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A B S T R A C T   

In response to growing concerns surrounding the relationship between climate change and escalating flood risk, 
there is an increasing urgency to develop precise and rapid flood prediction models. Although high-resolution 
flood simulations have made notable advancements, they remain computationally expensive, underscoring the 
need for efficient machine learning surrogate models. As a result of sparse empirical observation and expensive 
data collection, there is a growing need for the models to perform effectively in ‘small-data’ contexts, a char
acteristic typical of many scientific problems. This research combines the latest developments in surrogate 
modelling and physics-informed machine learning to propose a novel Physics-Informed Neural Network-based 
surrogate model for hydrodynamic simulators governed by Shallow Water Equations. The proposed method 
incorporates physics-based prior information into the neural network structure by encoding the conservation of 
mass into the model without relying on calculating continuous derivatives in the loss function. The method is 
demonstrated for a high-resolution inland flood simulation model and a large-scale regional tidal model. The 
proposed method outperforms the existing state-of-the-art data-driven approaches by up to 25 %. This research 
demonstrates the benefits and robustness of physics-informed approaches in surrogate modelling for flood and 
hydroclimatic modelling problems.   
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1. Introduction 

A rapidly changing climate could rapidly render previous forecasts 
and flood risk assessments obsolete, necessitating a significant recali
bration of existing forecasts. The continuous validation and monitoring 
of existing models and forecasts in light of new data is crucial for 
establishing robust predictive models for hydroclimatic problems. To 
facilitate cost-effective re-evaluation and the production of low-cost 
forecasts, it is imperative that machine learning-based models, such as 
surrogate models, are more widely adopted in flood modelling and other 
environmental science and engineering applications. 

The data-driven approach to ML involves relying entirely upon a set 
of training data to inform decisions about model selection and param
eterisations. In this paradigm, selecting the best model, for example 
determining the number of hidden layers, neurons per layer, and type of 
activation functions in a neural network, generally relies of heuristics, 
experience and a trial-and-error approach. After selecting the most 
appropriate model structure, parameters will be learned by minimising a 
loss function, possibly subject to some constraints on the parameters, 
which is often equivalent to minimising the ‘data-fit’ error on the 
training data. For instance, for the supervised learning tasks, and in 
particular for regression problems, this usually involves selecting a set of 
parameters, θ*, that minimise a distance metric between the observed 
and predicted data. For instance, this could be the mean squared error 
(MSE) on the training data, 

θ* = argmin
θ

L(y, f (x; θ) ), (1)  

L(y, f (x; θ) ) = E
[
(y − f (x; θ) )2 ]

, (2)  

where, x are the selected inputs, y are the corresponding observed/ 
computed outputs, and f(; θ) is the selected model using ML approaches, 
parameterised by θ. Optimisation using the loss function outlined in Eq. 
(2) is a purely data-driven approach, because it only considers how 
much the target values predicted by the model differ, under a given 
parameterisation, from the observed values. 

Supervised ML tasks often involve the challenge of learning an un
known distribution, P(y|x), which enable us to draw invaluable in
ferences about some system or real-world problem. In the case of 
prediction, the task is to learn a predictive distribution, P(y*|y, x, x*), 
given the training dataset D = (x, y) and a new input, x*. The ML and 
deep learning literature continues to show, experimentally, that statis
tical learning-based models can be successfully adopted to a variety of 
scientific and engineering domains (Lateef et al., 2022; Al-Jamimi et al., 
2022). Furthermore, the research also suggests that in the case of deep 
learning, increasing the scale of models and data yields continuously 
better estimates of P(y*|y, x, x*) even in highly complex settings. How
ever, in settings where data is sparse, incorporating prior knowledge 
about the system, π(y), is an alternative approach to improving gener
alisation performance of machine learning models. 

When applying ML approaches to address problems in engineering 
and environmental science, the distribution being learned, P(y|x), is 
often a description of a real physical system with known laws governing 
its behaviour. Many of these complex systems have a great deal of prior 
knowledge available, but it is often ignored during the modelling pro
cess because it is challenging to robustly incorporate it into the model 
structure. As a result, data-driven approaches are often favoured over 
those that explicitly consider the underlying physics of other domain- 
specific knowledge. 

The problem with applying data-driven ML models to complex 
problems is that they often require a large number of free parameters in 
order to accurately capture the underlying complexity of the data. In 
order to appropriately optimise a large number of parameters, a sig
nificant amount of data may be required. Obtaining large amounts of 
training data is often infeasible due to sparsity and/or the high costs 

associated with empirical data collection. Furthermore, purely data- 
driven approaches are susceptible to extrapolation and generalisation 
problems. These approaches, trained on a finite set of observations, may 
struggle to effectively generalise to out-of-sample data, potentially 
resulting in reduced performance. Additionally, when treating ML 
models as black boxes, it is often impossible to explain the reasoning and 
the underlying mechanisms behind a specific prediction. 

Physics Informed Machine Learning (PIML; (Karniadakis et al., 
2021)) was developed to tackle the shortcomings of data-driven ML 
methods by incorporating information about the physical laws govern
ing a system in the development and training of the ML models. Spe
cifically, Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019; 
Cuomo et al., 2022) introduce physics-based regularisation to neural 
networks. They constrain the parameter space of learnable models by 
modifying the loss function to include terms that encode knowledge of 
the underlying physics. One common approach is to incorporate the 
residuals of partial differential equations (PDEs) into the loss function, 
aiming to create models that are more physically consistent. 

By using loss functions that increase the error for predictions that 
violate the underlying physics, the training process produces a model 
which simultaneously minimises the data-fit error and remains consis
tent with the underlying physics. As long as the additional terms in the 
loss function are differentiable then gradients can still be propagated 
through the model and training can take place as normal. This approach 
to physics-informed machine learning has been applied successfully to a 
variety of modelling tasks such as forward problems, i.e., inferring latent 
solutions to systems governed by known equations. 

Examples of applications in the literature involve a variety of known 
PDE systems such as Schrodinger's equations (Raissi et al., 2019), heat 
transfer problems (Cai et al., 2021), the Euler equations for aerodynamic 
flows (Mao et al., 2020), the Eikonal equation for cardiac function (Sahli 
Costabal et al., 2020) and a physics-guided NNs for lake temperature 
modelling (Karpatne et al., 2017). There are examples in the hydrody
namic modelling literature for tasks such as predicting fluid flow 
through porous media (Almajid and Abu-Al-Saud, 2022), flood model
ling (Liu et al., 2022), forecasting water levels (Qian et al., 2019; Don
nelly et al., 2023; Fanous et al., 2023a) and river flows (Feng et al., 
2023), and visualisation tasks like visualising spatial inundation (Lüt
jens et al., 2020; Lütjens et al., 2021). Applications of PINNs and PIML 
can be seen in atmospheric and climate modelling applications as well 
(Kashinath et al., 2021; Yang et al., 2023). PINNs methods have also 
been demonstrated for inverse problems, using observed data to make 
inferences about the underlying physics (Jagtap et al., 2022; Depina 
et al., 2022; Chen et al., 2020). 

