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Abstract  
  
The prediction of wave overtopping at coastal defenses is critical to ensure the flood resilience of people and 
properties in low-lying nearshore coastal areas. With the effects of anthropogenic climate change, the frequency 
of wave overtopping is expected to increase, along with sea level rise and more frequent damaging storm 
surges. Established approaches for the prediction of wave overtopping have traditionally relied on physical and 
numerical modelling and empirical methods. The ubiquity of computational resources has led to the emergence 
of Artificial Intelligence techniques, such as Machine Learning (ML) algorithms, as a promising approach for 
predicting wave overtopping. This study investigates the application of four ML models based on Random Forest 
(RF), Gradient Boosted Decision Trees (GBDT), Support Vector Machines Regression (SVMR) and Artificial 
Neural Networks (ANN) approach for predicting wave overtopping at sloping breakwaters. Data from the 
EurOtop II manual, a comprehensive dataset of physical and numerical wave overtopping tests undertaken on 
a variety of coastal structure geometries, including sloping breakwaters (the focus of this study), underpinned 
the developed models.. To optimize the data for redundancy, feature transformation and advanced feature 
selection methods were employed. Hyperparameter tuning was performed to extract the best features for the 
predictive models. The performance of the developed ML-based models was examined in terms of the 
coefficient of determination, r2, and the Pearson correlation coefficient, R, for the measured and predicted 
overtopping values. The range of r2 values across the four models varied between 0.69 to 0.87, with Pearson 
correlations varying between 0.87 and 0.93. The results show that the GBDT model outperformed the other ML 
models tested in this study.  

 
Keywords: Artificial Intelligence; Machine Learning; Overtopping; ANN; GBDT; Random Forest; SVMR; Sloping 
Structures. 

  
 

1. INTRODUCTION   
 

 Overtopping occurs at coastal structures when wave heights surpass the height of the structure, causing 
water to flow over into the hinterland areas. Storm surges are the primary cause of wave height exceedance. 
Assessment of overtopping at coastal defense structures is vital for the functionality of the structures and for 
mitigating wave hazards. However, with the prediction of more frequent and intense storms, coupled with sea 
level rise and high tides (Salauddin et al., 2022; IPCC, 2021; Dong et al., 2021a,b), overtopping is likely to 
become a more common occurrence and critical issue in low-lying coastal areas. Thus, developing fast and 
reliable methods for estimating overtopping is essential for effective climate change mitigation and adaptation 
planning. 
 There are three popular methods of estimating overtopping namely empirical, numerical, and physical. In 
empirical methods, equations with arbitrary coefficients are applied to estimate overtopping quantity (e.g., 
O’sullivan et al., 2020; Dong et al., 2018; Salauddin and Pearson 2018; Goda 2009). In particular, EurOtop 
(2018) has a comprehensive collection of empirical equations that are a state-of-the-art guidance to estimate 
overtopping for coastal engineers across the world. Although empirical methods are fast and straightforward, 
they may not fully capture the underlying complexities of wave-structure interaction. Numerical methods are 
more capable of simulating wave propagation and interactions with the coastal structure using principles of 
computational fluid dynamics (e.g., Dang et al., 2023; Mata and van Gent, 2023; Ravindra et al., 2022; Chen et 
al., 2021; Yeganeh-Bakhtiary et al., 2020). The numerical methods can provide better insights into the 
overtopping processes but are computationally demanding in nature. Physical methods rely on experimental 
models involving the observation and measurement of overtopping at laboratory prototypes of coastal defense 
structures. (e.g., Liu et al., 2022; Salauddin et al., 2021; Dong et al., 2020; Salauddin and Pearson 2020).  
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The advancement in computational power and data science has enabled the application of Machine 

