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Abstract

Chain Event Graphs (CEGs) are an easily interpretable, versatile class of probabilis-
tic graphical models that represent context-specific relationships and asymmetric
event unfoldings. As an asymmetric extension of discrete Bayesian networks, CEGs
provide a compact illustration of detailed dependence structures through the use of
colour and by modifying the graphs topology.

Although other model selection methods have been studied, CEG model
selection literature has primarily focused on obtaining the maximum a posteriori
(MAP) CEG. However, this method ignores model uncertainty and therefore the
uncertainty of their contained independence statements. We propose using Bayesian
model averaging (BMA) to quantify model uncertainty, leading to more robust in-
ference by comparing features across high-scoring models. We provide a simple
modification of an existing model selection algorithm, that samples the model space,
to illustrate the efficacy of Bayesian model averaging compared to more standard
MAP modelling.

Recent improvements in structure learning have not mitigated the computa-
tional complexity involved in modelling larger applications. They either: fail to scale
efficiently when the number of events considered increases; do not find comparable
models to existing methods or a priori restrict the model space. We propose an
alternative algorithm, using a totally-ordered hyperstage, to obtain a quadratically-
scaling structural learning algorithm for staged trees, restricting the model space
a-posteriori. Our approach outperforms existing methods in computational time,
whilst providing comparable model scores. This enables learning more complex re-
lationships than existing model selection techniques by expanding the model space.

We consider how CEGs can improve the explainability of Agent-Based Mod-
els (ABMs), a popular model class in social science, by providing a Bayesian frame-
work. Although ABMs lack the methods to embed more principled strategies of
performing inference to estimate and validate the models, CEGs can fill this gap by
accurately representing ABMs. Using a CEG, we illustrate transforming an elicited
ABM into a Bayesian framework and outline the benefits of this approach.
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Chapter 1

Introduction

1.1 Motivation

Graphical models are used by researchers from a wide variety of domain areas to

understand the structural relationships and interactions between different variables

and decisions. Combining probability theory and graph theory, the result is a visual

representation, capable of providing intuitive and comprehensive explanation of a

system whilst also representing highly complex relationships between variables in a

cohesive manner.

A key benefit of graphical models is that they can often be explained to

stakeholders and researchers from non-mathematical domains with little statisti-

cal training; as such, they are a compelling communication tool and are regularly

employed in interdisciplinary research.

Probabilistic Graphical Models (PGMs) can provide a visually compelling

and intuitively intelligible representation of the probabilistic associations encoded

within its statistical model: PGMs enable statisticians to understand complex rela-

tionships between variables through their representation and topology. The graph-

ical nature of the model means that this can be done visually, without any require-

ment to further investigate into the statistical model’s parameters.

Of these graphical models, one class– the Bayesian Network (BN)– has en-

joyed success across many domain areas, including agriculture [Drury et al., 2017],

metereology [Cano et al., 2004], antiterrorism [Hudson et al., 2005] and ecology

[Rigosi et al., 2015].

BNs are ideal for modelling certain contexts, when an expert focuses on the

relationships between a pre-defined set of variables [Collazo et al., 2018]. However,

despite their flexibility and wide use, BNs have some widely-documented drawbacks
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which limit their suitability. When experts elicit judgements regarding variables,

they often describe them as asymmetric processes, where context and previous his-

tory of a unit is key to describing the outcomes of events. We note that BNs do not

necessarily describe asymmetric events coherently; instead of considering variables

as part of a process, they consider them as existing in a product structure, which

can lead to model descriptions which are inaccurate and border on the absurd.

Example 1 (Asymmetry in BNs) When completing a medical questionnaire, a

participant may be asked how regularly they drink alcohol. In an asymmetric process,

a participant reporting “never” would not be asked “When you drink, how many

units do you drink?”; this question does not make sense to ask. Modelling this

as a symmetric process may use the follow-up question asking the participant to

state the number of units drunk when they do drink – with a minimum number of

one – as a variable. BNs model processes as symmetric and require a response for

every individual for every variable. This is not to say that strategies to deal with

missing data in BNs do not exist. However in instances like this assuming it is

missing at random or to impute such values further obfuscates the problem, leading

to inaccurate information and a poor representation.

In addition, BNs cannot fully illustrate context-specific independence state-

ments, where independences only hold for specific values in specific circumstances

[Spiegelhalter and Lauritzen, 1990]. Although various extensions and adaptations–

such as context-specific and object-oriented BNs– have been made to the BN class

to expand their suitability, BNs still have no capacity to accommodate asymme-

tries within the graphical description of the model. Therefore, if we are to identify

a model which provides explainability in a wider range of circumstances, we must

look beyond the Bayesian Network.

This example motivates the use of Chain Event Graphs (CEGs), a class of

PGM introduced in Anderson and Smith [2005]. Developed originally from event

trees, which provide an intuitive framework to describe an unfolding process [Shafer,

1996], Chain Event Graphs embellish this structure by colouring the nodes based

on the distributions over each edge and transforming its graph structure to create

a compact representation [Collazo et al., 2018]. The CEG class is hugely expressive

[Insua and French, 2010], with the ability to represent complex, context-specific

independence relationships across symmetric and asymmetric event spaces.

Compared with a tree, CEGs provide a comparatively compact representa-

tion, with each CEG for a given tree providing a different explanation of the un-

derlying process. Therefore, for a given event tree, the model selection depends on
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deciding between independence statements through the potential ways of colouring

a tree.

Since Anderson and Smith [2005]’s original development, different applica-

tions of CEGs have been successfully established such as in causal analysis [Thwaites

et al., 2010; Thwaites, 2013; Cowell and Smith, 2014], dynamic variants [Freeman

and Smith, 2011b; Barclay et al., 2015; Collazo, 2017; Shenvi, 2021] and for mod-

elling latent processes in hierarchical models [Bunnin et al., 2020; Shenvi et al.,

2023].

Obtaining the most likely– maximum a posteriori (MAP)– model has been

the focus of much existing model selection literature [Collazo, 2017; Silander and

Leong, 2013; Freeman and Smith, 2011a]. This research has focused on identifying a

single, best-performing model. However, relying solely on MAP selection ignores the

model uncertainty, which can lead to unreliable results. As a result, new methods

are needed to quantify the uncertainty of models; Bayesian model averaging of-

fers a more robust strategy for quantifying model uncertainty by identifying shared

features across multiple high-scoring models.

Despite recent improvements in structure learning, the computational com-

plexity involved in modelling larger applications remains a challenge. Existing meth-

ods either restrict the set of models a priori, do not scale efficiently as the number

of events considered increases or fail to find comparable models to existing methods.

Additionally, when comparing stages with contrasting effective sample sizes, optimal

combinations can sometimes appear odd, leading to inappropriate model selection

[Collazo and Smith, 2016].

CEGs offer a powerful framework for modelling complex systems and making

inferences under uncertainty. However, they are a comparatively new model class

and their application by researchers from non-statistical backgrounds has thus far

been limited. Agent-Based Models (ABMs)– an egocentric class of models used to

simulate real-world systems– are more widespread in the social sciences but their

interpretability, estimation and validation can be enhanced by exploiting the rela-

tionship of this class to the CEG. By using CEGs to embed a Bayesian framework in

ABMs, we can provide a way to capture the causal relationships and dependencies

between agents and variables in ABMs, allowing for more principled strategies of

performing inference. By providing a method to embellish an ABM into a CEG,

there is potential to broaden the use of CEGs into new domains, for use by non-

statistical researchers to enhance their understanding of real-world systems.

When using prior information, containing expert judgement, in any Bayesian

analysis it is important that it is used consistently. However, prior probabilities and
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distributional parameters are often set by default, without reference or consideration

for each other. This can lead to an imbalance in how data and expert judgement

are treated in model development, where expert elicitation is undervalued and not

represented consistently in some models.

With these points in mind, the work presented in this thesis aims to address

the following research questions:

1. How can Bayesian model averaging be used to quantify model uncertainty

and improve the robustness of inference for CEGs, and how does it compare

to existing methods, such as MAP selection?

2. How can the computational complexity of structural learning in larger ap-

plications be mitigated, and can an alternative algorithm be proposed and

implemented that provides more efficient and accurate results than existing

methods?

3. How can CEGs be used to provide a Bayesian framework to make ABMs more

explainable and provide more principled strategies for performing inference to

estimate and validate the models, and what are the benefits of this approach?

4. When modelling with CEGs, how can we ensure a balanced approach when

considering expert judgement and data to maintain consistency?

1.2 Outline of Thesis

The work in this thesis has the following structure.

We begin in Chapter 2 by briefly outlining the fundamentals of graph theory

and PGMs as these apply to the material presented in later chapters of this thesis.

We then briefly review discrete BNs and highlight their limitations through illus-

trative examples. We discuss how these limitations motivate the use of CEGs and

alternative graphical models.

In Chapter 3, we provide a detailed review of CEGs. This includes the formal

definition of staged trees, CEGs and non-stratified CEGs. We then review model

selection methods including conjugate learning, the setting of priors and model

selection algorithms. This chapter also includes a review of the existing software

used to perform model selection for CEGs, demonstrating the need for software able

to model non-stratified CEGs. Finally, the details of cegpy, a python package I was

involved in developing for non-stratified CEGs, is included, in which we provide an

demonstration of its functionality.
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The proceeding four chapters include the main body of original methodolog-

ical research that makes up this thesis. Chapter 4 explores the use of Bayesian

Model Averaging (BMA) to quantify the confidence that surrounds independence

statements learned from data within a CEGs model selection.

The next chapter, Chapter 5, explores the use of restricting the hyperstage

for more efficient model selection for CEGs. To do this, we introduce an ordering on

each hyperset. We also explore traversing the equivalence class of CEGs in order to

obtain a wider class of models able to represent a wider set of relationships between

events.

Chapter 6 presents ongoing work on the use of elicited expert judgement.

In particular, we consider how to elicit a CEG from an ABM and compare the

similarities and differences in modelling approaches between these two methods.

Chapter 7 discusses how prior information can be managed to ensure that

expert judgement is reflected consistently in a CEG. Here we motivate and define

an invariance condition and show how it can be satisfied to ensure the consistent

use of expert judgement and data.

We conclude in Chapter 8, where we summarise the contributions given in

this thesis, discuss ongoing work and detail areas for further research.
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Chapter 2

Preliminary information

In this chapter, we provide a background of some of the key concepts for this thesis.

Section 2.1 details a review of relevant concepts from graph theory. Section 2.2

gives a broad overview of PGMs. This section has a particular focus on BNs, a very

popular class of PGMs. Through discussing the limitations of BNs we motivate the

use of CEGs, an asymmetric generalisation.

2.1 Graph Theory

Here we will provide a review of the concepts of graph theory that are fundamental

to understand PGMs and therefore underpin the work presented in this thesis.

Definition 2 (Graph) A graph G is a set of vertices (nodes) V (G) and edges

E(G) ∈ V (G) × V (G) between the vertices. If the V (G) is finite then G is a finite

graph, otherwise it is said to be infinite.

Definition 3 (Subgraph) A graph G′ is a subgraph of the graph G if V (G′) ⊆
V (G) and E(G′) ⊆ E(G).

Definition 4 (Induced subgraph) An induced subgraph G′ = (V ′, E′) induced

by vertices {v1, v2, . . . , vn} ∈ V (G) is a subgraph of G = (V,E) with vertex set

V ′ = {v1, v2, . . . , vn} and edge set E′ = {(vi, vj)|vi, vj ∈ V ′}.

Definition 5 (Directed and Undirected Graphs) A graph G is:

• directed if each edge in E(G) has a direction, represented by an arrow showing

the direction between vertices.

• undirected if all edges in E(G) do not have a direction.
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Definition 6 (Walk, Path and Cycle) A walk is a series of vertices {v1, v2, . . . , vn}
such that there is an edge between each consecutive pair of vertices (vi, vi+1) ∈ E(G)

for i ∈ 1, . . . , n − 1. A walk in which each vertex appears at most once is called a

path. A walk in which the first and last vertex are the same is called a cycle v1 = vn.

Definition 7 (Parent and Child) Given a directed graph G = (V,E) a vertex v

is a parent (or child) of a vertex v′ ∈ V if (v, v′) ∈ E (or (v′, v) ∈ E).

Definition 8 (Directed Acyclic Graph (DAG)) A DAG is a directed graph with

no cycles.

Definition 9 (Connected graph) A graph G is connected if there exists a path

between every pair of vertices.

Definition 10 (Tree) A tree T = (V,E) is a connected directed graph with no

cycles. It has one vertex called the root vertex v0 with no parents with all other

vertices with exactly one parent.

v
0

v
1

v
2

v
3

v
4

Figure 2.1: Examples of: a tree, a connected graph G and a subgraph of G induced
by v1, v2, v3.

Definition 11 (Leaf) In a tree T a leaf vertex is a vertex with no children.

2.2 Probabilistic Graphical models (PGMs)

PGMs are a combination of a statistical models and graphical representations of in-

dependence relationships [Lauritzen, 1996]. As stated in Section 1.1, their graphical

nature makes them interpretable by statisticians, domain experts and stakehold-

ers in decision-making processes, which make them a useful communication tool
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in understanding the relationships between variables. Graphs have been used by

statisticians in this way for over a century (see e.g. Wright [1921]) and have been

developed into a plethora of different representations including influence diagrams

[Howard and Matheson, 1981], BNs [Pearl, 1988] and CEGs [Smith and Ander-

son, 2008]. PGMs provide a strategy to perform effective inference, supporting the

creation of a compact representation of probability distributions and providing an

intuitive method for expressing assumptions about processes [Pearl, 2009].

2.2.1 Conditional Independence

In PGMs, the graphical structure is often used to represent conditional independence

statements. This is a relationship between two variables given the knowledge of a

third variable. Variables X and Y are conditionally independent of a third variable

Z, denoted:

X ⊥⊥ Y |Z.

This means that the probability mass (or density) function, p(X), satisfies

the following relation:

p(X|Y,Z) = p(X|Z).

Here, knowledge about Y does not provide any more information about X if Z is

known.

Another type of conditional dependence is that of the context-specific inde-

pendence; using the same notation as before X is independent of Y given Z is a

certain value z:

X ⊥⊥ Y |(Z = z).

PGMs represent various factorisations of a probability distribution and, hence,

conditional independencies. The graphical structure representing the factorisations

can be elicited from expert judgement, but it is commonly learned using structure-

learning algorithms.

2.2.2 Bayesian Networks

BNs are a very popular – and well-developed –class of probabilistic graphical model.

They were initially developed from Influence Diagrams [Howard and Matheson, 1981;

Shachter, 1988]– a graph where decision nodes and utility nodes represent decisions

and associated utilities– and later DAGs [Lauritzen, 1996]– graphical models which

represent the dependencies between variables. Pearl [1988] first developed BNs in a
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bid to create a mathematical framework to represent causality; further developments

in technology and statistical research, such as the development of HUGIN (Handling

Uncertainty In General Inference Network) [Andersen et al., 1989], have deepened

and extended BNs flexibility and adaptability to domain areas. In a BN, each vertex

represents a variable with an edge between the variables representing a dependence.

This simple representation is a powerful tool that allows for probabilistic rea-

soning and inference by using Bayes’ theorem to calculate the posterior probability

of a variable given evidence.

Example 12 (Anticipating congestion- A BN) Suppose we want to model the

likelihood of traffic congestion (XC , ‘Heavy’, ‘Light’) on a particular road based on

the time of day (XT , ‘Day’, ‘Night’) and the weather (XW , ‘Dry’, ‘Rainy’). Suppose

we have elicited that the weather is independent of the time of the day and that

both the time of day and weather have an impact on the traffic congestion. These

relationships are shown in Figure 2.2.

X
W

X
C

X
T

Figure 2.2: Bayesian Network of Traffic Congestion example corresponding to the
chance of congestion (XC) depending on weather (XW ) and time of day (XT ).

Here the probability distribution of each vertex depends on the outcomes of

its parents vertex, with the specific values given in probability tables. For example,

we may expect more traffic congestion during the day and during rainer weather.

This BN can then be used to predict traffic congestion for the weather and time of

day which could be used to optimise travel routes.

Whilst Figure 2.2 shows that a relationship might exist between XC and each

of the other variables, we are not able to express more complex statements. We

cannot, for example, identify how combinations of the variables XW and XT affect

XC from the graph’s topology.

2.2.3 Chain Event Graphs

An alternative class of PGMs which could more effectively depict the complex re-

lationships at work here is a CEG, first introduced in Smith and Anderson [2008],
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as CEGs are a generalisation of discrete BNs. The development of CEGs was in-

spired in part by concepts found in Probability Decision Graphs [Jaeger, 2004], BNs

[Jensen and Nielsen, 2007] and trees used in decision analysis [Raiffa, 1968].

We provide a brief non-technical review of CEGs; for technical details, see

Section 3. CEGs are based on event trees [Shafer, 1996]. Event trees can be embel-

lished with colours, based on their probability distributions, to obtain a CEG [Smith

and Anderson, 2008; Collazo et al., 2018]. CEGs are transformations of event trees:

they are able to describe the evolution of a process through an unfolding of a se-

quence of events and give a natural way of talking about events, making them easy

for elicitation [Shafer, 1996]. Each (non-leaf) vertex in the tree represents a state

an individual may be in and its outgoing edges represent the possible events that

follow. Non-leaf vertices are coloured the same if the distribution over their outgoing

edges are the same. See Example 13, below.

Example 13 (Anticipating congestion- An Event Tree and CEG) Continuing

Example 12, the event tree in Figure 2.3 shows the variety of ways this process could

unfold. This can then be developed, through analysis of the probability distributions

over each vertex’s edges, into the CEG in Figure 2.4.
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Figure 2.3: Event Tree of Traffic Congestion example corresponding to the chance
of congestion (XC) depending on weather (XW ) and time of day (XT ).
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Figure 2.4: A potential CEG of the Traffic Congestion example related to the Event
Tree in Figure 2.3

The CEG in Figure 2.4 represents the same dependence structure as that in

the BN in Figure 2.2. Note that the topology of the CEG allows us to identify how

traffic congestion is impacted by both weather and time of day. The use of colour

represents the independence statement that weather is independent of time of day,

as both vertices are coloured blue on the graph.

In addition to identifying the independence relationships between different variables,

CEGs can also represent context-specific independence statements, such as those in

Example 14.

Example 14 (Anticipating Congestion- An alternative CEG) We continue

using Example 13. Whilst Figure 2.4 shows one potential CEG from the Event Tree

in Figure 2.3, Figure 2.5 shows an alternative. In this Figure, we see the following

independence statements represented:

• Blue- Weather is independent of time of day.

