Hand,

1997, p 85). This PNN has been applied to problems of financial distress and bond ratings prediction

(Tyree and Long, 1997; Albanis and Batchelor, 1999a), with encouraging results.

The benefit of the PNN is that does not require multivariate normality or equality of the group

covariance matrices, and in that sense is much less restrictive than LDA. And it does not restrict the

number of segments in the tessellation, so it can model more complex discriminant surfaces than the

LVQ. The problem with the PNN, as with any kernel estimator, lies in the selection of an appropriate

smoothing parameter /. A low value of / means that the distance measures are heavily influenced by

the nearest training set data. This has the benefit that complex features of the distributions will be

captured, but it means classification may be unduly influenced by idiosyncrasies in the sample, or
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measurement error in the input vector. Choosing a larger value for / reduces these problems, but

makes the distributions closer to those assumed by LVQ and LDA.

The “neural network” label is due to Specht (1990), who noted that the computational algorithm could be

characterised by the four-layer architecture of Figure 2. The input layer consists of the n elements of the

vector xit. The pattern layer consists of as many nodes as there are observations in the training set (m,

say). At each node of the pattern layer, the potential function (5) is evaluated. In the summation layer,

there are two nodes, corresponding to the two possible classes. The distance measures for the H class are

summed in one of these nodes, as in Equation (4) above, and the distance measures for the L class in the

other. The output node assigns the input vector to the H or L class, depending on which of these distance

measures is smaller, the prior probabilities of observing H and L, and relative costs of classification

errors.

-  Recursive Partitioning  (Oblique Classifier OC1)

Recursive partitioning methods, or decision trees, approach the problem of classification in a way

quite distinct from the semi-parametric methods outlined above. The idea is to find an ordered

sequence of binary conditions for elements of the xit that will lead to a correct decision for new

observations. Figure 3 shows a plausible decision tree for classifying the data of Figure 1 into H and L

classes, and Figure 4 shows the corresponding partitioning of (x1, x2) space. In this example two of the

conditions are “axis-parallel” – that is, they compare only one of the variables with a threshold value.

The final condition is “oblique”, and compares a linear function of the variables with a threshold

value.

In general, the method consists of finding a sequence of rules of the form

        if {zit = w0 + w!xit > 0} then {next
H
 or Cit =  H}, else {next

L
 or Cit =  L}       (6)

Where next
H
 and next

L
 represent the criteria at the next nodes in the tree. The computational problem

is to find reasonable values for the parameters w0 and w defining the separating hyperplane, and

indeed to find a point at which to stop building the tree. With m-1 criteria, it would be possible to

correctly classify all m observations in the training data, but such a tree would be unlikely to

generalise. The usual approach to these problems is to search for rules that maximise the change in

“impurity” at each node of the tree, and to stop building the tree when this change becomes small. One
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plausible measure of impurity at a node is the probability that observations reaching that node belong

to the minority class at the node, and hence are potentially classified incorrectly.

For the data in Figure1, there are 30 H cases and 30 L cases, so a sample-based estimate of the

probability of correctly classifying, say, an H observation arriving at Node 1 in Figure 3 is 1/2. After

applying the rule if {z = 0.3 – x1 > 0} then Cit = H, the impurity at Node 2 is zero, since all 15 cases

arriving at this mode are correctly classified as H.  However at Node 3 there are 30 (“correct”) L cases,

but 15 incorrectly classified H cases, so the impurity measure is 15/ (30 + 15) = 1/3. Impurity is

reduced in moving from Node 1 to Nodes 2 and 3, and hence the criterion at Node 1 is worth applying.

This is one of many impurity measures, and suffers from a number of drawbacks, discussed in Hand

(1997, p 68). In our work below we use instead the “twoing rule” proposed in the standard text on

recursive partitioning algorithms by Breiman et. al. (1984).  Suppose we represent the numbers of

outcomes from a node as a two-way contingency table:

z > 0 z < 0

Actual = H m11 m12

Actual = L m21 m22

Sum = m.1 m.2

Here m.1 is the total number of cases on the left of the split, m11 is the number of cases on the left of

the split classed as H, and the total number of observations considered at the node is m = m-1 + m.2.

