

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/181122

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/181122
mailto:wrap@warwick.ac.uk

An Algorithmic Analysis of Deliberation and

Representation in Collective Behaviour

by

Grzegorz Lisowski

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy in Computer Science

Computer Science

October 2022

Contents

Acknowledgments iv

Declarations v

Abstract vi

Abbreviations vii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 7

1.3 Publications . 10

1.4 Thesis Outline . 10

Chapter 2 Literature Review 13

2.1 Hotelling-Downs Model . 13

2.2 Algorithmic Analysis of Tournaments 15

2.3 Social Network Analysis . 16

Chapter 3 Preliminaries 19

3.1 Game Theory . 20

3.2 Hotelling-Downs Games . 20

3.3 Tournament Games Played by Coalitions 23

3.4 Social Networks . 26

3.5 Computational Complexity . 33

Chapter 4 Nominee Selection in Hotelling-Downs Spaces 43

4.1 Introduction . 43

4.2 Games with Two Parties . 45

4.3 Games with Many Parties . 54

i

4.4 Conclusion . 64

Chapter 5 Nominee Selection

in Knockout Tournaments 67

5.1 Introduction . 67

5.2 One-Shot Knockout Tournaments . 68

5.2.1 Win-Lose Games . 68

5.2.2 Beyond Win-Lose Games . 79

5.3 Dynamic Knockout Tournaments . 81

5.3.1 Dynamic Win-Lose Games 84

5.3.2 Dynamic Beyond Win-Lose Games 86

5.4 Conclusion . 89

Chapter 6 Strategic Nominations

with Tournament Solutions 92

6.1 Introduction . 92

6.2 Computational Problems . 93

6.3 Initial Remarks . 95

6.4 Condorcet Winner Rule . 96

6.5 Uncovered Set . 100

6.6 Conclusion . 107

Chapter 7 Reaching Stability in Opinion Diffusion 110

7.1 Introduction . 110

7.2 Graph Restrictions . 112

7.3 The Complexity of Checking Convergence 114

7.3.1 Ingredients for the Hardness Proofs 115

7.3.2 Hardness proofs . 124

7.4 Conclusion . 126

Chapter 8 Majority Illusion 128

8.1 Introduction . 128

8.2 Verifying Illusion . 130

8.2.1 Hardness . 130

8.2.2 Parametrised Complexity Results 148

8.3 Eliminating Illusion . 160

8.3.1 Hardness . 160

8.4 Plurality Illusion . 168

ii

8.5 Conclusion . 169

Chapter 9 Conclusion 171

iii

Acknowledgments

Completing this thesis was a long journey and it would not have been possible alone.

First, I would like to thank my supervisor, Paolo Turrini. Thank you for your

guidance and your attention to detail. I am grateful for constantly reminding me

of the big picture of research and of the importance of communicating my findings,

when I was stuck in technical details.

Throughout my PhD studies I had an honour to work with many brilliant

minds. Dmitry Chistikov, thank you for your inspiring curiosity and passion for

research. Thank you for tea breaks in your office and discussing problems just

because they are interesting, even if they were not aimed at writing a paper. Sylvie

Doutre, thank you for your warm welcome in Toulouse, your deep knowledge of

the literature, and bright ideas. Lawqueen Kanesh, thank you for long hours at a

whiteboard, which would always leave me optimistic, even if there were mistakes

involved. Umberto Grandi, thank you for your continuous support, from my very

first results as a MSc student, until now. I appreciate that a lot. Paul Harrenstein,

thank you for showing me how to maintain precision and rigour while developing

creative arguments. Mike Paterson, thank you for showing me how difficult proofs

can be pretty and easy to understand. M.S Ramanujan, thank you so much for

teaching me how to think about algorithms, which will be vital in my future work.

Not the least, I would like to thank all dear friends, who were always there for

me, across countries, continents, and time-zones. Thank you for numerous visits in

Phantom Coach (and other reasonably priced establishments), and all of the climb-

ing, cycling, and hiking trips. Thanks for bumping into each other at conferences,

sharing your research, and your great effort to nurture long standing friendships.

Your warm welcome in Amsterdam, Detroit, Düsseldorf, London, Toulouse, Paris,

and Warsaw means a lot to me. It would be so hard without you.

Thanks Mum and Dad!

Julia:

iv

Declarations

This work has been composed by myself and has not been submitted for any other

degree or professional qualification.

• Work in Chapter 4 has been published in the Proceedings of Autonomous

Agents and Multi-Agent Systems (AAMAS-2021), in collaboration with Paul

Harrenstein, M.S Ramanujan, and Paolo Turrini.

• Work in Chapter 5 has been published in the Proceedings of Autonomous

Agents and Multi-Agent Systems (AAMAS-2022), in collaboration with M.S

Ramanujan and Paolo Turrini.

• Work in Chapter 6 has been published in the proceedings of the European

Conference on Multi-Agent Systems (EUMAS-2022).

• Work in Chapter 7 has been published in published in the Proceedings of

AAAI Conference on Artificial Intelligence (AAAI-2020), in collaboration with

Dmitry Chistikov, Mike Paterson, and Paolo Turrini.

• Work in Chapter 8 has been published in the Proceedings of AAAI Conference

on Artificial Intelligence (AAAI-2023). It was developed in collaboration with

Umberto Grandi, Lawqueen Kanesh, M.S Ramanujan, and Paolo Turrini.

v

Abstract

The selection of a nominee by a group of players in the process of selecting
a winner is present in many contexts. In sports, it is a major strategic problem to
select the best team members. Crucially, in politics, this problem is essential for the
process of primaries. There, factions decide which of their candidates should take
part in the elections.

We study the strategic behaviour of coalitions from the game-theoretic per-
spective. More precisely, we analyse the existence of a pure Nash equilibrium in the
games capturing the strategic nomination problem. First, we adapt the well-known
Hotelling-Downs model, capturing the strategic behaviour of political parties in pri-
maries. Subsequently, we explore this problem for tournament-based rules. There,
winners are chosen based on the pairwise comparisons between candidates. First,
we study the setting of knockout-tournaments. Next, we investigate tournaments,
in which participants do not compete in rounds. For each of these mechanisms,
we analyse the computational complexity of checking the existence of a pure Nash
equilibrium.

Nominee selection can also be influenced by the deliberation between the
voters. To account for that, we investigate the complexity of checking the conver-
gence of a synchronous, threshold-based protocol. There, in every time step all
agents update their opinion if the strict majority of their influencers disagrees with
them. Furthermore, we explore computational aspects of majority illusion. This
phenomenon occurs when a large number of agents in a network perceives the opin-
ion, which is a minority view, as the one which is held by the majority of agents.
We study the problem of checking the possibility of assigning opinions to agents,
so that it holds for a large fraction of them. We further address the complexity
of checking the possibility of eliminating the majority illusion by changing a small
number of edges in a social network.

vi

Abbreviations

• NE: Nash equilibrium.

• DSE: Dominant strategy equilibrium.

• CW : Condorcet winner rule.

• US : Uncovered set rule.

• SE: Single-elimination.

• s.b.a: Spanning binomial arborescence.

• SN : Social network.

• SCC: Strongly connected component.

• DAG: Directed acyclic graph.

• OD: Opinion diffusion.

• SU: Synchronous update.

• nop: No operation.

• ND: Neighbourhood diversity.

• FPT: Fixed parameter tractable.

• tw: Tree width.

• CNF: Conjunctive normal form.

vii

• cw: Clique width.

• VC: Vertex cover number.

viii

Chapter 1

Introduction

1.1 Motivation

The behaviour of a group of agents is one of the crucial aspects of the analysis of

the mechanisms for collective decision making. Indeed, when considering a choice

made by a large number of individuals based on their preferences, the impact of a

single participant on the result is often marginal. One of the examples of such a

situation is presidential elections. In such a case, it is not possible for an individual

to strategise in order to change the outcome of a selection procedure. Nevertheless,

it might be possible for a group of agents (such as a coalition of voters, or of candi-

dates), to successfully influence the selection mechanism. In particular, a number of

candidates, such as, for instance, a political party, can select one of its members to

compete in the elections, in order to have their representative selected. Such con-

siderations have been explored in recent multi-agent systems literature (see, e.g.,

Faliszewski et al. [2016]; Misra [2019]; Kondratev and Mazalov [2019]). One can

also not underestimate the impact that deliberation between decision makers has

on the outcome of a selection procedure. Additionally, the possibility of fluctuation

in voters’ preferences, based on their exchange of opinions, can have a strong impact

on the chosen option (see, e.g., Faliszewski et al. [2022]; Corò et al. [2019]; Miller

[1980]). This can result in the change of the optimal choice of a nominee of a group

of candidates.

One of the contexts in which groups strategically select their nominee is the

process of primaries, which constitute one of the main aspects of modern democracy.

As we can observe in the case of the US elections, the selection of candidates by

political parties not only has a strong impact on which of them has their nominee

as a winner, but also on the way in which future policies are made. The importance

1

and complexity of primaries has also become apparent in recent UK politics during

the process of selecting a new prime minister. As such, the study of this process is

crucial, both from political science and multi-agent systems perspectives (see, e.g.,

Borodin et al. [2019]).

While many factors play a part in primaries, the strategic behaviour of parties

is especially interesting. In fact, winning an electoral competition, or attracting as

many voters as possible, can be seen as the main goal of the parties participating

in elections. As such, it is natural to assume that it is the factions’ objective

to nominate a candidate attracting the largest portion of the electorate. It is also

worth mentioning, that especially in multi-party systems, the choices of goal-oriented

parties depend on the nominations of their competitors. For instance, selecting a

left-wing candidate, instead of a right-wing nominee, might have a different impact,

depending on the orientation of candidates chosen by other parties.

As mentioned before, another aspect which might affect the strategic choices

that parties make is the deliberation between voters. The phenomenon of the spread

of opinions in the society, i.e., of opinion diffusion, is especially important in times

of increasing social media impact, through platforms such as Facebook or Twitter,

on peoples’ views. In fact, the possibility for voters to convince each other to change

their willingness to cast their vote for a specific candidate, or to change their political

views, might mean that the optimal choice of a nominee changes over time. The

importance of this factor became apparent, for instance, when the use of Facebook

users’ data was used to affect the US presidential campaign in 2016.

It is also important to note that the deliberation between voters is highly in-

fluenced by how they are connected in a social network. For instance, homophily, i.e.,

the tendency of people to form connections to those who are similar to themselves,

might result in the reinforcement of their opinions. Hence, taking into account with

whom voters communicate their opinions is of utmost importance when predicting

how their preferences will change over time. Such considerations have implications

on estimating who would be the best party nominee at the time of the elections.

We note that these factors are closely connected to a number of misconceptions that

voters might have about the way in which their peers think. One of such phenomena,

which is present in a large number of social contexts, is the majority illusion (see,

e.g., Lerman et al.). It occurs when a large number of voters hold the view that the

majority of their peers have a different opinion than the one which is adopted by the

overall majority. We say that a voter, for which this property holds, is under the

majority illusion. This phenomenon has a strong influence on opinion diffusion, as

it implies that a large number of voters might tend to adopt the minority view. For

2

an overview of connections between social choice theory and social network analysis,

see, e.g., Grandi [2017].

In this thesis, we study the problem of strategic nominee selection from the

game-theoretic perspective. For a number of different social choice mechanisms we

formulate the competition between parties as a strategic game, for which we address

the problem of finding pure Nash equilibria. In particular, we study an extention of

the well-known Hotelling-Downs model (Hotelling [1929]). There, voters and candi-

dates are located in a metric space, which indicates their views. Subsequently, voters

support a candidate, who is closest to them. Furthermore, we study the problem

of finding pure Nash equlibria in the context of tournament based selection mech-

anisms, where the choice of a winner follows from pairwise comparisons between

candidates, which we also call tournament solutions. In such a comparison one can

take as fact that that the stronger candidate in a pair is preferred to the weaker

one by the majority of voters. The problem of selecting candidates by groups par-

ticipating in a tournament is also important from the perspective of sports, where

teams, or coalitions of players select a player to participate in the competition. An

interesting type of a tournament is a knockout tournament, where candidates com-

pete in rounds. For an overview of connections between social choice theory and

tournaments see, e.g., Williams and Moulin [2016] and Brandt et al. [2016a].

Subsequently, we study theoretical aspects of opinion diffusion, and of ma-

jority illusion. First, we consider the problem of determining whether an opinion

diffusion process terminates in a given social network. We note that this prob-

lem is important, with respect to predicting voters’ views after their deliberation.

Subsequently, we investigate theoretical problems regarding majority illusion.

The focus of this thesis is on the study of nominee selection by competing

groups, and of related phenomena occurring in social networks, from the computa-

tional complexity perspective. First, for games by which we model competitions be-

tween groups, we address the problem of whether it is possible to efficiently compute

a pure Nash equilibrium, if it exists. This aspect is crucial with respect to determin-

ing the possibility of predicting the outcome with limited computational resources.

Further, establishing the complexity of the proposed computational problems re-

lated to social networks can help to understand, if we can predict voters’ opinions

after deliberation in a short time. An overview of connections between social choice

theory and computational complexity can be found in, e.g., Hemaspaandra [2018].

We note that, while our results are motivated by real-world applications, they

are theoretical. Thus, they do not take into account all of the factors, which might

influence the phenomena that we study. As such, they cannot be immediately used

3

to predict outcomes of primaries, even though they provide insights useful towards

the understanding of this process.

The motivation of the thesis is illustrated in the following example.

Motivating Example. In a University, the Chancellor is about to be elected. It

is the duty of a committee, composed of 11 senior professors, to select a candidate

among the nominees of four faculties: Social Science (A), Mathematics (B), Engi-

neering (C), and Sciences (D). Social Science is considering to select candidate a1

or a2. Mathematics have two potential candidates, b1 and b2. Also, Engineering

can choose between c1 and c2, while Sciences can select d1 or d2. The most pressing

issue for the institution is how to allocate newly received substantial funding. All

members of the committee agree that it is important from the perspective of the

University’s mission to support underfunded, theoretical projects. However, allo-

cating more funding into cooperation with the industry would help the University

receive even more funding in the future. It is known to all faculties, and to all com-

mittee members, to what extent the candidates agree with these options. It is also

not a secret that some committee members are more theory-oriented than others.

The individuals’ opinions can be presented on a line, on which every candi-

date, and every voter, is located. Such a line is shown in Figure 1.1. There, the

willingness of a person to support theoretical projects is represented by how far to

the left a person is located on the line. Correspondingly, their inclination to choose

funding allocations preferential to industry collaborations is captured by how far

to the right they are located. Below the line we show the opinion of a particular

candidate, while above, how many committee members locate on a particular point

on the spectrum.

b1 b2 d1 a1 a2 d2 c1 c2

6 5

Figure 1.1: Positions of candidates of all faculties, i.e., A, B, C, and D, as well

as the distribution of voters, with the number of committee members located at a

point of the line indicated above the line.

Observe that the location of a voter on the spectrum determines their pref-

erences over the candidates. To account for that we assume that given a pair of

candidates, a voter finds the one which is closer to them more preferable. This

observation gives us the following preference profile.

4

• 6 voters: a1 ≻ a2 ≻ d1 ≻ d2 ≻ b2 ≻ b1 ≻ c1 ≻ c2

• 5 voters: d2 ≻ a2 ≻ a1 ≻ d1 ≻ b2 ≻ b1 ≻ c1 ≻ c2

This profile gives rise to what we call a tournament, which is a directed graph

over the set of candidates, where an edge from a candidate i, to another candidate

j, indicates that the majority of voters prefer i to j. To account for the electoral

competition between faculties, we consider what we call a coalitional structure, which

is a tournament, as well as a partition of candidates into groups. The coalitional

structure, based on the strategy profile, which we consider in this example, is shown

in Figure 1.2. It is clear that a1 wins against all other potential candidates in the

majority contest, thus Social Science selects them as their nominee. Furthermore,

believing that their candidate is going to lose in any case, Sciences select d1, which

is more popular among voters than d2.

A B C D A B C D

Figure 1.2: On the left, the coalitional structure with faculties A,B,C, and D,
each with two members. On the right, the relation between faculties’ nominees.
Vertices in red represent the chosen candidates. For clarity, only selected edges in
the tournament are presented.

However, without letting the faculties know, committee members let each

other know who they think is their favourite candidate. Figure 1.3 represents among

which pairs of voters the communication took place. There, an edge between two

members indicates that they exchanged their opinions. Also, red vertices represent

the voters, whose favourite candidate is d2, while blue vertices correspond to those

who believe that a1 is the best candidate.

5

Figure 1.3: Distribution of opinions among voters before any communication. Red

vertices correspond to voters whose preferred candidate is d2, while the blue vertices

correspond to those who would like to vote for a1.

Voters revise their opinions based on their deliberation. Each of them decides

to adopt a view if it is held by the strict majority of peers they communicate with.

But then, as all a1 supporters observe that their peers’ preferred option is d2, they

also decide to vote for them. As they now agree that d2 is the best candidate, they

also revise their opinion regarding the key issue, agreeing with d2. Figure 1.4 depicts

the opinions of voters after the deliberation.

Figure 1.4: Connections between voters, and the distribution of opinions between

voters after deliberation. Red vertices correspond to those whose favourite candidate

is d2.

Now we can see how the deliberation between voters affected their views.

After changing their opinions, all of the committee members locate themselves at

the position of d2. The changed views of voters regarding the key issue is shown in

Figure 1.5.

b1 b2 d1 a1 a2 d2 c1 c2

11

Figure 1.5: Positions of candidates of all faculties, as well as the distribution of

voters, after their deliberation, with the number of committee members located at

a point of the line indicated above the line.

6

The revised opinions of voters induce a radically different preference profile

to the initial one.

• 11 voters: d2 ≻ a2 ≻ a1 ≻ d1 ≻ b2 ≻ b1 ≻ c1 ≻ c2

As d1 and a1 were nominated by the faculties, and a1 is preferred to d1 by

all of the voters, ultimately a1 is selected as the Chancellor. So, Social Science wins

the election, as a1 is their nominee. Notice, however, that in the revised profile, d2

would win against a1. Hence, if Sciences took the possibility of discussion among

committee members into account and nominated the candidate d2, they would have

won the election.

1.2 Research Questions

Here, we outline our main research questions which motivate particular chapters of

this thesis.

Hotelling-Downs Framework for Strategic Nominee Selection.

• Under which circumstances do pure Nash equilibria exist in the Hotelling-

Downs model, oriented at capturing nominee selection? The solution concept

of a Nash equilibrium is of high importance with respect to predicting agents’

behaviour in a game, as it helps us to identify strategy profiles in which none of

them has an incentive to change their choice. Thus, in the context of elections,

checking its existence can help us predict which candidates will be nominated

by parties.

• What is the computational complexity of checking if a pure Nash equilibrium

exist in particular elections? As we show that, in certain elections, there are

no pure Nash equilibria in the model we consider, it is natural to ask if they

can be computed efficiently when they exist.

• Is the problem of checking the existence of a pure Nash equilibrium easier, when

only two parties participate in elections? The case in which only two parties

compete is important from the perspective of modern politics, for instance,

with respect to US presidential elections. As such, establishing algorithmic

results for this special case is of high interest.

These questions are addressed in Chapter 4.

7

Group Choices in Knockout Tournaments.

• What is the computational complexity of checking the existence a pure Nash

equilibrium in a given tournament? The analysis of the properties of this

decision problem is important, as argued in the context of our extension of

Hotelling-Downs model.

• Is there a difference between the complexity of checking the pure Nash equilib-

rium existence in games in which coalitions strive to win a tournament only,

and those in which they aim at reaching a high round? It is natural to assume

that, depending on the nature of a competition, coalitions are incentivised not

only to win, but also to perform well, even if their nominee is not the win-

ner. As such, we ask whether the problem which we consider has a different

computational complexity in such a case.

• Is the case in which coalitions choose one candidate for the duration of the tour-

nament, and the case in which they can choose a different nominee at every

round, different from the algorithmic perspective? As in a knockout tourna-

ment participants compete in rounds, coalitions might benefit from switching

their nominee during the tournament. It is therefore natural to ask, if the al-

gorithmic properties of competitions change when coalitions are allowed such

changes.

These questions are addressed in Chapter 5.

Group Choices in Tournament Solutions.

• Is there a difference between the computational complexity of checking the ex-

istence of a pure Nash equilibrium between knockout tournaments and tourna-

ment which are not played in rounds? It is important to notice that knockout

tournaments, studied in Chapter 5, are structured as a binary tree. This fea-

ture might help in designing algorithms for the problem of strategic nominee

selection. It is therefore natural to ask whether this problem is more com-

putationally complex in the context of tournaments which are not played in

rounds.

• Is the problem of checking the existence of an equilibrium different for par-

ticular rules determining the winners of a tournament? Multiple methods of

selecting a set of winners of a tournament have been proposed in the literature,

8

which differ with respect to their crucial properties. We are therefore inter-

ested in checking if the problem of strategic nominee selection differs between

tournaments with different rules, with regards to computational complexity.

These questions are addressed in Chapter 6.

Convergence of Opinion Diffusion.

• What is the complexity of checking if an opinion diffusion protocol terminates?

As we have noted, it is useful for a group to know what are voters’ preferences

after deliberation. Ideally, coalitions would prefer to base their choices on

stable preferences held by voters. It is therefore natural to ask what is the

complexity of checking if the opinion diffusion protocol converges.

• Are there natural classes of networks for which the problem we consider is

tractable? Even though we show that the problem of convergence of the opin-

ion diffusion protocol which we study is not tractable, we are interested in

finding natural instances for which it can be computed efficiently.

These questions are addressed in Chapter 7.

Algorithmic Analysis of Majority Illusion.

• What is the complexity of checking, for a given social network, if there is a

distribution of opinions, such that a large number of voters is under majority

illusion? One can easily notice that there are social networks which allow for

a distribution of opinions, such that all voters are under majority illusion (see

Figure 1.3 for an example of such a network). On the other hand, in some

cases, such as in networks in which all voters are disconnected, no voter is

under illusion under any distribution of opinions. This motivates the question

of how hard it is to check whether the structure of a social network allows for

a large number of voters to be under illusion.

• How hard is it to check if it is possible to sufficiently reduce the number of voters

under majority illusion, by changing a small number of connections between

them? From the engineering point of view, it is interesting if it is possible to

fix the problem of a large number of voters being under the majority illusion.

We are particularly interested in the possibility of reducing the number of such

voters by changing the set of their peers which they follow in order to amend

their perception of the distribution of opinions.

These questions are addressed in Chapter 8.

9

1.3 Publications

The results of this thesis have been published, or are under review. Below we specify

the details of the corresponding papers.

• “Convergence of Opinion Diffusion is PSPACE-Complete”, coauthored with

Dmitry Chistikov, Mike Paterson, and Paolo Turrini, was published in the Pro-

ceedings of AAAI Conference on Artificial Intelligence (AAAI-2020) Chistikov

et al. [2020]. Results contained in that paper are presented in Chapter 7.

• “A Hotelling-Downs Framework for Party Nominees”, coauthored with Paul

Harrenstein, M.S. Ramanujan, and Paolo Turrini, was published in the Pro-

ceedings of Autonomous Agents and Multi-Agent Systems (AAMAS-2021)

Harrenstein et al. [2021]. The results of this paper appear in Chapter 4.

• “Equilibrium Computation For Knockout Tournaments Played By Groups”,

coauthored with M.S. Ramanujan, and Paolo Turrini, was published in the

Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS-2022)

Lisowski et al. [2022]. The results of this paper appear in Chapter 5.

• “Strategic Nominee Selection in Tournament Solutions” was published in the

proceedings of the European Conference on Multi-Agent Systems (EUMAS-

2022). The results shown in this paper are presented in Chapter 6.

• “Identifying and Eliminating Majority Illusion in Social Networks”, coau-

thored with Umberto Grandi, Lawqueen Kanesh, M.S. Ramanujan, and Paolo

Turrini, was published in the AAAI Conference on Artificial Intelligence (AAAI-

2023). The results of this manuscript are contained in Chapter 8.

1.4 Thesis Outline

In Chapter 2, we begin the thesis with an overview of the literature related to

particular parts. Then, in Chapter 3, we provide the definitions of basic concepts

which we use in subsequent chapters.

Chapter 4 is devoted to the extension of the Hotelling-Downs model which

we propose. We start with showing that there are instances of these games, which do

not admit any pure Nash equilibrium. Moreover, in the general case, we demonstrate

that checking if such an equilibrium exists isNP-complete. Further, we demonstrate

several cases in which an equilibrium is guaranteed to exist. We further demonstrate

10

that in elections in which only two parties participate, checking the existence of a

pure Nash equilibrium is possible in linear time.

Subsequently, in Chapter 5, we study the problem of strategic nominee se-

lection in the context of knockout tournaments. There, we study the complexity of

checking the existence of a pure Nash equilibrium in a number of cases. We differ-

entiate between the scenario in which groups only nominate one competitor, and an

alternative scenario in which they select their representative to compete against a

specific group. We further distinguish between competitions in which groups only

strive to win and those in which they aim at reaching a high round of a tourna-

ment. For all of the cases, we show that the computational problem we consider is

tractable, by providing quasi-polynomial or polynomial time algorithms.

Then, in Chapter 6, we contrast the results shown in the context of knockout

tournaments and the tournaments which are not played in rounds. In particular,

we study the selection method in which only the chosen player which beats all other

selected candidates (if one exists) is a winner. Then, we investigate the properties

of the Uncovered Set rule in the context of tournaments played by coalitions. For

both of these selection methods, we show that checking the existence of a pure Nash

equilibrium is NP-complete, while for the Uncovered Set rule it is intractable even

to check if a coalition can win given some choices of other groups.

Further, in Chapter 7, we focus on the problem of convergence of the opinion

diffusion protocol in which, in every time step, all agents change their (binary)

opinion if the strict majority of the agents they communicate with holds a different

view than themselves. We show that, in the general case, the problem of checking if

this protocol converges for a given input is PSPACE-complete. However, in some

restricted cases, such as in acyclic graphs, this problem is solvable in polynomial

time. In this chapter we assume that networks are directed, i.e., that it is possible

for an individual not to follow another voter, who follows them. This assumption

is realistic in the context of social media, such as Twitter or Instagram. We also

assume that agents are not connected to themselves in a network, which is the case

in social media, such as Facebook.

In the following chapter, Chapter 8, we investigate the algorithmic aspects

of social networks in which a given fraction of voters is under the majority illusion.

First, we study the problem if, for a given network, there exits an assignment of

opinions to agents such that at least a specified fraction of them is under the illusion.

Subsequently, we analyse the problem of checking the possibility of changing the

connections between agents in a limited way in order to ensure that less than a

specified fraction of them is under illusion. We show that these problems are NP-

11

complete. We further provide several parametrised complexity results for both of

these problems. In this chapter, we consider undirected networks. We note that our

computational hardness results are immediately transferable to the case of directed

networks. We aim at the study of parametrised complexity of such networks in

future research.

Finally, in Chapter 9, we conclude and indicate avenues for further research.

12

Chapter 2

Literature Review

In this chapter we discuss the literature relevant to particular parts of this thesis.

In Section 2.1, we start with discussing the results relevant to our extension of the

Hotelling-Downs model. Subsequently, in Section 2.2, we provide an overview of

literature on tournaments. Finally, in Section 2.3, we discuss literature related to

selected aspects of social network analysis and opinion diffusion, as well as majority

illusion.

2.1 Hotelling-Downs Model

Applications of the Hotelling-Downs Model. The Hotelling-Downs model

has been widely studied and applied to various contexts. Apart from the natural

application in the analysis of the political debate, or location of retail points, it

has its application in problems such as brand positioning (for a broad overview,

see, e.g., the highly impactful Stokes [1963] and Eiselt et al. [1993], as well as

Eiselt [2011] for a survey). Furthermore, much research has been devoted to lifting

the assumptions made in the original model. Such modifications include capturing

scenarios with multiple players and voting rules (see, e.g., Eaton and Lipsey [1975];

Bilò et al. [2020]; Sengupta and Sengupta [2008]) or dimensions in the metric space

(e.g., Veendorp and Majeed [1995], see also Eiselt [2011]). In the field of algorithmic

game theory, Feldman et al. [2016b] have analysed the case in which candidates

attract voters only in a limited range. In the context of voting, Brusco et al. [2012]

have looked at an application of the model with employment of the plurality with the

run-off rule. It is worth noting that the work on selections made by parties restricted

to intervals (Sabato et al. [2017]) is closest to the extension of the Hotelling-Downs

model which we present in this thesis, even though it presents important differences

13

in terms of equilibrium existence and algorithmic analysis. We further discuss this

reference in Chapter 4.

Voronoi Games. In algorithmic game theory, Voronoi games feature players se-

lecting points in a given space, with their utility being equal to the number of

points in the space for which their selection is the closest. Voronoi games have been

studied as sequential decision problems (see, e.g., Ahn et al. [2004]; Bandyapad-

hyay et al. [2015]), where two players select their (potentially multiple) locations in

rounds. In the simultaneous variant, which is closer to the setup which we study in

this thesis, Durr and Thang [2007] show that checking if a Nash equilibrium exists

is NP-complete, although studying games played on arbitrary graphs and using

more complex computational gadgets. Furthermore, Mavronicolas et al. [2008] pro-

vide a characterisation of Nash equilibria in games played on cycle graphs. Also,

Fournier [2019] considers a setting in which consumers (our voters) are distributed

non-uniformly, but players are allowed to position themselves anywhere on a graph.

In a related contribution Boppana et al. [2016] consider Voronoi games with re-

stricted positioning, but on a different spatial domain, namely a k-dimensional unit

torus. Similarly, Núñez and Scarsini, in a series of works (Núñez and Scarsini [2017,

2016]), study players with limited available positions from a finite set of locations.

In contrast to our model, the action spaces are the same for all of the players. They

then show that Nash equilibria exist in games with a large number of players.

Facility Location. Facility location is an important problem connected to our

analysis of primaries, where a planner selects the location of various facilities to

satisfy as many agents as possible, given their positioning. This setup, originating

from Moulin [1980], has been extensively studied in the social choice literature.

In particular, Feldman et al. [2016a] have considered how to locate facilities when

participants can strategically misrepresent their position in order to benefit from

the planner’s decisions.

Strategic Candidacy. Our results closely linked to strategic voting, (see e.g.,

Meir [2018]), the emerging area of computational social choice where participants

may misrepresent their preferences to potentially manipulate the result of an election

and, in particular, strategic candidacy. In the typical settings of strategic candidacy

(see, e.g., Brill and Conitzer [2015]; Dutta et al. [2001]; Eraslan and McLennan

[2004]), candidates are equipped with preferences over their opponents, and are al-

lowed to step down to let their favourite rival win. In some models (e.g., Obraztsova

14

et al. [2015]; Elkind et al. [2015]) participation in the elections incurs a cost, in which

case it might be beneficial for candidates to simply abstain if they cannot themselves

win.

2.2 Algorithmic Analysis of Tournaments

Our results regarding nominee selection have links to multiple research lines in the

computational analysis of tournaments. There, in the context of social choice theory,

particular attention has been paid to stable solutions (Brandt et al. [2016b]), and

to restricted subclasses displaying desirable properties (Brandt et al. [2018]). The

existence of well-behaved solutions has also motivated the study of the complexity

of their computation (as in e.g., Brandt and Fischer [2008]; Brandt et al. [2010,

2018]).

Along the lines of strategic candidacy, Kondratev and Mazalov [2019] recently

studied, in the context of tournament solutions, how politicians can form a coalition

so that a representative of their group is elected. Further, Faliszewski et al. [2016]

conducted a complexity analysis of how parties can win elections based on the

voters’ preferences over the set of all potential candidates. There, political parties

select their representatives to compete in the elections, which are based on the

plurality rule. In their study, the investigation was limited to checking if a party

has a necessary, or a possible winner, leaving the study of game theoretic solution

concepts open in this scenario.

Further, our results are directly relevant to the problem of tournament ma-

nipulation, for example understanding how the seeding can be manipulated to force

a particular winner, a problem extensively studied in the literature (by e.g., Vu et al.

[2009]; Aziz et al. [2014]; Chatterjee et al. [2016]; Vassilevska Williams [2010]; Hazon

et al. [2008]; Kim et al. [2017]; Aziz et al. [2018]; Konicki and Williams [2019]) or

whether a pair of players can reverse their comparison in order to make one of them

the winner of the tournament (see, e.g., Altman et al. [2009]).

Our research is also related to the analysis of possible and necessary winner

problems in the context of partial tournaments Aziz et al. [2015]. There, the problem

considered tournaments with a partial information about the results of pairwise

contests, and whether an option is a winner in some or in all completions of the

partial tournament.

15

2.3 Social Network Analysis

Here, we discuss the literature relevant to our analysis of the convergence of an

opinion diffusion protocol, as well as of majority illusion.

Social Influence Models. The graph-like structure of social networks has at-

tracted interest in computer science, with studies of the influence weight of nodes

in the network (Kempe et al. [2005]) and the properties of the influence function

(Grabisch and Rusinowska [2010]). Social influence has been widely analysed in the

social sciences, from the point of view of strategic behaviour (Isbell [1958]) and its

implications for consensus creation (de Groot [1974]) and cultural evolution (Axel-

rod [1997]).

If the social networks are modelled as undirected, rather than directed,

graphs, it has long been known that convergence takes at most a polynomial number

of steps under majority updates (Chacc et al. [1985]). In these models, PSPACE-

hardness results have only been shown for more powerful block sequential update

rules (Goles et al. [2016]).

It is worth noting that convergence is a PSPACE-complete property in

various models related to the one studied in this thesis, notably directed discrete

Hopfield networks (Orponen [1993]) and Boolean dynamical systems (see, e.g., Bar-

rett et al. [2003, 2007]). Hardness in these results (and their strengthenings, as

studied by Ogihara and Uchizawa [2017], Rosenkrantz et al. [2018], and Kawachi

et al. [2019], crucially depends on the availability of functions that identify 0 and 1

(see the discussion of the ingredients for the hardness proofs in Chapter 7). In the

protocol we consider, opinion diffusion is instead based on self-dual functions, where

flipping all inputs to a self-dual function always leads to flipping its output. In other

words, in the setting we consider the diffusion protocol is symmetric with respect

to opinions held by agents.

Let us further discuss the relation between the PSPACE-hardness results on

diffusion protocols known in the literature, and the protocol which we study in this

thesis. Whilst Kosub [2008] shows the NP-completeness of deciding the existence

of a fixed-point configuration if all self-dual functions are available, our update rule,

in comparison, is monotone (i.e., it has no negation). Moreover, sparse graphs of

bounded indegree — with each agent having up to six influencers — suffice for

our proof of PSPACE-hardness. In the related model of cellular automata, known

results show that majority is “arguably the most interesting” local update rule (Tosic

[2017]).

16

Opinion Manipulation Models. Our work is directly related to computational

models of social influence, notably the work of Auletta et al. [2020], where networks

and initial distribution of opinions are identified, such that an opinion can become a

consensus opinion following local majority updates. In the context of our research on

majority illusion, it is important to observe that when all nodes are under majority

illusion, a synchronous majoritarian update causes an initial minority to evolve into

a consensus in just one step. Furthermore, Auletta et al. [2015, 2017] study the

possibility of a minority colour being adopted by the majority of agents. We note,

however, that the problem we investigate in Chapter 8, i.e., of whether it is possible

for a given fraction of agents to be under majority illusion in a given network, for

some colouring, is substantially different from these investigations. To see this, note

that it is possible for the minority colour to be adopted by the majority in one step

even if only a small fraction of agents is under majority illusion (e.g., in networks

with an odd number of vertices, where three of them form a clique, while the rest

has degree 0). Let us further notice that the problem studied by Auletta et al.

[2015] is solvable in polynomial time for large minorities, which is not the case for

the problem we consider.

Other notable models include the work of Doucette et al. [2019] who studied

the propagation of possibly incorrect opinions with an objective truth value in a

social network, and the stream of papers studying the computational aspects of

exploiting (majoritarian) social influence via opinion transformation (Bredereck and

Elkind [2017]; Auletta et al. [2020, 2021]; Castiglioni et al. [2020]). Further, control

of collective decision-making (Faliszewski and Rothe [2016]) is an important topic in

algorithmic mechanism design: the difficulty of establishing whether manipulation

is a real threat is paramount for system security purposes.

Deliberative Democracy and Social Choice. Opinion diffusion underpins re-

cent models of deliberative democracy, in terms of delegation (Dryzek and List

[2003]), representation (Endriss and Grandi [2014]), and stability (Christoff and

Grossi [2017]). Formal models of democratic representation build on an underlying

consensus-reaching protocol de Groot [1974]; Brill [2018]. Social networks have also

become of major interest to social choice theory, with propositional opinion diffusion

Grandi et al. [2015] emerging as a framework for social choice on social networks

Grandi [2017]. Our research aligns with the work in computational social choice, in

particular strategic voting [Meir, 2018] and iterative voting (e.g., Meir et al. [2017];

Reijngoud and Endriss [2012]), where decision-making happens sequentially. Of rel-

evance are also the recently found connections between iterative voting and social

17

networks (Wilczynski; Baumeister et al. [2020]).

Network Manipulation. Another important research line, which is related to

our study of majority illusion, has looked at how to transform a social network

structure with applications in the voting domain. Wilder and Vorobeychik, e.g.,

studied how an external manipulator having a limited budget can select a set of

agents to directly influence, to obtain a desired outcome of elections. In a similar

setting, Faliszewski et al. [2018] studied “bribes” of voters’ clusters.

Distortions in Social Networks. We further note that there are multiple para-

doxical effects in social networks which are related to our work. For instance,

the friendship paradox, according to which, on average, individuals are less well-

connected than their friends (see, e.g., Hodas et al. [2013]; Alipourfard et al. [2020]).

Exploiting a similar paradox, Santos et al. [2021] recently showed how false consen-

sus leads to the lack of participation in team efforts.

18

Chapter 3

Preliminaries

In this chapter we present basic notions used throughout the thesis. We commence

with providing definitions of fundamental concepts explored in game theory, includ-

ing pure Nash equilibrium, which is crucial to our analysis of strategic behaviour

in nominee selection. This is done in Section 3.1. Further, in Section 3.2 and in

Section 3.3 we outline key notions relevant to our analysis of strategic nomination

of candidates. Namely, in Section 3.2 we define the Hotelling-Downs model, and in

Section 3.3 we discuss tournaments, including the description of knockout tourna-

ments. Then, in Section 3.4 we provide concepts related to social networks, including

the opinion diffusion protocol which we use in our investigations. There, we also

define majority illusion. Finally, in Section 3.5 we discuss aspects of computational

complexity, which we use throughout this thesis. In particular, we define complexity

classes, which we use to determine the difficulty of computational problems we con-

sider. We also present problems which we use for our proofs by reduction. Finally,

we formally define Turing machines and Boolean circuits. Table 3.1 outlines the

relevance of sections of this chapter to particular parts of this thesis.

Section 3.1aaa Game Theory Chapters 4,5,6

Section 3.2aaa Hotelling-Downs Games Chapter 4

Section 3.3aaa Tournament Solutions Chapters 5,6

Section 3.4aaa Social Networks Chapter 7,8

Section 3.5aaa Computational Complexity Chapters 4,5,6,7,8

Table 3.1: Overview of sections of this chapter and of their relevance to particular

parts of the thesis.

19

3.1 Game Theory

Let us define basic notions of a strategic game and of the (pure) Nash equilibrium

which will be crucial for our analysis in Chapters 4, 5 and 6. An extensive intro-

duction to game theory can be found in, e.g. Maschler et al. [2020].

A strategic game is a tuple (N, C, u), where N = {1, . . . , n} is a set of agents

and C = A1 × · · · × An is a set of strategy profiles, with Ai being a set of actions

available to agent i. Further, u = (u1, . . . , un) is a tuple of utility functions, where

ui : C → R determines the utility of an agent i given a strategy profile.

Furthermore, given a strategy profile c (which is a member of A), an agent i,

and an action ci ∈ Ai, we denote as (c′i, c−i) the strategy profile in which the action

selected by i is c′i and all other players select the same action as in c. Then, we say

that a strategy profile c is a pure Nash equilibrium (NE), if for every player i, and

for every action c′i ∈ Ai, it holds that ui(c) ⩾ ui(c
′
i, c−i). So, a strategy profile is a

NE if no agent can improve their utility by changing their strategy unilaterally.

Furthermore, given an agent i ∈ N , an action a ∈ Ai, and a strategy profile c,

we have that a is a best response to c−i if and only if a ∈ argmax
a′∈Ai

ui(a
′, c−i). Notice

that c is an NE if and only if for all i ∈ N , ci is a best response to c.

3.2 Hotelling-Downs Games

Let us define the key concepts which we use in our analysis of our coalitional exten-

sion of the Hotelling-Downs model.

Parties, Voters, and Games. The games we are concerned with are played on

a discrete line {0, 1, 2, . . . , k}. For x, y ∈ R0 with x ≤ y, we denote by [x, y] the

segment {⌊x⌋, ⌊x⌋+1, . . . , ⌈y⌉}. On this line, a positive number of voters are placed

according to a distribution function f : [0, k] → N0. So, every voter is assigned a

place corresponding to their views. Observe that since we require the line to be

discrete, it follows that the number of voters in the game is finite. Further, we

denote as V (f) =
∑

i∈[0,k]

f(i) the total number of voters on a line [0, k]. We will also

assume throughout that V (f) > 0. At times we will restrict attention to distribution

functions f that are uniform, i.e., such that exactly one voter is assigned to each

point of the line. So, in a uniform distribution, f(i) = 1 for each i ∈ [0, k].

The players of the game are given by a set P = {P1, P2, . . . , Pn} of parties.
Each party Pi is fully described by a set of points on the line, i.e., Pi ⊆ [0, k]. We

also assume that parties are not empty. Intuitively, these points correspond to the

20

positions of the candidates from which a party has to choose its nominee. Formally,

they make up the party’s strategies. We allow different parties to have candidates

that occupy the same position, i.e., Pi and Pj need not be disjoint for distinct i

and j.

Parties strategise over which candidate to select as their nominee. Thus,

in this context, a strategy profile is a tuple c = (c1, c2, . . . , cn), where ci ∈ Pi.

With a slight abuse of notation, we will sometimes consider strategy profiles to be

sets. For every party Pi and every strategy profile c = (c1, . . . , cn), we associate a

utility for Pi. Intuitively, it is the number of voters that are closer to ci than every

other party Pj ’s chosen nominee cj , and who are therefore willing to vote for ci. A

voter that is just as far removed from nominees on the left as from nominees to the

right will contribute a half to the utility of the former and half to the utility of the

latter. Further, we assume that nominees that are in the same position share the

number of voters they attract evenly. The following example illustrates the setup

and introduces the intuition behind the concept of utility in the current context.

Example 3.1. Figure 3.1 depicts the line [0, 5] and two parties, P1 = {4} and

P2 = {0, 2}. The distribution f of the voters, indicated at the top of the line, is

given by f(0) = f(1) = f(3) = f(5) = 0, f(2) = 4, and f(4) = 5. Below the line

the figure displays the strategy profile c = (c1, c2), where c1 = 4 and c2 = 2. Given

this strategy profile, c1 attracts 5 voters, while c2 attracts 4 voters.

c2 c1

0 0 4 0 5 0

Figure 3.1: Game in Example 3.1. Numbers above the line indicate the number of

voters at each position, while below the line we specify the positions of nominees of

P1 and P2.

Let us define the utility function in the current context formally. Let Pi be

a party and c = (c1, . . . , cn) be a strategy profile. Then, we denote the highest

player in c which is strictly smaller than ci, whenever one exists, i.e., the immediate

predecessor of ci, as L(ci). Likewise, we use R(ci) for ci’s immediate successor in

c on the line, whenever one exists. That is, L(ci) = sup{cj ∈ c : cj < ci} and

R(ci) = inf{cj ∈ c : cj > ci}, assuming that sup ∅ = −∞ and that inf ∅ = ∞. To

capture whether a voter is willing to support a given nominee, we associate with

each candidate ci ∈ c an indicator function σc
i : [0, k] → {0, 12 , 1}. This function

assumes value 1 at m if m ∈ [0, k] is strictly closer to ci than to every other cj ∈ c.

21

Further, it has the value 1
2 at m if m is equally close to ci as some other cj ∈ c, with

ci ̸= cj , and no nominee is strictly closer to m than ci. Finally, it has value 0 at m

if m is strictly closer to some cj ∈ c other than ci. Hence, we have that

σc
i
(m) =

1 if |ci −m| < min{|L(ci)−m|, |R(ci)−m|},
1
2 if |ci −m| = min{|L(ci)−m|, |R(ci)−m|},

0 Otherwise

We note that associating the function we consider with a candidate, rather than just

with a position on the line, will be helpful towards capturing their utilities. If c is

clear from the context, we sometimes write simply σi. Further, the range of candi-

date ci on line [0, k] which we denote as rangeci(c), is the set {m ∈ [0, k] : σc
i (m) >

0}. It is worth observing that the range of a candidate is an interval. We also denote

as #S the cardinality of a set S. Moreover, [ci] is the set of candidates in c sharing

the position ci. I.e., [ci] = {1 ≤ j ≤ n : ci = cj}. We are now ready to define the

utility ui(c) of party Pi for a profile c.

ui(c) =

∑
m∈[0,k] σ

c
i (m) · f(m)

#[ci]

Observe that in the current setting each voter is either attracted to one candidate,

or contributes to the utility of multiple parties with the sum of its contributions

being equal to 1. Hence, we get that for every strategy profile c it holds that∑
Pi∈P

ui(c) = V (f).

Input representation. As we are concerned with the computational complexity

of decision problems within this framework, it is useful to clarify the input represen-

tation. In particular, it is important to notice that we can represent a game, with

voters situated on the line [0, k], a distribution given by a function f : [0, k] → N0,

and a set of parties P = {P1, . . . , Pn} as a (n+1)×(k+1) table, where an entry (1, i)

specifies the number of voters at position i− 1 and for j > 1, entry (j, i) specifies if

party Pj−1 has a potential candidate at position i− 1. So, the representation of the

game has size bounded by (k + 1) · n+ (k + 1) · logmaxf bits, where maxf denotes

the maximum number of voters at any point on line [0, k].

22

3.3 Tournament Games Played by Coalitions

Let us provide the definitions of the concepts needed for our analysis of tournaments

played by coalitions. An extensive overview of tournaments can be found in Brandt

et al. [2016b], and in Williams and Moulin [2016].

Tournaments. A tournament is a directed graph (N,E), where N is the set

of players, while E, which we also call a beating relation, is an irreflexive, and

asymmetric relation over N . We further assume that for every pair of players i ̸= j

in N , exactly one of (i, j) and (j, i) belongs to E. Further, as we assume that E

is irreflexive, for every i ∈ N we have that (i, i) /∈ E. By this we capture that no

player beats itself. If it holds that (i, j) ∈ E, then we say that i beats j in E. We

will also say that i beats j, omitting E, when E is clear from the context. Given

a tournament (N,E) and i ∈ N , we denote as B(i) the set of players beaten by i.

Formally, B(i) = {j ∈ N : i beats j}. Also, for a graph G = (N,E), we say that G

is k-partite, if there is a partition N1, . . . , Nk of N , such that for every Ni and every

pair j, j′ ∈ Ni, it holds that (j, j
′) /∈ E.

Coalitions. We study the case in which players are partitioned into coalitions. For

a given tournament (N,E), a coalition is a member of a partition C = {C1, . . . , Cm}
of N . We call such a partition a set of coalitions, and denote a tuple T = (N,E,C)

as a coalitional structure. So, for every player i ∈ N , we have that i is a member

of exactly one Ci ∈ C. Further, in Chapter 6, we model the scenario in which

all coalitions choose one of their players to participate in the competition. So, we

assume that each of them selects exactly one player. Hence, a strategy profile in this

context is a tuple (c1, . . . , cm), such that for every i ⩽ m we have that ci ∈ Ci. For

convenience, for a coalitional structure (N,E,C) and j ∈ N , we denote as C(j) the
coalition Ci ∈ C, such that j ∈ Ci. Further, given a coalitional structure (N,E,C),

a pair of coalitions Ci, Cj ∈ C, and a player ci ∈ Ci, we say that ci dominates Cj if

for every cj ∈ Cj we have that ci beats cj . We also say that Ci dominates Cj , if for

every ci ∈ Ci we have that ci dominates Cj .

