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Abstract

Lassa fever (Lf) is a viral haemorrhagic disease endemic to West Africa and is caused by

the Lassa mammarenavirus. The rodent Mastomys natalensis serves as the primary reser-

voir and its ecology and behaviour have been linked to the distinct spatial and temporal pat-

terns in the incidence of Lf. Nigeria has experienced an unprecedented epidemic that lasted

from January until April of 2018, which has been followed by subsequent epidemics of Lf in

the same period every year since. While previous research has modelled the case season-

ality within Nigeria, this did not capture the seasonal variation in the reproduction of the zoo-

notic reservoir and its effect on case numbers. To this end, we introduce an approximate

Bayesian computation scheme to fit our model to the case data from 2018–2020 supplied

by the NCDC. In this study we used a periodically forced seasonal nonautonomous system

of ordinary differential equations as a vector model to demonstrate that the population

dynamics of the rodent reservoir may be responsible for the spikes in the number of

observed cases in humans. The results show that in December through to March, spillover

from the zoonotic reservoir drastically increases and spreads the virus to the people of Nige-

ria. Therefore to effectively combat Lf, attention and efforts should be concentrated during

this period.

Author summary

Lassa fever is a viral disease prevalent in West Africa, with Mastomys natalensis serving as

the primary reservoir. In Nigeria, annual outbreaks occur from December to March.

Using a novel model and data from 2018–2020, we demonstrate that the population

dynamics of the reservoir contribute to spikes in human cases. Specifically, spillover trans-

mission increases drastically during this period, highlighting the need for concentrated

efforts and interventions. Understanding the seasonal dynamics of the reservoir is crucial

for effective Lassa fever control and prevention strategies in Nigeria.
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Introduction

Lassa fever (Lf) is a viral zoonotic disease, caused by the Lassa mammarenavirus (LASV), that

is endemic to West African countries such as Nigeria, Sierra Leone and Guinea [1, 2]. Lf has a

natural reservoir in the rat Mastomys natalensis in which the virus persists and crossover

events to humans occur [3–5]. The disease, which was first described after two nurses con-

tracted the disease in a hospital in Jos, Nigeria, in 1969, has since been identified as a signifi-

cant risk to health in West Africa with 300, 000–500, 000 cases per year resulting in

approximately 5, 000 deaths annually [3, 6, 7]. Those infected with LASV typically experience

acute symptoms of headaches, sore throat, muscle pain, vomiting and diarrhoea, and in severe

cases bleeding from the mouth, nose, vagina or gastrointestinal tract [1]. The risk that Lf poses

to public health will only increase without widespread intervention and a viable vaccine as

growth in inter-border traffic and international travel increases the likelihood of introducing

the virus to other regions within and outside of the African continent [8, 9].

In recent years, Nigeria has experienced epidemics with peak incidence occurring between

December and April just after the rainy season ends in October since at least 2016 with epi-

demics since 2018 being notably more severe [10]. Both the number of cases and the exposure

rate of Lf increases in certain periods of the year and have been correlated with rainfall patterns

[11–13]. This may be because the reproduction of M. natalensis is greatest just after the rainy

season, which results in an increase in the size of the rat population and in the spread of LASV

from infected to susceptible rats [14–17]. The ecological dynamics of M. natalensis are relevant

to Lf in humans because the majority of infections (80%) are suspected to be spillover events as

opposed to human-to-human transmissions [18]. The importance of rat contact with humans

is illustrated by data reported by Tobin et al. (2015) for Edo state, Nigeria, which recorded

32.4%(385/1189) of the confirmed national cases of Lf in 2020; 96.1% houses had found the

multimammate rat within them in the past 6 months and 58.2% of the resident were seroposi-

tive (i.e. tested positive for Lf-specific antibodies) [19]. Transmission from rats to humans can

occur in a variety of ways, such as consumption of the rats, and contamination of food from

urine and faeces [5, 20]. While human-to-human transmission can occur, it is through trans-

mission of bodily fluids and occurs predominantly in health care settings in the absence of ade-

quate infection prevention and control measures [1]. Hence the relationship between the

presence and behaviour of M. natalensis and the prevalence of Lf is critical to understanding

and predicting future outbreaks.

Mathematical modelling studies of Lf are rare compared with other diseases, despite the

inclusion of Lf in the World Health Organization’s Blueprint list of diseases to be prioritized

for research and development [21]. Published models for recent outbreaks in Nigeria can

incorporate the population dynamics of the disease reservoir and highlight areas and periods

of the year at high risk of transmission [22–24]. Akhmetzhanov et al. (2019) used suspected

case data and a rodent model to inform a time-dependent exposure rate of Lf to susceptible

people in Nigeria, however relied on various parameter estimates for the vector model from

other studies rather than fitting to the data [11]. Furthermore, many models focus on a single

epidemic, potentially overlooking important nuances in transmission and vector population

dynamics within the regular pattern of incidence data observed in Nigeria [25–29]. We fit to 3

consecutive epidemics so that we may elucidate transmission dynamics that might be missed

in their separation. To date, the mechanistic models describing Lf epidemics in Nigeria lacked

the focus on time-dependent parameters relating to the rodent population dynamics to explain

the relationship between those dynamics and the seasonality of outbreaks.

In this study, we developed an epidemiological model to describe the temporal dynamics of

Lf within Nigeria in both human hosts and rodent vectors incorporating seasonal variations in
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rodent population and recruitment dynamics. The model was then fitted to confirmed case

data from the Nigerian Centre for Disease Control (NCDC) containing the 2018, 2019 and

2020 epidemics (see Fig 1) at the national scale in Nigeria using Approximate Bayesian Com-

putation (ABC). This approach allowed us to demonstrate how the annual fluctuations of the

rodent population translated into the seasonal outbreaks of Lf cases in human hosts.

We believe that providing an epidemiological model of the dynamics of Lf in humans and

the rodent reservoir within Nigeria as a whole that fits to confirmed cases supports the hypoth-

esis that the fluctuations of the local rodent population strongly influence the cases observed.

In order to inform future public health efforts, it is important to better understand the role of

the disease reservoir in the spatio-temporal profile of infections.

Materials and methods

Ethics statement

No primary data was collected as part of our study, and thus no ethics approval was required.

Secondary data used in our study—reported Lassa fever cases across Nigeria from 2018—2020

—were collected as part of the national surveillance programme lead by the Nigerian govern-

ment and the National Lassa fever Emergency Operations Centre.

Data

The weekly situation reports on Lf produced by the NCDC provided a stream of publicly avail-

able data that were discussed in regular direct communications with NCDC representatives.