Many previous PINNs works rely heavily on data from computational 
fluid dynamics (CFD) simulations. CFD modelling has seen growing 
adoption of ML methods in recent years (Kutz, 2017; Brunton et al., 
2020; Kochkov et al., 2021). However, many of the examples involving 
PINNs models are highly idealised toy problems and may not be repre
sentative of real-world problems involving fluid dynamics. Numerical 
CFD-based modelling and simulation of flooding scenarios is a vital part 
of flood risk management and climate resilience enhancement schemes 
(Donnelly et al., 2022). Flood modelling relies on accurate and timely 
forecasting of complex flow-structure interactions which can be used to 
guide policy, infrastructure planning, and decisions. However, due to 
the associated high computational costs of the underlying CFD-based 
models in flood modelling and other applications, ML-based methods 
have been increasingly adopted (Mosavi et al., 2018; Yang and Chang, 
2020; Lin et al., 2020; Kabir et al., 2020). 

Surrogate models (Kabir et al., 2020; O'Hagan, 2006; Sudret et al., 
2017; Conti et al., 2009) have been widely adopted as cost-effective 
alternatives to expensive numerical simulators. Surrogate models 
involve training an ML model to approximate the input-output patterns 
of another, usually expensive to evaluate, model. By utilising rapid ML 
models, it becomes feasible to make nearly instantaneous predictions of 
the outputs of a highly complex numerical model. A variety of ML 
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methods have been used in the context of surrogate modelling, such as 
neural networks (Garca-Alba et al., 2019; Wang et al., 2019; Shi et al., 
2018), Polynomial Chaos Expansions (Massoud, 2019; Moreno-Rodenas 
et al., 2018), boosting trees (Yan et al., 2023) and Gaussian Processes 
(Conti et al., 2009; Chang et al., 2015; Longobardi et al., 2020; Yang 
et al., 2018). Existing approaches to surrogate modelling almost entirely 
rely on data-driven methodologies, minimising a distance metric be
tween the surrogate's predictions and the numerical model's true out
puts. This approach makes no consideration for the governing behaviour 
of the numerical model and in turn the real physical system the nu
merical model approximates. 

There are existing issues surrounding the use of purely data-driven 
approaches to surrogate modelling such as poor data efficiency. Some 
machine learning models require extensive data for reliable out-of- 
sample predictive performance. However, in many real-world sce
narios, data is either sparse or very prohibitively expensive to collect, 
necessitating models that can generalise effectively on smaller datasets. 
Data-driven models are generally treated as black-boxes, where the 
rationale for prediction is unknown, and their explanability is typically 
low. This lack of transparency introduces a significant level of uncer
tainty regarding the basis for certain predictions. Introducing stricter 
regularisation into ML models through robust incorporation of prior 
information can address the issues related to data efficiency. This would 
allow models to be trained effectively on smaller datasets while 
enhancing their explanability, as it becomes possible to study the 
behaviour of additional variables into the models. These developments 
would be highly beneficial for surrogate modelling, offering a robust 
hybrid approach to forecasting that combines the strengths of ML and 
numerical modelling. 

This study extends the application of PINNs to complex realistic 
problems in fluid dynamics by constructing a PINNs surrogate model for 
numerical hydrodynamic simulators in the context of flood modelling. 
The proposed PINNs surrogate is developed for fast inference of latent 
solutions of fluid depth (i.e., surface water elevations) at high spatio
temporal resolutions, as generated by numerical simulators solving the 
two-dimensional Navier-Stokes equations. Furthermore, instead of 
directly incorporating PDEs' residuals into the loss function, a novel 
approach to physics-based regularisation approach has been developed 
to account for the conservation of mass in predictions made by the 
surrogate model. 

The proposed approach avoids relying on auto-differentiation to 
estimate partial derivatives, thus reducing computational complexity 
and eliminating the implicit reliance on realistic gradients throughout 
the model. In surrogate modelling tasks, boundary conditions that are 
known a priori are effectively utilised by the proposed model, replacing 
implicit computation (such as obtaining auto-diff gradients) with 
empirical discrete comparisons to quantify violations from true physics. 
The efficacy of the proposed approach is demonstrated by constructing 
surrogate PINNs models for two widely used hydrodynamic simulators, 
LISFLOOD-FP (LFP) and Delft3D, and the performance is assessed 
against a data-driven approach to surrogate modelling. 

2. Methods 

2.1. Shallow water equations 

Numerical hydrodynamic simulators implement discretised versions 
of the Navier-Stokes equations. The Navier-Stokes equations are a set of 
PDEs that describe the motion of fluid substances in three-dimensional 
space. The Shallow Water Equations (SWE), on the other hand, are a 
simplified form of the Navier-Stokes equations that describe the motion 
of fluids that are shallow in depth (e.g. such as those found in rivers, 
lakes and estuaries) and homogeneous along the depth-axis. Therefore, 
two-dimensional hydrodynamic simulators usually solve the SWE in 
two-dimensions rather than the full Navier-Stokes equations. Eqs. (3)– 
(4) describe the SWE governing equations: 

∇⋅u = 0, (3)  

∂u
∂t

+(u⋅∇)u − ν∇2u = − ∇

(
p
ρ0

)

+ g, (4)  

where Eqs. (3)–(4) are the continuity equation, expressing that mass is 
conserved, and the momentum equation, expressing that momentum is 
conserved, respectively. 

The PINNs model developed in this study is applied to two different 
hydrodynamic simulators, LISFLOOD-FP and Delft3D for fluvial flood
ing and coastal modelling applications, respectively. However, the 
approach outlined in this study is not limited to these models or appli
cations and could be universally applied to any hydrodynamic simulator 
partly governed by the continuity equation. In order to derive the 
discrete aggregated physics-informed loss function, a detailed descrip
tion of a two-dimensional hydrodynamic simulator is outlined in Section 
2.2. 

2.2. Two-dimensional hydrodynamic simulator 

LISFLOOD-FP and Delft3D are independent simulators with different 
numerical implementation details, however, both models implement the 
Navier-Stokes equations and so conceptually they operate similarly. 
Therefore, a conceptual overview of a two-dimensional hydrodynamic 
simulator is outlined in order to introduce the PINNs model more 
efficiently. 