• Green- Congestion is independent of weather, given that it is night time.

Representing this context-specific independence statement would not be possible when

using a BN.
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Figure 2.5: An alternative CEG of the Traffic Congestion example related to the
Event Tree in Figure 2.3

CEGs can also represent processes which have an asymmetric unfolding of

events. Until recently, the vast majority of research has focused exclusively on CEGs

which deal with symmetric event spaces– known as stratified CEGs. However, recent

work has begun to develop an understanding of the unique complexities presented

by asymmetric event spaces and their associated non-stratified CEGs [Shenvi, 2021;

Hughes et al., 2022; Strong et al., 2022; Strong and Smith, 2022b]. Below, we extend

our ongoing example to demonstrate an asymmetric event space.

Example 15 (Anticipating Congestion- Asymmetric CEG) Suppose we add

a further variable to the Event Tree in Figure 2.3- XR, denoting whether a road was

closed (‘Yes’, ‘No’). In the case of road closure, it is not logical to consider whether

there is congestion on the road as it cannot be used for route planning. The addition

of this variable makes the event space asymmetric, by adding a structural missing

value, resulting in a non-stratified CEG, as shown in Figure 2.6.
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Figure 2.6: A non-stratified CEG of the Traffic Congestion example, with an addi-
tional variable, XR, to denote whether the road was closed
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The independence relationships represented in this CEG are as follows:

• Blue- The weather is independent of time of day.

• Green- Congestion is independent of weather, provided the road is open and it

is night time.

Naturally representing this asymmetric unfolding of events would not be possible in

a BN– as XC has no value when XR = Y es.
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Chapter 3

Chain Event Graphs (CEGs)

Building on the motivation of CEGs in the previous chapter, this chapter provides a

review of the topic. This review covers key aspects such as definitions and notation

of staged tree and CEGs, including non-stratified CEGs in Section 3.2. Additionally,

conjugate learning is discussed in Section 3.3, followed by model selection in Section

3.4. Existing extensions and variants are explored in Section 3.5. In Section 3.6,

cegpy, a newly-developed Python package, is presented demonstrating its benefits

and utility Walley et al. [2022]. Throughout this chapter, we use an example to

illustrate the key concepts.

3.1 Introduction

CEGs are a class of interpretable graphical models that can represent asymmetric

processes on discrete data. Anderson and Smith [2005] is the source of the first pub-

lication on CEGs. As a special case, CEGs include discrete BNs. CEGs generalise

finite discrete BNs in two ways: firstly, they can represent more complex indepen-

dence statements such as context-specific independence statements; secondly, they

can represent events that unfold in an asymmetric way. These generalisations oc-

cur naturally in many domains. Therefore, due to these additional characteristics,

CEGs are extremely versatile and have been applied in a variety of fields, such as

policing [Bunnin and Smith, 2021], education [Freeman and Smith, 2011b], migra-

tion [Strong et al., 2022], public health [Shenvi et al., 2018] and systems reliability

[Yu and Smith, 2021].

Example 16 (Medical Decision Making: Dataset) To illustrate the concepts

in this chapter, we provide an ongoing example using a medical decision-making

dataset. This example uses part of the data presented in Trueblood et al. [2018],
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whose research investigates the differences in performance in a medical decision-

making task. Experienced pathologists, inexperienced pathologists and novices (un-

dergraduate students) identified whether images of bloods cells were cancerous or

not; cancerous and non-cancerous cells are referred to as ‘blast’ and ‘non-blast’ cells

respectively. Each test subject was given training on identifying blast cells prior to

the experiment. Each image of the blood cells was also classified by a separate group

of expert pathologists into images that were easy and hard to identify.

For the purposes of our example, we are interested in four variables:

• XI : Whether the image was of a cancerous cell or not (“Blast”, “Non-blast”)

• XE: Experience level of test subject (“Experienced”, “Inexperienced”, “Novice”)

• XD: The difficulty in determining the classification of the cell (“Easy”, “Hard”).

• XR: Test subject’s response (“Blast”, “Non-blast”)

3.2 Definitions and Notation

Let T be a finite event tree, a directed rooted tree, with vertex set V (T ) and directed

edge set E(T ). We define L(T ) as the set of leaves in T and define its complement

in T , S(T ) = V (T ) \ L(T ), as the set of situations, non-leaf nodes. Each edge

e ∈ E(T ) is an ordered triple (v, v′, l) consisting of the vertices the edge originates

v and terminates v′ and an edge label l. The children of vertex v, denoted ch(v),

are the vertices v′ for which there exists an l such that (v, v′, l) ∈ E(T ). The floret

of a situation s, F (s), is the subgraph of T induced by s and its children. Let Λ(T )

be the set of all root-to-leaf paths, sequences of edges from the root vertex to the

leaves along the directed edges, in T . For a path λ ∈ Λ(T ), let E(λ) be the edge

set of that path. The root to leaf paths of T form the atoms of the event space and

label all the different possible unfoldings of the process.

Example 17 (Medical Decision Making: Event Tree) Suppose we decide to

use the total variable ordering XI < XE < XD < XR. The event tree repre-

senting this process is given in Figure 3.1. To demonstrate some of the nota-

tion above, situation s5 ∈ S(T ) has emanating edges e5,13 = (s5, s13, Easy) and

e5,14 = (s5, s14, Hard). The floret of this situation is given by F (s5), which has

vertex set {s5, s13, s14} and edge set e5,13, e5,14.
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Figure 3.1: Event tree of the medical decision making example.

We define ΦT = {θv|v ∈ S(T )} where θv = (θ(e)|e = (v, v′, l) ∈ E(T ), v′ ∈
ch(v)) are the conditional transition probability parameters for each situation, with

all conditional transition probabilities being strictly positive that sum to unity over

each situation.

The staging of an event tree is a crucial part of modelling with CEGs as
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it provides a representation of the dependence structure that exists as part of the

process being modelled. This further leads to the compact representation possible

in a CEG.

Definition 18 (Stage) Two situations v and v′ in an event tree T are defined to

be in the same stage when {θv} = {θv′}. It is also required that the edge labels are

the same: that is for θ(e) = θ(e′) that e = (v, ., l) and e′ = (v′, ., l) for edges e and

e′ emanating from v and v′ respectively.

When two situations are in the same stage, it means that their next steps on

the root-to-leaf path are equivalent. Therefore, a stage is the set of situations with

equivalent conditional transition probability vectors with corresponding edge labels.

As discussed in Shenvi [2021], the latter part of this can be relaxed when the edge

labels are not fixed i.e. a different recording of a process has the same meaning.

Example 19 (Medical Decision Making: Edge Labels) Considering again the

medical example, suppose we are interested in what the image was of (XI) and the

subject’s response (XR). Both of these variables are recorded as being “Blast” or

“Non-blast”. This event tree is shown in Figure 3.2. If we instead consider recording

the second variable, XR, as “Was the cell type correctly identified?” with responses

(“Correct”, “Incorrect”). This would give the event tree shown in Figure 3.3. Stag-

ings on these event trees have different meanings. For example, if in both trees s1

and s2 were in the same stage:

• In the first tree, this would mean that giving the response “Blast” (or “Non-

blast”) was independent of the image seen.

• For the second tree, this staging has the meaning that the ability to give the

correct response is independent of the cell type seen.
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Non-blast
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3Blast
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5

Blast

s
6
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Figure 3.2: An event tree with both
variables recorded with “Blast” or
“Non-blast”.
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Figure 3.3: An event tree where the
first variable is recorded as “Blast”
or “Non-blast” and the second is
recorded as “Yes” or “No”.

17



The stages, u ∈ U, are sets of situations which form a partition over the set

of all situations. The staging of an event tree is represented through assigning a

unique colour to each stage.

Definition 20 (Staged Tree) We define a staged tree model as S of an event tree

T where situations are coloured based on the stage they are in with ΦS = ΦT .

When all situations in a staged tree are in a different stage, the staged tree

is called saturated.

Example 21 (Medical Decision Making: Staged Tree) Here, we detail how

we can represent independence statements through stage structure. Suppose we knew

the following relations between the variables:

XE ⊥⊥ XI

XD ⊥⊥ {XE , XI}

XR ⊥⊥ XD|XI = “Blast”

XR ⊥⊥ {XE , XD}|{XI = “Non-blast”, XE 6= “Novice”}

These relationships, in plain English, are:

1. The experience level of the test subject is independent of whether the image

was of a blast or non-blast cell.

2. The difficulty of determining the classification of the cell is independent of

whether the image was of a blast or non-blast cell and the experience level of

the test subject.

3. The test subject’s response is independent of the difficulty of classification,

given that the image was of a blast cell.

4. The test subject’s response is independent of the test subject’s level of ex-

perience and how difficult classification was, given that the image was of a

non-blast cell and the test subject was not a novice.

This information is recorded in the stage structure of the staged tree in Figure

3.4. The stagings shown in this tree that are not singleton situations are:

{{s1, s2}, {s3, s4, s5, s6, s7, s8}, {s9, s10}, {s11, s12}, {s13, s14}, {s15, s16, s17, s18}}
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This example demonstrates how context-specific independence statements can

be represented by a staged tree. Stages that consist of a single situation– trivial

stages– are often left uncoloured to provide a clearer representation.
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Figure 3.4: Staged tree of the medical decision making example.

In order to obtain a CEG from a staged tree, we need to define position.
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Definition 22 (Position) In a staged tree S, two situations v and v′ are said to

be in the same position if the sub-trees rooted from v and v′ (Sv and Sv′) have the

same conditional transition probabilities, ΦSv = ΦSv′ .

Therefore, situations are in the same stage when the outcomes of their next

event have the same probability distribution and they are in the same position if

the outcomes of all future events have the same probability distribution. Similarly

to stages, the set of position, w ∈W, also partitions the set of situations. However,

this will be a finer partition.

Example 23 (Medical Decision Making: Position) Considering the staging given

in Example 21, the non-trivial positions are given by the sets:

{s6, s7}, {s9, s10}, {s11, s12}, {s13, s14}, {s15, s16, s17, s18}

Using the concepts of stage and position, we can transform a staged tree into

a CEG, as defined in Definition 24 and illustrated in Example 3.5.

Definition 24 (CEG) A CEG, C = (V (C), E(C))), is defined by the triple (S,W,ΦS)

with the following properties:

• V (C) , K(W)∪ {w∞}, where K(W) is the set of situations representing each

position set in W, w∞ is the sink vertex and for w ∈ V (C), θC(w) = θS(w).

Vertices in K(W) retain their stage colouring.

• Situations in S belonging to the same position set in W are contracted into

their representative vertex contained in K(W). This vertex contraction merges

multiple edges between two vertices into a single edge only if they share an edge

label.

• Leaves of S are contracted into sink vertex w∞.

Put simply, a CEG is a staged tree for when any two nodes that have the

same distribution over all future events– i.e. they are in the same position– are

merged together. This can lead to multiple edges going into a single vertex.

Example 25 (Medical Decision Making: CEG) The CEG of the medical de-

cision example is given in Figure 3.5.
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Figure 3.5: CEG of the medical decision making example.

It is important to note that every staged tree can be represented as a CEG

as there is a bijective mapping between their representations [Shenvi and Smith,

2020a]. Therefore, they are just different graphical representations of the same

model. This naturally raises the question: as there exists a bijective transformation

between each staged tree and a CEG, why are we interested in CEGs?

The answer is that a CEG provides a more compact representation as it

contains fewer vertices and edges, which is extremely helpful as graphical repre-

sentations of models based on trees quickly become huge. This makes it easier to

read context-specific conditional independencies from the topology of the CEG. The

CEG also allows for fast propagation algorithms [Thwaites et al., 2008].

3.2.1 Non-stratified event trees

The class of stratified CEGs has been the focus of most work on CEGs [Shenvi,

2021]. However, the wider set of non-stratified CEGs is able to represent structural

asymmetries. Given a vector X = {X1, X2, . . . , Xn} of variables, we define X k =

{X1, X2, . . . , Xk} for 1 ≤ k ≤ n and the state space of variable Xi as Xi.

Definition 26 (X -compatible) An event tree T is X -compatible if its vertex set

V (T ) consists of a root node v0 together with a vertex v(xk) for each xk = (x1, x2, ..., xk)

where xi ∈ Xi and 1 ≤ k ≤ n.

This means that there is a vertex in the tree for every possible ordered combination

of the variables.
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Definition 27 (X -stratified) A staged tree is said to be an X stratified staged tree

when its underlying event tree is X -compatible.

In this thesis, we define a staged tree as stratified (as in Cowell and Smith

[2014] and Shenvi [2021]) if it is X -stratified for some X .

We therefore define non-stratified CEGs as the CEGs transformed from non-

stratified event trees. These naturally arise in real-world systems. We give an

example of this below. The methods describe in this thesis apply generally to both

stratified and non-stratified CEGs.

Note that an alternative definition of stratified staged trees has been used

[Collazo et al., 2018], in which a tree is stratified if all situations in the same stage

are the same distance from the root. These definitions are not equivalent as a

staged tree with structural zeros would be classified as stratified in this alternative

definition.

Example 28 (Medical Decision-Making: Non-stratified Extension) Suppose

that in the medical decision-making task we wanted to ask about the process of how

someone identified a cell. This could be done by asking the participant a series of

questions on what they observed before asking them to classify the cell. Suppose this

was done in the following way: the participants were shown an image of a cell then

first asked if the cell has a nucleus, if it did whether it was small or large, and then

finally all participants were asked if the cell was blast or not.

This process can be seen represented in Figure 3.6. This gives an example of

a non-stratified tree. This is an example of a tree that includes a structural missing

value, a value which is missing which has no underlying meaningful value.
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Figure 3.6: Event tree of the medical decision making non-stratified extension ex-
ample.

Suppose further that it is known by all participants that a “Blast” cell does

have a nucleus; therefore, if the participant says the cell does not have a nucleus

then they must think the cell is not a blast cell. This introduces a structural zero,

a path in which observing a count is logically impossible. These logically impossible

paths are removed from the tree, giving the event tree seen in Figure 3.7.
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Figure 3.7: Event tree of the medical decision making non-stratified extension ex-
ample with structural zeros.

3.3 Conjugate Learning

In the previous section, we have demonstrated how a CEG can represent structural

information in the form of dependencies between events. Here, we show how to

perform a conjugate updating of the parameters in a CEG as detailed in Freeman

and Smith [2011a] and Collazo et al. [2018].

In this updating, posterior probabilities for the CEG can be obtained through

a Dirichlet-Multinomial conjugate updating over each situation’s edges. Performing

a conjugate analysis is attractive as it leads to interpretable hyperparameters and a

closed form updating of the posterior. This methodology closely follows the frame-

work for conjugate learning developed for discrete BNs [Heckerman et al., 1995].

Suppose we have a CEG C with K stages labelled {u1, . . . , uK} ∈ U, with

stage i having ki outgoing edges. The conditional transitional probability of each

stage is given by θi = {θi1, θi2, . . . , θiki}. Here θij is the probability of going along the

jth edge for a situation s ∈ ui for j ∈ {1, 2, . . . , ki}. We denote a random sample

with no missing data as y = {y1,y2, . . . ,yK} with each yi = {yi1, yi2, . . . , yiki}
where yij is the number of individuals that start in situation s ∈ ui and transfer

along its jth edge.

Provided that the sampling experiment was properly randomised, θi will have

a multinomial distribution. Hence, θij ≥ 0 and
∑ki

j=1 θij = 1. As demonstrated in

Example 28, we will assume all structural zero paths have been removed from the
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tree and therefore θij > 0. We further take the local and global independence

assumptions, that the transition probabilities are mutually independent a priori.

Therefore, the likelihood that CEG C can be written as a product of likelihood

of florets, which in turn can be written as a product of edge probabilities, as follows:

p(y|ΦC , C) =

K∏
i=1

p(yi|θi, C)

=
K∏
i=1

ki∏
j=1

θ
yij
ij (3.1)

where ΦC = {θi|ui ∈ U}. To perform a conjugate analysis, as in for BN

modelling, for each θi, we set a Dirichlet prior distribution with parameter vector

αi = (αi1, αi2, . . . , αiki) where αij > 0, j ∈ {1, 2, . . . , ki}:

p(ΦC) =

K∏
i=1

p(θi|C)

=
K∏
i=1

Γ(ᾱi)∏ki
i=1 Γ(αij)

ki∏
j=1

θ
αij−1
ij . (3.2)

Here, the Gamma function is denoted by Γ(z) =
∫∞

0 xz−1 exp(−x)dx and we

use the notation ᾱ =
∑n

i=1 αi for a vector α = (α1, α2, . . . , αn). Using Equations

3.1 and 3.2, the posterior distribution of θi can be obtained as follows:

p(θi|yi, C) ∝ p(θi|C)
ki∏
j=1

p(yij |θi, C)

∝
ki∏
j=1

θ
αij−1
ij θ

yij
ij

=

ki∏
j=1

θ
αij+yij−1
ij . (3.3)

This shows that the posterior distribution of θi is also Dirichlet with pa-

rameter vector α∗i = (α∗i1, α
∗
i2, . . . , α

∗
iki

) where α∗ij = αij + yij , i ∈ {1, 2, . . . ,K},
j ∈ {1, 2, . . . , ki}. This means that, in a conjugate analysis, the parameters of each

stage can be quickly updated independently of each other due to the closed form
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representation.

Another advantage of the closed form nature of the conjugate analysis is that

the marginal likelihood can also be written as follows:

p(y|C) =

∫
ΦC

K∏
i=1

{
p(yi|θi, C)p(θi|C)

}
dΦC

=

∫
ΦC

K∏
i=1

{ ki∏
j=1

θ
yij
ij ×

Γ(ᾱi)∏ki
i=1 Γ(αij)

ki∏
j=1

θ
αij−1
ij

}
dΦC

=
K∏
i=1

{
Γ(ᾱi)

Γ(ᾱ∗i )

ki∏
j=1

Γ(α∗ij)

Γ(αij)

}
. (3.4)

This is useful in being able to perfom model selection. To assess the perfor-

mance of a model, we are interested in the following equation:

p(C,y) = p(C)p(y|C). (3.5)

Here, p(C) is the prior of CEG C. This is the general form of the Bayesian

Dirichlet (BD) score, where different choices of the Dirichlet parameters give differ-

ent versions of the BD score. For BNs, there are several ways of setting these priors,

each with attractive properties [Heckerman et al., 1995; Scutari, 2018]. For details

of how the priors are set, see Section 3.3.1.