The data used in this study was the set of dated Lf cases collected by the NCDC’s surveillance

network for Lf between 7th January 2018 until 12th July 2020, which covers the 2018, 2019 and

2020 epidemics [30]. We have chosen this period to investigate the seasonal dynamics in Lf in

Nigeria since it is both an extended period covering multiple consecutive epidemics and also

has comparable levels of surveillance for each epidemic. While surveillance in Nigeria has

Fig 1. Weekly confirmed case data for Lassa fever in Nigeria between the weeks ending 7th January 2018 until 12th

July 2020.

https://doi.org/10.1371/journal.pntd.0011543.g001
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resulted in data being available for prior years, 2018 is notable as 2 more laboratories capable

of providing diagnostic services opened and increased the capacity [10]. It was observed that

cases increased in previous years similar to that seen in the data presented; however, the 2018

epidemic was significantly larger than those of 2016 and 2017. Likewise, for the 2021 season

we suspect that nationwide interventions during the COVID pandemic affected reporting as

we see more than a 50% decrease in cases from 2020 [31]. Therefore we would likely need to

account for the difference in diagnostic capacity if these years were included. Lf cases were cat-

egorised as either suspected, confirmed and probable. Confirmed cases were those which had

a positive result for IgM antibody, PCR or virus isolation. Suspected cases were any individual

experiencing symptoms such as fever, sore throat, vomiting, diarrhoea. Additionally they also

met one of the following criteria: if they had a history of contact with either 1) excreta or urine

of rodents, 2) with a probable or confirmed Lf case recently, or 3) any person with inexplicable

bleeding/haemorrhagia. Due to the uncertainty that would result from use of unconfirmed

data we used only confirmed cases.

Model

In order to describe the confirmed Lf cases in Nigeria, we constructed a vector-host model in

which the population and transmission dynamics of the rodent M. natalensis are modelled

explicitly in addition to the dynamics of human transmission and disease progression (Fig 2

and Eqs 1–3). Table 1 refers to all the populations and subpopulations detailed in the model.

The human population was split into susceptible, exposed, asymptomatic or infected, and

recovered (Sh, Eh, Ah, Ih, Rh). The infection pathway for humans was described in the model as

follows: Susceptible people acquire infections from the pool of all infectious individuals. This

is at a rate of λh. Contact with an infectious host, whether it is a human or vector rodent, trans-

mits the disease to the susceptible individual and then they become exposed. Exposed humans

become infectious after a period of 1/ν days, and thus exposed individuals will leave the com-

partment at a rate of ν. Those who were exposed to the virus will then become Asymptomatic

with a probability of p and Infected with a probability of 1 − p. Infected humans are assumed

to experience more severe symptoms and be recorded as cases in data; they also experience an

infection induced mortality rate mhI . Infected individuals are assumed to be detectable. Infected

and Asymptomatic individuals will recover with an average recovery period of 1/γh days

whereby they have protective immunity.

Fig 2. Model flowchart of the transmission and population dynamics of the system of Eq 3. Blue solid arrows

denote recruitment. Black solid arrows denote progression of the disease. Red dashed arrows denote disease

transmission. Purple solid arrows denote mortalities. Parameters are detailed in full in Table 2 where λh and λr are

defined in Eq 2 (i) and (ii) respectively, and B(t) is defined in Eq 1.

https://doi.org/10.1371/journal.pntd.0011543.g002
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Humans without burden of Lf are assumed to have a natural life expectancy of 1/μh days.

An infection induced mortality rate, mhI is added to this for symptomatic individuals. Humans

are assumed to have a constant birth rate, Bh, and newborns are assumed to be fully susceptible

to Lf.

The vector population of rodents was split into susceptible, infected, and recovered (Sr, Ir,
Rr). We note that these rodents are also in contact with humans and so must represent mem-

bers of the population in close proximity to rural homes. Rats are assumed to be born suscepti-

ble and are recruited into areas in close-proximity to people at a time-dependent per capita

rate of B(t). The rat infections follow a more simple pathway than that found in humans: Sus-

ceptible rats come into contact with infected rats, whereby the disease is transmitted to the sus-

ceptible individual. This occurs at a rate of λr. The infected rats do not experience increased

mortality as they are asymptomatic and thus the rats have a constant mortality rate of μr. Sus-

ceptible rats become infectious without lag and will recover with an average recovery period of

1/γr, where they also enjoy protective immunity.

M. natalensis has repeatedly been observed to have seasonal breeding habits over different

areas of Africa [14–16, 32–36]. Therefore we model recruitment seasonally with a rate per cap-

ita of the rats B(t) was chosen as

BðtÞ ¼ k exp � s cos p
t

365
� �

� �� �� �2
( )

ð1Þ

where k is the magnitude of the function; s is a shape parameter denoting how long the period

of low reproduction rates lasts for, a smaller s meaning a close to constant recruitment rate

over the year whereas a larger s would equate to a long low period then a sharper change to a

high period; and ϕ is the point in the year where the reproduction of the rats is at its minimum.

k and s are of positive value, and ϕ is between 0 and 1. Once parameters s and the natural mor-

tality rate of the rats, μr, have been fixed, k may be scaled to keep the year-on-year reservoir

population stationary [37]. A population whose yearly dynamics are similar is a better repre-

sentation of a species that is endemic to the environment and although fluctuations will hap-

pen, the data to accurately model the population does not exist.

The rate at which susceptibles become infected, otherwise known as the force of infection,

is denoted by λh and λr for humans and rats respectively. In humans, this is defined as a linear

combination of the possible contact routes with LASV carriers. To represent the difference in

transmissibility of Lf in rats and humans, the contact rates βrh(t), βrr and βhh are separated. We

have assumed that human-to-rat transmission does not occur in the model as there have been

Table 1. Description of compartments of the model in (3).

Compartment Description

Nh Total population of humans

Sh Number of humans susceptible to Lf

Eh Humans that have been exposed to Lf

Ah Humans infected with Lf and are asymptomatic

Ih Humans burdened with symptomatic Lf

Rh Humans that have recovered from Lf

Nr Total population of rats

Sr Susceptible rats

Ih Infected rats

Rh Recovered rats

https://doi.org/10.1371/journal.pntd.0011543.t001
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no studies detailing the infection path in the literature and when modelled it is often ignored

or neglible in comparison to other transmission routes [11, 20, 23, 38–40]. Explicitly, these

parameters are the rate of successful transmissions from rats to humans per infected rat, trans-

missions from rats to rats per infected rat and transmissions from humans to humans per

infected human respectively. In addition, we have assumed a density dependent contact rate

between susceptible humans and the pool of infectious individuals, which means that contacts

will occur at an invariable rate irrespective of the size of the human population. Furthermore,

observations of the vector have shown that during the dry season, higher abundance of M.
natalensis have been trapped in or close to human dwellings, increasing the likelihood of trans-

mission. Therefore, βrh(t) is doubled during the wet season between November and March at

its peak than that during the rest of the year as observed with trapping success data [13].