The twoing criterion is min (1/M), where

We use the OC1 algorithm of Murthy et. al. (1994) to search first for the best axis-parallel split at a node,

and then for oblique splits. As with any numerical procedure, there is a danger that these searches will

yield local rather than global minima for the impurity measure. After finding the best split at each node,

the algorithm makes random perturbations to the coefficient vector and compares the resulting impurity

measure with the selected rule.

-   RIPPER Rule Induction (RRI)

M
m

m

m

m

m j

m

m j

mj

= &
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1
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4
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Rule induction methods are closely related to recursive partitioning. Like the decision tree, rule induction

involves searching for a sequence of logical conditions that have a high probability of separating the H

and L classes. For the data of Figures 1 and 4, for example, these conditions might be:

H if (x1 < 0.3 and x2 > 0.3 and x2 < 0.6)

H if (x1 < 0.4 and x2 < 0.3)

H if (x1 < 0.7 and x2 > 0.7)

Else L

This could be expressed as a decision tree or recursive partitioning with axis-parallel splits, and in that

sense the method is less general than the OC1 classifier described above. One benefit claimed for using

explicit rules is that they may have a commonsense interpretation, which is not true of most of the above

methods. Another benefit is that rules can be applied to non-numeric or fuzzy variables, though this is

not relevant to our data. In the most common applications of rule induction, in text processing and

massive database searches, computational speed is at a premium, and rule induction algorithms are

relatively efficient. Finally, there is less danger of overfitting with axis-parallel rules. In a study of US

corporate bankruptcy, Frydman et. al. (1985) found a recursive partitioning method with only axis-

parallel splits produced significantly better out-of-sample predictions than linear discriminant analysis.

The most popular rule induction techniques start by developing an excessively complex rule, and then

simplify it on the basis of the predictive performance of the rule. The method we use is the RIPPER

algorithm due to Cohen (1995). This involves splitting the training data into two sets - a growing set, on

which the overly complex rules are developed, and a pruning set, which is used to decide which

elements of the complex rule can safely be discarded. The growing set is usually taken to be a random

sample of the training data. The first step is to find a condition of the form:

If( x1 6 v1 and x2 6 v2 and .. and xn 6 vn) then H (8)

which holds without exception in the growing set, where 6 is one of the operators <, ", > , 7  =, and the

vi are possible values for the input variables. The complete rule is “grown” by adding one conjunctive

element after another, until no element can be added to the rule without misclassifying at least one

observation. Of course, not all the xi need be involved in the condition. This condition is then applied to

the pruning set, and the proportion of successful classifications noted. Each element of the rule is then

dropped in turn, until the success rate in the pruning set is maximised. The pruned version of the rule is

retained. Importantly, all observations covered by the rule are then dropped from the training set.



11

A new rule is then sought to cover the H cases which remain in the growing set, and the process is

repeated. This process of postulating general rules and pruning them is continued until no progress can

be made in classifying the pruning set.

4.           Data and Trading Rules

Our target data are total returns on all shares traded on the London Stock Exchange in the years 1993-97

for which there is a complete set of annual accounts available on the EXTEL service. In all, 651 shares

met this criterion in 1993, rising to 752 in 1997. Returns are measured on an annual basis, using end-

month price data, and assuming reinvestment of any dividends received during the year. Excess returns

are calculated for each share by subtracting the corresponding total return on an equally weighted index

of all sampled shares from the individual share return. The returns data all come from Datastream.

For each year, the excess returns from one-year investments starting at the end of all months in that

year are ranked. A share is classified as “High-Performing” (H) in that year if its return is in the top

25% of this ranking. Otherwise it is classified as “Low-Performing” (L). The 25% cut-off is selected

so as to give a clear difference between the mean returns on the H and L groups, while keeping the

group sizes reasonably large.

To predict whether a particular share will be H or L, we use information in the companies published

annual accounts for the previous year. From these we extracted information on 15 key balance sheet

items - sales revenue, earnings, total profits, tax paid, total assets, total liabilities, current assets,

current liabilities, current debtors, total capital employed, shareholders equity, dividends paid, market

capitalisation, book value of assets, and total debt. These were then used to form 38 conventional

financial indicators, such as profits after tax relative to sales, price to earnings ratio, book to market

ratio, and earnings per share.

Our aim is to find rules that will classify a particular share as H or L based on these indicators.