This score can alternatively be written as:

log p(C,y) = log p(C) + log p(y|C) (3.6)

Typically, a uniform prior is set over the set of all possible models, meaning that

all stages of CEGs are equally likely. This simplifies the model selection to only

depending on the marginal likelihood given in Equation (3.4); for CEG C, we will

refer to this as Q(C). The log marginal likelihood can be written as:

Q(C) =
K∑
i=1

g(ᾱi)− g(ᾱ∗i ) +

ki∑
j=1

g(α∗ij)− g(αij)

 (3.7)

and g(x) = log Γ(x). This simple additive form will be important for com-

paring competing models, which we will cover in Section 3.4.
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3.3.1 Prior Setting

As with all Bayesian modelling, it is important that the priors are set up logically.

Suppose we have an elicited CEG C; we should consider how to set the α Dirichlet

prior, as used in Section 3.3.

There are two main ways of setting hyperparameters for the Dirichlet pri-

ors within a CEG. The first approach uses expert elicitation and involves setting

the prior means and the imaginary sample size for each stage; the second involves

propagating an imaginary sample size uniformly across the edges of the CEG graph.

In the first case, we set the hyperparameters of each stage in the CEG in-

dependently. For any given stage ui, the Dirichlet prior is Dir(αi) with αi =

(αi1, αi2, . . . , αiki), where ki is the number of outgoing edges from stage ui, and αij

is often interpreted as pseudo-counts or imaginary sample size of stage i along its

jth emanating edge.

This prior can be calculated by decomposing it into the prior means and

total effective sample size for that stage, µij and ᾱi respectively, with αij = ᾱiµij .

This decomposition can be interpreted as the expected probability of transferring

along each edge multiplied by ᾱi, where ᾱi is a measure of strength in this belief.

µij and ᾱi can both be elicited from domain experts. This can unfortunately be a

huge challenge as it can be a very time consuming process and is not always possible

especially if the domains relating to the priors are varied, needing different experts.

Alternatively, we can make use of a mass conservation property in order to

set the Dirichlet priors [Collazo et al., 2018; Hughes et al., 2022]. This simply states

that the imaginary sample size of the edge into any situation s is equal to the sum

of the effective sample sizes of the edges emanating from s. This means that the

sum of the effective sample size into the leaves is the same as the total number at

the root of the tree.

The hyperparameters can be set using this approach by simply choosing an

effective sample size at the root, ᾱ0, which is spread across the graph, in a way

elicited from domain experts. The mass conservation property means that the prior

on the stages closer to the root vertex will have a larger effective sample size than

those further away.

When expert elicitation is not available, this approach can be used to define

a default way of setting hyperparameters. An effective sample size still needs to be

chosen; this can then be propagated across the edges such that the sample size at

the leaves is uniform, giving the Bayesian Dirichlet equivalent path uniform prior

(BDepu) [Hughes et al., 2022]. Alternatively, we can split the effective sample

size uniformly over every edge encountered from the root to the leaves, giving the
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Bayesian Dirichlet equivalent uniform prior ((BDeu) [Cowell and Smith, 2014]. For

a stratified CEG, these two methods of setting the prior are equivalent [Hughes

et al., 2022].

By setting a weakly informative prior as the default prior, we make sure that

it does not have large influence over the model. A typical heuristic choice of the

effective sample size of the prior is to set it as the maximum number of outgoing

edges from any vertex in the graph [Neapolitan, 2003].

Whilst these provide an easier way of setting priors, like any heuristic there

are situations when this is not suitable and care should be taken to make sure the

priors are appropriately set. For example, setting a uniform prior over all the leaves

will not be suitable if there are any structural zeros in the tree representing the

process.

3.4 Model Selection

We have detailed how a Bayesian analysis can be performed when the given CEG

is known. However, this is not always the case and in these instances we need to

be able to determine which model is the best representation of the data-generating

process.

As detailed in Section 3.3.1, we know how to set the priors up for an elicited

CEG. However, this is infeasible when there is a huge set of models to consider.

We can use calibrated priors to mitigate this problem, in which we choose a model–

often the saturated model (with no structure)– to set the priors on and use them

for all models. If the non-saturated model is chosen to select the priors, the mass

conservation property and stage independence can be used to determine what the

other priors should be.

Once the priors are calibrated to compare different CEGs, we can compare

their performance. There are many different ways of performing model selection for

CEGs; the approaches currently explored in the research have predominately been

score-based. These functions include the Bayesian information criterion [Schwarz,

1978], Akaike’s information criterion [Akaike, 1974] and factorised normalised max-

imum likelihood [Silander et al., 2010].

In this thesis, we will use Maximum A Posteriori (MAP) model selection,

although the methods developed throughout this thesis are applicable to many score

functions. MAP model selection is used to search for the model we are interested

in, C, that maximises the joint probability of the data and the model, as given in

Equation (3.5). The MAP model has some attractive properties such as consistency,
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logBF (C, C′) BF (C, C′) Evidence against C′
0-1.10 1-3 Not worth more than a bare mention
1.10-3 3-20 Positive
3-5 20-150 Strong
>5 >150 Very strong

Table 3.1: An interpretation of Bayes Factor [Kass and Raftery, 1995].

given enough data and under certain conditions: if the data-generating model is in

the set of considered models, it will be chosen. If the data-generating model is

not in the set of models, and the same conditions hold, given enough data, the

MAP model will be the one with the shortest Kullback-Leibler divergence from the

data-generating model [Bernardo and Smith, 2009].

The MAP model selection also allows for flexibility based on how the priors –

both over the set of models and for the Dirichlet distributions– are set. When using

a uniform prior over the set of models, the MAP model is that which maximises the

marginal likelihood.

To quantify the differences between models, we can use the Bayes factor

(BF), the fraction of marginal likelihoods for different models. For CEGs, C and C′

the logBF is written as:

logBF (C, C′) = Q(C)−Q(C′). (3.8)

An interpretation on the strength of different BFs is given in Table 3.1,

although these choices are somewhat subjective and are well-known to depend on

context Kass and Raftery [1995]. However, they are widely-used and provide a rough

guide of the strength of evidence between models.

Before discussing model selection algorithms, it is important to consider what

is in the set of models we are considering. In this section, we focus on models all

based on a single tree; we discuss different orderings of the tree in Section 3.4.5.

In this case, this means model selection is determining the staging of the event

tree; model selection for a given tree is determined solely on how the situations are

coloured, due to the bijection between staged trees and CEGs.

3.4.1 Hyperstages

Here, we introduce the concept of the hyperstage, this restricts the set of stagings to

those that are logically plausible [Collazo, 2017]. For example, two situations with

different numbers of outgoing edges cannot be in the same stage. Less obviously,
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in any given context, for two edge probabilities to be assumed equal, we often want

to associate the meaning of these edges in some way. Therefore when performing

model selection, it is important, both from a modelling and a computational point

of view, to restrict the search space so that only models that are logical within a

given context are traversed and scored. Clearly, the choice of this restricted space

can depend strongly on the domain.

Definition 29 (Hyperstage) A hyperstage H = {H1, H2, ...,Hn} is a collection

of sets, hypersets, such that any two situations v, v′ ∈ S(T ) can only be in the same

stage in U if there is a set Hi ∈H such that v, v′ ∈ Hi.

This hyperstage typically corresponds to a partition of the set of situations

where, before any data analysis has taken place, situations within the same set could

be plausibly seen as predictively equivalent, were data to support this a posteriori.

This simplifies model selection as the staging of each set in the hyperstage can be

done independently. Therefore, we can perform model selection on each hyperset

separately.

We note, for example, in all discrete BNs, we implicitly assume that condi-

tional probabilities can only be hypothesised as being the same when the situations

defined by their parents involve the same variables [Collazo et al., 2018]. A standard

way to set the hyperstage when there are no structural zeros is to have a hyperset

for each variable (or event) of the same type. In a stratified CEG, this corresponds

to situations that are the same distance from the root being in the same hyperset.

In a non-stratified CEG, the default way of setting the hyperstage is when situations

have the same number of outgoing edges and the same edge labels. However, this

is not always appropriate when variables share the same edge labels but a different

real-world meaning, as shown in the following example.

Example 30 (Medical Decision-Making: Hyperstage setting) This example

uses the event tree in Figure 3.6 to illustrate how hyperstages are set in non-stratified

event trees. The default way of setting the hyperstage for this tree would be as fol-

lows:

H = {{s0, s4, s6, s7, s8, s9, s10}, {s1, s2}, {s3, s5}}.

However, if we return to the original definitions of the variables in Example

16, we notice that the variable represented by s0 has a different real-world meaning as

it relates to a different variable– XE (the type of image seen)– to the other situations

in its hyperset, which represent variable XR (the response given). Therefore, a more
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suitable hyperstage for this dataset would be:

{{s0}, {s4, s6, s7, s8, s9, s10}, {s1, s2}, {s3, s5}}.

In this case, it is not logical to consider the distribution governing the image seen

as the same as the response given.

3.4.2 Square-free CEGs

In this thesis, we focus our attention onto a subclass of CEGs, those which are

square-free [Collazo et al., 2018].

Definition 31 (Square-free) A CEG C is square-free if no two situations that lie

on the same root-to-leaf path are in the same stage.

Through setting the hyperstage, a CEG can be guaranteed to be square-free.

However, it is important to note that this restriction may not always be suitable,

particularly when a root-to-leaf path involves recurrent events. Nevertheless, when

this is not the case, this restriction is a natural one. Square-free CEGs are the focus

in most of this thesis as many assumptions about the independence of priors and

situations may not be applicable outside of this context.

3.4.3 Cardinality

For any given probability tree, each distinct staging will give rise to a different model

in our model space.The number of staged trees in the model space, is given by a

product of Bell numbers that grow super-exponentially [Silander and Leong, 2013].

Given a stratified CEG, with the default hyperstage and N > 0 events and each

event having two outcomes, the number of different staged trees, #S, is given by:

#S =
N∏
i=1

B(2N−1) (3.9)

where B(m) is the mth Bell number. For example, when N = 5, there are approx-

imately 1.3 × 1015 possible models. Therefore, an exhaustive search through this

space quickly becomes infeasible as the number of events represented by the event

tree increases.

To overcome this issue, there have been various model selection algorithms

used to explore the space. These include but are not limited to: Agglomerative

Hierarchical Clustering (AHC) [Freeman and Smith, 2011a], dynamic programming

31



[Cowell and Smith, 2014], K-means [Silander and Leong, 2013] and mixture mod-

elling approaches [Shenvi and Liverani, 2022]. More detail of model selection algo-

rithms for CEGs is given in Section 5.2.

3.4.4 AHC

For now, we will focus our attention on the most popular model selection algorithm,

AHC. This is done using one-nested CEGs: CEGs which can be obtained from

others by merging two stages. Comparing one-nested CEGs simplifies calculating

the BF. All of the stages which are the same in both CEGs cancel out, leaving just

the stages which are different between the two models left. For CEGs C and C′, the

logBF (C, C′), where ui⊕j is the stage in C′ obtained by combining stages ui and uj

from C, is given by:

logBF (C, C′) =g(ᾱi⊕j)− g(ᾱi)− g(ᾱj)− g(ᾱ∗i⊕j) + g(ᾱ∗i ) + g(ᾱ∗j ) (3.10)

+
k∑
l=1

{
g(α∗i⊕jl)− g(α∗il)− g(α∗jl)− g(αi⊕jl) + g(αil) + g(αjl)

}
.

Here, αi⊕j gives the hyperparameters of the mergings of stages i and j. This

enables fast evaluation of the comparison as the log BF of one-nested CEGs can be

calculated by only considering situations in which their stagings are different.

AHC is a greedy search algorithm which takes the locally optimal step at

each choice. At the start of the process, each situation as a separate stage. Then,

AHC calculates the BF compared to all one-nested models and merges stages that

lead to the largest improvement [Freeman and Smith, 2011a]. The pseudocode for

the AHC algorithm is given in Algorithm 1.
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Input : Event tree T , its associated hyperstage H, data y and root

equivalent sample size ᾱ0.

Output: A CEG and its associated staging and log marginal likelihood

score

Initialise data, yi for each situation si in T from y.

Initialise priors, αi for each situation si in T from ᾱ0 through mass

conservation.

Initialise a stage for each situation si in T .

Set score as the log marginal likelihood score given in Equation (3.7).

Set indicator ← 1.

while indicator 6= 0 do

if There is a single stage in every hyperstage then
indicator ← 0

end

for every pair of stages in stages in the same hyperstage do
Calculate the logBF as given in Equation (3.10) comparing the

structures of merging the pair to keeping them apart, all other

stages being equal.

end

if There exists a calculated logBF ≥ 0 then

for pair ui and uj with the largest logBF do
score← score+ logBF (ui, uj)

Update stages to add stage ui⊕j and remove stages ui and uj .

Update data to add yi⊕j = yi + yj and remove yi and yj .

Update priors to add αi⊕j = αi +αj and remove αi and αj .

end

end

else
indicator ← 0

end

end

return stage, score
Algorithm 1: AHC algorithm

.

3.4.5 Variable ordering

We briefly discuss research that has been done when the ordering of events is not

known, or with a block ordering. This research focuses on stratified CEGs. For
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a stratified CEG with N events, there are N ! different orderings of the events.

Identifying the most effective ordering quickly becomes intractable for all but the

smallest of problems.

Dynamic programming has been used to find the best possible ordering [Si-

lander and Leong, 2013; Cowell and Smith, 2014] using the fact that, given N events,

the best ordering of N − 1 events will be the same as the best ordering for all N

variables.

Alternative approaches have been suggested for stratified trees that involve

learning a BN first and then extending on that model to learn the context-specific

independencies [Collazo and Taranti, 2017; Leonelli and Varando, 2022].

3.5 Extensions and Variants

Several extensions have been developed to the standard CEG. Here, we present a

succinct overview of a select few.

3.5.1 Ordinal CEGs

Ordinal CEGs were introduced in Barclay et al. [2014]; they are CEGs on binary

variables that vertically align and order the positions of stages so that the probability

of outcomes decreases for each variable the further down. This ordering could be

used to inform inference and search. However, to date, this is a purely cosmetic

change in order to increase the readability of CEGs to assess how probable certain

events are.

3.5.2 Dynamic Variants

Dynamic extensions of CEGs exist in two main types. The first is an infinitely large

tree that can represent potentially infinite reoccurring processes [Barclay et al., 2015]

and can include holding times on their edges which can also be staged [Shenvi and

Smith, 2020b]. This describes the evolution of units that can continue indefinitely

within a given population. The second extension is a dynamic staging in which

the dependence structures within a finite tree is modelled to change over time, as

in Freeman and Smith [2011b]. This imposes a dynamic development on the edge

probability of the tree and its structure as this applies to otherwise replicating

populations over each time interval.
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3.6 Software for Chain Event Graphs

In this section, we will discuss the development of an open source software tool called

cegpy, which is designed to facilitate model selection for both stratified and non-

stratified CEGs from data. This section illustrates work from Walley et al. [2022],

a paper on which I am a co-author. It details the motivation for this package, a

demonstration of some of its functionality and a discussion on future extensions.

3.6.1 Introduction and motivation

Asymmetric processes are prevalent in many real-world situations, yet they remain

challenging to model accurately. Despite the proven flexibility offered by CEGs in

these circumstances, CEGs are yet to be widely adopted by applied statisticians.

This is primarily due to the lack of existing software, particularly for modelling

structurally-asymmetric processes.

In contrast, there exist several well-developed and maintained software for

modelling with BNs. These include Netica [Norsys Software Corp, 2020], Weka

[Eibe et al., 2016], BARD [Nyberg et al., 2022], GeNIe [BayesFusion, LLC, 2022],

and HUGIN [HuginExpert, 2022], and coding packages such as bnlearn [Scutari,

2010] and deal [Bottcher and Dethlefsen, 2018] in R and BayesPy [Luttinen, 2016],

GOBNILP [Cussens, 2020] and BayeSuites in Python.

Whilst there are two existing packages that can learn and visualise CEGs

from data, representing context-specific independence statements– the R packages

ceg [Collazo and Taranti, 2017] and stagedtrees [Carli et al., 2020]– neither can

represent non-stratified CEGs, which are necessary for modelling processes with

asymmetric unfoldings of events. cegpy fills this gap: it is the first package that

can learn and visualise non-stratified CEGs from data and the first CEG package

available for python. Its novel contribution fills a significant gap in the existing

software landscape; the development of cegpy means that applied statisticians can

now take advantage of the flexibility offered by CEGs to model a wide range of

asymmetric processes more effectively.

cegpy uses path-based approach where all the data is associated with edges

of the event tree and uses events as the building blocks of the model, facilitat-

ing the capacity to routinely handle non-stratified CEGs. Contrastingly, ceg and

stagedtrees use a column-based approach, which associates the data to the vari-

ables of the model and to their corresponding state spaces. This approach makes it

extremely difficult to model non-stratified CEGs.
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3.6.2 Functionality

In this section, we illustrate cegpy’s key functionalities. We consider again the on-

going example on medical decision-making. Note that illustrations and guidance for

the full range of functionalities supported by cegpy, including probability propa-

gation, can be found at https://cegpy.readthedocs.io with examples in the binder:

https://github.com/peterrhysstrong/cegpy-binder.

The Dataset

Below, we demonstrate how cegpy can be used to perform model selection. Note

that here we have continued to use the dataset in Example 16, earlier in this chap-

ter, for continuity purposes; for non-stratified examples of cegpy’s application, see

illustrations in Walley et al. [2022] and research using cegpy as a tool for developing

non-stratified CEGs in Chapters 4 and 5.

from cegpy import StagedTree, ChainEventGraph

import pandas as pd

df = pd.read_excel("medical.xlsx")

print(df.head(5))

output:

Classification Group Difficulty Response

0 Blast Experienced Easy Blast

1 Non-blast Experienced Easy Non-blast

2 Non-blast Experienced Hard Blast

3 Non-blast Experienced Hard Non-blast

4 Blast Experienced Easy Blast

The Event Tree

We initialise an EventTree object using the following code. Figure 3.8 gives an

illustration of the code’s output.

Since cegpy constructs the event tree by creating a dictionary of the paths in

the input dataset, there is no need to specify structural zeros as they do not occur

in the dataset. Structural missing values are identified in the dataset as NaNs.

