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Bayesian learning for the robust verification of
autonomous robots
Xingyu Zhao 1✉, Simos Gerasimou 2✉, Radu Calinescu 2, Calum Imrie 2, Valentin Robu 3,4 &

David Flynn5

Autonomous robots used in infrastructure inspection, space exploration and other critical

missions operate in highly dynamic environments. As such, they must continually verify their

ability to complete the tasks associated with these missions safely and effectively. Here we

present a Bayesian learning framework that enables this runtime verification of autonomous

robots. The framework uses prior knowledge and observations of the verified robot to learn

expected ranges for the occurrence rates of regular and singular (e.g., catastrophic failure)

events. Interval continuous-time Markov models defined using these ranges are then ana-

lysed to obtain expected intervals of variation for system properties such as mission duration

and success probability. We apply the framework to an autonomous robotic mission for

underwater infrastructure inspection and repair. The formal proofs and experiments pre-

sented in the paper show that our framework produces results that reflect the uncertainty

intrinsic to many real-world systems, enabling the robust verification of their quantitative

properties under parametric uncertainty.
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Mobile robots are increasingly used to perform critical
missions in extreme environments, which are inacces-
sible or hazardous to humans1–4. These missions range

from the inspection and maintenance of offshore wind-turbine
mooring chains and high-voltage cables to nuclear reactor repair
and deep-space exploration5,6.

Using robots for such missions poses major challenges2,7. First
and foremost, the robots need to operate with high levels of
autonomy, as in these harsh environments their interaction and
communication with human operators is severely restricted.
Additionally, they frequently need to make complex mission-
critical decisions, with errors endangering not just the robot—
itself an expensive asset, but also the important system or
environment being inspected, repaired or explored. Last but not
least, they need to cope with the considerable uncertainty asso-
ciated with these missions, which often comprise one-off tasks or
are carried out in settings not encountered before.

Addressing these major challenges is the focus of intense
research worldwide. In the UK alone, a recent £44.5M research
programme has tackled technical and certification challenges
associated with the use of robotics and AI in the extreme envir-
onments encountered in offshore energy (https://orcahub.org),
space exploration (https://www.fairspacehub.org), nuclear infra-
structure (https://rainhub.org.uk), and management of nuclear
waste (https://www.ncnr.org.uk). This research has initiated a
step change in the assurance and certification of autonomous
robots—not least through the emergence of new concepts such as
dynamic assurance8 and self-certification9 for robotic systems.

Dynamic assurance requires a robot to respond to failures,
environmental changes and other disruptions not only by
reconfiguring accordingly10, but also by producing new assurance
evidence which guarantees that the reconfigured robot will con-
tinue to achieve its mission goals8. Self-certifying robots must
continually verify their health and ability to complete missions in
dynamic, risk-prone environments9. In line with the “defence in
depth” safety engineering paradigm11, this runtime verification
has to be performed independently of the front-end planning and
control engine of the robot.

Despite these advances, current dynamic assurance and self-
certification methods rely on quantitative verification techniques
(e.g., probabilistic12,13 and statistical14 model checking) that do
not handle well the parametric uncertainty that autonomous
robots encounter in extreme environments. Indeed, quantitative
verification operates with stochastic models that demand single-
point estimates of uncertain parameters such as task execution
and failure rates. These estimates capture neither epistemic nor
aleatory parametric uncertainty. As such, they are affected by
arbitrary estimation errors which—because stochastic models are
often nonlinear—can be amplified in the verification process15,
and may lead to invalid robot reconfiguration decisions, dynamic
assurance and self-certification.

In this paper, we present a robust quantitative verification
framework that employs Bayesian learning techniques to over-
come this limitation. Our framework requires only partial and
limited prior knowledge about the verified robotic system, and
exploits its runtime observations (or lack thereof) to learn ranges
of values for the system parameters. These parameter ranges are
then used to compute the quantitative properties that underpin
the robot’s decision making (e.g., probability of mission success,
and expected energy usage) as intervals that—unique to our
framework—capture the parametric uncertainty of the mission.
Our framework is underpinned by probabilistic model checking, a
technique that is broadly used to assess quantitative properties,
e.g., reliability, performance and energy cost of systems exhibiting
stochastic behaviour. Such systems include autonomous robots
from numerous domains16, e.g., mobile service robots17,

spacecraft18, drones19 and robotic swarms20. While we present a
case study involving an autonomous underwater vehicle (AUV),
the generalisability of our approach stems from the broad
adoption of probabilistic model checking for the modelling and
verification of this wide range of autonomous robots. As such, we
anticipate that our results are applicable to autonomous agents
across all these domains.

We start by introducing our robust verification framework,
which comprises Bayesian techniques for learning the occurrence
rates of both singular events (e.g., catastrophic failures and
completion of one-off tasks) and events observed regularly during
system operation. Next, we describe the use of the framework for
an offshore wind turbine inspection and maintenance robotic
mission. Finally, we discuss the framework in the context of
related work, and we suggest directions for further research.

Results
Proposed framework. We developed an end-to-end verification
framework for the online computation of bounded intervals for
continuous-time Markov chain (CMTC) properties that corre-
spond to key dependability and performance properties of
autonomous robots. The verification framework integrates
interval CTMC model checking21 with two new interval Bayesian
inference techniques that we introduce in the Methods section.
The former technique, Bayesian inference using partial priors
(BIPP), computes estimate bounded intervals for the occurrence
rates of singular events such as the successful completion of one-
off robot tasks, or catastrophic failures. The latter technique,
Bayesian inference using imprecise probability with sets of priors
(IPSP), produces estimate bounded intervals for the occurrence
rates of regular events encountered by an autonomous robot.

As shown in Fig. 1, the verification process underpinning the
application of our framework involves devising a parametric
CTMC model that captures the structural aspects of the system
under verification through a SYSTEM MODELLER. This activity is
typically performed once at design time (i.e., before the system is
put into operation) by engineers with modelling expertise. By
monitoring the system under verification after deployment, our
framework enables observing both the occurrence of regular
events and the lack of singular events during times when such
events could have occurred (e.g., a catastrophic failure not
happening when the system performs a dangerous operation).
Our online BIPP ESTIMATOR and IPSP ESTIMATOR use these observa-
tions to calculate expected ranges for the rates of the monitored
events, enabling a MODEL GENERATOR to continually synthesise up-
to-date interval CTMCs that model the evolving behaviour of the
system.

The interval CTMCs, which are synthesised from the
parametric CTMC model, are then continually verified by the
PRISM-PSY MODEL CHECKER22, to compute value intervals for key
system properties. As shown in Fig. 1 and illustrated in the next
section, these properties range from dependability (e.g., safety,
reliability and availability)23 and performance (e.g., response time
and throughput) properties to resource use and system utility.
Finally, changes in the value ranges of these properties may
prompt the dynamic reconfiguration of the system by a
CONTROLLER module responsible for ensuring that the system
requirements are satisfied at all times.

Offshore infrastructure maintenance. We demonstrate how our
online robust verification and reconfiguration framework can
support an AUV to execute a structural health inspection and
cleaning mission of the substructure of an offshore wind farm.
Similar scenarios for AUV use in remote, subsea environments
have been described in other large-scale robotic demonstration
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projects, such as the PANDORA EU FP7 project24. Compared to
remotely operated vehicles that must be tethered with expensive
oceanographic surface vessels run by specialised personnel, AUVs
bring important advantages, including reduced environmental
footprint (since no surface vessel consuming fuel is needed),
reduced cognitive fatigue for the involved personnel, increased
frequency of mission execution, and reduced operational and
maintenance cost.