Consistent with our principle of giving most weight to recent data, we restrict our information set to

share returns in the previous two calendar years. Thus data for 1991 and 1992 are used to classify

shares in the 12 months of 1993; data for 1992 and 1993 are used to classify shares in 1994; and so on.

If a share is classified as H, we assume that it is bought at the end of the reporting month, and held for

one year. Equal amounts of each share are bought, regardless of the strength of the trading signal. The

value of each classification method is judged by the cumulative profits generated by the resulting

rolling portfolio of H shares.
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The benefit of this rule is that it minimises transactions costs, and is not affected by any anomalies in

price behaviour around the reporting date. Each share is traded at most once per year, and trades can

be done in a basket on one day at the end of each month. On average, the H portfolio will turn over

1/12 of its constituents each month. Given that there are 160-190 H shares each year, only 13-16

shares will be bought and sold each month in the ideal trading strategy. A possible disadvantage of our

trading rule is that there is a delay of up to 4 weeks in reacting to the accounting news. Another is that

we do not invest relatively heavily in shares which some rules may indicate have a very high

probability of success. And we do not “manage” the portfolio in any way, for example by selling

underperforming shares during the year.

In practical applications of all classifiers, three generic problems need to be addressed. One concerns the

normalisation of the inputs. The second concerns the relative costs of misclassifying H and L shares. The

third concerns the potential redundancy of elements of the input vector. Predictions for 1993, made using

data from 1991-2, were used in experiments to determine how best to handle these problems. The year

1993 cannot therefore be regarded as truly “out-of-sample”, and results for 1993 and 1994-7 are reported

separately below.

Classification algorithms work best if the data is spread evenly across the input space. As noted earlier,

financial ratios are typically highly nonnormal, and we have many series with extreme outliers. For the

current exercise, we have winsorized the data for each year, by ranking all the observations on each

series, and setting values in the lower and upper 5% tails equal to the 5
th
 and 95

th
 percentile values. The

results are then squeezed into the range [0, 1] as xkit  = (rkit - minkT)/(maxkT – minkT), where rkit is the

winsorized ratio, and maxkT and minkT are respectively the highest and lowest values for variable k in the

year T.

Classification rules like (1) and (2) assume that the costs of misclassification are the same for

both groups, and that we have no priors about the probability of observing each class. However,

in general (2) should be

where  .H
 and .L

 are prior probabilities of observation x
it
 lying in the H and L classes, and c

H 
 and c

L
 are

the costs of incorrectly classifying shares which belong to the H and L classes. It is hard to guess at the

costs of misclassification, since this depends on the distribution of returns over the two classes. However,

we can assign reasonable priors. If the stock market is efficient, returns available to investments made at

the end of each month should be independent of information received before the end of the month, and in

Cit  =   H or L according as 
.

.

H

L

cH

cL
f
it
H

f
it
L

or f
it
L

. . ( )> " 9
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particular the accounting ratios xit. Hence the probability that any randomly selected share is H would be

0.25, and the probability that any share is L would be 0.75. This efficient market prior has been used

directly in implementing the LDA, LVQ and PNN and, by requiring proportionately lower impurity on H

branches of the decision tree, in the OC1 algorithm.

Classification rules work best with a small set of near-orthogonal inputs. With 38 inputs, many

measuring similar aspects of company performance, there is an obvious danger that a model will be

overparameterised. We have reduced the dimension of the input data set for all classifiers by variable

deletion. In the case of LDA, we apply a stepwise variable selection algorithm, with variables entered

one at a time on the basis of their F-statistics, and with all variables already included in the model

checked at each stage in case they cease to be significant. The predictive power of the model is judged at

each step using full cross-validation in each 2-year training set. For the other classifiers, there is no

analytical criterion for variable selection, and we have followed a “general-to-specific” strategy. Again

using only data from the training set, each model is implemented using all inputs, and the

misclassification rate noted. The variables are then dropped one after another, and the models re-

estimated. Full “leave-one-out” cross-validation is used to evaluate the resulting PNNs, but the

computational time involved in of applying this to the other methods is prohibitive, and we have instead

made 10  “leave 10% out” passes through each training set. The 1991-2 training set gave models to

predict 1993 with 12, 19, 17, 21 and 35 variables respectively for the LDA, LVQ, PNN, OC1 and RRI,

with similar results for later years. In Albanis and Batchelor (1999b) we discuss alternative data

reduction techniques based on nonlinear principal components.