However, the medical dataset has neither of these features.

event_tree = EventTree(df)

event_tree.create_figure()

36



s0

s1

Blast
5491

s2

Non-blast
5493

s3

Experienced
798

s4Inexperienced
1000

s5

Novice
3693

s6
Experienced

799

s7

Inexperienced
998

s8

Novice
3696

s9
Easy
399

s10

Hard
399

s11

Easy
500

s12

Hard
500

s13

Easy
1846

s14

Hard
1847

s15

Easy
400

s16

Hard
399

s17

Easy
500

s18

Hard
498

s19

Easy
1849

s20

Hard
1847

s21Blast
393

s22

Non-blast
6

s23
Blast
347

s24

Non-blast
52

s25Blast
480

s26

Non-blast
20

s27
Blast
433

s28

Non-blast
67

s29
Blast
1482

s30

Non-blast
364

s31

Blast
1305

s32

Non-blast
542

s33Blast
5

s34

Non-blast
395

s35
Blast

92

s36

Non-blast
307

s37
Blast

70

s38

Non-blast
430

s39

Blast
202

s40

Non-blast
296

s41
Blast
338

s42

Non-blast
1511

s43

Blast
716

s44

Non-blast
1131

Figure 3.8: Event tree of the medical decision-making example using cegpy

Any paths which logically belong in the event tree description of the pro-

cess but are absent from the dataset due to sampling limitations can be manually

added by using the sampling zero paths argument when initialising the EventTree

object. Additionally, not all missing values in the dataset are structurally missing;

to differentiate between the two, we can assign different labels to the structural and
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sampling missing values.

The Staged Tree

To create a staged tree from our dataset, we can initialise a StagedTree object with

the dataset as input, without needing to first initialise an EventTree object. Before

creating the staged tree, it is important to identify the stages in the event tree,

which can be accomplished by running the AHC algorithm within the StagedTree

object. By default, the hyperstage will contain any vertices that have the same

number of outgoing edges and have the same edge labels. Also by default, the prior

is set through alpha uniformly distributed phantom samples, starting at the root.

Either the prior itself or the alpha parameter can be specified, with the default value

of alpha being the maximum number of categories that a variable has [Neapolitan,

2003]. The priors and posteriors are saved as fractions to maintain accuracy during

the iterative calculations.

from cegpy import StagedTree

st = StagedTree(df)

print('default hyperstage:',st._create_default_hyperstage())

print('default alpha:',st._calculate_default_alpha())

print('default prior:',st._create_default_prior(st._calculate_default_alpha()))

default hyperstage: [['s0', 's9', 's10', 's11', 's12', 's13', 's14', 's15', 's16',

's17', 's18', 's19', 's20'], ['s1', 's2'], ['s3', 's4', 's5', 's6', 's7', 's8']]

default alpha: 3

default prior: [[Fraction(3, 2), Fraction(3, 2)], [Fraction(1, 2), Fraction(1, 2),

Fraction(1, 2)], [Fraction(1, 2), Fraction(1, 2), Fraction(1, 2)], [Fraction(1, 4),

Fraction(1, 4)], [Fraction(1, 4), Fraction(1, 4)], [Fraction(1, 4), Fraction(1, 4)],

[Fraction(1, 4), Fraction(1, 4)], [Fraction(1, 4), Fraction(1, 4)], [Fraction(1, 4),

Fraction(1, 4)], [Fraction(1, 8), Fraction(1, 8)], [Fraction(1, 8), Fraction(1, 8)],

[Fraction(1, 8), Fraction(1, 8)], [Fraction(1, 8), Fraction(1, 8)], [Fraction(1, 8),

Fraction(1, 8)], [Fraction(1, 8), Fraction(1, 8)], [Fraction(1, 8), Fraction(1, 8)],

[Fraction(1, 8), Fraction(1, 8)], [Fraction(1, 8), Fraction(1, 8)], [Fraction(1, 8),

Fraction(1, 8)], [Fraction(1, 8), Fraction(1, 8)], [Fraction(1, 8), Fraction(1, 8)]]

Using the code below, we can run the AHC algorithm with the default set-

tings described above and generate the corresponding staged tree figure, as illus-

trated in Figure 3.9.

st.calculate_AHC_transitions()

st.create_figure()
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Figure 3.9: Staged tree of the medical decision making example.
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The CEG

After identifying the stages by running the AHC algorithm on the StagedTree object,

we can create a ChainEventGraph object that takes the StagedTree object as input.

By using the StagedTree object, the ChainEventGraph object can generate the CEG

figure using the code below, which is illustrated in Figure 3.10.

from cegpy import ChainEventGraph

ceg = ChainEventGraph(st)

ceg.create_figure()
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Figure 3.10: CEG of the medical decision making example.

3.6.3 Summary

The Python package cegpy is a useful tool, designed for modelling with staged trees

and CEGs, which includes Bayesian model selection and probability propagation

capabilities. It is the first CEG and staged tree package in Python and the first

package to model non-stratified CEGs, providing additional capabilities for applied

statisticians.
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Further development is ongoing to enable users to directly specify an event

tree, staged tree or CEG structure – with colouring and possibly, with parameters

– in the cegpy package. Of course, learning algorithms cannot be used due to the

absence of data but it would be beneficial for visualisation and evidence propagation.

We are currently looking into adding this functionality by directly importing graphs

specified using the DOT language used by GraphViz.

Currently, the AHC algorithm is the only supported Bayesian model selection

algorithm, but methodological developments from the base package have led to

work in Strong and Smith [2022b] and Strong and Smith [2022a]; details of these

developments can be seen in Chapters 4 and 5.

41



Chapter 4

Bayesian model averaging of

Chain Event Graphs

Chapter 3 detailed Bayesian CEG model selection based on a Dirichlet distribution

over a fixed tree; such methods were implemented in Section 3.6. These approaches,

however, have been focused on finding a single CEG, in a Bayesian context the MAP

CEG. This ignores any uncertainty about the independence statements learned in

the model selection and can therefore lead to overconfident and, sometimes, spurious

inferences. In this chapter, we outline the use of Bayesian model averaging (BMA)

techniques to incorporate model uncertainty.

We begin this chapter by further motivating the need for handling uncer-

tainty around the independence statements learned through model selection in Sec-

tion 4.1. Then, in Section 4.2, we introduce the concept of BMA. In Section 4.2.1,

we discuss how Occam’s window is used as part of this methodology to support re-

ducing the number of models we consider and why this is important. In Section 4.3,

we show how BMA can be applied to CEGs. In Section 4.4.1, we propose the use

of a sampling algorithm to address these issues and define one potential algorithm,

wr-HAC. In Section 4.5, we demonstrate the benefits of BMA through a worked

example. The material in this chapter is based on Strong and Smith [2022b].

4.1 Introduction

To convey the issues with only using a single CEG, we will begin with an illustrative

example.

Example 32 (Motivating Example) Suppose we have a sequence of two events

(A and B) with two outcomes, as shown in Figure 4.1. Observations are given by
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the edge counts. Assuming the hyperstage {{s0}, {s1, s2}} (see Section 3.4.1), the

model selection in this instance is between two CEGs: when Event B is independent

of Event A (known herein as the “independence model”), and when it is not (the

“saturated model”). These scenarios are shown in Figures 4.2 and 4.3 respectively.

Suppose we set a prior as recommended by Neapolitan [2003], detailed in Section

3.3.1. When performing model selection, we use the BDeu score (see Section 3.3.1).

The BDeu scores will be evaluated and the model with the staging that has the highest

BDeu score will be chosen as the MAP model.
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Figure 4.1: Event tree showing a sequence of two events– A and B– with two out-
comes. The counts on the edges show the data.
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Figure 4.3: The ‘saturated’ model:
CEG where Event B is not indepen-
dent of Event A.

The log BDeu score for the independence model is -9.88 and for the saturated

model is -9.43. In this instance, the ‘saturated’ model is the MAP model (Figure

4.3).

However, the difference between the model scores is quite small: a BF of 1.58.

Table 3.1 from Kass and Raftery [1995] provides an interpretation of this BF of ‘Not

worth more than a bare mention’. This shows that, despite the ‘saturated’ CEG best

representing the data, there is not much difference in the strength of evidence between

the two models. Therefore, by using this single model, the uncertainty of the strength

of the staging is being lost. Using the MAP model as a focus of inferences is also
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not robust as small variations in the observed data can lead to a different model.

This example may seem contrived due to the small numbers observed on the

florets. Whilst that is true, it is highly feasible that a tree like that existing in Figure

4.1 could exist as a subtree of a much larger tree for which a CEG is learnt. In

a larger tree, there will also be a larger set of possible models, obfuscating the best

model for representing the process.

In summary, using a single selected CEG, such as the MAP model, often

provides helpful insights into the underlying data-generating process when that can-

didate has a high posterior probability. However, when this is not the case, focusing

only on this model will lead to overconfident and sometimes spurious inferences.

This occurs when there are many high-scoring models with non-negligible probabil-

ities, a phenomenon that is common if the size of the model space is much larger

than the number of data points. This is a typical scenario in all but the simplest

of settings [Tian et al., 2010], including for CEGs. More recently, non-Bayesian ap-

proaches to learning the staging structure based on clustering have been used [Carli

et al., 2020]. However, these methods solely focus on obtaining a single CEG that

maximises some score, so are susceptible to the same problems as those outlined

above.

These realisations led us to conclude that in many circumstances it is not

ideal to select a single model and focus all inferences around this. Instead, we should

search for an optimal set of the highest-scoring models. Suppose we believe that a

data-generating process can be described by models in a particular chosen space.

From a Bayesian perspective, the principled way of performing predictive inference

is to simply use the posterior model probabilities to inform the optimal set.

4.2 Bayesian Model Averaging

In this section, we introduce BMA, based on Madigan and Raftery [1994] and Hinne

et al. [2020], as a method to address the issues raised in Section 4.1. BMA involves

using a collection of models to describe the data-generating process instead of a single

model. This is a naturally Bayesian way to approach the problem of model selection

by, instead of using the best model for any analysis, considering all possible models

weighted by their plausibility. This allows for uncertainty about the parameters and

the model space.

Because of this, BMA removes overconfidence, with a single model only taken

in the limit. The output of BMA is more robust than that of a single model, with a

small change in the observed data leading to a similar distribution of models instead
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of a potentially entirely different model. Importantly, in the instance where there is

a single model that is a much better representation of the process than any of the

other models, the BMA will be similar to that of a single model.

More formally, when the focus of our inference is on Φ (the conditional

transition probabilities), given data y, models Mk ∈ S, k ∈ {1, . . . , N} and model

space S, the BMA is given by:

p(Φ|y) =
N∑
k=1

p(Φ|y,Mk)p(Mk|y). (4.1)

This shows that the prediction is a weighted average of each of the K competing

models. Here, p(Φ|y,Mk) is the posterior probability for model Mk and p(Mk|y) is

the posterior probability of model Mk given by,

p(Mk|y) =
p(y|Mk)p(Mk)∑N
i=1 p(y|Mi)p(Mi)

. (4.2)

We can represent the posterior odds of two models as follows

p(Mk|y)

p(Ml|y)
=
p(y|Mk)

p(y|Ml)
× p(Mk)

p(Ml)
. (4.3)

Using the BF, BF (Mk,Ml) = p(y|Mk)
p(y|Ml)

, we can represent Equation (4.2) as follows:

p(Mk|y) =
BF (Mk,M1)p(Mk)∑N
i=1BF (Mi,M1)p(Mi)

(4.4)

where BF (Mk,M1) is the BF comparing model k to any other model denoted here

as 1. If a uniform prior is set, p(Mi) = p(Mj) for all i, j ∈ {1, . . . , N}, then

p(Mk|y) =
BF (Mk,M1)∑N
i=1BF (Mi,M1)

. (4.5)

Therefore, we can calculate the weights from the BFs of each model compared

to a single model.

Example 33 (Motivating example continued) We return to the motivating ex-

ample in Section 4.1, but instead of performing model selection to choose a single

model, we perform BMA. Denote M1 as the ‘saturated’ model (Figure 4.3) and M2

as the ‘independence’ model (Figure 4.2). Assuming a uniform prior over the set

of models, we can calculate each model’s posterior probability using Equation (4.5),

with the following result:
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p(M1|y) = 0.61, p(M2|y) = 0.39. (4.6)

4.2.1 Occam’s Window

One of the drawbacks of BMA is that performing model averaging over all models is

often an intractable problem due to the large number of potential models [Madigan

and Raftery, 1994]. Whilst it is important that a large number of possible models

are considered to account for different data-generating processes, when performing

model averaging, it is necessary for the average to be over a smaller set of models.

Occam’s window helps us to keep in the frame only the most supported models,

discarding those which have been discredited. This is based on two steps: first,

we discard any of the models that are at least β times less likely than the best

performing model1. We denote this set of models S ′ and is given by:

S ′ =
{
Mk : Mk ∈ S ∧

maxMl∈S p(Ml|y)

p(Mk|y)
< β

}
. (4.7)

Secondly, we perform a step based around Occam’s razor in which, given

multiple models with the same amount of evidence, the simplest is preferred. This

means we discard any models for which there exists a nested, more likely model. In

Equation (4.8), we denote Ml ⊂Mk if Ml is a nested model of MK .

R =

{
Mk : ∃Ml ∈ S ′,Ml ⊂Mk ∧

p(Mk|y)

p(Ml|y)
< 1

}
(4.8)

Here, R is the set of models that should be removed in the Occam’s razor step.

Ŝ = S ′\R (4.9)

This leaves a set of models, Ŝ, which we will refer to as the well-performing

models.

When dealing with interpretable models, Occam’s window is not just an

approximation. It also effectively enables us to focus on good explanatory models

and discard the rest. This is vital when there might be many poorly fitting models

in the space a priori ; although none of these explains the process well, the residual

probability on these remains large after sampling, which can blur the posterior image

until we are able to gather enormous amounts of data. This will be the case when,

for example, we do not have the time or expertise to forensically set priors on models

1A standard choice of β is 20 [Fragoso et al., 2018] aligning with the popular 0.05 cutoff for
p-values.
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that a priori should be assigned a small probability.

An alternative to Occam’s window is to use k-best models and perform model

averaging over these [Tian et al., 2010]. However, in this work we decided to use

Occam’s window where the number of models averaged over is an indicator of the

uncertainty over the choice of model.

4.3 Model Averaging for CEGs

BMA provides an excellent method in which to measure the robustness of explana-

tions with respect to model uncertainty, especially when each scored model has an

associated explanation to accompany it, as is the case for CEGs. When explanations

are shared across many high-scoring models, inferences are more secure than when

such explanations only apply to a single, highest-scoring model. In this section, we

will detail how BMA can be used for CEGs.

4.3.1 Nested Models

Of course, except in small model spaces, it is often impossible to average over all

possible stagings of CEGs. As the number of CEGs grows super-exponentially with

the number of events [Silander and Leong, 2013], it is important that we reduce

the number of models in the BMA to simplify model interpretation. We will do

this using Occam’s window, as described in Section 4.2.1. A key part of Occam’s

window is its Occam’s razor step, in which complex models for which there are

nested simpler models that have better marginal likelihoods are removed.

Here, we define a CEG as nested in another CEG when it can be obtained by

combining its stages, as detailed in Section 3.4.4. More precisely, the stages of the

contained CEG are obtained as unions of the stages of the containing CEG. This

means all CEGs are nested in the CEG with all situations in different stages and

the CEG with all situations– in the same hyperstage– in the same stage is nested

in all other CEGs. This nesting creates a partial order over the class of CEGs.

This means that, when considering a simple tree like the one shown in Figure

4.1, if the model with the higher marginal likelihood was the simpler model with

the two situations in the same stage (Figure 4.2), that would be the only model in

the Bayesian model average after applying Occam’s window.
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4.3.2 Unique Representation

In BMA, when setting a uniform prior over a set of models, it is important that

no models are represented twice. For BNs, a uniform prior is often set over the

Markov equivalence class [Madigan et al., 1996]. While the operations that define

the possible ways to transverse the equivalence class of CEGs is known [Görgen

and Smith, 2018], the cardinality of each equivalence class remains an open research

problem. Therefore, in this chapter, we focus on the situation in which the tree has

already been directly elicited. This has the advantage that there only exists a single

model in each equivalence class.

4.3.3 Independent Hyperset Staging

The hyperstage determines the allowed stagings in a CEG, as detailed in Section

3.4.1, and is an important part of model selection. As shown in Section 3.3, the

marginal likelihood of a CEG is a product of the marginal likelihood of its stages.

Therefore, when the hyperstage is a partition of the set of situations, the marginal

likelihood of stages within each hyperset can be examined independently. Therefore,

the issue of determining the weights for each model can be reformulated as finding

the different weights for each hyperset staging, with the model weight given by the

product of the different staging weights.

This can be shown by rewriting Equation (3.4), by grouping the stagings by

their hyperset as follows:

p(y|C) =
∏
Hi∈H

∏
j∈Hi

Γ(αj)

Γ(α∗j )

kj∏
k=1

Γ(α∗jk)

Γ(αjk)

 . (4.10)

This rewriting is done by grouping the stages in the marginal likelihood calculation,

by what hyperset, Hi, they are in.

Example 34 (Hyperset Setting) Suppose we have 3 binary events as given in

Figure 4.4 with the hyperstage {{s0}, {s1, s2}, {s3, s4}} shown by the coloured nodes.

There are one, two and two different ways of staging each hyperset respectively.

Therefore, there are four different ways the tree can be staged. As shown in Equation

(4.10), the marginal likelihood of each of these models can also be given by the product

of the marginal likelihood of each of the hypersets.
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Figure 4.4: Tree showing 3 binary events with colours representing the hyperstage
structure and the leaves in grey.

This means different potential stagings of a hyperset can be studied independently

and any differences in that hyperstage can be seen in isolation. Staging each hy-

perstage independently is consistent with the Occam’s razor step of removing more

complicated models which have a worse marginal likelihood. Suppose you have two

potential stagings of a hyperset: one with a larger marginal likelihood which cor-

responds to a simpler model than the other. If we consider any two models which

have the same stagings except for this hyperset, the simpler hyperset with the larger

marginal likelihood will always have a higher posterior probability than the alter-

native staging; this means we would remove the alternative model from BMA as it

would be more complex with a worse marginal likelihood. Therefore, to perform

BMA, we only need to consider the staging of each hyperset.

4.3.4 Measure of Separation

It is critical to note that, as CEGs are an interpretable class of models, using the

hyperstage means that we only consider certain partitions of the situations into

stages. As each partition corresponds to asserting probability distributions on cor-

responding florets, CEGs with ‘close’ partitions will have similar interpretations.

In order to quantify the closeness between two stagings of a hyperset, we

define a measure of separation based on the partition of sets within our hyperstage.

For model k, we define its staging, Si,k, of hyperset Hi ∈ H. We define Si,1 � Si,2

if all stagings in Si,1 are subsets of stages in Si,2 with Si,1 defined as a refinement of

Si,2 and Si,2 a coarsening of Si,1. Relating this to the nested terminology in Section

4.3.1, a more refined staging is nested in a coarser staging.