To account for the competition between the selected players, given a coali-

tional structure T = (N,E,C) and a strategy profile c=(c1, . . . , cn), a filtration of

T induced by c, which we denote as Tc, is the tournament (c, E′), where for every

pair of players ci, cj ∈ c it holds that ci beats cj in E′ if and only if ci beats cj in

E. In other words, Tc is a restriction of T to players in c.

Example 3.2. Let us illustrate the notions defined above. Consider coalitions A =

23

{a1, a2}, B = {b1, b2}, C = {c1, c2}, and D = {d1, d2}. Then, assume that a1 beats

all other players. Further, all members of B and C are beaten by all players in

groups A and D, as depicted in the left side of Figure 3.2. The remaining edges in

the tournament are chosen arbitrarily. Then, coalitions select players a1, b2, c2, and

d1, i.e., the strategy profile (a1, b2, c2, d1).

The left subfigure of Figure 3.2 presents the tournament based on the results

of the beating relation, while the right depicts a filtration based on the strategy profile

(a1, b2, c2, d1).

A B C D A B C D

Figure 3.2: In the left subfigure, the coalitional structure with coalitions A,B,C,D,
each with two members. In the right subfigure, filtration based on a strategy profile.
Vertices in red represent the chosen players. For clarity, only selected edges in the
tournament are presented.

Tournament Solutions. In the scenario we consider, coalitions are interested in

optimizing their performance in a competition. To determine the set of winners of a

tournament, in Chapter 6, we consider tournament solutions, i.e., rules for selecting

a set of winners from a tournament. Let TN be the set of all tournaments with the

set of players N . Then, a tournament solution is a function F : TN → 2N . Further,

given a coalitional structure T = (N,E,C), a strategy profile c and a tournament

solution F , we say that a coalition Ci is a winner of Tc under F if ci ∈ F (Tc). When

clear from the context, we just say that Ci is a winner of Tc, or that Ci is a winner

under c (when the coalitional structure is clear from the context). We also say that

ci ∈ Ci is a winner in the initial tournament if ci ∈ F (T), i.e., if ci is a winner in

the tournament defined on the set of all players in N .

Nash Equilibrium. We are interested in the game-theoretic study of the scenario

we consider, focusing on NE. In the scenario studied in Chapter 6, in a strategy

profile c, which is a NE, no coalition would have their unilaterally changed nominee

as a winner, if they did not in c. So, for a coalitional structure T = (N,E,C) and

a tournament solution F , we say that c is a NE under F , if, for every coalition Ci,

such that Ci is not a winner of Tc, and for every c′i ∈ Ci, it holds that Ci is not a

24

winner of T(c′i,c−i) under F .

Knockout Tournaments. In Chapter 5, we will further consider tournaments

in which coalitions compete in rounds. For a tournament T = (N,E), a knockout

tournament, or a single-elimination tournament on T is defined as a complete binary

tree B with #N leaves. We will also refer to such structures as to SE-tournaments.

We denote the set of leaves of a SE-tournament as L(B). Further, we consider a

bijective function π : N → L(B), which we call the seeding, which maps the #N

players to the #N leaves of a SE-tournament. Then, the winner of the knockout

tournament, corresponding to π, is determined recursively. First, the winner at a

leaf l is the player j, with l = π(j). Then, the winner of the subtree rooted at a

vertex v, i.e., of a tree contained in T , is the winner of the match between the winners

of the two subtournaments rooted at the children of v. There, the winner is decided

by the orientation of the unique edge between these two players, say, i and j. So, i

is the winner if and only if (i, j) ∈ E. We will only consider SE-tournaments based

on perfect binary trees, implying that the number of players entering a knockout

tournament is a power of 2.

We assume that the seeding is fixed, and known to all coalitions a priori.

Hence, when possible, in order to keep the notation simple, we will refrain from

explicitly referring to the seeding.

An example of a SE-tournament is depicted in Figure 3.3.

a1

d1
d1

c2

a1
b2

a1

Figure 3.3: A SE-tournament with four players, a1, b2, c2, d1, with d1 beating c2,
a1 beating b2, and a1 beating d1. There, a1 and d1 are winners in the first round
of the tournament, since a1 beats b2, while c2 beats d1. In consequence, a1 is the
winner of the tournament.

Subtournaments. Consider now a set of players [1, 2m], for some natural number

m. We denote by SEπ,[1,2m] the spanning binomial arborescence representing the

SE-tournament played by the players in [1, 2m], following the seeding π. We call

the root of SEπ,[1,2m] the winner of SEπ,[1,2m]. Moreover, for each r ∈ [1,m], we

denote by SEr
π,[1,2m] the binomial arborescence representing the subtournament of

SEπ,[1,2m], played by the winners of all the rth round matches of SEπ,[1,2m]. Notice

25

that there are exactly 2m−r players who win at least r rounds. In other words,

SE0
π,[1,2m] is the same as the full tournament SEπ,[0,2m] and, for every r ∈ [1,m],

SEr
π,[1,2m] denotes the subgraph of SEr−1

π,[1,2m], obtained by deleting all of its leaves.

Notice that SEm
π,[1,2m] contains a single vertex, which corresponds to the winner

of SEπ,[1,2m]. Figure 3.4 depicts subtournaments for particular rounds of the SE-

tournament shown in Figure 3.3.

a1

b2

d1

c2

a1

d1 a1

Figure 3.4: Subtournaments of the SE-tournament in Figure 3.3. The leftmost

subfigure shows SE0
π,{a1,b2,c2,d1}, the middle one, SE1

π,{a1,b2,c2,d1}, and the rightmost,

SE2
π,{a1,b2,c2,d1}.

Input Representation. Let us establish the input representation and input size

of the problems concerning tournament played by coalitions which we consider.

Observe first that we can represent any graph (N,E), with N = {p1, . . . , pn}, as
a n × n table, where every entry (i, j) specifies if pi beats pj , or if pj beats pi.

Similarly, we can represent a partition C1, . . . , Cl of N as a n× l table, where each

entry (i, j) specifies if pi belongs to Cj . Given these observations, we can represent

a coalitional structure (N,E,C) in space of size O(#N2 log#N) + O(#N · #C).

Here, O(#N2 log#N) is a bound on the representation of (N,E), and O(#N ·#C)

is the space to represent the partition of players into coalitions.

Furthermore, we can represent a seeding of a knockout tournament, assuming

that l is a power of 2, as a l long list, where each entry j specifies which Ci is seeded at

position j. Hence, O(#C log#C) is the size of space needed to represent a seeding.

As the number of coalitions #C is at most the number of players #N , since we do

not permit empty coalitions, the input has the overall bit-size O(#N2 log#N).

3.4 Social Networks

Let us define the concepts needed for our analysis of social networks.

Social Networks. Let N be a finite set of agents (also referred to as vertices),

and E be a directed graph over N , i.e., a relation over the set of agents. We assume

that E is irreflexive, by which we mean that for every i ∈ N , it holds that (i, i) /∈ E.

26

In other words, an agent does not take their own opinion into account. We further

call a tuple (N,E) a social network. The intuition behind this definition is that each

agent is influenced by the incoming edges, and influences the outgoing ones. So, we

interpret the fact that (i, j) ∈ E as “i influences j”. An example of a social network

is shown in Figure 3.5.

Figure 3.5: Example of a social network with four vertices. There, three of them are

all connected to each other, while one vertex has only one influencer. A connection

between a pair vertices which does not indicate its direction depicts the symmetric

relation between them.

Then, for each i ∈ N , we define the set of agents influenced by i as N(i) =

{j : (i, j) ∈ E}. We also call agents in N(i) the neighbours of i. Similarly, we

define the set N−1(i) = {j : (j, i) ∈ E} of the influencers of i. Observe that as

we assume that social networks are irreflexive, it holds that i /∈ N−1(i). Further,

if N(i) = ∅, then we say that i is a sink. Also, if N−1(i) = ∅, then we say that i

is a source. Moreover, we say that a network (N,E) is an extension of (N,E′), if

E′ ⊆ E. Similarly, if E ⊆ E′, we say that (N,E) is a subnetwork of (N,E′). Also,

we say that a set of agents S ⊆ N is a clique, if for every i, j ∈ S, such that i ̸= j, it

holds that (i, j) ∈ E, following the assumption that social networks are irreflexive.

Further, we say that S is an independent set, if for every i, j ∈ S, we have that

(i, j) /∈ E.

In our analysis we will study two natural classes of networks, i.e., bipartite,

and planar networks. We say that a network is bipartite if it can be divided into

two independent sets. This notion is important from the perspective of social net-

work analysis. In particular, affiliation networks (see, e.g., Lattanzi and Sivakumar

[2009]), in which each member of a group of, e.g., students, is assigned to a member

of another group of, e.g., professors. We further call a bipartite network (N,E),

which is divided into two independent sets A and B, such that for every i ∈ A and

j ∈ B, it holds that (i, j), (j, i) ∈ E, a complete bipartite network. We also denote

such a network as K#A,#B. Figure 3.6 depicts an example of a complete bipartite

network, K4,3.

We further say that a network (N,E) is planar, if it can be drawn on a

plane, so that the edges in E do not cross. These networks are well-represented

27

Figure 3.6: Example of a complete bipartite network with seven vertices (K4,3).

in practice, for instance in the representation of motorways (see, e.g., Viana et al.

[2013]). Further, we will make use of the fact that many natural networks, such

as those containing a clique with more than four vertices, are not planar, in our

computational complexity results. An example of a planar network is shown in

Figure 3.7.

Figure 3.7: Example of a planar clique with four vertices.

We will also consider strongly connected components (SCC s) of networks,

as well as directed acyclic graphs (DAGs). For a network (N,E) and a sequence

S = (i0, . . . , in), such that each ij in S belongs to N , we say that S is a path if for

each k < n it holds that (ik, ik+1) ∈ E. If there is a path from a vertex i to a vertex

j, then we write that i → j. We further say that (N,E) is a DAG, or that it is

acyclic, if no agent i is reachable from itself, i.e., there is no path in E, which starts

and ends at i. Observe that this implies that there are no infinite paths in (N,E).

Then, a network (N ′, E′), with the set of agents N ′ ⊆ N and E′ ⊆ N ′ is a

strongly connected component (SCC), if for every pair i, j ∈ N ′, such that i ̸= j,

there exist a a path from i to j in (N ′, E′), while N ′ is a maximal such set with

respect to set inclusion.

As is well-known (see, e.g., Bollobás [1998]), each network SN = (N,E) can

be partitioned into SCC s, yielding a DAG SCCSN = (SCCs, E′), where:

1. SCCs is the set of all SCC s of SN.

28

2. For every SCCu,SCCv ∈ SCCs, we have that (SCCu,SCCv) ∈ E′ if and only if

for some i ∈ SCCu, j ∈ SCCv, we have that j ∈ N(i).

An example of a partition of a network into SCC s is depicted in Figure 3.8.

Example 3.3. Figure 3.8 presents the connections between agents. Further, each

set of vertices in a dashed rectangle is a SCC of this network. Observe how these

components form a DAG, in which the clique consisting of four vertices is a source,

and the other components are sinks.

Figure 3.8: Example of a social network and its partition into SCCs.

We are interested in the opinions adopted by agents in social networks and,

in particular, how they spread following the influence relation. For this we equip

each agent with a single opinion. We call a social network, where every agent is

assigned a view (or a colour) a labelled social network. Throughout the thesis we

assume the binary set of opinions {b, r}, i.e, blue and red.

Definition 3.1 (Labelled Social Network). A labelled social network is a tuple

SN = (N,E, f), where:

• (N,E) is a social network,

• f : N → {b, r} is a labelling of each vertex.

Given a labelling f of a social network (N,E), we denote the set of vertices

labelled b, i.e., {i ∈ N : f(i) = b}, as Bf , and the set of vertices labelled r, i.e.,

{i ∈ N : f(i) = r}, as Rf . Moreover, for a set S ⊆ N , we say that BS
f is the set of

vertices labelled red in S, while RS
f is the set of vertices labelled r in S. We omit

f , if it is clear from the context. Also, the blue surplus of a vertex is the number of

its blue neighbours minus the number of its red neighbours. For a vertex set X and

a labelling f : X → {b, r}, we define the red neighbourhood of a vertex i under f as

the set of neighbours of i in X that are assigned the label r by f , and this set is

denoted by NX
f,r(i). We drop the explicit reference to X or f in this notation, if it

is clear from the context. The variation of this definition for blue neighbourhood is

analogous. Examples of labelled social networks are provided later, in Example 3.4.

29

Opinion Change. We model opinion change as an update protocol on the net-

work, where each agent i takes the opinion of their influencers, i.e., E−1(i), into ac-

count. We note that the protocol of opinion change, based on a fraction of infuencers

disagreeing with an agent, is well studied in the literature (see, e.g., Granovetter

[1978]).

For a given labelled social network (N,E, f) and an agent i, let us call A(i) =

{j ∈ N−1(i) : f(i) = f(j)} the set of influencers, who agree with i’s opinion.

Further, let D(i) = N−1(i) \ A(i) be the set of i’s influencers, who disagree with i.

We further assume that agents change their opinion if the fraction of their influencers

disagreeing with them is strictly higher than a half.

Definition 3.2 (Opinion Change). Let SN = (N,E, f) be a labelled social network,

and let i ∈ N be an agent. Then, the opinion diffusion step is the function OD :

N → {b, r}, such that:

OD(SN, i) =

flip(f(i)) if #D(i) > #A(i)

f(i) otherwise

where flip(k) = {b, r} \ f(k) denotes the change from an original opinion to its

opposite value.

In particular, a vertex with 2k influencers always takes the opinion of the

strict majority of the set N−1(i) ∪ {i}. To see that, consider a vertex i, with

#N−1(i) = 2k, and observe that OD(SN, i) ̸= f(i) if and only at least k + 1 of i’s

neighbours have a different opinion than i. But this implies that OD(SN, i) is the

colour of the strict majority in E−1(1)∪ {i}, as the cardinality of this set is 2k+ 1.

We are now ready to define the protocol for the opinion change in a labelled

social network. Here we focus on the synchronous update, in which all agents modify

their opinions at the same time.

Definition 3.3 (Synchronous Update). Let SN = (N,E, f) be a labelled social

network. Then, SU(SN) = (N,E, f ′), where for every i ∈ N we have that f ′(i) =

OD(SN, i).

It is important to notice that the synchronous update protocol defined above

is deterministic. So, given a labelled social network, we can compute its unique

labeling after any given number of synchronous updates. Further, we denote as the

update sequence of a labelled social network SN the infinite sequence of states of

SN, after successive synchronous updates.

30

Definition 3.4 (Update Sequence). Given a labelled social network SN = (N,E, f),

the update sequence generated by SN is the sequence of labelled social networks

SNus = (SN0,SN1 . . .), such that SN0 = SN, and for every n ∈ N, we have that

SNn+1 = SU(SNn).

We call a labelled social network SN stable, if SU(SN) = SN. So, in a stable

social network, for every agent i, it holds that at least a half of i’s neighbours is

labelled with the same colour as i. Further, a labelled social network is convergent,

if its update sequence contains a stable social network, i.e., if it reaches a fixed point,

which we also call its limit network. For convenience, we also say that a network

stabilises, or converges, after k steps, if the kth element of its update sequence is

stable. Similarly, we say that an agent stabilises after k steps, if it is labelled with

the same colour in every SNk′ , with k′ ⩾ k.

Example 3.4. Let us illustrate the notions of a labelled social network and of opin-

ion diffusion. Subfigures of Figure 3.9 present two different labellings of the same

social network. Observe that in both of them blue vertices constitute the majority.

However, in the right subfigure (which we denote as SN), after one step of opinion

diffusion, all vertices are labelled red, as each vertex has the strict majority of its

neighbours labelled r. In other words, in the update sequence SNus = (SN0,SN1 . . .),

every network SNi, with i > 0, has all of the vertices labelled r. On the contrary, in

the left subfigure (denoted as SN’), the opinion diffusion protocol will never termi-

nate, as the members of the central clique will switch their opinion in every opinion

diffusion step. In other words, the update sequence SN’us does not have a fixed point.

Figure 3.9: In the left subfigure, a labelling of a network which never converges. In

the right, a labelling for which the protocol converges after one opinion diffusion

step.

Majority Illusion. Here, we provide basic definitions, which we will use in our

analysis of majority illusion. There, we assume that, for each social network (N,E)

we consider, E is symmetric. I.e., we assume that social networks are undirected.

Note that in this case, for every agent i, we have that N−1(i) = N(i).

31

Then, we say that a colour k ∈ {b, r} is a strict majority winner in a labelled

social network (N,E, f), if there are strictly more agents coloured with k, than with

{b, r} \ {k}. Further, we use W(N,E,f) to denote such a winner, whenever it exists.

Similarly, for an agent i ∈ N , we say that a colour k ∈ {b, r} is a strict majority

winner in i’s neighbourhood, if the strict majority of i’s neighbours is labelled k. We

further use W i
(N,E,f) to denote such a winner, whenever it exists.

In order to define majority illusion, we say that an agent i ∈ N is under

illusion if they have a wrong perception of the majority winner. In other words, for

an agent i to be under illusion in a social network (N,E) with labelling f , we must

have that W(N,E,f) and W i
(N,E,f) exist, while W i

(N,E,f) ̸= W(N,E,f). In our analysis

of majority illusion we are concerned with the proportion of agents in a network,

which are under illusion. To account for that, we define the concept of q-majority

illusion, by which we mean that at least the fraction q of agents is under illusion.

Definition 3.5 (q-majority illusion). For a given social network (N,E), fraction q,

and labelling f : N → {b, r}, we say that f induces q-majority illusion, if at least

q·#N agents are under illusion in (N,E, f).

If there exists a labelling of a network (N,E), which induces q-majority

illusion, then we say that (N,E) admits q-majority illusion. In Chapter 8 we further

assume that the strict majority colour is blue, whenever one exists. Also, for a

network (N,E) and agents i, i′ ∈ N , such that N(i) = {i′}, we say that i is a

dependent of i′. Then, we also say that i′ has a dependent. Let us observe now that

if a labelling f induces 1-majority illusion for a network (N,E), and i is a dependent

of i′, then f(i′) = r. Finally, for a labelled network (N,E, f) and an agent i ∈ N ,

we define the margin of victory for i as #Nf,b(i) − #Nf,r(i). We also define the

margin of victory, for a labelled social network, in a natural way. Further, for a pair

of labelled social networks (N,E, f), (N,E, f ′), and i ∈ N , we say that i is pushed

into illusion in (N,E′, f), if i is under illusion in (N,E, f), but not in (N,E, f).

Symmetrically, we say that illusion is eliminated from i in (N,E′, f), if i is under

illusion in (N,E, f), but not in (N,E′, f).

Graph Parameters. In our analysis of computational properties of majority il-

lusion we will use a number of graph properties. In particular, we consider the

neighbourhood diversity (see Lampis [2012]), which captures the number of “twin

classes” in the graph. We say vertices u and v are twins, if they have the same

neighbours, i.e., N(u)\{v} = N(v)\{u}. Given a graph G, let further V (G) denote

the set of vertices in G.

32

Definition 3.6. The neighbourhood diversity (ND) of a graph G, which we also

denote as nd(G), is the minimum number w, such that V (G) can be partitioned into

w sets of twin vertices. Each set of twins, called a module, is either a clique, or

an independent set. We call these sets clique modules, and independent modules,

respectively.

We will further consider a property of a social networks that has gained

importance in recent years, i.e., the c-closure (see, e.g., Fox et al. [2018, 2020];

Koana et al. [2020]). For a natural number c, we say that a network is c-closed, if

every pair of vertices in this network, which have at least c neighbours in common,

is adjacent. This concept was introduced in an attempt to capture the spirit of

“social-network-like” graphs, without relying on probabilistic models. Note that

c-closure generalises one of the most agreed-upon properties of social networks, i.e.,

triadic closure. This property is that when two members of a social network have a

friend in common, they are are friends themselves. It is important to note that Fox

et al. [Fox et al., 2020, Table A.1], and later Koana et al. [Koana et al., 2020, Table

1], showed that several social networks and biological networks are indeed c-closed

for rather small values of c.

Input Representation. Let us establish the input size for the key notions regard-

ing social networks, which we defined above. As argued in the case of tournaments,

a network (N,E), with N = {v1, . . . , vn}, can be represented as a n×n table, where

every entry (i, j) specifies if (i, j), (j, i), or {(i, j), (j, i)} belongs to E. Hence, a net-

work can be represented in size O(#N2). Furthermore, a labelling f : N → {b, r}
can be represented as a vector of length n, where every position i indicates if vi is

coloured blue or red. So, f can be represented in size O(n).

3.5 Computational Complexity

Here, we define key concepts related to computational complexity, which we will use

in the analysis of the problems we consider in this thesis. We will study compu-

tational problems, in which we are interested in determining whether an answer is

positive, or negative, for a given instance. We define computational problems in

terms of sets of binary strings, i.e., strings composed of 0 and 1, which can be used

to encode complex objects. So, we denote the set of strings of length n, with n ∈ N,
as {0, 1}n. Then, for a function f from the set of binary strings to {0, 1}, the lan-

guage of f is the set Lf = {x : f(x) = 1}. Then, a computational problem of

33

deciding f is the problem of whether a binary string x (which we refer to as an

input) belongs to Lf .

We will further examine the time and space complexity of algorithms for

such problems. Intuitively, the time complexity is a measurement of a number of

steps needed to compute the answer to a problem by a specific algorithm, whereas

the space complexity indicates how many bits of space are needed for such a com-

putation. To account for the time measurement, let us introduce big O and big

Ω notation. Intuitively, big O indicates the upper-bound of a function. Formally,

for a pair of functions f, g : N → N, we say that f ∈ O(g), if for some constants

n0 ∈ N and c > 0, it holds that, for every n ⩾ n0, we have that f(n) ⩽ g(n) · c. We

note that every polynomial function f(n) is in nO(1). Symmetrically, big Ω notation

indicates the lower-bound of a function. Formally, we say that f(n) ∈ Ω(g), if there

are constant numbers n0, c, such that for every n ⩾ n0, we have that f(n) ⩾ g(n) · c.

Complexity Classes. When studying the computational hardness of the prob-

lems we consider, we will be referring to the notion of complexity classes, i.e., col-

lections of problems, which are defined in terms of their computational complexity.

Here, we define the classes which we will be mentioning in the thesis.

It is customary to assume that a problem is tractable, if it can be solved in

time bounded by some polynomial of input size. So, we say that a problem R, with

an input of size n, is solvable in polynomial time (or that it is in P), if there exists

an algorithm deciding R, which is computed in nO(1) steps.

Furthermore, we say that a problem R with an input n is solvable in linear

time (or that it is in L), if there exists an algorithm deciding R, which is computed

in O(n) steps.
Further, we say, intuitively, that a problem R is in NP, if an answer to R

can be verified in polynomial time. The formal definition of this notion is given in a

later part of this chapter, in Definition 3.8. Note that it follows directly by definition

that all problems in P are also in NP. It is also believed that NP is larger than P.

Another interesting class which we will study contains problems which might

not be solvable in polynomial time, although there are algorithms deciding them,

whose running time is bounded by a function growing slower than the exponen-

tial function. We say that a problem P , with an input n, is solvable in quasi-

polynomial time (or that it is in QP), if there exists an algorithm deciding R, which

is computed in 2O(logc n), for some fixed constant c. It is believed that there are

no quasi-polynomial algorithms, which decide an NP-complete problem (see, e.g.,

Impagliazzo and Paturi [2001]).

34

Finally, we say that a problem is in PSPACE, if it is computable while using

no more than nO(1) bits of space. It is important to note that PSPACE contains

all of the problems in P or NP.

Crucially, we get the following relations between the discussed classes (see

Theorem 7.4 in Papadimitriou [1994]).

L ⊆ P ⊆ NP ⊆ PSPACE

Reductions. To account for the comparison of computational complexity of prob-

lems, let us define the notion of a many-one reduction. For a problem R and a

problem R′, we say that R is reducible to R′, if there is a function f , such that, for

each input n of R, the answer for f(n) to R′ is positive if and only if the answer to

R is positive for n. Then, intuitively, we have that R′ is at least as hard as R.

Crucially, we say that a problem R is NP-hard, if every problem in NP is

reducible to R, using a function computable in polynomial time. Observe that it

follows immediately that if R is an NP-hard problem, and R is reducible to R′,

then R′ is also NP-hard. Then, we say that a problem R is NP-complete, if it

is in NP and is NP-hard. The definition of PSPACE-hardness and PSPACE-

completeness is analogous.

Turing Machines. One of the fundamental models of computation, which we will

use in our proofs, is of a Turing machine. Let us provide the formal definition of a

Turing machine, following Definition 2.1 in Papadimitriou [1994].

Definition 3.7 (Turing Machine). A Turing machine is a quadruple M = (K,Σ, δ, s).

Here, K is a finite set of states, and s ∈ K is the initial state. Σ is a finite set

of symbols (we say that Σ is the alphabet of M). We assume that K and Σ

are disjoint sets. Σ always contains the special symbols ⊔ and ▷, i.e., the blank

and the first symbol. Finally, δ is a transition function, which maps K × Σ to

(K ∪ {h, “yes”, “no”}) × Σ × {←,→,−}. We assume that h (the halting state),

“yes”, “no” and the coursor directions, ← for “left”, → for “right”, and − for

“stay”, are not in K ∪ Σ.

Then, for a binary string x, which we call an input a Turing machine M ,

is initiated on a finite string of symbols, which starts with ▷, and followed by x ∈
(Σ∪ {⊔})∗. We call this string an input of M . The function δ indicates further the

change that M makes, when encountering a given symbol in some state. So, δ(q, σ)

specifies, intuitively, the next state, a symbol by which σ is replaced, and the next

35

symbol on the tape, which should be read. Here, the symbol ▷ corresponds to the

initial point in which coursor is located. Furthermore, we assume that if it gets to

the position outside of the input, it reads the symbol ⊔.
To account for the computation of M , let us introduce a notion of a configu-

ration, by which we denote a tuple (q, u, v), where q ∈ K is a state, while u and v are

strings in Σ∗. Intuitively, q corresponds to a state in which a machine is. Also, u, v

correspond to the symbols on the tape, on the left and on right side of the coursor,

respectively. Let now σ denote the last symbol in u, and let δ(q, σ) = (p, ρ,D).

Further, we say that a configuration c = (q, u, v) yields in one step a configuration

c′ = (q′, u′, v′) if and only if the following hold:

1. p = q′.

2. If D =→, then u′ is given by u, with last symbol replaced by ρ, and the last

symbol of v appended. Further, v′ is equal to v, with the first symbol of v

removed.

3. If D =←, then u′ is equal to u, with σ removed. Also, v′ is equal to v, with ρ

added at the start.

4. If D = −, then u′ is equal to u, with σ replaced by ρ. Also, v′ = v.

Then, we say that a configuration c1 yields (or reaches) a configuration cn, if and

only if there is a sequence of configurations (c1, . . . , cn), such that for every i < n,

we have that ci yields ci+1 in one step. Furthermore, a run of M on input x is the

sequence of subsequent configurations reached by (▷, s, x). Then, we say that M

halts, or converges, on x, if the run of M on x reaches one of the three states: “yes”,

“no” or h. Otherwise, we say that it diverges. Further, if it reaches the state “yes”,

then we say that M accepts x, and if it reaches “no” that it rejects x.

We are now ready to formally define the class NP. Given a language L,

we denote as a polynomial decider machine for L a Turing machine ML, such that

L = {w : Ml accepts w · c for some string c}, with #c ∈ O(1). We further say that

c is a certificate for w.

Definition 3.8. A problem R is in the class NP if there exists a polynomial decider

machine for LR.

Problems Used in Computational Complexity Proofs. Here, we provide

the definitions of computational problems, which we later use in proofs. We say

that a literal is a propositional variable, or its negation. Also, we call a disjunction

36

of literals a clause. Then, we say that a propositional formula φ is in conjunctive

normal form (CNF), if φ is a conjunction of clauses. Furthermore, we say that φ is

in 3-CNF, if it is in CNF, and each of its clauses is formed by at most three literals.

The well-known NP-complete problem 3-SAT (see, e.g., Karp [1972]) con-

cerns checking if there exists an assignment of binary truth values to the variables

in a formula φ in 3-CNF, under which φ is true, i.e., whether it is satisfiable.

3-SAT:

Input: 3-CNF formula φ.

Question: Is φ satisfiable?

In some of our proofs, we use an NP-complete variation of 3-SAT, in which

the number of occurrences of each literal in a formula is limited. We say that a

propositional formula φ is in 2P2N-3-CNF, if it is in 3-CNF, and for each variable x

in φ, it holds thatX appears in φ twice in the positive form and twice in the negative

form. The NP-complete problem 2P2N-3-SAT concerns checking if a formula in

2P2N-3-CNF is satisfiable (see Berman et al. [2004]).

2P2N-3-SAT:

Input: 2P2N-3-CNF formula φ.

Question: Is φ satisfiable?

Another variation of 3-SAT which we will use is the NP-complete problem

Planar 3-SAT (see, e.g., Lichtenstein [1982]). For a formula φ, we define an

incidence graph of φ, in which a variable x is adjacent to a clause C, if and only if x,

or ¬x, appears in φ. Then, in Planar 3-SAT, it is determined whether a formula

φ with a planar incidence graph is satisfiable (see Lichtenstein [1982]).

Planar 3-SAT:

Input: φ in 3-CNF with a planar incidence graph.

Question: Is φ satisfiable?

Another useful NP-complete problem which we use in our proofs concerns

finding cliques of a given size in a graph. So, k-Clique is the problem of checking

whether there exists a clique of size k in an input graph (see, e.g., Papadimitriou

[1994]).

k-Clique:

Input: Graph G, k ∈ N.
Question: Is there a clique of size k in G?

37

Similarly, k-Independent Set is the problem of checking if there is an

independent set of size k in an input graph. This problem has also been shown to

be NP-complete (see, e.g., Papadimitriou [1994]).

k-Independent Set:

Input: Graph G, k ∈ N.
Question: Is there an independent set of size k in G?

We will also use the NP-complete problem ILP-Feasibility. There, an

input is a matrix A and a vector b. Then, it is checked if there exists a vector x̄,

which satisfies all inequalities given by A and b (see, e.g., Lenstra [1983]).

ILP-Feasibility:

Input: Matrix A ∈ Zm×p and a vector b ∈ Zm×1 .

Question: Is there a vector x̄ ∈ Zp×1 satisfying the m inequalities given by

A, i.e, A · x̄ ⩽ b?

We will further use the following PSPACE-complete problem (see, e.g.,

Theorem 19.9 in Papadimitriou [1994]), in which it is decided whether a Turing

machine accepts an input using limited space.

In-place Acceptance:

Input: Turing machine M , input x.

Question: Does M accept x without leaving #x+ 1 first symbols of its

string?

Parametrised Complexity. Here, we introduce basic notions relevant to the

parametrised complexity of computational problems. This type of complexity mea-

surement is especially relevant to the analysis of problems which are hard to compute

in the general case. Intuitively, we are interested in establishing how difficult is a

problem, if some parameter of the input is small. For an extensive overview of

parametrised complexity see, e.g., Cygan et al. [2015].

To account for the fact that a problem can be solved efficiently, i.e., in polyno-

mial time, if a parameter is small, we employ the notion of fixed-parameter tractabil-

ity. We say that a problem with an input n is fixed-parameter tractable (FPT), or

that it is in the class FPT, for a parameter k, if it is solvable in timeO(f(k))·#nO(1),

for some computable function f .

It is important to note that ILP-Feasibility is in FPT, when parametrised

by the number of variables.

38

Proposition 3.1 (Lenstra [1983]; Kannan [1987]; Frank and Tardos [1987]). ILP-

Feasibility can be solved using O(pO(p) · L) arithmetic operations and space poly-

nomial in L, where L is the number of bits in the input and p is the number of

variables.

Moreover, we say that a problem is inXP for a parameter k, if there exists an

algorithm solving this problem, which runs in time nf(k) (called an XP-algorithm),

where f is some computable function. Note that FPT⊆ XP.

We are further interested in problems which are not in FPT for a specific

parameter. The W-hierarchy defines a series of complexity classes extending XP.

We note that showing that a problem is hard for a class W [i] in this hierarchy, with

i ⩾ 1, is an evidence that the problem is unlikely to be in FPT. In the context

of this thesis, we say that a problem R is W[1]-hard, when parametrised by r,

if there is a many-one reduction from the k-Clique problem computable in time

f(k) · #nO(1), where n is the instance of k-Clique, with parameter r not larger

than g(k), for some function g. We note that both k-Clique and k-Independent

Set are W[1]-hard. Finally, we say that a problem is para-NP-hard, if it is already

NP-complete for a constant value of the parameter r.

Tree Decomposition. Tree width is a fundamental graph parameter, useful for

the design of parametrised algorithms, which will play an important role in our pa-

rameterised complexity analysis. Intuitively, this measurement indicates how “close”

a graph is to a tree. Then, an FPT algorithm for a problem parametrised by the

tree width implies a polynomial-time algorithm on “tree-like” graphs. Given a graph

G, let E(G) denote the edge set of G. For a rooted tree T and a non-root vertex

t ∈ V (T), by parent(t) we denote the parent of t in the tree T . Similarly, child(t) is

a set of vertices such that t is a parent of each of its members. For vertices u, t ∈ T ,

we say that u is a descendant of t, denoted u ⪯ t, if t lies on the unique path from u

to the root. Note that every vertex is its own descendant. If u ⪯ t and u ̸= t, then

we write u ≺ t. Likewise, u is an ancestor of t if t is a descendant of u.

Definition 3.9. A tree decomposition of a graph G is a pair (T, β) of a tree T

(whose vertices are called nodes) and a function β : V (T)→ 2V (G), such that:

1.
⋃

t∈V (T) β(t) = V (G).

2. For every edge e ∈ E(G), there exists a node t ∈ V (T), such that both endpoints

of e belong to β(t).

3. For every vertex v ∈ V (G), the subgraph of T induced by the set Tv = {t ∈ V (T) :

v ∈ β(t)} is a connected tree.

39

We say that the width of (T, β) is maxv∈V (T)#β(v)−1. Then, the tree width
of G, which we also refer to as tw(G), is the minimum width of a tree decomposition

of G.

Let now (T, β) be a tree decomposition of a graph G. We always assume

that T is a rooted tree and so, we have a natural parent-child and ancestor-descendant

relationship among vertices in T . We call the set β(t) the bag at node t. Then, for

a node t ∈ V (T), by Vt, we denote the set
⋃

t′⪯t β(t
′), i.e., the set of all the vertices

in the bags in the subtree of T rooted at t.

When designing algorithms using tree decompositions, it is generally helpful

to work with a special kind of tree decomposition, i.e., a nice tree decomposition.

Definition 3.10. Let (T, β) be a tree decomposition of a graph G, where r is the

root of T . The tree decomposition (T, β) is called a nice tree decomposition, if the

following conditions are satisfied.

1. β(r) = ∅ and β(ℓ) = ∅ for every leaf node ℓ of T .

2. Every non-leaf node (including the root node) t of T is of one of the following

types:

• Introduce node: The node t has exactly one child t′ in T and β(t) =

β(t′) ∪ {v}, where v /∈ β(t′).

• Forget node: The node t has exactly one child t′ in T and β(t) = β(t′)\{v},
where v ∈ β(t′).

• Join node: The node t has exactly two children t1 and t2 in T , where

β(t) = β(t1) = β(t2).

We note that, using a well-known, polynomial-time algorithm, we can convert

any given tree decomposition to a nice tree decomposition of the same width (Cygan

et al. [2015]). We note that graphs of bounded tree width are sparse. That is, the

number of edges in a graph with n vertices, and of tree width k, is O(k2). On

the other hand, graphs of bounded neighbourhood diversity can be dense. For

instance, a complete graph has a ND of 1, but has n2 edges. Moreover, note that

ND is “incomparable” with tree width. That is, there are graphs of constant ND

with unbounded tree width (e.g., a clique) and graphs of constant tree width with

unbounded ND (e.g., a path).

Clique Width. Another important parameter which we use in the thesis, is the

clique width. This notion is a generalisation of tree width. See Dabrowski et al. [2019]

40

for an overview of key results regarding this notion. First, we define the disjoint

union of two graphs, G1 and G2, as a graph (V (G1) ∪ V (G2), E(G1) ∪E(G2)). We

denote it as G1 ⊕G2. In words, a disjoint of G1 and G2 contains these two graphs,

with no edges between them. Then, we define the clique width of a graph G, as the

minimum number of labels sufficient to construct G using the following operations:

1. Construct a graph with a single vertex v, which is labelled i.

2. Construct a disjoint union of two labelled graph, G1 and G2.

3. For a pair of distinct labels i and j, construct an edge between every pair of

vertices vi, and vj , such that vi is labelled i, while vj is labelled j.

4. Relabel each vertex with a label i with a label j.

In Example 3.5 we show how a graph can be constructed using those opera-

tions.

Example 3.5. Let us show how a pair of vertices can be constructed using the

operations used in the definition of clique width. First, we create a graph with

vertex labelled b. Subsequently, we construct a graph with a vertex labelled r, and

create a disjoint union of these structures. As a final step, we link the vertex labelled

r to the vertex labelled b. Figure 3.10 depicts this construction.

Figure 3.10: Example of construction of a graph using operations following from the

definition of clique width.

Boolean Circuits. Let us define Boolean circuits, basing on Definition 4.4 in

Papadimitriou [1994]. We start with what we call the syntax of a circuit. A Boolean

circuit is a directed graph C = (V,E), where the vertices in V = {1, . . . , n} are called
gates of C. We further assume that C is acyclic. Also, all vertices in the graph have

indegree 0, 1 or 2. Then, each gate i ∈ V has a sort s(i), where s(i) belongs to

{true, false,and,or,not} ∪{x0, x1, . . . }.
If s(i) ∈ {true, false}∪{x0, x1, . . . }, then the indegree of i is 0. Gates with

indegree 0 are called inputs of C. Further, if s(i) = not, then the indegree of i is 1.

Also, if s(i) ∈ {and,or}, then the indegree of i is 2. Finally, a vertex n with no

outgoing edges is called an output of C.

Figure 3.11 depicts an example of a Boolean circuit with three inputs. Ob-

serve that the syntax of this circuit corresponds to the formula (x0∨(x1∧¬x2))∧¬x2.

41

ax0a ax1a ax2a

NOTNOT

AND

OR

AND

Figure 3.11: A Boolean circuit corresponding to the formula (x0∨ (x1∧¬x2))∧¬x2.

Let us now define the semantics of a circuit. We will specify exactly one truth

value, i.e., true or false, to each gate of a circuit, for each valuation of propositional

variables. We denote as X(C) the set of all propositional variables in C. So,

X(C) = {x ∈ X : x = s(i) for some i ∈ V }. Given a valuation T over X(C), we

define the truth value of a gate i ∈ V (T (i)), by induction on i. If s(i) = true, then

T (i) is true, and if s(i) = false, then T (i) is false. Further, if s(i) ∈ X(C), then,

if i is true in T , we have that T (s(i)) = true, and T (s(i)) = false otherwise. Let

us now observe that, if s(i) = not, then there is a unique gate j, such that (j, i) ∈ E,

i.e., there is an edge incoming to i from j. Then, T (i) = true, if T (j) = false,

and T (i) = false otherwise. Now, if s(i) = or, then there are two edges, (j, i)

and (j′, i), incoming to i. Then, T (i) = true if and only if T (j) = true or

T (j′) = true. Finally, if s(i) = and, while (j, i) and (j′, i) are the edges incoming

to i, then T (i) = true if and only if T (j) = true and T (j′) = true. Observe

how, for the circuit presented in Figure 3.11, assigning the truth value false to the

gate x2, and true to both x0 and x1, results in all the other gates being assigned

the value true.

42

Chapter 4

Nominee Selection in

Hotelling-Downs Spaces

4.1 Introduction

The Hotelling-Downs model, introduced by Hotelling [1929], is perhaps the most

impactful and well-established framework to study strategic positioning of self-

interested players on a spacial dimension, e.g., candidates on a political spectrum.

In Hotelling and Downs’s original setup, two self-interested ice cream vendors strate-

gically place themselves on a beach so as to attract as many customers as possible,

in the knowledge that the relaxed beachgoers will always opt for the one closer to

them. This game has a unique NE, in which both agents choose the most central

location. The simplicity and depth of this observation has led to applications in

corporate strategy, strategic candidacy, and spatial design (see, e.g., Eiselt [2011]).

Downs [1957] himself mentions the potential of this framework to predict how par-

ties will set their agendas and how they will position themselves in the political

spectrum, suggesting that party politics will tend to more moderate choices. Notice

that this framework is naturally suited to the study of strategic nominee selection,

where the policy of a party corresponds to political views of their chosen candidate.

It is fair to say that Downs’s observation relies on severely restrictive as-

sumptions. First and foremost, his model involves only two agents. Indeed, it has

been shown that, if the number of agents is increased, there are cases without Nash

equilibria (Eaton and Lipsey [1975]). Second, and perhaps more importantly, agents

are allowed unrestricted movement. While this might be a reasonable assumption

for ice cream vendors on a beach, this is certainly not the case for political parties,

which can only count on a few potential nominees, typically tied up to relatively

43

fixed political stances. Similarly, from an economics perspective, producers might

be limited to a fixed number of products which can potentially be released.

To address this gap we analyse the extension of the Hotelling-Downs model,

in which parties’ can select their position on the line only from a finite set of posi-

tions, corresponding to the views of their potential nominees. Importantly, we do

not presuppose any restrictions on the locations of candidates within a party.

Even though primaries were recently studied from the perspective of multi-

agent systems in Borodin et al. [2019], surprisingly, variations of the Hotelling-

Downs model involving multiple participants with restricted options – and which

could thus capture the mathematics behind real-world situations – have been largely

overlooked. A notable exception is the work by Sabato et al. [2017] on real candidacy

games, where competing candidates select intervals on a line and are then chosen

based on a given social choice rule. Notwithstanding the similarities of this work

with our framework, it also displays some important technical differences. In par-

ticular, their restricted action spaces, in our view are not suitable to model nominee

selection, and they can force equilibrium existence. Furthermore, the mentioned

paper does not consider computational complexity.

Our Contribution. In this chapter we provide a game-theoretic analysis of nom-

inee selection, where parties choose independently and simultaneously from their

respective pools of potential candidates. We assume that both voters and party

candidates occupy a fixed position on a line, with voters always voting for the (nom-

inated) candidate that is closest to them. We carry out an algorithmic analysis of

verifying the existence of pure Nash equilibria, while focusing on the differences be-

tween two-party electoral competitions and those in which an arbitrary number of

parties participates. Specifically, we show that if there are only two parties, then

the problem of establishing whether a NE exists can be achieved in linear time

(Theorem 4.1). By contrast, finding a NE is NP-complete in the multi-party case

(Theorem 4.2). We also look at some natural restrictions, such as having parties

with non-overlapping political spectra, and provide equilibrium existence results for

these, as well.

Structure of the Chapter. In Section 4.2 we study the structural and algo-

rithmic properties of Nash equilibria in games limited to two parties. Further, in

Section 4.3 we analyse the case in which an arbitrary number of parties competes.

Section 4.4 concludes with a discussion of our main findings and of some interesting

directions for future research.

44

4.2 Games with Two Parties

In this section we carry out an analysis of Nash equilibria in games with two parties

only. First, we study conditions under which a NE exists. Then, we focus on the

complexity of checking if there is an equilibrium profile in a given game.

Existence. Our framework is a generalisation of the discrete version of Hotelling-

Downs model where, as argued earlier, a NE is guaranteed to exist. To see this in

our model, consider a [0, k] line and two parties, P1 and P2. It is well known that

if P1 = P2 = [0, k], k is even and f : [0, k] → N0 is uniform, then the game has a

unique NE (see, e.g., Eaton and Lipsey [1975]). Moreover, such an equilibrium can

be computed in k−1 rounds of iterated elimination of strictly dominated strategies.

In this equilibrium both parties choose the central position, getting utility of V (f)
2

each. When k is odd instead, then every outcome in which parties select one of the

central positions is a NE. With voters that are potentially non-uniformly distributed

this fact is still true, provided that the notion of central position is replaced by that

of median position, which we will define next.

A position m ∈ [0, k] is called a median, if f(m) > 0,
∑
n⩽m

f(n) ⩾
V (f)

2
, and

∑
n⩾m

f(n) ⩾
V (f)

2
. In words, a median is a non-empty position, such that half of

the voters is located there or on the left of it, and a half there or on the right of it.

Intuitively, this is a position at which a median voter is located. Given a distribution

of voters on a line, we denote as mL its smallest median position. So, mL is the

leftmost position on the line, which is a median position. Then mR is the largest,

i.e., rightmost, median position. Furthermore, for simplicity, if the median position

is unique, we simply refer to it as m. It is worth noting that median positions

always exist, as we assume that V (f) > 0. However, they do not need to be unique.

Moreover, there are cases in which median positions do not come consecutively. To

see this, consider a [0, 4] line and the distribution of voters f : [0, k]→ N0, such that

f(0) = f(4) = 1 and for each i ∈ [1, 3], we have that f(i) = 0, as shown in Figure

4.1.

Then, both 0 and 4 are median positions, while they are not consecutive.

Note also that we immediately have that in every election there are at most two

median positions and that given positions mL and mR, if n ∈ [mL + 1,mR − 1],

then f(n) = 0. In other words, all positions between mL and mR do not have any

voters located there.

We now use the notion of a median position to show that a NE is guaranteed

45

1 0 0 0 1

mL mR

Figure 4.1: Example of a game with two median positions. Numbers above the line
specify the number of voters at each position. Observe that positions mL and mR,
indicated below the line, are median positions, as for each of them exactly a half of
voters is located there.

to exist, if the parties’ choices are intervals, i.e., if, given a line [0, k], for each party

Pi, there are pl, pr ∈ [0, k] ,such that P = [pl, pr]. Incidentally, this encodes the

action space as studied in Sabato et al. [2017], under a very basic “voting” rule, in

which the candidate which attracts the highest number of voters is the winner.

Furthermore, we fix the following definition. For candidates p1, p
′
1 ∈ P1 and

p2 ∈ P2, we say that p′1 is strictly closer to p2 than p1, whenever either p1 < p′1 < p2

or p2 < p′1 < p1. Now we show the following useful lemmata. First, we show that

for every strategy profile, in which parties do not choose the same position, it holds

that changing a nominee to a one that is strictly closer to the opponent, does not

lower the utility of a party.

Lemma 4.1. Let c = (c1, c2) be a strategy profile with c1 ∈ P1 and c2 ∈ P2. Then,

if there exists c′1 ∈ P1, such that c′1 is strictly closer to c2 than c1, then it holds that

u1(c
′
1, c2) ⩾ u1(c1, c2).

Proof. Take a line [0, k], two parties P1 and P2, as well as a distribution of voters

f : [0, k] → N0. Also, take a strategy profile c=(c1, c2), with c1 ∈ P1 and c2 ∈ P2.

Further, let c′1 ∈ P1 be strictly closer to c2 than c1. Without loss of generality, we

assume that c1 < c2 (the case of c1 > c2 is similar and c1 = c2 is impossible). Then,

we have that c′1 is such that c′1 > c1 and that c′1 < c2. Then, observe that σc1(m),

i.e., an indication of the number of voters at position m, which are attracted by c1,

is at least as large, as σc′1(m), for all m ∈ [0, k], fixing the choice of c2. This implies

that u1(c
′
1, c2) ⩾ u1(c1, c2).

Further, we show that if both parties nominate candidates located on the

same side of a median position m, then the one which is closer to m attracts at least

half of the voters. This holds, as by the definition of a median position, we have

that at least a half of the voters are located at each side of m.

Lemma 4.2. For every line [0, k], distribution of voters f : [0, k] → N0, set of

parties P = {P1, P2}, and strategy profile c = (c1, c2), it holds that: (1) if for some

46

ci, cj ∈ c, it holds that cj ⩽ ci ⩽ mR, then uC(ci)(c1, c2) ⩾
V (f)
2 , and (2) if for some

ci, cj ∈ c, we have that mL ⩽ ci ⩽ cj, then uC(ci)(c1, c2) ⩾
V (f)
2 .