With the transmission rates between compartments defined, the susceptible compartments

experience a force of infection from the infectious agents. The total force of infection per sus-

ceptible is therefore the sum linear combination of the number of infectious agents that can

infect that susceptible host multiplied by the appropriate transmission rate. Therefore the

force of infection per individual human and rat, respectively denoted λh and λr, are as follows:

lh ¼
brhðtÞIr þ bhhðAh þ IhÞ

Nh

lr ¼
brrIr
Nr

ð2Þ

dSr
dt

¼ BðtÞNr � lrSr � mrSr

dIr
dt

¼ lrSr � ðgr þ mrÞIr

dRr

dt
¼ grIr � mrRr

dSh
dt

¼ BhNh � lhSh � mhSh

dEh

dt
¼ lhSh � ðnþ mhÞEh

dAh

dt
¼ pnEh � mhAh

dIh
dt

¼ ð1 � pÞnEh � ðgh þ mhI þ mhÞIh

dRh

dt
¼ ghIh � mhRh

ð3Þ

Basic reproduction numbers

The basic reproduction ratio, R0, is the expected number of secondary infections caused by a

single infectious agent in an otherwise susceptible population. Over time, the conditions

which the infectious agent inhabit change and thus we also calculate the effective reproduction

rate, which shows the expected number of secondary infections from one infectious agent in

the population (which may have other infectious agents) at a specified time t.
Based on the next generation method for deriving the reproductive ratio, R0, from Diek-

mann et al (1990) and the particular method used in van den Driessche and Watmough’s work
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(2002) we produce the reproductions ratios between species in equation set 4 with derivations

in S1 Appendix (Section 1.3) [41, 42]. The effective reproduction rates at time t are shown in 7.

Rrr
0
¼

brr
ðgr þ mrÞ

ð4Þ

Rrh
0
¼

brh
ðgr þ mrÞ

ð5Þ

Rhh
0
¼

pnbhh
ðnþ mhÞðmh þ ghÞ

þ
ð1 � pÞnbhh

ðnþ mhÞðmhI þ mh þ ghÞ

 !

ð6Þ

RrrðtÞ ¼
brr

ðgr þ mrÞ

Sr
Nr

ð7Þ

RrhðtÞ ¼
brh

ðgr þ mrÞ

Sh
Nh

ð8Þ

RhhðtÞ ¼
pnbhh

ðnþ mhÞðmh þ ghÞ
þ

ð1 � pÞnbhh
ðnþ mhÞðmhI þ mh þ ghÞ

 !
Sh
Nh

ð9Þ

Parameter selection

In Table 2 we show the choices for the model parameters that are described in this subsection.

Outbreak events within Nigeria have a seasonal pattern, thus each epidemic should not be

analysed in isolation as this would neglect the effect of seasonal dynamics. Therefore the data

fitting takes place over a longer time period and the population dynamics of the people of

Nigeria should be taken into account. The natural death rate of humans μh is estimated to be
1

54�365
day−1 since 54 years was the average life expectancy to 2 significant figures for Nigerians

Table 2. Description of parameters of the model in 3.

Parameter Biological Description

Bh Human birth rate

μh Human natural mortality rate

ν Reciprocal of incubation period

γh Human recovery rate

p Probability of an infectious human being asymptomatic

mhI Infection induced mortality in humans

γr Recovery rate for rats

μr Natural mortality rate for rats

βrr Rat-to-rat transmission rate

βrh Rat-to-human transmission rate

βhh Human-to-human transmission rate

ϕ Time of minimum recruitment for rats

s Shape parameter for recruitment function for rats

k Magnitude of recruitment rate for rats

https://doi.org/10.1371/journal.pntd.0011543.t002
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given by the World Bank for 2018. The human birth rate Bh was approximated as

1.2 × 10−4day−1. Nigeria has experienced close to exponential growth rate in recent years and if

it is assumed that the population growth of Nigeria has been stable over this time period then

we may assume that dN
dt ¼ Bh � mhð ÞNh, where Bh and μh are constant. Therefore

NðtÞ ¼ Nð0ÞeðBh � mhÞt. We then obtain Bh ¼ mh þ
1

T log NðTÞ
Nð0Þ. The growth of Nigeria from 2015

to 2019 was 181.1 million to 201.0 million to 4 significant figures which gives the growth rate

of Nigeria to be 7.14 × 10−5 per capita per day hence giving Bh = μh + 7.14 × 10−5 [43].

The incubation period was assumed to be 14 days. There is a wide range for the incuba-

tion period and is reported to be around 2 days to 3 weeks. For simplification this assump-

tion was made to be approximately 14 days and thus ν = 1/14. The rate of recovery for

humans γh was 0.1 day−1. Ranges for the time to recover are broad, between 2 and 21 days, so

similarly to ν a value of 0.1 was assumed. We assume that the probability of becoming

asymptomatic p = 0.8 [1].

The infection induced mortality rate, μhI, is derived as follows. The proportion of those that

have died, retrospectively, during the outbreak period considered is 196/1006. Therefore the

case fatality rate (CFR) is 19.5% to 3 significant figures [30]. Since in the model CFR ¼
mhI

mhIþghþmh
we obtain μh = 0.0242. While we acknowledge the potential for under-reporting of

deaths due to difficulties in posthumous diagnosis, our study relied on the available data to

maintain consistency.

The initial number of infected humans Ih(0) is 2 since there were two recorded confirmed

cases in the week commencing 01/01/2018. Therefore Ah(0) = 8 to maintain the ratio between

asymptomatic and symptomatic infected persons to 1:4. Eh(0) is 5 times that of the number of

cases reported the week after the data being used starts. This is done to represent that those

who show symptoms were likely exposed the week before and that 20% of the exposed will go

on to show symptoms. The initial total number of people living in Nigeria was assumed to be

2 × 108. The initial number of recovered individuals Rh(0) was assumed to be 30% of the total

population as this was within the range found in previous studies for those that had previously

encountered Lf [5, 19, 44, 45]. Since estimates for serological positivity in people can vary sub-

stantially between study locations we conducted sensitivity analysis on Rh(0) with 10% and

20%. The remaining population were assumed susceptible Sh(0).

The mortality rate of rats is assumed as μr = 0.0038 per day since this value has been previ-

ously used as the baseline value in previous works [46]. γr = 1/90 per day [47]. For the popula-

tion size of the zoonotic reservoir we kept Nr(0) = 1. The number of initially susceptible rats

was Srð0Þ ¼ Nrð0Þ=Rrr
0

. This is necessarily bounded by Nr(0) above and below by 0 since βrr
may be sampled such that Rrr

0
< 1. Ir(0), the total initial proportion of infectious rats, is fitted

to allow exploration of dynamics that may not be the model’s endemic equilibrium.