It is assumed that the hydrodynamic simulators operate on a two- 
dimensional Eulerian mesh describing the topography, with nx cells in 
the x-direction and ny cells in the y-direction, with a cell size of Δx and 
Δy [m]. The model has initial conditions y0

ij, where yt
ij [m] denotes the 

fluid depth in the (i, j)-th cell in the domain at time t. There are time and 
space-varying boundary conditions, st

ij 
[
m3/s

]
, which describe a rate of 

fluid inflow between times t and t+ 1, where the number of seconds 
between these timesteps is Δt. Fluid also leaves the domain with a rate qt

ij 
[
m3/s

]
, through sinks within the domain or at outlets at boundaries. 

Given the initial conditions, 
{

y0
ij

}
and collection of boundary conditions 

{
st
ij

}T

t=1
, the numerical model then computes the fluid interactions 

across the domain according to the governing equations, Eqs. (3)–(4). 

2.3. PINNs surrogate model 

When utilising a hydrodynamic simulator, only the boundary con
ditions and outputs (e.g., fluid surface elevations, velocity fields, pres
sure) are known post-simulation, such that direct access to the 
derivatives is usually not possible. Previous PINNs implementations 
overcome this problem by regressing outputs, u(t, x), onto their spatio
temporal coordinates such that û(t, x) = f(t, x), where f(⋅, ⋅) is a neural 
network. Then by backpropagating to the original inputs, it's possible to 

calculate ∂û
∂x or ∂û

∂t which can then be incorporated into the loss function 
via PDE residuals. For example, if inferring latent solutions to the one- 
dimensional linearised wave equation, a simplification of the Euler 
equations, the governing PDE can be expressed as, 

∂2u
∂t2 − c2∇2u = 0. (5) 

By using a neural network to estimate û(x, t) and then back

propagating to obtain ∂̂u
∂t , ∂̂u

∂x and repeating the process n times to obtain 
nth-order derivatives, an additional term can be included into the loss 
function, 

L(u, û) = (u − û)2
+

⃒
⃒
⃒
⃒
∂2 û
∂t2 − c2∇2 û

⃒
⃒
⃒
⃒

2

, (6) 
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where the first term is the data-fit error term and the second is the PDE 
residual regularisation term. An illustration of this existing type of 
PINNs model and network architecture can be seen in Fig. 1. 

The API, i.e., how the model can be interacted with and queried, of a 
standard PINNs model like this is limited in that at test-time it can only 
robustly estimate outputs using the same boundary conditions it was 
trained on. It does not allow for flexibility in the parameterisation of 
boundary conditions during inference. (Raissi et al., 2020) states that a 
PINNs model as outlined is agnostic to boundary conditions however, in 
general, for new boundary conditions, a new model or additional 
training data to update an existing model is likely required for good 
generalisation. The model proposed in this study overcomes this limi
tation by explicitly parameterising the boundary conditions in the 
neural network's input, allowing straightforward inference of latent 
solutions under widely varying boundary conditions and without the 
requirement to backpropagate to obtain derivatives. 

In this study, a novel PINNs-based surrogate model of the following 
form is proposed, 

Ŷ t = f
(
st,…, st− N), (7)  

where Ŷ t is a matrix representing predicted fluid depth in all cells (i.e., 
nx × ny) in the domain, and st are the boundary conditions at time t, and 
f is a neural network. Based on the surrogate model presented in Eq. (7), 
the water surface elevations at time t are regressed onto the boundary 
conditions at time t and the N previous timesteps. The model regresses 
outputs onto a small segment of the time series (N + 1 values) in order to 
understand the behaviour that arises from the temporal differential in 
the boundary condition. For instance, without encoding that historical 
behaviour in the model through the time series input, the model might 
not be able to discriminate between two different scenarios where the 
boundary condition value at times tN1 and tN2 are the same but one value 
corresponds to a downward trend and the other an upward trend with 
respect to time. A model of this form is a flexible surrogate model and 
can act as a replacement to the original numerical model. 

For hydrodynamic simulators the continuity equation, Eq. (3), can be 
informally stated as, 

Δ(storage) = Δ(sources − sinks), (8)  

which forms the basis of the physics-informed loss function for the 
PINNs model proposed in this study. Using the conceptual hydrody
namic simulator outlined in Section 2.2, this can be re-expressed for 

fluid depths in cell-(i, j) predicted by the PINNs surrogate, ŷt
ij, and true 

fluid depths yt
ij, as, 

ΔxΔy
∑

i

∑

j
ŷt

ij − ΔxΔy
∑

i

∑

j
yt− 1

ij = Δt
∑

i

∑

j
st

ij − Δt
∑

i

∑

j
qt

ij, (9)  

where st
ij and qt

ij is the inflow and outflow in cell-(i, j) and time t, 
respectively. This shows that the aggregate volume of fluid in the 
domain predicted by the surrogate at time t, minus the true volume at 
time t − 1 should equal the aggregate inflow minus the aggregate 
outflow. This equation can then be re-expressed as, 

ΔxΔy
∑

i

∑

j
ŷt

ij +Δt
∑

i

∑

j
qt

ij = ΔxΔy
∑

i

∑

j
yt− 1

ij +Δt
∑

i

∑

j
st

ij. (10)  

In practice, the outflows, qt
ij, are generally latent variables (in the 

absence of defined per-cell absorption/drainage rates) calculated during 
simulation, representing the aggregate discharge leaving the domain 
through open boundaries, but it is always true that qt

ij ≥ 0, therefore, Eq. 
(10) can be turned into the following inequality, 

ΔxΔy
∑

i

∑

j
ŷt

ij ≤ ΔxΔy
∑

i

∑

j
yt− 1

ij +Δt
∑

i

∑

j
st

ij. (11) 

This is equivalent to putting a constraint on the aggregate predicted 
volume at time t such that it cannot exceed the storage at t − 1 and the 
net volumetric inflow between t − 1 and t. 