Proof. Take a line [0, k], distribution of voters f : [0, k] → N0, set of parties P =

{P1, P2}, and a strategy profile c = (c1, c2). Notice that if c1 = c2, then the

claim follows immediately. Then, without loss of generality, suppose that c1 > c2.

Suppose further, that (1) is the case. Observe that for every n ∈ [mR, k], we have

that σci(n) = 1. Also, we know that
∑

i∈[mR,k]

f(i) ⩾
V (f)

2
, and so the claim follows.

The reasoning showing the claim for case (2) is symmetric.

Now we are ready to show the existence of NE in interval models.

Proposition 4.1. Let f : [0, k] → N0 be the distribution of voters and P1, P2 be

parties. If P1 and P2 are intervals, then there are c1 ∈ P1 and c2 ∈ P2, such that

(c1, c2) is a NE.

Proof. Take a line [0, k], distribution of voters f : [0, k] → N0 and parties P1, P2,

such that P1 and P2 are intervals. We will show that there exists a NE profile

c=(c1, c2). Recall that mL and mR denote the median positions. If there is a single

median position, then m = mL = mR. Let us consider the following, exhaustive

cases.

Case 1: {mL,mR} ∩ P1 ̸= ∅ and {mL,mR} ∩ P2 ̸= ∅. Then, take m1 ∈
{mL,mR}, such that m1 ∈ P1 and m2 ∈ {mL,mR}, such that m2 ∈ P2. Then,

let us show that (m1,m2) is a NE. Suppose it is not and assume without loss of

generality that there is a candidate c′1 ∈ P1, such that u1(c
′
1,m2) > u1(m1,m2).

Observe that, by Lemma 4.2, it holds that u1(m1,m2) ⩾
V (f)
2 . But then it also holds

that u2(m1,m2) ⩾ V (f)
2 , which implies that u2(m1,m2) ⩽ V (f)

2 . So, u1(m1,m2)

= u2(m1,m2) = V (f)
2 . Then, by Lemma 4.2, for every value of c′1, we have that

u2(c
′
1,m2) ⩾

V (f)
2 . So, u1(c

′
1,m2) ⩽

V (f)
2 . Hence, c′1 is not a profitable deviation,

which contradicts the assumptions.

Case 2: {mL,mR} ∩ P1 = ∅ or {mL,mR} ∩ P2 = ∅. Without loss of

generality, let {mL,mR} ∩ P1 = ∅. Notice that as P1 and P2 are intervals, it holds

that either (1) P1∩ [mL+1,mR−1] = ∅ and P1∩ [mL,mR] = ∅, (2) P1 ⊆ [mL,mR],

while P2 ∩ [mL,mR] ̸= ∅ or P2 ⊆ [mL,mR], while P1 ∩ [mL,mR] ̸= ∅, or (3) for all
p ∈ P1 ∪ P2, it is the case that p ∈ [mL,mR].

Case 2.1: P1 ∩ [mL,mR] = ∅ and P1 ∩ [mL,mR] = ∅. Without loss of

generality, we assume that, for all p ∈ P1, p < mL. Let us consider three exhaustive

cases: (1) for some p ∈ P2, p > max(P1), (2) for all p ∈ P2, p < max(P1), (3)

max(P1) = max(P2).

47

Case 2.1.1: for some p ∈ P2, p > max(P1). Take the smallest such p ∈ P2

(denote it as s2). Notice that max(P1) is a best response to s2 by Lemma 4.1.

Also, if min(P2) > max(P1), then s2 is a best response to max(P1), by Lemma 4.1.

Moreover, notice that by Lemma 4.2 we have that if min(P2) ⩽ max(P1), then

u2(max(P1), s2) ⩾
V (f)
2 , as max(P1) < mL and max(P1) < s2 ⩽ mL (as P1 and P2

are intervals). Also, by Lemma 4.2, u2(max(P1), p2) ⩽
V (f)
2 , for every p2 ∈ P2, such

that p2 ⩽ s2, as max(P1) < mL and p2 ⩽ max(P1). So, (max(P1), s2) is a NE.

Case 2.1.2: for all p ∈ P2, p < max(P1). Take the smallest p ∈ P1, such

that p > max(P2) (denote it s1). Notice that the profile (s1,max(P2) is a NE, by

Lemma 4.2 and by Lemma 4.1, similarly to how we argued above.

Case 2.1.3: max(P1) = max(P2). Then, the profile (max(P1),max(P2)) is

a NE, by Lemma 4.2, as max(P1) < mL, and for every p2 ∈ P2, p2 ⩽ max(P1).

Case 2.2: P1 ⊆ [mL,mR], while P2 ∩ [mL,mR] ̸= ∅ or P2 ⊆ [mL,mR],

while P1 ∩ [mL,mR] ̸= ∅. Let us assume without loss of generality that P1 ∩
[mL,mR] = ∅, while P2∩ [mL,mR] ̸= ∅. Let us consider the following cases, similar

to the case 2.1.

Case 2.2.1: for some p ∈ P2, it holds that p > max(P1). Then, take

the smallest such p and call it s2. Further, observe that max(P1) is a best response

to s2, by Lemma 4.1. Now, we show that (max(P1), s2) is a NE, by demonstrating

that s2 is a best response to max(P1). To see that let us first observe that if

min(P2) > max(P1), then s2 is a best response to max(P1), by Lemma 4.1. Also, if

min(P2) ⩽ max(P1), then the claim follows by Lemma 4.2, as max(P1) < mR.

Case 2.2.2: max(P2) < max(P1). Then, take the smallest s1 ∈ P1, such

that s1 > max(P2). Observe that by assumption it holds that s1 < mR. Hence,

u1(s1,max(P2)) ⩾ V (f)
2 , by Lemma 4.2. Now notice that since P1 is an interval,

for every p ∈ P1, such that p < s1, it holds that p ⩽ max(P2). So, by Lemma

4.2, u2(max(P1), p) ⩽ V (f)
2 , as max(P1) ⩽ mR. Finally, for every p ∈ P1, such

that p > s1, we have that u1(p,max(P2)) ⩽ u2(max(P1), s2), by Lemma 4.1. It

follows now that s1 is a best response to max(P2). It follows by Lemma 4.1 that

(s1,max(P2)) is a NE.

Case 2.2.3: max(P1) = max(P2). Then, (max(P1),max(P2)) is a NE by

Lemma 4.2, since max(P1) > mL and max(P1) < mR.

Case 2.2.3: for all p ∈ P1 ∪P2, it is the case that p ∈ [mL+1,mR− 1].

Take an arbitrary profile (c1, c2). Observe that then, by Lemma 4.2, we have that

u1(c1, c2) = u1(c1, c2) =
(V (f)

2 , while for each c′1, c
′
2 it holds that u1(c

′
1, c2) ⩽

(V (f)
2

and u1(c1, c
′
2) ⩽

(V (f)
2 . So, (c1, c2) is a NE.

Critically, the existence of Nash equilibria is no longer guaranteed in the

48

general setting, where parties are not necessarily given by intervals, which is arguably

a more realistic representation of nomination processes.

Proposition 4.2. There are games with two parties and no Nash equilibria, even

when the distribution of voters is uniform.

Example 4.1. We will provide an example showing that Proposition 4.2 holds, i.e.,

that for some games with two parties competing and with uniform distribution of

voters, in which no strategy profile is a NE. Consider the line [0, 8] of uniformly

distributed voters and two parties P1, P2, with P1 = {1, 7}, P2 = {2, 6}, as depicted

in Figure 4.2.

P1 P1P2 P2

Figure 4.2: Game used in the Example 4.1, where voters are uniformly distributed.

Below the line positions of candidates from parties P1 and P2.

For simplicity, we model the instance as the normal form game in Figure

4.3. Then, by examining the representation of the game, we get that this game has

no NE.

1

7

2 6

2
7

4
5

4
5

2
7

Figure 4.3: Normal form representation, with rows representing P1’s choices and
column P2’s. The matrix entries encode the utilities as a function of the length of
the line [0, k] and the distribution of voters f : [0, k]→ N0.

Notice that following Proposition 4.2 the existence of a NE is not guaranteed

in our framework even in the simplest case of games with two parties and a uniform

distribution of voters. This motivates the need for an algorithmic analysis of deciding

the existence of Nash equilibria in our framework.

Computation

We now move to study of the complexity of checking whether a NE exists or not,

in a given game in which only two parties compete. While it is straightforward to

49

see that a polynomial-time algorithm exists for this problem (simply try all possible

profiles and check if any is a NE), we will provide a linear-time algorithm for this

case. Moreover, the procedure we present will also return an equilibrium profile,

whenever one exists. Before presenting it and proving its soundness, we show that

if elections with two parties admit a NE, then they also admit a NE in which one of

the parties selects a candidate close to the median position. This observation will

constitute the core of our algorithm.

We start with defining the concept of most central candidates. Consider a

party Pi on a line [0,k], with a distribution of voters f : [0, k]→ N0. We denote the

set Ci = {p : p ∈ {LL
i , L

R
i , R

L
i , R

R
i }}, where LL

i , L
R
i , R

L
i , R

R
i ∈ Pi and

LL
i = argmin

{p∈Pi: p⩽mL}
|mL − p|

LR
i = argmin

{p∈Pi: p∈[mL+1,mR−1]}
|p−mL|

RL
i = argmin

{p∈Pi: p∈[mL+1,mR−1]}
|mR − p|

RR
i = argmin

{p∈Pi: p⩾mR}
|p−mR|

as Pi’s most central candidates.

In words, Pi’s most central candidates are those that are closest to the left

(i.e., LL
i and LR

i) and the right (i.e., RL
i and RR

i) median voter positions. Notice

that for every party P , we have that the set of their most central candidates has

the cardinality of at least 1, as we assume that parties are not empty. However, the

cardinality of Ci may vary. For instance, if the median voter position is unique and

a party has a candidate that is exactly there, then the set of most central candidates

of a party is a singleton.

Figure 4.4 illustrates the central candidates of a party P1 made up by can-

didates p1, p2, p3 and p4 on a line [0,6].

0 1 0 0 0 1 0

p4p3p2p1 mL mR

Figure 4.4: Example of a game with a party P1, depicting its central candidates.

Observe that p1, p2, p3 and p4 from P1 are the LL
1 , LR

1 , RL
1 , and RR

1 candidates

respectively, as mL = 1 and mR = 5.

We show now that if a NE exists, then there is a NE in which at least one

50

of the two parties selects a most central candidate. This allows us to show that a

strategy profile is a NE, if both parties select candidates located between median

positions. First, we show the following lemma.

Lemma 4.3. Let [0, k] be a line, f : [0, k]→ N0 be a distribution of voters, P1, P2 be

parties, and (c1, c2) be a strategy profile, such that c1, c2 ∈ [mL,mR]. Then, (c1, c2)

is a NE.

Proof. Take a line [0, k], distribution of voters f : [0, k] → N0, parties P1, P2, and

a strategy profile (c1, c2), such that c1, c2 ∈ [mL,mR]. Notice that by Lemma 4.2,

for every profile (c′1, c
′
2), such that c′1, c

′
2 ∈ [mL,mR], it holds that u1(c

′
1, c

′
2) =

u2(c
′
1, c

′
2) =

V (f)
2 . Further, assume without loss of generality that c1 ⩽ c2. We now

show that c1 is a best response to c2, i.e., that for every c′1 ∈ P1, we have that

u1(c
′
1, c2) ⩽ u1(c1, c2). Indeed, if c

′
1 < mL < c1, then the claim holds by Lemma 4.1

and Lemma 4.2. Also, one can verify that, by Lemma 4.2, if c′1 ∈ [mL,mR], then

u1(c
′
1, c2) = u2(c1, c2) = V (f)

2 . Finally, if c′1 > mR, then, also by Lemma 4.2, we

have that u1(c
′
1, c2) ⩽

V (f)
2 , so the claim follows. Analogously it can be shown that

c2 is a best response to c1.

We will further show that, if there is a NE in a given election, then there is

a NE, in which at least one of the parties selects a most central candidate.

Lemma 4.4. For every line [0, k], distribution of voters f : [0, k]→ N0 and parties

P1, P2, if there is a NE profile (c1, c2), then there is a NE profile (c′1, c
′
2), such that

c′1 ∈ C1 or c′2 ∈ C2.

Proof. Take the line [0, k], distribution of voters f : [0, k]→ N0, and parties P1, P2.

Suppose that there is a NE profile c = (c1, c2). Now we show that there is a NE

profile (c′1, c
′
2), such that c′1 ∈ C1 or c′2 ∈ C2. Without loss of generality, we assume

that c1 ⩽ c2.

Case 1: c1 ∈ C1 or c2 ∈ C2. The claim follows immediately.

Case 2: c1 /∈ C1 and c2 /∈ C2. We will consider the following cases:

1. c1, c2 ∈ [mL + 1,mR − 1].

2. c1, c2 < mL.

3. c1, c2 > mR.

4. c1 < mL < c2.

5. c1 < mR < c2

51

Note that they are exhaustive, as we assume that c1 < c2, and as by assump-

tion that they are not most central candidates, they are not located at a median

position. Then, indeed, we either have that both c1 and c2 are located between mL

and mR (case 1), that they are strictly smaller than mL (case 2) or greater than

mR (case 3) or that they are on the opposite sides of a median position (cases 4

and 5).

Case 2.1: c1, c2 ∈ [mL+1,mR−1]. Then, (LR
1 , R

L
2) is a NE by Lemma 4.3.

Case 2.2: c1, c2 < mL. Assume first that c1 = c2, and notice that

u1(c1, c2) = u2(c1, c2) = V (f)
2 . Further, consider the position LL

2 . Notice that

it exists, since c2 < mL, while c2 ̸= LL
2 . We will now show that (c1, L

L
2) is

a NE. Notice that as c is a NE, u2(c1, L
L
2) ⩽ u2(c1, c2). So, by Lemma 4.2,

u2(c1, L
L
2) = u2(c1, c2) =

V (f)
2 . Therefore, as c2 is a best response to c1, so is LL

2 .

To show that c1 is a best response to LL
2 as well, assume towards contradiction that

u1(c
′
1, L

L
2) > u1(c1, L

L
2), for some c′1 ∈ P1. Observe that u1(c1, L

L
2) = V (f)

2 , since

(c1, c2) is a NE. So, as c1 < LL
2 ≤mL, by Lemma 4.2 it holds that u1(c

′
1, L

L
2) ⩽

V (f)
2 ,

for every c′1 ∈ P1, such that c′1 < c1. Hence, as we know that u1(c
′
1, L

L
2) >

V (f)
2 , we

get that c′1 > LL
2 . But then, by Lemma 4.1 we get that u2(c

′
1, L

L
2) ⩾ u2(c

′
1, c2), and

thus u1(c
′
1, L

L
2) ⩽ u1(c

′
1, c2). Hence, u1(c

′
1, c2) > u1(c1, c2), as u1(c1, c2) =

V (f)
2 and

u1(c
′
1, L

L
2) >

V (f)
2 . This is however impossible, as (c1, c2) is a NE.

Assume further that c1 ̸= c2. Recall that, by assumption, c1 < c2. Then,

consider position LL
1 and the profile (LL

1 , c2). Notice that LL
1 exists, since c1 < mL

and c1 /∈ C1. We further show that, as c1 is a best response to c2, so is LL
1 . Indeed, if

c1 < LL
1 < c2, then it holds that LL

1 is also a best response by Lemma 4.1. Observe

that in such a case, c2 is also a best response to LL
1 , as otherwise (c1, c2) would

not be a NE. Also notice that if c1 < c2 < mL, then by Lemma 4.2 we have that

u1(c1, c2) ⩽
V (f)
2 . Observe further that by Lemma 4.2 it holds that if LL

1 ⩾ c2, then

u1(L
L
1 , c2) ⩾

V (f)
2 . It then follows from Lemma 4.1 that LL

1 is a best response to c2.

But then we have that by Lemma 4.2, u2(c1, c2) ⩾
V (f)
2 . Hence, u2(L

L
1 , c2) ⩾

V (f)
2 ,

since (c1, c2) is a NE. But then it follows from Lemma 4.2 that c2 is a best response

to LL
1 .

Case 2.3: c1, c2 > mR. Reasoning is symmetric to case 2.2.

Case 2.4: c1 < mL < c2. Without loss of generality, let mL ∈ rangec1(c).

Observe that then u1(c) ⩾
V (f)
2 , and thus u1(c) ⩾ u2(c). Then, consider the position

LR
2 , if it exists, and RR

2 otherwise. Observe that one of them exists, since c2 > mL

and c2 /∈ C2. Without loss of generality, we assume that LR
2 exists, and show that

(c1, L
R
2) is a NE. Observe that, by Lemma 4.1, we have that u2(c1, c2) ⩽ u2(c1, L

R
2).

So, as (c1, c2) is a NE, we have that u2(c1, c2) = u2(c1, L
R
2) ⩽

V (f)
2 . Moreover, we

52

know that u1(c1, L
R
2) ⩾

V (f)
2 . Further, as c2 is a best response to c1, so is LR

2 , by

Lemma 4.1. To show that c1 is a best response to LR
2 as well, suppose towards

contradiction that there is a c′1 ∈ P1, such that u1(c
′
1, L

R
2) > u1(c1, L

R
2). Notice

now that by Lemma 4.2 and Lemma 4.1 it holds that u1(c
′
1, L

R
2) ≤ u1(c1, L

R
2), if

c′1 < c1 or c′1 ≥ LR
2 . Hence, c1 < c′1 < LR

2 . But then u1(c
′
1, c2) > u1(c1, c2), again by

Lemma 4.1. This, however, leads to a contradiction, since (c1, c2) had been assumed

to be a NE.

Case 2.5 c1 < mR < c2. Reasoning is symmetric to case 2.4.

We can now show that checking if a NE exists can be done in linear time.

We first show the following structural lemma.

Lemma 4.5. Take a line [0, k], distribution of voters f : [0, k]→ N0, set of parties

P , c1 ∈ P1, and c2 ∈ P2. Then, there is a best response c2 to c1, such that one of the

following holds: (1) c2 = c1, (2) c1 < c2 and for every c′2 ∈ P2, such that c′2 > c1,

|c′2− c1| > |c2− c1|, or (3) c1 > c2 and for every c′2 ∈ P2, such that c1 > c′2, we have

that |c1 − c′2| > |c1 − c2|.

Proof. Follows as a consequence of Lemma 4.1.

By Lemma 4.5 it holds that, given a choice of one of two parties, we only

need to check three choices of the second to find its best response. This, and the

previously shown facts, allows us to provide a procedure for checking if a NE exists

and, if it does, to construct a profile witnessing it.

Theorem 4.1. If only two parties are present, then checking if a NE exists is

linear-time solvable.

Proof. Consider the line [0, k], distribution of voters f : [0, k]→ N0, and two parties

P1, P2. Then, compute the sets of most central candidates of P1 and P2, namely

C1 and C2. Notice that we can do it in linear time, having computed the median

positions, which is also possible in linear time. Also, by Lemma 4.4, we know that

if there is a NE in the game we consider, then there is a profile c = (c1, c2) which is

a NE, while c1 ∈ C1 or c2 ∈ C2.

Given an i in C1, let S(i) be the set of candidates in P2, such that for every

c2 ∈ S(i) either (1) c2 = i, (2) i < c2 and for every c′2 ∈ P2, such that c′2 > i, it

holds that c′2− i > c2− i, or (3) i > c2, while for every c′2 ∈ P2, such that i > c2, we

have that i − c′2 > i − c2. Notice that #S(i) ⩽ 3, and that by Lemma 4.5 there is

a c2 ∈ argmax
p∈P2

u2(i, p), such that c2 ∈ S(i). Then, we can compute argmax
p∈P2

u2(i, p)

53

by examining at most three strategy profiles. We can now check symmetrically, if

for some c2 ∈ argmax
p∈P2

u2(i, p), it holds that i ∈ argmax
p∈P1

u1(p, c2). If yes, we found

a NE. Repeat this procedure for all i in C1 ∪ C2. As #C1 +#C2 is bounded by 8,

we can find a NE, if it exists, by examining at most 24 strategy profiles. This is

because, by Lemma 4.4, and by Lemma 4.5, we know that if there is at least NE in

a given game, then in some of them one of most central candidates is chosen, and

the location of their opponent is limited to one of 3 positions. Notice that then the

computation terminates in linear time. So, our algorithm computes the sets of most

central candidates and subsequently checks, for each member of these sets, whether

they can be extended to a NE profile. Notice that its correctness relies on Lemma

4.4 and Lemma 4.5.

4.3 Games with Many Parties

We first observe that there are instances without NE for games with an arbitrary

number of parties present, even when the setting is restricted to a uniform distribu-

tion of voters. This constitutes a major difference between the studied framework

and the classical Hotelling-Downs model, where, for some numbers of players, the

existence of NE is guaranteed (see, e.g., Eaton and Lipsey [1975]). In that frame-

work, for instance, a NE equilibrium exists with four agents competing, but not

with three.

Proposition 4.3. For every n ⩾ 2, there is a game with the uniform distribution

of voters and n parties, that has no NE.

Proof. Suppose that n > 2. Then, take the line [0,20] with the uniform distribution

of voters, and a set of parties P = {P1, P2, . . . , Pn}. Then, let P1 = {4, 7}, P2 =

{6, 8}. Also, for every Pi such that i > 2 and i ⩽ n, let Pi = {5}, as depicted in

Figure 4.5.

P1 P1P2 P2Pi

Figure 4.5: Positions of candidates of all parties in the game used in the proof

of Proposition 4.3, which are indicated below the line. The position specified Pi

corresponds to the candidate of any party other than P1 or P2.

Note that in all strategy profiles parties other than P1 and P2 select 5. Fur-

ther, consider utilities of parties P1 and P2 in all strategy profiles. The utilities of

54

these parties are shown in Figure 4.6.

4

7

6 8

5
15

14
1

5
14

11
2

13

Figure 4.6: Representation of the game used in the proof of Proposition 4.3.

It is routine to check that this game has no NE. Finally, notice that by

Proposition 4.2 there are instances without NE also for the two party case.

Interestingly, there are cases without Nash equilibria even if there is a party

that is guaranteed to get the majority of votes. This would be impossible, however,

if parties were only concerned with winning the elections (i.e., receiving more votes

than other competitors), rather than with attracting as many voters as possible.

Proposition 4.4. There are games with no Nash equilibria, such that for some

party Pi and for every strategy profile c it holds that ui(c) >
V (f)
2 .

Example 4.2. Now we show that Proposition 4.4 holds, by providing an example of

a game, in which there is no NE, while one of the parties is guaranteed to attract the

strict majority of voters. Consider the elections with voters uniformly distributed on

the line [0, 100]. Also, consider parties P1 = {70}, P2 = {73, 89}, P3 = {88, 90}, P4 =

{88, 90}, P5 = {75}, P6 = {100}. Notice that, by construction, under every strategy

profile in this game, P1 receives at least 70 out of 101 votes. We will now demonstrate

that there is no NE in this game. As actions of P1, P5 and P6 are fixed, we focus

on the utilities of parties P2, P3 and P4. Table 1 gives the utilities of these parties

in all strategy profiles.

55

(73,88,88) (89,88,88) (89,88,90) (73,88,90) (89,90,88) (73,90,88) (73,90,90) (89,90,90)

u2 21
2 6 1 21

2 1 21
2 21

2 71
2

u3 61
4 31

2 7 71
2 51

2 6 61
4 23

4

u4 61
4 31

2 51
2 6 7 71

2 61
4 23

4

Table 4.1: Utillity of parties P2, P3, P4 in all strategy profiles for the game used in

Example 4.2. Given a profile (c2, c3, c4), c2 is the choice of party P2, c3 is the choice

of P3 and c4 is the choice of P4.

It can then be checked that there is no NE in this game. Below we present

which party has a profitable deviation for every strategy profile.

• (73, 88, 88)→P2 (89, 88, 88)

• (89, 88, 88)→P4 (89, 88, 90)

• (89, 88, 90)→P2 (73, 88, 90)

• (73, 88, 90)→P4 (73, 88, 88)

• (89, 90, 88)→P2 (73, 90, 88)

• (73, 90, 88)→P3 (73, 88, 88)

• (73, 90, 90)→P2 (89, 90, 90)

• (89, 90, 90)→P4 (89, 90, 88)

We will also consider a natural class of games, where parties’ candidates

are located within non-overlapping intervals (which we also refer to as parties’ sec-

tors), which we call a sector structure. Intuitively, this is a scenario in which each

two parties form disjoint intervals. Formally, for a line [0, k] with a set of parties

P = {P1, . . . , Pn}, we say that P has the sector structure if i ̸= j implies that

[min(Pi),max(Pi)] ∩ [min(Pj),max(Pj)] = ∅. Without loss of generality, we will

assume that given a set of parties P = {P1, . . . , Pn} with a sector structure and

parties Pi, Pj , such that i > j, we have that ci > cj for each ci ∈ Pi and cj ∈ Pj .

So, P1, . . . , Pn encodes the strict ordering of parties on a line. Figure 4.7 shows an

example of a set of parties with the sector structure.

Example 4.3. Consider sectors of parties P1 = {0}, P2 = {1}, P3 = {3, 4} on the

line [0, 4], where voters are uniformly distributed. This example is depicted in Figure

4.7. Here, a sector of P1 is [0, 0] (marked as S1), a sector of P2 is [1, 1] (marked as

S2), and a sector of P3 is [3, 4] (marked as S3).

56

S1 S2 S3 S3

Figure 4.7: Example game with the set of parties with the sector structure and a

uniform distribution of voters. Below the line we specify the candidates of all of the

parties.

It turns out that there are instances without NE, even if parties have the

sector structure.

Proposition 4.5. There are games where the set of parties P has the sector struc-

ture, but which have no Nash equilibria.

Example 4.4. To show that Proposition 4.5 holds, let us provide an example of a

game in which no strategy profile is a NE, while the set of parties has the sector

structure. Take a line [0, 36] and distribution of voters such that f(11) = 5, f(21) =

6, f(35) = 3, and for every i ∈ [0, 36] \ {11, 21, 35}, we have that f(i) = 0. Also, let

P = {P1, P2, P3, P4}, with P1 = {15, 20}, P2 = {25, 35}, P3 = {5} and P4 = {36}.
Notice that P has the sector structure (the sector of P1 is [15, 20], of P2 is [25, 35],

of P3 is [5, 5], and of P4 is [36, 36]).

5 6 3

P1 P1 P2 P2P3 P4

Figure 4.8: Location of voters and positions of candidates of all parties in the game

used in Example 4.5. Numbers above the line indicate the number of voters at each

position, while positions of particular parties are indicated below the line.

The representation of the strategic game between P1 and P2 is depicted in

Figure 4.9.

15

20

25 35

5
6

6
0

11
3

6
3

Figure 4.9: Representation of the game in Example 4.5

It is routine to check that this game has no NE, as P3 and P4 have only one

action available.

57

Interestingly, this observation does not hold if the distribution of voters is

uniform. This is due to the fact that if a nominee of a party is located between

two neighbours, then selecting an alternative, which is also situated between these

neighbours, is not profitable. This implies the existence of a NE, as in games with

the sector structure we have that for every party Pi, and every strategy profile, the

only possible deviation of Pi is to a candidate with the same neighbours, as their

initial nominee.

Given a strategy profile c and a uniform distribution of voters, candidates

ci ∈ Pi in c and c′i ∈ Pi, we say that ci and c′i have the same neighbourhood if the

following conditions hold: (1) both L(ci) and R(ci) exist, (2) L(ci) < c′i < R(ci),

and (3) ci and c′i do not share their position with any other party’s candidate in c.

So, ci ̸= cj and c′i ̸= cj , for all cj in c with j ̸= i. Notice that this notion is only

defined for candidates which are not leftmost or rightmost in a strategy profile. An

instance of a game, in which two candidates have the same neighbourhood, is shown

in Figure 4.10.

Example 4.5. Consider the game in Figure 4.10. This is an example of a game

where p12 and p22 have the same neighbourhood.

p1 p12 p22 p3

Figure 4.10: A game with the line of uniformly distributed voters of length 4 and

parties P1 = {0}, P2 = {1, 3} and P3 = {4}. Observe that p11 and p21 have the same

neighbourhood, as they are both located between p1 and p2, which is not the case

for any member of a party different than P1.

We further state the following lemma. While it is not difficult to see that it

holds, we include its proof, as it will be crucial in our further arguments.

Lemma 4.6. When voters are uniformly distributed, then, for every strategy pro-

file c and a party Pi, with ci, c
′
i ∈ Pi, we have that, if ci and c′i have the same

neighbourhood, then ui(c) = ui(c
′
i, c−i).

Proof. Take a strategy profile c, party Pi, and a candidate c′i ∈ Pi, such that

c′i > L(ci) and c′i < R(ci). Without loss of generality, let ci < c′i. Then notice that

from the definition of utilities, we get that ui(c) =
R(ci)−ci

2 + ci−L(ci)
2 = R(ci)−L(ci)

2 .

But then, by a symmetric calculation, it holds that ui(c
′
i, c−i) =

R(ci)−c′i
2 +

c′i−ci
2 +

ci−L(ci)
2 = R(ci)−ci

2 + ci−L(ci)
2 . Hence, ui(c) = ui(c

′
i, c−i) =

R(ci)−L(ci)
2 .

58

This leads us to the existence of NE in games with parties with the sector

structure and uniform distribution of voters.

Proposition 4.6. For every line [0, k], distribution of voters f : [0, k] → N0, and

a set of parties P = {P1, . . . , Pn}, if f is uniform and P has the sector structure,

then there exists a NE.

Proof. Take a line [0, k] with the uniform distribution of voters, and a set of parties

P = {P1, . . . , Pn} with the sector structure. Consider any strategy profile c, such

that c1 = max(P1) and cn = min(Pn). Notice that, as c1 is the leftmost position

in c, and cn is the rightmost position in c, by Lemma 4.1, we have that P1 and Pn

cannot improve their utilities unilaterally. But also, as P has the sector structure,

for every other party Pi and a pair ci, c
′
i ∈ Pi, it holds that ci and c′i have the same

neighbourhood. So, by Lemma 4.6, no other party Pi ∈ P can improve their utility.

Hence, c is a NE.

Given that there are instances without NE, even in elections with a relatively

simple structure, it is natural to study the complexity of checking whether there is a

NE in a given game. Observe that the problem is solvable in polynomial time, when

the number of parties is bounded by a constant. Indeed, if there are k parties in

an electoral competition, then the number of all possible strategy profiles is upper-

bounded by mk, where m is the size of the largest party. Hence, we can check the

existence of an equilibrium in polynomial time by determining, for each of those

profiles, if some party can deviate profitably. However, we find that the general case

is NP-complete by reduction from 3-SAT.

NE-existence:

Input: Line [0, k], set of parties P = {P1, . . . , Pn}, distribution function

f : [0, k]→ N0.

Question: Is there a strategy profile in the game, given [0, k], P , and f ,

which is a NE?

In our reduction we construct, for a formula φ in 3-CNF, an instance I of

NE-existence (which is a game), such that there exists a NE in I if and only if φ

is satisfiable. The line in our instance is composed of variable and clause segments,

one for each variable and each clause, respectively. Then, for each variable xi, we

construct a variable party, with two candidates (corresponding to xi and ¬xi), which
are located in the variable segment for xi. Hence, every strategy profile in the game

we construct corresponds to some valuation V over the set of variables. Further,

59

for each clause Cj , we construct a corresponding party, with a candidate in each

segment corresponding to a literal occurring in Ci, and two candidates in the clause

segment for Ci. By creating a singleton party located in each variable segment,

we get that the party corresponding to Ci, which chooses a candidate in a variable

segment corresponding to a literal L in Ci, obtains a strictly positive utility only if

L is true in V . Further, we construct, for each clause segment, an additional party,

with candidates located in that segment. This ensures that a profile, in which a

clause party chooses a nominee in the clause segment, is not a NE. This allows us

to show, using a “potential” argument, that there is a NE in I if and only if φ is

satisfiable.

Theorem 4.2. NE-existence is NP-complete, even if the party size is bounded

by a constant not smaller than 5.

Proof. Notice first that the problem we consider is in NP. Indeed, given a strategy

profile c = (c1, . . . , cn), we can check in polynomial time whether ui(c) ≥ ui(c
′
i, c−i),

for every party Pi and every candidate c′i ∈ Pi.

We prove NP-hardness by a reduction from 3-SAT. Take a 3-CNF formula φ,

with the set C = {C0, . . . , Cm} of clauses. Without loss of generality, we assume that

for each 0 ≤ k < #C, clause Ck is given by a set of three distinct literals {Lk
0, L

k
1, L

k
2}

over a set of variables X. Let C ′
k denote a copy of Ck and x′i a copy of xi. We may

assume that the literals are defined over a set of variables X = {x0, . . . , xn}, and,
without loss of generality, also that in every clause Cj at most one of the literals x

or ¬x occurs at most once. We may also assume that for every variable x, both

literals x and ¬x occur in φ.

Further, we construct the game on the line [0, 9(#X +#C) − 1], which we

can conveniently think of as being composed of #X + #C segments of length 9.

Figures 4.11 and 4.12 illustrate our construction. Thus, for each variable xi (0 ≤
i < #X) we construct a variable segment [9i, 9i+8], and for each clause Ck (0 ≤ k <

#C) a clause segment [9(#X+k), 9(#X+k)+8]. Hence, all positions n < 9#X are

located in variable segment, whereas all positions n ≥ 9#X lie in a clause segment.

Furthermore, we define the distribution function f , such that, for every 0 ≤
k < 9(#X +#C)

f(k) =

6#C if k < 9#X and k mod 9 ∈ {3, 5},

1 if k ≥ 9#X and k mod 9 ∈ {2, 3, 5, 6},

0 otherwise

60

As parties, we have, for every variable xi (0 ≤ i < #X), and for every

clause Ck and its copy C ′
k (0 ≤ k < #C) that

Pxi = {9i+ 3, 9i+ 5}

Px′
i
= {9i+ 4}

PCk
= {9i+ 6: xi ∈ Ck} ∪ {9i+ 2: ¬xi ∈ Ck}∪

{9(#X + k) + 2, 9(#X + k) + 6}

PC′
k
= {9(#X + k) + 3, 9(#X + k) + 5}

Observe now that the distribution function has been chosen in such a way

that a party can only attract voters from the segment, within which its nominee

is positioned. Also notice that the size of each party Pxi and each party PC′
k
is 2,

whereas the size of each party PCk
is 5. Variable segments are presented in Fig-

ure 4.11.

0 0 0

□

6#C

•

0

△

6#C

•

0 0 0

0 0 0 6#C

•

0

△

6#C

•

0

□

0 0

Figure 4.11: Variable segments [9i, 9i + 8] (above) and [9j, 9j + 8] (below), for a

variables xi and xj , such that ¬xi ∈ Ck and xj ∈ Ck. Variable parties Pxi and Pxj

are indicated by the bullets in respectively the top and bottom segment. Choosing

the left candidate corresponds to setting variable xi, respectively xj , to true, and

choosing the right candidate corresponds to setting variable xi, respectively xj ,

to false. The clause party PCk
has candidates at the positions indicated by the

boxes. If neither xm nor ¬xm occurs in Ck, then party PCk
has no candidates in

segment [9m, 9m + 8]. The triangles denotes the solitary candidates of parties Px′
i

and Px′
j
.

Further, a clause segment is illustrated in Figure 4.12.

61

0 0 1

□

1

◦

0 1

◦

1

□

0 0

Figure 4.12: Clause segment [9(#X+k), 9(#X+k)+8], for a clause Ck. Party PCk

has candidates at the locations indicated by the boxes, but has no candidates in any

other clause segments. Party PC′
k
has two candidates at the locations indicated by

the circles.

We show now that this game has a NE if and only if φ is satisfiable. First

assume that φ is satisfiable and let V be a satisfying assignment over X. That

is, V satisfies at least one literal in each clause. Given assignment V , we consider

profiles c = (cx0 , . . . , cC′
K
), which we will refer to as proto-equilibria. They are such

that for every variable xi, with 0 ≤ i < #X, it holds that

cxi =

9i+ 3 if xi is true in V

9i+ 5 if xi is false in V

Moreover, for a profile to qualify as a proto-equilibrium, for every clause Ck there

has to be some literal L in Ck that is satisfied by V , such that

cCk
=

9j + 6 if xi is true in V and L = xj

9j + 2 if xi is false in V and L = ¬xj

We furthermore require that cC′
k
= 9(#X + k) + 3, for all 0 ≤ k < #C. Notice that

then cx′
i
= 9i+ 4, for 0 ≤ i < #X.

By means of the following potential argument, we now show that among the

proto-equilibria for V , there must be at least one NE. Towards this end, let λc
i , for

each proto-NE c for V , and for each 0 ≤ i < #X, be the number of clause parties

that choose their nominee from the variable segment [9i, 9i+ 8] under c. So

λc
i = #{Ck ∈ C : cCk

∈ [9i, 9i+ 8]}

Let now λc = (λc
i0
, . . . , λc

i#X−1
) be a sequence of the values λc

0, . . . , λ
c
#X−1,

ordered in a non-decreasing order. We will argue that every proto-NE c, for which

the sequence λc is lexicographically maximal, is also a NE. Here, we use the lexico-

graphic order with respect to the standard relation ≤ on the integers. For instance,

(0, 1, 3, 4, 7, 9) is lexicographically greater than (0, 1, 2, 7, 8, 8).

Further, let c∗ be a proto-equilibrium, for which λc∗ is lexicographically

62

maximal. Then, for every variable party Pxi , it holds that uxi(9i + 3, c∗−xi
) =

uxi(9i + 5, c∗−xi
) = 6#C, and it follows that Pxi does not want to deviate from c∗.

We further observe that the singleton parties Px′
i
(0 ≤ i < #X) cannot profitably

deviate from c∗ either.

Moreover, for every party PC′
k
, we have that

uC′
k
(9(#X + k) + 3, c∗−C′

k
) = uC′

k
(9(#X + k) + 5, c∗−C′

k
) = 4

because c∗Ck
/∈ [9(#X+k), 9(#X+k)+9]. Therefore, PC′

k
does not want to deviate

from c∗ either.

Now, consider an arbitrary clause party PCk
. As c∗ is a proto-equilibrium,

we note that there is some 0 ≤ i < #X, such that cCk
= 9i + 2, if cxi = 9i + 5,

and cCk
= 9i + 6, if cxi = 9i + 3. In either case, uCk

(c∗) = 6#C

λc∗
i

. As λc∗
i ≤ #C, it

follows that uCk
(c∗) ≥ 6. Observe now that if PCk

were to deviate and choose its

nominee in another variable segment [9j, 9j + 8], such that either c′Ck
= 9j + 2 and

c∗xj
= 9j + 3, or c′Ck

= 9j + 6 and c∗xj
= 9j + 5, then uCk

(c∗) = 0. Moreover, if PCk

were to deviate to a position in clause segment [9(#X+k), 9(#X+k)+8], then both

uCk
(9(#X+k)+2, c∗−Ck

) ≤ 2 and uCk
(9(#X+k)+6, c∗−Ck

) ≤ 2. Again, party PCk

does not want to deviate from c∗. Finally, assume towards contradiction that PCk

would profit from deviating to a position c′Ck
in a variable segment [9j, 9j + 8],

with 0 ≤ j ≤ #X different from [9i, 9i + 8], such that either c′Ck
= 9j + 2 and

cxj = 9j + 5, or c′Ck
= 9j + 6 and c∗xj

= 9j + 3. Let c∗∗ = (c′Ck
, c−Ck

). Notice that

c∗∗ is a proto-equilibrium. Moreover, uCk
(c∗∗) > uCk

(c∗), i.e., 6#C

λc∗∗
j

> 6#C

λc∗
j

. Hence,

λc∗∗
j < λc∗

i . Observing that λc∗∗
i = λc∗

i − 1, and that λc∗∗
j = λc∗

j + 1, we find that

λc∗
j < λc∗

i , λc∗∗
j ≤ λc∗∗

i , and that λc∗
k = λc∗∗

k , for all k ̸= i, j. It follows that λc∗∗ is

lexicographically greater than λc∗ , which contradicts the assumptions.

For the opposite direction, assume that φ is not satisfiable. Consider an

arbitrary profile c = (cx0 , . . . , cC′
K
), and assume towards contradiction that c is a

NE. Let Vc be the assignment, such that for every 0 ≤ i < #X, it holds that xi is

true in Vc if cxi = 9i+ 3, and that xi is false if cxi = 9i+ 5.

Then, there is some clause Ck, with 0 ≤ k < #C, such that Vc evaluates

every literal in Ck to false. Accordingly, if cCk
is in a variable segment [9i, 9i + 8]

with 0 ≤ i < #X, then either both cCk
= 9i+2 and cxi = 9i+3, or both cCk

= 9i+6

and cxi = 9i + 5. In either case uCk
(c) = 0. Now, consider dCk

= 9(#X + k) + 2.

Then, uCk
(dCk

, c−Ck
) ≥ 1. Hence, c is not a NE, which contradicts the assumptions.

To conclude, assume that cCk
is in the segment [9(#X + k), 9(#X + k) + 8].

Observe that if cCk
= 9(#X+k)+2 and cC′

k
= 9(#X+k)+3, then party PCk

would

63

deviate to dCk
= 9(#X + k) + 6. If cCk

= 9(#X + k) + 6 and cC′
k
= 9(#X + k) + 3,

party PC′
k
deviates to dC′

k
= 9(#X + k) + 5, and, if cCk

= 9(#X + k) + 6 and

cC′
k
= 9(#X + k) + 5, then party PCk

deviates to dCk
= 9(#X + k) + 2. Finally,

if cC′
k
= 9(#X + k) + 5 and cCk

= 9(#X + k) + 2, then party PC′
k
deviates to

dC′
k
= 9(#X + k) + 3.

To illustrate that let us depict the utilities of parties PCk
and PC′

k
in this

scenario in Figure 4.13. There, c1Ck
= 9(#X + k) + 2, c2Ck

= 9(#X + k) + 6,

c1C′
k
= 9(#X + k) + 3, and c2C′

k
= 9(#X + k) + 5. It is now routine to check that

there is no NE under these circumstances.

c1Ck

c2Ck

c1C′
k

c2C′
k

1
3

2
2

2
2

1
3

Figure 4.13: Representation of the utilities of PCk
and PC′

k
.

It follows that c is not a NE, which contradicts the assumptions. We conclude

that the game does not allow for any NE.

4.4 Conclusion

In this chapter we studied an extension of the Hotelling-Downs model, where po-

litical parties compete for voters located on a left-to-right political spectrum, by

selecting a nominee within their pool of potential nominees, who in turn have fixed

political stances and attract the closer voters. Observe that in this approach the

parties’ goals exceed winning the elections. Notice that even though we assume that

voters are located on a discrete line, our framework can be directly generalised in

various ways, for example to scenarios where finitely many voters are placed on real

intervals, preserving utilities.

Summary of Contributions. Our results indicate that predicting nominee se-

lection can be a computationally hard problem. In particular, we have shown games

without NE even with two parties (Proposition 4.2). Also, we have established

that NE computation is NP-complete with more than two parties (Theorem 4.2).

However, computing NE becomes easy in two-party systems (Theorem 4.1).

64

Future Research. Our contribution suggests a number of directions for future

research. Let us name a few particularly interesting problems.

• In this chapter we limited ourselves to checking the existence of an equilibrium

state. It is interesting, however, to study the properties of Nash equilibria in

the current context. For instance, it would be natural to explore the price of

anarchy in the games we considered.

• Even though the NP-hardness of NE existence shows the difficulty of this

problem in the general case, it is natural to study classes of elections, more

complex than those explored in this chapter, in which this is tractable.

• Even if restricting ourselves to a finite number of positions, the framework can

be directly generalised in various ways, for example to scenarios where finitely

many voters are placed on real intervals, preserving utilities.

• Establishing the parametrised complexity of checking the existence of NE is

an important follow up. We saw that if the number of parties is fixed at a con-

stant, then the problem can actually be solved in polynomial time. Indeed, if

the line is given by [0, k] and the number of parties is n, then one can enumerate

the at most kn possible strategies, and for each one of them, check whether it is

a NE in polynomial time. This corresponds to an XP algorithm parameterised

by the number of parties. However, obtaining a fixed-parameter algorithm pa-

rameterised by the number of parties, i.e., an f(n)kc time algorithm, where c

is a constant independent of k and n, appears to be a challenging problem.

• In this chapter, we only considered games played on a line. It is natural,

however, to consider electoral competitions defined on different spaces. A

particularly interesting extension is the one, in which parties choose between

candidates located in different dimensions, corresponding, e.g., to opinions on

several issues.

• Exploration of possible strategic behaviour from the side of voters would link

the results of this chapter to the classical approach in the study of strategic

behaviour in voting.

• Another interesting direction involves the modelling assumptions, starting

with the role of information, e.g., taking into account the uncertainty of voters

participating in the election.

65

• We assumed that each party only selects one candidate, leaving open the

problem of parties choosing sets of candidates instead. Moreover, it might

be useful to also consider the case, in which parties can form coalitions, i.e.,

they decide to select a common candidate and share the joint payoff. The

development of heuristics for these more complex problems is also a natural

follow up.

• It would also be worthwhile to study solution concepts other than NE, such as

dominant strategy equilibria (DSE). This concept is especially interesting from

the perspective of predicting parties’ actions. Finding a dominant strategy

for a given party strongly suggests their choice, regardless of other parties’

selections. We believe that in the setting studied in the current paper checking

the existence of a DSE is algorithmically easier than verifying the existence of

a NE.

• In this chapter we only studied the existence of some equilibrium profile. From

the perspective of predicting parties’ choices it would be interesting, however,

to study whether a game admits more than one NE.

66

Chapter 5

Nominee Selection

in Knockout Tournaments

5.1 Introduction

When a winner is to be selected from a set of players, it is natural to base the deci-

sion on pairwise comparisons between them, which allows for a neat representation

of the extent to which they are supported. Apart from the natural application of

tournaments, e.g., in sports, in voting this comparison can be determined by check-

ing which of the players in a pair is preferred to the other by the majority of voters.

To account for that, tournaments, understood as directed graphs over players (see,

e.g. Moon [1968], Laffond et al. [1993], Fisher and Ryan [1995], Laslier [1997]), were

introduced in the game theory and social choice research, and have gained atten-

tion in computer science for their well-behaved computational properties (see, e.g.,

Brandt et al. [2016b]). From the perspective of strategic choices made by groups,

which are relevant, e.g., for primaries, it is natural to study tournaments played by

group (or party) nominees.

In this chapter we focus on what are possibly the simplest and best-known

tournaments, i.e., knockout (or single-elimination) tournaments. There, players are

initially associated with the leafs of a full binary tree, and the winner of the match

played between the players at a pair of sibling vertices proceeds to the next stage,

i.e., the parent of these two vertices.

Our Contribution. In this chapter we extend standard single-elimination tour-

naments, to account for the strategic behaviour of coalitions. Before the tournament

starts, we allow each of them to make an independent choice of the best player to

67

put forward. We study the equilibrium behaviour of coalitions in such tournaments

from an algorithmic point of view. Our analysis spans three axes. A) Whether coali-

tions choose their players for the entire tournament. If that is the case, then we call

such competitions one-shot tournaments. Otherwise, we refer to them as dynamic

tournaments. B) Whether only winning matters for the coalitions. If so, we call such

tournaments win-lose. On the contrary, if tournament progression is of importance

to the coalition, then we call this case beyond win-lose. C) Whether we focus on

computing equilibria, or on verifying a given one. Despite the complex tournament

structure, we show polynomial time, or quasi-polynomial time algorithms for all of

these cases. See Table 5.2 for an overview of our results in this chapter.

Structure of the Chapter. In Section 5.2, we analyse one-shot tournaments,

providing an algorithm for computing their equilibria. Further, in Section 5.3, we

focus on algorithmic aspects of dynamic tournaments. Finally, in Section 5.4, we

conclude and provide directions for future research.

5.2 One-Shot Knockout Tournaments

In this section, we study tournaments, in which coalitions choose a representative

once and for all, before the competition starts. We are interested in equilibrium

strategies – specifically, pure Nash equilibria – and the complexity of their compu-

tation, as well as verification.