The remaining parameters, ϕ, s, βrr, βrh, βhh and Ir(0) will be estimated within the fitting

scheme in the following section. All parameters are listed in Table 2 with biological descrip-

tions. For the assumed values of parameters see Table 3.

Fitting and data

Bayesian estimation techniques involve a suite of statistical inference methods based on the

idea that after specifying a prior assumption upon the parameters being investigated, the prior

is updated with the introduction of more information from the observed data. Following

Bayes’ theorem, the posterior distribution of parameters is obtained by combining the prior

beliefs (prior distribution) with the evidence of the data which usually comes in the form of

the likelihood function [48].
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In the absence of a likelihood function, which may arise because the function is intractable

or computationally expensive, Approximate Bayesian Computation (ABC) is a robust method

that can be used. ABC can be summarised as a family of techniques where parameters are sam-

pled, in various different ways that are dependent on the specific scheme, and then accepted or

rejected if the simulated data given the parameters are sufficiently close to the observed data

[49]. ABC schemes are becoming increasing popular due to their relative ease of use.

In this paper we use a modified Approximate Bayesian Computation Sequential Monte

Carlo scheme (ABC SMC) to fit our parameters (see Algorithm 1 for psuedocode description

of scheme used) since the scheme has been shown to be reliable and converges faster than

some of the more primitive schemes [50]. The ABC SMC schema iterates a population of

parameter particles over T generations with decreasing tolerances, fεig
T
i¼1

, allowed between

the data, y*, and the data simulated from the model with the particle θ, yθ. This converges to

the desired approximate posterior distribution as the distributions of the parameters are

sequentially improved upon [51].

ABC SMC fits a model M with unknown model parameters θ to data. The standard algo-

rithm requires one to specify a decreasing sequence of thresholds ε1� ε2� � � � � εT for the T
generations. When starting, t = 1, parameters are sampled from prior distributions, π(θ). For

each subsequent generation t = 2, � � �, T parameters will be sampled from a perturbation ker-

nel, qtðyjy
ðiÞ
t� 1
Þ, based on a sampled particle accepted in generation t − 1. The model is then sim-

ulated with the sampled parameter particle and using a chosen distance metric to compare the

data and the simulated data, the parameters are accepted if the error calculated is smaller than

the given tolerance for that generation, i.e. d(y*, yθ)� εt.

Table 3. Fixed and fitted parameters to be estimated in the model. The parameters of interest were inferred using

algorithm 1 in section 2.4.

Parameter Value or Prior Fitting status

Nh(0) 2 × 108 Fixed [43]

Eh(0) 30 Fixed

Ah(0) 8 Fixed

Ih(0) 2 Fixed, see sensitivity analysis

Rh(0) 0.3 × Nh(0) Fixed, see sensitivity analysis [5, 44, 45]

Sh(0) Nh(0) − Eh(0) − Ah(0) − Ih(0) − Rh(0) Fixed, see sensitivity analysis

Nr(0) 1 Fixed

Sr(0) Nrð0Þ=Rrr
0

Parameter-dependent

Ir(0) Uniform(0, 1) Fitted

Bh 1.2 × 10−4day−1 Fixed

μh 1

54�365
day−1 Fixed [43]

ν 0.1 day−1 Fixed [1]

γh 0.1 day−1 Fixed [1]

p 0.8 Fixed [1]

mhI 0.0242 day−1 Fixed

γr 1/90 day−1 Fixed [47]

μr 0.0038 day−1 Fixed [46]

βrr LogNormal(−1.03, 1) Fitted

βrh LogNormal(−0.347, 1.5) Fitted

βhh LogNormal(−2.35, 0.5) Fitted

ϕ Uniform(0, 1) Fitted

s LogNormal(3, 1) Fitted

https://doi.org/10.1371/journal.pntd.0011543.t003
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When implementing the SMC algorithm, instead of manually defining the sequence ε1, ε2,

� � �, εT, which is often done by manually calibrating the tolerances after some initial test runs,

we instead initialise our algorithm with an integer, K, and a proportion, Q. If the desired num-

ber of parameter particles is N then we initialise by sampling KN particles from the prior distri-

butions and reject all the N particles with the smallest errors. This serves as our first generation

of sampling. For subsequent generations we have set a desired quantile, Q, where the particle

that is the Qth quantile has its error between the data and model set as the tolerance for the

next generation. That is, if the set of parameter particles for generation g − 1 is fy
g� 1

i g
N
i¼1

and is

ordered with respect to d(y*, yθ) then for generation g the tolerance εg ¼ dðy∗; y
y
g� 1

Q
Þ. Further-

more the perturbation kernel that we use is a multivariate Gaussian with variance equal to

twice that of the co-variance between the previous generation’s particles:

qtðyjy
ðiÞ
t� 1
Þ ¼ N ðyjyðiÞt� 1

;St� 1Þ, where i is sampled using the weightings generated.

Algorithm 1: Psuedocode of modified SMC ABC. This was used to fit the model in section

2.1. Instead of using an arbitrary sequence of tolerances, the tolerances are calculated from the

errors produced in the previous generation. For the first generation, the algorithm runs a mul-

tiple, K, of the number of desired particles, N, and then accepts the best N.

Input: N, number of particles per generation

K, multiples of N for the initial sampling to determine the sequence of tolerances εi
Q, Quantile between 0 and 1 to select the next tolerance from the distribution of toler-

ances from the previous generation

π(θ), Prior distribution for the tested variables

qtðyjy
ðiÞ
t� 1
Þ, Method of perturbation to generate samples of particles for generations

t = 2, � � �, T
y0, Data and method of determining closeness to simulated data d(�, �)

Model M(θ)

Output: fy
T
i g

N
i¼1

, the accepted parameters from generation T; // Run the first
generation

for i = 1 to KN do

Generate θi from the prior p(θ) Generate data yθi from the model M(θi)
Calculate di = d(yθi, y*)

end

Sort initial KN particles by their distance entries di
Set fy

1

i g
N
i¼1

to be the N best of the KN particles, (retroactively making ε1 = dN); // Run
subsequent generations

for t = 2 to T do

Calculate weights o
ðiÞ
1  1=N Set next tolerance with Q by letting

ε2 = dfloor(QN) while i = ⩽ N do do

Draw θ* from among θt−1 with probabilities ωt−1 Generate θ from

qtðyjy
ðiÞ
t� 1
Þ ¼ N ðy∗;St� 1Þ where St−1 is the covariance of the previous generation of

particles Generate yθ from the simulator d(yθ, y*)� εt
y
ðiÞ
t  y o

ðiÞ
t  

pðyÞ

ðSNk¼1
o
ðkÞ
t� 1

N ðyjyðkÞt� 1
;t� 1ÞÞ

end

εt+1 = dfloor(QN) where floor(x) is the greatest integer less than x
end

Prior distributions. For the parameters that we are unable to calculate, we fit with the

scheme from section 2.4 specifically described as Algorithm 1. In this section we explain the
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choices for the prior distributions from our prior knowledge on the model and disease epide-

miology. All parameters and their priors are listed in Table 3.