Using this relation, we further define the coarsest intersection, Si,1 ∧ Si,2,

to be the coarsest staging of Hi, such that all stages in Si,1 ∧ Si,2 are contained
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in one staging in Si,1 and one staging in Si,2. For example, if Si,1 is a coarsening

of Si,2, then Si,1 ∧ Si,2= Si,1. Also, if for example we had the hyperstage Hi =

{s1, s2, s3} and stagings Si,1 = {{s1, s2}, {s3}} and Si,2 = {{s1}, {s2, s3}}, then

Si,1 ∧ Si,2 = {{s1}, {s2}, {s3}}. The stages that exist in the coarsest intersection

gives the situations that are in the same stage in both of the models, providing a

greatest lower bound of two stagings.

Similarly, the most refined union between two stagings, Si,1 ∨ Si,2, can be

defined to be the most refined staging of Hi, such that all stages in Si,1 and Si,2 are

subsets of stages in Si,1 ∧Si,2. The stages that exist in the most refined union gives

the situations that are in different stages in both of the models, providing a lowest

upper bound of two stagings. The coarsest intersection and the most refined union

can be used to determine which inferences are most secure.

There are various ways of defining a separation measure on a staging of a

hyperset: we define the following separation measure between two partitions Si,1

and Si,2 by

d(Si,1, Si,2) =[#(Si,1 ∧ Si,2)−#(Si,1)]

+ [#(Si,1 ∧ Si,2)−#(Si,2)]

=2×#(Si,1 ∧ Si,2)−#(Si,1)−#(Si,2).

(4.11)

Here #(Si,k) denotes the number of stages in Si,k. This measure of separation is

based on the topology induced by AHC, where stagings are traversed by merging

stagings together, as discussed in Section 3.4.4. This separation measure is the sum

of the mergings of stages which have to take place from Si,1 ∧ Si,2 to reach each of

the stagings Si,1 and Si,2. Note that

d(Si,1, Si,2) = 0 ⇐⇒ Si,1 = Si,2. (4.12)

If d(Si,1, Si,2) = 1, then the coarser of Si,1 and Si,2 can reach the other by

merging together two of its stages. It also follows that if we define S = Si,1 ∧ Si,2,

then d(Si,1, Si,2) = d(Si,1, S) + d(Si,2, S).

Example 35 (Hyperset Setting Continued) Continuing the example, we have

stagings Si,1 = {{s1, s2}, {s3}} and Si,2 = {{s1}, {s2, s3}}. Here, d(Si,1, Si,2) = 2 as

single merging is needed to reach each model’s staging from Si,1 ∧ Si,2.

The partial ordering here introduces an ordering on the stagings, creating a

lattice which can be visualised using a Hesse diagram. In this lattice, the different
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stagings represent nodes with a partial order between two stagings if one is a re-

finement of the other2. A Hesse diagram showing the different possible stagings of

a hyperset with 4 situations in it is shown in Figure 4.5.

{1,2,3,4}

{1}, {2,3,4}{1,2}, {3,4} {1,3,4}, {2}{1,2,3}, {4} {1,4}, {2,3}{1,2,4}, {3} {1,3}, {2,4}

{1}, {2}, {3,4}{1}, {2,3}, {4} {1}, {2,4}, {3}{1,2}, {3}, {4} {1,3}, {2}, {4}{1,4}, {2}, {3}

{1}, {2}, {3}, {4}

Figure 4.5: Hesse diagram of the possible stagings of a hyperset with 4 situations,
denoted (1, 2, 3, 4) instead of (s1, s2, s3, s4) for readability, with arrows showing the
partial order created by merging situations.

We can use the Hesse diagram to visualise the uncertainty in the BMA using

the greatest lower bound and the smallest upper bound which are represented by

the closest common ancestor and descendent respectively. To illustrate this, see the

following example.

Example 36 (Hesse diagrams for bounds) Suppose we are interested in stag-

ing a hyperset with 4 situations. For ease of visualisation, these situations are

denoted (1, 2, 3, 4) instead of (s1, s2, s3, s4). We will consider a few cases:

2As AHC starts at the coarsest model then considers refinements to increases its BF, the lattice
defined by the partial order of refinements gives the possible next-step mergings which can be
visualised in a Hesse diagram.
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{1,2,3,4}

{1}, {2,3,4}{1,2}, {3,4} {1,3,4}, {2}{1,2,3}, {4} {1,4}, {2,3}{1,2,4}, {3} {1,3}, {2,4}

{1}, {2}, {3,4}{1}, {2,3}, {4} {1}, {2,4}, {3}{1,2}, {3}, {4} {1,3}, {2}, {4}{1,4}, {2}, {3}

{1}, {2}, {3}, {4}

Figure 4.6: Hesse diagram of the possible stagings of a hyperset with 4 situations.
This diagram is coloured blue/orange and light blue/orange to show the stagings
and their bounds respectively for each example. Edges coloured light blue denote
the paths to the situations’ nearest common ancestors and descendants.

First, assume that we have the stagings {1, 2}, {3, 4} and {1, 2, 3}, {4} shown

in dark blue in Figure 4.6; their coarsest intersection and most refined union are

given in light blue.

Next, assume that we have the stagings {1, 2, 4}, {3} and {1}, {2, 4}, {3}
shown in orange in Figure 4.6. Note here that, as one is a refinement of the other,

their coarsest intersection and most refined union are the coarser and more refined

of the two respectively.

{1,2,3,4}

{1}, {2,3,4}{1,2}, {3,4} {1,3,4}, {2}{1,2,3}, {4} {1,4}, {2,3}{1,2,4}, {3} {1,3}, {2,4}

{1}, {2}, {3,4}{1}, {2,3}, {4} {1}, {2,4}, {3}{1,2}, {3}, {4} {1,3}, {2}, {4}{1,4}, {2}, {3}

{1}, {2}, {3}, {4}

Figure 4.7: Hesse diagram of the possible stagings of a hyperset with 4 situations.
This diagram is coloured green and light green to show the stagings and their bounds
respectively. Edges and vertex borders coloured light green denote the paths to the
situations’ nearest common ancestors and descendants.
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Finally, assume that we have the stagings {1, 4}, {2, 3} and {1, 3}, {2}, {4}
shown in dark green in Figure 4.7. Their coarsest intersection and most refined

union are given in light green. In this example, there are no situations that are

always together or apart so the bounds on the staging includes the whole class of

models.

4.4 Sampling the Model Space

As the number of possible staged trees grows super-exponentially, even calculating

all the posterior probabilities for each model in the space of CEGs becomes an

intractable problem. We propose the following approach to address this issue. First,

take a sample of size n from the model space, while aiming to include the models

with the highest posterior probability in the sample. Then, apply Occam’s window

to obtain an approximation of a set of well-performing models. The aim of our

approach is to obtain a set of models that are a good approximation of the set

of models that would lie within Occam’s window if all the posterior probabilities

could be calculated. This set of models provides a good narrative, with a few

alternatives, of the process being modelled. Most importantly, this approximation

will allow for quantification of model uncertainty, and therefore certainty in the

model’s independence statements.

More formally, to approximate a BMA, π, of a set of models, S, we take

independent samples from the model space Ŝn = {S1, . . . , Sn} which are used to

calculate an estimator of the BMA, π̂n, by applying Equation (4.5) to the unique

set of models sampled, denoted U(Ŝn). Here, π̂n ∈ [0, 1]M , where M is the number

of models in S. Note that almost all of these dimensions will be zero as they will

not be in the sample Ŝn.

We would like our sampler to be a consistent estimator.

Definition 37 Consistency: An estimator π̂n of parameter π is consistent, if it

converges in probability to the true value of the parameter i.e. for all ε > 0:

lim
n→∞

(P (‖π̂n − π‖ > ε)) = 0. (4.13)

Theorem 38 An estimator π̂n of π, a BMA over a set of models S, obtained by

calculating the posterior probabilities of models reached by an independent sampler,

Ŝn, is consistent if for all Mi ∈ S, P (Sj = Mi) = pi > 0.

Proof. The vector π has components given by the posterior probabilities of each

of the models in S, calculable through a ratio of BFs. Estimator π̂n is obtained by
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calculating the ratio of BFs of the models sampled Ŝn = {S1, . . . , Sn}. Therefore, if

Ŝn = S then π̂n = π,

P (Mi ∈ Ŝn) = 1− (1− pi)n.

Therefore, as for all Mi ∈ S, pi = P (Sn = mi) > 0,

lim
n→∞

P (Mi ∈ Ŝn) = 1.

Therefore limn→∞ Ŝn = S and

lim
n→∞

(P‖π̂n − π‖ > ε) = 0.

Corollary 39 An estimator π̂∗n of an Occam’s window BMA, π∗, over a set of

models S obtained by applying Occam’s window to an independent sampler, Ŝn of

potential models, is consistent if for all Mi ∈ S∗, where S∗ is the set of models in

the Occam’s window BMA set, p(Sj = Mi) > 0.

Proof. We proceed in exactly the same way as in Theorem 38. The components

of π∗ are the posterior probability of each of the models in S∗, calculable through

a ratio of BFs with Occam’s window applied. Here, π∗ is 0 in each dimension,

representing a model removed by the Occam’s window. Estimator π̂n is obtained

by calculating the ratio of BFs of the sampled models Ŝn = {S1, . . . , Sn}, then

applying Occam’s window. Therefore, if S∗ ⊆ Ŝn, then π̂∗n = π∗,

P (Mi ∈ Ŝn) = 1− (1− pi)n.

Therefore, as for all Mi ∈ S∗, pi = P (Sn = Mi) > 0

lim
n→∞

P (Mi ∈ Ŝn) = 1.

Therefore, S∗ ⊆ limn→∞ Ŝn and

lim
n→∞

(P‖π̂n − π‖ > ε) = 0.

This means that our sampler only needs to sample models that will remain

in the Occam’s window model average. Although these are of course not known a

priori, features in the marginal likelihood can be used to try to centre the activities
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of any sampler so that these do not sample heavily in likely irrelevant regions of the

parameter space.

The partitioning of the model search into each hyperset, as mentioned in

Section 4.3.3, enables us to prioritise computational resources. This means that for

hypersets with many more elements and therefore many more possible stagings, more

computational resources can be used to sample this space. The set of CEGs that we

are model averaging over can then be obtained by taking all possible combinations

of well-performing stagings of each hyperset.

4.4.1 wr-HAC Algorithm

In this chapter, for simplicity, we content ourselves with comparing the performance

of model averaging against MAP estimation for searching across explanations using

a very simple – although, as far as we know, novel – search algorithm. This is

because, as long as the search algorithm is able to satisfy the properties to make it

a consistent estimator, the choice of search algorithm is only important for matters

of computational efficiency. We show that, even with this naive method, our search

performs surprisingly well for the purposes of BMA.

Strong and Smith [2022b] proposed a weighted version of the AHC (also

known as HAC) algorithm, weighted hierarchical agglomerative clustering (w-HAC).

Instead of being a greedy search algorithm, as in AHC, w-HAC is a randomised

algorithm, where the probability of merging is weighted by the relative BFs of

the potential mergings. Under w-HAC, the probability of two stages, uj and uk,

merging, in hyperset Hi, is given in Equation (4.14):

p(uj , uk) =
BF (Si,j⊕k, Si,1)∑

k,l∈Si,1
BF (Si,k⊕l, Si,1))

. (4.14)

Here, Si,1 is the staging from which the merges are being considered from and

BF (Si,j⊕k, Si,1) is the BF comparing when stages j and k are merged to when they

are not.

However, w-HAC does not necessarily provide a consistant estimator of the

BMA, due to it stopping when there is no merging that will increase the BF. This

means that using w-HAC to perform BMA could miss nested models which have

lower marginal likelihood but which would remain in the Occam’s window.

Here, we extend w-HAC into the weighted random hierarchical agglomerative

clustering algorithm (wr-HAC). This introduces a probability γ that, given there

is no combination of stages that would lead to an increase in the BF, a merging

still takes place based on the weighting in Equation (4.14). This means that the
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algorithm samples models which are worse-performing and simpler; this satisfies the

conditions of Corollary 4.4 and makes it a consistent estimator.

Due to the stopping criteria for wr-HAC – only possibly stopping if there are

no possible situations left to be merged or if none of the potential mergers would

increase the BF – we know that our set of solutions will satisfy a weaker version of

Occam’s razor: it will not include a model that is less probable than a one-nested

simpler model. This is because, due to the latter condition, if a simpler nested

model existed, there would be a merged model with a positive log(BF). Therefore,

a merging would occur.

For explanatory modelling, it is important to obtain the most likely model.

For CEGs, a method, other than exhaustive search, for finding the MAP model is

still an open research question, with AHC currently providing the best estimates.

As AHC is simply a greedy version of wr-HAC, we hypothesise that the set of models

outputted by iterations of wr-HAC will contain AHC’s estimation of the MAP model

alongside other high-scoring models, as well as potentially avoiding local maxima.

We note that, while K-means for different values of K, could be used to give a set

of models to perform model averaging on, this would be a less promising choice

since its output has been shown to perform worse than AHC as an estimation of

the MAP model [Silander and Leong, 2013]. Therefore, the BMA is less likely to

include the model with the highest posterior probability in its BMA making the

model uncertainty misspecified.
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Input : Event tree T its associated hyperstage H, data y and root

equivalent sample size ᾱ0.

Output: A CEG and its associated staging and log marginal likelihood

score.

Initialise data, yi for each situation si in T from y.

Initialise priors, αi for each situation si in T from ᾱ0 through mass

conservation.

Initialise a stage for each situation si in T
Set score as the log marginal likelihood score given in Equation (3.7).

Set indicator ← 1.

while indicator 6= 0 do

if There is a single stage in every hyperstage then
indicator ← 0

end

for every pair of stages in stages in the same hyperstage do
Calculate the logBF as given in Equation (3.10) comparing the

structures of merging the pair to keeping them apart, all other

stages being equal.

end

if There exists a calculated logBF ≥ 0 or with probability γ then
choose a pair ui and uj weighted by their BF as in Equation

(4.14)

for pair ui and uj do
score← score+ logBF (ui, uj)

Update stages to add stage ui⊕j and remove stages ui and uj .

Update data to add yi⊕j = yi + yj and remove yi and yj .

Update priors to add αi⊕j = αi +αj and remove αi and αj .

end

end

else
indicator ← 0

end

end

return stage, score
Algorithm 2: wr-HAC algorithm

.

For each hyperset Hi ∈ H, we propose running wr-HAC R×#(Hi) times.

Here #Hi is the number of elements in hyperset Hi and R is a choice based upon
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available computational resources. This sets the number of iterations of wr-HAC as

proportional to the number of elements in the hyperset. We propose this despite

the fact that the number of possible stagings, and therefore the search space, rises

much faster than the number of situations. This is because if we chose the number

of iterations as proportional to the number of stagings, all runs would be focused

on the largest hyperset due to the super-exponential growth of the Bell numbers.

This means running wr-HAC has quartic computational complexity; each

run has cubic complexity (as with AHC) and then wr-HAC is run based on the

number of elements in the hyperset.

4.5 The Falls Example

4.5.1 The Dataset

Here, we provide an example of BMA to demonstrate our proposed methodology

and show its benefits on a non-stratified dataset. The extension of functionality

of cegpy used to create this example is available on github3. To do this, we work

through its application to a simulated falls dataset of 50,000 individuals aged over

65 [Shenvi et al., 2018]. This dataset was chosen as it is simulated data in which the

data-generating CEG is known. The event tree is constructed from the following

five florets:

1. XA: Individual living situation and whether they have been assessed (Com-

munal Assessed, Communal Not Assessed, Community Assessed, Community

Not Assessed)

2. XR: Level of risk from a fall (High Risk, Low Risk)

3. XT1: If an individual has been referred and treated (Not Referred & Not

Treated, Not Referred & Treated, Referred & Treated)

4. XT2: If an individual has been treated (Not Referred & Not Treated, Not

Referred & Treated)

5. XF : If a fall happened or not (Fall, Don’t Fall)

The event tree describing this unfolding of the events can be seen in Figure 4.8. This

is a non-stratified event tree because the process can unfold in a variety of ways.

For example, for individuals that are not assessed for their risk of falls, it does not

make sense to consider the outcome of their assessment.
3https://github.com/peterrhysstrong/cegpy BMA/tree/dev
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Figure 4.8: Event tree for the simulated Falls dataset with the counts for each path.

4.5.2 Input

For this example, we compare the results of running BMA on the full dataset com-

pared to a random subset consisting of 10,000 individuals. This is to demonstrate
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the impact that the sample size has on model uncertainty.

Here, we ran wr-HAC over each hyperset in the hyperstage. The five hyper-

sets in the hyperstage, given in Equation (4.15), correspond to a hyperset for each

type of event. For the other parameters we set R = 100, β = 20 ,γ = 0.05 and

ᾱ0 = 4.

H ={{s0}, {s1, s2, s3, s4}, {s5, s9}, {s6, s10},

{s7, s8, s11, s12, s13, s14, s15, s16, s17, s22, s23, s24, s25, s26}}
(4.15)

4.5.3 Results

For both analyses– the full dataset and the subset– three of the five hypersets within

the hyperstage have a single well-performing staging. These three hypersets share

the same following unique well-performing staging: {s0}, {s5, s9}, {s6, s10}.

Full Dataset

For the full dataset, hyperset {s1, s2, s3, s4} also has a single well-performing staging,

where each stage is a singleton. The remaining hyperset within the hyperstage–

{s7, s8, s11, s12, s13, s14, s15, s16, s17, s22, s23, s24, s25, s26}– has eight unique stagings

outputted from wr-HAC; two of them are well-performing:

S5,1 = {s11, s13, s22, s7}, {s8, s12, s16, s25}, {s14, s15, s23, s24}, {s17, s26}}

S5,2 = {s7, s11, s13, s22}, {s8, s12, s16, s17, s25, s26}, {s14, s15, s23, s24}}

.

As only one hyperset had more than one well-performing staging, the model

average is over two CEGs which only differ in that one set in the hyperstage. The

model weights for each well-performing model are shown in Figure 4.9.