Starting from a set of coalitions C = {C1, . . . , Cn}, in the current context, a

strategy profile is a tuple c = (c1, . . . , cn), such that for each coalition Ci, we have

that ci ∈ Ci. Also, whenever the seeding π is clear from the context, we write SEc

to denote the tournament between players in c following π. Furthermore, we say

that a coalition Ci wins a tournament SEc if the winner of SEc belongs to Ci.

5.2.1 Win-Lose Games

The simplest type of one-shot tournaments we look at, are the ones where only

winning matters (i.e., win-lose games). When picking a player to put forward in a

win-lose game, the goal of each coalition is to win the tournament, given the choices

of their opponents. Let us define Nash equilibrium for such games.

Definition 5.1 (Nash equilibrium). A profile c = (c1, . . . , cn) is a NE if for all i,

and for all c′i ∈ Ci it holds that if Ci wins SE(c′i,c−i), then Ci wins SEc.

68

It is worth noting that a NE does not need to exist, which opens an important

algorithmic questions regarding their existence and computation. An example of a

coalitional structure which does not admit a NE is depicted in Figure 5.1.

A B

Figure 5.1: Coalitional structure without a NE. Observe that for every strategy pro-

file in this coalitional structure, one of the coalitions can switch their representative

to ensure that they win a tournament.

Structural and algorithmic properties of NE

We start with the analysis of Nash equilibria.

Equilibrium Existence. We start by addressing the question of deciding whether

a given strategy profile is a NE, what we call the problem of recognising a NE. Let

us show that computation of this problem is possible in sub-quadratic time.

Proposition 5.1. Recognising a NE is solvable in polynomial time. Take a coali-

tional structure T = (N,E,C). Further, let Ci ∈ C be such that ci is the winner of

SEc.

Proof. In the procedure we consider, for every coalition Cj ∈ C such that Cj ̸= Ci,

and every player c′j ∈ Cj , we check if Cj wins SE(c′j ,c−j). Observe that if it is the

case, then c is not a NE. Notice now that there is a set Wj of players in c, with

#W = log#C, such that beating all members of Wj is necessary and sufficient for

c′j to win SE(c′j ,c−j). We can therefore check if the condition we consider holds for c′j
in O(log#C) time. The algorithm for checking if c is a NE in O(#N log#C) time

follows.

Equilibrium Computation. We are further interested in computing a NE if it

exists, which is a more complex problem than recognising it. Surprisingly, we show

that this can still be done in quasi-polynomial time.

More precisely, in the main result of this section, Theorem 5.1, we show, for

a coalitional structure (N,E,C), the existence of an #NO(log#C)-time algorithm for

computing a NE. To obtain this result, we will make use of a key lemma, i.e., Lemma

69

5.2. There, we establish that a NE if one exists can be obtained by composing specific

types of strategies for various subtournaments. This lemma effectively implies that

we can compute a NE if one exists, by examining only at most #NO(log#C) out of

the set of possibly (#N
#C)#C many strategy profiles.

Let us start with providing several useful notions.

Arborescences. We will often use the technical notion of binomial arborescence,

following Vassilevska Williams [2010], which allows for a succinct formulation of the

structural properties of SE-tournaments. This is because it captures the notion of

a SE-tournament as a graph. An arborescence is a rooted directed tree, such that

all the edges are directed away from the root. Intuitively, an edge between a pair

of players captures which one of them won in the direct competition between them

in a SE-tournament, with the fact that a vertex v is a root of a subarborescence

meaning that it is a winner of a subtournament with the number of rounds equal to

its degree.

Definition 5.2 (Vassilevska Williams [2010]). Let T = (N,E) be a tournament.

The set of binomial arborescences over T is recursively defined as follows:

• Each a ∈ N is a binomial arborescence rooted at a.

• If, for some r > 0, Ba and Bb are 2r−1-vertex binomial arborescences, rooted

at a and b respectively, then the tree B resulting from adding an edge from a

to b is the 2r-vertex binomial arborescence rooted at a.

An example of binomial arborescence is shown in Figure 5.2. Observe how

the relation in this arborescence corresponds to the structure of the SE-tournament

depicted in Figure 3.3, with a1 winning the tournament by beating b2 in the first

round and d1 in the second. Also, we have that d1 beats c2 in the first round.

a1

b2

d1

c2

Figure 5.2: Example of a binomal arborescence with four players, a1, b2, d1, and c2.

There, a1 is the root of an 22-vertex binomial arborescence. Also, d1 is the winner

of a 21-vertex arborescence, while b2 and c2 are roots of 20-vertex arborescences.

If a binomial arborescence B is such that V (B) = N , then we say that B is

a spanning binomial arborescence (s.b.a.) of T = (N,E). Intuitively, a s.b.a. can be

70

used to compactly encode how an SE-tournament will evolve, following the beating

relation E. As shown by Vassilevska Williams [2010], there is a formal connection

between binomial arborescences and knockout tournaments.

Proposition 5.2 (Vassilevska Williams [2010]). Let (N,E) be a tournament, and let

v⋆ ∈ N . Then, there is a seeding of N , such that the resulting knockout tournament

is won by v⋆ if and only if (N,E) has a s.b.a., rooted at v⋆.

As a result of this proposition, we will interchangeably use the terms binomial

arborescence and SE-tournament, when these are clear from the context. Regarding

SE-tournaments, we will mainly work with binomial arborescences, as this allows

for neater proofs and procedures.

We will further use the following notion.

Definition 5.3. Let T = (N,E,C) be a coalitional structure, c be a strategy profile,

and let Ci ∈ C be such that ci is the root of the s.b.a. SEc. Further, take a coalition

Cj ∈ C, and consider the ci – cj path H in SEc. Then, for every player p on this

path, we denote by OppH [p, cj] the set defined as follows:

• If p = cj, then OppH [p, cj] is the set of children of cj in SEc.

• Otherwise, OppH [p, cj] is the set {p} ∪ {v : v is a child of p and v ⋟p p′}, where
p′ denotes the unique child of p contained in H.

The intuitive meaning of Definition 5.3 is that it formalises the set of future

opponents, which the coalition Cj would have to face if it were to replace cj with

a different player c′j ∈ Cj in the profile c, which we denote as
⋃

p∈V (H)OppH [p, cj].

Note that this set is not larger than log#C, since that is the maximum number of

opponents faced by any player in the tournament. We drop the explicit reference

to H in this notation, when the root ci (the winner) is clear from the context. See

Example 5.1 for a visual illustration of Definition 5.3.

Example 5.1. Here, we provide an example of a strategy profile which is not a

NE, in which players 12 and 33 belong to the same coalition, which we call coalition

12, for the sake of convenience. Then, all of the other coalitions consist of one

player only. We assume that the index of each of them is the same as the index

of their unique player, e.g., player 14 plays for coalition 14. There are 33 players

and 32 coalitions in total. The seeding pairs up coalition 2i+ 1 and coalition 2i+ 2

in the first round, for each i ∈ [0, 15], and the beating relation corresponds to the

arborescence shown in the figure. Consider now the path 1 → 9 → 11 → 12, which

we call H. Notice that Opp[12, 12] = ∅,Opp[11, 12] = {11},Opp[9, 12] = {9, 13},

71

while Opp[1, 12] = {1, 17}. Therefore, if coalition 12 wanted to win the tournament

by replacing its chosen player, i.e., player 12 with an alternative, i.e., player 33,

then it would have to beat the players chosen by coalitions {11, 9, 13, 1, 17}. Observe

that these are precisely the coalitions indexed by
⋃

p∈V (H)OppH [p, 12]. Moreover,

observe that fixing the choices of all coalitions, player 33 improves upon player 12,

beating all the potential future opponents, namely players {11, 9, 13, 1, 17}.
1

23

4

5

7

8

6

9

10

11

12

13

14
15

16 33

17

181921

20

2223

24

25

2627

28

29

30
31

32

Figure 5.3: An example of a tournament, based on a strategy profile, which is not
a NE.

The following structural lemma forms the crux of our algorithmic results.

Informally, we use the fact that a profile is a NE if and only if no coalition Ci which

is not a winner of the tournament can switch their representative ci to a player c′i,

which beats all players beaten by ci, as well as every future opponent, while the

properties of the technical notion in Definition 5.3 are satisfied. Here, by a future

opponent we mean a player that ci would have faced if it won the tournament.

Lemma 5.1. Consider a strategy profile c, and let ci be the root of the s.b.a. SEc.

Then, c is a NE if and only if there is no Cj ∈ C, such that Ci ̸= Cj, and a player

c′j ∈ Cj, such that c′j beats all of the players in the set Opp[p, cj], for every player p

on the ci – cj path in SEc.

Proof. Take a coalitional structure (N,E,C), and a strategy profile c. Let ci denote

the winner SElog#C
c . Then, consider a coalition Cj , such that Ci ̸= Cj , while

c′j ̸= cj . Observe that c′j is a winner of SE(c′j ,c−j) if and only if c′j beats all players

y ∈ OppH [x, cj], for each x on the ci – cj path of SEc. The proof is based on the

fact that for a c to be a NE, it is enough to check that for no coalition Ck with

ci /∈ Ck, and for no c′k ̸= ck, it holds that (1) c
′
k does at least as well as ck in SEc,

and (2) c′k beats every opponent on the path from ck to ci.

72

Figure 5.3 shows a strategy profile which is not a NE, based on the charac-

terization in Lemma 5.1.

Furthermore, for a set S and k ∈ N, we denote by
(
S
⩽k

)
the set of subsets

of S of size at most k. We further denote by Tr(Cj) the set of coalitions, who

could potentially meet coalition Cj within the first r-rounds, for some tournament

structure with the set of coalitions C, and for some strategy profile c, as well as

coalition Cj itself. Notice that #Tr(Cj) = 2r. Thus, we have that Tr(Cj)\Tr−1(Cj)

denotes the set of all possible opponent coalitions, which Cj could face exactly in

the rth round. For technical reasons, we set Tr(Cj) = ∅, for every r ∈ {−1,−2}, and
every Cj ∈ C.

Let us exemplify this notion in the Figure 5.3. Consider coalition {1} and

r = 3. Also, select the unique strategy profile, in which 12 is chosen. Then, Tr({1})
denotes the set of coalitions {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}. Observe that this

set corresponds to the tournament of size 23, in which {1} participates.
Also, for a seeding π, we define by πr

j the restriction of π to Tr(Cj). Similarly,

for a profile c, we denote by crj , the profile c|Tr(Cj), which is the restriction of c to

Tr(Cj). Conversely, we say that c is an extension of crj . Notice that there can be

multiple possible extensions of crj .

Further, given the winner ci of an arborescence SEc, and a player cj , we say

that cj is the final opponent of ci if cj is the heaviest child of ci in SEc. Also, for a

set of coalitions C ′, we denote the set of their players, i.e,
⋃
C ′, as N(C ′).

We next define a mapping ζ, which allows us to reason about a NE in terms

of the outcomes of specific subtournaments. Recall that as C, we denote the set of

strategy profiles in a given game.

Definition 5.4. For a coalitional structure T = (N,E,C), we define the function

ζ : C × N × N × [0, log#N] ×
(

N
⩽log#C

)
→ 2C as follows. Let Ci, Cj ∈ C, r ∈

[0, log#C], ci ∈ Ci, and cj ∈ Cj be such that Cj ∈ Tr(Ci) \ Tr−1(Ci), while it holds

that Z ∈
(

N
⩽log#C

)
is such that Z∩N(Tr(Ci)) = {ci}. Then, ζ(Ci, ci, cj , r, Z) denotes

the set of all strategy profiles c over Tr(Ci) such that:

(a) player ci ∈ Ci wins SEπr
i ,c

(b) player cj is the final opponent of ci in the tournament SEπr
i ,c

(c) for every coalition Cj′ ∈ Tr(Ci)\{Ci}, and for every player cj′ ∈ Cj′, we either

have that (1) cj′ is beaten by a player in Z, or that (2) c′j is beaten by a player

in the set Opp[p, cj′], for some player p on the ci – cj′ path in SEπr
i ,c

For every other choice of Ci, ci, cj , r, Z, we set ζ(Ci, ci, cj , r, Z) = ∅.

73

In other words, ζ(Ci, ci, cj , r, Z) is the set of all those profiles over the r-

round tournament comprised of coalition Ci’s first r matches, such that the player

ci ∈ Ci wins these r rounds, player cj is the final opponent of ci in the r round

tournament (i.e., ci and cj play in the rth round), and all players belonging to a

coalition Cj′ , who could potentially meet Ci within the first r rounds, are beaten

either by a player in the set Z, or by a player in the set Opp[p, cj′], for some player p

on the ci – cj′ path in the s.b.a SEπr
i ,c

. In Example 5.2 we compute ζ(Ci, ci, cj , r, Z),

for several choices of ci and Z.

Example 5.2. We consider a tournament played between four coalitions, A, B,

C, and D, with the beating relation depicted in Figure 5.4. We assume the seeding

which pairs A and B, as well as C and D in the first round. For each coalition i,

we refer to the player in i, depicted in the upper side of Figure 5.4, as Ti, and to

the one in the bottom side, as Bi.

A B A C A D

B D B C C D

Figure 5.4: Tournament over the set of coalitions A, B, C, and D, used in Example

5.2. For clarity, we present pairwise comparisons between coalitions.

We further compute ζ for the player TA, with Z = {TA}, and for BC , with

Z = {BC}. For simplicity, for a given round, we specify profiles which are in an

ζ for some final opponent of a player we consider. Let us notice first that since

TA is the Condorcet winner in this tournament, all strategy profiles in which TA

participates are in ζ(A, TA, cj , r, {TA)}, for some cj, and for every r > 0 (note that

the computation for r = 0 is trivial). Hence, we get the following values.

Values for the player TA and Z = {TA}:

• r = 1: (TA, TB), (TA, BB)

74

• r = 2: (TA, TB, TC , TD), (TA, TB, TC , BD), (TA, TB, BC , TD), (TA, TB, BC , BD),

(TA, BB, TC , TD), (TA, BB, TC , BD), (TA, BB, BC , TD), (TA, BB, BC , BD)

We now consider values for BC and {BC}. Notice that since we require BC

to be a winner of a given subtournament, and TD beats BC , no profile in which D

nominates TD is included in ζ(C,BC , cj , 2, {BC)}. Similarly, profiles in which TA

or BB meet BC are not included in ζ(C,BC , cj , 2, {BC)}, for every choice of cj.

Finally, observe that TA beats all of the players that BA encounters in a tournament

in which it is nominated, and hence profiles, in which BA participates and under

which it is not a winner, are not included in ζ(C,BC , cj , 2, {BC)}, by property (c)

of Definition 5.4. This gives us the following sets of strategy profiles.

Values for the player BC and Z = {BC}:

• r = 1: ∅

• r = 2: ∅

An informal description of the motivation behind Definition 5.4, is the fol-

lowing. If we take Z to denote cj and its “potential future opponents” from round

r+ 1 onward, then ζ(Ci, ci, cj , r, Z) contains precisely all those profiles over Tr(Ci),

such that in every strategy profile, defined over the set of all coalitions in the tour-

nament, which is one of its extensions, there is no benefit for any coalition Cj in

Tr(Ci), other than Ci, to unilaterally alter its strategy. This holds because when

every alternative player in Cj will either fail to win the first r rounds, by property

(c) (2) of Definition 5.4), or lose to a “future opponent” in the set Z, by property

(c) (1) of Definition 5.4). Notice that the set Z is never larger than log#C, as the

number of rounds in the whole tournament is log#C. Then, the quasi-polynomial

running time of the algorithm which we will provide arises from the fact that we

have #NO(log#C) possibilities for Z. Further, in our procedure is close to iterating

over all of these possibilities.

As a consequence of Definition 5.4 and Lemma 5.1, we obtain that by setting

the arguments of the function ζ appropriately, one can capture all Nash equilibria.

So, we get the following observation.

Observation 5.1. For every coalitional structure (N,E,C), every NE is contained

in ζ(Ci, ci, cj , log#C, {ci}), for some Ci ∈ C, ci ∈ Ci, and cj ∈ Cj. Also, for every

Ci ∈ C, ci ∈ Ci, and cj ∈ Cj, it holds that every profile in ζ(Ci, ci, cj , log#C, {ci})
is a NE.

75

Proof. Take a set of coalitional structure (N,E,C), and suppose that a strategy

profile c is a NE. Let ci be the winner of SEc, and cj be the final opponent of ci

in SEc. Then observe that ci beats cj and that since c is a NE, for every coalition

Cl and every c′l ∈ Cl, Cl does not win in SE(cl,c−l). Notice now that condition

(a) of Definition 5.4 holds, since ci is the winner of SEc. Further, property (b) of

Definition 5.4 is satisfied, since cj is the final opponent of ci. Finally, property (c) of

Definition 5.4 holds, as by the properties of Opp, we have that ci beats every player

in Opp[p, cj′], for all p in the path [ci, cl] in SEc, for every coalition Cl, since c is a

NE. But this implies that c ∈ ζ(Ci, ci, cj , log#C, {ci}), and hence the first part of

the claim holds. The converse holds by a similar argument.

Given the above observation, what naturally suffices to check the existence

of a NE, is to compute the function ζ, for all possible settings of the arguments.

However, this may not be possible in quasi-polynomial time, because even just listing

all possible Nash equilibria could be too computationally expensive. This is the case,

as potentially all of the strategy profiles could be a Nash equilibrium in some game,

and so their number might be exponential in the size of the input.

To overcome this obstacle, we provide a method of finding some NE, without

examining all of them. Towards this end, we next prove a structural result that

shows, intuitively, that if a strategy profile c is a NE for a given tournament, then

we can reconstruct c, or an alternative NE, by going over the subtournaments at

every possible level, while examining the image of ζ.

Observe that this image is a set of strategy profiles. During this iteration,

we set the arguments of ζ appropriately, and then merge the profiles corresponding

to their image of ζ. In particular, we show that if there is a strategy profile c, which

is a NE, then, for every round r ∈ [1, log#C], it holds that c extends some profile c′

in ζ(Ci, ci, cj , r, Z), for some Ci, ci ∈ Ci, cj ∈ Cj , and Z. Moreover, for every other

profile c′′ ∈ ζ(Ci, cj , cj , r, Z), we can replace c′ from c with c′′, in order to obtain

another NE.

The main algorithmic consequence of this fact is that for every choice of the

arguments Ci, ci, cj , r, and Z, instead of computing all of the profiles contained in

ζ(Ci, cj , cj , r, Z), it is sufficient to compute a single one. This observation holds

because if any of them can be extended to a NE, then every one of them can be

extended to a NE as well. The following pruning lemma constitutes the core of our

algorithm.

For a pair of strategy profiles c1 = (c1, . . . , ck), c2 = (ck+1, . . . , cn), we denote

as c1 · c2 the merged profile of c1 and c2, i.e., (c1, . . . , cn).

76

Lemma 5.2. Let c = (c1, . . . , cn) be a NE, r ∈ [1, log#C], and let the winner of

SEc be cj⋆ ∈ Cj⋆. Let further ci ∈ Ci be the winner of the binomial sub-arborescence

SEπr
i ,c

r
i
, and let cj ∈ Cj denote the final opponent of ci in SEπr

i ,c
r
i
. Further, let

Z =
⋃

p∈V (H)\{cj}OppH [p, cj], where H denotes the cj⋆ – cj path in SEc. Then, the

following facts hold:

1. ζ(Ci, ci, cj , r, Z) is non-empty.

2. For every cj1 in some coalition Cj1, for every cj2 in some Cj2, and for every

ĉ1 ∈ ζ(Ci, ci, cj1 , r − 1, Z ∪ {ci}), and ĉ2 ∈ ζ(Cj , cj , cj2 , r − 1, Z ∪ {cj}), we have

that the composed profile ĉ1 · ĉ2 is contained in ζ(Ci, ci, cj , r, Z).

Proof. Take a strategy profile c, ci ∈ Ci, cj ∈ Cj , r ∈ [1, log#C], cj⋆ ∈ Cj⋆ , and Z,

as define in the statement of Lemma 5.2. We first show that cri ∈ ζ(Ci, ci, cj , r, Z).

Notice that, by the definition of cri , we have that ci is the root of SEπr
i ,c

r
j
, while

cj is the heaviest child of ci in SEπr
i ,c

r
i
. Hence, if cri ̸∈ ζ(Ci, ci, cj , r, Z), then there

exists cj′ ∈ Cj′ , with Cj′ ∈ Tr(Ci) \ {Ci}, such that cj′ beats every player in Z, and

cj′ beats every player in the set Opp[p, cj′], for every player p on the ci – cj′ path

in SEπr
i ,c

r
i
. Along with our choice of Z, this would then also imply that cj′ beats

every player in the set Opp[p, cj′], for every player p on the cj⋆ – cj′ path in SEc,

contradicting our choice of c as a NE (see Observation 5.1).

For the second statement, we need to prove that properties (a), (b), and (c)

in Definition 5.4 are satisfied by ĉ = ĉ1 · ĉ2. The first two properties are satisfied,

since ci beats cj , ci = SEr−1
ĉ1

, and cj = SEr−1
ĉ2

. Suppose further that property

(c) is violated. Then, for some cj′ ∈ Cj′ , with Cj′ ∈ Tr(Ci) \ {Ci}, we have that

cj′ beats all players in Z, and all players in the set Opp[p, cj′], for each player p

on the ci – cj′ path in SEπr
i ,ĉ

. However, note that if Cj′ ∈ Tr−1(Ci), then we

obtain a contradiction to our assumption that ĉ1 ∈ ζ(Ci, ci, cj1 , r − 1, Z ∪ {ci})
satisfies property (c) of Definition 5.4, and otherwise (if Cj′ ∈ Tr(Ci) \ Tr−1(Ci)),

this violates our assumption that ĉ2 ∈ ζ(Cj , cj , cj2 , r−1, Z ∪{cj}) satisfies property
(c) of Definition 5.4.

We now provide an algorithm for computing a NE if it exists, relying on

Lemma 5.2. We establish the running time of this procedure with the following

theorem.

Theorem 5.1. There is an #NO(log#C)-time algorithm for computing a NE.

Proof. Due to Observation 5.1, our algorithm to compute a NE aims to identify

and return an element of a non-empty ζ(Cj , cj , cj′ , log#C, {cj}) if such Cj , cj , Cj′ ,

77

and cj′ exist. This is necessary and sufficient. We achieve this via a dynamic pro-

gramming algorithm that fills a table t, where the cells are indexed by tuples of

the form (Cj , cj , cj′ , r, Z). Moreover, every non-empty cell indexed by the tuple

(Cj , cj , cj′ , r, Z) contains a single element of ζ(Cj , cj , cj′ , r, Z), and an empty cell,

indexed by the tuple (Cj , cj , cj′ , r, Z), indicates that ζ(Cj , cj , cj′ , r, Z) is empty. No-

tice that if the table is filled correctly, then the solution (i.e., a NE strategy profile)

can be determined by going over all possible Cj , cj , Cj′ and cj′ , of which there are

polynomially many, and examining the entry of t indexed by the tuple (Cj , cj , cj′ ,

log#C, {cj}).
We next describe how to fill the table t. We proceed by iteratively increasing

the value of r and in each iteration, filling all cells of t, which correspond to the

value of r in the current iteration.

Let us consider the case where r = 1 and so, for every Cj ∈ C, it follows

that #Tr(Cj) = 2. Hence, for every Z ∈
(

C
⩽log#C

)
, cj ∈ Cj , and cj′ ∈ Cj′ , with

Cj′ ∈ T1(Cj) \ {Cj}, it is straightforward to decide whether ζ(Cj , cj , cj′ , 1, Z) ̸= ∅
in polynomial time, by examining all possible profiles. If it is non-empty, then

we compute and add to t(Cj , cj , cj′ , 1, Z) an arbitrary element of ζ(Cj , cj , cj′ , 1, Z).

Otherwise, we set t(Cj , cj , cj′ , 1, Z) = ∅ (including those, indices which ζ maps to

∅ by definition). Hence, we may assume that we have filled the table t, for all

entries with r = 1. Note that this step takes time #NO(log#C), since we have

polynomially many choices for Cj , cj , Cj′ , cj′ , and #NO(log#C) possibilities for Z

and, furthermore, determining the entry t(Cj , cj , cj′ , 1, Z), for each fixed choice of

Cj , cj , Cj′ , cj′ , while computing Z, as described above, takes only polynomial time.

Now, suppose that r > 1, and inductively assume that for all r′ < r, for all

choices of Cj , Cj′ , cj , cj′ , and Z, we have filled the table entry t(Cj , cj , cj′ , r
′, Z)

correctly. Now, let us fix a choice of Cj , Cj′ , cj ∈ Cj , cj′ ∈ Cj′ , and Z ∈
(

N
⩽log#C

)
.

Further, we describe our procedure to fill the table entry t(Cj , cj , cj′ , r, Z). We check

if there is a profile ĉ1 ∈ t(Cj , cj , cj1 , r−1, Z∪{cj′}), and ĉ2 ∈ t(Cj′ , cj′ , cj2 , r−1, Z∪
{cj′}), for some choice of cj1 and cj2 . If yes, then we set t(Cj , cj , cj′ , r, Z) = ĉ1·ĉ2, and
otherwise we set it to ∅. The second point of Lemma 5.2 indicates that composing ĉ1

and ĉ2 in this way indeed results in a profile, which is contained in ζ(Cj , cj , cj′ , r, Z).

This implies the correctness of our algorithm.

Finally, the claimed running time bound follows from the fact that the table

t has #NO(log#C) entries in total, each of which is being filled in polynomial time,

by using constant-time lookups into polynomially-many previously filled entries of t.

78

5.2.2 Beyond Win-Lose Games

In earlier sections of this chapter, we assumed coalitions to be only interested in

winning the tournament. However, it is natural to look at scenarios in which par-

ticipants benefit from progressing as far as possible, even if they do not win. Such

games occur, for instance, in football tournaments, such as the UEFA Champions

League.

Here, we study tournaments played by coalitions, in which the coalitions’

utility is determined by the round they reach. We call these games beyond win/lose

(Beyond Win/Lose) games. Formally, we define utility functions for the set of

coalitions C = {C1, . . . , Cn}, where, for every strategy profile c = (c1, . . . , cn), we

have that ui(c) = k if and only ci ∈ SEk
c \ SEk+1

c .

Hence, as in the win/lose scenario, in a NE no coalition can improve their

utility, by changing their nominee.

Definition 5.5 (Beyond Win/Lose NE). A strategy profile c = (c1, . . . , cn) is a

Beyond Win/Lose NE if for all i, k ∈ [0, log#C], and for every player c′i ∈ Ci, as

well as the strategy profile c′ = (c′i, c−i), it holds that if ui(c
′) = k, then ui(c) ⩾ k.

Observe that the fact that there are strategy profiles without a Beyond

Win/Lose NE is witnessed by the tournament shown in Figure 5.1. In the remain-

der of this section, we focus on structural results characterising Beyond Win/Lose

NE, and we provide algorithmic results addressing the problems of recognition and

computation of this concept.

Algorithmic Properties of Beyond Win/Lose NE

We begin by providing a structural result which we then use for recognising and

computing Beyond Win/Lose Nash equilibria. Intuitively, we show that a strategy

profile c is a Beyond Win/Lose NE only if it is also the case for c restricted to an

arbitrary subtournament.

Lemma 5.3. Consider a strategy profile c = (ci, . . . , cn), and let Cj ∈ C be such

that cj wins SEc. Furthermore, suppose that cj′ ∈ Cj′ is the final opponent of cj in

SEc. Then, c is a Beyond Win/Lose NE if and only if :

(a) c1 = c|Tlog#C−1(Cj) and c2 = c|C\Tlog#C−1(Cj) are both Beyond Win/Lose Nash

equilibria.

(b) There is no c′j′ ∈ Cj′, which beats cj, such that c′j′ wins SElog#C−1
(c′

j′ ,c2−j′
)
.

79

Proof. In the forward direction, suppose that a strategy profile c is a Beyond

Win/Lose NE. Observe that if property (b) is violated, then Cj′ can improve its

position in SE(c′
j′ ,c−j′)

, so c is not a Beyond Win/Lose NE. Moreover, suppose

towards contradiction that one of c1 or c2 is not a Beyond Win/Lose NE, for

the respective subtournaments. Without loss of generality, suppose that for some

Ci ∈ C \ {Cj , Cj′}, and a profile c′1 = (c′i, c1−i) it holds that ui(c
′
1) > ui(c1). That

is, Ci is able to improve its position in the subtournament played by Tlog#C−1(Cj),

by nominating c′i instead of ci. Then, for a profile c′ = (c′i, c−i), we have that

ui(c
′) > ui(c). That is, Ci can also strictly improve its position in c′, a contra-

diction to c being a Beyond Win/Lose NE. The argument for the case, in which

Ci ∈ C \ Tlog#C−1(Cj) is symmetric, and hence property (a) also holds.

Suppose now that properties (a) and (b) hold, while c is not a Beyond

Win/Lose NE. Then, let c′i ∈ Ci be such that for the profile c’= (c′i, c−i), we have

that ui(c’) > ui(c). Observe that since property (b) holds, it cannot be the case

that i ∈ {j, j′}. Moreover, if Ci ∈ Tlog#C−1(Cj), then it contradicts our assumption

that c1 is a Beyond Win/Lose NE and, otherwise, our assumption that c2 is one.

Lemma 5.3 allows us to provide a polynomial time algorithm for recognising

a Beyond Win/Lose NE.

Proposition 5.3. Recognising a Beyond Win/Lose NE is solvable in polynomial

time.

Proof. By Lemma 5.3, we have that for a given strategy profile c = (c1, . . . , cn), and

a coalition Cj ∈ C, such that cj is the winner of SEc, it holds that c is a Beyond

Win/Lose NE if and only if there is no Cj′ ∈ C \ {Cj}, and no player c′j′ ∈ Cj′ ,

such that c′j′ beats the parent of cj′ as well as all players in the set Opp[cj , cj′]. The

existence of a polynomial time algorithm for recognising a Beyond Win/Lose NE

follows.

We show now that computing a Beyond Win/Lose NE is solvable in polyno-

mial time. Intuitively, our procedure is based on computing, for every round of a

knockout tournament, the set of players that can possibly reach that round in some

Beyond Win/Lose NE. We conclude that an equilibrium exists if the set computed

for the root of the tournament is not empty.

Theorem 5.2. Computing a Beyond Win/Lose NE is polynomial time solvable.

Proof. Notice first that if there is a Beyond Win/Lose NE, then for r = 1 and for

every Cj ∈ C, the subtournament over Tr(Cj) can be won by exactly one out of the

80

two coalitions in this subtournament, and that the set of potentially winning players

that can participate in a Beyond Win/Lose NE can be computed in polynomial time.

Indeed, suppose that Cj and Cj′ are the two coalitions in this subtournament. If

every player in Cj loses to some player in Cj′ , while every player in Cj′ loses to some

player in Cj , then in every strategy profile, at least one out of these two coalitions

will be able to improve their final position, by at least one place. This implies the

non-existence of a Beyond Win/Lose NE. Hence, we identify all players in Cj (or

Cj′), which beat every player in Cj′ (or, respectively, Cj), by examining all matches

between players in these two coalitions. Note that this procedure runs in polynomial

time.

We now inductively argue a similar property for r > 1. By the induction

hypothesis, we have that if there is a Beyond Win/Lose NE, then for every Cj ∈ C,

the subtournaments over Tr(Cj) \ Tr−1(Cj), as well as Tr−1(Cj), can be won by

exactly one coalition each (say, C ′ and C ′′ respectively), and the potentially winning

players from each of these coalitions (which we denote by N⋆(C ′) and N⋆(C ′′),

respectively) that can participate in a Beyond Win/Lose NE, can be computed in

polynomial time. Now, notice that for a Beyond Win/Lose NE to exist, exactly one

out of the following two cases must occur. Either (1) there is a player in N⋆(C ′),

which beats every player in N⋆(C ′′), or (2) there is a player in N⋆(C ′′) that beats

every player in N⋆(C ′). Moreover, the set of players satisfying (1) or (2) can be

computed in polynomial time.

5.3 Dynamic Knockout Tournaments

We now allow coalitions to choose players at each round of the tournament. In this

model, a strategy of a coalition Ci in a set of coalitions C consists of #C − 1, not

necessarily distinct, players representing, for each opposing coalition, a choice of a

player of Ci to face the said opposing coalition. We therefore model choices made

by coalitions as dynamic strategy profiles σ : C → (C → N). Specifically, for each

distinct pair of coalitions Ci, Cj ∈ C, we have that σ(Ci)(Cj) nominates a member

of coalition Ci, when facing a coalition Cj .

For every Ci ∈ C, let S(Ci) denote the set of all functions Ci → C, i.e., the

set of all possible selections of candidates from coalition Ci to compete against each

other coalition. We further require a dynamic strategy profile σ to be such that

σ(Ci) ∈ S(Ci), for each Ci ∈ C. In other words, the strategy of a coalition Ci is a

selection of candidates from Ci only. For simplicity, we also use ρi to denote σ(Ci),

for every coalition Ci ∈ C. Equivalently, we represent σ as a tuple (ρ1, . . . , ρn),

81

where ρi ∈ S(Ci), and denote with ρij the player in Ci selected to play against Cj

(also named ρi(Cj)). We note that in this interpretation, for every Ci ∈ C, we have

that σ(Ci)(Ci) is meaningless, as in the tournaments we consider, a coalition does

not face itself. So, we assign an arbitrary player of Ci to be σ(Ci)(Ci).

Input Representation. Notice that a dynamic strategy can be represented as

a matrix M of the size n × n, where n is the number of coalitions. Then, each

entry of the matrix M [i, j], if i ̸= j, corresponds to σ(Ci)(Cj). Further, if i = j,

then M [i, j] is an arbitrary player in Ci. An example of such a strategy is given in

Table 5.1. Given this representation, a dynamic strategy can be encoded in space

O(n2 log#N).

Mirroring the one-shot case, we represent tournaments between coalitions,

as induced from a dynamic strategy profile. Let T = (N,E,C) be a coalitional

structure, and let σ be a dynamic strategy profile over C. A dynamic coalitional

digraph, i.e., (T, σ), is a tournament defined on C, where (Ci, Cj) is an edge in

(T, σ) if and only if (σi(Cj), σj(Ci)) ∈ E. This means that in a dynamic digraph, a

coalition Ci is connected to a coalition Cj , when the representative of Ci, chosen to

challenge Cj , beats the player selected by Cj to oppose Ci.

Example 5.3. Let us provide an example of a dynamic coalitional digraph. The

left side of Figure 5.5 shows coalitional structure, with coalitions A, B, C, and D.

Some of the edges in the tournament are omitted for clarity.

A B C D

A

B

C

D

Figure 5.5: An example of a dynamic coalitional digraph. On the left, a coalitional

structure. On the right, a digraph corresponding to the dynamic strategy profile

depicted in Table 5.1.

Further, Table 5.1 represents a dynamic strategy profile for these coalitions,

i.e., the nominations that coalitions make to compete against against a particular

group. There, each row, corresponding to a coalition, specifies which of their players

82

is selected when opposing another coalition. For each coalition i, we refer to their

top player in Figure 5.5 as Ti, and to their bottom player as Bi.

A B C D

A TA TA TA TA

B BB TB BB BB

C TC BC TC TC

D TD TD BD TD

Table 5.1: Representation of the strategy profile used in Example 5.4.

Observe that under this strategy profile A beats the players selected by all

other coalitions. Further, B beats C and D. Finally, given this profile, C beats D.

This determines the dynamic coalitional tournament, as depicted in the right side

of Figure 5.5.

Also, we lift the notion of binomial arborescence SEσ from the one-shot case

in the natural manner, by applying the definition of a binomial arborescence to

dynamic coalitional tournaments. Further, we lift the notion of a Nash equilibrium

from the one-shot case as expected, both for the win-lose games (dynamic NE),

and the beyond win-lose games (beyond win/lose dynamic NE). We provide these

definitions in later parts of this chapter (in Definition 5.6, and in Definition 5.8).

The techniques used in the proofs of the results in this section are similar to their

one-shot correspondents.

We define SEσ as the s.b.a corresponding to the knockout tournament (with

the fixed seeding π), played on a dynamic coalitional tournament (T, σ), and refer to

it as a dynamic knockout tournament. Notice that SEσ is the binomial arborescence

determined by the progression of coalitions according to σ. In particular, for a

coalitional structure (N,E,C), and each i ∈ [0, . . . , log#C], we denote by SEr
σ the

subtournament of SEσ played by the the winners of the rth round of SEσ. In other

words, SE0
σ is the same as SEσ, and for every i ∈ [1, log#C], SEr

σ denotes the

subtree of SEr−1
σ , obtained by deleting all its leafs and replacing the new leafs with

the corresponding winning coalitions. SElog#C
σ is therefore the root of SEσ, and

denotes the winning coalition.

83

5.3.1 Dynamic Win-Lose Games

In this section, we begin by lifting Nash equilibria to the current setting.

Definition 5.6. For a coalitional structure (N,E,C), a dynamic strategy profile

σ = (ρ1, . . . , ρn), is a dynamic NE if for every coalition Ci ∈ C, and for all strategies

ρ′i ∈ S(Ci), it holds that if SElog#C
π,(ρ′i,σi)

= Ci, then SElog#C
σ = Ci.

In other words, a dynamic strategy profile is a dynamic NE if no losing

coalition can become a winner by changing their strategy, which now corresponds

to selecting a player for each opposing coalition, unilaterally.

Now, we establish a useful structural equivalence between dynamic NE and

NE, for a one-shot tournament played by coalitions, defined on an auxiliary tour-

nament digraph where the players correspond to the set of the given coalitions’

strategies. We first define what we call the auxiliary digraph.

Definition 5.7. Consider a coalitional structure T = (N,E,C). We define by TDyn

the graph with vertex set
⋃

Ci∈C S(Ci), and the edge set defined as follows. For every

distinct pair of coalitions Ci, Cj ∈ C, and for every pair of strategies ρi ∈ S(Ci),

and ρj ∈ S(Cj), there is an edge (ρi, ρj) if (ρi(Cj), ρj(Ci)) is an edge in E, and

there is an edge (ρj , ρi), otherwise.

That is, TDyn is defined on the set of all possible responses, of all particular

coalitions. It further has the edge (ρi, ρj) if and only if the player ci, elected to face

Cj by Ci, wins against the player cj ∈ Cj , elected to face Ci. Observe that like

T , TDyn is also a #C-partite tournament digraph, with a partition for every S(Ci),

where Ci ∈ C. Example 5.4 shows an instance of TDyn, restricted to one strategy

profile.

Example 5.4. Let us consider the tournament depicted in the left side of Figure

5.5, as well as the strategy profile shown in Table 5.1. Then, Figure 5.6 presents the

graph TDyn, restricted to this profile.

84

ρA

ρB

ρC

ρD

Figure 5.6: Example of a tournament TDyn, for the tournament depicted in Figure

5.5, restricted to one of the dynamic strategy profiles.

This construction allows us to reason about the dynamic solution concepts in

terms of one-shot tournaments, as the following characterisation shows. Intuitively,

we establish that a dynamic strategy profile is a dynamic NE exactly, when it is a

NE in the corresponding one-shot tournament, based on TDyn.

Lemma 5.4. Let σ = (ρ1, . . . , ρn) be a dynamic strategy profile over the set of

coalitions C. Then, σ is a dynamic NE for the dynamic SE-tournament over C,

with a seeding π if and only if (ρ1, . . . , ρn) is a NE for the one-shot SE-tournament

over the coalitions S(C) = {S(Ci) : Ci ∈ C}, using the pairwise results in TDyn and

seeding π, such that for every i < #C, we have that S(Ci) is seeded at the same leaf

in the one-shot tournament, as Ci in the dynamic tournament.

Proof. Follows from the definition of dynamic solution concepts and Definition 5.7.

Algorithmic Properties of Dynamic NE

We now address the algorithmic questions of recognising and computing a dynamic

NE. Observe that in TDyn, given a coalitional structure (N,E,C), we have that the

number of players in this tournament could be as large as #C ·m#C , where m is

the size of the largest coalition. As a result, although we can transfer our structural

results on Nash equilibria from the one-shot setting, to the dynamic setting using the

graph TDyn, we cannot simply use the same algorithms. This is because the running

time, though polynomial in the size of TDyn, will no longer remain in polynomial

in the size of the actual input, which is linear in the size of (N,E,C). However,

using appropriate queries that can be answered in polynomial time (in the size of

(N,E,C)), we can still obtain a polynomial time algorithm for recognising a dynamic

85

NE. In the rest of this chapter, polynomial time refers to polynomial time in the

size of (N,E,C). We first demonstrate that the tractability of recognising dynamic

NE is a consequence of Lemma 5.1 and Lemma 5.4.

Proposition 5.4. Recognising a dynamic NE is polynomial time solvable.

Proof. By invoking Lemma 5.1 on TDyn, and the equivalence, given by Lemma 5.4,

we conclude that a given dynamic profile σ = (ρ1, . . . , ρn) won by Cj is a dynamic

NE if and only if there is no Cj′ ∈ C \ {Cj}, and no strategy ρ′j′ ∈ S(Cj′), such that

ρ′j′ beats all players in the set Opp[ρ, ρj′], for every player ρ on the ρj – ρj′ path in

the b.a SEσ contained in the graph TDyn. Observe that given σ, the arborescence

SEσ, as well as the set Opp[ρ, ρj′], for every strategy ρ on the ρj – ρj′ path, can

be computed in polynomial time by querying, for every pair of coalitions, who is

the winner in the pairwise competition between them if both played their respective

strategies contained in σ. Now, for every Cj′ ∈ C \ {Cj}, we can check whether

there is a strategy ρ′j′ ∈ S(Cj′), which beats the strategies selected by the respective

coalitions, by inspecting the edges in the coalitional structure (N,E,C).

Then, with reasoning similar to the one-shot case we obtain a quasi-polynomial

time algorithm for computing a dynamic NE if it exists.

Theorem 5.3. A dynamic NE can be computed in #NO(log#C) time.

5.3.2 Dynamic Beyond Win-Lose Games

Let us further analyse the final case, where coalitions can modify their choices at

each round and are interested in tournament progression. The solution concept

studied in this section is a natural modification of the one which we considered

earlier.

We define the utility function ui, for every coalition Ci ∈ C. For every

profile σ = (ρ1, . . . , ρn), we have ui(σ) = k if and only if Ci ∈ SEk
σ \ SEk+1

σ . That

is, coalition Ci wins k rounds, but not k + 1 rounds. Observe that this means that

the utility of coalition Ci is dependent on the final round which they reach under a

given strategy profile. The solution concept mirrors the previously defined Beyond

Win/Lose NE.

Definition 5.8. A dynamic strategy profile σ = (ρ1, . . . , ρℓ) is a Beyond Win-

Lose Dynamic Nash Equilibrium (Beyond Win/Lose dynamic NE) if for all i, k ∈
[0, log#C], and every ρ′i, as well as the profile σ′ = (ρ′i, σ−i) it holds that if ui(σ

′) =

k, then ui(σ) ⩾ k.

86

Algorithmic Properties of Beyond Win/Lose Dynamic NE

Let us commence by the study of NE in the beyond win/lose, dynamic setting. We

first provide a structural result on which we base the analysis of its algorithmic

properties. Intuitively, we show that a strategy profile σ is a NE exactly when the

player nominated by the winning coalition to compete against their final opponent

beats all members of that coalition, while σ is a NE in all subtournaments.

Lemma 5.5. Consider a dynamic strategy profile σ = (ρi, . . . , ρn), and let Cj ∈ C

such that Cj wins SEσ. Furthermore, suppose that Cj′ is the final opponent of Cj in

SEσ. Then, σ is a Beyond Win/Lose dynamic NE if and only if σ1 = σ|Tlog#C−1(Cj),

and σ2 = σ|T\Clog#C−1(Cj) are both Beyond Win/Lose dynamic Nash equilibria, and

(b) (ρj , ρj′) is a Beyond Win/Lose dynamic NE.

Proof. In the forward direction, consider a Beyond Win/Lose dynamic NE σ =

(ρi, . . . , ρn). Observe that if property (b) is violated, then Cj′ can improve its

position by choosing ρj′j ∈ Cj′ as a player which beats ρjj′ , contradicting our

assumption that σ is a Beyond Win/Lose dynamic NE. Hence, we conclude that

property (b) is satisfied. On the other hand, suppose that one of σ1 or σ2 is not

a Beyond Win/Lose dynamic NE, for the respective subtournament. Without loss

of generality, suppose that for some Ci ∈ C \ {Cj , Cj′}, Ci is able to improve its

position in the subtournament played by coalitions in Tlog#C−1(Cj), by choosing

the strategy ρ′i instead of ρi. Then, Ci can also strictly improve its position in

SE(ρ′i,σ−i), a contradiction to σ being a Beyond Win/Lose dynamic NE. The case

when Ci ∈ C \ Tlog#C−1(Cj) is symmetric, and hence property (a) holds.

Assume now that properties (a) and (b) hold and suppose, towards contra-

diction, that σ is not a Beyond Win/Lose dynamic NE. Let ρ′i ∈ S(Ci) be such

that for the profile σ′ = ρ′i, σ−i), we have that ui(σ
′) > ui(σ). Since property (b)

holds, it cannot be the case that i ∈ {j, j′}. Moreover, if Ci ∈ Tlog#C−1(Cj), then it

contradicts our assumption that σ1 is a Beyond Win/Lose dynamic NE. Otherwise,

it contradicts our assumption that σ2 is a Beyond Win/Lose dynamic NE.

As a straightforward consequence of Lemma 5.5, we obtain the following

algorithmic result. Using the fact that for a Beyond Win/Lose dynamic NE, its

restriction to any subtournament is also an equilibrium, we can check its existence

in a bottom-up procedure.

Theorem 5.4. Recognising and computing a Beyond Win/Lose dynamic NE are

polynomial time solvable.

87

Proof. Let us first show that computing a Beyond Win/Lose dynamic NE is can

be done in polynomial time. To see that, take a coalitional structure (N,E,C).

Suppose first that #C = 2. Then notice that computing a NE is straightforward,

since it is sufficient to check if some player in N beats all members of the opposing

coalition. Indeed, if it was not the case, then, for every strategy profile, some

coalition would be able to deviate profitably.

Then, consider the case in which #C > 2. Observe that following this ob-

servation, by Lemma 5.5, for every pair of subtournaments σ1 = σ|Tr−1(Cj) and

σ2 = σ|C\Tr−1(Cj), which are both Beyond Win/Lose dynamic Nash equilibria, with

Cj being the winner of σ1, we can compute a Beyond Win/Lose dynamic Nash

equilibrium σ|Tr−1(Cj), by checking if there is a member of a coalition winning one

of these subtournaments, which beats all members of the winner of the other sub-

tournament. Hence, we can compute a Beyond Win/Lose dynamic NE, if it exists,

in polynomial time, as checking the existence of a NE in a tournament restricted

to two coalitions can be performed in polynomial time, while the number of rounds

in a knockout tournament is bounded by a polynomial. Following this observation,

we can check in polynomial time if a strategy profile is a NE by evaluating if the

conditions of Lemma 5.5 hold for all of the subtournaments.

Notice now that we can have multiple dynamic Beyond Win/Lose Nash equi-

libria for a fixed seeding, but these are all outcome-equivalent, i.e., the winners of

all subtournaments are the same under all Nash equilibria.

Proposition 5.5. For every coalitional structure (N,E,C), r ∈ [0, log#C], and

dynamic strategy profiles σ1, σ2, which are both Beyond Win/Lose dynamic Nash

equilibria, it holds that SEr
σ1

= SEr
σ2
.

Proof. Take a coalitional structure T = (N,E,C), r ∈ [0, log#C], and a pair of

dynamic strategy profiles σ1, σ2, which are both Beyond Win/Lose dynamic Nash

equilibria. We show, by induction on r, that for every Ci ∈ C, it holds that the

winner of SEπr
i ,σ

r
1,i

is the same as the winner of SEπr
i ,σ

r
2,i
. Note that the claim for

r = 0 holds trivially.

Now, let r = 1. Take any Ci ∈ C. Then, observe that for some coalition

in SEπr
i ,σ

r
1,i

there is some player in a coalition in that subtournament, which beats

all members of the opposing coalition, as σ1 is a Beyond Win/Lose dynamic NE.