The offshore wind farm comprises multiple floating wind
turbines, with each turbine being a buoyant foundation structure
secured to the sea bed with floating chains tethered to anchors
weighing several tons. Wind farms with floating wind turbines
offer increased wind exploitation (since they can be installed in
deeper waters where winds are stronger and more consistent),
reduced installation costs (since there is no need to build solid
foundations), and reduced impact on the visual and maritime life
(since they are further from the shore)25.

The AUV is deployed to collect data about the condition of
k ≥ 1 floating chains to enable the post-mission identification of
problems that could affect the structural integrity of the asset
(floating chain). When the visual inspection of a chain is hindered
due to accumulated biofouling or marine growth, the AUV can
use its on-board high-pressure water jet to clean the chain and
continue with the inspection task24.

The high degrees of aleatoric uncertainty in navigation and the
perception of the marine environment entail that the AUV might
fail to clean a chain. This uncertainty originates from the dynamic
conditions of the underwater medium that includes unexpected
water perturbations coupled with difficulties in scene under-
standing due to reduced visibility and the need to operate close to
the floating chains. When this occurs, the AUV can retry the
cleaning task or skip the chain and move to the next.

Stochastic mission modelling. Figure 2 shows the parametric
CMTC model of the floating chain inspection and cleaning
mission. The AUV inspects the ith chain with rate rinspect and
consumes energy eins. The chain is clean with probability pc and
the AUV travels to the next chain with rate rtravel consuming
energy et, or the chain needs cleaning with probability 1− pc.
When the AUV attempts the cleaning (xi= 1), the task succeeds
with chain-dependent rate rcleani , causes catastrophic damage to
the floating chain or itself with rate rdamage or fails with chain-
dependent rate rfaili . If the cleaning fails, the AUV prepares
to retry with known and fixed rate rprepare requiring energy ep, and

it either retries cleaning (xi= 1) or skips the current chain
and moves to chain i+ 1 (xi= 0). After executing the tasks on
the kth chain, the AUV returns to its base and completes the
mission.

Since the AUV can fail to clean the i-th chain with non-
negligible probability and multiple times, this is a regular event
whose transition rate rfaili is modelled using the IPSP estimator
from (7) and (8). In contrast, the AUV is expected to not cause
catastrophic damage but, with extremely low probability, may do
so only once (after which the AUV and/or its mission are likely to
be revised); thus, the corresponding transition rates rcleani and
rdamage are modelled using the BIPP estimator from (14) and
(15). The other transition rates, i.e., those for inspection (rinspect),
travelling (rtravel) and preparation (rprepare), are less influenced by
the chain conditions and therefore assumed to be known, e.g.,
from previous trials and missions; hence, we fixed these transition
rates.

When cleaning is needed for the ith chain, the AUV controller
synthesises a plan by determining the control parameter
xi∈ {0, 1} for all remaining chains i, i+ 1,…k so that the system
requirements in Table 1 are satisfied.

Robust verification results. We demonstrate our solution for
robust verification and adaptation using a mission in which the
AUV was deployed to inspect and, if needed, clean six chains
placed in a hexagonal arrangement (Fig. 3). We used m= 3 and
the BIPP estimator (7) and (8) for the transition rates rcleani

and rdamage, which correspond to singular events. For rcleani ,
we used ϵ1 ¼ 0:12þ Uð0; 0:12Þ, θ1 ¼ 0:10þ Uð0; 0:001Þ, ϵ2 ¼
0:90þ Uð0; 0:90Þ, θ2 ¼ 0:85þ Uð0; 0:0085Þ, where Uðx; yÞ
denotes a continuous uniform distribution with x and y being its
minimum and maximum values, respectively. For rdamage, we
used ϵ1 ¼ 10�8 þ Uð0; 10�8Þ, θ1 ¼ 0:88þ Uð0; 0:0088Þ, ϵ2 ¼
10�7 þ Uð0; 10�7Þ, θ2 ¼ 0:10 þ Uð0; 0:001Þ. For rfaili , we used
tð0Þ ¼ ½10þ Uð0; 10Þ� and λð0Þ ¼ ½0:0163þ Uð0; 0:00163Þ�. Dur-
ing the mission execution, the AUV performs the model checking
at every cleaning attempt so that runtime observations are
incorporated into the decision making process entailing also that
the currently synthesised plan is not necessarily used at sub-
sequent chains. Hence, the AUV only needs to check system
configurations where at least the current chain is to be cleaned,
thus halving the number of configurations to be checked (since
configurations with xi= 0 need not be checked). If all of these

Fig. 1 Robust Bayesian verification framework. The integration of Bayesian inference using partial priors (BIPP) and Bayesian inference using imprecise
probability with sets of priors (IPSP) with interval continuous-time Markov chain (CMTC) model checking supports the online robust quantitative
verification and reconfiguration of autonomous systems under parametric uncertainty.
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checks that consider xi= 1 fail to satisfy the requirements from
Table 1, then the AUV decides to skip the current chain and
proceed to inspect and clean the next chain.

If a cleaning attempt at chain i failed, the AUV integrates this
observation in (27) and (28), and performs model checking to
determine whether to retry the cleaning or skip the chain. Since
the AUV has consumed energy for the failed cleaning attempt,
the energy available is reduced accordingly, which in turn can
reduce the number of possible system configurations that can be
employed and need checking. The observation of a failed attempt
reduces the lower bound for the reliability of cleaning xi, and may
result in a violation of the reliability requirement R1 (Table 1),
which may further reduce the number of feasible configurations.
If the AUV fails to clean chain i repeatedly, this lower bound will
continue to decrease, potentially resulting in the AUV having no
feasible configuration, and having to skip the current chain.
Although skipping a chain overall decreases the risk of a
catastrophic failure (as the number of cleaning attempts is
reduced), leaving uncleaned chains will incur additional cost as a
new inspection mission will need to be launched, e.g., using
another AUV or human personnel.

Figure 3 shows a simulated run of the AUV performing an
inspection and cleaning mission (Fig. 3a). At each chain that
requires cleaning, the AUV decides whether to attempt to clean
or skip the current chain. Figure 3b provides details of the
probabilistic model checking carried out during the inspection
and cleaning of chain 3 (Fig. 3a, ii). Overall, the AUV performed
multiple attempts to clean chain 3, succeeding on the third
attempt.

The results of the model checking analyses for these attempts
are shown in successive columns in Fig. 3b, while each row
depicts the analysis of one of the requirements from Table 1.
A system configuration is feasible if it satisfies requirements

R1—the AUV will not encounter a catastrophic failure with a
probability of at least 0.95, and R2—the expected energy
consumption does not exceed the remaining AUV energy. Lastly,
if multiple configurations satisfy requirements R1 and R2, then
the winner is the configuration that maximises the number of
chains cleaned. If there is still a tie, the configuration is chosen
randomly from those that clean the most chains.

In the AUV’s first attempt at chain 3 (Fig. 3b (i–iii)), all the
configurations are feasible, so configuration 1 (highlighted, and
corresponding to the highest number of chains cleaned) is
selected. This attempt fails, and a second assessment is made
(Fig. 3b (iv–vi)). This time, only system configurations 2–8 are
feasible, and as configurations 2, 3, and 5 maximise R3, a
configuration is chosen randomly from this subset (in this case,
configuration 3). This attempt also fails, and on the third attempt
(Fig. 3b (vii–ix)), only configurations 4–8 are feasible, with 5
maximising R3, and the AUV adopts this configuration and
succeeds in cleaning the chain.