Learning (ML) algorithms for estimation of overtopping quantity. A review of the applications of ML-based 
models (Habib et al., 2022a,b) underpinned the necessity of a common methodological framework for ML 
applications. The study also identified Artificial Neural Networks (ANN) and Decision Trees as more popular 
methods for overtopping estimation across different geometries of coastal defense structures. The ability of ML 
algorithms to effectively identify complex and non-linear patterns in large datasets with high accuracy has made 
them a promising alternative for overtopping estimation. In fact, ANN has been recognized by EurOtop (2018) 
as a reliable method for this task. ANN is also in use for overtopping estimation for a significant amount of time 
in the recent past (see for example Verhaeghe et al., 2008; van Gent 2007; and Victor et al., 2012). The 
application of Decision Trees (DT) and Support Vector Machines Regression (SVMR) is also evident in recent 
literature (Elbisy 2023; den Bieman et al., 2021; Chen et al., 2021; Hosseinzadeh et al., 2021; den Bieman et 
al., 2020) and in all cases were able to predict overtopping with reasonable accuracy.  
In this study, we examine the predictive performance of four ML algorithms, namely RF, GBDT, SVMR and ANN 
to estimate overtopping discharge at sloping structures. Among the four algorithms, ANN is a popular choice in 
overtopping prediction while the other three algorithms are relatively recent in practice. The data was sourced 
from the EurOtop (2018) manual which is an extensive collection of data from physical experiments for 
overtopping at sloping structures. As per the EurOtop (2018) manual, design and overtopping estimation 
methods for different geometrical configurations are independent and hence, it is possible to investigate the 
application of ML in sloping structures only.  To ensure unbiasedness and eliminate redundancy in the data, 
data optimization techniques such as scalar transformation and feature selection methods were implemented. 
Notably, feature selection methods have replaced permutation methods for selecting the best features in 
Machine Learning (ML) prediction tasks. The dataset was then split into train-test set in the ration of 70%-30% 
and hyperparameter tuning was incorporated to ensure each of the algorithms fit well into the training data. The 
training data included validation sets prior to introducing the algorithms to an unseen test set. To determine the 
accuracy of the algorithms, predicted overtopping rates from the test set were compared with the actual values. 
 
2. MATERIALS AND METHODS  

 
 The four ML algorithms used in this study, together with data sourcing, data optimization, and feature 

selection approaches are discussed in this section.  
 

2.1 Decision Trees 
 

Two of the four ML algorithms used in this study, GBDT and RF are characteristically Decision Trees (DT). 
Decision Trees are a type of supervised machine learning algorithm that is trained to predict an output variable 
(known as the dependent or target variable) from a set of independent variables (known as features). DTs can 
perform both regression and classification tasks. In regression tasks, a continuous or numerical output variable 
is prediction; for example: overtopping discharge. In classification tasks, the output variable is discrete, and the 
algorithm is trained to predict a class label (Yeganeh-Bakhtiary et al., 2022).  

In regression-based DTs, the training data is recursively partitioned into rectangular regions and the output 
variable is predicted from the mean or median of these individual regions until a stopping criteria is reached. 
For example, let us consider a training dataset, X = , where  is an input feature 

vector for the  training data and  is the corresponding output variable. The DT algorithm then partitions X 
into a set of rectangular regions R1, R2, R3…. Rn. Each region then has an associated prediction value P which 
is the mean or median of the output variables in that region. The DT is then finally built based on the input 
features that distinctly splits the rectangular regions and produces the smallest variance in the output variable. 
DTs are often favorably applied due to the algorithm’s ability to perform prediction tasks independently from the 
noise and non-linearity of input data (Pedregosa et al., 2011; Kotu and Deshpande, 2015).  

In a RF algorithm, a set of DTs is built from a random set of input features and training data. The purpose 
of an RF is to reduce overfitting and improve generalization by avoiding overexposure to any set of training 
data. Each DT is allowed to make individual predictions, and the final prediction is made by averaging the 
predictions of all the DTs. This approach is also known as the bagging technique. In addition to reducing 
overfitting, another advantage of an RF is that it can handle both categorical and numerical data. Another 
approach to improve the prediction performance of Decision Trees is the boosting technique. GBDT is an 
example of this kind. The boosting technique uses a loss function that measures the Mean Squared Error (MSE) 
between the predicted and actual values. The aim of the boosting algorithm is to minimize this loss function by 
adjusting numerical coefficients to input data during the training step. The process of minimizing the loss function 
is called gradient descending. This optimization of the loss function allows for faster and more accurate 
predictions from the DTs (Sutton, 2005).   