Without loss of generality, let this coalition be Ci. But then, there is no such player

in the coalition opposing Ci in the tournament we consider. This implies that as σ2

is also a Beyond Win/Lose dynamic NE, it holds that Ci is the winner of SEπr
i ,σ

r
2,i
.

88

We now assume that the claim holds for r = k. Consider further r = k + 1.

Let then Ci and Cj be coalitions, which win the round k of the tournament, both

under σ1 and σ2. Then, since both of these dynamic strategy profiles are Beyond

Win/Lose dynamic Nash equilibria, by Lemma 5.5, we have that there is a player

in Ci or in Cj , which beats all members of the opposing coalition. Without loss of

generality, let this coalition be Ci. But then, following previous reasoning, Ci is the

winner of the round k + 1 under both σ1 and σ2. The claim follows.

5.4 Conclusion

In this chapter we introduced a model for knockout tournaments played between

coalitions, to allow for each group to strategically select a nominee to take part in it.

We carried out an algorithmic analysis of Nash equilibrium strategies under various

setups occurring in practice, showing tractability results, i.e., polynomial time or

quasi-polynomial time algorithms, for all cases. In particular, we have studied one-

shot scenarios, where coalitions nominate one player for the entire tournament, and

dynamic ones, where choices can be refined depending on the opposing coalition.

For both of these cases we have studied tournaments where coalitions only strive

to win the tournament, and at tournaments where they instead take tournament

progression into account. For all of the cases we considered, we analysed the algo-

rithmic problem of computing and verifying Nash equilibria. Table 5.2 summarises

the results obtained in this chapter.

ONE-SHOT DYNAMIC

CHECK FIND CHECK FIND

Win/Lose NEaaa P QP P QP

B Win/Lose NEa P P P P

Table 5.2: Summary of the algorithmic results in this chapter.

We foresee various potential research directions building on our work, which

involve relaxing some of the assumptions, especially on participants knowledge and

strategies, and looking at alternative solution concepts. Here we discuss a few

specific ones.

• It is interesting to explore the parameterised complexity of finding a one-shot

89

or dynamic Win/Lose NE, e.g., parameterised by the number of coalitions.

Although we already have a quasi-polynomial time algorithm for this problem,

the existence of a fast fixed-parameter algorithm remains an interesting open

question.

• All of our results provided in this chapter have assumed a tournament with a

fixed seeding. However, the choice of seeding may influence the tournament

significantly, in particular some seedings may admit an equilibrium, while

others may not. Establishing the complexity of finding a seeding, such that a

given solution concept exists is therefore an important problem in this setup.

This has repercussions for tournament fixing problem, studied, e.g., in Vas-

silevska Williams [2010], as a malicious external attacker may be in a position

to choose a seeding with a favourable winner in all resulting equilibria, and

high computational complexity of finding such a seeding may act against it.

• A third direction for future research is to establish the existential and algo-

rithmic properties of solution concepts which we considered, under relaxed

versions of the model studied in this chapter. For instance, consider the sce-

nario in which the beating relation or tournament digraph is relaxed to be

stochastic. In this case, studying the existence and computational complexity

of various equilibria based on the expected utility would be of high interest.

Indeed, this would bring us closer to understanding a setting that models

real-world scenarios more faithfully than using only a “static” tournament.

• The combination of sequential decision-making in tournaments and the beating

relation between players suggests novel solution concepts. Assume that a

coalition A can win a win-lose one-shot tournament, provided coalition B

does not choose player b, who defeats every player in A. We have that every

time B fields player b, A is indifferent to the choice of any of their players.

However, there is a sense in which A must play a potential winner, should

something happen to b. This suggests a trembling-hand interpretation of the

beating relation (building on a classical solution concept Selten [1975]), which

coalitions can try and exploit. Intuitively, a strategy profile c is a trembling-

hand tournament perfect equilibrium if, for every coalition Ci, the strategy

profile c is a Nash equilibrium at each sub-tournament, where Ci plays ci, as

if they were able to reach that sub-tournament.

• Another natural research direction concerns the possibility of cooperative and

semi-cooperative behaviour among coalitions. Assume that coalition A needs

90

coalition B to win the tournament, but B can never win. We envisage an

interesting variant of endogenous games Jackson and Wilkie [2005], arising

in the tournaments which we studied in this chapter. Before the tournament

starts, A can transfer a part of the expected payoff to B, should B refrain from

fielding a player blocking A. This should be seen as a form of manipulation,

e.g., changing results of a certain number of matches, where incentives comes

from the players themselves.

• Finally, the extension to mixed strategies is a natural follow-up, increasing

the plausibility of the model, which we considered in this chapter. It is then

interesting to explore whether the knockout tournament structure can add any

advantage in terms of (mixed-strategy) Nash equilibrium computation.

91

Chapter 6

Strategic Nominations

with Tournament Solutions

6.1 Introduction

In the setting of knockout tournaments played by groups, as explored in Chapter 5,

coalitions are competing in rounds. So, at the start they are seeded at the leaves

of a binary tree. As we have shown, the problem of checking if a NE exists in this

setting is solvable in quasi-polynomial time. It is important to notice, however, that

the methods used to demonstrate the tractability of this problem in the context of

knockout tournaments strongly rely on the tree structure of the competition. It is

therefore natural to investigate whether this result holds when other tournament

solutions are considered.

In this chapter we address this problem. Towards this end, we study the prob-

lem of strategic nominee selection in the context of tournament solutions, which are

based only on the pairwise comparisons between players, i.e., they do not involve

a seeding of nominees. Similarly to our investigation in Chapter 5, we analyse this

setting from the algorithmic game theory perspective, focusing on the existence of

a Nash equilibrium. Hence, the main focus of this chapter is the study of computa-

tional complexity if a NE exists, given a set of coalitions and comparisons between

individual contestants (Theorems 6.1 and 6.4). We further study the problem of

whether a coalition can win under some strategy profile (Proposition 6.4 and The-

orem 6.3).

Our Contribution. In this chapter we establish algorithmic properties of the

Uncovered Set rule in the context of tournaments played by coalitions. We contrast

92

it with the Condorcet Winner rule, in which only the Condorcet winner is selected

if it exists. We consider three main computational questions. First, for a given

method of selecting the winners from a tournament, we address the problem of

checking whether a coalition can win in some strategy profile. We show that this

problem is tractable for the Condorcet Winner rule, butNP-complete for Uncovered

Set. Further, for each of the rules which we study, we analyse the problem of whether

there exists a pure Nash equilibrium in the competition. Finally, we are interested

in checking if a given coalition has a player which can win in some Nash equilibrium.

We show that these two problems areNP-complete for both of the rules we consider.

See Table 6.1 for an overview of our results in this chapter. Basic concepts needed

for the understanding of technical content of this chapter are defined in Chapter 3.

Structure of the Chapter. In Section 6.2 we define the computational problems

and tournament solutions studied in this chapter. Then, in Section 6.3, we present

initial facts about both tournament solutions we consider. In Section 6.4, we inves-

tigate the properties of the Condorcet Winner rule, and in Section 6.5 we analyse

the Uncovered Set rule. Finally, Section 6.6 concludes and provides directions for

further research.

6.2 Computational Problems

Let us define the computational problems studied in the setting we consider in this

chapter. F-Possible Winner is the problem of checking whether a given coalition

has a player who is a winner under F under some strategy profile. Given a coalitional

structure T = (N,E,C), we say that a player ci is a possible winner of T under F

if there is a strategy profile c in which ci is selected, such that C(ci) is the winner

of Tc under F .

F-Possible Winner:

Input: Coalitional structure T = (N,E,C), coalition Ci ∈ C.

Question: Is there a player ci ∈ Ci, such that ci is a possible winner of T

under F?

Further, F-Winner in NE is the problem of checking if a coalition is winner

under F in some NE.

F-Winner in NE:

Input: Coalitional structure T = (N,E,C), coalition Ci ∈ C.

Question: Is there a player ci ∈ Ci and a strategy profile c, which is a

93

NE under F , such that Ci is a winner of Tc under F , and in which ci is

selected?

Finally, F-NE Existence is the problem of checking if there exists a strategy

profile, which is a NE under F .

F-NE Existence:

Input: Coalitional structure (N,E,C).

Question: Is there a strategy profile c, which is a NE under F?

Furthermore, let us define two tournament solutions, which we study in this

chapter, i.e, the Condorcet Winner rule and the Uncovered Set rule. Given a tour-

nament (N,E), a player i ∈ N is a Condorcet winner if i beats every other player

j ∈ N . Notice that the set of all Condorcet winners in a tournament is either a

singleton or is empty. Then, the Condorcet Winner (CW) rule selects the set of all

Condorcet winners.

Definition 6.1 (Condorcet Winner Rule). The Condorcet Winner rule is a tour-

nament solution, such that for every tournament T , we have that CW(T) is the

Condorcet winner if it exists, and that CW(T) = ∅ otherwise.

Furthermore, we are interested in one of the rules extending the Condorcet

Winner rule, which guarantees that the set of winners is not empty. Given a tourna-

ment (N,E) and a pair of players i, j ∈ N , we say that i covers j, which we denote as

i ⪰ j, if B(j) ⊆ B(i). So, i covers j if i beats all of the players that j beats. Observe

that the fact that i ⪰ j implies that i beats j. Then, the Uncovered Set rule (US)

selects all of the players that are not covered by any other player. Notice further

that, e.g., in a cycle with three players, i.e., E = {(c1, c2), (c2, c3), (c3, c1)}, the set

of all players is selected under US. This is because B(c1) = {c2}, B(c2) = {c3}, and
B(c3) = {c1}. Nevertheless, in this case the set of winners under CW is the empty

set.

Definition 6.2 (Uncovered Set Rule). The Uncovered Set rule is a tournament

solution, such that for every tournament T we have that

US(T) = {i ∈ N : for every j ∈ N, j ̸⪰ i}

Observe that the proposed tournament solutions readily apply to every filtra-

tion of a coalitional structure, as by the definition of a filtration it is a tournament.

Notice further how the strategy profile depicted in Example 3.2 is a NE both

under CW and under US. Indeed, there, the player selected by the coalition A is

94

a Condorcet winner in (N,E). Therefore, in every strategy profile in which it is

selected, it beats and covers all other players. This implies that it is the only winner

in all such profiles under both rules we consider.

6.3 Initial Remarks

Even though we restrict ourselves to two specific tournament solutions, some prop-

erties are shared by larger classes of rules, such as Condorcet consistent rules. We

say that a rule F is Condorcet consistent, if for every tournament T = (N,E), in

which i ∈ N is the Condorcet winner, F (T) = {i}. Observe that both CW and US

are Condorcet consistent.

Let us first notice that the existence of a NE is not guaranteed for any

Condorcet consistent rule.

Proposition 6.1. For every Condorcet consistent rule F there is a coalitional struc-

ture (N,E,C) without a NE under F .

Proof. We will proceed by showing, for every Condorcet consistent rule F , an ex-

ample of a coalitional structure, which does not admit a NE under F . Consider

now a Condorcet consistent rule F and the coalitional structure with two coalitions

A = {a1, a2} and B = {b1, b2}, as depicted in Figure 6.1.

Let us show now that there are no NE in this coalitional structure under F .

Consider an arbitrary strategy profile (ai, bj) in this structure and assume that ai

beats bj . Note that then A is the unique winner under F , since F is Condorcet

consistent. But then, by the construction of the coalitional structure, there is a

player b3−j ∈ B, such that b3−j beats ai. Observe that B is the unique winner

under the profile (ai, b3−j). So, (ai, bj) is not a NE. Observe that the argument is

symmetric for the case in which bj beats ai, and hence the claim holds.

a1 a2

b1 b2

Figure 6.1: Example of a coalitional structure with no NE under any Condorcet
consistent rule.

Then, under any Condorcet consistent rule, a NE exists in a coalitional struc-

ture with only two coalitions exactly when there is a player that dominates the

opposing coalition.

95

Proposition 6.2. For every Condorcet consistent rule F and every coalitional struc-

ture (N,E,C), such that #C = 2 there exists a NE under F in (N,E,C) if and

only if there is a player c which dominates the coalition Ci, such that c /∈ Ci.

Proof. Consider a Condorcet consistent rule F , as well as a coalitional structure

(N,E, {C1, C2}). Observe first that since there are only two coalitions in the coali-

tional structure, it holds that for every filtration induced by a profile (c1, c2), with

c1 ∈ C1, and c2 ∈ C2, there is exactly one Condorcet winner.

(⇒) Let us reason by contraposition. So, we will show that if there is no

player c, which dominates the coalition Ci, such that c /∈ Ci, then there is no NE

in the game. Suppose now that for every player c ∈ C1 ∪ C2 there is a player

c′ /∈ C(c), such that c′ beats c. Further, suppose towards contradiction that there

exists a profile (c1, c2) which is a NE. Without loss of generality, let c1 beat c2. Note

that given this profile, as F is Condorcet consistent, we have that C1 is the unique

winner under F . Observe further that by assumption there is a c′2 ∈ C2, such that

c′2 beats c1. But then C2 wins under (c1, c
′
2), so (c1, c2) is not a NE, which violates

the assumptions.

(⇐) Suppose now that there exists a player c ∈ C1 ∪C2, such that for every

player c′ /∈ C(c), we have that c beats c′. Without loss of generality, let c ∈ C1. We

will now show that there is a NE in this game. Towards this end, let us consider

any strategy profile (c, c2). Note that as we assumed that c beats c2, and that F

is Condorcet consistent, it holds that C1 is the winner under (c, c2). Also, as c

dominates C2, we have that C1 wins under (c, c′2), for every c′2 ∈ C2. Hence, (c, c2)

is a NE.

6.4 Condorcet Winner Rule

Let us provide an analysis of the Condorcet Winner rule. We first observe that if

a coalition contains a Condorcet winner in the initial tournament, then selecting it

guarantees victory for that coalition. This simple observation will later allow us to

show an interesting difference between the rules we consider.

Proposition 6.3. For every coalitional structure T = (N,E,C), strategy profile c,

and a player ci ∈ Ci selected in c, if ci is a Condorcet winner in (N,E), then Ci

wins under c under CW.

Proof. Take a coalitional structure T = (N,E,C), strategy profile c and a player

ci ∈ Ci selected in c, such that ci is a Condorcet winner in (N,E). Observe that ci

96

is a Condorcet winner in (N,E), and hence is a Condorcet winner in Tc. So, Ci is

a winner in Tc under CW.

Furthermore, checking if a coalition contains a player which might potentially

win is tractable.

Proposition 6.4. CW-Possible Winner is solvable in polynomial time.

Proof. Take a coalitional structure T = (N,E,C) and a coalition Ci ∈ C. We

note that in order to find an answer to CW-Possible Winner for T and Ci, it is

sufficient to check if there is a player ci ∈ Ci, and a strategy profile c, such that

ci is a Condorcet winner in Tc. Observe now that it is the case exactly when, for

every coalition Cj , there is a cj ∈ Cj , such that ci beats cj . Notice further that

this condition is verifiable by an algorithm running in O(#N2) time. Therefore, for

every player ci, we check, by examining all players in N , if there is a player beaten

by ci in every coalition Cj ̸= Ci. The correctness of this procedure follows from

previous observations.

It is worth noting that the algorithm provided in the proof allows us to find

all possible players, who are selected in a Tc, under some strategy profile c. We show,

however, that checking if a NE exists is not tractable, by reduction from the 3-SAT

problem. Intuitively, we construct a coalition corresponding to each variable in a

formula with two players each (corresponding to literals), and a coalition containing

a pair of players for each clause. We further construct what we call a base coalition

with two players, such that the beating relation induces the matching pennies game

between the base coalition and each of the pairs in the clause coalition. Having

that a player in the clause coalition is beaten exactly by those players in variable

gadgets, which correspond to literals in the clause, we obtain that a NE exists in

the constructed game if and only if the formula is satisfiable.

Theorem 6.1. CW-NE Existence is NP-complete.

Proof. Let us first notice that the problem we consider is in NP. Indeed, given a

coalitional structure (N,E,C), and a strategy profile c, we can check whether c is

a NE by examining all potential deviations of all coalitions, which can be done in

polynomial time.

Let us now show the NP-hardness of this problem. Take a formula φ

in 3-CNF. Let X = {x0, . . . , xn} denote the set of variables in φ, and Cl =

{Cl0, . . . , Clm} be the set of clauses in φ. Let us now construct a coalitional struc-

ture T = (N,E,C), which we call the encoding of φ.

97

Base, Variable, and Clause Coalitions. First, let us construct the base coali-

tion S, which consists of two players, s1 and s2. Then, for every variable xi ∈ X, con-

struct a coalition {cxi , c¬xi}, which we call a variable coalition. Moreover, we say that

the coalition {cxi , c¬xi} corresponds to xi and call its members literal players corre-

sponding to xi and ¬xi respectively. Observe that every strategy profile in the encod-

ing of φ corresponds to a valuation V over X, such that the coalition corresponding

to a variable xi selects the player cxi if xi is true in V , and c¬xi otherwise. Finally,

we construct what we call a clause coalition, as follows. For every clause Cli ∈ Cl,

we construct a clause pair Cl′i = {Cl1i , Cl2i }. We call the members of Cl′i clause

players. Then, the clause coalition is the set {Clji : i ∈ [0,m − 1] and j ∈ {1, 2}},
i.e., it is the collection of all clause pairs. Note that the construction requires #X+2

coalitions and 2#Cl + 2#X + 2 players.

Tournament Relation. Let us now construct the tournament relation. First,

for every literal player L, let s1 and s2 beat L. Furthermore, for every clause pair

Cl′i = {Cl1i , Cl2i }, let s1 beat Cl1i , Cl1i beat s2, s2 beat Cl2i and Cl2i beat s1, creating

a cycle. Finally, for every literal player L and a clause player Clkj , let L beat Clkj if

literal L is in the clause Clj , and Clkj beat L otherwise. Construct all other edges

arbitrarily. Observe that by construction a variable coalition is not a winner under

any strategy profile, as its representative is always beaten by a member of the base

coalition.

An example of the relation in the encoding of φ is depicted in Figure 6.2.

s1 s2

C1
0 C2

0

s1 s2

Cl10 Cl20 Cl11 Cl22

cx c¬x

Figure 6.2: Encoding of the formula x ∧ ¬x. The nodes in the double rectangle
depict the base pair and the nodes in the single rectangle the variable coalition
corresponding to x. Moreover, in the right subfigure, the left pair in the dashed
rectangle depicts a clause pair, such that x is in the clause. Further, the pair in the
right dashed rectangle shows the clause, to which ¬x belongs. The left figure shows
the relation between the base pair and a clause pair, while the right one shows the
remaining relations. It is worth noting at this stage that the tournament restricted
to the pair of coalitions in the left subfigure has no NE.

98

Correctness of the Construction. Let us show that φ is satisfiable if and only

if the encoding of φ admits a NE.

(⇒) Suppose that φ is satisfiable. Then take a valuation V over X, which

makes φ true. Further, take a strategy profile c, such that for every variable coalition

{cxi , c¬xi} we have that player cxi is selected whenever xi is true in V , and the player

c¬xi is selected otherwise. Also, let s1 and C1
0 be selected. Notice that in Tc it holds

that s1 is the Condorcet winner, as it wins against all selected literal players and

against C1
0 . Furthermore, as V is a model of φ, for every clause player Ck

j there is

some selected literal player L such that L beats Ck
j . Hence, the clause coalition has

no profitable deviation. Finally, as we observed before, all variable coalitions lose in

any strategy profile. Therefore, c is a NE.

(⇐) Suppose now that φ is not satisfiable. Then, for every strategy profile

there is a pair of clause players C ′
j , such that each of its members beats all selected

literal players, as otherwise there would exist a valuation over X satisfying φ.

Let us now reason by contradiction and suppose that there is a NE strategy

profile c. Consider a pair of clause players C ′
j that beats every literal player selected

in c. Observe that if there is no Condorcet winner in Tc, then there exists a profitable

deviation for the clause coalition. Indeed, if s1 is selected, let the clause coalition

select C2
j , and otherwise let it select C1

j . One can verify that in the modified profile

the clause coalition is the winner under CW.

Suppose now that there is a Condorcet winner in Tc. If s1 is the Condorcet

winner in Tc, let the clause coalition choose C2
j , and if it is s2, let the clause coalition

choose C1
j . Note that in both of these cases the clause coalition becomes the winner

under CW. Finally, consider the case in which a member of the clause coalition is

the Condorcet winner in Tc. In this case the base pair has a profitable deviation by

symmetric reasoning. Hence, there is no NE in the encoding of φ.

Furthermore, let us show that it is computationally hard to check if a coalition

has a member who wins in some NE, by reduction from 3-SAT.

Theorem 6.2. CW-Winner in NE is NP-complete.

Proof. Let us first observe that as the verification of whether a profile is a NE can

be done in polynomial time, the problem we consider is in NP. Let us show the

NP-hardness of this problem. Take a formula φ in 3-CNF. Let X = {x0, . . . , xn}
be the set of variables in φ, and let Cl = {Cl0, . . . , Clm} be the set of clauses in

φ. Further, consider the encoding of φ as constructed in the proof of Theorem 6.1.

Let us show that the base coalition has a winner in some NE if and only if φ is

satisfiable.

99

(⇒) Suppose that φ is not satisfiable. Then, by the reasoning used in the

proof of Theorem 6.1 there is no NE in the encoding of φ. So, the base coalition is

not a winner in a NE.

(⇐) Suppose that φ is satisfiable. Then, a NE in which s1 is a winner can

be constructed as in the proof of Theorem 6.1.

6.5 Uncovered Set

Let us now consider the Uncovered Set rule. We will start with providing two

observations, which showcase differences in competitions between coalitions in the

context of the Uncovered Set and Condorcet Winner rules. They arise, in a large

part, due to the fact that the winner under the Uncovered Set always exists but

is not always unique. One can check that they do not hold for the CW rule. The

first question which we ask is whether it can be the case that some player, which

wins in the initial tournament, is not a winner in some filtration. Second, we check

whether choosing a player which wins in the initial tournament is always beneficial

for a coalition. We note that the negative answer to these questions shows that

the fact that a player wins in the initial tournament does not provide an indication

about their overall “strength”.

Let us first observe that in the context of US, having a member ci of a coali-

tion which wins in the initial tournament does not guarantee victory in a filtration

induced by a strategy profile in which ci is selected.

Proposition 6.5. There exists a coalitional structure T = (N,E,C) and a NE

profile c, such that a winner i in (N,E) is selected in c, but C(i) loses in Tc.

To show that Proposition 6.5 holds, let us provide the following example.

Example 6.1. Consider the coalitional structure (N,E,C) depicted in the left side

of Figure 6.3. Let us calculate the set of winners under US in (N,E). Notice that

the member of the singleton coalition (call it s) is a winner under US, as s is the

only player beating three rightmost players in the top tier. Further, every member

i of the lower tier in the figure is a winner under US. To see that, observe that for

every such player i there is a player j in the upper tier, such that i is the only one

who beats both j and s. Finally, every player i′ ̸= s in the upper tier is a winner

under US, as each of them beats a different subset of players in the lower tier.

However, notice that in the filtration induced by the profile depicted in the

right side of Figure 6.3, s is beaten by all other chosen players, and thus is not a

winner under US, as the set of the players that they beat is empty. Observe finally

100

Figure 6.3: An example of a coalitional structure (N,E,C) in which a coalition
whose member is winner in (N,E) does not win under some Nash equilibrium. The
edges not shown in the figure point downwards.

that this profile is a NE, since all non-singleton coalitions are winners, while {s}
only has one candidate.

Further, we show that it can be the case that replacing a strategy with a

player who is a winner in the initial tournament is not profitable.

Proposition 6.6. There exists a coalitional structure T = (N,E,C), Ci ∈ C, a

winner c′i ∈ Ci of (N,E) under US, and a NE profile c such that a Ci wins in Tc,

but not in T(c′i,c−i).

To show that Proposition 6.6 holds, let us provide the following example.

Example 6.2. Consider the coalitional structure (N,E,C) depicted in the left side

of Figure 6.4. Observe that the top-left player is a winner under US in the initial

tournament, as it is the only one beating the top player in the centre. Observe further

that the top player in the centre covers the bottom-left player, which hence is not

a winner in the initial tournament. Then, consider the strategy profile inducing a

filtration in right side of Figure 6.4. Observe that then, since all of the coalitions are

winners under US, it is a NE. So, the left coalition is a winner in a NE. However,

replacing its choice with the top-left player would result in losing the tournament,

as it is beaten by all of the other selected players.

Let us move to establishing the computational complexity of US -Possible

Winner. We show that this problem is NP-complete, by reduction from 3-SAT.

Theorem 6.3. US -Possible Winner is NP-complete.

Proof. Observe first that the problem is in NP. Indeed, given a coalitional structure

and a coalition Ci, as well as a strategy profile, checking if Ci has a possible winner is

101

Figure 6.4: An example of a coalitional structure in which choosing a weaker player
is profitable.

solvable in polynomial time, as winner determination under a given strategy profile

is solvable in polynomial time for the Uncovered Set rule (see Theorem 3.6 in Brandt

et al. [2016b]).

Let us show the NP-hardness of this problem. Take a formula φ in 3-CNF.

Let X = {x0, . . . , xn} be the set of variables in φ and let Cl = {Cl0, . . . , Clm} be

the set of clauses in φ. Let us construct the coalitional structure, which we will call

the encoding of φ.

Coalitions. First, let us construct a base coalition, with only one player s. We

call s the base player. Further, for every variable xi ∈ X we construct a coalition

{cxi , c¬xi}. We say that such a coalition corresponds to xi and call its members

literal players, corresponding to literals xi and ¬xi respectively. Finally, for every

clause Cli ∈ Cl let us construct a coalition {cCli}. We call the member of such

a coalition the clause player corresponding to Ci. Observe that the encoding of φ

includes #X +#Cl + 1 coalitions, with 2#X +#Cl + 1 players.

Tournament Relation. Let us construct the tournament relation in the encoding

of φ. First, for every literal player L, let s beat L. Further, for every clause player

cCli , let cCli beat s. Finally, for every literal player L and every clause player cCli ,

let L beat cCli if the literal L is in the clause Cli, and let cCi beat L otherwise.

Let the remaining edges be constructed arbitrarily. Notice that s beats all literal

players and no other players, under any strategy profile. It is worth noting that

every strategy profile in the encoding of φ corresponds to a valuation V over X,

such that the coalition corresponding to a variable xi selects the player cxi if xi is

true in V , and c¬xi otherwise. Then, we say that a clause Ci is satisfied in the

encoding of φ under a profile c, if the clause player cCli is beaten by some literal

player selected in c.

Figure 6.5 depicts the encoding of the formula ¬x1 ∨ ¬x2.

102

cx1

c¬x1

cx2

c¬x2

s

cCl0

Figure 6.5: The encoding of the formula ¬x1∨¬x2. The node in the double rectangle
represents the base coalition. Nodes in single rectangles are variable coalitions,
and in the dashed rectangle we present the clause coalition corresponding to Cl0.
Observe that the base coalition is a winner exactly when c¬x1 or c¬x2 is selected.

Correctness of the Construction. Let us show that {s} has a possible winner

in the encoding of φ if and only if φ is satisfiable.

(⇒) Suppose that φ is not satisfiable. Let us show that {s} does not have a

possible winner. Consider any strategy profile c. Notice that as φ is not satisfiable,

there is a clause Cli, which is not satisfied in the encoding of φ under c. This implies

that there is a selected clause player Cli, which beats all selected literal players in c.

Observe further that as Ci also beats s, we have that s is covered by Ci. So, {s} is
not a winner under any strategy profile, and hence does not have a possible winner.

(⇐) Suppose that φ is satisfiable. Let us show that {s} has a possible winner

in the encoding of φ. Consider a valuation V , under which φ is true. Also, take the

strategy profile c, in which every coalition {cxi , c¬xi}, corresponding to a variable

xi, selects cxi if xi is true in V , and c¬xi otherwise. Observe that as φ is true under

V , for every clause player in c there is a literal player in c that beats it. Hence,

s is the only selected player which beats all chosen literal players. Hence, s is not

covered by any selected player under some strategy profile. Therefore, {s} has a

possible winner.

Furthermore, we show that US -NE Existence is NP-complete, by reduc-

tion from 3-SAT.

Theorem 6.4. US -NE Existence is NP-complete.

Proof. Let us first observe that the problem we consider is in NP. Indeed, for a

given strategy profile, we can check in polynomial time whether a given coalition

can improve their utility by replacing their representative, as winner determination

is possible in polynomial time for US. Let us then show the NP-hardness of this

103

problem. Take a formula φ in 3-CNF. Let X = {x0, . . . , xn} be the set of variables

in φ and let Cl = {Cl0, . . . , Clm} be the set of clauses in φ. Let us assume for

simplicity that #X ⩾ 3. This is without loss of generality, as every formula in

3-CNF can be extended to an equivalent formula in 3-CNF with at least 3 variables.

Let us construct the coalitional structure (N,E,C), which we will call the encoding

of φ.

Coalitions. First, construct the base coalition S, consisting of two players, s1 and

s2. We call the members of this coalition base players. Further, for every variable

xi ∈ X, let us construct a variable coalition {cxi , c¬xi}. We say that such a coalition

corresponds to xi, and call its members literal players, corresponding to xi and ¬xi
respectively. Then, for every xi ∈ X, we construct an auxiliary coalition {Axi}, and
call its member an auxiliary player corresponding to xi. Finally, we construct what

we call a clause coalition as follows. For every clause Cli ∈ Cl, we construct the

clause pair Cl′i = {Cl1i , Cl2i }. We call the members of Cl′i clause players. Then, the

clause coalition is the set {Clji : i ∈ [0,m− 1] and j ∈ {1, 2}}, i.e., the union of all

clause pairs. Observe that every strategy profile in the encoding of φ corresponds

to a valuation V over X, such that for every variable xi ∈ X, it holds that xi is

true in V if cxi is selected by the corresponding variable coalition, and false if c¬xi

is selected. Note further that the encoding of φ requires 2#X + 2 coalitions and

2#Cl + 3#X + 2 players.

Tournament Relation. Let us construct the tournament relation in the encoding

of φ. First, for each literal player L, let s1 and s2 beat L. Further, for every clause

player Clkj and a literal player L, let L beat Clkj if L is in the clause Clj , and let Clkj
beat L otherwise. For a strategy profile c, in which some selected literal player L

beats Clkj , we say that Cj is satisfied in c. Also, for every auxiliary coalition {Axi},
let Axi beat all variable, base and clause players, apart from cxi and c¬xi . Instead,

let cxi and c¬xi beat Axi . Furthermore, for every clause pair Cl′i = {Cl1i , Cl2i }, let
s1 beat Cl1i , Cl1i beat s2, s2 beat Cl2i , and Cl2i beat s1, constructing a cycle. Let

the remaining edges be constructed arbitrarily, while ensuring that each auxiliary

player Axi is beaten by some auxiliary player Axj , and for such a pair, members

of the coalition corresponding to xi are beaten by the members of the coalition

corresponding to xj .

Note that such a relation exists, since #X ⩾ 3. This occurs, for instance,

when there exists a cycle containing all auxiliary players, mirrored by variable play-

ers. To see that, consider the case in which X = {x0, x1, x2}. Then, the condition

104

mentioned above is satisfied, if (1) Ax0 beats Ax1 , Ax1 beats Ax2 , and Ax2 beats

Ax0 , while (2) we have that {cx0 , cx0} dominates {cx1 , cx1}, {cx1 , cx1} dominates

{cx2 , cx2}, and {cx2cx2} dominates {cx0 , cx0}. The key relation in an encoding of φ

is partially depicted in Figure 6.6.

s1 s2

Cl10 Cl20

s1 s2

Axi Cl0
1 Cl0

2

cxi
c¬xi

Figure 6.6: Key relations in the encoding of φ. Players in the double rectangle
represent the base coalition, in the single rectangle a variable coalition corresponding
to xi, and in the dashed rectangle, a clause pair. In the depicted fragment of the
construction, xi belongs to the presented clause, while ¬xi does not. The remaining
player is the auxiliary player Axi . The left figure shows the relation between the
base pair and the clause pair, while the right one shows the relation between the
remaining coalitions.

Correctness of the Construction. Let us start with stating a few properties of

the encoding of φ.

1. Let us show first that no variable coalition is a winner under any strategy profile.

To see that, take any variable coalition {cxi , c¬xi} and an auxiliary player Axj ,

which beats Axi . We know that such an auxiliary player exists by construction

of the tournament relation. Observe that under any strategy profile, Axj beats

all players which are beaten by cxi or c¬xi . Namely, it beats all literal players

apart from cxj and c¬xj , players in the base coalition, all clause players, and Axi .

Also, by construction of the tournament relation, cxi and c¬xi are beaten by cxj

and c¬xj . So, a representative of the coalition corresponding to xi is covered by

Axj , and hence this coalition is not a winner under any strategy profile.

2. We further show that if in a profile, in which the clause coalition chooses a player

Ck
j , some chosen literal player L beats Clkj , then the clause coalition is not a

winner. Without loss of generality, let such Clkj be beaten by a selected player

cxi . Notice then that the player Axi beats all of the players that Clkj does, as it

beats all literal players, apart from the members of the coalition corresponding

xi, as well as the base players. Hence, the clause coalition is not a winner under

such profile, as Clkj is covered by Axi .

105

3. Finally, let us observe that a selected clause player Clkj is not covered by any

auxiliary player Axi , such that Clkj beats the player selected by {cxi , c¬xi}, as
such a literal player beats Axi .

We are now ready to show that there exists a NE in the encoding of φ if and only

if φ is satisfiable.

(⇒) Suppose that φ is not satisfiable. Let us show that there exists no NE

in the encoding of φ. Observe that as φ is not satisfiable, we have that for every

valuation over X there is some clause Clj , such that all of its literals are false in X.

Observe that this implies that in the encoding of φ we have that, for every strategy

profile c, there is a clause which is not satisfied in c (call it Cl′j). Hence, there is a

pair of clause players Cl′j , such that both members of Cl′j beat every literal player,

which is selected in c. We now consider the following exhaustive cases.

Case 1: The clause coalition nominates a member of a pair Cl′j,

beating all selected literal players. Then notice that by 3., the clause coalition

is a winner under US exactly when it is not covered by the selected member of

the base coalition. Similarly, as the chosen member of the base coalition dominates

all of the coalitions corresponding to variables, we have that is a winner under US

exactly when it is not covered by the selection of the clause coalition. We first show

that there is no NE, in which Cl1j is nominated. Note that if Cl1j and s1 are selected,

then Cl1j is covered by s1. It is not the case, however, if Cl2j and s1 are selected, so

the clause coalition has a profitable deviation. Further, if Cl1j and s2 are selected,

s2 is covered and the base coalition has a profitable deviation to s1. So, there is no

NE if Cl1j is selected. Symmetrically, it can be shown that there is no NE in which

Cl2j is chosen. Hence, there is no NE in the encoding of φ.

Case 2: Otherwise. Then notice that if the clause coalition nominates a

player, which is beaten by some selected literal player L, then the clause coalition

is not a winner under US, by 2. One can verify, however, that the clause coalition

becomes a winner under US, by switching their choice to some player in Cl′j . Hence,

there is no NE in the encoding of φ, if φ is not satisfiable.

(⇐) Suppose that φ is satisfiable. Let us show that there exists a NE in the

encoding of φ. Consider a valuation V over X that makes φ true. We know that

it exists, since φ is satisfiable. Also, take a strategy profile c, such that, for every

coalition {cxi , c¬xi} corresponding to some variable xi, we have that cxi is selected

whenever xi is set to true by V , and c¬xi is selected otherwise. Also, let s1 and C1
0

be selected. Notice that as V satisfies φ, for every player Clkj in the clause coalition,

there is a selected literal player, which beats Ck
j . So, by 2., the clause coalition is not

a winner regardless of their choice, and thus has no profitable deviation. Further, as

106

we have observed in 1., variable coalitions do not win under any strategy profile, and

hence have no profitable deviation. Moreover, s1 is the only selected player beating

all chosen literal players and thus it is a winner under US. So, the base coalition

has no profitable deviation. Finally, all other coalitions are singletons and therefore

have no profitable deviations. So, c is a NE.

Finally, we establish the complexity of US -Winner in NE, by reduction

from 3-SAT.

Theorem 6.5. US -Winner in NE is NP-complete.

Proof. Observe first that the problem is in NP, as checking if a profile is a NE and

winner determination is possible in polynomial time for US. Let us further show the

hardness of this problem. Take a formula φ in 3-CNF. Let X = {x0, . . . , xn} be the

set of variables in φ, and let Cl = {Cl0, . . . , Clm} be the set of clauses in φ. We

construct the coalitional structure, which we call the encoding of φ, as in the proof

of Theorem 6.4.

Observe first that {Ax0} is a winner under any strategy profile. Indeed, in

any strategy profile Ax0 beats the selection of base coalition and of clause coalitions,

and hence is not covered by them. Also, it is not covered by selected literal players,

as they do not beat the selected base player. Finally, Ax0 is not covered by any

auxiliary player Axj , such that j ̸= 0, as it beats the selection of {cx0 , c¬x0}, which
by construction beats Axj . So, {Ax0} is a winner under US in any strategy profile.

Let us show now that the coalition {Ax0} is a winner in some profile which is a NE

if and only if φ is satisfiable.

(⇒) Suppose that φ is not satisfiable. Then, by the reasoning similar to the

proof of Theorem 6.4, it holds that there is no NE in the encoding of φ. But then

,{Ax0} is not a winner in a NE.

(⇐) Suppose that φ is satisfiable. Then, by reasoning in the proof of Theorem

6.4, there exists a NE in the encoding of φ. Also, as we have shown, {Ax0} is a

winner in this NE, so the claim holds.

6.6 Conclusion

In this chapter we provided an algorithmic analysis of nominee selections in the

context of tournament solutions. We analysed two methods of selecting the set of

winners, namely Condorcet Winner and Uncovered Set rules.

107

Summary of Contributions. As we demonstrated, checking if a pure Nash equi-

librium exists for a coalitional structure is NP-complete under both of the rules we

considered. This result shows a significant difference between the complexity of rea-

soning about these rules and knockout tournaments, which allow us to find a Nash

equilibrium in quasi-polynomial time if it exists, as shown in Chapter 5. Further-

more, under the Uncovered Set rule, it is not tractable even to check if a coalition

can win in some strategy profile, which constitutes a major difference with respect to

the competitions conducted in the context of Hotelling-Downs model or of knockout

tournaments, which we studied in Chapter 4 and Chapter 5. Table 6.1 provides a

summary of our contribution in the present chapter.

CW US

Possible Winner P NP

Winner in NE NP NP

NE Existence NP NP

Table 6.1: Algorithmic results shown in this chapter. Here, value NP indicates that
a problem is NP-complete.

Future Research. Our results provide a vast range of directions for future inves-

tigations. Let us discuss some direct possibilities for further research based on the

results of this chapter.

• We limited ourselves to two particular tournament rules only. However, there

exists a large number of tournament solutions studied in the computational

social choice literature. This would motivate a symmetric analysis for other

rules, such as the Copeland rule. In particular, a natural direction would

be to establish computational complexity of finding a NE for all Condorcet-

consistent rules.

• We only considered pure Nash equilibrium as a solution concept. Neverthe-

less, in many cases it would not be ideal from the perspective of predicting

the coalitions’ choices. It is a natural avenue for further research to check

algorithmic properties of other concepts, such as dominant strategy equilibria,

in the setting studied in this paper.

• In our setting we assumed that the beating relation is asymmetric, which in

the social choice context corresponds to the assumption that, for a pair of

108

players, one of them is preferred to another by the strict majority of voters (or

that a tie-breaking rule is applied). This assumption is not applicable in case

of many social phenomena, in which accounting for the ties between players is

important. We therefore propose to study the case in which the tournament

relation is not asymmetric.

• Even though most of the problems studied in this chapter are computationally

hard, it can be the case that they are tractable in typical cases. It is therefore

interesting to analyse them from the perspective of parametrised complexity.

In particular, it is natural to consider the number of coalitions as a parameter.

• We note that certain coalitional structures always admit a Nash equilibrium

for all Condorcet consistent rules, e.g., when some player dominates all of the

coalitions, to which it does not belong. Therefore, identification non-trivial

classes of games, in which the existence of an equilibrium is guaranteed for

meaningful classes of rules is a natural open problem.

• In the setting studied in this chapter, the tournament relation is deterministic,

i.e., it is certain who is the winner of each pairwise contest. This observation

motivates the exploration of the generalisation of this framework, in which it

does not always hold, as a natural follow-up study.

• One of the interpretations of the beating relation, in the context of the social

choice theory, is the result of a pairwise majority contest. Thus, a potential

avenue for further research involves the strategic behaviour of voters in the

setting studied in this chapter. Namely, one could consider agents misrepre-

senting their preferences over players to have a better player (in their view)

selected by a winning coalition.

109

Chapter 7

Reaching Stability in Opinion

Diffusion

7.1 Introduction

When debates between agents are considered, it is crucial to take into account that

they might be willing to change their opinion, when influenced by their interlocutors.

As such, it is natural to study opinion diffusion protocols in the context of such

discussions. In a particularly well-studied class of such protocols, agents change

their view if a specified fraction of those with whom they communicate disagrees

with them. We call such mechanisms threshold-based protocols (see, e.g., Granovetter

[1978]). It is further worth noting that opinion diffusion protocols are relevant in

the context of spread of desirable opinions. For instance, a political party might be

willing to convince a limited number of particular voters to support them, in order

to receive a large number of votes. In relation to this problem, in their influential

paper, Kempe et al. [2003] show that it is NP-hard to find an optimal set of such

individuals.

One of the major challenges associated with the application of threshold

based opinion diffusion protocols is that their convergence is not guaranteed. Imag-

ine you would like to have your agents make a collective decision and let them

discuss first, agreeing that they would cast their vote once they have made up their

mind. Depending on the chosen diffusion protocol and the initial distribution of

opinions, the process might never terminate. Such cases can arise, in particular, in

synchronous threshold models, where all of the agents revise their opinions in every

step. Clearly, any network will converge for some initial input, for instance when

all of the agents already think the same to start with. However, this is not true

110

in general. Therefore, it is important from the perspective of the prediction of the

outcome of a debate to know whether the protocol will ever terminate.

A typical path taken to circumvent the issue in the study of problems re-

garding opinion diffusion is to restrict the analysis to networks that always converge,

as studied by Grandi et al. [2015], Bredereck and Elkind [2017], and Botan et al.

[2019]. Another is to consider specific protocols which guarantee termination, as

done for instance by Auletta et al. [2018]: they propose an opinion-revision proto-

col for agents who disagree with a distinguished opinion. In this chapter we are

interested, however, whether it is possible to efficiently check if we can employ an

unrestricted opinion diffusion protocol in a given case.

It is also worth noting that recently Christoff and Grossi [2017] have provided

a characterisation of networks in which termination of the threshold-based opinion

diffusion protocol is guaranteed. However, we still do not know whether characteris-

ing convergent networks is of any advantage for their algorithmic analysis, in other

words, whether we can have a characterisation that is easier to check than actually

running the protocol until converging or looping in some way. Here, we settle this

problem.

Our Contribution. We study the convergence of opinion diffusion in social net-

works, modelled as directed graphs over a finite set of individuals, who simultane-

ously update their opinions. They switch their opinions if and only if the majority

of their influencers disagrees with them. We look at labelled networks, where indi-

viduals start with a binary opinion, and study the problem of whether that network

converges. We also look at unlabelled networks and consider the problem of whether

a labelling exists for which the network does not converge. This problem concerns

the structural aspect of opinion diffusion’s convergence, i.e., whether the structure

of the influence relation alone might guarantee convergence. Our contribution is

two-fold: firstly, we present some classes of networks which are guaranteed to con-

verge, and secondly we show that the problem of establishing whether a network

converges is PSPACE-complete even for the simplest of such protocols, closing a

gap in the literature. In fact, our result implies that any characterisation of such

networks, including the one provided by Christoff and Grossi [2017], cannot result

in an efficient procedure for verifying the convergence of the protocol we consider

(unless P=PSPACE).

We emphasize that even though our protocol is relatively simple, the com-

putational complexity lower bounds that we obtain extend directly to more general

models. For instance, the PSPACE-hardness of the problems we consider lifts

111

to the scenario in which each agent has its own specific update threshold. Thus,

our result implies that no complete characterisation of convergent networks can be

efficiently computed in practice for a wide range of plausible diffusion protocols.

Structure of the Chapter. First, in Section 7.2 we provide examples of networks,

for which it is easy to check if they are convergent for an arbitrary labelling. Subse-

quently, in Section 7.3 we prove that determining convergence is PSPACE-complete

in our setting. Finally, in Section 7.4 we conclude by discussing the ramifications of

our results and future research directions.

7.2 Graph Restrictions

We observe that all networks are convergent for some initial labellings, e.g., if all

of the vertices are labelled with the same colour. However, some networks converge

for all initial labellings, while others converge for just some of them. The left

subnetwork in Figure 7.1, for example, converges for every labelling. However, the

social network displayed in the right subfigure of Figure 7.1 behaves differently. I.e.,

it converges exactly when all of its vertices are labelled with the same colour.

Figure 7.1: In the left subfigure, a social network which converges for every labelling.

In the right, a social network which does not converge, unless all vertices are labelled

with the same colour.

We now focus on specific instances of social networks which converge for

every labelling. Let us start with DAGs, i.e., directed acyclic graphs. Even though

this observation is well-known, we include its proof, as it is vital for our further

reasoning.

Proposition 7.1. Let SN=(N,E) be a DAG. Then, SN converges in at most k

steps, for every labelling f , where k is the length of the longest path in SN.

Proof. Given a network SN=(N,E), which is a DAG, consider an arbitrary labelled

f of SN. Since SN is acyclic, for every i ∈ N that is not a source vertex, there is

a path to i from some source vertex of SN. Let level(i) be the length of the longest

such path. We will show by induction on level(i) that every f(i) will stabilise after

at most level(i) updates.

112

If level(i) is 0, then i is a source vertex, and therefore the labelling of i never

changes. Take now a natural r. Suppose further that all i, such that level(i) ⩽ r,

have stabilised after r updates. Then take a vertex i with level(i) = r+1. Since SN

is acyclic, for every i′ ∈ N , such that i′ → i, we have level(i′) ⩽ r. This means that

i′ is already stable after r updates. Hence, i will stabilise within one step after all

its influencers have stabilised, i.e., after at most r + 1 updates.

Networks that are not DAGs do not always converge, as shown in Figure

7.1. But some of them, such as cliques, have interesting properties with respect to

convergence.

Proposition 7.2. Let SN=(N,E) be a clique. SN converges for every labelling if

and only if #N is odd. Moreover, if SN converges, then it does so after a single

update step.

Proof. Suppose (N,E) is a clique and that #N is even. We will show that it does not

converge for some labelling. To see that consider a labelling f of (N,E), such that

#{i ∈ N : f(i) = b} = #{i ∈ N : f(i) = r}, as well as the labelled social network

SN = (N,E, f). As E is irreflexive, we have that, for each i ∈ N , it holds that

A(i) < D(i). It then follows that, for every such i, OD(SN, i) ̸= f(i). But this means

that after the update we still have that #{i ∈ N : f(i) = b} = #{i ∈ N : f(i) = r}.
So, for every network SNj in SNus, it holds that the colour of i is different in SNj ,

than in SNj+1. Therefore, SN does not converge.

Suppose now that (N,E) is a clique and that #N is odd. Consider further

any f : N → {b, r}, and assume without loss of generality that #{i ∈ N : f(i) =

r} > #{i ∈ N : f(i) = b}. Note that the size of sets Bf and Rf are not equal,

since #N is odd. Take now an arbitrary agent i, such that f(i) = r. Observe now

that A(i) ⩾ D(i). But then OD(SN, i) = r, since f(i) is the majority colour in the

clique. If instead f(i) = b, then A(i) < D(i), and hence OD(SN, i) = r. So, after a

single update step all agents are labelled r. Thus, the network converges.

We note that checking if a social network (N,E) is a clique can be done

in linear time, by calculating the size of E. As a consequence, the result above

shows that, for some structures, finding whether they converge for every labelling is

immediate.