In this AUV mission instance, the AUV controller is concerned
with cleaning the maximum number of chains and ensuring the
AUV returns safely. In other variants of our AUV mission,
the system properties from requirements R1 and R2 could also be
used to determine a winning configuration in the event of a tie
between multiple feasible configurations. For example, it might
be optimal for the AUV to consume minimal energy in this
scenario. Thus, the energy consumption from requirement R2 can
be used as a metric to choose a configuration as a tie-breaker.

We also measured the overheads associated with executing the
online verification process. Figure 4 shows the computation
overheads incurred by the RBV framework for executing the
AUV-based mission. The values comprising each boxplot have
been collected over 10 independent runs. Each value denotes
the time consumed for a single online robust quantitative

Fig. 2 Floating chain continuous-time Markov chain (CMTC) model of an autonomous underwater vehicle (AUV). CTMC of the floating chain cleaning
and inspection mission, where e1, e2, …, ek represent the mean energy required to clean chains 1, 2, …, k, respectively. The AUV inspects a chain with rate
rinspect, consuming energy eins, prepares to retry the chain cleaning task with rate rprepare, consuming energy ep, and travels to the next chain with rate rtravel,
consuming energy et. During an inspection, the chain is clean with probability pc, and x1, x2,…, xk∈ {0, 1} denote the control parameters used by the AUV
controller to synthesise a plan. The rate rfaili corresponds to a regular event and is therefore modelled using Bayesian inference using imprecise probability
with sets of priors (IPSP) from (27) and (28). The rates rcleani and rdamage correspond to singular events and are thus modelled using Bayesian inference
using partial priors (BIPP) from (7) and (8).

Table 1 System requirements for the AUV floating chain inspection and cleaning mission

ID Informal description Formal specificationa

R1 The probability of mission failure must not exceed 5% P≤0.05 [F damage]
R2 The expected energy consumption must not exceed the remaining energy Eleft Renergy�Eleft

½F finish�
R3 Subject to R1 and R2 being met, maximise the number of cleaned chains Find argmax ∑k

i¼1 xi such that R1 ∧ R2

aExpressed in rewards-extended continuous stochastic logic (see Methods section).
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verification and reconfiguration step when the AUV attempts to
clean the indicated chain. For instance, the boxplot associated
with the ‘Chain 1’ (‘Chain 2’) label on the x-axis signifies that the
AUV attempts to clean chain 1 (chain 2) and corresponds to the
time consumed by the RBV framework to analyse 64 (32)
configurations. Overall, the time overheads are reasonable for the
purpose of this mission. Since the AUV has more configurations
to analyse at the earlier stages of the mission (e.g., when
inspecting chain 1), the results follow the anticipated exponential
pattern. The number of configurations decreases by half each
time the AUV progresses further into the mission and moves to
the next chain. Another interesting observation is that the length
of each boxplot is small, i.e., the lower and upper quartiles are

very close, indicating that the RBV framework showcases a
consistent behaviour in the time taken for its execution.

The consumed time comprises (1) the time required to
compute the posterior estimate bounds of the modelled transition
rates, rcleani , rfail, 1 ≤ i ≤ k, and rdamage, using the BIPP and IPSP
estimators; (2) the time required to compute the value intervals
for requirements R1 and R2 using the probabilistic model checker
PRISM-PSY22; and (3) the time needed to find the best configuration
satisfying requirements R1 and R2, and maximising requirement
R3. Our empirical analysis provided evidence that the execution
of the BIPP and IPSP estimators and the selection of the best
configuration have negligible overheads with almost all time
incurred by PRISM-PSY. This outcome is not surprising and is

Fig. 3 Demonstration of autonomous underwater vehicle (AUV) inspection and cleaning mission. a Simulated AUV mission involving the inspection of
six wind farm chains and, if required, their cleaning. i Start of mission; ii cleaning chain 3; iii cleaning final chain. At this point, the AUV cleaned three chains,
skipped one, and one chain did not require cleaning. b Plots of the outcome of the model checking carried out by the AUV at chain 3. Each row shows the
configurations against the requirements. i–iii Results during the first attempt at cleaning chain 3. iv–vi Results during the second attempt at cleaning. vii–ix
Results at the third and successful attempt at cleaning the chain. The configurations decorated with the red cross signify configurations violating the energy
requirement R2 while configurations highlighted in yellow denote the chosen configuration for the corresponding attempt.
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aligned with the results reported in22 concerning the execution
overheads of the model checker.

Additional information about the offshore infrastructure main-
tenance experiments, including details about the experimental
methodology, is provided in Supplementary Methods 2 of
the Supplementary material. The simulator used for the AUV
mission, developed on top of the open-source MOOS-IvP
middleware26, and a video showing the execution of this AUV
mission instance are available at http://github.com/gerasimou/RBV.

Discussion
Unlike single-point estimators of Markov model parameters27–30,
our Bayesian framework provides interval estimates that capture
the inherent uncertainty of these parameters, enabling the robust
quantitative verification of systems such as autonomous robots.
Through its ability to exploit prior knowledge, the framework
differs fundamentally from, and is superior to, a recently intro-
duced approach to synthesising intervals for unknown transition
parameters based on the frequentist theory of simultaneous
confidence intervals15,31,32. Furthermore, instead of applying the
same estimator to all Markov model transition parameters like
existing approaches, our framework is the first to handle para-
meters corresponding to singular and regular events differently.
This is an essential distinction, especially for the former type of
parameter, for which the absence of observations violates a key
premise of existing estimators. Our BIPP estimator avoids this
invalid premise, and computes two-sided bounded estimates for
singular CTMC transition rates—a considerable extension of our
preliminary work to devise one-sided bounded estimates for the
singular transition probabilities of discrete-time Markov chains33.

The proposed Bayesian framework is underpinned by the
theoretical foundations of imprecise probabilities34,35 and Con-
servative Bayesian Inference (CBI)36–38 integrated with recent
advances in the verification of interval CTMCs22. In particular,
our BIPP theorems for singular events extend CBI significantly in
several ways. First, BIPP operates in the continuous domain for a
Poisson process, while previous CBI theorems are applicable to
Bernoulli processes in the discrete domain. As such, BIPP enables
the runtime quantitative verification of interval CTMCs, and thus
the analysis of important properties that are not captured by
discrete-time Markov models. Second, CBI is one-side (upper)
bounded, and therefore only supports the analysis of undesirable
singular events (e.g., catastrophic failures). In contrast, BIPP

provides two-sided bounded estimates, therefore also enabling the
analysis of “positive” singular events (e.g., the completion of
difficult one-off tasks). Finally, BIPP can operate with any arbi-
trary number of confidence bounds as priors, which greatly
increases the flexibility of exploiting different types of prior
knowledge.

As illustrated by its application to an AUV infrastructure
maintenance mission, our robust quantitative verification fra-
mework removes the need for precise prior beliefs, which are
typically unavailable in many real-world verification tasks that
require Bayesian inference. Instead, the framework enables the
exploitation of Bayesian combinations of partial or imperfect
prior knowledge, which it uses to derive informed estimation
errors (i.e., intervals) for the predicted model parameters. Com-
bined with existing techniques for obtaining this prior knowledge,
e.g., the Delphi method and its variants39 or reference class
forecasting40, the framework increases the trustworthiness of
Bayesian inference in highly uncertain scenarios such as those
encountered in the verification of autonomous robots.