ϕ is sampled from a uniform distribution between 0 and 1 because this does not give any pref-

erence to any period of the year over another. s is sampled from a Log-normal distribution, Log-

normal ðm1; s
2
1
Þ, where μ1 = 3 and σ1 = 1 as this allows the parameter samples to be varied and

comparable to the range used in Peel et al (2014) [37]. We sample βrr from a Lognormal distribu-

tion, Lognormalðm2; s
2
2
Þ. Since the zoonotic system is assumed to be in endemic equilibrium, Rrr

0

is assumed to be greater than 1. We therefore set μ2 so that the mode of the distribution, m2 ¼

expðm2 � s
2
2
Þ where σ2 = 0.5, would equate to Rrr

0
¼

m2

mrþgr
¼ 10, with a prior flexible enough to

sample through parameter space for a variety of values. Therefore m2 ¼ logð10ðgr þ mrÞÞ þ s
2
2
¼

� 1:65 to 3 s.f. Similarly, for βrh we sample from a Lognormal prior distribution such that the

mode m3 gives an Rrh
0
¼

m3

mrþgr
¼ 10. Thus the prior distribution has m3 ¼ logð10ðgr þ mrÞÞ þ

s2
3
¼ � 0:347 to 3 s.f. with σ3 = 1.5. For the initial proportion of the population of rats that were

infected, Ir(0), we assumed no preference and used a uniform prior between 0 and 1. Lastly,

since human-to-human transmissions are unlikely outside of nosocomial settings, we set σ4 = 0.5

and βhh* Lognormal ðm4; s
2
4
Þ so that the mode m4 when equated to βhh and inserted into Rhh

0

would give Rhh
0
¼ 1. Therefore m4 ¼ logðcÞ þ s2

4
¼ � 2:35 to 3 s.f. where σ = 0.5 and

1

c
¼

pn
ðnþ mhÞðmh þ ghÞ

þ
ð1 � pÞn

ðnþ mhÞðmhI þ mh þ ghÞ
ð10Þ

As previously stated, the data used here are taken directly from our communications with

the NCDC. The data points used are laboratory confirmed cases aggregated by week from the

12th of December 2018 until the 4th of April 2020.

Implementation

The fitting algorithm and all models were implemented in MATLAB, with the models using

the ODE45 solver for numerical integration of the ODEs.

The algorithm ran for T = 15 generations with each generation consisting of 2500 parame-

ter particles. For the first generation K = 10 multiples of 2500 particles were ran and then the

1/K quantile with the least error was accepted. Subsequent tolerances for each generation were

set with the quantile Q = 1/6, where errors from the previous generation would generate the

next tolerance value.

Results

We applied an ABC fitting scheme (Algorithm 1) to the model detailed in Materials and meth-

ods (Fig 2 and Eq 3) to the confirmed Lassa fever cases in Nigeria. Notably, our fitted model

successfully replicated the observed seasonal trends in the data, as demonstrated in Fig 3. The

posterior distributions of parameters and vector dynamics (Figs 4 and 5, respectively) reveal

the seasonal nature of the epidemics and how the population dynamics of the primary reser-

voir, M. natalensis, affect the number of observed cases in Nigeria.

Model evaluation

The model fit resulted in a final generation whose simulations of the number of symptom-pre-

senting humans, Ih, can be seen in Fig 3. The entire range of values that Ih takes in the final gener-

ation at each time point is in light orange and the median value in blue. Overlaid in black is the

confirmed case data for Nigeria. This shows that the model can replicate the year-on-year trend

and that the seasonal epidemics in Nigeria can be explained by the vector population dynamics.
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The number of infected rats increases drastically in December when the pool of available

susceptibles grows, thereby increasing the spillover rate to humans (Fig 6). As the number of

rats in contact with humans decreases over the year due to natural mortality and recovery the

number of spillover events decreases. This process starts again just before the next epidemic

and continues cyclically.

Fig 3. The epidemiological model captured 3 consecutive Lf epidemics in Nigeria. The simulated cases compared

with the observed data. In orange is the 90% range of values Ih takes in the final generation at each time point; the

median value in blue. Confirmed case data for Nigeria are in black. The model replicates the sharp increase in case

incidences occurring at the start of the year for 3 years.

https://doi.org/10.1371/journal.pntd.0011543.g003

Fig 4. The marginal posterior distributions of the final set of accepted particles from fitting. Fig 4 top left the

shape parameter of the rodent recruitment function, s. Fig 4 top right the rodent-to-rodent transmission rate βrr. Fig 4

mid left the human-to-human transmission rate βhh. Fig 4 mid right the rodent-to-human transmission rate βrh. Fig 4

bottom left the date of minimum rat recruitment ϕ.

https://doi.org/10.1371/journal.pntd.0011543.g004
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Fig 5. Underlying vector dynamics reveal high-risk period of spill-over transmission for Nigerians. The figure

showcases the evolution of M. natalensis compartments throughout the observed period, simulated using the

parameters derived from the final generation of accepted values. The median value is represented by the dashed line,

while the colored area illustrates the range. Susceptible rats are depicted in red, infected rats in green, and recovered

rats in blue. Notably, the recruitment of susceptible rats progressively rises, providing impetus for the growth of

infected rats, reaching its peak in late December. Consequently, this surge in infected rats leads to spillover infections

in humans.

https://doi.org/10.1371/journal.pntd.0011543.g005

Fig 6. The range and median of the effective reproduction rate for rat-to-rat transmission Rrr(t) and when the

threshold for Rrr(t)� 1 is met. In Fig 6 (a) Rrr(t), median dashed-line and range in coloured block, exhibits a sharp

increase towards the end of the year, foreshadowing the subsequent outbreaks in the following months. To maintain

clarity, the data is limited to the years 2019 and 2020, as no complete earlier records are available. Fig 6 (b) showcases a

box diagram illustrating the time of year when Rrr(t) exceeds the threshold of 1, denoting high transmission. The

bottom panel of Fig 6 (b) captures the onset of the high transmission period, while the upper panel displays its

conclusion. The intermediate phase witnesses a rapid shift in reservoir dynamics, leading to an escalation in the

number of infected vectors.

https://doi.org/10.1371/journal.pntd.0011543.g006

PLOS NEGLECTED TROPICAL DISEASES Modelling seasonality of Lassa fever in Nigeria

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011543 November 13, 2023 13 / 20

https://doi.org/10.1371/journal.pntd.0011543.g005
https://doi.org/10.1371/journal.pntd.0011543.g006
https://doi.org/10.1371/journal.pntd.0011543


Marginal posterior parameter distributions

The recruitment rate of the vector M. natalensis is determined by the shape parameter, s Fig 4

top left, and the date of the minimum rate, ϕ Fig 4 bottom left, is focused and seasonal. Since

the posterior of s has increased its median substantially (3.24 × 102), this results in a large ratio

between the recruitment rate’s lowest and highest value and thus the rat population experi-

ences an influx of susceptible rats at ϕ + 6 months in early December. The distribution for ϕ is

concentrated around a median of 0.427 (5th of June) with a 90% credible interval of 0.418–

0.435 (2nd–8th June). This is observed in the rodent dynamics in Fig 5 where the number of

susceptible rats increases rapidly.