However, Eq. (11) only satisfies half the continuity equation, stating 
that mass cannot be created. In order to fully satisfy the continuity 
equation a second inequality is introduced as follows: 

ΔxΔy
∑

i

∑

j
ŷt

ij ≥ ΔxΔy
∑

i

∑

j
yt+1

ij − Δt
∑

i

∑

j
st+1

ij , (12)  

with the full continuity equation being satisfied by the following 
inequality, 

ΔxΔy
∑

i

∑

j
yt+1

ij − Δt
∑

i

∑

j
st+1

ij ≤ ΔxΔy
∑

i

∑

j
ŷt

ij ≤

ΔxΔy
∑

i

∑

j
yt− 1

ij + Δt
∑

i

∑

j
st

ij.
(13) 

Combining the PINNs model outlined in Eq. (7) with the continuity 
inequality given in Eq. (13), the physics-informed loss function will be 
defined as follows: 

Fig. 1. Example of PINNs architecture for the one-dimensional linearised wave equation, regressing latent solutions u onto spatiotemporal coordinates, (t, x).  
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L(Yt, Ŷ t) = E
[
(Yt − Ŷ t)

2
]
+ ReLu

(

v̂t − vt− 1 − Δt
∑

i

∑

j
st

ij

)

+ReLu

(

vt+1 − v̂t − Δt
∑

i

∑

j
st+1

ij

)

,

(14)  

where vt = ΔxΔy
∑

i
∑

jyt
ij is the true volume in the domain at time t and 

v̂t = ΔxΔy
∑

i
∑

j ŷ
t
ij is the predicted volume, and ReLu is the Rectified 

Linear Unit function. ReLu functions operate as follows: 

ReLu(x) := max(x, 0). (15) 

The above equation highlights that if the inequalities expressed in 
Eq. (13) are violated, additional values are included in the loss function. 
The first term in Eq. (14) is the Mean Squared Error (MSE) between the 
true and predicted outputs, referred to as the data-fit term, and the last 
two components are physics-based terms responsible for penalising 
predictions that violate the conservation of mass, which are the equiv
alent representation of the double inequality expressed in Eq. (13). 

In order to ensure that Eq. (14) is an effective loss function, its three 
components need to be appropriately prioritised during the training of 
the network. The MSE loss term will be represented in 

[
m2] whereas the 

second and third terms will be represented in 
[
m3]. Furthermore, the 

magnitude of these values may vary significantly as volume mis- 
prediction could easily exceed 104m3 but a reasonable fluid depth pre
diction could be expected to have an MSE less than 10− 1m2, meaning the 
overall loss would be dominated by the second and third terms rather 
than the data-fit error, leading to undesirable optimisation behaviour. 
To solve this problem, the second and third terms will be scaled to match 
the units of the data-fit error. As a result, the final physics-informed loss 
function with the scaled regularisation terms will be given by, 

L(Yt, Ŷ t) = E
[
(Yt − Ŷ t)

2
]
+

⎛

⎝
ReLu

(
v̂t − vt− 1 − Δt

∑
i
∑

jst
ij

)

ΔxΔy × nx × ny

⎞

⎠

2

+

⎛

⎝
ReLu

(
vt+1 − v̂t − Δt

∑
i
∑

jst+1
ij

)

ΔxΔy × nx × ny

⎞

⎠

2

,

(16)  

where the denominator, ΔxΔy× nx × ny, is the total area of the 
modelling domain. 

2.4. Neural network architecture 

Previous PINNs studies (Cai et al., 2021; Fanous et al., 2023b; Mao 
et al., 2020; Raissi et al., 2017; Zhang et al., 2019) utilised a dense fully- 
connected MLP (multi-layer perceptron) architecture as the basis of the 
model, however, in some of these studies no consideration for alterna
tive architectures was made. In this study, a convolutional neural 
network (CNN) model is used for the architecture. Preliminary testing in 
the authors' previous work (Donnelly et al., 2022) found that a CNN 
model was a more appropriate architecture compared to an MLP. 
Furthermore, prior to this study, Gaussian Processes (Donnelly et al., 
2022; Donnelly et al., 2024) and CNNs (Kabir et al., 2020; Garca-Alba 
et al., 2019; Bates, 2022) were shown to be the most effective data- 
driven surrogate model for approximating hydrodynamic simulators. 
However, physics-informed approaches are currently better suited to the 
flexibility of neural network-based models, hence why a CNN was 
adopted rather than GP.. The proposed CNN architecture, where con
volutions occur in one-dimension over a vector-based input more 
effectively learns the patterns arising from the input data with a tem
poral component. 

Furthermore, a CNN introduces an inherent structure to the data, 
learning patterns through local connections, and having highly structure 
spatial data arising from Eulerian meshes, CNNs parallel this structure 

from the governing processes. MLPs do not enforce this same structure 
and did not learn the patterns as effectively. Moreover, a data-driven 
CNN was chosen as an appropriate benchmark for this study because 
of its successes in previous implementations (Kabir et al., 2020). How
ever, it is important to note that the physics-informed loss function 
proposed in this study is entirely agnostic to the selected neural network 
architectures and can be readily incorporated into any differentiable 
neural network model. In Fig. 2, an illustration of the general archi
tecture used for the CNN in this study is provided. 

To ensure that any differences in performance between the PINNs 
and data-driven CNN models are because of the physics-informed reg
ularisation, the respective models were trained and tested by condi
tioning on the initialisation the network weights. By randomly sampling 
different weight initialisations, θ0

i , and then training the PINNs and CNN 
models with their respective loss functions to estimate optimal param
eters (as outlined in Eq. (1)); θ*

i , the models' test performance was 
averaged over the subsequent networks to mitigate effects of favourable 
or unfavourable initial weights. The test performance of the models then 
becomes: 

L(y*, f (x*) ) = Ei
[
L
(
y*, f

(
x*; θ*

i

) )
|θ0

i

]
, (17)  

where (x*, y*) denote the test inputs and outputs. 
The physics-informed loss function is likely highly non-convex with 

respect to the parameters and therefore predictive performance could be 
sensitive to the initialisation of the weights of the network. Taking ex
pectations with respect to weight initialisations allows for a high level of 
certainty that any deviations in performance against the CNN model are 
entirely the result of the model and not due to favourable/unfavourable 
initial conditions in the weight-space. 

2.5. Model evaluation metrics 

To assess model predictive performance two metrics are utilised in 
this study. The first metric used is the Root Mean Squared Error (RMSE) 
of the true fluid depths, Yt, and the fluid depths predicted from the 
surrogate Ŷt , 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
[
(Yt − Ŷ t)

2
]√

. (18) 

RMSE is chosen as the primary evaluation metric in this study as it 
scales the prediction errors back to the original unit of measurement, 
[m], and so gives highly interpretable results. Secondly, a modified 
version of the RMSE is used, 

mRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

Ω

(
yt

Ωi
− ŷt

Ωi

)2

|Ω|

√

, (19)  

where Ω =
{
(i, j)|yt

ij ∪ ŷt
ij > 0

}
. The mRMSE metric gives a more real

istic estimate of the true error by only considering cells where fluid is 
either predicted or observed at any time in the dataset, and so does not 
include cells that remain dry at all times which can misleadingly reduce 
the mean error when included. This modified metric, especially in the 
case of the inland flood model where the majority of cells remain dry, is 
a better measure of how much of the true signal is being captured by the 
model. 