Based on recent survey papers41–43 that provide in-depth dis-
cussions on the challenges and opportunities in the field of
autonomous robot verification, it has become evident that a
common taxonomy emerges, primarily revolving around two key
dimensions. The first dimension centres on the specification of
properties under verification, which includes various types of
temporal logic languages41. The second dimension pertains to
how system behaviours are modeled/structured. In this regard,
formal models such as Belief Desire Intention, Petri Nets, and
finite state machines, along with their diverse extensions, have
emerged as popular approaches to capturing the intricate
dynamics of autonomous systems. Our approach falls within the
category of methods utilising continuous stochastic logic (CSL)
and CTMCs for the verification of robots. However, unlike the
existing methods from this category44,45, we introduced treat-
ments of the model parameters uncertainty via robust Bayesian
learning methods, and integrated them with recent research on
interval CMTC model checking.

Another important approach for verifying the behaviour of
autonomous agents under uncertainty uses hidden Markov
models (HMMs)46–48. HMM-based verification supports the
analysis of stochastic systems whose true state is not observable,
and can only be estimated (with aleatoric uncertainty given by a
predefined probability distribution) through monitoring a sepa-
rate process whose observable state depends on the unknown
state of the system. In contrast, our verification framework sup-
ports the analysis of autonomous agents whose true state is
observable but for which the rates of transition between these
known states are affected by epistemic uncertainty and need to be
learnt from system observations (as shown in Fig. 1). As such,
HMM-based verification and our robust verification framework
differ substantially by tackling different types of autonomous
agent uncertainty. Because autonomous agents may be affected by
both types of uncertainty, the complementarity of the two ver-
ification approaches can actually be leveraged by using our BIPP
and IPSP Bayesian estimators in conjunction with HMM-based
verification, i.e., to learn the transition rates associated with
continuous-time HMMs that model the behaviour of an auton-
omous agent. Nevertheless, achieving this integration will first
require the development of generic continuous-time HMM ver-
ification techniques since, to the best of our knowledge, only
verification techniques and tools for the verification of discrete-
time HMMs are currently available.

Although our method demonstrates promising potential, it is
not without limitations. One limitation is scalability—as the
complexity of the robot’s behaviour and the environment grow,
the number of unknown parameters to be estimated at runtime

Fig. 4 Verification time overheads. Time taken by our robust Bayesian
verification framework to execute the online quantitative verification and
reconfiguration step over 10 independent runs when the robot attempts to
clean the indicated chain.
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may increase, leading to increased computational overheads for
our Bayesian estimators. Additionally, the method requires a
certain level of expertise to construct the underlying CTMC
model structure. This demands understanding both the robot’s
dynamics and the environment in order to model them as a
CTMC, making the approach less accessible to those without
specialised knowledge. Last but not least, a challenge inherent to
all Bayesian methods involves the acquisition of appropriate
priors. While our robust Bayesian estimators mitigate this issue
by eliminating the need for complete and precise prior knowl-
edge, establishing the required partial and vague priors can still
pose challenges. These limitations suggest important areas for
future work.

Methods
Quantitative verification. Quantitative verification is a mathe-
matically based technique for analysing the correctness, relia-
bility, performance and other key properties of systems with
stochastic behaviour49,50. The technique captures this behaviour
into Markov models, formalises the properties of interest as
probabilistic temporal logic formulae over these models, and
employs efficient algorithms for their analysis. Examples of such
properties include the probability of mission failure for an
autonomous robot, and the expected battery energy required to
complete a robotic mission.

In this paper, we focus on the quantitative verification of
continuous-time Markov chains (CMTCs). CTMCs are Markov
models for continuous-time stochastic processes over countable
state spaces comprising (i) a finite set of states corresponding to
real-world states of the system that are relevant for the analysed
properties; and (ii) the rates of transition between these states. We
use the following definition adapted from the probabilistic model
checking literature49,50.

Definition 1. A continuous-time Markov chain is a tuple

M ¼ ðS; s0;RÞ; ð1Þ
where S is a finite set of states, s0∈ S is the initial state, and
R : S ´ S ! R is a transition rate matrix such that the probability
that the CTMC will leave state si∈ S within t > 0 time units is
1� e�t�∑sk2SnfsigRðsi;skÞ and the probability that the new state is sj∈
S⧹{si} is pij ¼ Rðsi; sjÞ =∑sk2Snfsig Rðsi; skÞ.

The range of properties that can be verified using CTMCs can
be extended by annotating the states and transitions with non-
negative quantities called rewards.

Definition 2. A reward structure over a CTMC M ¼ ðS; s0;RÞ is
a pair of functions ðρ; ιÞ such that ρ : S ! R≥ 0 is a state reward
function (a vector), and ι : S ´ S ! R≥ 0 is a transition reward
function (a matrix).

CTMCs support the verification of quantitative properties
expressed in CSL51 extended with rewards50.

Definition 3. Given a set of atomic propositions AP, a∈ AP,
p∈ [0, 1], I � R≥ 0, r; t 2 R≥ 0 and⋈ ∈ {≥, > , < , ≤}, a CSL
formula Φ is defined by the grammar:

Φ ::¼true j a jΦ ^ Φ j :Φ j P⋈p½XΦ� jP⋈p½ΦUI Φ� jS⋈p½Φ� j
R⋈r½I¼t� jR⋈r½C ≤ t � jR⋈r½FΦ� jR⋈r½S�:

Given a CTMC M ¼ ðS; s0;RÞ with states labelled with atomic
propositions from AP by a function L : S→ 2AP, and a reward
structure ðρ; ιÞ over M, the CSL semantics is defined with a
satisfaction relation ⊧ over the states and paths (i.e., feasible
sequences of successive states) of M49. The notation s⊧Φ means
“Φ is satisfied in state s”. For any state s∈ S, we have:

● s ⊧ true, s⊧a iff a∈ L(s), s ⊧ ¬Φ iff ¬ (s⊧Φ), and s⊧Φ1 ∧Φ2

iff s ⊧Φ1 and s ⊧Φ2;
● sFP⋈p½XΦ� iff the probability x that Φ holds in the state

following s satisfies x⋈ p (probabilistic next formula);
● sFP⋈p½Φ1 U

I Φ2� iff, across all paths starting at s, the
probability x of going through only states where Φ1 holds
until reaching a state where Φ2 holds at a time t∈ I satisfies
x⋈ p (probabilistic until formula);

● sFS⋈p½Φ� iff, having started in state s, the probability x of
M reaching a state where Φ holds in the long run satisfies
x⋈ p (probabilistic steady-state formula);

● the instantaneous (R⋈r[I=t]), cumulative (R⋈r[C≤t]),
future-state (R⋈r[FΦ]) and steady-state (R⋈r[S]) reward
formulae hold iff, having started in state s, the expected
reward x at time instant t, cumulated up to time t,
cumulated until reaching a state where Φ holds, and
achieved at steady state, respectively, satisfies x⋈ r.

Probabilistic model checkers such as PRISM52 and Storm53 use
efficient analysis techniques to compute the actual probabilities
and expected rewards associated with probabilistic and reward
formulae, respectively. The formulae are then verified by
comparing the computed values to the bounds p and r.
Furthermore, the extended CSL syntax P=?[XΦ], P=?[Φ1UIΦ2],
R=?[I=t], etc. can be used to obtain these values from the model
checkers.

While the transition rates of the CTMCs verified in this way
must be known and constant, advanced quantitative verification
techniques21 support the analysis of CTMCs whose transition
rates are specified as intervals. The technique has been used to
synthesise CTMCs corresponding to process configurations and
system designs that satisfy quantitative constraints and optimisa-
tion criteria22,32,54, under the assumption that these bounded
intervals are available. Here we introduce a Bayesian framework
for computing these intervals in ways that reflect the parametric
uncertainty of real-world systems such as autonomous robots.