The time-varying reproduction rate for rat-to-rat transmission crosses the threshold of

Rrr
t � 1 in early December (Fig 6(a)) and causes the number of infectious rats to increase simi-

larly. This then spills over to humans and causes the spike in incidence data that is observed in

Nigeria between January and March.

The transmission parameters, Fig 4 top right and middle, are such that human infections

are predominantly the result of a spillover event from the zoonotic reservoir. The proportion

of humans infected by rats is estimated to be 96.2%–99.0% (90% credible interval) with a

median of 97.5%.

Biological implications

In our study, we explicitly modelled the vector dynamics allowing us to investigate biological

implications. The seasonal recruitment of the natural reservoir as seen in Fig 5 is a crucial

aspect of the disease dynamics and serves as a key driver of the transmission cycle. We can

infer from these results that M. natalensis recruitment, which may be an combination of birth

and migration, influence the occurrence of spillover events to humans in Nigeria, with rat-to-

rat infection peaking just before the epidemics observed in Nigeria (Fig 6a and 6b). This

emphasizes the importance of understanding the ecological and reproductive dynamics of the

reservoir species, as it directly impacts the risk of disease transmission to human populations.

Sensitivity analysis

We conducted a sensitivity analysis (see S1 Appendix Section 3) to assess the impact of varying

the assumed proportion of people that have been exposed to Lassa fever. In the original fitting,

we assumed 30% had encountered and recovered from the disease. We substituted 10% and

20% of the population into the recovered population as these values were comparable to that

found in population sampling studies [5, 19, 44, 45]. When fitting under these alternate

assumptions we used the unaltered SMC algorithm with the sequence of tolerances set to be

those calculated in the original run as seen in Table A in S1 Appendix.

We saw a decrease in the rat-to-human and human-to-human transmission rates as the

proportion of recovered individuals decreased. This correlates with the increase in proportion

of susceptible people and therefore these parameters would need to decrease in order to com-

pensate, maintaining the same epidemic sizes.

We also challenged our assumptions on the reporting rates for Lassa fever cases in 2018. As

noted previously, 2018 saw the introduction of new facilities in Nigeria capable of diagnosing

samples for Lf [10]. This resulted in an increase in capacity for diagnoses and likely the number

of confirmed incidences observed since we are without evidence of change in the nature of Lf

transmission such as genomic mutation resulting in increased infectivity [52]. However, a fur-

ther jump in confirmed cases was seen later in 2019 and 2020. This may have been due to

increased awareness of Lassa fever and familiarity with the health care and surveillance systems
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available after the first year that the new facilities commenced operation. We therefore

assumed alternative reporting rates of 33% and 50%. We conducted this analysis with the alter-

native assumptions for the proportion of the Nigerian population that had initially encoun-

tered and recovered from Lf.

We found that with a higher number of cases, and therefore assumed initial number of

infected humans, that the transmission rate within the reservoir decreased and the parameter

ϕ decreased as well while the initial proportion of infected rodents increased proportionately

with the scaling of the 2018 data. The first epidemic in the data, that of 2018, is affected more

by the initial values and so the link between the initial proportion of infected rodents and the

size of the simulated data for 2018 is apparent. It appears that as the data for the 2018 epidemic

reflects the later epidemics more, the model’s endemic equilibrium can better represent the

first epidemic. Otherwise, the fitting scheme prefers the dynamics of the zoonotic reservoir to

be more focused to reach the burnout of the epidemic quicker to allow the model to capture

both a small epidemic and larger epidemics later.

Discussion

Nigeria has experienced substantial epidemics of Lassa fever in recent years. However, the

drivers of these epidemics have not been explored in detail using a mechanistic model and

described qualitatively. The role of the natural rodent-reservoir in the seasonality of Lf cases is

therefore not well understood. To that end we fitted to the 3 consecutive epidemics in Nigeria,

using data from 2018 to 2020, rather than a single outbreak in an attempt to elucidate trans-

mission and population dynamics that might be missed in their separation. This included pre-

viously over-looked rodent population dynamics for which the possibility of seasonal

recruitment was investigated. This constraint and methodology results in the dynamics shown

and should initiate more investigation into the transmission dynamics of Lassa fever. We

found that the model qualitatively replicated the weekly confirmed case data, showing that the

seasonal peak in cases can be attributed to the population and epidemiological dynamics of the

zoonotic rodent reservoir.

By fitting our model to case data from the outbreaks in Nigeria, we inferred that the recruit-

ment rate of M. natalensis rats in contact with at-risk Nigerians was highly seasonal, which

lead to rapid and substantial shifts in the proportion of the reservoir that were susceptible to

and infected with LASV. We found that there was a pulse increase of new susceptible rats in

December of each year that quickly become infected by LASV-carrying rodents surviving the

previous epidemic. These infected rats then spread the infection to human inhabitants in

shared rural environments. The recruitment rate for the zoonotic vector being sharp and

focused in December, during the dry season for Nigeria, corroborates with previous work that

showed a marked increase in M. natalensis breeding during the end of rainy season to up to 3

months after [14, 16, 17, 32–36, 53]. This drove the increase in observed cases in humans with

over 95% transmission events being spillover events from the zoonotic reservoir. This propor-

tion was larger than that seen in other studies, such as Iacono et al (2015), which may reflect

the omission of within hospital interactions and the increased risk of transmission in hospitals

without appropriate infection control precautions [18].

Our estimates for the basic reproduction number—the expected number of secondary

infections from a primary infection in a fully susceptible population—of Lf in rats were well

above that which one would consider to be an extremely infective disease, such as measles

[54]. In vector epidemiology, however, large measurements of R0 are not unusual [55, 56].

This transmissibility is coupled with a sharp increase in local rat abundance in December caus-

ing a sharp and substantial increase in infected rodents in proximity to humans, causing the
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increase in the number of spillover events. It is important to note that the model’s representa-

tion of rat dynamics, particularly the recruitment function, may not capture the true complex-

ity of the population dynamics. Using a recruitment function instead of a true birth function

allows for a simplified life cycle of M. natalensis by omitting a nesting/juvenile stage. Therefore

dynamics that occur before recruitment and contact with humans may be missed, and could

explain why the basic reproduction number for rats is higher than expected because potential

infected individuals are excluded from transmission.