5.          Individual versus Combined Forecasts

Each classifier j can be thought of as producing a prediction value Ij of 1 or 0 for an out-of-sample

observation, according as the company is predicted to have a High or Low share price performance. A

composite linear prediction rule which encompasses much recent research assigns an observation to H if

where n is the number of classifiers (in our case 5), and the wj are weights on each prediction, which

without loss of generality can be made to sum to unity. Mani (1991) shows that some voting rule of this

kind will necessarily improve accuracy as the number of independent unbiased classifiers increases. The

effectiveness of combining procedures will depend on exactly how the weighting is done, and how the

voting is done – that is, on choices of wj and V*.

V w jI j
j

n
V=

=
' 7

1

*
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In business forecasting, experience suggests that most benefits from combining are captured by equally-

weighted schemes, with wj = 1/n (see Diebold and Lopez, 1995). In artificial intelligence applications,

the empirical evidence is unclear. For example, Alpaydin (1998) finds that for nearest neighbor

classifiers like the PNN, significant improvements in accuracy can be achieved by weighting according

to the models’ performance on subsets of training data. But Ali and Pazzani (1995) test weights based on

likelihoods for partitioning rules like our OC1 and RRI methods on a large number of disparate data sets,

and prefer voting based on equal weights.

In combining classifiers, the most commonly used values for V* are n/2, the Weighted Majority Rule,

and n, which requires a Unanimous Vote. Again, it is unclear which is likely to work best in practice.

Some empirical studies, such as Battiti and Colla (1994), find the majority vote outperforms the

unanimous voting rule. Others, like Heath et. al. (1996) favour unanimity.

Because the in-sample performance of the five classifiers in our exercise is broadly similar, we have not

investigated weighting schemes here. However, we do compare the effects of a rule that classifies a share

as H if a majority of classifiers favour it (the MVH rule), and a rule that classifies a share as H only if all

five classifiers agree unanimously (the UVH rule). The five models and these two combining rules are

judged on the percentage of shares correctly classified, and more importantly on the profits generated

from trading on the rules.

Table 1 summarises classification rates for all methods, for the target year 1993 – on which the input

dimensionality reduction experiments were conducted – and for the genuine out-of-sample target years

1994-7. The LDA with 12 inputs produces excellent results for 1993, with around 70% of shares

correctly classified, and about 60% of high-performing shares correctly classified. Given that the top

25% of shares are assigned to the high performing class, this is well in excess of what might be expected

by chance. The PNN produces comparable results. The other methods, although using more inputs,

classify about 65% of shares correctly.

With the same models applied to 1994-7, overall performance degrades a little, but remains far better

than chance for all classifiers. Figure 5 shows that the general level of performance is stable over the

years 1994-7, though there are small changes in the rankings of the individual methods from year to year.

The LDA performs relatively poorly (57.8% correct), suggesting that our stepwise variable selection

criterion was perhaps too parsimonious. On the other hand the RRI performs even worse (56%). Since

the RRI retained most of the input variables, and for each year generates about 18-20 rules, the more

complex of which have little predictive power, this suggests that the RRI model is not parsimonious

enough. The other nonlinear methods generally perform better than the LDA on the 1994-7 data, and
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only a little worse than in the benchmarking year 1993, with the PNN, LVQ and OC1 all classifying

around 60% of shares correctly.

In spite of our strong prior against classifying a share as high-performing, a substantial number of L

shares are incorrectly classified as H.  For the LDA, almost 70% of shares classed as H are actually L,

and for the best classifier (OC1) the proportion is 62%. This is of practical importance, since our trading

rule involves buying all shares classed as H. Whether the contamination matters depends on whether the

L shares wrongly classed as H are marginal cases, or whether they are typical low-performing shares.