 
2.2 Support Vector Machines 
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Support Vector Machine is also a supervised ML algorithm that can perform classification and prediction 

tasks. In a Support Vector Machine Regression (SVMR) algorithm, the input features are mapped to a high-
dimensional space by applying a kernel function (Noori et al., 2022). In the next step, the algorithm builds a 
hyperplane to differentiate the input data into two distinct sets, namely the positive and negative regions. The 
data points that are hence placed in proximity to the hyperplane are known as support vectors. The objective of 
the SVMR is to maximize the distance between the hyperplane and support vectors, also known as the margin. 
The SVMR then applies a loss function to penalize the predictions that are placed outside the margin or on the 
wrong side of the hyperplane. The loss function of a SVMR is computed by Eqn. 1. 
 

                                                                                                                  [1] 
 

where, y is the actual value and f(x) is the predicted value of the dependent variable and  is the value of the 
margin. The loss function essentially penalizes predicted variables outside the margin and the margin can be 
fine-tuned using a constant known as the regularization parameter. The overall objective of the SVMR is to 
maximize the margin while simultaneously minimizing the loss function. 
 
2.3 Artificial Neural Network 
 

The concept of Artificial Neural Network (ANN) dates as far as 1943 when it was conceived through the 
work of McCulloh and Pitts (1943). As mentioned earlier, ANN is a widely practiced ML method in overtopping 
estimation which is evident from the studies of Formentin et al., (2017), Zanuttigh et al., (2016), van Gent (2007), 
etc. The authors in these studies opined that ANN is a reliable algorithm to perform prediction tasks in large 
overtopping datasets where the relationship between the independent and dependent variables is non-linear 
and/or unknown. However, uncertainty quantification of ANN -based models is important to ensure quality and 
robustness of the model’s prediction. In this study, a feed forward and back propagation ANN algorithm is 
applied to the overtopping dataset. The feed forward and back propagation enables the ANN to minimize the 
loss function to the extent of a given threshold (Babaee et al., 2021). The number of hidden layers in an Artificial 
Neural Network (ANN) depends on the type and complexity of data in the input layer. For this study, we adopted 
two hidden layers, each consisting of 500 neurons.  

 
2.4 Evaluation Scores 
 

The accuracy of prediction by the four algorithms was expressed in terms of two statistical scores, namely 
the Coefficient of Determination r2 and Pearson Correlation Coefficient R. The algorithms predicted overtopping 
discharge, ‘q’, per unit width of the structure. The overtopping discharge was then converted to a dimensionless 
quantity  , where ‘q_predicted’ is the predicted overtopping discharge in m3/s, 9.81 is the 

gravitational acceleration and   is the water depth at the toe of the structure. Similarly, the actual 

overtopping discharge from the EurOtop (2018) dataset was also converted to a dimensionless quantity of  

, where ‘q_actual’ is the actual overtopping discharge in m3/s and other quantities and symbols 

have the same meaning as mentioned before. It is particularly important to use dimensionless quantities in 
scientific research as this measure ensures the physical process is reflected in the results and the results are 
independent from scale effects. Dimensionless quantities often contribute towards understanding the physics 
of different phenomena (Xiu et al., 2022).  

The Coefficient of Determination (r2) is expressed by Eqn. 2. The r2 score accounts for the proportion of 
total variability in the dependent variable that is interpreted by the independent variables. The r2 score ranges 
from a minimum of 0 to a maximum of 1. Higher r2 scores indicate good fit of the prediction model.  
 

                                                                                                                            [2] 

 
where,  represents the observed values, predicted values and mean of all observed values, 
respectively. 

The second statistical score used for assessing the predicted values is the Pearson’s R coefficient. The 
Pearson R depicts the linear relationship between two sets of variables represented with scores between -1 and 
1; the former representing perfect negative linear relationship and the latter representing a perfect positive linear 
relationship. Ideally, the predicted and actual values in a prediction model should exhibit positive linear 
relationship. The Pearson R is computed using Eqn. 3. 
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                                                                                                                                           [3] 

 
2.5 Hyperparameter Tuning 
 

Hyperparameter tuning involves fine-tuning certain parameters of a machine learning algorithm that cannot 
be learned during training. It is a crucial step in customizing a model for a specific dataset, and can significantly 
improve model performance, accuracy, and generalization, resulting in a more robust prediction process. 
Hyperparameter tuning also enables easy interpretation of the model, and ensures optimal use of computational 
resources (Donnelly et al., 2023). In this study, hyperparameter tuning was performed on all ML algorithms 
using the open-source Python programming language-based library, scikit-learn (Pedregosa et al., 2011).  