There are not many studies capturing the seasonality in the prevalence of viremia in rats.

However, Fichet et al. (2007) found that it is high in the wet season and lower in the dry season

[13]. This is in contrast to that observed in our model but serves to highlight what is not under-

stood about the infection cycle of the LASV. In our model, the viremic proportion of the vector

varies greatly, increasing to nearly 70% at its peak. These large proportions are comparable to

localised samples in other studies such as Keenlyside et al. (1983) and Safronetz et al. (2013)

[44, 57]. Furthermore, it is noted in Fichet et al. (2014) that rats in locations that are considered

as high-endemic have a higher prevalence of LASV than in other areas [47]. Given that most

reported cases are spillover events in high-endemic areas of Nigeria, we hypothesize that the

model, which assumes homogeneous mixing on a national scale, replicates dynamics more

closely resembling those of high-endemic areas.

In our sensitivity analysis we adjusted the initial number of recovered humans between

10%, 20% and 30%, consistent with proportions found in the literature. We also varied the per-

centage of cases that were reported in 2018, owing to its comparatively small number of cases

compared to 2019 and 2020. We adjusted for 50% and 33% reporting and scaled the initial

number of infected, asymptomatic and exposed humans. The model was able to capture the

dynamics with the alterations to the initial proportion of infected vectors and an earlier and

less severe epidemic within the rodent reservoir. We believe that pressure for the model to pro-

duce a small epidemic at the beginning of the time series but larger epidemics afterwards

results in parameters that would lead to slower, protracted epidemics being rejected. Thus

high transmission between rats was preferred so that the “epidemic” within the rat population

reached burnout quicker, and therefore allowing the period of increased spillover risk to be

both short enough for the first epidemic to not grow outside of it but sharp and rapid so that

subsequent years still have sufficient exposure.

Incorporation of fine-scale space or further refinement of the rat population dynamics into

the model—such as including time-dependent rat-to-rat transmission rates which may repre-

sent a hypothetical change in behaviour and proximity to humans—could improve both the

model’s realism and enhance our understanding of observed fluctuations in rodent seropreva-

lence [13]. For example, these developments may explicitly consider increased rat populations

near homes in the dry season and higher LASV prevalence in M. natalensis during the rainy

season [13, 32]. Additionally, with case data published at a higher than national scale resolution,

a metapopulation model would better capture spatial variations between different administra-

tive areas, improving the representation of disease dynamics. To enhance comprehensiveness,

future studies should incorporate hospitalization and treatment options specific to human

cases, offering insights into healthcare worker risks and transmission reduction strategies.

These enhancements would advance understanding of the disease and improve applicability of

the model, thereby helping guide better strategies for Lf control and prevention in Nigeria.

Conclusion

Our model captured the dynamics of weekly confirmed Lf cases over multiple epidemics in

Nigeria. Our approach demonstrated that the population of M. natalensis experienced annual
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LASV outbreaks due to seasonal recruitment rates resulting in an influx of new susceptible rats

to fuel the spread of the disease. It is not yet clear what proportion of this recruitment is due to

seasonal reproduction or migration to rural homes in the dry season. The high number of

infected vectors causes a spillover of infection, resulting in annual epidemics between late

December and early April. There are only relatively low levels of human-to-human transmis-

sion, which supports the notion that the zoonotic reservoir of M. natalensis is the primary

driver in the epidemiology of Lf. Therefore, we conjecture that the single most effective mea-

sure of controlling the epidemics would be to reduce human contact with the zoonotic reser-

voir, either by increased food security and hygiene, or with more effective trapping and culling

of rats.
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Zoologique de Belgique. vol. 119; 1989. p. 59–64.

34. Makundi RH, Massawe AW, Mulungu LS. Reproduction and population dynamics of Mastomys natalen-

sis Smith, 1834 in an agricultural landscape in the Western Usambara Mountains, Tanzania. Integr

Zool. 2007; 2(4):233–238. https://doi.org/10.1111/j.1749-4877.2007.00063.x PMID: 21396040

35. Sluydts V, Davis S, Mercelis S, Leirs H. Comparison of multimammate mouse (Mastomys natalensis)

demography in monoculture and mosaic agricultural habitat: Implications for pest management. Crop

Prot. 2009; 28(8):647–654. https://doi.org/10.1016/j.cropro.2009.03.018

36. Massawe AW, Mulungu LS, Makundi RH, Dlamini N, Eiseb SJ, Kirsten F, et al. Spatial and temporal

population dynamics of rodents in three geographically different regions in Africa: implication for eco-

logically-based rodent management. Afr Zool. 2011; 46(2):393–405. https://doi.org/10.3377/004.046.

0219

37. Peel AJ, Pulliam JRC, Luis AD, Plowright RK, O’Shea TJ, Hayman DTS, et al. The effect of seasonal

birth pulses on pathogen persistence in wild mammal populations. Proc R Soc B: Biol Sci. 2014; 281

(1786):20132962. https://doi.org/10.1098/rspb.2013.2962 PMID: 24827436

38. Onah IS, Collins OC, Madueme PGU, Mbah GCE. Dynamical system analysis and optimal control mea-

sures of Lassa fever disease model. Int. J. Math. Math. Sci. 2020; 2020:1–18. https://doi.org/10.1155/

2020/7923125

39. Collins O, Okeke J. Analysis and control measures for Lassa fever model under socio-economic condi-

tions. J. Phys. Conf. Ser. 1734 (1). 2021. p. 012049. https://doi.org/10.1088/1742-6596/1734/1/012049

40. Mylne AQ, Pigott DM, Longbottom J, Shearer F, Duda KA, Messina JP, et al. Mapping the zoonotic

niche of Lassa fever in Africa. Trans R Soc Trop Med Hyg. 2015; 109(8):483–492. https://doi.org/10.

1093/trstmh/trv047 PMID: 26085474

41. Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduc-

tion ratio R 0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990; 28

(4):365–382. https://doi.org/10.1007/BF00178324 PMID: 2117040

42. van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Math Biosci. 2002; 180(1-2):29–48. https://doi.org/10.

1016/S0025-5564(02)00108-6 PMID: 12387915

43. The World Bank. Nigeria. The World Bank Group. Available from https://data.worldbank.org/country/ng.

Accessed 2023

44. Keenlyside RA, McCormick JB, Webb PA, Smith E, Elliott L, Johnson KM. Case-control study of Mast-

omys natalensis and humans in Lassa virus-infected households in Sierra Leone. Am J Trop Med Hyg.