Bayesian learning of CTMC transition rates. Given two states si
and sj of a CTMC such that transitions from si to sj are possible
and occur with rate λ, each transition from si to sj is independent
of how state si was reached (the Markov property). Furthermore,
the time spent in state si before a transition to sj is modelled by a
homogeneous Poisson process of rate λ. Accordingly, the like-
lihood that ‘data’ collected by observing the CTMC shows n such
transitions occurring within a combined time t spent in state si is
given by the conditional probability:

lðλÞ ¼ Pr datajλð Þ ¼ λtð Þn
n!

e�λt ð2Þ

In practice, the rate λ is typically unknown, but prior beliefs about
its value are available (e.g., from domain experts or from past
missions performed by the system modelled by the CTMC) in the
form of a probability (density or mass) function f(λ). In this
common scenario, the Bayes Theorem can be used to derive a
posterior probability function that combines the likelihood l(λ)
and the prior f(λ) into a better estimate for λ at time t:

f ðλjdataÞ ¼ lðλÞf ðλÞR1
0 lðλÞf ðλÞdλ ð3Þ

where the Lebesgue-Stieltjes integral from the denominator is
introduced to ensure that f(λ∣data) is a probability function. We
note, we use Lebesgue-Stieltjes integration to cover in a compact
way both continuous and discrete prior distributions f(λ), as these
integrals naturally reduce to sums for discrete distributions. We
calculate the posterior estimate for the rate λ at time t as the
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expectation of (3):

λðtÞ ¼ E Λjdata½ � ¼
R1
0 λlðλÞf ðλÞdλR1
0 lðλÞf ðλÞdλ : ð4Þ

where we use capital letters for random variables and lower case
for their realisations.

Interval Bayesian inference for singular events. In the
autonomous-robot missions considered in our paper, certain
events are extremely rare, and treated as unique from a modelling
viewpoint. These events include major failures (after each of
which the system is modified to remove or mitigate the cause of
the failure), and the successful completion of difficult one-off
tasks. Using Bayesian inference to estimate the CTMC transition
rates associated with such events is challenging because, with no
observations of these events, the posterior estimate is highly
sensitive to the choice of a suitable prior distribution. Further-
more, only limited domain knowledge is often available to select
and justify a prior distribution for these singular events.

To address this challenge, we develop a Bayesian inference
using partial priors (BIPP) estimator that requires only limited,
partial prior knowledge instead of the complete prior distribution
typically needed for Bayesian inference. For one-off events, such
knowledge is both more likely to be available and easier to justify.
BIPP provides bounded posterior estimates that are robust in the
sense that the ground truth rate values are within the estimated
intervals.

To derive the BIPP estimator, we note that for one-off events
the likelihood (2) becomes

lðλÞ ¼ PrðdatajλÞ ¼ e�λ�t ð5Þ
because n= 0. Instead of a prior distribution f(λ) (required to
compute the posterior expectation (4)), we assume that we only
have limited partial knowledge consisting of m ≥ 2 confidence
bounds on f(λ):

Prðϵi�1<λ≤ ϵiÞ ¼ θi ð6Þ
where 1 ≤ i ≤m, θi > 0, and∑m

i¼1 θi ¼ 1. The use of such bounds is
a common practice for safety-critical systems. As an example, the
IEC61508 safety standard 55 defines safety integrity levels (SILs)
for the critical functions of a system based on the bounds for their
probability of failure on demand (pfd): pfd between 10−2 and
10−1 corresponds to SIL 1, pfd between 10−3 and 10−2

corresponds to SIL 2, etc.; and testing can be used to estimate
the probabilities that a critical function has different SILs. We
note that Pr(λ ≥ ϵ0)= Pr(λ ≤ ϵm)= 1 and that, when no specific
information is available, we can use ϵ0= 0 and ϵm=+∞.

The partial knowledge encoded by the constraints (6) is far
from a complete prior distribution: an infinite number of
distributions f(λ) satisfy these constraints, and the result below
provides bounds for the estimate rate (4) across these
distributions.

Theorem 1. The set Sλ of posterior estimate rates (4) computed
for all prior distributions f(λ) that satisfy (6) has an infinum λl
and a supremum λu given by:

λl ¼ min
∑m

i¼1 ϵilðϵiÞð1� xiÞθi þ ϵi�1lðϵi�1Þxiθi
� �

∑m
i¼1½lðϵiÞð1� xiÞθi þ lðϵi�1Þxiθi�

����81≤ i≤m:xi 2 ½0; 1�
� �

;

ð7Þ

λu ¼ max
∑m

i¼1 λilðλiÞθi
∑m

i¼1 lðλiÞθi

���� 81≤ i≤m:λi 2 ðϵi�1; ϵi�
� �

: ð8Þ

Before providing a proof for Theorem 1, we note that the
values λl and λu can be computed using numerical optimisation

software packages available, for instance, within widely used
mathematical computing tools like MATLAB and Maple. For
applications where computational resources are limited or the
BIPP estimator is used online with tight deadlines, the following
corollaries (whose proofs are provided in our supplementary
material) give closed-form estimator bounds for m= 3 (with
m= 2 as a subcase).

Corollary 1. When m= 3, the bounds (7) and (8) satisfy:

λl ≥

ϵ1 lðϵ1Þθ2
θ1þlðϵ1Þθ2 ; if θ2ðϵ1�ϵ2Þ

θ1
> ϵ2lðϵ2Þ�ϵ1lðϵ1Þ

lðϵ1Þlðϵ2Þ
ϵ2 lðϵ2Þθ2
θ1þlðϵ2Þθ2 ; otherwise

8<
: ð9Þ

and

λu<

ϵ1 lðϵ1Þθ1þϵ2 lðϵ2Þθ2þ1
t lð1tÞð1�θ1�θ2Þ

lðϵ1Þθ1 ; if t< 1
ϵ2

ϵ1 lðϵ1Þθ1þ1
t lð1tÞθ2þϵ2 lðϵ2Þð1�θ1�θ2Þ

lðϵ1Þθ1 ; if 1
ϵ2
≤ t ≤ 1

ϵ1
ϵ1 lðϵ1Þðθ1þθ2Þþϵ2 lðϵ2Þð1�θ1�θ2Þ

lðϵ1Þθ1 ; otherwise

8>>><
>>>:

ð10Þ

Corollary 2. Closed-form BIPP bounds for m= 2 can be obtained
by setting ϵ2= ϵ1 and θ2= 0 in (9) and (10).

To prove Theorem 1, we require the following Lemma and
Propositions.

Lemma 1. If l( ⋅ ) is the likelihood function defined in (5), then
g : ð0;1Þ ! R, g(w)= w ⋅ l−1(w) is a concave function.

Proof. Since gðwÞ ¼ w � � lnw
t

� �
and t > 0, the second derivative of

g satisfies

d2g
dw2

¼ d
dw

� lnw
t

� 1
t

	 

¼ � 1

wt
< 0: ð11Þ

Thus, g(w) is concave. □

Proposition 1. With the notation from Theorem 1, there exist m
values λ1∈ (ϵ0, ϵ1], λ2∈ (ϵ1, ϵ2], …, λm∈ (ϵm−1, ϵm] such that
supSλ is the posterior estimate (4) obtained by using as prior the
m-point discrete distribution with probability mass f(λi)=
Pr(λ= λi)= θi for i= 1, 2,…,m.