The coarsest intersection of the stage which has two well-performing stagings

is the same as the first staging, S5,1, as the second staging is a refinement of the

first. Both of the well-performing models are in a radius of one from their coarsest

intersection. Therefore, the model uncertainty is around s17 and s26: either both

are in the stage {s8, s12, s16, s25} or they are in their own stage.
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Figure 4.9: The two well-performing
models for the full dataset with model
weights given by the ratio of Normalised
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Figure 4.10: The 50 well-performing
models for the subset with model
weights given by the ratio of Normalised
BFs

Subset of the Full Dataset

For the analysis on the subset of the data, there are two hypersets with more than

one well-performing staging. Hyperset {s1, s2, s3, s4} has 2 well-performing stagings

which can be seen in Figure 4.11. These stagings are {{s1}, {s2}, {s3}, {s4}} and

{{s1, s3}, {s2}, {s4}}. Therefore, as one of these is a coarsening of the other, the

coarsest intersection of these well-performing stages is {{s1}, {s2}, {s3}, {s4}}. This

is the well-performing staging with the highest posterior probability; the other well

performing staging is within a radius one of it.

Hyperset {s7, s8, s11, s12, s13, s14, s15, s16, s17, s22, s23, s24, s25, s26} has 25 well-

performing stagings, which can be seen in Figure 4.12. The coarsest intersection of

these is given by

{{s8, s12, s25, s26}, {s7, s11, s22}, {s23, s24}, {s13}, {s14}, {s15}, {s16}, {s17}}.

All of the well-performing stagings are within a radius of five from this intersection.

Therefore, the complete Occam’s window BMA contains 50 well-performing CEGs,

with their posterior probabilities (model weights) shown in Figure 4.10.
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Figure 4.11: The two well-performing
models for the 2nd hyperset of Equation
(4.15) for the subset, with model weights
given by the ratio of Normalised BFs
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Figure 4.12: The 25 well-performing
models for the 5th hyperset of Equation
(4.15) for the subset with model weights
given by the ratio of Normalised BFs

Figure 4.13: The CEG obtained via wr-HAC with the highest posterior probability
for the full falls dataset with the mean transition probabilities given along each edge.

Comparison to AHC

For both the dataset and the subset, we also ran AHC to obtain the MAP estimate.

In both of these settings, the MAP estimate obtained was the same as the highest-

weighted model from the output of wr-HAC. However, these MAP estimates are

understandably different from each other, as they relate to different datasets. The

MAP estimates for the full dataset and the subset can be seen in Figure 4.13 and

Figure 4.14 respectively.

The AHC MAP estimate of the full dataset gives the data-generating process

(Figure 4.13). However, when using only the subset of the data, the MAP estimate
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does not recover the data generating model. Note that, in the subset analysis,

the coarsest intersection of well-performing models contains stagings which are not

subsets of the staging of the data-generating process.
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Figure 4.14: The CEG obtained via wr-HAC with the highest posterior probability
for the subset of the falls dataset with the mean transition probabilities given along
each edge.

4.5.4 Explanation of Results

In both the full dataset and the subset, wr-HAC provides only one well-performing

staging in three of the five hypersets. These three stagings align with the staging

in the data-generating process. Two of these hypersets have non-trivial stagings.

For these hypersets, the unique, well-performing staging represents the following

independence statements, which exist in all of the well-performing models:

• The outcome of the assessment for high risk individuals that were assessed is

independent of living situation.
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• The outcome of the assessment for low risk individuals that were assessed is

independent of living situation.

Full Dataset

In the analysis of the full dataset, there is an additional hyperset with a single well-

performing staging. This hyperset’s staging represents the independence statement:

• The level of fall risk is not independent of living situations and assessment

status.

For the only hyperset with multiple well-performing stagings, two well-performing

stagings exist. The coarsest intersection of these stagings, as shown in Figure 4.13,

corresponds to the following independence statements:

• Dark blue- If an individual is at low risk and has not been treated, their fall

risk is independent of whether they have been assessed and where they live.

• Green- Other than the assessed individuals who have been treated, if an indi-

vidual is at high risk, fall risk is independent of living situation and assessment.

• Pink- If an individual has been assessed as low risk and has been treated, their

fall risk is independent of where they live.

• Yellow- If an individual has been assessed as high risk and treated, their fall

risk is independent of where they live.
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Subset of The Full Dataset

w 0

w 4

Com m u n ity N ot As s e s s e d
0.90

w 3

Com m u n ity As s e s s e d
0.06

w 1

Com m u n a l As s e s s e d
0.01

w 2

Com m u n a l N ot As s e s s e d
0.03

w 1 6

H ig h Ris k
0.12

w 1 8

Low Ris k
0.88

w 1 0

Low Ris k
0.51

w 9

H ig h Ris k
0.49

w 6

Low Ris k
0.31

w 5

H ig h  Ris k
0.69

H ig h Ris k
0.26

Low Ris k
0.74

w ∞

Don ' t Fa ll
0 .21

Fa ll
0 .79

Fa ll
0 .23

Don ' t  Fa ll
0 .77

w 1 5N ot Re fe r re d  &  Tre a te d
0.10

w 1 4
N ot Re fe r re d & N ot Tre a te d

0.90

Fa ll
0 .50

Don ' t  Fa ll
0 .50

Fa ll
0 .24

Don ' t Fa ll
0 .76

N ot Re fe r re d & Tre a te d
0.10

N ot Re fe r re d  &  N ot Tre a te d
0.90

N ot Re fe r re d  &  N ot Tre a te d
0.19

w 1 7

Re fe r re d & Tre a te d
0.59

N ot Re fe r re d & Tre a te d
0.22

w 1 2

Fall
0.43

Don ' t  Fa ll
0 .57

N ot Re fe r re d & Tre a te d
0.22

w 1 3

Re fe r re d & Tre a te d
0.59

w 1 1N ot Re fe r re d & N ot Tre a te d
0.19

Don ' t Fa ll
0 .32

Fa ll
0 .68

Fa ll
0 .70

Don ' t Fa ll
0 .30

Fa ll
0 .52

Don ' t  Fa ll
0 .48

Figure 4.15: The CEG given by the staging of the coarsest intersection for the subset
of the falls dataset with the mean transition probabilities given along each edge.

There are two hypersets in the subset analysis with multiple well-performing stag-

ings: the 2nd and the 5th. In the 2nd hyperset, there are two well-performing

stagings: {{s1}, {s2}, {s3}, {s4}} and {{s1, s3}, {s2}, {s4}}. The first corresponds to

fall risk being independent of living situation and assessment and the second is that

the level of risk in both the assessed populations– community and communal– are

the same. As shown in Figure 4.11, the first staging, the more complex relation-

ship, has a much higher weighting than the second. Therefore, there is much more

evidence supporting the first staging.

In the 5th hyperset, 25 well-performing stagings exist. Therefore, there are

many possible explanations that are consistent with the data. The non-singletons in
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the coarsest intersection of well-performing stagings, as seen in Figure 4.15, corre-

spond to independence relationships that exist in all of the well-performing models.

The singletons in the well-performing intersection are the situations associated with

Communal Living who were assessed. However, these situations were not singletons

in any of the well-performing models.This suggests that, rather than these situations

having a distribution over their edges different to any other situation in the hyper-

set, there is significant uncertainty about how these situations should be staged. As

there are only 75 counts for Communally living assessed individuals and a weakly

informative prior was chosen, it is to be expected that we have little certainty about

the staging of these situations.

The non-singletons in the coarsest intersection of the well-performing models

represent the following independence statements:

• Green- The fall risk is independent of whether they have been referred, if they

have been assessed in the community as high risk and treated as a result.

• Dark blue- Other than the assessed individuals who lived communally, all low

risk individuals have the same fall risk.

• Light blue- Other than the assessed individuals who lived communally, all high

risk individuals who were not treated have the same fall risk.

For this dataset, the most refined union of the well-performing stagings is

given by the CEG in Figure 4.16. Note that for the 5th hyperset, whether a fall

happened or not, all situations are in the same stage. Therefore, there is insufficient

data to determine any situations that should definitely not be in the same stage.

66



w0

w1Communal Not Assessed
0.03

w2

Community Not Assessed
0.90

w3

Community Assessed
0.06

Communal Assessed
0.01

w7

Low Risk
0.74

High Risk
0.26

High Risk
0.12

Low Risk
0.88

w5

High Risk
0.52

w6

Low Risk
0.48

w∞

Fall
0.31

Don't Fall
0.69

Not Referred & Not Treated
0.19

Referred & Treated
0.59

Not Referred & Treated
0.22

Not Referred & Treated
0.10

Not Referred & Not Treated
0.90

Figure 4.16: The CEG given by the staging of the most refined union for the subset
of the falls dataset with the mean transition probabilities given along each edge.

4.6 Discussion

In this chapter, we have provided a methodology that enables a wider class of

models, capable of dealing with asymmetric processes, to obtain the benefits of

BMA. This class of models can model situations where using BNs would be wholly

unsuitable, which significantly increases the applicability of BMA. The benefits of

applying BMA for CEGs, by using a simple sampling algorithm, are clear: through

exploring multiple well-performing models, the robustness of complex independence

statements can be quantified by considering them within the set of well-performing

models; when multiple well-performing models exist, the explanations shared by

them can be extracted. Our choice of a naive sampling algorithm, wr-HAC, allows

for model averaging in polynomial instead of super-exponential time. These are

significant benefits compared to modelling that involves a single MAP estimate,

where there is no quantification of the uncertainty of each independence statement.

Although this could be done through diagnostic testing, the BMA approach provides

an intuitive solution when diagnostic tests identify many models with high posterior

probability.

Of course, although our naive sampler was sufficient to demonstrate the

efficacy of model averaging methods when extracting robust inferences within classes

of explainable models, it would be worthwhile to explore more sophisticated methods

for extracting high-scoring models. Many alternative sampling algorithms are likely
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to outperform wr-HAC and should ideally satisfy various attractive properties, such

as the ability to scale up to problems with a much larger number of situations

and approaches with guarantees about the rate of convergence. The methodology

described in this chapter is not specific to our choice of algorithm and is more broadly

applicable to any sampling algorithm. This further motivates the need for efficient

model selection algorithms for CEGs. Newly available code – the cegpy python

package 4 and the stagedtree package in R (for stratified CEGs) [Carli et al., 2020]

– means that the practical efficacy of these can be more easily explored. We note

that Markov Chain Monte Carlo model selection methods [Richardson and Green,

1997], such as those developed for mixture models [Kaplan and Lee, 2018] and for

BNs [Madigan et al., 1995], are a promising avenue for further research into this

area, for which the naive approach here can act as a baseline.

4https://pypi.org/project/cegpy/
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Chapter 5

Scalable Model Selection for

Chain Event Graphs:

Mean-posterior Clustering and

Binary Trees

Chapter 4 demonstrated how BMA can improve the robustness of inferences. How-

ever, there is still considerable need for efficient model selection algorithms for CEGs.

As stated in Chapter 3, the most commonly used algorithm for model selection is the

AHC algorithm, which scales cubically with the number of situations. This makes

AHC quickly infeasible for all but the smallest of problems.

In this chapter, we define a novel, constraint-based approach for model se-

lection for CEGs that scales quadratically with the number of situations. We begin

this chapter by further motivating the need for faster model selection algorithms.

Next, we define the totally-ordered hyperstage as a way of enforcing a constraint

on the model space. We then explore the use of different functions to obtain the

totally-ordered hyperstage. Next, we define binary CEGs (BCEGs), the transfor-

mation from a CEG to a BCEG and detail the benefits of such a transformation.

We then compare the effects of using mean-posterior probabilities to give a totally-

ordered hyperstage with AHC. The material in this chapter is based on Strong and

Smith [2022a].
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5.1 Introduction

Despite using a greedy search algorithm such as AHC (or w-AHC), which combines

stages until there are no possible local improvements, as discussed in Chapter 4,

there is still a need for efficient model selection algorithms for CEGs. To demonstrate

this, suppose we had a hyperset with K situations, for which we need to find the

optimal staging. We assume that K > 1. For the first iteration of AHC, there are(
K
2

)
possible stagings to consider. In the second iteration, there are

(
K−1

2

)
. In the

worst possible case, combining continues until all situations are in the same stage.

There are a maximum of
∏K−2
i=0

(
K−i

2

)
= K3−K

6 possible stagings that are considered.

This gives a cubic time complexity on the number of situations [Nielsen, 2016].

As all possible stage combinations are examined, there may be numerous

stagings which are insufficiently accurate to represent the underlying process. There-

fore, this chapter aims to develop a model selection algorithm for CEGs that scales

effectively as the number of situations increases. Therefore, one of our objectives is

to eliminate inadequate stagings from consideration, retaining those that reflect the

fundamental process well.

A second motivating factor was demonstrated in Collazo and Smith [2016].

When comparing stages that have very different effective sample sizes, strange op-

timal combinations can occur. This results in stages with large effective sample size

tending to attract stages with a much lower effective sample size. More concerningly

though, this occurs regardless of how far away these stages are in the probability

space.

This problem is exacerbated by the sequence of pairwise steps that occur in

algorithms like AHC. Once there is a combination of stages with larger and much

smaller effective sample sizes, the combined stage has an even larger effective sample

size, making it more likely to combine with other stages with small effective sample

size. This behaviour is not ideal: it can lead to spurious staging. Therefore, as we

are interested in reducing the number of potential stages that we consider in our

model selection approach, we aim for our approach to prevent this spurious staging.

Whilst this is a problem with the score function, a better-scoring model can be more

spurious. We propose an alternative solution than to use a different score function

such as one that uses non-local priors as in Collazo and Smith [2016], as these are

more computationally expensive to calculate.

Here, we propose an alternative: a novel, heuristic search algorithm that

reduces the set of models considered a posteriori by restricting the hyperstage.

This prevents spurious stagings and leads to faster model selection than in existing
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approaches.

5.2 Model Selection for CEGs

Model selection for CEGs is the task of exploring different partitions of the set

of situations to find the MAP model. However, the number of partitions of a set

expands super–exponentially on the number of the situations in the tree, as described

in Section 3.4.3.

Therefore, dynamic programming approaches [Cowell and Smith, 2014; Si-

lander and Leong, 2013], which consider all possible partitions of each hyperset, then

become unfeasible for all but the smallest of problems. Greedy-search algorithms,

such as algorithmic hierarchical clustering (AHC), are hence typically used (see

Section 3.4.4). However, as noted in the previous section, AHC still scales poorly

and it has been noted by multiple authors [Silander and Leong, 2013; Cowell and

Smith, 2014; Strong and Smith, 2022b] that heuristic search methods are needed for

model selection when there is a large numbers of variables. Model selection based

on k-means for CEGs has been used but outputs worse MAP estimates than AHC

[Silander and Leong, 2013]. Several score- and clustering-based approaches have

been implemented in Carli et al. [2020]. In this paper, the cluster-based approach

that combines situations if the distance between them – for various metrics – is less

than a certain value performed comparably to AHC and is an interesting avenue

of future research. However, these, like other clustering-based approaches, are not

maximising the score function and therefore their score is highly dependent on the

choice of clustering algorithm and hyperparameters used.

More recently, Shenvi and Liverani [2022] proposed using mixture modelling

to perform model selection for CEGs that does not rely on conjugacy. This is critical

when modelling holding times associated with the outcomes of events in dynamic

CEGs where the distribution of the holding time may not be faithfully represented

by a conjugate distribution. However, for the staging of situations, except when

there is a trivially small number of stages, this approach takes longer than AHC.

Various papers have suggested a priori restricting the search space, for exam-

ple by using a sub-class of CEGs such as cstrees [Duarte and Solus, 2021] or k-parent

staged-trees [Leonelli and Varando, 2022]. A priori restrictions mean model selec-

tion becomes feasible and, because of their simplicity, their outputs are often easier

to interpret. However, these approaches have two main drawbacks: firstly, restrict-

ing the model space a priori restricts the possible independence statements that

can be represented; secondly, these sub-classes have no obvious extension to CEGs
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which express asymmetric unfoldings of events [Shenvi et al., 2018].

5.3 Methods

5.3.1 Totally-ordered hyperstage

To describe our methodology, we introduce the concept of the totally-ordered hy-

perstage.

Definition 40 (Totally-ordered hyperstage) Suppose an event tree T with a

partitioning hyperstage, H = {H1, H2, . . . ,HN}, and a set of injective ordering

functions, fn : Hn → R, from each hyperset, Hn = {s1,n, s2,n, . . . , sM,n}. A totally-

ordered hyperset is Hn with a strict total order induced by fn, an ordering function,

such that si,n < sj,n if fn(si,n) < fn(sj,n). The totally-ordered hyperstage is a set of

totally-ordered hypersets.

Our model selection approach uses the totally-ordered hyperstage to restrict

our model space. This is done by preventing stagings of non-consecutive situations in

each totally-ordered hyperset. The totally-ordered hyperset is equivalent to the non-

partitioning hyperset of each ordered set of pairs. That is {si,n, sj,n} is a hyperset

if there is no sk,n such that si,n < sk,n < sj,n.

Example 41 (Totally-ordered hyperstage) Here, we provide a toy example in-

vestigating the relationship between smoking and mortality to illustrate the use of

the totally-ordered hyperstage. Suppose we have variables level of smoking (Never,

Low, High) and whether the individual died during the period of the study. This

is represented in the event tree shown in Figure 5.1. This has the hyperstage

H = {H1, H2} :.

H1 = {s0} (5.1)

H2 = {s1, s2, s3}. (5.2)

Suppose that elicited expert judgement suggests a monotonic relationship be-

tween level of smoking and increased risk of mortality and any staging where this

constraint was not satisfied is considered spurious. A spurious staging would be one

in which those who smoked the most and those who had never smoked were in the

same stage with the other situation, those who smoke an intermediate amount, not

in this stage.
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Figure 5.1: Event tree on smoking and mortality.

This can be represented in an ordering function H2 → R: f(Si) → i. This

gives the ordering

s1 < s2 < s3

with the hyperset:

{s1, s2}, {s2, s3}.

The other hyperset H1 is trivially ordered as it is a singleton.

The constraint used in this example is one performed a priori, such as the

restrictions discussed in Subsection 5.2. A discussion on this sort of restriction

using the hyperstage is given in Subsection 5.8.1.

The focus of this chapter is on constraining the model space a-posteriori.

This makes it very different to existing methods as all stagings are possible before

any data is collected. Using this method, none of the potential stagings of the CEG

– and therefore relationships between variables – are ruled out before the CEG is

fit to data.

5.3.2 Computational Complexity

This approach drastically reduces the size of the model space and therefore the time

of a search algorithm. As discussed in Section 5.1 and repeated here for comparison,

when running AHC on a hyperset with N situations, AHC would consider
(
N
2

)
possi-

ble mergings in the first step. In the worst possible case, AHC would consider N3−N
6

possible mergings in its run. In contrast, when running AHC on a totally-ordered

hyperset with the same number of situations, it considers N − 1 possible mergings
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within the first instance, with at worst N(N−1)
2 possible mergings considered overall.