Table 1 summarizes the different hyperparameters, their typical values and the best possible value for the 
overtopping dataset. For the SVMR algorithm, the term C signifies a regularization parameter and the kernel or 
the main function of the algorithm could take the form of a linear, polynomial or rbf (radial basis function).  

The hyperparameters for the RF and GBDT are similar as they are characteristically DTs. Among the 
important hyperparameters in a RF and GBDT algorithm can be mentioned as ‘n_estimators’- the number of 
DTs in RF/GBDT while ‘max_depth’ and ‘min_samples_split’ perform the role of reducing overfitting. In a GBDT 
algorithm, the ‘learning_rate’ is a key hyperparameter as it determines the convergence rate of the loss function. 

 
Table 1. Summary of Hyperparameter Values 

Algorithm Hyperparameters and Typical Values Best Values 

 

SVMR 
C': 5, 15; 'kernel': linear, rbf, poly; 'gamma': 

auto, scale 
C': 15; 'kernel': rbf, 'gamma': 

auto  

 
 
 

RF 

n_estimators': 800, 900, 2000 
 'min_samples_split': 2, 5, 10 
 'min_samples_leaf': 1, 2, 4 
 'max_features': auto, sqrt 
 'max_depth': 10 to 110 
 'bootstrap': True , False 

n_estimators': 800, 
 'min_samples_split': 5, 
 'min_samples_leaf': 1, 
 'max_features': 'auto', 

 'max_depth': 110, 
 'bootstrap': True 

 
 
 
 
 
 

GBDT 

            max_depth': 3, 5, 6, 10, 15, 20; 
           'learning_rate': 0.01, 0.1, 0.2, 0.3; 
           'subsample': 0.5, 1.0, 0.1; 
           'colsample_bytree': 0.4, 1.0, 0.1; 
           'colsample_bylevel': 0.4, 1.0, 0.1; 
           'n_estimators': 100, 500, 1000, 1500 

max_depth': 10; 'learning rate': 
0.2; 'subsample': 0.5; 

'colsample_bytree': 0.7;  
'colsample_bylevel': 0.4;   

'n_estimators': 1000   

 
 
 
 
 
 
 
 

ANN 
activation': 'relu', 'sigmoid'; 'batch_size': 32, 
64, 128, 256 epochs': 10, 15, 20, ‘alpha’: 

0.0001, 0.0005 

activation': 'relu', 'batch_size': 
64, 'epochs': 10, ‘alpha’: 0.0005 

 
 
 
 
 

 
Unlike the other algorithms used in this study, the scope of hypertuning in ANN is limited to some extent 

(Huang et al., 2012). Among the hyperparameters for ANN listed in Table 1, ‘alpha’ is the learning rate which 
signifies the rate at which weights are applied to the input data. A higher learning rate can result in a faster rate 
of attaining convergence in the loss function while at the same time there is a risk of overshooting the appropriate 
model loss. On the other hand, if the learning rate is relatively low, this may cause a slower convergence, 
however, makes the model more stable and accurate eventually. The ‘activation’ function and the ‘epochs’ were 
the other tunable hyperparameters of ANN.  

The typical values for hyperparameters were adopted as per the suggestion of scikit learn library 
(Pedregosa et al., 2011) and other open-source data science platforms.  

 
2.6 Data Optimization 
 

The overtopping dataset used in this study consisted of overtopping parameters in several types of units 
and scales. This many different units and scales can potentially reduce the accuracy of predictions of the ML 



408 Proceedings of the 40th IAHRWorld Congress. Rivers – Connecting Mountains and Coasts

algorithms (Pedregosa et al., 2011). Two main approaches were adopted in this study to ensure uniformity in 
the scale of data and to reduce redundancy of data, namely scalar transformation and feature selection 
respectively. The functioning of ANN is susceptible to missing data and hence the missing data were 
interpolated using the k-Nearest Neighbors (kNN) imputation method. In kNN, the missing values are estimated 
based on the median or average of the data that is nearest to the missing value. The methodology of kNN is 
further described in the work of Hastie et al., (2009).  