Proof. Since f(λ)= 0 for λ∉ [ϵ0, ϵm], the Lebesgue-Stieltjes inte-
gration from the objective function (4) can be rewritten as:

EðΛjdataÞ ¼
∑m

i¼1

R ϵi
ϵi�1

λlðλÞf ðλÞdλ
∑m

i¼1

R ϵi
ϵi�1

lðλÞf ðλÞdλ ð12Þ

The first mean value theorem for integrals (e.g.,56 p. 249]) ensures
that, for every i= 1, 2,…,m, there are points λi; λ

0
i 2 ½ϵi�1; ϵi�

such that: Z ϵi

ϵi�1

lðλÞf ðλÞdλ ¼ lðλiÞ
Z ϵi

ϵi�1

f ðλÞdλ ¼ lðλiÞθi ð13Þ

Z ϵi

ϵi�1

λlðλÞf ðλÞdλ ¼ λ0ilðλ0iÞ
Z ϵi

ϵi�1

f ðλÞdλ ¼ λ0ilðλ0iÞθi ð14Þ

or, after simple algebraic manipulations of the previous results,

lðλiÞ ¼ E½lðΛÞjϵi�1 ≤Λ≤ ϵi� ð15Þ

λ0ilðλ0iÞ ¼ E½Λ � lðΛÞjϵi�1 ≤Λ≤ ϵi� ð16Þ
Using the shorthand notation w= l(λ) for the likelihood function
(5) (hence w > 0), we define g : ð0;1Þ ! R, g(w)= w ⋅ l−1(w).
According to Lemma 1, g( ⋅ ) is a concave function, and thus we
have:
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λ0ilðλ0iÞ ¼E½Λ � lðΛÞjϵi�1 ≤Λ≤ ϵi�
¼E½W � l�1ðWÞjϵi�1 ≤ l

�1ðWÞ≤ ϵi�
¼E½gðWÞjϵi�1 ≤ l

�1ðWÞ≤ ϵi�
≤ g E½Wjϵi�1 ≤ l

�1ðWÞ≤ ϵi�
� �

ð17Þ

¼E½Wjϵi�1 ≤ l
�1ðWÞ≤ ϵi��

l�1 E½Wjϵi�1 ≤ l
�1ðWÞ≤ ϵi�

� �
¼ E½lðΛÞjϵi�1 ≤Λ≤ ϵi� � l�1

E½lðΛÞjϵi�1 ≤Λ≤ ϵi�
� �

¼lðλiÞ � l�1 lðλiÞ
� �

¼ λi � lðλiÞ;

ð18Þ

where the inequality step (17) is obtained by applying Jensen’s
inequality36,57.

We can now use (13), (14) and (18) to establish an upper
bound for the objective function (12):

EðΛjdataÞ ¼ ∑m
i¼1 λ

0
ilðλ0iÞθi

∑m
i¼1 lðλiÞθi

≤
∑m

i¼1 λilðλiÞθi
∑m

i¼1 lðλiÞθi
ð19Þ

This upper bound is attained by selecting an m-point discrete
distribution fu(λ) with probability mass θi at λ= λi, for
i= 1, 2,…,m (since substituting f( ⋅ ) from (12) with this fu( ⋅ )
yields the rhs result of (19)). As such, maximising this bound
reduces to an optimisation problem in the m-dimensional space
of (λ1, λ2,…, λm)∈ (ϵ0, ϵ1] × (ϵ1, ϵ2] ×⋯ × (ϵm−1, ϵm]. This opti-
misation problem can be solved numerically, yielding a
supremum (rather than a maximum) for Sλ in the case when
the optimised prior distribution has points located at λi= ϵi−1 for
i= 1, 2,…,m. □

Proposition 2. With the notation from Theorem 1, there exist m
values x1, x2,…, xm∈ [0, 1] such that inf Sλ is the posterior esti-
mate (4) obtained by using as prior the (m+ 1)-point discrete
distribution with probability mass f(ϵ0)= Pr(λ= ϵ0)= x1θ1,
f(ϵi)= Pr(λ= ϵi)= (1− xi)θi+ xi+1θi+1 for 1≤i <m, and f(ϵm)=
Pr(λ= ϵm)= (1− xm)θm.

Proof. We reuse the reasoning steps from Proposition 1 up to
inequality (17), which we replace with the following alternative
inequality derived from the Converse Jensen’s Inequality58,59 and
the fact that g(w) is a concave function (cf. Lemma 1):

λ0ilðλ0iÞ ¼E½gðWÞjϵi�1 ≤ l
�1ðWÞ≤ ϵi�

≥
lðϵi�1Þ �E½Wjϵi�1 ≤ l

�1ðWÞ≤ ϵi�
lðϵi�1Þ � lðϵiÞ

gðlðϵiÞÞ

þE½Wjϵi�1 ≤ l
�1ðWÞ≤ ϵi� � lðϵiÞ

lðϵi�1Þ � lðϵiÞ
gðlðϵi�1ÞÞ

¼ lðϵi�1Þ � lðλiÞ
lðϵi�1Þ � lðϵiÞ

ϵilðϵiÞ þ
lðλiÞ � lðϵiÞ
lðϵi�1Þ � lðϵiÞ

ϵi�1lðϵi�1Þ

ð20Þ

We can now establish a lower bound for (12):

EðΛjdataÞ ¼ ∑m
i¼1 λ

0
ilðλ0iÞθi

∑m
i¼1 lðλiÞθi

≥
∑m

i¼1
lðϵi�1Þ�lðλiÞ
lðϵi�1Þ�lðϵiÞ ϵilðϵiÞ þ

lðλiÞ�lðϵiÞ
lðϵi�1Þ�lðϵiÞ ϵi�1lðϵi�1Þ

� �
θi

∑m
i¼1 lðλiÞθi

ð21Þ

¼ ∑m
i¼1 ϵilðϵiÞð1� xiÞθi þ ϵi�1lðϵi�1Þxiθi
� �

∑m
i¼1½lðϵiÞð1� xiÞθi þ lðϵi�1Þxiθi�

ð22Þ

where xi is defined as:

xi ¼
lðλiÞ � lðϵiÞ
lðϵi�1Þ � lðϵiÞ

ð23Þ

The result (22) is essentially in the same form as the result
obtained by using a 2m-point distribution in which, for each
interval [ϵi−1, ϵi], there are two points located at λ= ϵi−1 and
λ= ϵi and the probability mass associated with these points is xiθi
and (1− xi)θi respectively. Intuitively, xi is the ratio of splitting
the probability mass θi between the two points since, according to
(23), xi∈ [0, 1].

Furthermore, the points on the boundaries of two successive
intervals are overlapping, which effectively reduces the number of
points from 2m to m+ 1. Expanding (22) yields an (m+ 1)-point
discrete distribution fl(λ) with probability mass fl(ϵ0)= x1θ1,
fl(ϵi)= (1− xi)θi+ xi+1θi+1 for 1≤i <m and fl(ϵm)= (1− xm)θm.
As such, minimising (22) reduces to an m-dimensional
optimisation problem in x1, x2,…, xm, which can be solved
numerically given other model parameters. Finally, since (6)
requires that ϵi−1 < λi≤ϵi, we have 0 ≤ xi < 1, and thus the
posterior estimate is an infimum (rather than a minimum) of
Sλ when the solution of the optimisation problem corresponds to
a combination of x1, x2,…, xm values that includes one or more
values of 1. □

We can now prove Theorem 1. In the Supplementary
Methods 1 of the supplementary material, we use this result to
prove Corollaries 1 and 2.