It should be also noted that the evaluation metrics reported in Sec
tions 3.1.2 and 3.2.2, are based on cross-validation metrics. In cross- 
validation, the full dataset is iteratively partitioned into new training 
and test sets, and the models' performance is assessed based on aggre
gate performance across these partitions. In ML applications, this is most 
robust approach to evaluating predictive performance of a model, ulti
mately improving the reliability and validity of results. 

J. Donnelly et al.                                                                                                                                                                                                                                



Science of the Total Environment 912 (2024) 168814

6

3. Experiments 

3.1. Inland flood modelling 

3.1.1. LISFLOOD-FP 
The first two-dimensional hydrodynamic simulator used is 

LISFLOOD-FP (LFP; (Bates and De Roo, 2000; Neal et al., 2011)). LFP is a 
raster-based hydraulic inundation model solving various forms of the 
SWE (using different in-built solvers) and is capable of accurately 
simulating flow in a channel and over a flood plain at high-resolution in 
complex topographies. LFP has been validated by many studies with 
applications including urban inundation, fluvial flooding and to appli
cations in modelling coastal processes (Shustikova et al., 2019; 
O'Loughlin et al., 2020; Vousdoukas et al., 2016a; Skinner et al., 2015). 
This study uses the results of an LFP model outlined in previous work by 
the authors in which a high-resolution urban inundation model was 
developed for Tadcaster, UK. The model outlined was designed to 
simulate inundation resulting from river overflow, with the results used 
to construct a Gaussian Process (GP)-based surrogate models. For 

additional details about the model setup the reader should refer to the 
authors' previous study (Donnelly et al., 2022) and for additional details 
on the model's governing equations and numerical schemes, see (Bates 
and De Roo, 2000; Neal et al., 2011). 

The modelling domain for the proposed inland flood model can be 
seen in Fig. 3, illustrating a map and satellite image of the study area. On 
this domain, the simulator was run for 14 synthetic flood events with the 
boundary conditions for each simulation, {st}

T
t=1, describing river 

discharge 
[
m3/s

]
at the upstream boundary, with a focus on extreme 

climatic events. The proposed inland flood model relied on the gener
ation of synthetic boundary conditions, which would correspond to low- 
probability, high-impact, short-term flood events in the case study 
location of Tadcaster. Using synthetic input data (details can be found in 
(Donnelly et al., 2022)) in this manner means that there is no corre
sponding observational data available to validate the calibrated model. 
Therefore, the estimates and data produced from the model cannot be 
interpreted as real-life event forecasts. However, it is worth noting that 
the numerical simulator adopted in this study is widely validated and 

Fig. 2. PINNs with CNN architecture used in this study. The terms in the loss function are the discretised components of the full inequality satisfying the continuity 
equation, outlined in Eqs. (13)–(16). 

Fig. 3. Tadcaster LISFLOOD-FP Modelling domain from the authors' previous work (Donnelly et al., 2022).  
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without suitable validation data (measured empirical data), most nu
merical models of this kind face similar limitations. 

The model outputs are a collection of time-indexed matrices, 
Yt ∈ ℝnx×ny , describing inundation in each cell of the rectangular 
domain for timesteps t = 1,…, T. The original LFP model can then be 
described as a complex mapping, 

Yt = f (st), (20)  

where, Yt ∈ ℝ213×256. The surrogate model however takes the form, 

Ŷ t = f̂ (xt), (21)  

where, xt =
(
st ,…, st− 8), meaning the inputs to the surrogate to predict 

the output at time t are the boundary conditions at time t and the 8 
preceding timesteps. Similarly, this decision was motivated by the au
thors' previous work (Donnelly et al., 2022) where for a GP-based sur
rogate model was found to be an appropriate amount of historical 
information to encode into the model structure. By aggregating data 
across 14 discrete simulations into a collection of independent tests, and 
flattening the matrices of fluid depth, Yt, into vectors, yt, resulted in a 
dataset of N = 2624 time-indexed samples. Each time-indexed input is 
represented by xt ∈ ℝ9 and each output by yt ∈ ℝ54528. The boundary 
conditions for the 14 simulations are illustrated, in Fig. 4, these are a 
collection of synthetic hydrographs derived from empirical observa
tions. For further detail on the generation of these boundary conditions 
and the LFP model development, refer to (Donnelly et al., 2022). 

3.1.2. Results 
In order to evaluate the PINNs surrogate model performance, leave- 

one-out cross-validation (CV) was performed by partitioning the data 
into subsets, holding one partition out for testing and then training the 

model on the remaining partitions. This resulted in 14-fold CV, where 
the data were partitioned corresponding to the original simulations. 

Preliminary testing was done to determine appropriate hyper
parameters for each model, such as learning rates and early stopping 
criterion. For both networks a learning rate of α = 0.001 was selected, 
and both models were set to stop training either after 50 epochs, with a 
batch size of 16, or if the validation RMSE had converged within a range 
of 0.01 for 3 consecutive epochs. Fig. 5 outlines the training and 
convergence of each model during CV, with the average converge path 
highlighted along with the variation among partitions. The CNN model 
convergences faster but also varies more around the validation minima. 
The PINNs model however takes more weight-updates to reach 
convergence but appears to reach a more stable minimum that is also 
very slightly lower, as outlined in Table 1. 

The results of the 14-fold CV for both the CNN and PINNs models, 
illustrated in Table 1, show that when assessing the models by ordinary 
RMSE, as a naive assessment of the true error (Donnelly et al., 2022), the 
PINNs model performs very similarly with the CNN obtaining only a 3.5 
% improvement, a result which could likely be noise and it could be 
concluded that the models are equivalent with respect to this metric. 
However, when assessing the models by the modified RMSE metric (i.e., 
mRMSE), as a better reflection of the true error rate, the PINNs model 
significantly outperforms the CNN model by just over 25 %. This result is 
less likely to be due to the noise in the model and data, and indicates that 
the PINNs model can provide superior predictive performance compared 
to the CNN model with respect to this metric. Additionally, the third 
column in Table 1 includes the average volume discrepancy for each 
model's prediction where this volume discrepancy is outlined in Eq. 
(22), where T denotes the test-set time indices. This result shows that 
the PINNs model has a slightly lower volume residual suggesting that it 
is more physically consistent with the conservation of mass. 