1983; 32(4):829–837. https://doi.org/10.4269/ajtmh.1983.32.829 PMID: 6881432

45. Tomori O, Fabiyi A, Sorungbe A, Smith A, McCormick JB. Viral hemorrhagic fever antibodies in Nigerian

populations. Am J Trop Med Hyg. 1988; 38(2):407–410. https://doi.org/10.4269/ajtmh.1988.38.407

PMID: 3128130

46. Abdullahi MB, Doko UC, Mamuda M. Sensitivity analysis in a Lassa fever deterministic mathematical

model. AIP conference proceedings. vol. 1660. AIP Publishing; 2015.

47. Fichet-Calvet E, Becker-Ziaja B, Koivogui L, Günther S. Lassa serology in natural populations of

rodents and horizontal transmission. Vector Borne Zoonotic Dis. 2014; 14(9):665–674. https://doi.org/

10.1089/vbz.2013.1484 PMID: 25229705

PLOS NEGLECTED TROPICAL DISEASES Modelling seasonality of Lassa fever in Nigeria

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011543 November 13, 2023 19 / 20

https://doi.org/10.1016/j.rinp.2022.105335
https://doi.org/10.1016/j.rinp.2022.105335
https://doi.org/10.1016/j.physa.2022.127259
https://doi.org/10.1016/j.physa.2022.127259
https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria
https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria
https://doi.org/10.1016/j.ijid.2022.01.058
http://www.ncbi.nlm.nih.gov/pubmed/35108609
https://doi.org/10.1089/vbz.2007.0118
http://www.ncbi.nlm.nih.gov/pubmed/18237265
https://doi.org/10.1111/j.1749-4877.2007.00063.x
http://www.ncbi.nlm.nih.gov/pubmed/21396040
https://doi.org/10.1016/j.cropro.2009.03.018
https://doi.org/10.3377/004.046.0219
https://doi.org/10.3377/004.046.0219
https://doi.org/10.1098/rspb.2013.2962
http://www.ncbi.nlm.nih.gov/pubmed/24827436
https://doi.org/10.1155/2020/7923125
https://doi.org/10.1155/2020/7923125
https://doi.org/10.1088/1742-6596/1734/1/012049
https://doi.org/10.1093/trstmh/trv047
https://doi.org/10.1093/trstmh/trv047
http://www.ncbi.nlm.nih.gov/pubmed/26085474
https://doi.org/10.1007/BF00178324
http://www.ncbi.nlm.nih.gov/pubmed/2117040
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1016/S0025-5564(02)00108-6
http://www.ncbi.nlm.nih.gov/pubmed/12387915
https://data.worldbank.org/country/ng
https://doi.org/10.4269/ajtmh.1983.32.829
http://www.ncbi.nlm.nih.gov/pubmed/6881432
https://doi.org/10.4269/ajtmh.1988.38.407
http://www.ncbi.nlm.nih.gov/pubmed/3128130
https://doi.org/10.1089/vbz.2013.1484
https://doi.org/10.1089/vbz.2013.1484
http://www.ncbi.nlm.nih.gov/pubmed/25229705
https://doi.org/10.1371/journal.pntd.0011543


48. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. 1st ed. New York: Chapman and

Hall/CRC; 1995.

49. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP. Approximate Bayesian computation scheme for

parameter inference and model selection in dynamical systems. J R Soc Interface. 2009; 6(31):187–

202. https://doi.org/10.1098/rsif.2008.0172 PMID: 19205079

50. Minter A, Retkute R. Approximate Bayesian Computation for infectious disease modelling. Epidemics.

2019; 29:100368. https://doi.org/10.1016/j.epidem.2019.100368 PMID: 31563466

51. Beaumont MA, Cornuet JM, Marin JM, Robert CP. Adaptive approximate Bayesian computation. Bio-

metrika. 2009; 96(4):983–990. https://doi.org/10.1093/biomet/asp052

52. Siddle KJ, Eromon P, Barnes KG, Mehta S, Oguzie JU, Odia I, et al. Genomic analysis of Lassa virus

during an increase in cases in Nigeria in 2018. N. Engl. J. Med. 2018; 379(18):1745–1753. https://doi.

org/10.1056/NEJMoa1804498 PMID: 30332564

53. Leirs H, Verheyen W, Verhagen R. Spatial patterns in Mastomys natalensis in Tanzania (Rodentia, Mur-

idae). Mammalia. 1996; p. 545–556.

54. Guerra FM, Bolotin S, Lim G, Heffernan J, Deeks SL, Li Y, et al. The basic reproduction number (R0) of

measles: a systematic review. Lancet Infect Dis. 2017; 17(12):e420–e428. https://doi.org/10.1016/

S1473-3099(17)30307-9 PMID: 28757186

55. Hartemink N, Purse B, Meiswinkel R, Brown H, De Koeijer A, Elbers A, et al. Mapping the basic repro-

duction number (R0) for vector-borne diseases: a case study on bluetongue virus. Epidemics. 2009; 1

(3):153–161. https://doi.org/10.1016/j.epidem.2009.05.004 PMID: 21352762

56. Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive number for malaria and

its implications for malaria control. PLoS biol. 2007; 5(3):e42. https://doi.org/10.1371/journal.pbio.

0050042 PMID: 17311470

57. Safronetz D, Sogoba N, Lopez JE, Maiga O, Dahlstrom E, Zivcec M, et al. Geographic distribution and

genetic characterization of Lassa virus in sub-Saharan Mali. PLoS NEGLECT TROP D. 2013; 7(12):

e2582. https://doi.org/10.1371/journal.pntd.0002582 PMID: 24340119

PLOS NEGLECTED TROPICAL DISEASES Modelling seasonality of Lassa fever in Nigeria

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011543 November 13, 2023 20 / 20

https://doi.org/10.1098/rsif.2008.0172
http://www.ncbi.nlm.nih.gov/pubmed/19205079
https://doi.org/10.1016/j.epidem.2019.100368
http://www.ncbi.nlm.nih.gov/pubmed/31563466
https://doi.org/10.1093/biomet/asp052
https://doi.org/10.1056/NEJMoa1804498
https://doi.org/10.1056/NEJMoa1804498
http://www.ncbi.nlm.nih.gov/pubmed/30332564
https://doi.org/10.1016/S1473-3099(17)30307-9
https://doi.org/10.1016/S1473-3099(17)30307-9
http://www.ncbi.nlm.nih.gov/pubmed/28757186
https://doi.org/10.1016/j.epidem.2009.05.004
http://www.ncbi.nlm.nih.gov/pubmed/21352762
https://doi.org/10.1371/journal.pbio.0050042
https://doi.org/10.1371/journal.pbio.0050042
http://www.ncbi.nlm.nih.gov/pubmed/17311470
https://doi.org/10.1371/journal.pntd.0002582
http://www.ncbi.nlm.nih.gov/pubmed/24340119
https://doi.org/10.1371/journal.pntd.0011543