Consider now the strongly connected components (SCCs) of a social network.

One might expect that if we knew that each SCC always converges, then so would

the whole network. Or, in other words, that every network that always converges

will also do so, when its members are only influenced by agents in a network that

113

always converges as well. This, in result, could lead to a reduction of the complexity

of checking if there exists a labelling of a social network which does not converge.

Remarkably, this is not true even for very simple cases, as exemplified in Figure 7.2.

Figure 7.2: A labelled network that does not converge, whose two SCCs (marked

by rectangles) do converge for every initial labelling. Observe that the fact that the

SCC in the lower tier does not converge holds because of the incoming edge from

the upper SCC.

The example provided above indicates that some networks admit labellings

which do not converge, even if they are composed of well-behaved fragments. We

now move on to the problem of checking convergence in an arbitrary social network.

7.3 The Complexity of Checking Convergence

We analyse two computational problems with respect to the protocol we are con-

sidering. The first of them is checking the convergence of a given labelled social

network.

Convergence:

Input: Social network SN = (N,E) and labelling f .

Question: Does SN converge from f?

The second is checking, for an unlabelled network, whether there is a la-

belling, for which it does not converge.

Convergence guarantee:

Input: Social network SN = (N,E).

Question: Is there a labelling of SN for which SN does not converge?

In the remainder of this section we will prove theorems associated with these

two computational problems.

Theorem 7.1. Convergence is PSPACE-complete.

Theorem 7.2. Convergence guarantee is PSPACE-complete.

114

It is important to note that due to the result which we prove in this section,

the problems that we study are also PSPACE-hard for all opinion diffusion models

for which our protocol is a special case. In particular, this holds in models with

agent-dependent update thresholds, i.e., where the fraction of disagreeing neighbours

needed for an individual to change their opinion might be different for distinct

agents. Another example of such models is the one with weighted trust levels, i.e.,

with weighted majority instead of majority update rule.

Let us argue that both problems belong to PSPACE. This observation holds

because each labelling of a social network SN = (N,E) takes at most O(#N) bits,

as we can represent it as a string of length #N , where each position indicates the

colour of a vertex. Notice then that each network admits 2#N labellings and thus,

if a a given labelled network is convergent, it reaches a stable network in at most

2#N opinion diffusion steps. Therefore, solution to the problems we consider in this

chapter can be obtained using polynomially bounded space by examining a bounded

number of opinion diffusion steps. Further, the synchronous update mapping SU

can be evaluated in polynomial time (for a single step of diffusion), as in order to

compute it, we only need to examine the neighbourhood of each agent once.

The hardness proof of Theorem 7.1 can be developed separately, but we

choose to give a uniform presentation and derive hardness of both problems from

the same construction, in order to make the proof of Theorem 7.2 easier to follow.

7.3.1 Ingredients for the Hardness Proofs

The main technical challenge for the hardness proof is that the update mapping SU

is based on the majority update. This means that if for an agent i and a pair of

labellings f, f ′ we would have that for all j in the set N−1(i) ∪ {i} it holds that

f(j) ̸= f ′(j), then, after the update, i will also have a different colour in f and

in f ′. It then follows, informally, that the vertices are indifferent to the identity

of blue and red (which will be further identified with binary truth values, 0 and 1,

respectively). But then, since it is not possible to immediately distinguish between

these values, we cannot simulate propositional logic directly.

Propositional Logic and Dual Rail Encoding. Let us introduce the basic

technical notions appearing in the proofs of hardness of the problems we consider.

We will use Boolean circuits, the description of which can be found in Chapter 3

and, more extensively, e.g., in [Papadimitriou, 1994, section 4.3]. Signals in these

circuits are Boolean values, true and false, and we will encode them in our social

networks. We need to encode logical gates (and and not) and constant gates (true

115

and false) too. We also encode the nop (i.e., no-operation) gate.

We use the dual rail encoding due to the monotonicity of the opinion diffusion

protocol. Indeed, notice that in the current setting, for a pair of vertices i, j, labelled

with the same colour, adding an edge from i to j will not result in the change of

j’s label in one step. This makes it impossible to model logical negation, while

representing this operation as a relation between individual vertices.

In the dual rail encoding, instead of considering individual vertices in a social

network, we will be often considering related pairs of vertices, called dual pairs. The

two vertices in a dual pair are ordered. Given a labelling of the network, a dual pair

is valid if its two vertices disagree, i.e., take different values, and invalid otherwise.

Dual pairs will be the building blocks in our construction, and our network will have

a mechanism to ensure their validity.

Our first step is to build constant gates. We introduce a distinguished dual

pair, the base pair. As long as it is valid, we assume without loss of generality that

its two vertices are coloured (r, b). There is only one base pair in the network. Now,

for every valid dual pair in the network, we interpret the colouring of this pair (r, b)

as true, and (b, r) as false.

The next step is to build logical gates. All these gates in our circuits have

indegree 1 or 2, that is, each gate receives input from at most two other gates. The

gates are depicted in Figures 7.3 and 7.4 and described in Example 7.1. We encode

and, not, and nop gates. It is worth mentioning at this stage, that nop gates will

be important for our reduction, as they will allow us to ensure that the length of

paths in the constructed network is appropriate.

Figure 7.3: The and gadget.

Figure 7.4: not gadget on the left, nop gadget on the right.

116

Example 7.1. The gadget in Figure 7.3 models an and gate, and the gadget in the

left side of Figure 7.4 models a not gate. The and gadget relies on the base pair,

which is depicted as a double rectangle. In more detail, if at time t the input dual

pairs (the two upper ovals) in the and gadget are valid, then at time t+1 the output

dual pair is valid and represents the and of the two input values. Similarly, for the

not gate, if at time t the input dual pair (upper oval) is valid, then the output dual

pair corresponds to the negation of the input value. Finally, the gadget in the right

side of Figure 7.4 models a nop (no operation) gate. There, at time t+1 the output

pair is a copy of the input pair at time t.

Turing Machines. Further, in our reduction we will need to build Boolean cir-

cuits to simulate the behaviour of Turing machines.

We will describe a restricted version of Turing machines that we use to prove

Theorems 7.1 and 7.2. These Turing machines are polynomially space-bounded, or

PSPACE machines (referring to the complexity class). These machines only use

space bounded by a function on their input. See Chapter 3 for the description of

Turing machines (and Papadimitriou [1994] for an extensive overview).

We will rely on the following properties of such Turing machines:

1. Any Turing machine has a finite description.

2. Any Turing machines can be run on arbitrary input strings of arbitrary length

m ≥ 0 over a fixed finite alphabet.

3. A run is a finite or infinite sequence of configurations. Each configuration is

either halting or has a unique successor configuration.

4. At any point during a run, an instantaneous description of a Turing machine

M (a configuration) can be encoded by a bit string of length c ·md, where the

constants c and d depend only on the machine M .

5. A Turing machine may either halt at some point during the run, or diverge (run

forever).

We will identify configurations of a Turing machines with their encodings

as n-bit strings (strings of truth values), with n dependent on the machine. Here,

n = c ·md, where m is fixed, while n is the same in all possible configurations the

machine.

For a given n, we will assume for the sake of simplicity that all n-bit strings

represent valid configurations. This assumption does not invalidate our reduction

and can in fact be eliminated using the technique of the following lemma.

117

Lemma 7.1. Given a Turing machine M and an integer n ≥ 1, there exists an

acyclic social network SN with the following properties:

• SN contains the base pair and has 2n further sources, grouped into n dual pairs,

and 2n, grouped into n dual pairs as well, which we associate with output pairs,

as well as three additional dual pairs, one of each is a sink.

• Every path from a source to an output pair has the same length h, independent

of n;

• SN simulates M . I.e., if at time t the base pair and input dual pairs are

valid and represent a configuration s(0) ∈ {0, 1}n, then at time t+ h if s(0) is

non-halting, the output dual pairs are valid and represent s(1), the successor

configuration of s(0). Otherwise at least one dual pair becomes invalid.

• SN can be constructed in time polynomial in n and in the description of M .

Proof. The assertion relies on the observation (following the lines of [Arora and

Barak, 2009, Theorem 6.6], or [Papadimitriou, 1994, section 8.2]) that for every

polynomially space-bounded Turing machine M and every integer n, there exists a

Boolean circuit C, satisfying the following properties

• C has n inputs and n outputs.

• C has equal-length paths from inputs to outputs (where this length h is inde-

pendent of n).

• C transforms an arbitrary non-halting configuration of M into its successor

configuration.

• C can be constructed in time polynomial in n and in the description of M .

These properties map into the assertions of the lemma, using dual pairs as vertices

in the circuit, and and and not gadgets from Example 1 as gates. To make the

network satisfy the second assertion of the lemma, we extend it using nop gadgets

where necessary.

To make sure that the third assertion holds, we include two additional dual

pairs. We further assume that for every non-halting configuration of M , we include

three additional pairs of vertices, i.e., (a1, b1), (a2, b2), (c1, c2), with c1 being influ-

enced only by a1, and c2 only by b2. If the starting configuration ofM is non-halting,

we assume that both of these pairs are valid and that a1 as well as b1 are labelled r.

118

Finally, using and and not gadgets, and starting at the output we construct a gate

influencing the pair pairs (a1, b1), so that a1 and b2 change their labels if and only

if the configuration given by the output pairs at time h corresponds to a halting

configuration of M . Observe that if that happens, then (c1, c2) becomes invalid.

Fuse Line, Valve, and Alarm. We will need a mechanism to check the initial

validity of dual pairs in our construction, as well as to detect the halting of a Turing

machine, following Lemma 7.1. If a dual pair is or becomes invalid, this will force

the convergence of the social network. We stress that it is enough for one of them to

become invalid for this to happen. As we will observe, this would cause a “cascading”

effect, resulting in the stabilisation of the network.

The mechanism consists of a fuse line (sequence of pairs of vertices) leading

to a valve and alarm (an even clique), as shown in Figure 7.5.

Q

P

. . .

Alarm

fafascdscFuse Line

. . .

Figure 7.5: The fuse line. Recall that we assume that if the base pair is valid, then
the left vertex in this pair is labelled r, and the right one is labelled b.

We first discuss the fuse line itself. Pairs of vertices in the fuse line are

depicted by rectangles. Each pair in the fuse line (except for the last) feeds into the

succeeding pair, as shown in Figure 7.6.

119

Figure 7.6: Two pairs in the fuse line, one feeding into the other. Left: in detail.

Right: simplified drawing (corresponding to connections between pairs in the fuse

line as depicted in Figure 7.5), abbreviating the connections in the left picture.

In addition, all other dual pairs in the entire network (depicted for the sake

of clarity as ovals) will also connect to distinct pairs in the fuse line as shown in

Figure 7.7. We will not think of the pairs in the fuse line as dual pairs.

Figure 7.7: Dual pair connected to pair from the fuse line. Left: in detail. Note

how the influence of the input pair on the output pair is stronger than in Figure 7.6.

Right: simplified drawing (used in Figure 7.5), abbreviating the connections in the

left picture.

At the end of the fuse line shown in Figure 7.5, the big circle is a clique of

2k vertices (an alarm), with k ≥ 2, and the valve mechanism is formed by the two

rectangles (pairs) P , Q, and the alarm. Both vertices of pair Q have edges to each

vertex in the alarm, and all vertices in the alarm have edges to both vertices of pair

P . In the following analysis, we say that the alarm is evenly split if exactly k of its

vertices are labelled b. We say that the alarm goes off at time t if all of its vertices

will have agreed by this time (we will usually imply that this was not the case at

time t− 1).

We show now several properties of this network, which will be crucial for the

PSPACE-hardness reduction.

Lemma 7.2. If at time t ≥ 1 a pair p in the fuse line is invalid, then the following

properties hold:

(a) It remains invalid forever.

120

(b) the succeeding pair is invalid from time t+ 1 onward.

Proof. Let us first show that the assertion (a) holds. Suppose that at the time t, a

pair p = (p1, p2) in the fuse line is invalid. Notice then that N−1(p1) = N−1(p2).

But this implies that since p1 and p2 have the same colour at t, we have that in every

time t′ > t they either both change their label, or they both do not. Assertion (a)

follows.

Further, following assertion (a), in order for assertion (b) to fail, the suc-

ceeding pair must be valid at times t and t + 1. Then, since the two vertices in

this succeeding pair have the same set of six influencers, this set should be evenly

split at time t. But this is impossible, because two of these influencers agree by the

assumption of the lemma, and the remaining four cannot be split into one and three

for every t ≥ 1 by the construction of the connection in Figure 7.7.

This entails the following fact.

Lemma 7.3. If some dual pair in the network is invalid at some time, then the last

pair in the fuse line becomes invalid at some time and remains invalid forever.

Proof. Follows directly from Lemma 7.2.

The final part of our construction of the network is that every vertex in the

alarm has edges to every vertex in the network, except for the fuse line, vertices

connecting dual pairs to pairs in the fuse line, the base pair, and pair Q of the valve.

So, the alarm is connected to all of the dual pairs, as well as the pair P . This entails

that when the alarm goes off, all vertices in the network eventually adopt the same

value, as shown in the following lemma.

Lemma 7.4. Suppose at time t at least one of the following conditions hold:

(a) The last pair in the fuse line is invalid.

(b) The two vertices of P agree.

(c) The two vertices of Q agree.

(d) The alarm is not evenly split.

Then, by time t+3, the alarm will have gone off. Further, by time t+6, all vertices

in the network agree.

Proof. Suppose that at some time t′ the alarm is split into sets of size m ≤ k and

2k −m. If m ≤ k − 2, the influence of Q on the alarm is negligible, so the alarm

121

goes off at time t′ + 1. If m = k, then all vertices in the alarm will change their

label at time t′ +1, if the two vertices of Q disagree. Otherwise, the alarm goes off.

Finally, if m = k − 1, then all vertices in the alarm will change their label at time

t′ + 1 if the two vertices of Q agree and side with the minority, otherwise the alarm

goes off.

We now show that, under the conditions of the lemma, the alarm will neces-

sarily go off at some time t′ ≤ t+3. If this does not happen then, by the argument

above, either (1) the alarm remains evenly split (and the vertices in each of the pairs

P and Q disagree), or (2) the alarm is split into sets of size k − 1 and k + 1, with

vertices changing their colour in each step, and the vertices of Q keep agreeing with

each other and alternating between labellings (b, b) and (r, r).

Consider scenario (1). Note that cases (b) and (c) are incompatible with

this scenario, because Q copies P and influences all vertices in the alarm. Case (d)

is not compatible with this scenario either. So only case (a) remains. But since in

this scenario the alarm is evenly split, the pair P will copy the last pair of the fuse

line, and at time t+ 1 case (b) is true. So, in scenario (1), the alarm will go off by

time t+ 3.

We now consider scenario (2). Assume without loss of generality that at time

t the alarm has k− 1 vertices labelled b and k+ 1 vertices labelled r, and that Q is

labelled (b, b) at this time (siding with the minority). Note that as (2) is the case,

the vertices in pair Q change their colour in every step. Further, since the alarm

is split into sets of size k − 1 and k + 1, the vertices of P copy the majority in the

alarm. Therefore, the labellings must follow the following diagram.

t t+ 1 t+ 2

Paaaaaaaaaaaaaaa (r, r)

Qaaaaaaaaaaaaaaa (b, b) (r, r) (b, b)

k − 1 in the alarma b r b

k + 1 in the alarma r b r

But this labelling of Q at time t+2 is not possible, because the pair Q simply

copies the pair P . Therefore, Q will remain at (r, r) instead. So, at time t + 3 the

alarm will go off.

It remains to prove that, in all of the cases we consider, in at most three

122

steps from the alarm going off, all vertices in the network will agree. Since all 2k

vertices in the alarm influence all dual pairs in the network, and the indegree of each

vertex in every dual pair is at most three (excluding the edges from the alarm), the

influence of the alarm will prevail as long as k ≥ 2. This means that all dual pairs

will become invalid and assume this value by time t + 4. All pairs in the fuse line

will follow by time t + 6. At the same time, pairs P and Q of the valve will follow

the alarm no later than at times t + 4 and t + 5, respectively. This completes the

proof.

Auxiliary Labelling a(s). Let SN T = (N,E) be the social network satisfying

the conditions described in Lemma 7.1, i.e., the fragment of our construction which

computes subsequent configurations of a Turing machine, and let s ∈ {0, 1}n be a

configuration of such a machine. We note that then SN T is acyclic, while all of

paths from source to an output pair in SN T have equal length h. Hence, the set of

all vertices on such paths in SN T can be partitioned into h + 1 layers (l0, . . . , lh),

where l0 is the source layer and layer lh is the layer containing the output pairs. In

other words, vertices in l0 have no influencers, while those in a layer li, with i > 0,

only have influencers in the layer li−1. Let us now denote by SN′
T = (N ′, E′) the

social network obtained from SN T by removing pairs outside of
⋃

i∈[0,h−1] li. So,

N ′ =
⋃

i∈[0,h−1] li, and E′ is the restriction of E to N ′. We now define the labelling

a(s) of SN′
T as follows, noticing that every dual pair is contained in one layer only.

Consider first any labelling of SN′
T , and let the n dual pairs in layer 0 be assigned the

values that represent s. Observe now the network SN T converges after a constant

number of updates by Proposition 7.1. We then pick as a(s) the labelling of the

limit network, i.e., the fixpoint of the sequence SN′
Tus

.

Construction of Network MN and Labelling f . We construct a social net-

work from the components described above. Given a Turing machine M , we take

the network SN satisfying the conditions described in Lemma 7.1 and combine it

with the fuse line, valve, and alarm as follows:

• For each i = 1, . . . , n, the ith source dual pair of SN is identified with the ith

output dual pair of SN, which transforms SN into a cyclic network, where all

cycles have length divisible by h.

• Every dual pair in SN connects to a distinct pair in the fuse line as described

above.

• Every vertex in the alarm has edges to all dual pairs in SN, except for the fuse

123

line and pair Q of the valve (in other words, to all dual pairs and to pair P),

as described above.

Notice that the fuse line needs as many pairs as there are dual pairs in SN, and

that k can be chosen as 2 (based on the proof of Lemma 7.4). This completes the

construction of the network MN which we use in our reductions.

Given a configuration s ∈ {0, 1}n of the Turing machine M , consider any

labelling of MN that satisfies the following conditions:

1. Vertices in SN are labelled according to the auxiliary labelling a(s) defined above.

2. Each pair in the fuse line and the valve is valid (i.e., its nodes disagree).

3. The alarm is evenly split.

4. In every connection of the form shown in Figure 7.7, exactly two out of four

intermediate vertices have value b.

We denote this labelling by f .

7.3.2 Hardness proofs

We proceed to proving the computational hardness of the problems for Theorems 7.1

and 7.2.

Proof of Theorem 7.1. We have already argued membership of these prob-

lems in PSPACE above and we will prove its hardness here. We rely on the

fact that there exists a universal, polynomial-space1 Turing machine U , for which

the following problem is PSPACE-complete. This statement follows from the

PSPACE-completeness of In-place Acceptance (see Theorem 19.9 in Papadim-

itriou [1994]).

Input: An integer n ≥ 1 and a configuration s(0) ∈ {0, 1}n of U .

Question: Does U diverge when started from configuration s(0)?

We now apply the construction above to the Turing machine U . Take the

network MN and the labelling f defined above. First note that dual pairs in SN

have inputs from inside SN and 2k inputs from the alarm. This means that SN will

function “autonomously” as long as the alarm remains evenly split. By Lemma 7.1,

SN will in this case compute consecutive configurations of the Turing machine U .

1A universal Turing machine simulates the computation of any Turing machine, on an arbitrarily
chosen input.

124

Indeed, observe that the labelling of the source level of SN will be set to s(0) at

time 0. Then, at times 1, . . . , h it will correspond to to s(1), i.e, the successor of

s(0). The analagous transformation takes place between every configuration s(i) and

s(1+1).

Observe that if the Turing machine U diverges when started from the con-

figuration s(0) then, by the observations made above, the alarm will always remain

evenly split, with vertices changing their colour in every step. This means that MN

does not converge. On the other hand, if U terminates, then some dual pair will

become invalid (Lemma 7.1), the alarm will go off (Lemmata 7.3 and 7.4), and the

network will converge. Theorem 7.1 follows.

Proof of Theorem 7.2. Again, we already argued membership inPSPACE above

and will prove hardness here. We will now rely on PSPACE-completeness of the

following problem:

Input: Integer n ≥ 1 and (a description of) a Turing machine M .

Question: Is there a configuration s ∈ {0, 1}n such that M diverges

when started from s?

The hardness of this problem is a variation of the Corollary of Theorem 19.9 in Pa-

padimitriou [1994].

The proof of Theorem 7.2 extends the proof of Theorem 7.1. Instead of U ,

we now have any polynomial-space Turing machine M . Recall from the previous

proof that if there is a configuration s ∈ {0, 1}n from which M diverges, then there

is an initial labelling from which MN fails to converge. So we will now consider the

case where M terminates starting from every configuration. Let us now determine

whether there is a labelling from which MN fails to converge.

Let us consider an arbitrary labelling g of MN . By Lemma 7.4, if there

exists a time t ∈ {0, 1, . . . , h − 1}, for which the network MN has an invalid dual

pair, then MN converges. The same holds if MN has an invalid pair in the fuse

line or valve, or if the alarm is not evenly split. Suppose now that none of the above

applies. Then consider configurations s0, . . . , sh−1 ∈ {0, 1}n formed by the values of

the source-layer dual pairs of SN at times 0, 1, . . . , h− 1. By the arguments above,

the network MN simulates the Turing machine M in the following way. For each

i ∈ {0, 1, . . . , h−1}, at times t ∈ {i, i+h, i+2h, . . .} the source-layer dual pairs of SN
form consecutive configurations ofM starting from si. IfM terminates when started

from some s′ ∈ {s0, . . . , sh−1}, then MN converges when started from the labelling

g. This means that a necessary condition for MN to fail to converge (starting from

125

g) is that M diverges when started from every si, i ∈ {0, 1, . . . , h− 1}. In this case,

there exists a configuration si from which the Turing machine M diverges. This

completes the proof of Theorem 7.2.

7.4 Conclusion

In this chapter we studied the problem of convergence of the opinion diffusion pro-

tocol, in which all agents synchronously change their binary opinion if the strict

majority of their neighbours disagrees with them.

Summary of Contributions. We have shown that checking convergence of opin-

ion diffusion in social networks is PSPACE-complete. In particular, we have shown

that the problems of checking if a network with a given labelling converges (Theo-

rem 7.1), and of determining if it admits any converging colouring (Theorem 7.2) are

intractable. We note that our results extend to majority-based multi-issue opinion

diffusion (see Grandi et al. [2015]), also in presence of integrity constraints (Botan

et al. [2019]), and to all update rules that admit suitable modification of our gadgets,

such as quota rules, in which an agent switches an opinion if a specified fraction of

their influencers disagrees with them.

Future Research. The results shown in this chapter open many possible direc-

tions for further research. Let us mention a few of them.

• In this chapter we have only investigated a limited number of cases for which

the problem of convergence of the opinion diffusion protocol which we consid-

ered is easy to solve. Hence, as our results imply that there is no efficiently

computable characterisation of convergent networks, the problem of identify-

ing classes of networks which always converge is an appealing open problem.

In particular, complexity of checking convergence in cases resembling real-life

social networks would be of high interest.

• We have shown that it is intractable to check if a network converges for a

given labelling. It remains open, however, whether the existence of a non-

trivial (i.e., different from all-red and all-blue) fixed-point configuration in our

model is an NP-complete property.

• We have limited ourselves to the study of synchronous opinion diffusion pro-

tocols. This is possibly the simplest social network update model, widely

adopted in the literature. However, we have not investigated the asynchronous

126

protocols, in which subsets of agents change their opinions in each step. We

note that in case of many protocols losing synchronicity makes the system

nondeterministic, so the question of convergence changes significantly.

• Finally, we note that our results are based on a worst-case complexity analy-

sis and an important question remains regarding the complexity of verifying

convergence in random networks, or networks based on real-world data.

127

Chapter 8

Majority Illusion

8.1 Introduction

Social networks shape the way people think. Individuals’ private opinions can change

as a result of social influence and a well-placed minority view can become what most

people come to believe (Stewart et al. [2019]). It is worth noting that the COVID-19

vaccination debate has brought to the fore the dramatic effects that misperception

can have in people’s lives (Johnson et al. [2020]) and highlighted the importance of

social networks, where participants receive the most unbiased information possible.

When individuals use their social network as a source of information, it

may be the case that minority groups are more “visible” as a result of being better

placed. This makes them over-represented, and even appear to be majorities in many

friendship groups – a phenomenon known as majority illusion. Majority illusion was

originally introduced by Lerman et al., who studied the existence of social networks

in which most agents belong to a certain binary type, but most of their peers belong

to a different one. Thus, they acquire the wrong perception, i.e., the illusion, that

the majority type is different from the actual one. Figure 8.1 shows an example of

this.

Figure 8.1: An instance of majority illusion. The well-placed red (shaded) minority
is perceived as majority by everyone.

128

Majority illusion has important consequences when paired with opinion for-

mation. If, for example, individuals change their mind based on what their friends

say, e.g., they follow a threshold model (Granovetter [1978]), then majority illusion

means that strategically placed minorities may well become stable majorities. Fur-

thermore, we note that majority illusion can have negative repercussions outside of

the context of opinion diffusion. For instance Santos et al. [2021] show how such

phenomenon can skew public good games towards unwanted outcomes. As such, it

is important to predict its occurrence in a network and, crucially, to see to it that

this undesirable phenomenon is eliminated.

The graph structure of majority illusion was analysed by Lerman et al.,

who studied network features that correlate with having many individuals under

illusion. They demonstrated how disassortative networks, i.e. those in which highly

connected agents tend to link with lowly connected ones, increase the chances of

majority illusion. However, no algorithms have yet been provided to check whether

majority illusion can occur in a social network.

Likewise, the approach of eliminating undesirable properties by network

transformation is not new, and extensively pursued in the context of election manip-

ulation (see, e.g., Castiglioni et al. [2021]), influence maximisation (Zhou and Zhang

[2021]), anonymisation (see, e.g., Kapron et al. [2011]) and of k-core maximisation

(see, e.g., Chitnis and Talmon [2018] and Zhou et al. [2019]). However, such natural

operations have yet to be studied in the context of eliminating majority illusion.

All in all, the computational questions of checking whether a network admits

majority illusion, and how this can be eliminated, are still unexplored.

Our Contribution. In this chapter we initiate the algorithmic analysis of major-

ity illusion in social networks, focusing on two computational questions. We first

consider the problem of verifying illusion, i.e., deciding whether there is a labelling

of the vertices such that a set majoritarian fraction of agents are under illusion,

and we prove it to be NP-complete. Our NP-hardness proof techniques also imply

NP-hardness on bipartite networks, planar networks, networks where the maximum

degree is bounded by a constant, and networks of constant c-closure.

In light of these negative results, we aim to identify tractable restrictions

of the problem by carrying out a parametrised complexity analysis involving well-

established graph width measures and their variants. We note that the study of

parametrised complexity with respect to social networks analysis is a direction

present in the literature. For instance, Bredereck and Elkind [2017] use parametrisa-

tion by tree width in the context of manipulating a majority opinion in synchronous

129

majority dynamics, where a fixed point is not guaranteed to exist. In particu-

lar, we obtain a fixed-parameter algorithm (FPT algorithm) for verifying illusion,

parametrised by the maximum degree of the network plus its tree width, as well as

by the size of the minimum vertex cover. Along the way, we show that for every

constant value of the network’s tree width, the problem can be solved in polynomial

time (i.e., an XP algorithm parametrised by the tree width). These two results are

of specific interest to sparse networks. We then also consider dense networks by

parameterising by the neighbourhood diversity of the input network and obtain an

FPT algorithm. Finally we move to the problem of eliminating illusion, which we

model as edge transformation by bounded Hamming distance. We show this prob-

lem to be NP-complete in general and W[1]-hard when parametrised by arguably

the most natural parameter, i.e., the number of modified edges.

Structure of the Chapter. In Section 8.2, we focus on checking whether illusion

can occur in a network. Further, Section 8.3 studies illusion elimination. Also, in

Section 8.4, we provide an example of a network in which it is possible to have that

all agents observe as the most popular a different label, than the most popular one

in the network, even though they cannot all be under the majority illusion. Finally,

Section 8.5 concludes the chapter, presenting various potential future directions.

8.2 Verifying Illusion

We are interested in the computational problem of checking, for a rational q, if

a given network admits q-majority illusion. Formally, we will study the following

problem.

q-majority illusion:

Input: Social network (N,E).

Question: Is there a labelling f : N → {b, r}, such that f induces a q-

majority illusion?

8.2.1 Hardness

Observe that q-majority illusion is inNP for every q, since verifying if a labelling

induces a q-majority illusion can be done by checking, for every vertex i, if i is under

illusion. We now prove that q-majority illusion is NP-hard for every rational

q ∈ (12 , 1], by providing a reduction from the NP-hard problem 2P2N-3-SAT for

every such q.

130

Let φ be a formula in 2P2N-3-CNF. We will construct an instance of q-

majority illusion, for which the answer is positive if and only if φ is satisfiable.

We commence with constructing a social network, which we call the encoding of φ,

or Eφ = (N,E). We will further show that it admits 1-majority illusion if and only

if φ is satisfiable, entailing the NP-hardness of 1-majority illusion. We show

that in Lemma 8.3. Finally, for each q ∈ (12 , 1], we construct a network Eq
φ, which we

obtain by appending a non-trivial network construction to Eφ. We then conclude

the proof, by showing in Theorem 8.1 that Eq
φ admits a q-majority illusion if and

only if φ is satisfiable, using the fact that increasing the blue surplus in Eφ results

in an increased number of vertices under illusion (see Lemma 8.4), and a technical

Lemma 8.5.

Variable, Clause and Balance Gadgets. For a formula φ in 2P2N-3-CNF, we

denote the set of variables in φ as X = {x1, . . . , xm}, and the set of clauses in φ

as C = {C1, . . . , Cn}. Let us first encode propositional variables. For a variable xi,

we define a subnetwork, which we call a variable gadget, as depicted in Figure 8.2.

There, the left subfigure presents what we call a filling structure.

The left part of this structure is a complete bipartite network K3,3, while

the right consists of seven vertices. We assume that there are at least six such

vertices that are dependents of vertices in the complete network in the same filling

structure. If it is the case for all seven of these vertices, then we assume that the

vertex in theK3,3 in this filling structure, depicted as top-right in Figure 8.2, has two

dependents. We further assume that each of the vertices in the complete network in

a filling structure has a dependent. Then, the variable gadget contains three copies

of the filling structure. In two of them, seven vertices are a dependent of a vertex

in the same filling structure.

Furthermore, a variable gadget contains three additional vertices, connected

as shown on the right side of Figure 8.2. We refer to two top-left vertices in the

right side of Figure 8.2 as literal vertices. Further, we say that upper literal vertex

corresponds to xi, and the lower literal vertex corresponds to ¬xi. Finally, in the

third filling structure, one of the vertices is a dependent of the upper-right vertex in

the right side of Figure 8.2, which is further adjacent to two vertices in the complete

bipartite network in this filling structure.

The following lemma shows that it is necessary for exactly one of the literal

vertices in a variable gadget to be labelled r in a labelling of this structure, which

induces 1-majority illusion. This observation will be crucial in demonstrating that

a labelling of the encoding of φ, in which all vertices in variable gadgets are under

131

a

xi

¬xi

Filling structure×3

Figure 8.2: Filling structure with a unique labelling such that all members are under
illusion on the left, labelling of type A on the right. Note that the vertex, which is
adjacent to literal vertices, is further adjacent to two vertices in a K3,3 in a filling
structure, and has one dependent.

illusion, corresponds to a valuation over X.

Lemma 8.1. A labelling of a variable gadget (considered as a separate network)

induces a 1-majority illusion only if at most one of the literal vertices is labelled r.

Proof. Take a variable gadget Vi, as defined above. Also, suppose that there is a

labelling f of Vi, which induces 1-majority illusion. Let us begin by observing that

all vertices in the complete networks in filling structures are labelled r in f . This

observation holds, as each of them has a dependent. Notice further that since the

vertex adjacent to literal vertices has five neighbours, we have that at least three of

them are coloured r in f .

We will now show that it cannot be the case that both literal vertices are

labelled r in f . Let us first observe that the vertex adjacent to the literal vertices

needs to be labelled r in f , as it has a dependent. Then, observe that there are

fourty-two vertices in a variable gadget. Thus, in a at most twenty vertices can

be labelled r in f , as we assume that the strict majority colour in f is b. As we

observed, at least eighteen of the vertices in filling structures need to be labelled r

in such a labelling of this gadget, as they have dependents. Similarly, the unique

vertex in the gadget, which is adjacent to the literal vertices needs to be labelled r

in f , as it has a dependent. Hence, at most one of the literal vertices can be labelled

r in this labelling. It follows that f induces a 1-majority illusion only if at most one

of the literal vertices is labelled r.

132

It is worth noting that there are two labellings of a variable gadget (as a

separate network), which admit 1-majority illusion. In one of them, the vertex

corresponding to xi is labelled r (we say that such a labelling is of type A). In the

second, the vertex corresponding to ¬xi is labelled r (we say that such a labelling is

of type B). Consider now a labelled network (N1, E1, f), where a variable gadget Vi is

a subnetwork. We note that if the margin of victory is 1 in (N1\V (Vi), E\E(Vi), f
′),

where f ′ is such that, for every i ∈ N \ V (Vi), we have that f(i) = f ′(i), then f

induces 1-majority illusion only if Vi if labelled in type A or type B, but not if both

literal vertices are labelled r.

We further introduce, for each clause Ci ∈ C, what we call a clause gadget

corresponding to Ci, as depicted in Figure 8.3. The three vertices in the right side

of this figure do not belong to the clause gadget. Instead, they correspond to the

literals in Ci. Then, we call the top vertex in the middle of the Figure 8.3 the

verifier vertex for Ci. Then, the gadget includes five filling structures, such that in

one of them seven vertices are dependents of a member of the same filling structure.

Further, there are four vertices outside of filling structures in this gadget, such

that each of them has a dependent in some filling structure in the same gadget.

Also, the verifier vertex is adjacent to one vertex in a complete network of some

filling structure. Observe that as all of the vertices in complete networks in filling

structures have a dependent, it holds that in a labelling of a clause gadget gadget

which induces 1-majority illusion, they are all labelled r.

We will now show that a labelling of a clause gadget can only induce 1-

majority illusion if at least one of the adjacent literal vertices is labelled r. This

fact will later allow us to show that the fact that all vertices in a clause gadget for

Ci are under illusion for some labelling of an encoding means that Ci is satisfied in

a valuation.

Lemma 8.2. There exists a labelling of a clause gadget (not as a separate network),

which induces 1-majority illusion with blue being a majority winner in this structure,

if and only if at least one vertex is adjacent to a literal vertex labelled r in this

structure.

Proof. Take some clause gadget, and call it G. Let us first observe that there are

sixty-nine vertices in G, i.e., thirteen vertices in each of five filling structures and

four additional vertices. Let us further observe that, for every filling structure F , it

holds that in every labelling f of F , which induces 1-majority illusion, at least six

members, which have dependents, are labelled r. Further, by previous observations,

it holds that all vertices outside of filling structures are labelled r in f .

133

aFilling structure ×4

L1

L2

L3

Ci

Figure 8.3: Clause gadget with a unique labelling such that all members are under
illusion. Note that each of the vertices in the gadget outside of filling structures
have a dependent, while the verifier vertex is also adjacent to one of the vertices in
a K3,3

Let us now show f exists, if at least one literal vertex, adjacent to the verifier

vertex in G, is labelled r. Suppose that this is the case. Then, let us construct such

a labelling f . First, let us label r all members of the complete networks in filling

structures, as well as all of the vertices in G, which are not in filling structures.

Further, let all other vertices in the gadget be labelled b. Observe that in this

labelling, thirty-four vertices, i.e., six vertices in each of the five filling structures, as

well as four additional vertices are labelled r. The remaining thirty-five, i.e., seven

vertices in each filling structure, are labelled b. Observe further that this implies

that all nodes, which are a dependent, are labelled b in f . Notice that then all of

the vertices in G, other than the verifier vertex, are under majority illusion. Notice

now that, by assumption, one of the literal vertices adjacent to the verifier vertex is

labelled r. Hence, the verifier vertex is under illusion, given the proposed labelling.

So, the claim holds.

Suppose now, towards contradiction, that all literal vertices adjacent to the

verifier vertex are labelled b, but there is a labelling f of G that induces 1-majority

illusion. Then, it follows by previous reasoning, that the vertex which is a dependent

of the verifier vertex is labelled b in f . Notice, however, that then the verifier vertex

is not under illusion, as four out of seven of its neighbours are labelled b, which

134

contradicts the assumptions.

Finally, for k ⩾ 2, we define what we call a balance gadget. If k is even, then

the balance gadget is the collection of k
2 pairs of vertices, which are disconnected

from the rest of the vertices in the encoding. Otherwise, we construct five vertices,

such that four of them form a bipartite complete graph K2,2, while the fifth is a

dependent of one of the other vertices, as well as the balance gadget for k − 3, if

k ⩾ 5. Observe that the balance gadget is bipartite, and that, for every labelling of

this gadget, which induces 1-majority illusion (not as a separate network), at most

one vertex in this structure is labelled b.

Encoding of a 2P2N-3-CNF Formula. We are now ready to construct a social

network Eφ, which encodes φ. First, for every variable x ∈ X, let us construct

a variable gadget, as depicted in Figure 8.2. Further, for every clause Ci ∈ C,

i.e., {L1
i , L

2
i , L

3
i }, let us create a clause gadget, as shown in Figure 8.3, with literal

vertices corresponding to L1
i , L

2
i , and L3

i being adjacent to the verifier vertex in the

clause gadget corresponding to Ci. As a final step, let us construct a balance gadget

for k = 2m+ n− 1, which by construction is always greater or equal than two (this

is because there is at least one variable and one clause in φ).

Observe that, since there are 2m + n − 1 vertices in the balance gadget, if

k is even, and 2m + n + 4 vertices otherwise. Recall that we have 42m vertices

in variable gadgets, and 69n vertices in clause gadgets. Hence, there are 44m +

70n − 1, or 44m + 70n + 4, vertices in Eφ. Let us further notice that, following

previous observations, for every labelling of Eφ, which induces 1-majority illusion,

and for every variable gadget (consisting of fourty-two vertices), at least twenty of

its members are labelled r. Similarly, in such a labelling, for every clause gadget, we

have that at least thirty-four out of sixty-nine members of the gadget are labelled

r. Finally, by previous observations, all vertices in the balance gadget are labelled

r, if k is even, and 2m+ n+ 4 vertices otherwise. We note that these observations

imply that in every labelling f of Eφ, which induces 1-majority illusion, it holds

that #Bf −#Rf = 1.

Lemma 8.3. Let φ be a formula in 2P2N-3-CNF. Then, φ is satisfiable if and only

if Eφ admits 1-majority illusion.

Proof. Let us consider a formula φ in 2P2N-3-CNF, with the set of variables X =

{x1, . . . ,m}, and the set of clauses Cφ = {C1, . . . , Cn}. Then, we will construct the

135

encoding Eφ of φ, and show that it admits 1-majority illusion if and only if φ is

satisfiable.

Let us first suppose that it is. Then, take a model M of φ and label Eφ as

follows. First, colour variable gadgets, so that, for every such gadget corresponding

to a variable xi, it is of type A if xi is true in M , and of type B otherwise. Then,

observe that, by previous observations on the construction of Eφ, we have that

every verifier vertex in Eφ is adjacent to some literal vertex which is labelled r, as

all clauses are satisfied under M . Hence, following previous observations, Eφ admits

1-majority illusion.

Suppose now that φ is not satisfiable. Then, observe that, following Lemma

8.1, every labelling of Eφ that admits a 1-majority illusion requires variable gadgets

not to have both literal vertices labelled r. Further, as φ is not satisfiable, it holds

that at least one verifier vertex would need to be adjacent to three literal vertices

labelled b. But then, it would not be under majority illusion, which contradicts the

assumptions. Hence, Eφ admits 1-majority illusion if and only if φ is satisfiable.

We now show some further properties of Eφ. We will henceforth assume, for

simplicity, that k = 2m + n − 1 is even. The subsequent claims can be shown for

odd k similarly. Given a 2P2N-3-CNF formula φ, let Iφ = 22m + 35n − 1, where

m is the number of variables and n the number of clauses in φ. Observe that this

is the maximum number of vertices which can be labelled red in Eφ, if blue is the

strict majority colour in this network.

Lemma 8.4. For every 2P2N-3-CNF formula φ, k ⩽ Iφ and any labelling f of

Eφ = (N,E), such that Rf = Iφ − k, the number of vertices under illusion in Eφ

under f is at most #N − k.

Proof. Consider a formula φ in 2P2N-3-CNF and a natural k < Iφ, as well as a

labelling f of Eφ = (N,E), such that Rf = Iφ − k. We will show that the number

of vertices in Eφ, which are not under illusion given f , is at most #Nφ − k.

Let us denote as A the set of all vertices in complete bipartite graphs in

filling structures, and all of the vertices in variable gadgets, which are not literal

vertices. Then, let B′ be the set of all vertices in clause gadgets, which are not in

filling structures. Further, let C be the set of literal vertices, and D be the set of

vertices in the balance gadget. Finally, let E′ be the set of all remaining vertices in

N . Observe now that A∪B′∪C ∪D∪E′ = N . Moreover, by construction, we have

that #A+#B′ + #C
2 +#D = Iφ.

We further show some crucial properties of A, B′, C, and D. Observe now

that each vertex in A has a dependent. Hence, there exists a set NA ⊆ E′, such

136

that for every i ∈ NA, we have that i is not under illusion, while #NA = #BA.

Similarly, for every i ∈ B′, we have that i has a dependent. Hence, there is a set

NB′ ⊆ E′, such that, for each j ∈ NB′ , we have that j is not under illusion, while

#NB′ = #BB′
. Let further MC = #C

2 −#BC if #C
2 −#BC > 0, and 0 otherwise.

Notice that, by construction, there is a set NC ⊆ A, such that, for every i ∈ NC , i

is not under illusion, while #NC = MC . Finally, notice that, by construction of a

balance gadget, there is a set ND ⊆ D, such that, for every i ∈ D, we have that i is

not under illusion, while #ND ⩾ #BD. Let us also observe that NA, NB′ , NC , and

ND are pairwise disjoint.

We are now ready to show that at least k are not under illusion under f .

Notice that #A+#B′

2 +#C+#D = Iφ, and that at most Iφ vertices are labelled r in

f , as otherwise b would not be the strict majority colour. But then, at least k vertices

are labelled b in A∪B′∪C∪D. This implies, however, that NA+NB′+NC+ND ⩾ k,

and hence at least k vertices are not under illusion under f .

Observe also that, by the reasoning similar to the proof of Lemma 8.4, we

also get that, for a labelling f of Eφ, which maximizes the number of vertices under

illusion (which we call M), k ⩽ Iφ and any labelling f ′ of Eφ = (N,E), such that

Rf ′ = Iφ−k, the number of vertices under illusion in Eφ under f ′ is at most M −k.

We further need the following technical lemma.

Lemma 8.5. Let q be a rational number in (12 , 1], and k > 0 be a natural number.

Then, there exists a natural number h∗ such that k+h∗

k+2h∗ ⩾ q, but k+h∗−1
k+2h∗ < q.

Proof. Take a k > 0, and a fraction a
b ∩ (

1
2 , 1]. Observe that if a

b = 1, then the claim

holds immediately. So, we will only consider fractions such that a
b < 1. Then, we

define a function f : N → Q such that, for a natural h, we have that f(h) = k+h
k+2h .

Observe first that f(0) = 1. Also, observe that f is strictly downwards monotone,

and is bounded by 1
2 . But then, as q ∈ (12 , 1], there needs to exist a maximal h such

that f(h) ⩾ q, and as f is strictly downwards monotone, f(h + 1) < q. We denote

such a number as h∗.

Notice now that (1) k+h∗

k+2h∗ ⩾ a
b , by definition of h∗. Note further that if

k+h∗

k+2h∗ = a
b , then the claim holds immediately. Let us assume then that k+h∗

k+2h∗ > a
b .

Further, suppose towards contradiction that (2) k+h∗−1
k+2h∗ ⩾ a

b . Also observe that, by

definition of h∗, we have that (3) k+h∗+1
k+2h∗+2 < a

b .

Now, from (1) we get that b(k+h∗) ⩾ a(k+2h∗). Also, from (2) we get that

b(k+h∗−1) ⩾ a(k+2h∗), which is equivalent to bk+bh∗−b ⩾ ak+2ah∗, and also to

−bk−bh∗+b ⩽ −ak−2ah∗. We denote this inequality as α. Also, from (3) we have

b(k+h∗+1) < a(k+2h∗+2), which is equivalent to bk+ bh∗+ b < ak+2ah∗+2a.

137

We denote this inequality as β By adding α and β, we get that 2b ⩽ 2a, which is

impossible since a < b.

We refer to such a number as h∗k,q. It is not difficult to show that we can

compute h∗k,q in polynomial time. This observation is crucial to ensure that the

intended reduction is constructable in polynomial time.

We are now ready to prove the NP-hardness of q-majority illusion, for

each q ∈ (12 , 1]. Towards this end, we construct a network Eq
φ, for every formula φ

in 2P2N-3-CNF and a such a fraction q. We start with constructing Eφ, and a set

of h∗#V (Eφ),q
pairs of vertices. Then, it follows from Lemma 8.3, as well as Lemmata

8.4 and 8.5, that Eq
φ admits q-majority illusion if and only if φ is satisfiable. Below

we include the full proof of this claim. Observe further that q-majority illusion

is in NP, as one can easily check the number of vertices under illusion in a labelled

network.

Theorem 8.1. q-majority illusion is NP-complete for every rational q in (12 , 1],

even for bipartite networks.

Proof. Take any rational q in (12 , 1]. We will now show that it is NP-hard by

reduction from 2P2N-3-SAT.

Consider a 2P2N-3-CNF formula φ with the set X = {x1, . . . , xm} of vari-

ables, and the set C = {C1, . . . , Cn} of clauses. Let us construct what we call a

q-encoding of φ. First, let Eφ be a subnetwork of the q-encoding of φ. Moreover,

construct h∗#V (Eφ),q
pairs of vertices, such that vertices in each such pair are con-

nected to each other, but not to any other vertex in the network. We call this set

of pairs H. Observe further that, following previous observations, the q-encoding of

φ can be constructed in polynomial time. Also, by Lemma 8.3 and Lemma 8.5, the

q-encoding of φ admits q-majority illusion, if at least #V (Eφ) + h∗#V (Eφ),q
vertices

are under illusion in f .

Let us show now that the q-encoding of φ admits q-majority illusion if and

only if φ is satisfiable. First, suppose that φ is satisfiable. Observe further that,

as φ is satisfiable, by Lemma 8.3, we have that Eφ admits 1-majority illusion as

a separate network. Hence, there is a labelling of the q-encoding of φ, such that

exactly Iφ vertices in Eφ, as well as one of vertices in each pairs in H, are labelled

red, while #V (Eφ)+h∗#V (Eφ),q
vertices are under illusion. Hence, the q-encoding of

φ admits q-majority illusion.

Suppose now that φ is not satisfiable. Then, suppose towards contradiction

that there is a labelling f of the q-encoding of φ, which induces q-majority illusion.

Let us first observe that if less than h∗#V (Eφ),q
are labelled red in H, then f does

138

not induce q-majority illusion. Indeed, if it was the case, then less than h∗#V (Eφ),q

vertices in H would be under illusion, and hence the number of vertices under

illusion in the q-encoding of φ would be strictly smaller than #V (Eφ) + h∗#V (Eφ),q
.