The final two rows of Table 1 show classification results for the Majority Voting and Unanimous Voting

composite classifiers. The Majority Voting rule produces results comparable to the best of the individual

classifiers, with about 70% correct in 1993 and about 60% correct in 1994-7. However, the Unanimous

Voting rule is markedly superior to all of the other classifiers. In 1993 it has an accuracy rate of nearly

75%, and this outperformance persists into the 1994-7 period, with an overall accuracy of over 70%. The

Unanimous Voting rule also produces much smaller H portfolios than the individual classifiers and the

MVH rule. The individual methods typically give portfolios of around 300 predicted H shares, but the

UVH rule gives portfolios of a core of about 100 shares common to all the methods. Since each share is

held for a year, this involves buying and selling only 8-12 shares on one day towards the end of each

month.

Table 2 measures the financial returns to an equally weighted index of all shares in our data, to portfolios

of the actual H and L shares in all the twelve-month holding periods starting in each year, and to the

portfolios predicted to be H and L by our classifiers.

Looking at results for the individual classifiers, two features stand out. First, all produce excess returns.

The equally weighted index grew by about 12% per year in the period 1994-7. The H portfolios of all

classifiers comfortably outpace this, with the worst (RRI) yielding about 16%, and the best (PNN) 19%.

Second, there is some correlation between accuracy and returns. The RRI, which classifies worst

produces the lowest profits. The other methods were very similar in terms of accuracy and offer similar

returns, in the 18-19% range.

The Majority Voting Rule, which made little difference to accuracy, also makes little difference to

profits, outperforming the individual classifiers only marginally. The most striking feature of the table is

the performance of the Unanimous Voting rule, which produces a return to the H portfolio of over 25%

per annum in the 1994-7 period. Its excellent performance relative to the alternatives is illustrated in

Figure 6.
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Findings like this are vulnerable to the accusation that high returns are made only at the expense of high

risk. Some relevant characteristics affecting risk are summarised in Table 3, which shows averages for

the target year 1995 of selected attributes of the actual and predicted H portfolios from the PNN.

Portfolios from other classifiers and years are similar. The actual H portfolios consist of companies that

have a smaller-than-average market capitalisation, and hence may be riskier and less liquid. The actual

and predicted H companies are also typically highly geared (high debt: equity ratio) and show a low

current after-tax profit. They tend pay out low dividends, and tend not to be “value” companies, but

rather “growth” companies, with high market-to-book ratios.

A more formal adjustment for risk using the Capital Asset Pricing Model is made in Table 4, which

shows regression-based estimates of the betas (gearing to the equally-weighted index) and alphas (excess

returns not due to this gearing) for actual and predicted H and L portfolios. The actual H portfolio does

have a high beta, around 1.4. The predicted H portfolios from the LDA, PNN and UVH have similarly

high betas, but the other classifiers generate H portfolios with betas very close to 1. This means that in

terms of beta-adjusted excess return (i.e. alpha), the LVQ and OC1 classifiers produce results almost as

good as the UVH combining rule. For example, the OC1 H portfolio has a return of 18.9%, but a beta of

only 0.9, giving an alpha of 8.1%. The UVH H portfolio has a much higher raw return of 24.8%, but also

a much higher beta of 1.39, to give an only marginally higher risk-adjusted return of 9.3%.

6.          Concluding Remarks

Our experiments suggest that statistical classification methods can identify ex ante portfolios of shares

that will consistently outperform an equally-weighted benchmark index. Linear discriminant analysis is

only marginally outperformed by the more complex nonlinear models in terms of accuracy and

profitability. Combining these classifiers using Majority Voting makes little difference. But combining

using a Unanimous Voting rule markedly improves overall accuracy, overall profitability, and this

improvement is achieved with lower trading costs.

Controlling for market risk using the CAPM does not account for all of the excess returns, but it does

have an impact on the ranking of the alternative classification methods. The LDA and PNN look less

attractive, while the recursive partitioning rule OC1 looks more attractive, in terms of risk-adjusted

return. The UVH combining rule still dominates all the individual classifiers and the MVH rule.