The scalar transformation and feature selection were performed using scikit-learn’s libraries (Pedregosa et 
al., 2011). In scalar transformation, the numerical data is scaled to unit variance. The data is transformed to 
normal distribution with zero mean and unit variance. The role of feature selection in data science is to remove 
redundancy and irrelevant features by computing statistical significance of independent variables with respect 
to the dependent variable (Liu et al., 2012). Feature selection was applied to overtopping dataset in the work of 
den Bieman et al, (2021), as a permutation analysis of the overtopping parameters.  

A sequential Forward Selection (SFS) was implemented to filter the relevant overtopping parameters for 
this study. The SFS method relies on a greedy search algorithm that is initiated with an empty feature set and 
continues to add features or independent variables in an iterative manner. The SFS algorithm then trains the 
features and performs prediction of the target variable. The performance of prediction is estimated in terms of 
the r2 score and the iterative process of adding features continues until a stopping criterion is satisfied. The 
algorithm finally produces the number and list of features that had significant statistical significance in the 
prediction task.  

As depicted in Figure 1, the dataset consisted of 30 features and the results of the Sequential Feature 
Selection (SFS) showed a decline in prediction performance after the inclusion of the 15th feature. Hence, it 
can be concluded that a dataset containing 15 features is optimal for overtopping prediction in this study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 1. Regression Model Performance for Sequential Forward Feature Selection 
 
2.7 Data Preparation 
 

The EurOtop (2018) is an extensive collection of physical overtopping tests for a range of geometrical 
configurations of coastal structures. The dataset comprises of approximately 17500 sets of overtopping data 
along with parametric values of overtopping parameters. Therefore, it was necessary to refine the dataset so 
that it contained data for simple sloped impermeable sloping walls only. Hence, the refining parameters were 
set as follows: (the terms are elaborated in the glossary table) 

� Hm0,t ≥ 0.5 ; to include entries for small-scale records  
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� γf = 1 ; to include impermeable sloped walls 

� 1.33 ≤ cot α ≤ 2 ; to include walls with mild slope 

� B = 0 ; to include sloping walls with no Berm 

� cot αu = cot αd  ; to include simple sloped walls 

� 1 ≤ RF and CF ≤ 3 ; to exclude data with lowest reliability and highest complexity in geometry 
The refined data consisted of 1079 entries of overtopping data which was approximately 6% of the total 

number of entries of the EurOtop (2018) dataset. It is to be noted that the minimum number of data points 
required for overtopping estimation using machine learning depends on several factors, such as the complexity 
of the problem, the quality of the data, and the choice of the algorithm. However, in existing literature (e.g., 
Hosseinzadeh et al., 2021; Etemad-Shahidi et al., 2016), several hundred data points were used to train a 
reliable machine learning models for overtopping estimation. Elbisy (2023) used approximately 2,400 dataset 
for ANN and SVM models used in the study. 

Following the feature selection strategy discussed in the previous section, 15 overtopping 
parameters/independent variables were selected for final analysis which can be listed as Hm0,d, Tp,d, h, Hm0,t, 
Tm,toe, ht, cot αd, cot αu, Rc, B, hb, tan α, Gc, RF and CF (terms explained in glossary). The dependent or the 
predictor variable was ‘q’ which is the overtopping discharge per unit length of the structure, measured in m3/s.  
 
3. RESULTS AND DISCUSSION 
 

A common methodology of data preprocessing (scalar transformation and missing data imputation), feature 
selection and hyperparameter tuning was applied to an overtopping dataset containing 1079 observations of 
measured overtopping discharge at simple sloped breakwaters. The filtered and then treated data were applied 
to 4 ML algorithms to predict overtopping discharge following a train-test split of 70%-30%. The algorithms were 
executed separately in a computer having a Central Processing Unit of 8 cores, a Random Access Memory of 
16 Gigabytes and 6 Gigabytes of dedicated graphics memory. The predicted overtopping discharge rates were 

converted to dimensionless quantities, ‘dimensionless ‘q’ (measured) (=  and ‘dimensionless ‘q’ 

(predicted) (= ) to compare the accuracy of prediction from the four ML algorithms. The performance 

of the ML algorithms in terms of predicted vs measured quantities is illustrated in Figure 3. It can be summarized 
from Figure 3, that the ML algorithms were able to predict overtopping discharge with reasonable accuracy. 
Particularly, prediction quantities from small overtopping rates were more accurate which is evident from the 
position of the data points within the 95% Confidence Interval (CI) zone. For all the algorithms, larger 
overtopping quantities showed dispersion from the regression line. 