But then, as f induces q-majority illusion, at least h∗#V (Eφ),q
are labelled red in

H. So, the number of vertices labelled red in Eφ is smaller or equal to Iφ. If it is

equal to Iφ, then the number of vertices under illusion in H is h∗#V (Eφ),q
. But, as

φ is not satisfiable, not all members of Eφ are under illusion, and hence f does not

induce q-majority illusion. Now, suppose that less than Iφ vertices are labelled red

in Eφ. Let k = Iφ−#RV (Eφ). Further, let us denote as M the maximum number of

vertices under illusion in Eφ, if Iφ vertices are labelled red in this subnetwork. Now,

by Lemma 8.4, we have that the number of vertices under illusion in Eφ is at most

Iφ− k. But then, the number of vertices labelled red in H is at most h∗#V (Eφ),q
+ k,

and hence the number of vertices under illusion in the q-encoding of φ is at most

M − k+ h∗#V (Eφ),q
, which is smaller than #V (Eφ) + h∗#V (Eφ),q

since M < #V (Eφ).

Moreover, by inspecting all pairs of vertices in the construction in the proof

of Theorem 8.1, we get that q-majority illusion is NP-complete also for networks

in which minimum c-closure is bounded by a constant.

Observation 8.1. q-majority illusion is NP-complete for every rational q in

(12 , 1], even for networks with minimum c-closure bounded by 3.

Proof. Let us show that claim holds, by demonstrating that minimum c-closure of

Eφ is at most 3. We will show that, for every pair of vertices i, j in Eφ, we have

that if #N(i) ∩ N(j) ⩾ 3, then i and j are adjacent. We consider the following,

exhaustive cases. (1) i and j are both in the same variable gadget, (2) i and j are

both in the same clause gadget, (3) i is in some variable gadget while j is in some

clause gadget, (4) i and j belong to distinct variable gadgets, (5) i and j belong to

distinct clause gadgets, and (6) i and j are in the balance gadget. Observe that in

all other cases i and j do not have neighbours in common.

If (1) is the case, observe that if i and j are in the filling structure, then

either they are adjacent, or #N(i)∩N(j) ⩽ 2. Hence, the claim holds. Similarly, if

they both belong to additional three vertices in the gadget, then #N(i) ∩ (j) ⩽ 2,

since we assume that a literal does not appear more than twice in a formula. If (2)

is the case, then the claim holds by similar reasoning. Further, if (3) is the case,

then notice that i and j have at most two neighbours in common. Also, if (4) is

the case, then the only neighbours that i and j can have in common are verifier

vertices. Notice further that #N(i) ∩N(j) ⩽ 2 as φ is in 2P2N-3-CNF. Moreover,

139

if (5) holds, then the only vertices that i and j have in common are literal vertices.

But then, we have that #N(i) ∩N(j) ⩽ 3, as the size of the clauses in φ is limited

by three. Finally, if (6) is the case, then i and j have at most two neighbours in

common, so the claim follows as well.

Furthermore, again by examining the reduction used in the proof of Theorem

8.1, we get that q-majority illusion is NP-complete even if the maximum degree

of a vertex in a network is bounded by a constant.

Observation 8.2. q-majority illusion is NP-complete for every rational q in

(12 , 1], even for networks with maximum degree bounded by 6.

Proof. Let us show that the claim holds by demonstrating that, for a formula φ in

2P2N-3-CNF, no vertex in Eφ has the degree greater than 6. To see that, take any

vertex i in Eφ. Let us examine the following exhaustive cases. (1) i is in a filling

structure, (2) i is in a variable gadget, but is not a literal vertex and is not in a

filling structure, (3) i is a literal vertex, (4) i is in the balance gadget, (5) i is in a

clause gadget, but is not a verifier vertex and is not in a filling structure, (6) i is a

verifier vertex.

Let us then notice that if (1) is the case, then by construction i has the

degree of at most 5. Similarly, if (2) holds, then the degree of i is bounded by 5.

Further, if (3) is the case, then as each literal appears exactly twice in φ, we have

that i is adjacent to at most two verifier vertices. Hence, the degree of i is at most

3. Also, if (4) holds, then by construction we have that i has the degree of at most

2. Moreover, if the (5) is the case, then we get that the degree of i is bounded by 3.

Finally, if (6) holds, then i is adjacent to at most three literal vertices, as the clause

that its gadget corresponds to is limited to three literals. Hence, i is adjacent to at

most 6 vertices. Then, the claim follows.

It is important to note that in order to obtain Observations 8.1 and 8.2, we

crucially use the fact that the formulas we encode are 2P2N-3-CNF.

q-majority illusion on Planar Networks. We further show that q-majority

illusion isNP-complete also for planar networks. Observe that this result rules out

using generalisations of planarity as possible structural restrictions to get polynomial-

time algorithms. We prove it by reduction from Planar 3-SAT. The reduction that

we use to show this result follows a similar structure to the one we construct in the

proof of Theorem 8.1. So, we first construct a network Eφ, a planar encoding of

140

φ, which is an input of Planar 3-SAT. We show, in Lemma 8.8, that it admits

1-majority illusion if and only if φ is satisfiable. Then, in Theorem 8.2, we show the

NP-hardness of q-majority illusion on planar networks similarly to the proof of

Theorem 8.1.

Variable, Clause, and Balance Gadgets. For a formula φ in CNF with a pla-

nar incidence graph, we denote the set of variables in φ as X = {x1, . . . , xm}, and
the set of clauses in φ as C = {C1, . . . , Cn}. We assume, without loss of generality,

that there are at least two clauses in φ. Let us first encode the propositional vari-

ables. For each variable xi ∈ X, we construct a subnetwork, which we call a variable

gadget, as depicted in Figure 8.4. Further one of the vertices in this structure corre-

sponds to xi, and one to ¬xi, as shown in Figure 8.4. We call them literal vertices.

Let us first observe that there are seventeen vertices in this gadget. Further, notice

that seven of them have dependents, which implies that in every labelling of a vari-

able gadget, which induces 1-majority illusion, they are labelled r. We also observe

that this gadget is planar.

xi ¬xi

Figure 8.4: Variable gadget for the variable xi, with a labelling such that all members

are under illusion. Two of the vertices in the gadget correspond to literals, xi and

¬xi. Observe that this structure is planar.

Similarly to the encoding used in the previous part of this section, we show

that in a labelling of a variable gadget, which induces 1-majority illusion, exactly

one of the literal vertices is labelled r. We will later use this fact to demonstrate that

every labelling of the encoding of φ, which induces 1-majority illusion, corresponds

to some valuation over X.

Lemma 8.6. A labelling of a variable gadget (considered as a separate network)

141

induces a 1-majority illusion only if exactly one of the literal vertices is labelled r.

Proof. First observe that in every labelling f of a variable gadget Vi for xi, which

induces 1-majority illusion, seven of the members of Vi need to be labelled r, as

they have dependents. Then observe that as there are seventeen vertices Vi, at most

eight of them are coloured r in f . Let us now suppose that exactly one of literal

vertices is coloured r and, without loss of generality, let this vertex correspond to xi.

Then it is enough to consider a labelling as presented in Figure 8.4, and to observe

that then, there exactly eight vertices are labelled r, while all of the members of the

gadget are under illusion.

Then let assume towards contradiction that both of the literal vertices are

labelled b in f . Then, by previous observations, it holds that seven vertices with

dependents are labelled r, and hence at most one node which is a dependent is

labelled r. Note that this implies that at least a half of neighbours of one of the

vertices adjacent to the vertex corresponding to xi is labelled b, and thus it is not

under illusion. Contradiction.

We note that there are exactly two labellings of a variable gadget for xi,

which induce 1-majority illusion. We say that such a labelling is of type A, if the

literal vertex corresponding to xi is coloured r, and of type B, if the literal vertex

corresponding to ¬xi is coloured r. Intuitively, if this gadget is labelled in type A,

then xi is set to true, while if it is labelled in type B, it is set to false.

Furthermore, let us define, what we call a clause gadget, which corresponds to

a clause Ci ∈ C. We begin with introducing what we call a planar filling structure

(PFS), as depicted in Figure 8.5. It consists of nine vertices, four of which have

dependents. Observe that in every labelling of this structure, which induces 1-

majority illusion, at least four vertices are labelled r. Notice that this gadget is

planar.

Figure 8.5: Planar filling structure (PFS) with a labelling, such that all members

are under illusion.

Then, the clause gadget, as shown in Figure 8.6, for a clause Ci, consists of

142

three copies of PFS, as well as four additional vertices. The central vertex, which

we call a verifier vertex, is adjacent to literal vertices corresponding to the members

of Ci. Further, it is adjacent to the top-central vertex of each PFS in the gadget.

Finally, it has one dependent, and the remaining two vertices form an isolated pair.

Observe that this structure is planar.

PFS

PFSPFS

L2L1 L3

Figure 8.6: Clause gadget, with a labelling, such that all members are under illusion.

We further show that as in the case of the encoding used earlier in this

section, a clause gadget admits 1-majority illusion only when the verifier vertex is

adjacent to some literal vertex, which is labelled r. We will later associate the fact

that it is the case for a clause gadget corresponding to a clause Ci with Ci being

satisfied in a valuation over X.

Lemma 8.7. There exists a labelling of a clause gadget for Ci (not as a separate

network), which induces 1-majority illusion, if and only if at least one of literal

vertices corresponding to a member of Ci is labelled r.

Proof. Let us first observe that there are thirty-one vertices in the clause gadget

corresponding to the clause Ci. Thus, in a labelling f inducing 1-majority illusion,

at most fifteen of them are labelled r. Further, as observed before, we have that

twelve members of PFS subnetworks in the gadget are labeled r in f , as they have

dependents. Moreover, in such a labelling, the isolated pair of vertices also needs to

be labelled r, as otherwise one of them would not be under illusion. Furthermore,

the verifier vertex needs to be labelled r as well, since it has a dependent. Then,

it follows that all other vertices in the gadget, including one of verifier vertex’s

neighbours, are labelled b in f , as otherwise r would not be the strict minority

colour.

Let us then assume that at least one of the literal vertices adjacent to the

verifier vertex is labelled r. Without loss of generality, let it be L2
i . Then, it is enough

to construct a labelling, as shown in Figure 8.6 and Figure 8.5, and notice that then

all vertices in the gadget are under illusion. Now, suppose towards contradiction

143

that f induces 1-majority illusion, but all literal vertices corresponding to literals in

Ci are labelled b. Then notice that, by previous observations, one of the neighbours

of the verifier vertex within the gadget is labelled b. But then, four out of seven

vertices adjacent to the verifier vertex are labelled b, and thus it is not under majority

illusion. Contradiction.

Finally, for k ⩾ 2, we define what we call a balance gadget, similar to the con-

struction for bipartite graphs. If k is even, then the balance gadget is the collection

of k
2 pairs vertices, which are disconnected from all other vertices in the encoding.

Otherwise, we construct a triple of vertices, which forms a clique disconnected from

the rest of the network, as well as the balance gadget for k − 3, if k ⩾ 5. Ob-

serve that the balance gadget is planar, and that for every labelling of this gadget,

which induces 1-majority illusion (not as a separate network), all of its members are

labelled r. Observe that this structure is planar.

Encoding of a 3-CNF Formula. We can now construct a social network Eφ =

(N,E), which encodes a 3-CNF φ, in which the incidence graph between variables

and clauses is planar. First, for every variable xj ∈ X, let us construct a variable

gadget, as depicted in Figure 8.4. Further, for every clause Ci ∈ C, which we denote

as {L1
i , L

2
i , L

3
i }, let us create a clause gadget, as shown in Figure 8.6, with literal

vertices corresponding to L1
i , L

2
i , and L3

i being adjacent to the verifier vertex in the

clause gadget that corresponds to Ci. As a final step, let us construct a balance

gadget with k = m + n − 1, which by construction is always at least two, since we

assumed that there are at least two clauses in φ. Observe how since the incidence

graph of φ is planar, we can obtain that so is Eφ.

Notice further that since there are m+ n− 1 vertices in the balance gadget,

there are 18m+32n−1 vertices in Eφ. Let us further notice that following previous

observations, for every labelling of Eφ that induces 1-majority illusion, all vertices

in the balance gadget are labelled r. Also, then, for every variable gadget, which

consists of seventeen vertices, at least eight of its members are labelled r. Similarly,

in such a labelling, for every clause gadget, we have that exactly fifteen out of thirty

one-members of the gadget are labelled r. This implies that in such a labelling each

variable gadget is either labelled in type A, or in type B, as otherwise b would not

be a strict majority colour.

We can now show that the encoding of φ admits 1-majority illusion exactly

when φ is satisfiable.

144

Lemma 8.8. Let φ be a formula in 3-CNF. Then, φ is satisfiable if and only if Eφ

admits 1-majority illusion.

Proof. Take a formula φ in 3-CNF, with the set of variables X = {x1, . . . , xm}, and
the set of clauses C = {C1, . . . , Cn}. Then, we show that the ecncoding Eφ of φ

admits 1-majority illusion if and only if φ is satisfiable.

Let us first suppose that it is, and show that Eφ admits 1-majority illusion.

Take a model M of φ and label Eφ as follows. First, colour variable gadgets, so

that every such gadget corresponding to some variable xi ∈ X is of type A, if xi is

true in M , and of type B, if xi is false in M . Then observe that by the construction

of Eφ, every verifier vertex in the construction is adjacent to some literal vertex,

which is labelled r, as all clauses are satisfied under M . Hence, following previous

observations, Eφ admits 1-majority illusion.

Otherwise, suppose that φ is not satisfiable. Then, observe that since every

labelling of Eφ that admits a 1-majority illusion requires variable gadgets to be

labelled in type A or type B, and φ is not satisfiable, it holds that at least one

verifier vertex would need to be adjacent to three literal vertices labelled b. But

then, it would not be under the majority illusion, which contradicts the assumptions.

Hence, Eφ admits 1-majority illusion if and only if φ is satisfiable.

We now show some further properties of Eφ, which will be crucial towards

showing that q-majority illusion is NP-hard for every q ∈ (0, 1], even for planar

network. Given a 3-CNF formula φ, let Iφ = 18m+32n−1, where m is the number

of variables and n the number of clauses in φ. Observe that this is the maximum

number of vertices, which can be labelled red in Eφ if blue is the strict majority

colour in this network. Also notice that following previous observations it is the

minimum number of vertices, which need to be coloured red in a labelling that

induces 1-majority illusion in Eφ.

We can now show, that if less than Iφ vertices are coloured r in Eφ, then the

number of vertices under illusion is limited.

Lemma 8.9. For every 3-CNF formula φ, k ⩽ Iφ, and labelling f of Eφ = (N,E),

such that Rf = Iφ − k, the number of vertices under illusion in Eφ under f is at

most #N − k.

Proof. Take a formula φ in 3-CNF and a natural k, such that k < Iφ, as well as a

labelling f of Eφ, such that Rf = Iφ − k. We will show that the number of vertices

in Eφ, which are not under illusion under f , is at most #N − k. Let us denote as A

the set of all vertices in the four-cliques in the PFS structures, verifier vertices, and

145

all vertices in variable gadgets, which have dependents. Further, let B′ be the set of

all literal vertices. Then, we denote as C the set of all vertices in balance gadgets,

and in isolated pairs in clause gadgets. Finally, D is the set of all other vertices in

Eφ. Notice, that A ∪ B′ ∪ C ∪ D = N . Moreover, by construction, we have that

#A+#B′ + #C
2 = Iφ.

We now show several properties of A, B′, and C. First, observe that all

vertices in A have dependents. This implies that there exists a set NA ⊆ D, such

that for every i ∈ NA, i is not under illusion, while #NA = #BA. Let now MB′ =
#B′

2 −#BB′
, if #B′

2 −#BB′
> 0, and 0 otherwise. Observe that, by construction,

there is a set NB′ ⊆ D, such that for every i ∈ NB′ , i is not under illusion, while

#NB′ = MC . Finally, we note that there is a set NC ⊆ C, such that for every i ∈ C,

i is not under illusion, while #NC ⩾ #BC . Let us also observe that NA, NB′ , and

NC , are pairwise disjoint.

We are now ready to show, that at least k of them are not under illusion

under f . Notice, that #A + #B′

2 + #C = Iφ, and that at most Iφ vertices are

labelled r in f , as otherwise b would not be the strict majority colour. But then,

at least k vertices are labelled b in A ∪ B′ ∪ C ∪ D. This implies, however, that

NA+NB′+NC+D ⩾ k, and hence at least k vertices are not under illusion under f .

Observe also that, by the reasoning similar to the proof of Lemma 8.9, we

also get that, for a labelling f of Eφ, which maximizes the number of vertices under

illusion (which we call M), k ⩽ Iφ and any labelling f ′ of Eφ = (N,E), such that

Rf ′ = Iφ−k, the number of vertices under illusion in Eφ under f ′ is at most M −k.

We are now ready to show NP-completness of q-majority illusion for planar

graphs. The proof is similar to the proof of Theorem 8.1.

Theorem 8.2. q-majority illusion is NP-complete for every rational q in (12 , 1],

even for planar networks.

Proof. Take any rational q in (12 , 1]. First, notice that as observed before, q-

majority illusion is in NP. We will now show that it is NP-hard, by reduction

from Planar 3-SAT.

Consider a 3-CNF formula φ with the set X = {x1, . . . , xm} of variables,

and the set C = {C1, . . . , Cn} of clauses, with a planar incidence graph. Let us

construct what we call a q-encoding Eq
φof φ. First, let Eφ be a subnetwork of the q-

encoding of φ. Moreover, we construct h∗#V (Eφ),q
pairs of vertices, such that vertices

in each such pair are connected to each other, but not to any other vertex in the

network. We call this set of pairs H. Observe further that the q-encoding of φ

146

can be constructed in polynomial time. Also, by Lemma 8.8 and Lemma 8.5, the

q-encoding of φ admits q-majority illusion if at least #V (Eφ) + h∗#V (Eφ),q
vertices

are under illusion in f .

Let us show now that the q-encoding of φ admits q-majority illusion if and

only if φ is satisfiable. First, suppose that φ is satisfiable. Then observe that as φ is

satisfiable, by Lemma 8.8, it holds that Eφ admits 1-majority illusion as a separate

network. Hence, there is a labelling of the q-encoding of φ, such that exactly Iφ

vertices in Eφ, as well as one of vertices in each additional pairs, are labelled red,

and #V (Eφ) + h∗#V (Eφ),q
vertices are under illusion. Hence, the q-encoding of φ

admits q-majority illusion.

Suppose now that φ is not satisfiable. Then, suppose that there is a labelling

f of the q-encoding of φ, which induces q-majority illusion. Let us first observe that

if less than h∗#V (Eφ),q
are labelled red in H, then f does not induce q-majority

illusion. Indeed, if it was the case, then less than h∗#V (Eφ),q
vertices in H would be

under illusion, and hence the number of vertices under illusion in the q-encoding

of φ would be strictly smaller than #V (Eφ) + h∗#V (Eφ),q
. But then, as f induces

q-majority illusion, we have that, following Lemma 8.5, at least h∗#V (Eφ),q
vertices

are labelled red in H. So, the number of vertices labelled red in Eφ is smaller or

equal to Iφ. If it is equal to Iφ, then the number of vertices under illusion in H

is h∗#V (Eφ),q
, but as φ is not satisfiable, not all members of Eφ are under illusion,

and hence f does not induce q-majority illusion. Now, suppose that less than Iφ

vertices are labelled red in #φ. Let k = Iφ − RV (Eφ). Further, let us denote as M

the maximum number of vertices under illusion in Eφ, if Iφ vertices are labelled red

in this subnetwork. Now, by Lemma 8.9, we have that the number of vertices under

illusion is at most M − k. But then, the number of vertices labelled red in H is at

most h∗#V (Eφ),q
+k, and hence the number of vertices under illusion in the q-encoding

of φ is at most M −k+h∗#V (Eφ),q
, which is smaller than #V (Eφ)+h∗#V (Eφ),q

, since

M < #V (Eφ). It follows, by Lemma 8.9, that less than q · #V (Eq
φ) vertices are

under illusion, which contradicts the assumptions.

Then, from the fact that networks with clique size greater than 4 are not

planar, we get the following observation.

Observation 8.3. q-majority illusion is NP-complete, even for networks with

maximum clique-size bounded by some constant greater than 4, for every rational

q ∈ (12 , 1].

147

8.2.2 Parametrised Complexity Results

Our NP-completeness results for q-majority illusion motivate the study of this

problem from the perspective of parametrised complexity, with the aim of identifying

various restrictions on its input, which allow for tractability. Note that our result

that q-majority illusion is NP-hard on networks of constant max-degree implies

that, unless P=NP, q-majority illusion does not have an algorithm deciding it,

with a running time #Nf(∆), for any computable function f , where ∆ is the max-

degree. In other words, q-majority illusion is para-NP-hard, when parametrised

by ∆. Hence, we extend this parameterisation, using other structural properties of

the graph. Our first fixed-parameter tractability result, i.e., Theorem 8.3, states

that if we parameterise q-majority illusion by the max-degree and tree width

of the input network, then we can obtain a FPT algorithm. The idea behind our

proof is that we can use dynamic programming over a nice tree decomposition of a

network to check if it admits q-majority illusion, assuming that the maximum

degree of vertices in this network is bounded.

We next prove our first parametrised tractability result.

Theorem 8.3. q-majority illusion can be solved in time ∆O(k)#NO(1) on net-

works of tree width k and max-degree ∆.

Proof. Let the input graph be G, with tree width k. We first run the 2O(k)#NO(1)-

time 2-approximation algorithm of Korhonen [2021], in order to to compute a tree

decomposition of width at most 2k+1, and then use the well-known polynomial-time

algorithm to convert any given tree decomposition to a nice tree decomposition of

the same width (see Cygan et al. [2015]). We now design a dynamic programming

algorithm over this nice tree decomposition (T, β), of width at most 2k + 1.

We define a boolean function H (i.e., to the set {0, 1}), whose domain is

the set of all tuples, where each tuple comprises a vertex t ∈ V (T), a labelling

col : β(t)→ {r, b} of vertices in the bag β(t), a function esurp : Vt → {−∆, . . . ,∆},
where esurp(v) = 0 for all vertices i ̸∈ β(t), a function isurp : β(t) → {−∆, . . . ,∆},
some α ∈ [0,#N], and some ℓr ∈ [0,#N]. If β(t) = ∅, then we have that col =

esurp = isurp = ∅. We further define H(t, col, esurp, isurp, α, ℓr) = 1 if and only if

there exists a labelling ρ : Vt → {r, b}, such that the following hold:

1. For every i ∈ β(t), we have that ρ(i) = col(i).

2. The size of the set RVt
ρ = {i ∈ Vt : ρ(i) = r} is ℓr.

3. α is the size of the set

148

{i ∈ Vt : #NVt
ρ,r(i) > #N t

ρ,b(i) + esurp(i)}

4. For every i ∈ β(t), we have that isurp(i) = #NVt
ρ,b(i) − #NVt

ρ,r(i) captures the

internal blue surplus of every vertex in β(t) under ρ.

The intuition behind the description of the function H is the following. Con-

sider a hypothetical labelling f for the social network SN = (N,E) that witnesses

q-majority illusion. Then, fix a bag β(t), and let δ be the restriction of f to the set

Vt. Subsequently, we have that:

1. col is the restriction of δ to the vertices of the bag β(t).

2. The function esurp (read external surplus) describes the blue surplus for the

vertices in Vt, i.e., provided by the vertices outside of the set Vt. Note that then

only vertices of the bag β(t) get non-zero blue surplus from outside of Vt, since

only these vertices (among those in Vt) have any neighbours outside of Vt, by the

definition of a tree decomposition. Hence, we may assume a value of 0 “external”

blue surplus, for all vertices in Vt, which are not in β(t). On the other hand,

since the max-degree of the graph is ∆, the “external” blue surplus of any vertex

in β(t) is at least −∆, and at most ∆.

3. The value of ℓr is the number of vertices of Vt that are assigned r by f , and hence

also by δ.

4. The number α is the number of vertices of Vt which are under illusion with respect

to f . This includes all vertices in Vt \β(t), which have more red neighbours than

blue neighbours under δ, and all vertices in β(t), for which, if we add the blue

surplus given by vertices in Vt (which can be deduced from δ) and the blue surplus

from outside Vt (which is given by the function esurp), we get at most -1.

5. Finally, the function isurp (read internal surplus) describes the blue surplus for

the vertices in β(t), which is provided by the vertices within Vt. As for esurp, since

the max-degree is ∆, we have that the range of the function lies in {−∆, . . . ,∆}.

The crux of the correctness of the procedure, which we will define, is that

if we could find a labelling, say ρ, for Vt, which is not necessarily in accordance

with δ, but has the same “signature” of δ in terms of col, ℓr, α, isurp, then, given

the same esurp, then we can “cut” δ from f and replace it with ρ. This allows us

to obtain another labelling of SN, which has exactly the same number of vertices

149

under illusion as γ. This gives us the so-called optimal substructure property, that

is crucial for our dynamic programming algorithm.

Notice that there are only 22k+2 · (2∆ + 1)2(2k+2)#NO(1) = ∆O(k)#NO(1)

possible tuples. This is because each bag contains at most 2k+2 vertices, implying

at most 22k+2 possibilities for col at any bag and since, for every bag, we have that

esurp can only have non-zero values for vertices in the bag (and at most 2∆ + 1

possible values at that), we infer that there are at most (2∆+1)2k+2 possibilities for

esurp at any bag. The same bound extends to isurp as well. The remaining elements

of the tuple, i.e., α and ℓr, are both bounded by #N , and hence there are at most

#N2 possibilities for them at any bag.

Now, suppose that we have computed H(t, col, esurp, isurp, α, ℓr) for all possi-

ble valid values of the arguments. Notice that if this is achieved, then we can answer

whether G admits q-majority illusion by examining the table entries corresponding

to the root bag β(t⋆). Observe that, by the definition of a nice tree decomposition,

this bag is empty. Then, we have that SN admits q-majority illusion if and only if

there exist values lr ∈ [0,#N] and α ∈ [0,#N], such that α ⩾ ⌈q ·#N⌉, lr < #N
2

and H(∅, ∅, ∅, α, ℓr) = 1.

We next describe, how to compute the table entries at each bag, by going

over the following, exhaustive, cases and, assuming that all the table entries at all

descendant bags have been computed correctly.

Leaf Node. Let t be a leaf node. This is our base case. By the definition of a

nice tree decomposition, we have that β(t) = ∅. Then, we set H[t, ∅, ∅, ∅, 0, 0] = 1.

For all other values of α and ℓr, we set H[t, ∅, ∅, ∅, α, ℓr] = 0.

Introduce Node. Let t be an introduce node and t′ be its child in T , such that

β(t) \ β(t′) = {u}. Then, consider the tuple (t, col, esurp, isurp, α, ℓr), for which we

want to fill the table entry. We next define the tuple (t′, col′, esurp′, isurp′, α′, ℓ′r).

Let col′ denote the restriction of col to β(t′). If col(u) = r, then we set ℓ′r := ℓr − 1,

and otherwise we set ℓ′r = ℓr. Let esurp′ : Vt′ → {−∆, . . . ,∆}, and isurp : β(t) →
{−∆, . . . ,∆}, be defined as follows. For every vertex v in Vt′\β(t′), set esurp′(v) = 0.

Also, for every vertex v in β(t), which is a neighbour of u, if col(u) = r, then we set

esurp′(v) = esurp(v)− 1, and set isurp′(v) = isurp(v)+ 1. Further, for every vertex v

in β(t), which is a neigbhbour of u, if col(u) = b, then we set esurp′(v) = esurp(v)+1,

and we set isurp′(v) := isurp(v)− 1. Finally, we define α′ as follows. If esurp(u) plus

the number of neighbours of u in β(t′), which are labelled blue under col, minus the

number of neighbours of u in β(t′), which are labelled red under col is at most -1,

150

then we set α′ = α− 1. Otherwise, we set α′ = α. Now, we set

H[t, col, esurp, isurp, α, ℓr] := H[t′, col′, esurp′, isurp′, α′, ℓ′r].

Forget Node. Let t be a forget node and t′ be its child in T , such that β(t′) \
β(t) = {u}. Consider the tuple (t, col, esurp, isurp, α, ℓr), for which we want to fill

the table entry. We set H[t, col, esurp, isurp, α, ℓr] = 1 if and only if there exists

col′, esurp′, isurp′, such that (1) H[t′, col′, esurp′, isurp′, α, ℓr] = 1, (2) col is the re-

striction of col′ to β(t), and (3) esurp (isurp) is the restriction of esurp′ (respectively,

isurp′) to β(t).

Join Node. Let t be a join node and t1, t2 be its children in T . Then, by

the definition of a nice tree decomposition, we have that β(t) = β(t1) = β(t2).

Consider the tuple (t, col, esurp, isurp, α, ℓr), for which we want to fill the table en-

try. We set H[t, col, esurp, isurp, α, ℓr] = 1 if and only if there exists a pair of tu-

ples (t1, col, esurp1, isurp1, α1, ℓr,1) and (t2, col, esurp2, isurp2, α2, ℓr,2), such that

1. The table entriesH[t1, col, esurp1, isurp1,α1, ℓr,1] andH[t2, col, esurp2, isurp2, α2, ℓr,2]

are both 1.

2. α = α1 + α2 − x, where x is the number of vertices of β(t) forced to be under

illusion by the combination of esurp and isurp. That is, x is the size of the set

{v ∈ β(t) : esurp(v)+ isurp(v) ⩽ −1}. We are subtracting x from α1+α2, because

these vertices are counted in both α1 and α2.

3. ℓr = ℓr,1 + ℓr,2 − y, where y is the number of vertices of β(t) labelled red by col.

That is, y is the size of the set {v ∈ β(t) : col(v) = r}. We are subtracting y from

ℓr,1 + ℓr,2, because the vertices of β(t) labelled red by col is counted once in ℓr,1,

and once in ℓr,2.

4. For every v ∈ β(t1), we have that esurp1(v) = esurp(v)+ isurp2(v)−#N
β(t1)
col,b (v)+

#N
β(t1)
col,r (v). Here, we are saying that the blue surplus of a vertex v, external to

the set Vt1 , should be obtained by taking the blue surplus of v, external to both

Vt1 and Vt2 (which is given by esurp(v)), and then adding to it the blue surplus of v

internal to Vt2 (while accounting for edges between vertices in β(t1)). Precisely,

we subtract #N
β(t1)
col,b (v) − #N

β(t1)
col,r (v), because these quantity deals with blue

surplus, which is given by the edges between vertices of β(t1), and these should

not be counted in the external surplus of v with respect to the bag β(t1).

151

5. For every v ∈ β(t2), we have that esurp2(v) = esurp(v)+ isurp1(v)−#N
β(t2)
col,b (v)+

#N
β(t2)
col,r (v). The reasoning behind this constraint is symmetrical to the previous

one.

6. For every v ∈ β(t), we have that isurp(v) = isurp1(v) + isurp2(v) −#N
β(t)
col,b(v) +

#N
β(t)
col,r(v). Here, we are saying that the surplus of v internal to Vt should be

obtained by taking the surplus of v internal to Vt1 and to Vt2 , and adding them,

while accounting for the fact, that we are double-counting the contribution of

edges within β(t). This motivates the subtraction of #N
β(t)
col,b(v)−#N

β(t)
col,r(v).

Notice that filling all the table entries corresponding to any specific bag is

dominated the time taken for the join nodes, which in turn is dominated by #NO(1)

times the number of possible tuples to consider, from each of the two children bags.

Hence, the time taken to fill the entries for any one bag is bounded by ∆O(k)#NO(1),

and as we have argued earlier, there are at most ∆O(k)#NO(1) possible tuples cor-

responding to each bag. The stated running time then follows. This completes the

proof of the theorem.

We next discuss some immediate implications of the above result. First of

all, notice that ∆, i.e., the max-degree, is at most #N . Hence, our FPT algorithm,

parametrised by ∆ and the tree width, is in fact an XP algorithm, parametrised by

the tree width alone.

Corollary 8.1. q-majority illusion can be solved in time #NO(k) on networks

of tree width k.

Secondly, consider the following relation between tree width and another well-

studied graph width parameter, i.e., cliquewidth (Gurski and Wanke [2000]), which

we denote by cw(G)), on bounded-degree graphs. We make use of the following

result.

Proposition 8.1. Gurski and Wanke [2000] Let G be a graph that does not contain

the complete bipartite graph Kd,d as a subgraph. If cw(G) ⩽ k, then it holds that

tw(G) ⩽ 3k(d− 1)− 1.

Since graphs with max-degree ∆ exclude K∆+1,∆+1 as a subgraph, Proposi-

tion 8.1, along with Theorem 8.3, implies that q-majority illusion in FPT, when

parametrised by the maximum degree and cliquewidth of the input graph.

Corollary 8.2. majority illusion can be solved in time ∆O(∆·k)#NO(1) on net-

works of max-degree ∆ and cliquewidth k.

152

Neighbourhood Diversity. Here, we provide an FPT algorithm for q-majority

illusion parametrised by neighbourhood diversity. The following properties of

labellings of social networks form the crux of our algorithm.

Lemma 8.10. Let (N,E) be a social network, and let C = {T1, . . . , Tk} denote a

partition of N into k modules. Further, let f : N → {r, b} be a labelling, where b is

the majority colour. Then, the following hold:

1. If one vertex of an independent module is under illusion under f , then every

vertex of this module is under illusion.

2. If a blue vertex (i.e, a vertex labelled b) of a clique module is under illusion under

f , then all blue vertices in this module are also under illusion.

3. If a red vertex of a clique module is under illusion under f , then every vertex in

this module is also under illusion.

Proof. Let us first of all recall that, by the definition of neighbourhood diversity, we

have that every pair of vertices in each module have exactly the same neighbourhood

outside the module. Hence, the first statement immediately follows since, in an

independent module, there are no edges within the module. Now, consider the

second statement, and fix a clique module C. Let further u, v ∈ C be a pair of

blue vertices. Then, the number of red (blue) neighbours of u within C is exactly

the same, as the number of red (respectively, blue) neighbours of v within C. This

implies that if u is under illusion, then so is v. Now, consider the third statement.

By an argument identical to that for the second statement, we can conclude that if

a red vertex is under illusion, then all red vertices are under illusion.

It is now sufficient to argue that if a red vertex is under illusion, then at least

one blue vertex (assuming it exists) is under illusion. Let u be a red vertex in the

module, which is under illusion, and let v be a blue vertex in the module. Recall

that u and v have the same neighbourhood outside C. Moreover, the number of

blue neighbours of u within C is strictly greater than the number of blue neighbours

of v in C. Consequently, u has strictly fewer red neighbours within C than v. This

implies that if u is under illusion, then so is v. This completes the proof of the

lemma.

We will use as a subroutine the well-known FPT algorithm for the ILP-

Feasibility problem (recall Proposition 3.1 in Chapter 3). Intuitively, we will

make use of Lemma 8.10 to construct a number of ILP-Feasibility instances,

sufficient to solve q-majority illusion. Towards this end, following Claim 8.1,

153

we show that if the proposed constraints are satisfied, then we can conclude that

the network admits q-majority illusion. This will allow us to subsequently solve

q-majority illusion efficiently, for small value of neighbourhood diversity.

Theorem 8.4. q-majority illusion can be solved in time 2O(k log k)#NO(1) on

networks of neighbourhood diversity k.

Proof. Let SN = (N,E) be a given input social network, and let T = {T1, . . . , Tk}
denote the partition of N into k modules, each of which is a clique or an independent

set. Observe that the set C can be computed in polynomial time (see Lampis [2012]).

Then, for every i ∈ [0, k], let adj(i) denote the set {j ∈ [0, k] : j ̸= i and ∃u ∈ Ti, v ∈
Tj : (u, v) ∈ E}. That is, adj(i) comprises the indices of all those modules Tj , in

which least one vertex (and hence all vertices) is adjacent to a vertex of Ti (and

hence to all vertices of Ti). Let further χ = ⌈q ·#N⌉ denote the required number

of vertices to be under illusion, in order for q-majority illusion to hold. The main

intuition behind our algorithm is to construct 2O(k) instances of ILP-Feasibility,

each with O(k) variables, such that if there is a labelling of SN, which induces q-

majority illusion, then the solution to one of these ILP-Feasibility instances can

be used to obtain a solution to the given instance of q-majority illusion.

Let now C denote the set of all clique modules in T , and let I denote the set

of all independent modules in T . We are now ready to start describing the design

of the ILP-Feasibility instances. For every function:

• Clique-col: C → {r, b, both}

• Clique-maj: C → {b, all, none}

• Ind-maj: I → {all, none}

we construct one ILP-feasibility instance, for which the set of variables and

constraints will be discussed later in this proof. We first sketch the intuition behind

these functions. Let f : N → {r, b} be a labelling, which places at least χ vertices

under illusion (if one exists). Then, the function Clique-col expresses, for every clique

module, whether it contains both red and blue vertices according to f . Note that

if this is case, then this module is mapped to both. Further, if it contains only red

vertices, then this module is mapped to r. Finally, if it contains only blue vertices,

then this module is mapped to b. Furthermore, the function Clique-maj expresses,

for every clique module, whether no vertices are under illusion (mapped to none),

or only blue vertices are under illusion (mapped to b), or all vertices are under

illusion (mapped to all) under f . Recall that from the second and third statements

154

of Lemma 8.10, we have that these are the only three possibilities. The function

Ind-maj expresses, for every independent module, whether all vertices in the module

are under illusion (mapped to all) in the optimal labelling, or none of them are under

illusion (mapped to none). Recall, that from the first statement of Lemma 8.10, we

have that these are the only two possibilities. If f exists, then a “correct” triple of

these functions exist. Notice that there are at most 3k possibilities for Clique-col and

Clique-maj, and at most 2k possibilities for Ind-maj. Hence, we may iterate over all

possible at most 18k triples of functions, and we know that at least one of these

triples is the “correct” one if ρ exists.

Now, let us fix the functions Clique-col, Clique-maj, Ind-maj and describe

the ILP-Feasibility instance corresponding to it. In order to better understand

the constraints we will design, we consider the three selected functions to be the

“correct” ones that correspond to f . We will also assume that these functions are

consistent with each other. That is, if Clique-col(Ti) is r (respectively, b), then it

cannot be the case that Clique-maj(Ti) is b (respectively, r). In other words, if we

guess that every vertex of Ti is labelled red, then we will not guess that all of the

blue vertices of Ti will be under illusion. Moreover, we have a convention that in

Clique-maj, the value all takes “priority” over r or b. That is, if Clique-col(Ti) is b,

then Clique-maj(Ti) is either none or all, and never b. This is because setting it to all

achieves the same effect as setting it to b, since all vertices in Ti are blue. Any triple

of functions where these conditions are not satisfied are not considered further.

We now proceed to describe the ILP-Feasibility instance. For every i ∈
[0, k], let si denote the size of V (Ti). We know the value of each si, since we have

we know T . The set of variables in this instance is
⋃

i∈[0,k]{ri, bi, pi}. The intuitive

meaning of these variables is the following. Recall that f : V (SN) → {r, b} is a

hypothetical optimal labelling that places at least χ vertices under illusion. Then,

for every module Ti, we have that ri represents the number of vertices of Ti labelled

red in f . Similarly, bi is the number of vertices in Ti labelled blue in f , while pi will

be used to represent the number of vertices of Ti, which are under illusion following

f . Notice that we have 3k variables in total. We are now ready to present our

constraints.

1. For every i ∈ [0, k], we have the constraint ri + bi = si
1. This constraint says

that the numbers of red and blue vertices of each module should add up to the

total number of vertices in that module.

1Notice that equality constraints can always be expressed as two inequalities, as required in the
definition of ILP-Feasibility. For instance, in this case, we have ri + bi ⩽ si and −ri − bi ⩽ −si.

155

2. −
∑

i∈[0,k] bi +
∑

i∈[0,k] ri ⩽ −1. This constraints says that the total number of

vertices labelled blue must exceed the total number of vertices labelled red. So,

as a consequence, we get that blue would be the majority colour.

3. −
∑

i∈[0,k] pi ⩽ −χ. This says that as long as we ensure that the number of

vertices under illusion from each Ti is at least pi, then the total number of vertices

under illusion is at least χ.

4. For every i ∈ [0, k], such that Ti is an independent module, if Ind-maj(Ti) = all,

then we add the constraint
∑

j∈adj(i) bj −
∑

j∈adj(i) rj ⩽ −1. That is, for every

vertex in Ti, the number of red neighbours must exceed the number of blue

neighbours, i.e., they are all under illusion.

5. For every i ∈ [0, k], such that Ti is an independent module, if Ind-maj(Ti) = all,

then we add the constraint pi = si, and otherwise (i.e., when Ind-maj(Ti) = none),

we add the constraint pi = 0.

6. For every i ∈ [0, k], such that Ti is a clique module, we add a constraint as follows:

• If Clique-maj(Ti) = none, then pi = 0.

• If Clique-maj(Ti) = b, then pi = bi.

• If Clique-maj(Ti) = all, then pi = si.

These constraints ensure that the number of vertices of Ti, which are supposed

to be under illusion, match with the information provided by the function Clique-

maj, i.e., whether the set of vertices under illusion is empty, or is equal to the set

of all blue vertices, or to all of the vertices in the module.

7. For every i ∈ [0, k], such that Ti is a clique module, we do the following:

• If Clique-col(Ti) = r, then we add the constraint si = ri. Further, if it also

holds that Clique-maj(Ti) = all, then we add the constraint

−(ri − 1) +
∑

j∈adj(i)

(bj − rj) ⩽ −1

• If Clique-col(Ti) = b, then add the constraint si = bi. Further, if it also

holds, that Clique-maj(Ti) = all, then we add the constraint

bi − 1 +
∑

j∈adj(i)

(bj − rj) ⩽ −1.

156

These constraints say that if every vertex in Ti is labelled red (blue), then the

number of red vertices (respectively, blue vertices) is the total number of vertices

in Ti. Moreover, if every vertex is required to be under illusion according to the

function Clique-maj, then the blue surplus of any vertex in Ti is at most -1.

8. For every i ∈ [0, k], such that Ti is a clique module with Clique-col(Ti) = both,

we do the following

• If Clique-maj(Ti) = all, then we add the constraint

bi − ri + 1 +
∑

j∈adj(i)

(bj − rj) ⩽ −1

This constraint says that if we take a red vertex in Ti, and compute its blue

surplus, then it is at most -1. That is, it is under illusion. This in turn

implies that every vertex is under illusion, as required by Clique-maj(Ti).

• If Clique-majTi = b, then we add the constraint

bi − ri − 1 +
∑

j∈adj(i)

(bj − rj) ⩽ −1

This constraint says that if we take a blue vertex in Ti, and compute its

blue surplus, then it is at most -1.

9. For every variable x ∈
⋃

i∈[0,k]{ri, bi, pi}, we have a constraint −x ⩽ 0, which

imposes a non-negativity constraint on every variable. This will allow us to treat

ri, bi, pi as sizes of vertex sets.

10. Finally, for every i ∈ [0, k], we add the constraint pi ⩽ si, in order to indicate

that the number of vertices of Ti, which are under illusion, can never be more

than the total number of vertices in Ti.

This completes the description of the ILP-Feasibility instance. We refer to

the previously defined constraints as C1-C10. Observe that the ILP-Feasibility in-

stance can be computed in polynomial time, given the three functions which we

consider in such an instance.

One can further observe that for the optimal labelling ρ, and the correspond-

ing three functions, these constraints are satisfied. This implies that if ρ exists, then

at least for one of the triples, the corresponding ILP-Feasibility instance can be

solved – for each i ∈ [0, k], set ri (bi) to be the number of vertices of Ti, which are

labelled red (blue) by f , and set pi to be the number of vertices of Ti under illusion.

157

We next prove that if we solve the ILP-Feasibility instance corresponding

to some triple, then we can recover a labelling inducing the required q-majority

illusion (which may not be the same as f). Let
⋃

i∈[0,k]{r∗i , b∗i , p∗i } be a solution for

the ILP-Feasibility instance. Observe that due to C9, we have that all variables

get non-negative values. We now define a labelling f∗ as follows. For every i ∈ [0, k],

we select an arbitrary set of r∗i vertices from Ti, and label them red. Furthermore,

we label the remaining vertices of each Ti (of which must there must be exactly b∗i ,

due to C1), with blue. Since C2 is satisfied, it follows that blue is the majority label.

We next prove the following claim, which, along with C3, would then imply that at

least χ vertices in total are under illusion, as required.

Claim 8.1. For every i ∈ [0, k], the number of vertices of Ti under illusion, with

respect to f∗, is at least p∗i .

Proof. Consider an independent module Ti. Suppose that Ind-maj(Ti) = all. Since

C4 is satisfied, it follows that all si vertices of Ti are under illusion. Moreover,

C5 implies that p∗i = si, hence validating our claim that the number of vertices

of Ti under illusion with respect to f∗ is at least p∗i . On the other hand, if Ind-

maj(Ti) = none, then p∗i = 0, and the claim is trivially true, because the number

of vertices of Ti under illusion is always at least 0. The same argument applies if

we consider a clique module Ti, such that Clique-maj(Ti) = none. That is, p∗i = 0,

and the claim is trivially true, because the number of vertices of Ti under illusion is

always at least 0. Hence, we assume that we are only left with clique modules Ti,

such that Clique-maj(Ti) ̸= none. Now, we have the following, exhaustive, subcases.

Case 1: Clique-col(Ti) = r Since we have assumed that Clique-maj(Ti) ̸= none, it

must be the case that Clique-maj(Ti) = all. Then, C7 guarantees that −(r∗i − 1) +∑
j∈adj(i)(b

∗
j − r∗j) ⩽ −1. But notice then that we have labelled exactly r∗j vertices

of each Tj red, and the remaining vertices blue. Hence, it must be the case that the

blue surplus of every vertex in Ti (as expressed in C7) is at most -1, and so all of

the si vertices of Ti are under illusion. This satisfies the claim, since p∗i is always at

most si (due to C10).

Case 2: Clique-col(Ti) = b. Again, it must be the case that Clique-maj(Ti) = all.

Then, C7 guarantees that, since it holds that b∗i − 1 +
∑

j∈adj(i)(b
∗
j − r∗j) ⩽ −1, and

we have labelled exactly r∗j vertices of each Tj red and the remaining blue, it follows

that the blue surplus of every vertex in Ti is at most -1. So, every vertex of Ti is

under illusion. As before, this satisfies the claim, since p∗i ⩽ si (C10).

158

Case 3: Clique-col(Ti) = both. In this case, Clique-maj(Ti) could be all or b. In

the former case, C8 guarantees that b∗i − r∗i +1+
∑

j∈adj(i)(b
∗
j − r∗j) ⩽ −1, implying

that at least one red vertex is under illusion. So, by Lemma 8.10(3), we have

that every vertex in Ti is under illusion. In the latter case, C8 guarantees that

b∗i − r∗i −1+
∑

j∈adj(i)(b
∗
j − r∗j) ⩽ −1, implying that at least one blue vertex is under

illusion, and so, by Lemma 8.10(2), we have that every blue vertex in Ti is under

illusion. Hence, the number of vertices of Ti under illusion is at least the number of

blue vertices, i.e., b∗i . However, in this case C6 guarantees that p∗i = b∗i and hence,

the number of vertices under illusion in Ti is again at least p∗i , as required. This

completes the proof of the claim.

We have argued the correctness of the algorithm. Notice further that the

running time is bounded by the time required to compute T , which is polynomial,

plus 18k, multiplied by the time required to construct an ILP-Feasibility instance

and to execute Proposition 2 in Chapter 3, which is bounded by 2O(k log k)#NO(1).

This gives an overall bound of 2O(k log k)#NO(1) on our algorithm. This completes

the proof of the theorem.

Since graphs with vertex cover number at most k have neighbourhood diver-

sity at most k + 2k (see Lampis [2012]), Theorem 8.4 has the following corollary.

Corollary 8.3. q-majority illusion can be solved in time 22
O(k)

#NO(1), on net-

works with vertex cover number k.

Table 8.1 shows an overview of parametrised complexity results obtained in

this section.

Parameters

FPT ∆ + tw, ∆ + cw, ND, VC

XP tw

Para-NP-Hard ∆, c-closure, max-clique-size

Table 8.1: Summary of the main parametrised complexity results on q-majority
illusion . Here, ND denotes neighborhood diversity and VC denotes vertex cover
number.