Fig. 4. Boundary conditions for the 14 LISFLOOD-FP simulations from the authors previous work (Donnelly et al., 2022).  
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Et∈T

[

ReLu

(

v̂t − vt− 1 − Δt
∑

i

∑

j
st

ij

)

+ReLu

(

vt+1 − v̂t − Δt
∑

i

∑

j
st+1

ij

)]

.

(22) 

A full breakdown of the CV results by partition can be seen in Fig. 6. 
The results for the normal RMSE metric are similar however when 
observing results for the modified RMSE value it is clear that the PINNs 
model confers a clear benefit. The CNN still outperforms the PINNs 
model on a subset of partitions however, when the PINNs model out
performs the CNN, the expected reduction in the test error is approxi
mately 36 %. Whereas the expected reduction in test error in cases 
where the CNN model outperforms the PINNs is only 18 %. A thorough 
review of these results demonstrates the improved performance of the 
PINNs model with respect the chosen error metrics. 

A spatial illustration of typical predictive performance of the CNN 
and PINNs models are outlined in Figs. 7 and 8, showing the L1 loss for 
random samples in the test-set for both models, respectively. These 

results are indicative of the average performance of each model, where 
the PINNs model observes a pattern of lower less values generally, 
especially in the channel and those areas where inundation is higher (e. 
g., the river channel and surrounding urban areas). Overall the bench
mark CNN is still a good predictor, however, in the areas of higher 
inundation it does not perform as well. These results are illustrated by 
observing the L1 loss values of each model's prediction in the river 
channel and surrounding areas. This result links back to Table 1, which 
showed that the PINNs model observes a more significant improvement 
when utilising the less biased mRMSE metric. Additionally, 

Fig. 9 outlines aggregated spatial variability in the performance of 
the PINNs and CNN baseline model by showing the cell-by-cell differ
ences in performance, expressed as RMSECNN − RMSEPINNs, meaning 
that positive values indicate areas where on average the CNN performed 
worse (had a higher RMSE) and similarly, negative values indicate the 
PINNs model performed worse. We can observe that across the majority 
of the case study domain, the PINNs model is outperforming the CNN 
model. This is particularly evident within the channel of the river, where 
in certain areas the average improvement in RMSE is ≥ 0.01m. These 
results suggest that the PINNs model is effective at learning a more ac
curate distribution of fluid volume than the CNN model as a result of the 
additional physics-based regularisation. By enforcing the conservation 
laws into the model structure a more accurate volume of total fluid is 
predicted. 

Fig. 5. Training of CNN and PINNs models with the y-axis showing log(RMSE) on the test set and x-axis showing the number of mini-batches/weight updates. The 
σ-bounds shows the variability of convergence across CV partitions. 

Table 1 
Mean CV scores for the CNN and PINNs models on the LISFLOOD-FP data.  

Model mRMSE RMSE Vol. Discrepancy 

CNN (MSE)  0.184  0.083 9.74× 105 

PINNs  0.136  0.086 8.70× 105  

Fig. 6. LFP Model results by CV partition. The plot on the left shows assessment by ordinary RMSE and the right plot by the modified RMSE metric.  
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3.2. Coastal flood modelling 

3.2.1. Delft3D 
Delft3D (Roelvink and Van Banning, 1995; Deltares, 2022) is a 

modelling suite consisting of several modules, able to accurately simu
late hydrodynamics, waves, morphology, and sediment transport among 
other processes. In this study, the FLOW hydrodynamic module (referred 
to as Delft3D) of the Delft3D suite is used. Delft3D is a comprehensive 
standalone model, which is able to robustly simulate storm surges in 
coastal regions (Vatvani et al., 2012; Vousdoukas et al., 2016b), river 
flows and flooding (Kumbier et al., 2018), tidal dynamics (Horstman 
et al., 2013; Waldman et al., 2017), tsunamis, and particle transport. 
Delft3D is designed to simulate non-steady flows resulting from tidal or 
meteorological forcing (Deltares, 2022). It can operate in both two and 
three dimensions, utilising a boundary-fitted grid for accurate 

calculations. Delft3D-FLOW uses the Finite Volume Method (FVM) to 
implement the two or three-dimensional SWE equations. In doing so, 
Delft3D is able to simulate the hydrodynamics in a wide range of sce
narios in which the horizontal length and time scales are much larger 
than the vertical depth of the model (e.g., shallow seas, coastal areas, 
estuaries, lagoons, rivers, and lakes) (Deltares, 2022). By default, 
Delft3D implements a k − ε turbulence closure model. 

The two-dimensional depth-averaged implementation of the SWE is 
used since the fluid is considered vertically homogeneous and the 
magnitude of the spatial scales in the x and y directions are much greater 
than the z direction. The modelling domain chosen in this study is the 
English Channel, as illustrated in Fig. 10. The modelling domain consists 
of a 2D grid of (287 × 330) cells of size 1.1km × 1.4km with a uniform 
Manning's roughness coefficient of 0.025 chosen for the domain during 
calibration. The bathymetry data illustrated in Fig. 10 and used in the 

Fig. 7. Illustration of L1 loss for CNN and PINNs for a random timestep (i).  
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hydrodynamic model is sourced from the GEBCO global bathymetry 
dataset provided by the British Oceanographic Data Centre (BODC). The 
developed model was simulated for four discrete 1-month time periods, 
with the model using time-varying water levels applied at the bound
aries. The proposed simulation periods can be seen in Table 2, with 
simulation periods spread throughout the year to capture some of the 
temporal variability in tidal dynamics in the dataset. 

Likewise to Section 3.1.1, the simulation data is then aggregated 
across the four simulations, collected at 30-min intervals, to create a full 
dataset of approximately N = 5700 tests. The tidal model was calibrated 
and subsequently validated, using empirical data collected from the tide 
gauge locations highlighted in Fig. 10. This was done to ensure that the 
underlying results that the PINNs surrogate is trained upon were valid. 

The focus of the Delft3D simulator, and subsequent PINNs surrogate 
model, is to accurately model water surface elevation in the English 

Channel modelling domain. As can be seen in Fig. 10, the modelling 
domain exhibits significant spatial heterogeneity in elevation, with 
certain areas of the Channel reaching depths of 150 m while other 
extensive sections are 20 m deep or shallower. To ensure robustness, a 
surrogate model should accurately and efficiently replicate the spatio
temporal variability in the water surface elevations in the modelling 
domain, representing a complex dynamic regression problem. 