Proof. Proof of Theorem 1. Propositions 1 and 2 imply that the
set of posterior estimates λ over all priors that satisfy the con-
straints (6) has:

1. the infinum λl from (7), obtained by using the prior f(λ)
from Proposition 2 in (4);

2. the supremum λu from (8), obtained by using the prior f(λ)
from Proposition 1 in (4). □

BIPP estimator evaluation. Figure 5 shows the results of
experiments we carried out to evaluate the BIPP estimator in
scenarios with m= 3 (Fig. 5a–c) and m= 2 (Fig. 5d) confidence
bounds by varying the characteristics of the partial prior
knowledge. For m= 3, the upper bound computed by the esti-
mator exhibits a three-stage behaviour as the time over which no
singular event occurs increases. These stages correspond to the
three λu regions from (10). They start with a steep λu decrease for
t< 1

ϵ2
in stage 1, followed by a slower λu decreasing trend for

1
ϵ2
≤ t ≤ 1

ϵ1
in stage 2, and approaching the asymptotic value

ϵ1ðθ1þθ2Þ
θ1

as the mission progresses through stage 3. Similarly, the
lower bound λl demonstrates a two-stage behaviour, as expected
given its two-part definition (9), with the overall value
approaching 0 as the mission continues and no singular event
modelled by this estimator (e.g., a catastrophic failure) occurs.

Figure 5a shows the behaviour of the estimator for different θ1
values and fixed θ2, ϵ1, and ϵ2 values. For higher θ1 values, more
probability mass is allocated to the confidence bound (ϵ0, ϵ1],
yielding a steeper decrease in the upper bound λu and a lower λu
value at the end of the mission. The lower bound λl presents
limited variability across the different θ1 values, becoming almost
constant and close to 0 as θ1 increases.

A similar decreasing pattern is observed in Fig. 5b, which
depicts the results of experiments with θ1, ϵ1, and ϵ2 fixed, and θ2
variable. The upper bound λu in the long-term is larger for higher
θ2 values, resulting in a wider posterior estimate bound as λu
converges towards its theoretical asymptotic value.
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Allocating the same probability mass to the confidence bounds,
i.e., θ1= θ2= 0.3 and changing the prior knowledge bounds ϵ1
and ϵ2 affects greatly the behaviour of the BIPP estimator
(Fig. 5c). When ϵ1 and ϵ2 have relatively high values compared to
the duration of the mission (e.g., see the first three plots in

Fig. 5c), the upper bound λu of the BIPP estimator rapidly
converges to its asymptotic value, leaving no room for subsequent
improvement as the mission progresses. Similarly, the earlier the
triggering point for switching between the two parts of the lower
bound λl calculation (9), the earlier λl reaches a plateau close to 0.

Fig. 5 Experimental analysis of the Bayesian inference using partial priors (BIPP) estimator. Systematic experimental analysis of the BIPP estimator
showing the bounds λl and λu of the posterior estimates for the occurrence probability of singular events for the duration of a mission. Each plot shows the
effect of different partial prior knowledge encoded in (6) on the calculation of the lower (7) and upper (8) posterior estimate bounds. The red circles
indicate the time points when the different formulae for the lower and upper bounds in (9) and (10), respectively, become active. a BIPP estimator for
m= 3, θ1∈ {0.1, 0.3, 0.6, 0.8}, θ2= 0.1, ϵ1 ¼ 1

5000, ϵ2 ¼ 1
1000. b BIPP estimator for m= 3, θ1= 0.1, θ2∈ {0.1, 0.3, 0.6, 0.8}, ϵ1 ¼ 1

5000, ϵ2 ¼ 1
1000. c BIPP

estimator for m= 3, θ1= 0.3, θ2= 0.3, ϵ1; ϵ2
� � 2 1

500 ;
1

100

� �
; 1

1000 ;
1

500

� �
; 1

2000 ;
1

1000

� �
; 1

5000 ;
1

2000

� �
 �
d BIPP estimator for m= 2, θ1∈ {0.3, 0.5}, θ2= 0,

ϵ1; ϵ2
� � 2 1

500 ;
1

500

� �
; 1

5000 ;
1

5000

� �
 �
.
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Finally, Fig. 5d shows experimental results for the special
scenario comprising only m= 2 confidence bounds. In this
scenario, replacing θ2= 0 in (9) as required by Corollary 2 gives a
constant lower bound λl= 0 irrespective of the other BIPP
estimator parameters. As expected, the upper bound λu
demonstrates a twofold behaviour, featuring a rapid decrease
until t ¼ 1

ϵ1, followed by a steady state behaviour where λu ¼ ϵ1
θ1
.

Interval Bayesian inference for regular events. For CTMC
transitions that correspond to regular events within the modelled
system, we follow the common practice60 of using a Gamma prior
distribution for each uncertain transition rate λ:

f ðλÞ ¼ Γ½λ; α; β� ¼ βα

ðα� 1Þ! λ
α�1e�βλ: ð24Þ

The Gamma distribution is a frequently adopted conjugate prior
distribution for the likelihood (2) and, if the prior knowledge
assumes an initial value λ(0) for the transition rate, the parameters
α > 0 and β > 0 must satisfy

EðΓ½λ; α; β�Þ ¼ α

β
¼ λð0Þ: ð25Þ

The posterior value λ(t) for the transition rate after observing n
transitions within t time units is then obtained by using the prior
(24) in the expectation (4), as in the following derivation adapted
from classical Bayesian theory60:

λðtÞ ¼
R1
0 λ ðλtÞn

n! e�λt
� �

β
ðα�1Þ! λ

α�1e�βλ
� �

dλR1
0

ðλtÞn
n! e�λt

� �
β

ðα�1Þ! λ
α�1e�βλ

� �
dλ

¼
R1
0 λnþαe�λðtþβÞdλR1

0 λnþα�1e�λðtþβÞdλ
¼
R1
0 λnþα e�λðtþβÞ

�ðtþβÞ

� �0
dλR1

0 λnþα�1e�λðtþβÞdλ

¼
λnþα e�λðtþβÞ

�ðtþβÞ
� ����1

0
� R10 ðnþ αÞλnþα�1 e�λðtþβÞ

�ðtþβÞ dλR1
0 λnþα�1e�λðtþβÞdλ

¼
0þ nþα

tþβ

R1
0 λnþα�1e�λðtþβÞdλR1

0 λnþα�1e�λðtþβÞdλ
¼ nþ α

t þ β
¼ nþ βλð0Þ

t þ β

¼ β

t þ β
λð0Þ þ t

t þ β

n
t
¼ tð0Þ

t þ tð0Þ
λð0Þ þ t

t þ tð0Þ
n
t
;

ð26Þ

where t(0)= β. This notation reflects the way in which the pos-
terior rate λ(t) is computed as a weighted sum of the mean rate n

t
observed over a time period t, and of the prior λ(0) deemed as
trustworthy as a mean rate calculated from observations over a
time period t(0). When t(0)≪ t (either because we have low trust
in the prior λ(0) and thus t(0)≃ 0, or because the system was
observed for a time period t that is much longer than t(0)), the
posterior (26) reduces to the maximum likelihood estimator, i.e.
λðtÞ ’ n

t . In this scenario, the observations fully dominate the
estimator (26), with no contribution from the prior.

The selection of suitable values for the parameters t(0) and λ(0)

of the traditional Bayesian estimator (26) is very challenging.
What constitutes a suitable choice often depends on unknown
attributes of the environment, or several domain experts may
each propose different values for these parameters. In line with
recent advances in imprecise probabilistic modelling34,35,61, we
address this challenge by defining a robust transition rate
estimator for Bayesian inference using imprecise probability with
sets of priors (IPSP). The IPSP estimator uses ranges ½tð0Þ; tð0Þ� and
½λð0Þ; λð0Þ� (corresponding to the environmental uncertainty, or to
input obtained from multiple domain experts) for the two
parameters instead of point values.