These conclusions are of course conditional on the information sets we have used, the way we have

implemented the various models, and the trading rule we have assumed. There are some obvious

extensions which could be made to the study. For example, in addition to the set of company-specific
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attributes considered here, we could look at the more general economic indicators, and patterns in the

time series of share prices. We could explore whether it might be better to define the H class as, say, the

top 5% or 10% rather than the top 25% of shares. And we could almost certainly improve the return/ risk

tradeoff by “managing” the predicted H portfolios, by cutting losses on poorly performing shares before

the end of each 12-month holding period. Some of these ideas are explored further in Albanis and

Batchelor (1999c). However, our object has not been to seek the best possible trading rule, but to assess

the benefits of combining classifiers, and none of these refinements seems likely to undermine the

superiority of the Unanimous Voting rule.
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Table 1. Actual v. Predicted Classification Rates, 1993 and 1994-7

Method Predicted Actual

1993

Actual

1994-7

H L % right H L % right

LDA H 98 128 43.4 409 896 31.3

L 65 360 84.7 303 1236 80.3

% correct 60.1 73.8 70.4 57.4 58.0 57.8

LVQ H 90 154 36.9 379 813 31.8

L 73 334 82.1 333 1319 79.8

% correct 55.2 68.4 65.1 53.2 61.9 59.7

PNN H 96 123 43.8 390 845 31.6

L 67 365 84.5 322 1287 80.0

% correct 58.9 74.8 70.8 54.8 60.4 59.0

OC1 H 88 163 35.1 393 804 32.8

L 75 325 81.3 319 1328 80.6

% correct 54.0 66.6 63.4 55.2 62.3 60.5

RRI H 91 149 37.9 402 939 30.0

L 72 339 82.5 310 1193 79.4

% correct 55.8 69.5 66.1 56.5 56.0 56.1

MVH H 96 123 43.8 399 817 32.8

L 67 365 84.5 313 1315 80.8

% correct 58.9 74.8 70.8 56.0 61.7 60.3

UVH H 32 33 49.2 162 265 37.9

L 131 455 77.6 550 1867 77.2

% correct 19.6 93.2 74.8 22.8 87.6 71.3
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Table 2. Returns from Actual and Predicted Portfolios, 1993-7

Method Portfolio 1993 1994 1995 1996 1997 1994-7

Actual Index 30.5 5.8 25.2 9.6 9.1 12.2

Actual High 90.0 45.5 79.8 54.5 58.4 59.1

LDA 50.9 8.1 37.8 13.2 16.3 18.3

LVQ 42.5 6.6 36.0 16.4 17.1 18.6

PNN 51.8 9.1 38.7 13.2 17.0 19.0

OC1 35.9 10.5 35.4 15.3 15.8 18.9

RRI 43.3 8.2 29.9 14.2 12.0 15.8

MVH 50.5 10.2 38.4 15.3 17.0 19.7

UVH 58.2 12.3 43.7 21.0 24.3 24.8

Actual Low 9.2 -7.6 7.1 -5.3 -7.2 -3.4

LDA 18.1 3.6 14.9 6.3 3.9 7.1

LVQ 21.6 4.9 18.1 4.6 3.8 7.7

PNN 18.1 3.1 15.3 6.5 3.9 7.1

OC1 25.4 1.8 18.4 5.6 4.5 7.4

RRI 21.3 3.2 21.0 5.4 7.1 9.0

MVH 18.8 2.1 15.6 5.0 4.1 6.6

UVH 13.3 2.6 12.6 1.3 1.6 4.4
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Table 3. Attributes of Actual and Predicted High Portfolios from PNN, 1995

Portfolio Return

%

Size

£m

Debt/

Equity

Profit/

Sales

Price/

Earnings

Dividend

Yield

Market/

Book

Act High 79.8 266.5 69.8 -10.9 14.1 3.1 167.7

Pred High 38.9 205.9 78.4 -14.4 9.8 3.0 197.7

Pred Low 15.1 731.0 42.0 10.0 20.1 4.1 127.5

Act Low 7.1 586.4 53.5 3.0 16.2 3.9 154.1

Table 4. Betas of Predicted High Portfolios

Method Return Alpha Beta

Actual All 12.2 0 1

Actual High 59.1 43.2 1.39

LDA 18.3 2.9 1.38

LVQ 18.6 5.7 1.11

PNN 19.0 3.5 1.38

OC1 18.9 8.1 0.90

RRI 15.8 3.6 1.10

MVH 19.7 5.1 1.30

UVH 24.8 9.3 1.39
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Node 1. X1 < 0.3 ?

Node 2. If YES then H Node 3. X2 > 0.8 ?

4. If YES then H 5. X1 - 0.8X2 > 0.2 ?
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Figure 3. Decision Tree for Share Classification
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