159

8.3 Eliminating Illusion

We now turn to the problem of reducing the number of vertices under illusion in a

given labelled network, by modifying the connections between them. Namely, we

consider the problem of checking if it is possible to ensure that q-majority illusion

does not hold in a labelled network, by altering only a bounded number of edges.

q-Illusion Elimination:

Input: SN = (N,E, f), such that f induces q-majority illusion in (N,E, f),

k ∈ N, such that k ⩽ #E.

Question: Is there a SN’ = (N,E′, f), such that #{(e ∈ N2 : e ∈ E iff e /∈
E′} ⩽ k, while f does not induce q-majority illusion in SN’ ?

We also consider two refinements of this problem. First, let us introduce

Addition q-Illusion Elimination, in which we restrict the possible actions to

adding edges.

Addition q-Illusion Elimination:

Input: SN = (N,E, f), such that f induces q-majority illusion in SN,

k ∈ N, such that k ⩽ #E.

Question: Is there a SN′ = (N,E′, f), such that E ⊆ E′, #E′ −#E ⩽ k,

and f does not induce q-majority illusion in SN’?

We also define Removal q-Illusion Elimination, for removing edges.

Removal q-Illusion Elimination:

Input: SN = (N,E, f) such that f induces q-majority illusion in SN, k ∈ N
such that k ⩽ #E.

Question: Is there a SN′ = (N,E′, f) such that E′ ⊆ E, #E − #E′ ⩽ k

and f does not induce q-majority illusion in SN’?

8.3.1 Hardness

In this section we show that q-Illusion Elimination is NP-complete. In fact,

our construction implies that this problem is also W[1]-hard, when parametrised

by the number of changed edges in a social network. We obtain that by providing

the required reduction from k-clique. In the following, we give a sketch of our

reduction to convey the necessary intuition behind our proof, which is followed by

a formal proof.

160

Consider an instance (G, k) of k-Clique, where G = (VG, EG). We now

construct a social network (N,E, f) as follows. First, we add the vertex set VG

to N , and the edge set EG to E. We further assign each vertex i in VG the label

red, that is f(i) = r. Next, for each vertex i ∈ VG, we add a set ri of red labelled

vertices, and a set bi of blue labelled vertices, while ensuring that number of red

neighbours of i is exactly k − 1 more than the number of blue neighbours of i. The

idea behind adding these vertices is to make sure that each vertex in VG has a red

surplus of exactly k − 1. Then, the vertices in VG are under illusion. Now, we

impose the condition that only the vertices in VG remain under illusion by adding,

for each vertex j in the sets ri and bi, two blue labelled vertices j1, j2 and adding

edges (j1, j), (j2, j), (j1, j2). Then, j is not under illusion, as it has two blue labelled

neighbours, as well as one red labelled neighbour. Moreover, j1, j2 are not under

illusion, as they have one red labelled and one blue labelled neighbour.

We show, in Lemma 8.13, that it is possible to eliminate illusion from k

vertices in this structure by altering at most
(
k
2

)
edges exactly when there exists a

k-clique in G. Next, we add some extra red and blue labelled vertices, which are

not under illusion, to guarantee that blue is the majority label, and the ration of

vertices under illusion minus k, to the total number of vertices, is at most q. We

set our budget (of edge modifications in the network) to be
(
k
2

)
, i.e., k2−k

2 . This

completes our reduction.

In order to argue the correctness of our reduction, we show that in order to

remove q-majority illusion from the constructed network, we must make sure that

at least k more vertices are not under under illusion, and that these must come from

VG, as only vertices in VG are under illusion. In order to achieve this, at least k− 1

edges on each such vertex must be removed. Achieving this goal by deleting at most(
k
2

)
edges is only possible, if there is a clique on k vertices in G. Conversely, if we

can delete any
(
k
2

)
edges to make k vertices under illusion in (N,E, f), then there

must be a k-clique in G. We show that this is the case in the proof of Lemma 8.14,

which implies the W[1] hardness of the problem we consider.

We start with two additional structures, which we call m-pump-up and m-

pump-down gadgets. These gadgets will help us to ensure the correctness of the

construction, which we will provide, for a chosen q. We note that adding them to

a network, in which r is the minority colour, does not affect the fact that b is the

majority colour.

m-Pump-Up Gadget. Let us construct what we call an m-pump-up gadget. For

a natural number m ⩾ 1, we create m+4 blue vertices, which are not connected to

161

each other. In addition, we construct 4 red vertices, which are also not connected

to each other. Furthermore, let each red vertex in the gadget be connected to all

blue vertices in this structure. Note that this forms Km+4,4. Observe that if a

m-pump-up gadget is embedded in a network in which blue is the majority colour,

then m + 4 vertices are under illusion in this structure, while 4 are not. Also, for

every blue vertex i in the gadget, the margin of victory of i is −4. Figure 8.7 depicts

a 2-pump-up gadget.

Figure 8.7: m-pump-up gadget for m = 2.

m-Pump-Down Gadget. Let us further construct what we call anm-pump-down

gadget. For an odd, natural number m ⩾ 1, the m-pump-down gadget is a m-clique,

in which blue has the majority of 1. Also, for an even, natural number m ⩾ 2, we

construct the pump-down gadget for m− 1, and a disjoint red vertex. Observe that

if an m-pump-down gadget is embedded in a network in which blue is the majority

winner, then all m members of the structure are not under illusion. Moreover, if

a blue vertex in the gadget would be adjacent to an additional red vertex, then it

would be pushed into illusion. Figure 8.8 depicts a 4-pump-down gadget.

Figure 8.8: m-pump-down gadget for m = 4.

The following technical lemmas will help us decide what is the number m

for which we are required to add either an m-pump-up or an m-pump-down gadget.

The first of them is related to the pump-up gadget.

Lemma 8.11. For every pair of natural numbers m, k > 0 and every rational

number q in (0, 1), such that m
k < q there exists an h, such that m+h

k+h+4 < q, but
m+h+1
k+h+4 ⩾ q.

Proof. Take any such k,m and q = a
b , such that m

k < q. We define a function

fm,k : N → Q such that for a natural number h, fk,m(h) = m+h
k+h+4 . First, observe

that as m
k < q it holds that fm,k(0) < q. Moreover, observe that fm,k is strictly

162

increasing, and that it is bounded by 1. Therefore, there exists an h , such that

fm,k(h) < q, while fm,k(h+ 1) ⩾ q. We call such a number h#.

Suppose now, towards contradiction, that m+h#+1
k+h#+4

< a
b . Then, we have that

b(m+h#+1) < a(k+h#+4), which is equivalent to a(k+h#)+4a > b(m+h#)+b.

We denote this inequality as α. Additionally, as fm,k(h
+ 1) ⩾ q, we know that

m+h#+1
k+h#+5

⩾ a
b . So, a(k + h# + 5) ⩽ b(m + h# + 1), and thus −a(k + h# + 5) ⩾

−b(m + h# + 1). This is equivalent to −a(k + h#) − 5a ⩾ −b(m + h# + 1). We

denote this inequality as β. By adding α and β we get that −a ⩾ 0, so a ⩽ 0. But

this is impossible, since a
b > 0.

We will further denote such a number as h#m,k,q, or h#, if m, k and q are

clear from the context. The following lemma will be relevant for the placement of a

pump-down gadget.

Lemma 8.12. For every rational number q ∈ (0, 1) and m, k ∈ N, such that m
k ⩾ q

there is a natural h, such that m
k+h < q, but m+1

k+h ⩾ q.

Proof. Take any such m, k and q = a
b . We first define a function gm,k : N → Q,

such that, for each natural number h, we have that gk,m(h) = m
k+h . Observe that

gm,k(0) =
m
k and that gm,k is strictly decreasing, while it is bounded by 0. So, there

exists a natural h, such that gm,k(h) < q, but gm,k(h − 1) ⩾ q, as q > 0. We will

further call such a number h+.

Then, suppose towards contradiction that m+1
k+h+ < a

b .Then, we have that

bm+ b < ak + ah+, and so −bm− b > −ak − ah+. We denote this inequality as α.

Also, notice that by definition of h+ we get that m
k+h+−1

⩾ a
b . So, bm ⩾ ak+ah+−a.

We denote this inequality as β. By adding α and β, we get that −b ⩾ −a, and so

a ⩾ b which is impossible, since a
b < 1.

We denote such a number as h+m,k,q, or h
+, if m, k and q are clear from the

context.

We now construct, for a graph G = (VG, EG), a labelled social network

ENG = (N,E, f), which we call an encoding of G. Let us first describe the sub-

network of ENG, which we call a G-gadget. For every vertex in VG, we create a

vertex in the G-gadget, which is labelled r, with the relation between them being

identical to EG. Further, for every vertex i in the G-gadget, we create a set of

vertices labelled r, which we denote as ri, and a set of vertices labelled b, which we

call bi. We require all members of ri and of bi to be adjacent to i. Further, we set

the cardinalities of ri and bi to be smallest, such that #RN(i) +#ri −#bi = k − 1.

163

Further, for every vertex j in ri∪ bi, we create two vertices labelled b, adjacent to j,

and to each other. Finally, we construct the minimum number of isolated vertices

labelled b, satisfactory for b to be the strict majority colour in ENG.

Observe now that the only vertices under illusion in this encoding are those

in the G-gadget. Moreover, all of the members of this gadget are under illusion.

Figure 8.9 depicts an example of ENG.

G

Figure 8.9: Example of an encoding ENG, for a graph G with four vertices, such

that three of them form a clique, and one of them is a dependent of a member of

this clique, and k = 3.

We further call #VG−k the requirement, or rG. Also, we call
(
k
2

)
the budget,

or bG. We say that network EN′
G = (N,E′, f) satisfies the requirement an the

budget if #{e ∈ N2 : e ∈ E iff e /∈ E′} ⩽ bG, while at most rG vertices are under

illusion in EN′
G.

Lemma 8.13. For every graph G, there is a network EN′
G = (N,E′, f), which

satisfies the requirement and the budget if and only if there exists a k-clique in G.

Proof. Take a graph G = (VG, EG). First, suppose that there exists a k-clique in G.

Then, take such a clique, and call the corresponding set of vertices in the G-gadget

C. Observe that since, following previous observations, all of the vertices, which

are under illusion in the encoding ENG = (N,E, f), are in the G-gadget, it holds

that the network (N,E′, f) ,with E′ = E \ {(i, j) : i, j ∈ C}, satisfies the budget,

since #{(i, j) : i, j ∈ C} =
(
k
2

)
. Observe that it also satisfies the requirement, as

#C = k, and we have that for every i ∈ C, it holds that the margin of victory in

i’s neighbourhood amounts to #NVG
r (i) +#ri−#bi− k− 1, which by construction

is equal to 0, and hence i is not under illusion.

Suppose now, that there is no k-clique in G. Further, suppose towards con-

tradiction, that there is a network EN′
G = (N,E′, f), which satisfies the requirement

and the budget. Then, there is a set of vertices S ⊆ V (C), with #S = k, such that,

164

for every i ∈ S, we have that illusion is eliminated from i in EN′
G. Further, by

assumption, we have that S is not a clique. Notice, however, that then, as bG =(
k
2

)
, at least one member of S is under illusion in EN′

G. Contradiction.

This observation allows us to show NP-hardness of q-Illusion Elimina-

tion.

Lemma 8.14. q-Illusion Elimination is NP-complete, for every q ∈ (0, 1),

Proof. Consider any rational q ∈ (0, 1). First, observe that q-Illusion Elimina-

tion is in NP, as verifying if a labelling induces a q-majority illusion is possible in

polynomial time. Let us further construct a network Eq
G and a number m for graph

G, such that the answer to q-Illusion Elimination for Eq
G and m is positive if

and only if G contains a k-clique.

In the instance we consider, we will check whether we can find a subnetwork

of Eq
G, in which connections between at most bG pairs of vertices can be changed,

and in which q-majority illusion does not hold. The first component of Eq
φ is EG.

If #V (G)−k
V (EG) < q, then we construct a l-pump up gadget for l = h##V (EG)−k,k,q.

Otherwise, we construct a l′-pump down gadget, for l′ = h+#V (EG)−k,k,q. Let us

show now that the answer to q-Illusion Elimination for Eq
G and k is positive if

and only if G contains a k-clique.

First, suppose that G contains a k-clique. We will show that the answer

to q-Illusion Elimination for Eq
G and k is positive. Let us first consider the

case, in which V (G)−k
#V (EG) < q. Then observe that, as G is contains a k-clique, by

Lemma 8.13 we have that it is possible to find a subnetwork E′
G of EG, in which

(
k
2

)
edges are altered, and where illusion was eliminated from k vertices. But then, by

Lemma 8.11, we get that #V (EG)−k+l
#V (G)−k+l+4 < q. So we can construct a network of Eq

φ,

in which only
(
k
2

)
edges are altered, but q-majority illusion does not hold. Similarly,

if #V (G)−k
#V (Eφ)

⩾ q, we observe that, by Lemma 8.12, we get that #V (EG)−k
#V (EG)+l′ < q. So,

we get that we can eliminate illusion from k vertices in EG by modifying
(
k
2

)
edges.

But then, we can construct a network Eq
G, in which only

(
k
2

)
edges are removed,

while q-majority illusion does not hold.

Suppose now that G does not contain a k-clique. We will show that the

answer to the considered problem for Eq
G and k is negative. Let us first consider

the case in which V (G)−k
#V (EG) < q. Notice that, by reasoning in Lemma 8.13, we have

that the minimum number of vertices from which illusion needs to be removed for

q-majority illusion not to hold in Eq
G is k. Furthermore, let us notice that in the

pump-up gadget, the minimum number of edges that is needed to be added to

165

eliminate the illusion from a single vertex is greater than 4. Thus, we get from

Lemma 8.13 that since G does not contain a k-clique, it is not possible to remove

the illusion from at least k in Eq
φ by altering connections between at most

(
k
2

)
pairs

of vertices The reasoning for the case in which #V (G)−k
#V (EG) ⩾ q is symmetric.

As a consequence, we get the following hardness result.

Theorem 8.5. For all q ∈ (0, 1) q-Illusion Elimination is W[1]-hard parametrised

by the number of altered edges.

Proof. Follows immediately from Lemma 8.14, noticing that the budget is bounded

by a quadratic function of k.

Using reductions similar to the one provided above, we obtain W[1]-hardness

of Removal q-Illusion Elimination and Removal q-Illusion Elimination.

To show hardness of Removal q-Illusion Elimination, by reduction from k-

Clique, we use the same encoding, as in the proof of Theorem 8.5. We observe that,

following the reasoning in the proof of Theorem 8.5, in this construction we get that

for a graph G, q ∈ (0, 1), and Eq
G = (N,E), there exists a network E

′q
G = (N,E′),

such that q-majority illusion does not hold in E
′q
G , while {(e ∈ N2 : e ∈ E iff e /∈ E′}

if and only if #E′ −#E ⩽
(
k
2

)
. The following result follows.

Lemma 8.15. Removal q-Illusion Elimination is NP-complete, for every q ∈
(0, 1).

To show the hardness of Addition q-Illusion Elimination, we provide

a reduction from k-Independent Set problem, similar to the previously shown

construction. We now construct, for a graph G = (VG, EG), a labelled social network

ENG = (N,E, f), which we call an encoding of G.

Let us first describe the subnetwork of ENG, which we call a G-gadget. For

every vertex in VG, we create a vertex in the G-gadget, which is labelled b, with

the relation between them being identical to EG. Further, for every vertex i in

the G-gadget, we create a set of vertices labelled r, which we denote as ri, and a

set of vertices labelled b, which we call bi. We also have that all members of ri

and of bi are adjacent to i. We also denote the set of neighbours of i in the G-

gadget as Gi. Further, we set the cardinalities of ri and bi to be smallest, such that

#ri−#Gi−#bi = k− 1. Also, for every vertex j in ri ∪ bi, we create three vertices
labelled b, adjacent to each other, and with one of them adjacent to j. Finally, we

construct the minimum number of isolated vertices labelled b, satisfactory for b to

166

be the strict majority colour in ENG. Observe now that the only vertices under

illusion in this encoding are in the G-gadget. Moreover, all of the members of this

gadget are under illusion. An example of an encoding ENG is shown in Figure 8.10.

G

Figure 8.10: An encoding ENG, for a graph consisting of the independent set of
three vertices.

We further call #V (G) − k + 1 the requirement, or rG. Also, we call
(
k
2

)
the budget, or bG. Moreover, we say that a network EN′

G = (N,E′, f) satisfies the

requirement an the budget if #E′−#E ⩽ bG, while less than rG vertices are under

illusion in EN′
G.

Lemma 8.16. Addition q-Illusion Elimination is NP-complete for every q ∈
(0, 1).

Proof. To show that the claim holds, we observe that, by reasoning symmetric

to the proof of Lemma 8.14, for a given graph G, we can construct a network

EN
′q
G = (N,E′, f) in which q-majority illusion does not hold, while #E′−#E <

(
k
2

)
if and only if G contains a k-independent set. Then, the result follows by reasoning

symmetric to the proof of Lemma 8.14.

By combining Lemma 8.15 and Lemma 8.16, and noticing that in both cases

the budget is bounded by a quadratic function of k. we obtain the following theorem.

Theorem 8.6. For all q ∈ (0, 1), Addition q-Illusion Elimination and Re-

moval q-Illusion Elimination are W[1]-hard.

167

8.4 Plurality Illusion

Having studied the majority illusion for networks labelled with two colours, it is

natural to ask whether similar results hold for networks labelled with a larger number

of colours. Towards this end, we define the plurality illusion, i.e., a social network

phenomenon, in which agents see a colour which is not the most popular in the

network as a plurality winner. In this section we show that there are networks that

admit plurality illusion for all agents, but not 1-majority illusion. This observation

motivates further research on the plurality illusion.

Let us show that there are social networks, which allow for colouring with

multiple colours, where all agents perceive an option different than the plurality

winner as the most popular option, but which do not admit 1-majority illusion. We

now define the plurality illusion. Let C be a finite set of colours. Given a labelled

social network SN=(N,E, f), where f : N → C is a labelling, we denote the set

of most popular colours in SN as PlSN. So, PlSN = argmax
c∈C

#{i ∈ N : f(i) = c}.

If the most popular colour is unique, we will call it the plurality winner. Similarly,

for an agent i ∈ N , we say that PliSN is the set of most popular options in i’s

neighbourhood. Formally, PliSN = argmax
c∈C

#{i ∈ N (i) : f(i) = c}. If PliSN = {c},

for some c ∈ C, we say that c is the plurality winner in i’s neighbourhood. Then,

we say that an agent i ∈ N is under plurality illusion, if plurality winner in i’s

neighbourhood is different than the plurality winner (while both exist). Further, we

say that f induces plurality illusion if all agents in N are under plurality illusion

in (N,E, f). Also, we say that (N,E) admits plurality illusion if some labelling

f : N → C induces plurality illusion.

Observation 8.4. There are networks which admit a plurality illusion, but not

1-majority illusion.

The following example shows that Observation 8.4 holds.

Example 8.1. Consider the social network shown in Figure 8.11. Let us begin with

showing that this network admits a plurality illusion with three colours. To see that

consider the labelling in Figure 8.11. Notice that in this case five vertices are labelled

blue, four are labelled red, and four are labelled green. Thus, blue is the plurality

winner. However, one can verify that there is a plurality winner other than blue in

the neighbourhood of every vertex in the network. So, the proposed labelling induces

a plurality illusion.

Furthermore, let us demonstrate that the social network, depicted in Figure

8.11, does not admit 1-majority illusion. Suppose towards contradiction that there

168

Figure 8.11: Example of a social network admitting a 1-plurality illusion with three
colours, but not admitting a 1-majority illusion.

is a labelling f of this network, which induces a 1-majority illusion. Then, observe

that there are thirteen vertices in the network, and hence at most six vertices are

labelled red in f . Moreover, all vertices in the clique in the left subnetwork, as well

as the central vertex in the right subnetwork, have dependents. Hence, they are

labelled red in f . Furthermore, the central vertex in the right subnetwork has four

neighbours, and hence, by assumption that it is under illusion, at least three of the

vertices adjacent to it are labelled red in f . But then, at least eight vertices are

labelled red in f , which contradicts the assumptions. So, the network in Figure 8.11

does not admit a 1-majority illusion.

8.5 Conclusion

In this chapter we provided an analysis of computational aspects of majority illusion,

focusing on checking the possibility of its occurrence in a social network, and of its

elimination. We note that while in this chapter we view majority illusion as an

undesirable phenomenon, there might be contexts where its presence does not have

overall negative effects. Our work is however agnostic regarding which interventions

must take place on such networks.

Summary of Contributions. We showed the algorithmic hardness of checking

(Theorems 8.1 and 8.2) and eliminating (Theorems 8.5 and 8.6) q-majority illusion.

Furthermore, we provided a number of parametrised algorithms for the verification

problem (see Table 8.1). Moreover, we demonstrated W[1]-hardness for the elim-

ination of majority illusion (Theorems 8.5 and 8.6). Informally, we have shown

even if illusion identification is a hard problem in general, there are various natural

constraints that make it feasible.

169

Future Research. Our research in this chapter leaves a vast number of avenues

for further study. Here, we identify a few of specific potential directions.

• We note that, for elimination we considered, the problem remains hard for a

natural parameter. It remains open, however, whether we can find another,

good parametrisation.

• Further, in this chapter we have only shown the hardness of q-majority il-

lusion for q ⩾ 1
2 . Although we conjecture that the problem remains NP-hard

for smaller values of q, we leave establishing the complexity of q-majority

illusion for such q as an avenue for further research.

• Another open challenge is to explore the setting in which the assumption

of binary labelling is lifted. As we have shown in Section 8.4, surprisingly,

there are social networks that do not admit a majority illusion but do admit

a “plurality” illusion, i.e., agents have a wrong perception of the plurality

winner, when more than two colours are allowed. This is particularly relevant

for voting contexts such as elections with multiple candidates.

• Furthermore, it remains open to check the existence of a single-exponential

time algorithm with respect to neighbourhood diversity.

• We note that, in addition to our parametrised complexity results, designing

an efficient algorithm that approximates the maximal value of q in a given

instance of q-majority illusion would be a natural direction for further

study.

• Finally, exploring the connections between majority illusion and opinion diffu-

sion is a natural and important follow up. One can observe that in a labelling,

which induces 1-majority illusion, all agents adopt the minority opinion after

just one opinion diffusion step, given the protocol explored in Chapter 7. This

observation motivates further connections between the majority illusion and

the spread of opinions.

170

Chapter 9

Conclusion

Here, we provide a summary of the results obtained in this thesis. Subsequently, we

describe avenues for further research, which arise from our work.

Summary. We provided an analysis of algorithmic problems concerning strategic

candidate selection by coalitions, as well as of selected aspects of opinion diffusion

in social networks, which are relevant to such games. First, we studied an extension

of the Hotelling-Downs model, in which parties can only select a position which

corresponds to the views of one of their potential nominees. We have shown that

checking if a pure Nash equilibrium exists in this context is NP-complete in the

general case. However, we demonstrated that this problem can be solved in lin-

ear time when only two parties compete. Subsequently, we analysed the problem

of checking the pure Nash equilibrium existence in competitions, in the context

of knockout tournaments. There, we found the problem to be solvable in quasi-

polynomial, or polynomial time, for all of the cases which we considered. Then, we

have demonstrated that in the case of tournaments which do not involve compet-

ing in rounds, the problem of checking the existence of a pure Nash equilibrium is

NP-complete, when the Uncovered Set rule, or even the Condorcet Winner rule,

is used as a selection mechanism. Moreover, for the Uncovered Set, we have found

that it is also intractable to check if a coalition can win under some strategy profile.

Furthermore, we studied the problem of the convergence of the opinion diffusion

protocol, in which agents change their opinion if the strict majority of their influ-

encers disagrees with them. We have found that checking if this protocol terminates

for a given input is PSPACE-complete. Finally, we established the computational

complexity of checking if a social network can be labelled so that at least a given

fraction of agents is under majority illusion, i.e., has the strict majority of their

171

neighbours labelled with the colour assigned to the strict minority of agents in the

network. We further showed the complexity of checking if the connections between

the agents in a labelled network can be altered in a limited way, so that the number

of those under majority illusion is sufficiently small.

We note that the results of this thesis can have impact for the research both

in social choice theory, and in social network analysis. Further, our research on

nominee selection constitutes a starting point for the study of strategic aspects of

primaries.

Avenues for Further Research. Our investigations leave vast room for further

research.

• First, our results concerning nominee selection assume that parties choose their

candidate in order to perform best in the elections, while the other actors in

the process, e.g., voters or candidates themselves, are not strategic. We note

that in real-world scenarios strategic behaviour of these actors is plausible.

Thus, it would be a natural follow-up to study the problem of primaries taking

into account the possibility of manipulation of the elections from their side.

Furthermore, in all of the frameworks discussed in this thesis, competitions

often admit a large number of pure Nash equilibria. We note that this fact

constitutes a challenge from the perspective of predicting parties’ choices. This

observation motivates studying the classes of games in our models, in which

there is a unique pure Nash equilibrium.

• Furthermore, our analysis of nominee selection was mainly aimed at establish-

ing the algorithmic results concerning the existence of equilibria. We have not,

however, investigated in depth what are the other properties of Nash equilibria

in the contexts we considered. For instance, it would be natural to show the

bounds on the price of anarchy in our variation of the Hotelling-Downs model,

with social welfare of a profile being measured as a sum of distances of voters

to their favourite candidate.

• A large amount of questions regarding the impact that opinion diffusion has

on primaries remains to be answered. Some of the problems regarding this

direction involve checking if there exists a pure Nash equilibrium in a game,

after a certain number of rounds of communication. Another potential chal-

lenge is to determine what is the complexity of checking if a coalition has a

dominant strategy, i.e., a candidate who does best in a competition in every

strategy profile, after the determined number of opinion diffusion steps.

172

• Another important avenue for future investigations is to better understand the

classes of networks, in which the threshold-based opinion diffusion protocol we

considered terminates in one step. As we have seen, the labelled networks in

which all agents are under majority illusion constitute one of such classes. It

would be of interest to identify other types of networks for which it is the case,

and to study their properties.

• Given that many of the computational problems we considered are not tractable,

it would be of interest to explore strategic nominee selection from the empirical

perspective. An experimental approach would allow us to better understand

structures of equilibria in the games studied in this thesis, and how they can

be influenced by agents’ deliberation.

173

Bibliography

Hee-Kap Ahn, Siu-Wing Cheng, Otfried Cheong, Mordecai Golin, and Rene

Van Oostrum. Competitive facility location: the Voronoi game. Theoretical Com-

puter Science, 310:457–467, 2004.

Nazanin Alipourfard, Buddhika Nettasinghe, Andrés Abeliuk, Vikram Krishna-

murthy, and Kristina Lerman. Friendship paradox biases perceptions in directed

networks. Nature Communications, 11(1):1–9, 2020.

Alon Altman, Ariel D Procaccia, and Moshe Tennenholtz. Nonmanipulable selec-

tions from a tournament. In IJCAI, pages 686–690, 2009.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.

Cambridge University Press, 2009.

Vincenzo Auletta, Ioannis Caragiannis, Diodato Ferraioli, Clemente Galdi, and

Giuseppe Persiano. Minority becomes majority in social networks. In WINE,

pages 74–88, 2015.

Vincenzo Auletta, Ioannis Caragiannis, Diodato Ferraioli, Clemente Galdi, and

Giuseppe Persiano. Information retention in heterogeneous majority dynamics.

In WINE, pages 30–43, 2017.

Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. Reasoning about con-

sensus when opinions diffuse through majority dynamics. In IJCAI, pages 49–55,

2018.

Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. On the complexity of

reasoning about opinion diffusion under majority dynamics. Artificial Intelligence,

284:103–288, 2020.

Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. Optimal majority dy-

namics for the diffusion of an opinion when multiple alternatives are available.

Theoretical Computer Science, 869:156–180, 2021.

174

Robert Mashall Axelrod. The dissemination of culture: a model with local conver-

gence and global polarization. The Journal of Conflict Resolution, pages 203–226,

1997.

Haris Aziz, Serge Gaspers, Simon Mackenzie, Nicholas Mattei, Paul Stursberg, and

Toby Walsh. Fixing a balanced knockout tournament. In AAAI, pages 552–558,

2014.

Haris Aziz, Markus Brill, Felix Fischer, Paul Harrenstein, Jérôme Lang, and

Hans Georg Seedig. Possible and necessary winners of partial tournaments. Jour-

nal of Artificial Intelligence Research, 54:493–534, 2015.

Haris Aziz, Serge Gaspers, Simon Mackenzie, Nicholas Mattei, Paul Stursberg, and

Toby Walsh. Fixing balanced knockout and double elimination tournaments.

Artificial Intelligence, 262:1–14, 2018.

Sayan Bandyapadhyay, Aritra Banik, Sandip Das, and Hirak Sarkar. Voronoi game

on graphs. Theoretical Computer Science, 562:270–282, 2015.

Christopher L. Barrett, Harry B. Hunt, Madhav V. Marathe, S. S. Ravi, Daniel J.

Rosenkrantz, and Richard Edwin Stearns. Reachability problems for sequential

dynamical systems with threshold functions. Theoretical Computer Science, 295:

41–64, 2003.

Christopher L. Barrett, Harry B. Hunt, Madhav V. Marathe, S. S. Ravi, Daniel J.

Rosenkrantz, Richard Edwin Stearns, and Mayur Thakur. Predecessor existence

problems for finite discrete dynamical systems. Theoretical Computer Science,

386(1-2):3–37, 2007.

Dorothea Baumeister, Ann-Kathrin Selker, and A. Wilczynski. Manipulation of

opinion polls to influence iterative elections. In AAMAS, pages 132–140, 2020.

Piotr Berman, Marek Karpinski, and Alexander Scott. Approximation hardness of

short symmetric instances of MAX-3SAT. Technical report, Weizmann Institute

of Science, 2004.

Vittorio Bilò, Michele Flammini, and Cosimo Vinci. The quality of content publish-

ing in the digital era. In ECAI, pages 35–42, 2020.

Béla Bollobás. Modern Graph Theory. Graduate Texts in Mathematics. Springer,

1998.

175

Meena Boppana, Rani Hod, Michael Mitzenmacher, and Tom Morgan. Voronoi

Choice Games. In ICALP, pages 23:1–23:13, 2016.

Allan Borodin, Omer Lev, Nisarg Shah, and Tyrone Strangway. Primarily about

primaries. In AAAI, pages 1804–1811, 2019.

Sirin Botan, Umberto Grandi, and Laurent Perrussel. Multi-issue opinion diffusion

under constraints. In AAMAS, pages 828–836, 2019.

F Brandt, M Brill, and Bernhard Harrenstein. Tournament solutions, pages 57–84.

Cambridge University Press, 2016a.

Felix Brandt and Felix A. Fischer. Computing the minimal covering set. Mathemat-

ical Social Sciences, 56(2):254–268, 2008.

Felix Brandt, Felix A. Fischer, Paul Harrenstein, and Maximilian Mair. A compu-

tational analysis of the tournament equilibrium set. Social Choice and Welfare,

34(4):597–609, 2010.

Felix Brandt, Markus Brill, and Bernhard Harrenstein. Tournament Solutions. In

F Brandt, V Conitzer, U Endriss, J Lang, and A. D. Procaccia, editors, Hand-

book of Computational Social Choice, pages 453–474. Cambridge University Press,

2016b.

Felix Brandt, Markus Brill, and Paul Harrenstein. Extending tournament solutions.

Social Choice and Welfare, 51(2):193–222, 2018.

Robert Bredereck and Edith Elkind. Manipulating opinion diffusion in social net-

works. In IJCAI, pages 894–900, 2017.

Markus Brill. Interactive democracy. In AAMAS, pages 1183–1187, 2018.

Markus Brill and Vincent Conitzer. Strategic voting and strategic candidacy. In

AAAI, pages 819–826, 2015.

Sandro Brusco, Marcin Dziubiński, and Jaideep Roy. The Hotelling–Downs model

with runoff voting. Games and Economic Behavior, 74(2):447–469, 2012.

Matteo Castiglioni, Diodato Ferraioli, and Nicola Gatti. Election control in social

networks via edge addition or removal. In AAAI, 2020.

Matteo Castiglioni, Diodato Ferraioli, Nicola Gatti, and Giulia Landriani. Election

manipulation on social networks: Seeding, edge removal, edge addition. Journal

of Artificial Intelligence Research, 71:1049–1090, 2021.

176

Eric Goles Chacc, Françoise Fogelman-Soulié, and Didier Pellegrin. Decreasing en-

ergy functions as a tool for studying threshold networks. Discrete Applied Math-

ematics, 12(3):261–277, 1985.

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Josef Tkadlec. Robust draws in

balanced knockout tournaments. In IJCAI, pages 172–179, 2016.

Dmitry Chistikov, Grzegorz Lisowski, Mike Paterson, and Paolo Turrini. Conver-

gence of opinion diffusion is PSPACE-complete. In AAAI, pages 7103–7110, 2020.

Rajesh Chitnis and Nimrod Talmon. Can we create large k-cores by adding few

edges? In Computer Science – Theory and Applications, pages 78–89. Springer

International Publishing, 2018.

Zoé Christoff and Davide Grossi. Stability in binary opinion diffusion. In LORI,

pages 166–180, 2017.

Federico Corò, Emilio Cruciani, Gianlorenzo D’Angelo, and Stefano Ponziani. Vote

for me!: Election control via social influence in arbitrary scoring rule voting sys-

tems. In AAMAS, pages 1895–1897, 2019.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algo-

rithms. Springer, 2015.

Konrad K. Dabrowski, Matthew Johnson, and Daniël Paulusma. Clique-width for

hereditary graph classes, page 1–56. London Mathematical Society Lecture Note

Series. Cambridge University Press, 2019.

Morris H. de Groot. Reaching a consensus. Journal of the American Statistical

Association, 69:118–121, 1974.

John A. Doucette, Alan Tsang, Hadi Hosseini, Kate Larson, and Robin Cohen.

Inferring true voting outcomes in homophilic social networks. pages 298–329,

2019.

Anthony Downs. An economic theory of democracy. 1957.

John Dryzek and Christian List. Social choice theory and deliberative democracy:

a reconciliation. British Journal of Political Science, 33(1):1–28, 2003.

Christoph Durr and Nguyen Kim Thang. Nash equilibria in Voronoi games on

graphs. In ESA, 2007.

177

Bhaskar Dutta, Matthew O Jackson, and Michel Le Breton. Strategic candidacy

and voting procedures. Econometrica, 69(4):1013–1037, 2001.

B Curtis Eaton and Richard G Lipsey. The principle of minimum differentiation

reconsidered: Some new developments in the theory of spatial competition. The

Review of Economic Studies, 42(1):27–49, 1975.

H. A. Eiselt, Gilbert Laporte, and Jacques-François Thisse. Competitive location

models: A framework and bibliography. Transportation Science, 27(1):44–54,

1993.

Horst A. Eiselt. Equilibria in competitive location models. In Foundations of Loca-

tion Analysis, pages 139–162. Springer, 2011.

Edith Elkind, Evangelos Markakis, Svetlana Obraztsova, and Piotr Skowron. Equi-

libria of plurality voting: Lazy and truth-biased voters. In SAGT, pages 110–122.

Springer, 2015.

Ulle Endriss and Umberto Grandi. Binary aggregation by selection of the most

representative voters. In AAAI, pages 668–674, 2014.

Hülya Eraslan and Andrew McLennan. Strategic candidacy for multivalued voting

procedures. Journal of Economic Theory, 117(1):29–54, 2004.

Piotr Faliszewski and Jörg Rothe. Control and bribery in voting. In Handbook of

Computational Social Choice, pages 146–168. Cambridge University Press, 2016.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, and Jérôme Monnot.

How Hard is it for a Party to Nominate an Election Winner? In IJCAI, pages

257–263, 2016.

Piotr Faliszewski, Rica Gonen, Martin Koutecký, and Nimrod Talmon. Opinion

diffusion and campaigning on society graphs. In IJCAI, 2018.

Piotr Faliszewski, Rica Gonen, Martin Koutecý, and Nimrod Talmon. Opinion

diffusion and campaigning on society graphs. Journal of Logic and Computation,

32(6):1162–1194, 2022.

Michal Feldman, Amos Fiat, and Iddan Golomb. On voting and facility location.

In EC, pages 269–286, 2016a.

Michal Feldman, Amos Fiat, and Svetlana Obraztsova. Variations on the Hotelling-

Downs model. In AAAI, pages 496–501, 2016b.

178

David Fisher and Jennifer Ryan. Tournament games and positive tournaments.

Journal of Graph Theory, 19(2):217–236, 1995.

Gaëtan Fournier. General distribution of consumers in pure Hotelling games. In-

ternational Journal of Game Theory, 48(1):33–59, 2019.

Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding

cliques in social networks: A new distribution-free model. In ICALP, volume 107,

pages 55:1–55:15, 2018.

Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding

cliques in social networks: A new distribution-free model. SIAM Journal on

Computing, 49(2):448–464, 2020.

András Frank and Éva Tardos. An application of simultaneous diophantine approx-

imation in combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

Eric Goles, Pedro Montealegre, Ville Salo, and Ilkka Törmä. PSPACE-completeness

of majority automata networks. Theoretical Computer Science, 609:118–128, 2016.

M. Grabisch and A. Rusinowska. A model of influence in a social network. Theory

and Decision, 69(1):69–96, 2010.

Umberto Grandi. Social choice and social networks. Trends in Computational Social

Choice, pages 169–184, 2017.

Umberto Grandi, Emiliano Lorini, and Laurent Perrussel. Propositional opinion

diffusion. In AAMAS, pages 989–997, 2015.

Mark Granovetter. Threshold models of collective behavior. American Journal of

Sociology, 83(6):1420–1443, 1978.

Frank Gurski and Egon Wanke. The tree-width of clique-width bounded graphs

without Kn, n. In WG, pages 196–205, 2000.

Paul Harrenstein, Grzegorz Lisowski, Ramanujan Sridharan, and Paolo Turrini. A

Hotelling-Downs framework for party nominees. In AAMAS, pages 593–601, 2021.

Noam Hazon, Paul Dunne, Sarit Kraus, and Michael Wooldridge. How to rig elec-

tions and competitions. In COMSOC, pages 301–312, 2008.

Lane Hemaspaandra. Computational social choice and computational complexity:

Bffs? In AAAI, pages 7911–7977, 2018.

179

Nathan O Hodas, Farshad Kooti, and Kristina Lerman. Friendship paradox redux:

Your friends are more interesting than you. In ICWSM, 2013.

Harold Hotelling. Stability in competition. The Economic Journal, 39(153):41–57,

1929.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal

of Computer and System Sciences, 62(2):367–375, 2001.

J. R. Isbell. A class of simple games. Duke Mathematical Journal, 25(3):423–439,

1958.

Matthew O. Jackson and Simon Wilkie. Endogenous games and mechanisms: Side

payments among players. Review of Economic Studies, 72(2):543–566, 2005.

Neil F. Johnson, Nicolas Velásquez, Nicholas Johnson Restrepo, Rhys Leahy,

Nicholas Gabriel, Sara El Oud, Minzhang Zheng, Pedro Manrique, Stefan Wuchty,

and Yonatan Lupu. The online competition between pro- and anti-vaccination

views. Nature, 582(7811):230–233, 2020.

Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math-

ematics of Operations Research, 12(3):415–440, 1987.

Bruce Kapron, Gautam Srivastava, and S Venkatesh. Social network anonymization

via edge addition. In ASONAM, pages 155–162, 2011.

Richard M Karp. Reducibility among combinatorial problems. In Complexity of

computer computations, pages 85–103. Springer, 1972.

Akinori Kawachi, Mitsunori Ogihara, and Kei Uchizawa. Generalized predecessor

existence problems for boolean finite dynamical systems on directed graphs. The-

oretical Computer Science, 762:25–40, 2019.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence

through a social network. In SIGKDD, pages 137–146, 2003.

David Kempe, Jon M. Kleinberg, and Éva Tardos. Influential nodes in a diffusion

model for social networks. In ICALP, pages 1127–1138, 2005.

Michael P Kim, Warut Suksompong, and Virginia Vassilevska Williams. Who can

win a single-elimination tournament? SIAM Journal on Discrete Mathematics,

31(3):1751–1764, 2017.

180

Tomohiro Koana, Christian Komusiewicz, and Frank Sommer. Exploiting c-closure

in kernelization algorithms for graph problems. In ESA, pages 65:1–65:17, 2020.

Aleksei Kondratev and Vladimir Mazalov. Tournament solutions based on cooper-

ative game theory. International Journal of Game Theory, pages 1–27, 2019.

Christine Konicki and Virginia Vassilevska Williams. Bribery in balanced knockout

tournaments. In AAMAS, pages 2066–2068, 2019.

Tuukka Korhonen. A single-exponential time 2-approximation algorithm for

treewidth. In FOCS, pages 184–192, 2021.

Sven Kosub. Dichotomy results for fixed-point existence problems for boolean dy-

namical systems. Mathematics in Computer Science, 1(3):487–505, 2008.

G. Laffond, J. F. Laslier, and M. Le Breton. The bipartisan set of a tournament

game. Games and Economic Behavior, 5:182–201, 1993.

Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorith-

mica, 64(1):19–37, 2012.

Jean-Francois Laslier. Tournament solutions and majority voting. Studies in Eco-

nomic Theory. Springer Verlag, 1997.

Silvio Lattanzi and D Sivakumar. Affiliation networks. In STOC, pages 427–434,

2009.

H. W. Jr. Lenstra. Integer programming with a fixed number of variables. Mathe-

mathics of Operations Research, 8(4):538–548, 1983.

Kristina Lerman, Xiaoran Yan, and Xin-Zeng Wu. The “majority illusion” in social

networks. PloS one, 11(2):1–13.

David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,

11(2):329–343, 1982.

Grzegorz Lisowski, M.S Ramanujan, and Paolo Turrini. Equilibrium computation

for knockout tournaments played by groups. In AAMAS, pages 807–815, 2022.

Michael Maschler, Shmuel Zamir, and Eilon Solan. Game theory. Cambridge Uni-

versity Press, 2020.

Marios Mavronicolas, Burkhard Monien, Vicky G. Papadopoulou, and Florian

Schoppmann. Voronoi games on cycle graphs. In Mathematical Foundations of

Computer Science, pages 503–514, 2008.

181

Reshef Meir. Strategic Voting. Morgan & Claypool, 2018.

Reshef Meir, Maria Polukarov, Jeffrey S. Rosenschein, and Nicholas R. Jennings.

Iterative voting and acyclic games. Artificial Intelligence, 252:100–122, 2017.

Nicholas R. Miller. A new solution set for tournaments and majority voting: Fur-

ther graph- theoretical approaches to the theory of voting. American Journal of

Political Science, 24(1):68–96, 1980.

Neeldhara Misra. On the parameterized complexity of party nominations. In ADT,

pages 112–125. Springer, 2019.

JW Moon. Topics on tournaments. Holt, Reinhart and Winston, 1968.

Hervé Moulin. On strategy-proofness and single peakedness. Public Choice, 35(4):

437–455, 1980.

Mat́ıas Núñez and Marco Scarsini. Competing over a finite number of locations.

Economic Theory Bulletin, 4(2):125–136, 2016.

Mat́ıas Núñez and Marco Scarsini. Large spatial competition. In Spatial Interaction

Models, pages 225–246. Springer, 2017.

Svetlana Obraztsova, Edith Elkind, Maria Polukarov, and Zinovi Rabinovich.

Strategic candidacy games with lazy candidates. In IJCAI, pages 610–616, 2015.

Mitsunori Ogihara and Kei Uchizawa. Computational complexity studies of syn-

chronous Boolean finite dynamical systems on directed graphs. Information and

Computation, 256:226–236, 2017.

Pekka Orponen. On the computational power of discrete Hopfield nets. In ICALP,

pages 215–226, 1993.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Annemieke Reijngoud and Ulle Endriss. Voter response to iterated poll information.

In AAMAS, 2012.

Daniel J. Rosenkrantz, Madhav V. Marathe, S. S. Ravi, and Richard Edwin Stearns.

Testing phase space properties of synchronous dynamical systems with nested

canalyzing local functions. In AAMAS, pages 1585–1594, 2018.

Itay Sabato, Svetlana Obraztsova, Zinovi Rabinovich, and Jeffrey S Rosenschein.

Real candidacy games: A new model for strategic candidacy. In AAMAS, pages

867–875, 2017.

182

Fernando P Santos, Simon A Levin, and Vı́tor V Vasconcelos. Biased perceptions

explain collective action deadlocks and suggest new mechanisms to prompt coop-

eration. iScience, 24(4):102375, 2021.

Reinhard Selten. Reexamination of the perfectness concept for equilibrium points

in extensive games. International Journal of Game Theory, 4:25–55, 1975.

Abhijit Sengupta and Kunal Sengupta. A Hotelling–Downs model of electoral com-

petition with the option to quit. Games and Economic Behavior, 62(2):661–674,

2008.

Alexander J. Stewart, Mohsen Mosleh, Marina Diakonova, Antonio A. Arechar,

David G. Rand, and Joshua B. Plotkin. Information gerrymandering and un-

democratic decisions. Nature, 573(7772):117–121, 2019.

Donald E. Stokes. Spatial models of party competition. American Political Science

Review, 57(2):368–377, 1963.

Predrag T. Tosic. Phase transitions in possible dynamics of cellular and graph

automata models of sparsely interconnected multi-agent systems. In AAMAS,

pages 474–483, 2017.

Virginia Vassilevska Williams. Fixing a tournament. In AAAI, pages 895–900, 2010.

Emiel Christiaan Henrik Veendorp and Anjum Majeed. Differentiation in a two-

dimensional market. Regional Science and Urban Economics, 25(1):75–83, 1995.

Matheus P Viana, Emanuele Strano, Patricia Bordin, and Marc Barthelemy. The

simplicity of planar networks. Scientific reports, 3(1):1–6, 2013.

Thuc Vu, Alon Altman, and Yoav Shoham. On the complexity of schedule control

problems for knockout tournaments. In AAMAS, pages 225–232, 2009.

A. Wilczynski. Poll-confident voters in iterative voting. In AAAI, pages 2205–2212.

Bryan Wilder and Yevgeniy Vorobeychik. Controlling elections through social in-

fluence. In AAMAS, pages 265–273.

Virginia Vassilevska Williams and Hervé Moulin. Knockout tournaments. In Felix

Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.Editors Procac-

cia, editors, Handbook of Computational Social Choice, pages 453–474. Cambridge

University Press, 2016.

183

Xiaotian Zhou and Zhongzhi Zhang. Maximizing Influence of Leaders in Social

Networks, page 2400–2408. Association for Computing Machinery, New York,

NY, USA, 2021.

Zhongxin Zhou, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Chen Chen. K-core

maximization: An edge addition approach. In IJCAI, pages 4867–4873, 2019.

184

	Acknowledgments
	Declarations
	Abstract
	Abbreviations
	Chapter Introduction
	Motivation
	Research Questions
	Publications
	Thesis Outline

	Chapter Literature Review
	Hotelling-Downs Model
	Algorithmic Analysis of Tournaments
	Social Network Analysis

	Chapter Preliminaries
	Game Theory
	Hotelling-Downs Games
	Tournament Games Played by Coalitions
	Social Networks
	Computational Complexity

	Chapter Nominee Selection in Hotelling-Downs Spaces
	Introduction
	Games with Two Parties
	Games with Many Parties
	Conclusion

	Chapter Nominee Selection in Knockout Tournaments
	Introduction
	One-Shot Knockout Tournaments
	Win-Lose Games
	Beyond Win-Lose Games

	Dynamic Knockout Tournaments
	Dynamic Win-Lose Games
	Dynamic Beyond Win-Lose Games

	Conclusion

	Chapter Strategic Nominations with Tournament Solutions
	Introduction
	Computational Problems
	Initial Remarks
	Condorcet Winner Rule
	Uncovered Set
	Conclusion

	Chapter Reaching Stability in Opinion Diffusion
	Introduction
	Graph Restrictions
	The Complexity of Checking Convergence
	Ingredients for the Hardness Proofs
	Hardness proofs

	Conclusion

	Chapter Majority Illusion
	Introduction
	Verifying Illusion
	Hardness
	Parametrised Complexity Results

	Eliminating Illusion
	Hardness

	Plurality Illusion
	Conclusion

	Chapter Conclusion