The scatter depicted in Figure 3 can further be explained using the statistical scores shown in Table 2. 
Although the GBDT algorithm outperformed the other algorithms in terms of r2 score, the SVMR algorithm 
showed similar performance but with a significantly longer time. The RF algorithm appeared the fastest algorithm 
in terms of computational time, however, with reduced prediction accuracy in comparison to the GBDT and 
SVMR. The ANN underperformed with respect to the other algorithms in the context of both accuracy and 
computational time. It is also evident from this study, that DT based algorithms such as GBDT and RF are 
computationally efficient than kernel-based algorithms such as SVMR and ANN. The computational efficiency 
of RF and GBDT is coupled with prediction accuracy at the same time.  
 
                                               Table 2. Performance Attributes of the Algorithms 
 
 
 
 
 
 
 
 
 

Algorithm 
Coefficient of 
Determination 

r2  

Pearson’s R 
Coefficient  

Computational 
Time (s) 

 GBDT 0.87 0.93 32 

 SVMR 0.86 0.93 141 

 RF 0.79 0.89 22 

 ANN 0.69 0.87 468 
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Figure 2. Comparison of predicted dimensionless ‘q’ (= ) and actual dimensionless ‘q’ 

(= ) 

 
4. CONCLUSION 
 

This study investigates the performance of four algorithms, namely GBDT, RF, SVMR and ANN, in 
predicting overtopping discharge from the freely available EurOtop (2018) dataset for simple sloped 
breakwaters. The dataset was imputed for missing values and treated for redundancy by kNN imputation and a 
feature selection method respectively, before exposing it to the ML algorithms. These steps ensured that the 
applied dataset was statistically significant in the context of the independent variables and the dependent 
variable. The train-test ratio was set to 70%-30% and hyperparameter tuning was performed to curtail the 
individual algorithms according to the given dataset. In addition to hyperparameter tuning, Cross Validation was 
also ensured that implemented validation of the training data before the algorithms were allowed to predict on 
the test set. The predicted and actual overtopping discharge quantities were converted to dimensionless 
quantities to ensure fair comparison.  

The accuracy of predictions from the four algorithms was reported using statistical scores, the r2 and 
Pearson R value. The GBDT algorithm marginally outperformed the SVMR algorithm in terms of the r2 score, 
0.87 and 0.86, respectively, and emerged as the most accurate algorithm in the prediction task. The RF 
algorithm was, however, computationally more efficient than the GBDT algorithm with the former completing the 
prediction task 10 seconds earlier than the latter. Overall, the DT based algorithms (RF and GBDT) performed 
better than the kernel-based algorithms with respect to both prediction accuracy and statistical scores. The 
performance of ANN did not match with those of the other algorithms, with lower statistical scores and 
significantly higher completion time.  
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The common methodological framework adopted in this study for all the algorithms ensured a fair 

comparison of the performance of the algorithms. However, the main limitation of this study can be cited as the 
presence of missing values in the dataset. 
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6. GLOSSARY 
 

Hm0 d Significant wave height at deep water (m) 

Tp d Wave period determined at deep water (s) 

 Hm0, t Significant wave height at toe of structure (m) 

h Water depth at toe of structure (m) 

Tm toe 

Avg. wave period determined at toe (s) 

ht Water depth at toe of structure (m) 

cotαd 
cot of angle between structure slope 
downward berm and horizontal (-) 

cotαu cot of angle between structure slope upward 
berm and horizontal (-) 

Rc crest freeboard of structure (m) 

B 
Berm width, measured horizontally (m) 

hb water depth on berm (negative means berm 
is above SWL) (m)  

tan α 
tan of angle of structure slope (-) 

Gc Width of promenade (m) 

RF Reliability-Factor of test 

CF Complexity-Factor of structure section 
Source: EurOtop (2018) 
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