To illustrate the significant variability in water surface elevations 
across the domain, Fig. 11 A displays time series showing the water 
surface elevations at ten independent boundary segments for the first 
simulation. As expected, the structure is highly similar due to the 
cyclical nature of tidal dynamics. However, due to the variation in 
elevation, the mean values are widely different. To improve the neural 
network training, all the data, including input boundary conditions and 
outputs (water surface elevation matrices), were centered to have zero 

Fig. 8. Illustration of L1 loss for CNN and PINNs for a random timestep (ii).  
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mean, with the impact on surface elevations at the boundaries illustrated 
in Fig. 11 B. During the cross-validation process, the training and test 
sets were centered by subtracting the means of the input and output data 

from the training set. This was done to ensure that the test-set mean was 
approximated using the training-set mean, while also avoiding any 
sharing of data between the two sets. This method helped to improve the 

Fig. 9. Illustration of the spatial difference in performance (RMSE) between the CNN model and the PINNs model. Positive values indicate areas where the CNN loss 
is higher and negative where the PINNs loss is higher. 

Fig. 10. Delft3D modelling domain of the English Channel with bathymetry, the boundaries at which water levels are applied from, and tide gauge validation 
locations illustrated. 
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accuracy and reliability of the results obtained from the neural network 
model. An important clarification is that centering the data in this 
manner is a linear transformation and will not affect the inequality 
outlined in Eq. (13). 

The proposed tidal model has 40 distinct boundaries, each varying at 
every timestep. The PINNs surrogate still takes the form outlined in Eq. 
(21), where boundary conditions are aggregated, along with the 8 pre
ceding timesteps to form inputs to the surrogate of the form xt ∈ ℝ40×9 =

ℝ360. The outputs are still represented by vectors (matrices representing 
the modelling domain flattened into vectors), yt ∈ ℝ287×330 = ℝ94380. To 
reflect the change in boundary parameterisation, the CNN for the LFP 
surrogate had a kernel stride of 1, whereas the Delft3D CNN will have a 
kernel stride of 9 to reflect the change in boundaries but maintains the 
same temporal basis to the parameterisation. To minimise overfitting 
and reduce the sensitivity of the outputs to translations in the input 
space, after each convolutional layer, max pooling layers will be added 
with a kernel size of 2 to reduce the parameterisation of the model 
(Goodfellow et al., 2016). 

3.2.2. Results 
The assessment for the Delft3D PINNs surrogate is the same as out

lined previously in §3.1.2. Cross-validation is performed by partitioning 
data according to the discrete simulations the model was used for, 
resulting in 5-fold CV for model assessment. Similarly, as described in 
Section 2.5, the evaluation of the surrogate model is conducted pri
marily using the ordinary version of RMSE instead of the modified RMSE 
metric utilised in the LFP surrogate model. The modified RMSE was used 
in LFP simulations as most cells remained dry, i.e., had a fluid depth of 0, 
across the simulations, and hence were excluded from the assessment. 
However, in the case of the Delft3D model, most cells contained high 
levels of fluid depth across the simulations, and only a minority of cells 
were dry. 

The results for the developed surrogate models are outlined in 
Table 3, using the same criteria as previously used for the case of the LFP 

surrogate models. The PINNs surrogate model outperformed the data- 
driven CNN model, resulting in a notable increase in performance. 
The average reduction in the error rate for the modified RMSE metric 
was approximately 11 %, highlighting the superiority of the physics- 
informed approach. Although this improvement was smaller compared 
to the previous case study, the PINNs model still demonstrated a 
considerable advantage over the purely data-driven surrogate model. 
However, although the expected reduction in error is not substantial, it 
can be concluded that an average reduction in error of over 10 % is not a 
result of random noise, indicating that the proposed PINNs-based 
approach outperforms the purely data-driven surrogate model. 
Furthermore, the PINNs model achieves a reduction of approximately 
20 % in the volume discrepancy, further highlighting its superior 
performance. 

To illustrate predictive performance, Figs. 12 and 13 show the PINNs 
model's predictions at the six validation tide gauge locations outlined in 
Fig. 10. Fig. 12 shows a snapshot of the predicted values, highlighting a 
random period of 500 timesteps (approximately 10 days) for each of the 
locations, and Fig. 13 outlines the macro view, showing the aggregated 
predictions across all CV partitions (which can be seen through negli
gible discontinuities in the figures). These figures demonstrate the 
remarkable accuracy achieved by the PINNs surrogate model and its 
ability to handle the significant variability in the mean water surface 
elevation across cells, as evidenced by the diverse range of average 
depths at different locations. 

Further, the overall spatial distribution of errors for the PINNs model 
can be observed in Fig. 14. The figure displays the aggregated validation 
RMSE in every cell in the domain across all timesteps. The errors are 
generally low in the majority of the domain but moderately higher in 
small sub-domains. These subdomains correspond to locations where 
the coastal geometry and topography are complex, resulting in tidal 
dynamics that deviate from those of the rest of the domain, leading to 
lower model performance. 

To show how the model performance varies temporally, Fig. 15a 
shows the average error of the model over a 4-hour period of high tide at 
the beginning of March and Fig. 15b shows the average error of the 

Table 2 
Simulation periods for the Delft3D tidal model.  

Simulation Start End 

1 01-03-2005 01-04-2005 
2 01-05-2006 01-06-2006 
3 01-07-2007 01-08-2007 
4 01-09-2008 01-10-2008  

Fig. 11. Boundary condition values for 10 of the total 40 boundary locations for the first simulation period. A) Original untransformed data. B) Centered data after 
subtracting the mean. 

Table 3 
Mean CV scores for the CNN and PINNs models on the Delft3D data.  

Model mRMSE RMSE Vol. Discrepancy 

CNN (MSE)  0.154  0.150 2.26× 106 

PINNs  0.139  0.137 1.84× 106  
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model over another 4-hour period of high-tide at the beginning of 
September. In Fig. 15a, the overall tidal level is considerably higher than 
it is in Fig. 15b, likely leading to sub-domains of higher losses, i.e., areas 
where the true water levels are higher relative to the averages observed 
in the training data. The performance of the model will vary with respect 
to how similar the true values are to the training data. The overall 
extrapolation issue, however, by training the surrogate on a represen
tative sample of data and incorporating prior information through 
PINNs these issues can be mitigated. 

4. Discussions 

The utilisation of neural network-based surrogate models in flood 
modelling has presented several advantages, including significantly 
reduced computational and time requirements for inferring new sce
narios. By explicitly introducing prior knowledge of the system being 
modelled into the structure of the surrogate, i.e., such as outlined here 
with physics-based regularisation, a more robust ML-based model can be 
produced. Physics-informed approaches to ML look to have the potential 
to partially resolve existing issues in supervised ML, such as data effi
ciency, explainability of predictions, and generalisation performance. 
Moreover, by leveraging the capabilities of neural networks, such 
models can be constructed with no additional computational overhead 
at inference time and can be highly scalable; adapting well to large 
datasets of high-dimensional feature spaces. 