The following theorem quantifies the uncertainty that the use
of parameter ranges for t(0) and λ(0) induces on the posterior rate
(26). This theorem specialises and builds on generalised Bayesian
inference results34 that we adapt for the estimation of CTMC
transition rates.

Theorem 2. Given uncertain prior parameters tð0Þ 2 ½tð0Þ; tð0Þ� and
λð0Þ 2 ½λð0Þ; λð0Þ�, the posterior rate λ(t) from (26) can range in the
interval ½λðtÞ; λðtÞ�, where:

λðtÞ ¼
tð0Þλð0Þþn
tð0Þþt

; if n
t ≥ λ

ð0Þ

tð0Þλð0Þþn
tð0Þþt ; otherwise

8<
: ð27Þ

and

λ
ðtÞ ¼

tð0Þλð0Þþn
tð0Þþt

; if n
t ≤ λ

ð0Þ

tð0Þλð0Þþn
tð0Þþt ; otherwise

8<
: : ð28Þ

Proof. To find the extrema for the posterior rate λ(t), we first
differentiate (26) with respect to λ(0):

d

dλð0Þ
λðtÞ
� � ¼ tð0Þ

t þ tð0Þ
:

As t(0) > 0 and t > 0, this derivative is always positive, so

λðtÞ ¼ min
tð0Þ2½tð0Þ;tð0Þ�

tð0Þλð0Þ þ n
tð0Þ þ t

ð29Þ

and

λ
ðtÞ ¼ max

tð0Þ2½tð0Þ;tð0Þ �

tð0Þλ
ð0Þ þ n

tð0Þ þ t
: ð30Þ

We now differentiate the quantity that needs to be minimised in
(29) with respect to t(0):

d
dtð0Þ

tð0Þλð0Þ þ n
tð0Þ þ t

 !
¼ λð0Þðtð0Þ þ tÞ � ðtð0Þλð0Þ þ nÞ � 1

ðtð0Þ þ tÞ2

¼ λð0Þt � n

ðtð0Þ þ tÞ2
;

As this derivative is non-positive for λð0Þ 2 0; nt
� �

and positive for

λð0Þ> n
t , the minimum from (29) is attained for t0 ¼ tð0Þ in the

former case, and for t0 ¼ tð0Þ in the latter case, which yields the
result from (27). Similarly, the derivative of the quantity to
maximise in (30), i.e.,

d
dtð0Þ

tð0Þλ
ð0Þ þ n

tð0Þ þ t

 !
¼ λ

ð0Þ
t � n

ðtð0Þ þ tÞ2
;

is non-positive for λ
ð0Þ 2 0; nt

� �
and positive for λ

ð0Þ
> n

t , so the
maximum from (30) is attained for t0 ¼ tð0Þ in the former case,
and for t0 ¼ tð0Þ in the latter case, which yields the result from
(28) and completes the proof. □

IPSP estimator evaluation. Figure 6 shows the results of
experiments we performed to analyse the behaviour of the IPSP
estimator in scenarios with varying ranges for the prior knowl-
edge ½tð0Þ; tð0Þ� and ½λð0Þ; λð0Þ�. A general observation is that the

posterior rate intervals ½λðtÞ; λðtÞ� become narrower as the mission
progresses, irrespective of the level of trust assigned to the prior
knowledge, i.e., across all columns of plots (which correspond to
different ½tð0Þ; tð0Þ� intervals) from Fig. 6a. Nevertheless, this trust
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level affects how the estimator incorporates observations into the
calculation of the posterior interval. When the trust in the prior
knowledge is weak (in the plots from the leftmost columns of
Fig. 6a), the impact of the prior knowledge on the posterior
estimation is low, and the IPSP calculation is heavily influenced
by the observations, resulting in a narrow interval. In contrast,

when the trust in the prior knowledge is stronger (in the plots
from the rightmost columns), the contribution of the prior
knowledge to the posterior estimation becomes higher, and the
IPSP estimator produces a wider interval.

In the experiments from the first row of plots in Fig. 6a, the
(unknown) actual rate λ ¼ 3 belongs to the prior knowledge

Fig. 6 Experimental analysis of the Bayesian inference using imprecise probability with sets of priors (IPSP) estimator showing the bounded posterior
estimation for regular events. a IPSP estimator results showing the impact of different sets of priors ½tð0Þ; tð0Þ� and ½λð0Þ; λð0Þ�. In each plot, the blue dotted
line ( ⋅⋅⋅⋅ ) and green dashed line (−−− ) show the posterior estimation bounds λðtÞ and λðtÞ for narrow and wide ½λð0Þ; λð0Þ� intervals, respectively. Each
column of plots corresponds to assigning different strength to the prior knowledge, ranging from uninformative (leftmost column) to strong belief
(rightmost column). The first row shows scenarios in which the actual rate λ ¼ 3 belongs to the prior knowledge interval ½λð0Þ; λð0Þ�. In the second and third
rows, the prior intervals overestimate and underestimate λ, respectively. b IPSP estimator results illustrating the behaviour of IPSP across different actual
rate values λ 2 f0:03;0:3; 3; 30g. The experiments were carried out for ½tð0Þ; tð0Þ� ¼ ½1000; 1000� and included both narrow and wide ½λð0Þ; λð0Þ� intervals,
which are shown in blue dotted lines ( ⋅⋅⋅⋅ ) and green dashed lines (−−− ), respectively. In all experiments, the unknown actual rate λ was in the prior
interval ½λð0Þ; λð0Þ�.
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interval ½λð0Þ; λð0Þ�. As a result, the posterior rate interval ½λðtÞ; λðtÞ�
progressively becomes narrower, approximating λ with high
accuracy. As expected, the narrower prior knowledge (blue dotted
line) produces a narrower posterior rate interval than the wider
and more conservative prior knowledge (green dashed line).

When the prior knowledge interval ½λð0Þ; λð0Þ� overestimates or
underestimates the actual rate λ (second and third rows of plots
from Fig. 6a, respectively), the ability of IPSP to adapt its
estimations to reflect the observations heavily depends on the
characteristics of the sets of priors. For example, if the width of
the prior knowledge ½λð0Þ; λð0Þ� is close to λ and t(0)≪ t, then IPSP
more easily approaches λ, as shown by the narrow prior
knowledge (blue dotted line) in Fig. 6a for
½tð0Þ; tð0Þ� 2 f½5; 15�; ½75; 125�; ½750; 1250�g. In contrast, wider nar-
row prior knowledge (green dashed line) combined with higher
levels of trust in the prior, e.g., ½tð0Þ; tð0Þ� 2 f½1500; 2500�g, entails
that more observations are needed for the posterior rate to
approach the actual rate λ. When the actual rate is, in addition,
nonstationary, change-point detection methods can be employed
to identify these changes62,63 and recalibrate the IPSP estimator.
Finally, Fig. 6b shows the behaviour of IPSP for different actual
rate λ values, i.e., λ 2 f0:03; 0:3; 3; 30g. As λ increases, more
observations are produced in the same time period, resulting in a
smoother and narrower posterior bound estimate.

Data availability
The data supporting the RBV findings and a video of the robotic mission in simulation
are available at https://gerasimou.github.io/RBV.

Code availability
All code developed in this project is freely available at http://github.com/gerasimou/RBV.
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