Therefore, as N increases, the number of situations in the hyperset, the compu-

tational complexity of AHC on the totally-ordered hyperset grows quadratically,

instead of cubically, improving its scalability as the number of variables increases.

5.4 Mean Posterior Probabilities

We propose using the mean posterior probability of each situation in the saturated

CEG for each of our ordering functions fn. This function only maps into R when

the maximum number of outgoing edges from any situation is two, restricting this

approach to binary trees.

Definition 40 also restricts our choice of ordering functions to those that

are injective to allow a total ordering. Therefore, the choice of mean posterior

probabilities is only suitable if these values are unique. To address this, where

there are situations with the same mean transition probability, these situations are

automatically placed in the same stage. For example, if multiple situations are given

the same prior, they will automatically be placed in the same stage if there are no

observations of that situation. We justify this choice as we wish for our search to be

parsimonious: given the sample size, both observed and effective through the prior,

what more evidence could there be that those situations should be in the same stage.

The mean posterior probability of a situation is the probability of each out-

come at a situation. Therefore, choice of mean posterior probability is desirable

as it introduces increased interpretability into the model selection process: if two

situations are merged together, they must have a comparable probability of their

outcomes relative to the set of situations in their hyperset. Note that, from a practi-

cal perspective, this prevents the AHC algorithm from combining stages spuriously

[Collazo and Smith, 2016] where stages with a large sample size can absorb all stages

with small sample size. Using the mean posterior probability as our ordering func-

tion, a stage with a large sample size can only absorb stages with small sample

sizes if they have comparable, relative to the stages in the hyperset, mean posterior

probability.

We define running the AHC algorithm using this choice of ordering function

as the Mean Posterior Clustering (MPC) algorithm.
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5.5 Binary CEGs (BCEGs)

As stated in Section 5.4, this approach only works on binary event trees – event

trees where each situation has at most two outgoing edges. Therefore, to be able to

apply this approach more generally we will consider the equivalence class of CEGs.

5.5.1 The Equivalence Class of CEGs

Research from Görgen and Smith [2018] and Görgen et al. [2022] proves how the

statistical equivalence class of CEGs can be traversed through swap and resize op-

erators and their inverses. Note that not all swap and resizes traverse the statistical

equivalence class as some would lead to a loss of relationships between the distribu-

tions.

Swap

The definition of a swap is based on twins.

Definition 42 (Twin [Görgen and Smith, 2018]) A twin around some stage u

is the probability subtree Su ⊆ S where all root-to-subleaf paths have exactly two

edges, and each child of the root is in the same stage u.

The Swap Operator reorders the situations in a twin within the full tree.

This means the trees are identical up to a change of ordering of the events with the

same set of parameters.

Definition 43 (Swap [Görgen and Smith, 2018]) Let Su ⊆ S be a twin. We

define a map τ : S → S ′ by exchanging the root of the subtree Su with its children,

creating a new subtree S ′u. In S ′u, the root will be in the same stage as the children

in Su, and the children of the root of S ′u will be in the same stage as the root of

Su. The tree S ′ is equivalent to S, excluding the above subtrees, up to the vertical

reordering of situations that lie downstream of the subtrees. The map τ is a näıve

swap and is a swap if S ′ is a staged tree that preserves the stage structure and

transition probabilities of S and which has an identification between their atoms.

Example 44 (Swap) An example of using a swap operator can be seen in Figures

5.2 and 5.3. In Figure 5.2, the situations are ordered such that Event A occurs

before Event B; in Figure 5.3, the situations have been reordered– Event B occurs

before Event A. Note that this preserves the independence statements.
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Figure 5.2: Staged tree where Event A
occurs before Event B.
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Figure 5.3: Staged tree after applying
the swap operator: Event B occurs be-
fore A.

Resize

The second operator is the resize. The resize contracts subtrees in the event tree

into a single floret while leaving the rest of the tree invariant, with each edge in the

floret corresponding to a path in the sub-tree. The transition probabilities along

the edges in the floret are the product of the transition probabilities on each of the

root-to-leaf paths in the subtree.

Definition 45 (Resize [Görgen and Smith, 2018]) Let Sw,⊆ S be a probabil-

ity subtree. We define a map κ : S → S ′ that contracts Sw into a floret Fw with

θFw = {πθSw (λ) : λ ∈ Λ(Sw)}, while leaving the rest of S invariant. We call κ and

κ−1 a näıve resize, and a resize if S ′ is a staged tree.

Example 46 (Resize) Figure 5.5 shows the inverse of a resize applied to Figure

5.4. We have expanded the floret with Outcomes 1, 2 and 3 into a subtree with two

florets: the first with outcomes ‘Outcome 1’ and ‘Not Outcome 1’. The floret ‘Not

Outcome 1’ leads to two leaves denoting the alternative outcomes, ‘Outcome 2’ and

‘Outcome 3’.
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Figure 5.5: A floret where the inverse resize oper-
ator has been used

5.5.2 Binary Event Trees

The inverse of resize operators are of importance here, where a floret is expanded into

a larger subtree. This describes an isomorphism from the set of originally considered

CEGs to the set of BCEGs, with the same set of root-to-leaf paths. Therefore, each

CEG has an equivalent representation as a BCEG: by first transforming a tree into

a binary tree, we are simply embedding a search space into a bigger one. This means

that any stage structure in the original tree can be preserved in the binary tree.

Representing any CEG as a BCEG has the benefit that more complex inde-

pendence statements can be learnt. For example, when comparing situations in the

same hyperstage with three outgoing edges, it is possible that multiple florets have

the same distribution over two of their edges but not the third. This relationship

could be captured in a binary tree but would be missed in the staging of the original

tree.

As we are only considering square-free CEGs, the hyperstages of the binary

florets created by the resizes are induced by the hyperstages in the original tree,

with all other hyperstages remaining invariant.

Example 47 (Binary trees) Here, we provide an example investigating the rela-

tionship between a person’s sex and smoking habits to illustrate how binary trees can

provide additional information. Suppose we have variables: sex (Male, Female) and

smoking habits (Never, Low, High). This is represented in the event tree shown in

Figure 5.6.
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Figure 5.7: A staged tree detailing a person’s
sex and smoking habits after a inverse resize
operator has been used

We create a binary tree by expanding the florets with outcomes: ‘Never’,

‘Low’ and ‘High’ into a subtree with two florets.The first has outcomes ‘Never’ and

‘Other’. The outcome from the ‘Other’ floret leads to the outcomes: ‘Low’ and

‘High’. The binary tree is shown in Figure 5.7.

The hyperstage of the original event tree is {{s0}, {s1, s2}} with the hyper-

stage of the resized tree {{s0}, {s1, s2}, {s4, s6}}.
The BCEG is able to represent independence statements not possible in the

original CEG. An example of one of these statements is shown in Figure 5.7: ‘Never’

smoking is independent of sex but smoking quantity is not. It is not possible to see

this independence statement in the original tree due to its graphical representation.

The resize from the tree in Figure 5.7 to the tree in Figure 5.6 is an example of a

resize that does not traverse the statistical equivalence class as it does not preserve

stage structure.

5.5.3 Computational Complexity of Binary Trees

To stage a binary stage tree, as there are more situations, more stagings need to

take place. Suppose we have a hyperstage of a variable with N situations in it.

When performing AHC, these N situations need to be staged. When performing

MPC on the binary transformation of the tree, the N situations have to be staged

ki − 1 times, where ki is the number of outgoing edges associated to that variable.

When the original tree is binary, ki = 2, we stage the same number of situations as

AHC.

Therefore, the maximum number of considered stagings in MPC is given by
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Figure 5.8: Maximum possible number of considered stagings for differnet model
selection algorithms on different trees.

(ki − 1)N(N−1)
2 . Figure 5.8 shows how this, for different values of ki, compares to

the maximum number of considered stagings in AHC. This shows that for all but

the smallest number of situations in the hyperstage, for which the total number of

comparisons will be small, the number of comparisons in MPC will be significantly

fewer than in AHC. This means that, although more stagings need to take place,

MPC is still faster than applying AHC.

5.5.4 What Resize?

To represent the tree as binary, we need to decide what resize to perform. The

choice of resize determines how the model space is expanded. This choice will be

domain-specific, depending on the outcomes of interest. It is important to note

that, regardless of the inverse resize chosen, all possible stagings in the original

CEG have an equivalent staging in the BCEG. However, the extensions allow for the

representation of different independence structures. For example, the independence

statement represented in Figure 5.7 could not be represented in either of the other

two possible resizes of the tree in Figure 5.6 with ‘Low’ or ‘High’ as the outcome of

the first floret.

In this chapter, we focus our attention to inverse resizes that give a sub-tree

for which every node is connected to a leaf. In this sub-tree, each floret will have

two outcomes: one is an outcome from the original floret and the other represents
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all other outcomes. This resize is given by an ordering on the edges, which decides

the order in which florets give outcomes. Considering this type of resize with an

original floret with k outgoing edges, there are k!
2 different resizes.

In the case where all potential resizes were considered, at most ki!(ki −
1)N(N−1)

4 comparisons would be made. This still only has quadratic computational

complexity for the number of situations; therefore, for performing model selection

when there is a high number of situations, MPC will still be faster whilst exploring a

much larger model space. However, in this situation, care should be taken as certain

stagings in the equivalence class will be represented multiple times.

5.5.5 Score Equivalence

To compare how well models represent the data, it is important that any two sta-

tistically equivalent models have the same score.

Recently, Hughes et al. [2022] defined a scoring function– BDepu– and proved

it was score-equivalent. This was done by setting priors over the root-to-leaf paths

and using mass conservation. This way of setting priors is invariant of the operators

used to traverse the statistical equivalence class of CEGs. Therefore, we can set

priors in a way that is consistent between non-binary and binary tree cases for fair

comparison. For more details, see Section 3.3.1.

5.6 Comparative Analysis of Competing Methodologies

Here, we run comparisons of structural learning algorithms on a number of datasets

chosen from existing literature on CEGs. These datasets are available from Carli

et al. [2020]. We find the MAP estimate using MPC, AHC and AHC on the binary

tree. The code used for this comparison was built as an extension on cegpy [Walley

et al., 2022], a python package for learning CEGs. For each dataset, all processes

were treated as stratified with any paths with zero counts added. We used the BDepu

score to compare CEGs with different underlying event trees. For the purposes of

this example, we constrain ourselves to using a fixed parameter, ᾱ0, as the number

of leaves of each tree as done in Hughes et al. [2022]. The hyperstage was set so

that situations relating to the same variable could be in the same stage.

The event trees were made binary arbitrarily using the following process: for

florets with more than two outgoing edges selecting outcomes, by order of appearance

in the data-frame, create two florets. One provides the selected outcome on one edge

and the other edge leads to a floret with the rest of the outcomes. This process was
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performed iteratively until the resulting tree was binary. For an example see Figure

5.10.

Sample MPC Binary AHC AHC
Dataset L size Time(s) Score Time(s) Score Time(s) Score
Asym 16 1000 0.04 -2423.67 * * 0.07 -2423.67

Pokemon 32 999 0.21 -3251.94 * * 0.95 -3251.94
Titanic 32 2201 0.17 -5235.56 0.50 -5235.56 0.57 -5243.58
reinis 64 1841 1.12 -6715.61 * * 11.5 -6715.51

PhDArticles 144 915 9.41 -4153.04 194.27 -4152.25 246.05 -4198.83
chestSim50000 256 50000 70.46 -113458.66 * * 3336.28 -113458.87

monks1 864 432 1137.25 -2663.73 - - - -

Table 5.1: Results showing the outcomes of the experiments. L represents number of
leaves. Smallest time and largest score (BDepu) are in bold. An asterisks (*) is used
to show when the original tree was binary. A hyphen (-) shows when the experiment
timed out and took longer than 10,000 seconds. Experiments were performed on a
laptop with 16GB of RAM with 4 core i7 2.6ghz cpu.

Table 5.1 shows the results of our comparison. MPC was the fastest model

selection algorithm for all of the datasets considered, with it being orders of magni-

tude faster than AHC on the larger datasets. Regarding the BDepu score, the binary

event trees had larger scores than the original event tree. MPC performed compa-

rably to AHC. This illustrates that, although in the binary case it may consider far

less partitions than AHC does, MPC can achieve similar, and often identical, scores

than AHC in a much faster time.

When there are differences in the BDepu scores obtained by MPC and AHC

on the binary tree, we can explore differences in the performances by comparing the

stagings giving the score. Interestingly, we have observed that in some instances

neither model gives the optimal staging, with a combination of the stagings of each

model giving a better-performing staging. For example: there are two stages which

are not merged together by MPC but are merged together in AHC; and one situation

that belongs to one stage rather than another in AHC compared to MPC, with the

model with the highest score not given by AHC or MPC but a combination of both

their stagings.

It is also of interest to note that in Table 5.1, the time of AHC is faster

in the binary tree than on the full tree when they are not the same. This is a

surprise as, as mentioned in Section 5.5.3, there are more situations in this case and

therefore more possible comparisons. Comparing stagings achieved by these models,

this is not explained by the AHC on the binary tree stopping after performing fewer

mergings. This suggests that some of the functions that are called as part of running
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AHC are optimised to give increased performance to binary inputs. Therefore, this

indicates, along with the results in Table 5.1, that doing model selection on a binary

tree may be faster, even when using the same model selection algorithm, despite the

increased size of the model space!

5.7 Christchurch Health and Development Study

This example uses a dataset from the Christchurch Health and Development Study

(CHDS) as detailed in Barclay et al. [2013]. This study was conducted at the Uni-

versity of Otago, New Zealand [Fergusson et al., 1986] and is a longitudinal cohort

study, taking place over 30 years of 1265 children born in mid-1977 in Christchurch,

New Zealand. This dataset was chosen because an exhaustive search over all possi-

ble variable orderings has been performed in Cowell and Smith [2014] and therefore

the MAP CEG is known.

As in Barclay et al. [2013] and Cowell and Smith [2014], we are interested in

the following four discrete variables that relate to the first five years of the cohort

for the 890 children for whom complete data was available:
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Figure 5.9: Event tree for the CHDS dataset with the counts for each path. S:
social background; E: economic situation; H: admitted to hospital; L: number of life
events. 83



• XS = Family social background– to henceforth be known as “social background”–

categorised into High and Low levels based on maternal education, ethnicity,

family social class and information concerning the child’s birth.

• XE = Family economic situation – henceforth to be known as “economic

situation”– categorised into High and Low status dependant on income, ac-

commodation, standard of living and financial difficulty.

• XH = Child hospital admission, a binary variable accounting for hospitalisa-

tion during childhood.

• XL = Family life events, classified as Low (0-5), Average (6-9) or High (10+)

depending on the number of stressful events experienced e.g. death, unem-

ployment or divorce.

Previous work on this dataset in Barclay et al. [2013] has shown how a CEG

can outperform a BN on this dataset; Barclay et al. [2014] showed the above ordering

is that which gives the highest-scoring CEG. For our methodology, we must first

perform a inverse resize on the floret associated with number of family life events

XL to make the tree binary.

We split up the variable of life events into two binary florets:

• XL−high: Was the number of life events High or not? (High, Other)

• XL−average/low: If ‘Other’, was the number of life events Average or Low?

(Average, Low).

This resizing is shown in Figures 5.10a and 5.10b. Using the binary florets gives

the event tree in Figure 5.11. This embedding enables us to focus more closely on

households that have a high number of life events.
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s3
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329

(a) Floret XL

s0

s1High
266

s2

Other
624

s3
Average
295
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(b) Resize of XL

Figure 5.10: Resizing of the floret XL so that the event tree is binary.

The event tree for this dataset can be seen in Figure 5.9.
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Figure 5.11: Binary event tree from the Christchurch Health and Development
Study. S: social background; E: economic situation; H: admitted to hospital; L:
number of life events.

The model selection in this example was set using the same strategy as

described in Section 5.6. Running MPC on the binary tree gives the same output

as running AHC on the binary tree. Both binary tree outputs outperform running

AHC on the original tree. We also looked at the other two ways of making this

tree binary – by resizing for average and low number of life events. Resizing for

high numbers of life events gave the best BDepu score, although all three models

outperformed the output obtained by AHC on the original tree.
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Figure 5.12: MAP CEG showing data from the Christchurch Health and Develop-
ment Study. S: social background; E: economic situation; H: admitted to hospital;
L: number of life events.

It is first important to note that for variables which are the same in the

binary and non-binary trees – XS , XE and XH – the staging is unsurprisingly the

same, as the staging of this part of the CEG is unaffected by the resize.

However, for the part of the event tree that has been resized, XL, new stage

structure has been learned that is not present in the non-binary MAP CEG. Figure

5.12 has the situations corresponding to the variable XL−high in three stages. These

are ordered below with increasing probability of a high number of life events:

• There exists a single situation for individuals who have high social background

and economic situation and were not admitted to hospital (w7). These indi-

viduals have the smallest probability of a high number of life events.

• Individuals that have low social background, high economic situation and have

not been admitted to hospital (w10), individuals that have high social back-

ground, low economic situation and have not been admitted to hospital (w10)

and individuals with high social background and economic situation who have

been admitted to hospital (w8) have the same probability of high numbers of

life events.

• Individuals that have low social background and economic situation (irrespec-

tive of hospital admission) (w9), individuals who have high social background
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but low economic situation and have been admitted to hospital (w9) and indi-

viduals with low social background but high economic situation who have been

admitted to hospital (w11) all have the highest probability of a high number

of life events.

This staging may appear complex at first glance but an intuitive rationale

exists behind it. Our model shows that low social background, low economic sit-

uation and being admitted to hospital all compound the chance of having a high

number of life events. Having none of these leads to a staging with the smallest

mean posterior probability of a high number of life events. Being admitted to hos-

pital (unless you have both high social status and economic situation), having low

social status or low economic background are linked to a much increased probability

of having a high number of life events; all of the other situations in this hyperset

lead to a more moderate probability of having a high number of life events. The

staging of XL−average/low, where an individual does not have a high number of life

events (w12, w13), does not follow the same pattern.

This shows that by expanding the model space, we can learn further insights

from the data, which was not previously possible, as the staging obtained by MPC

is not statistically equivalent to any staging on the non-binary tree.

5.8 Discussion

The MPC algorithm for model selection across CEGs is a novel structural search

algorithm which outputs similarly – and often identically– scoring- models than

the traditional AHC algorithm at a lower computational cost, because MPC scales

quadratically rather than cubically. Through experiments and an example, we have

illustrated the benefits MPC can provide for rapid computation and model accuracy.

Note that the approach taken here is invariant of the choice of score function.