A primary limitation of a PINNs-based approach, in contrast to 
purely data-driven neural network, is the increased development skills 
and knowledge needed to develop these models, as demonstrated in 
Section 2.3. For instance, the design of the custom loss function used in 

PINNs is more demanding, especially when compared to standard loss 
functions available in widely-used neural network frameworks. In 
addition, the structure of the PINNs models, which incorporates recur
rent connections to past and future target values, necessitates a modified 
training routine, further adding to the complexity. However, many 
PINNs models, like the surrogate outlined in this study, will involve 
more computation during model training but once the model is trained, 
the cost of inference will be the same as it would for a data-driven 
surrogate. 

Surrogate models generally have the same inherent limitations as 
supervised ML models do. Their ability to generalise well and extrapo
late to new, unseen data that was not observed in the training data can 
be highly varied. Considering this, and since the surrogate models are 
usually trained on limited data points, achieving highly accurate pre
dictive performance on unseen data that differs from the training data is 
not guaranteed. As a result, changes in underlying data distributions (i. 
e., drift), such as new spatial locations, can necessitate model re-training 
or adjustment to ensure achieving the desired accuracy. This poses 
challenges in ensuring consistent reliability across varying scenarios, 
highlighting the importance of ongoing performance monitoring and 
validation. 

Furthermore, the process of creating surrogate models can be labo
rious and resource-intensive. The development of a surrogate model not 
only requires a well-calibrated numerical model, with all the attendant 
calibration and validation steps, but also demands careful experimental 
design, data selection, pre-processing, and training. Although the ben
efits of having a trained surrogate can be significant in terms of reduced 
computational requirements for simulations, the initial investment in 
terms of time and effort is substantial. Given the inherent limitations, it 

Fig. 12. PINNs predictive performance over random 500-timestep periods for each validation location in Fig. 10.  
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is vital for researchers and practitioners to carefully weigh the pros and 
cons of developing a surrogate model. 

5. Conclusions 

This study introduced methodological innovations by outlining a 

novel PINN model based on discrete conversation laws and applying it to 
two numerical hydrodynamic simulators, LISFLOOD-FP and Delft3D. 
The hydrodynamic simulators and both the PINNs and data-driven CNN- 
based surrogates developed in this study have proven effective in both 
inland flood and tidal modelling, showcasing the versatility and 
robustness of the proposed approach. The findings of this study 

Fig. 13. Full predictive performance for the PINNs model with predictions aggregated across CV partitions.  

Fig. 14. Spatial distribution of errors for the PINNs model showing aggregated validation RMSE in every cell across all timesteps.  
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demonstrate that the proposed PINNs-based surrogate model can be 
applied universally to accurately approximate any hydrodynamic 
simulator with high efficiency and accuracy. The novelty of the pro
posed method involves aggregating predicted quantities of interest and 
complex boundary conditions over time, which enables the direct 
quantification of violations of the conservation laws governing the sys
tem. By including additional terms to the loss function that penalize 
predictions violating these laws to a greater extent, a more robust sur
rogate model for hydrodynamic simulators has been developed. 
Furthermore, the surrogate developed could be extended to predict 
other conserved quantities in different applications. 

By extending the existing PINNs approaches, no compromises on the 
functionality of the surrogate model were required. Unlike existing 

PINNs approaches, which typically require spatiotemporal coordinates 
as inputs to the network, generating latent solutions under the same 
boundary conditions as the training outputs, the proposed approach 
allows for greater flexibility in the specification of boundary conditions 
and the prediction of quantities of interest. Here, the ability to flexibly 
parameterise boundary conditions in the network is maintained such 
that the surrogate model can be directly applied to entirely new 
boundary conditions. The proposed model is able to accurately predict 
quantities of interest at all spatial locations simultaneously. Addition
ally, this study demonstrates that by using a convolutional neural 
network architecture, the resulting PINNs approach can be easily 
applied to architectures beyond dense, fully-connected networks. 

The results showed that in both experiments, for LISFLOOD-FP and 

Fig. 15. Average error (RMSE) for the 4-hour high-tide periods of different simulation periods (high-tide predictive performance in different months and sea
sonal patterns). 

J. Donnelly et al.                                                                                                                                                                                                                                



Science of the Total Environment 912 (2024) 168814

16

Delft3D, the PINNs model outperformed a benchmark CNN model in 
which the same network architecture was trained using an ordinary MSE 
loss function. The examples presented in this study demonstrate the high 
degree of accuracy provided by the PINNs model, surpassing the data- 
driven CNN by approximately 25 % and 11 % for the two respective 
applications. Furthermore, the proposed PINNs model was found to 
exhibit more stable optimisation behaviour, especially around the 
minima, although convergence took more weight updates, which is due 
to including the physical laws governing the system and boundary 
conditions. The impact of random weight initializations in the networks 
has been taken into account to condition for their effects. Therefore, any 
performance differences between the models are most likely due to the 
optimization criteria of the networks, which adds a high degree of cer
tainty to the results obtained. 

When using neural network-based models generally there is no 
straightforward approach to directly quantify the uncertainty associated 
with the predictions. In complex settings such as environmental fore
casting, where predictions can have far-reaching implications through 
planning and policy, the ability to robustly consider predictive uncer
tainty allows for a more sophisticated interpretation of predictions. 
Other ML-based surrogate models such as Gaussian Processes do allow 
for this type of easy uncertainty quantification. However, they lack the 
same scalability as neural networks with respect to large, high- 
dimensional datasets. GPs also allow for the incorporation of prior in
formation through a Bayesian framework, although this framework may 
require assumptions, which limit the complexity of prior information 
(Owhadi et al., 2015) and so may not be as appropriate for implementing 
physics-informed models. Future research directions should focus on 
utilising the scalability and flexibility of PINNs models with the uncer
tainty quantification capabilities of Bayesian methods. 

It should be noted that the PIML approaches represent a unique 
combination of existing physics-based numerical modelling approaches 
and purely data-driven ML-based approaches. This study recommend 
that, in cases where a comprehensive knowledge of the governing 
physics is available, physics-informed approaches should be more 
widely adopted in surrogate modelling of scientific and engineering 
applications. These approaches could provide higher accuracy, more 
explainable forecasts and better data efficiency. In an era of proliferate 
supercomputer usage and a rapidly changing climate, there is a more 
urgent need than ever to develop low computational cost, rapid ap
proaches to forecasting important environmental and climate variables. 
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