This work also further motivates the use of non-stratified CEGs. We have

demonstrated, even for data that follows a product structure, we can obtain better

scoring models by traversing the equivalence class into binary tree, which in many

instances will be non-stratified.

We have also defined a new class of CEG: the BCEG. BCEGs provide in-

creased explainability through expanding the model space, allowing for better-fitting

models than non-binary CEG, irrespective of whether AHC or MPC is used. We

have illustrated the benefits of BCEGs through experiments and an example, which

identifies new independence statements not found in the non-binary tree.

The work in this chapter parallels work from Silander and Leong [2013] and

87



Cowell and Smith [2014], in which different orders of events are considered, corre-

sponding to the swap operator. Here, we consider the space of models available to

us using the resize operator. Both of these factors require thought in order to decide

what model space to explore. This motivates the need for further investigation into

the potential resizes that are used to make the tree binary.

5.8.1 Further Work

Constraining the hyperstage

Example 41 discussed using the totally-ordered hyperstage to represent an elicited

monotonic relationship between variables instead of MPC. Here, we provide two

natural extensions.

First, we could consider the relationship between a cyclic variable and the

next staging. This has applications in time-related variables, for example days of

the week or seasons, where we only wish to merge adjacent time steps together.

Example 48 (Cyclic variables) Suppose we had the situations s1, s2, s3, s4 that

represent the florets that are followed by the outcomes of each of the seasons of the

year. The restriction of only wishing to merge adjacent time steps could be fulfilled

using the following hypersets:

{s1, s2}, {s2, s3}, {s3, s4}, {s4, s1}.

Secondly, we can consider the restrictions imposed by monotonic relation-

ships of multiple previous events on future hypersets. Unfortunately, this constraint

cannot be represented through a restriction on the hyperset.

Example 49 (Monotonic relationship restrictions) We give an illustration of

this process with the event tree represented in Figure 5.13. This event tree considers

the impact of drinking alcohol and smoking on death. The smoking variable has three

outcomes, with a monotonic relationship between them and mortality independent

on other variables.
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Figure 5.13: Event tree detailing impact of alcohol consumption and smoking on
mortality. A = Alcohol consumption; S = Level of smoking; D = Death.

When considering the initial merging from one to two nodes, the totally-

ordered hyperstage restricts s3 and s5 from merging; likewise, it restricts s6 and

s8 from merging. All other combinations of pairs of situations give stagings that

do not violate the monotonic restriction and therefore are hypersets. However, this

hyperstage would allow the stage {s3, s7, s5} through successive combination of s3

and s7 and then this stage with s5. This would create a staging that would break the

monotonic restriction.

This shows that monotonic restrictions cannot be made through a constraint

on the hypersets, as this restriction does not apply to stages locally and therefore

would require a more sophisticated level of updating to determine what possible

new stagings were allowed.

Note that, formally, such restrictions can be introduced directly into the score

by setting a prior over the set of models, leading to low scores for any stagings that

are not consistent with our constraint. This, however, would not lead to restrictions

in how the model space is searched using these algorithms, just which models score
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well.

Other ordering functions

Of course, there are various ways to embellish these algorithms further and we are

currently investigating these, especially through the choice of ordering functions.

Selecting the MPC over other ordering functions, such as Median or Mode, means

that it directly relates to transition probability that would be given to a unit passing

through. However, it would be interesting to explore the impact of considering

other ordering functions in the future. The consideration of sample-means instead

of mean-posterior as the ordering function was considered. However, this outputted

worse BDepu scores than MPC on the experiments we ran.
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Chapter 6

Chain Event Graphs of

Agent-Based Models with

Applications in Migration

Chapter 5 concluded that, even with a model selection algorithm that scales quadrat-

ically with the number of situations, model selection for CEGs with a high number

of events is still infeasible for complex processes. In this chapter, we shift focus and

consider how we can use elicited information in the form of an ABM and embellish

it to create a CEG. Using expert elicitation and information already captured in

an ABM can support model selection for CEGs. This chapter represents ongoing

work, developed in collaboration with social scientists, the earliest part of which has

appeared in Strong et al. [2022].

The chapter begins by providing a rationale for expert elicitation in Section

6.1. Section 6.2 explores the use of previously created models, specifically ABMs,

as a form of elicitation to construct a CEG. An illustrative example of transforming

an ABM into a CEG when the two models are similar is provided in Section 6.3,

including details on the benefits of this approach. In Section 6.4, we explore how

information can be elicited from an ABM into a CEG when the ABM contains

features not naturally represented in a standard CEG, followed by considering how

a wider class of ABMs can be embellished into CEGs in Section 6.5. To illustrate

this, the chapter considers the migration domain in Section 6.6, where a model

of migrant pathways is used as elicited information to create a CEG with desired

properties. Finally, the chapter concludes by outlining exciting opportunities in this

field and discussing plans for further developing this work.
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N # CEGs # Root-to-leaf paths

1 1 2
2 2 4
3 30 8
4 124200 16
5 1.3016337 ×1015 32
6 1.6669306× 1041 64
7 2.869365× 10106 128
8 3.219593× 10264 256

Table 6.1: Number of possible CEGs and root-to-leaf paths for a tree with N binary
variables.

6.1 Motivation

We begin this chapter with a motivation of why expert elicitation is often needed

to model processes.

When modelling complex processes with a large number of events, there are

several problems that arise in CEG model selection. Firstly, as we noted in Section

3.4.3, the number of possible CEGs grows super-exponentially with the number of

events. Further illustration of this is available in Table 6.1, which shows how the

number of paths grows for a tree with binary events. As discussed in Chapter 5,

there are several approaches that attempt to address this issue, including using

greedy searches or restricting the set of models considered. However, as the model

space increases, given there are no guarantees these methods find the model that

best represents the data-generating process, we are less confident that the space is

searched effectively.

Secondly and more pressingly, in larger models, the number of possible root-

to-leaf paths, representing all possible unfolding of events, grows exponentially. For

a tree with root-to-leaf paths of length N made up of events with k outcomes, there

are kN root-to-leaf paths. The first few values for a binary tree are shown in Table

6.1. For a binary tree constructed of 20 events, there are 1, 048, 576 different root-to-

leaf paths for a tree of this type. Therefore, even for large datasets, it is unlikely that

every possible path will be represented, especially when the probability of certain

events is low.

Further, as detailed in Chapter 4, even when all possible paths are repre-

sented in the dataset and the counts of each path are small, it is likely there will be

many well-performing models, making inferences based on a single model overcon-

fident. In summary, in complex model spaces, learning from data alone has several

drawbacks.
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This chapter presents a new methodology being developed to provide a

Bayesian framework for ABMs. We apply this Bayesian framework to an exist-

ing ABM representing elicited information, transforming it into a CEG. There are

many key benefits of this transformation detailed later in this chapter.

This work is ongoing and novel in that, to our knowledge, it is the first

research that investigates how an ABM can be used to construct a CEG.

6.2 Agent-Based Models

ABMs are a computational model of a process, driven by the perspective of partici-

pants, known as ‘agents’. They often involve simulating actions an agent undertakes

in a given process, taking into account any relevant features and relationships in-

putted. Modellers must consider [Badham, 2020]:

• What types of agents are involved in the process being modelled.

• The characteristics of each agent e.g. their relationships with other agents,

motivations, and any other information which may affect the outcome of the

model.

• Any environmental features which may influence agent decisions.

ABMs are constructed by modelling the potential outcomes of successive

events and decision-making [Epstein and Axtell, 1996]. To construct them, a range

of data sources, such as large, structured demographic datasets or natural language

narratives and theories are used to inform deterministic and stochastic transitions

within an ABM. These transitions take the form of either mathematical equations,

such as differential equations, or heuristic if-then rules and are informed by experts

who describe the influences, possible options available and threats an agent might

experience.

Due to their agent-centric perspective, interactions which dictate the be-

haviour of a complex system can be represented naturally through rules implemented

in the model [Gilbert, 2019; Luke and Stamatakis, 2012]. As a result, they are in-

creasingly used to model systems including crime [Groff et al., 2019], health [Tracy

et al., 2018] and migration [McAlpine et al., 2020].

Despite their increasing popularity, ABMs are often unable to naturally com-

bine expert judgement with available data to estimate and validate them. This is

a particular problem in domains where it is difficult to gather large quantities of

complete data.
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Despite their ability to plausibly model the transitions of an agent, many

ABMs have been described as opaque with many of the critical details needed to

fully understand or replicate the models missing from publication. This is due to a

lack of standardised model development [McAlpine et al., 2020; Hinkelmann et al.,

2010; Grimm et al., 2006]. Some attempts, such as the ODD protocol, have been

made to create a standardised structure for explaining ABMs [Grimm et al., 2006],

but there is still significant variance in how the protocol is used and the clarity

it brings to ABMs. ABMs’ application often depends on the implementation of

severely constraining software which may or may not match the modelled domain

well. Perhaps even more concerning is the gulf that exists, when applying such mod-

els, between the domain and a principled statistical inference about that domain.

In particular, no real guidance about how to set the ABM parameters is given;

estimation of these is naive and model selection is performed simply by matching

trajectories of hypothesised models with chosen/estimated parameters with sampled

trajectories. As a result, others [Grimm et al., 2005; Heckbert et al., 2010; Schulze

et al., 2017; An et al., 2021] have already identified the desperate need for embedding

more principled ways of performing inference to estimate and validate ABM models

when these are applied to real case studies. In this chapter, we argue that the best

way of doing this is by using Bayesian models formulated around tree-based CEG

methods in ways we illustrate below.

6.3 Benefits of embellishing an ABM into a CEG

6.3.1 Representation

As detailed in Section 3.2, a CEG is a compact representation of a staged tree,

which represents the independence statements between events using colour. This

makes it possible to visually identify any asymmetries in the sequence of events and

the dependence structure that dictates the events transition probabilities explicitly

from the graph’s topology.

An ABM’s typical representation – such as those in Figures 6.1 and 6.5–

provides a flow diagram that shows the potential unfoldings of a series of events. This

representation shows events by nodes and their outcomes with arrows, with multiple

outcome arrows going to the same node if the structure of all future sequences of

events are the same.

Example 50 (Agent-Based Model) Some individuals are asked the same four

questions with categorical answers, regardless of their previous responses. Each ques-
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tion is an ‘event’. In a flow diagram, this process would be modelled by four nodes

with all of the outcomes of Node 1 going into Node 2 and so on, with all outcomes

of an event leading to the same next outcome. However, if all of the potential ques-

tions were different depending on the responses, then no two outcomes would lead

to the same event. While an individuals’ attributes and history may reflect the het-

erogeneity of their process, this is not easily unpicked or comprehended from model

descriptions and visualisations in a flow diagram.

In contrast, the nodes in CEGs represent positions, events for which the

potential future unfolding of events have the same distribution (and therefore struc-

ture). Therefore, a CEG is a natural embellishment of a flow diagram, which not

only contains the sequence of events but also shows how the previous events impact

their outcomes.

Example 51 (Agent Based Model continued) Returning to the example, if the

probability of an individual’s answers are independent of the answers to the previous

questions, then the CEG representation would be the same as that given by the flow

diagram. More generally, whenever the probability of future events is independent

of previous events, a Markov process, then the CEG representation will be the same

as that of the flow diagram.

One criticism of the CEG representation is that for sequences with many

events, unless representing a simple dependence structure, few situations are in the

same position. Therefore, the CEG is not that much more of a compact repre-

sentation than a staged tree, with an exponentially growing set of situations with

increased events. Here, we will detail two approaches that can be used, both indi-

vidually and together, to mitigate this issue.

Firstly, when examining the CEG, it is possible to condition on certain events

and therefore only examine parts of the entire structure at a time. This can be done

using a probability propagation algorithm [Thwaites et al., 2008]. The techniques

allows for focusing on circumstances of interest, making a potentially large and

unreadable CEG interpretable.

Different representations of the CEG of the same equivalence class can also

be used, as discussed in Section 5.5.1. There is currently no algorithm to reach the

simplest CEG representation of the equivalence class but we can use resize opera-

tors to reduce the number of nodes in the graphical representation. For example,

we can combine florets with a single possible outcome into the outcome of the pre-

vious event. The number of nodes in the representation can also be reduced by
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a resize, when the dependence structure allows without removing any information

as described in the example in Section 5.5.1. Due to the nature of the swap oper-

ator, the resulting CEG will still have the same number of root-to-leaf paths but

traversing the equivalence class can reduce the number of positions, especially when

examining a CEG conditioned on events of interest.

6.3.2 Bayesian Learning

As mentioned in Section 6.1, Bayesian methods are critical within complex processes

because whenever models are sufficiently large to give a credible description of the

processes, many parts are only sparsely observed. It is, therefore, critical to embed

expert judgements through the use of priors, such as those on the hyperparameters.

In this work, this is the distributions on the prior floret probabilities. In this way, our

proposed methodology scales up to the granularity of descriptions shared by ABMs.

We can embed not only the prior expectations of these probabilities – as often needed

in typical ABMs – but also their uncertainty. This embellishment means that we

can perform a prior-to-posterior update on these probabilities. In particular, we

can derive principled model selection algorithms that respect the relative security

of knowledge of different transitions within the system, through the strength of the

priors. We note that, even if no actual steps in some of the paths are observed,

we can proceed with this inference, whilst if many people are observed making a

particular collection of transitions then estimated transition probabilities will be

close to their sample proportions. The model is suitably regularised. Furthermore,

if we assume floret independence, we can perform a conjugate Bayesian analysis

(see Section 3.3). The consequent Bayesian model estimation and selection is both

transparent and rapid due to the closed form representation and the interpretative

understanding of the hyperparameters.

In particular, assuming each transition is multinomially distributed over the

set of outcomes, to perform a conjugate analysis, we need to set the Dirichlet priors.

The distributions for the transition probabilities are often not elicited in advance,

due to the non-Bayesian nature of ABMs. However, if the values elicited are the

mean transition probabilities, we can use these values as the prior means for the

Dirichlet prior. In order to get the full prior distribution, we must add in a count of

effective sample size. This acts as a measure of strength of the beliefs held within

the ABM. This can be done either by eliciting such a value or by completing a

sensitivity analysis around the value chosen, similar to the method taken in Shenvi

and Smith [2019]. Other methods for setting up the hyperparameters can be seen

in Collazo et al. [2018].
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6.3.3 Model comparison

While developing a model, it is useful to compare it to alternative models which

represent different hypotheses about the modelled process. Within a CEG, in order

to compare competing models, we can set the hyperparameters so they match each

other as closely as possible, as in Heckerman et al. [1995]. This is implemented via

a mind experiment, where the strength of an expert’s elicited opinion is expressed

using phantom samples over potential root to leaf path developments. We then

compare the marginal likelihood of different models, using Bayes factor to quantify

the evidence supporting different hypotheses.

6.4 Eliciting a CEG from an ABM

In this section we define the class of ABMs that can very naturally be used to elicit

a CEG and how this elicitation works. Within an ABM the heuristic if-then rules

implicitly include independence hypotheses regarding the outcome of an event for an

individual through the choice of inputs considered. By assuming these conditional

independences within a hypothesised model, we can identify those agents within a

sample who can be assumed on the next step of their journey to be exchangeable

with each other. This is important if we wish to understand any processes through

the relationships between unfolding events, and crucial if we wish to understand the

impact of potential targeted interventions. The CEG provides a framework in which

to embellish this model.

Of course, we could fit a CEG directly to model the migration process,

through eliciting an event tree, the hypotheses and the prior distributions. However,

if such an ABM has already been developed and thoughtfully calibrated to domain

understanding – as is often the case – then it would be inefficient to ignore this

information, even if it is only the starting place and the CEG later highlights areas

for further expert elicitation. As we can exploit the fact that the CEG is largely

compatible with the ABM, it can be used to embellish the original, rather coarse,

description given by the ABM into an inferential model which is fit for purpose.

We note that other standard structural models such as BNs [Barclay et al.,

2013], do not provide a good framework for egocentric modelling because the un-

derlying processes and data tends to be highly asymmetrical and therefore does

not allow a product space structure that is present in a BN. This is illustrated by

the fact that ABMs – such as the ones used in the later application – typically

need to use very different transitions depending on the current state the agent finds

themselves in. BNs are also not able to represent context-specific independence
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statements where an independence relationship holds only for certain values of the

conditioning variable. The presence of context-specific independence statements is

also common in this application; examples of such statements are provided in our

illustrative example in Subsection 6.4.2.

6.4.1 Define the class

In order to use an ABM as elicited information to create a CEG, we must provide a

proper formal, systematic description of an ABM – something that is sadly missing

from many applications of this promising technology. Here, we follow Hinkelmann

et al. [2010], who express the ABM as a particular class of dynamic system model

where agents are variables and their transitions are given by local updating functions.

This work provides a similar statistical framework through which to study ABMs.

We consider a set of agents (x1, x2, . . . , xn) that take values in S a finite discrete set

that represents the possible states that an agent can be in. The set of all possible

values of all of the agents in the system gives the state-space. For any given state in

the space, the updating process that determines the transitions between states is a

Markov process. The possible transitions in the Markov process can be represented

by a directed graph G = (V,E) with V the state space and edges e ∈ E between

u ∈ V and v ∈ V if it is possible to transition from state u to v.

To provide a comprehensive translation of general ABMs as formally de-

scribed above into Bayesian stochastic models would be a massive task and beyond

the scope of this thesis. Here, for simplicity, we constrain our attention to those

ABMs with no agent to agent interactions, and with a Markov process that has

graph representation in the form of a finite, rooted, directed tree. Later in this

chapter, we discuss ongoing work considering the relationship between CEGs and a

wider class of ABMs. For now though, the simplification of only using one agent is

reasoned by the nature of these models being largely egocentric with the process and

decision-making depending mostly on the state of the individual, even if affected by

interactions with other agents and the environment. The rationale of only allowing

a finite, rooted, directed tree for the updating of states is justified: we are interested

in ABMs that can be thought of as an unfolding of a sequence of events. A tree

gives the most natural representation of this process [Shafer, 1996].

This definition is justified as the type of information we have about single-

agent process is best represented through an event tree representing the possible

progress of each agent in a population. This is particularly useful as it depicts the

step-by-step nature of the process, where each agent decides their next course of

action, taking previous events into consideration. Typical hypotheses concerning
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this progress assume various conditional independence hypotheses, such as those

shown in Subsection 6.4.2. Within an event tree model, these can be expressed by

the stage structure on the florets of the tree.

6.4.2 An Illustrative Example

Here, we introduce an illustrative example from Strong et al. [2022] of an ABM of

an individual’s decision on whether to migrate or not, represented in Figure 6.1.

This decision is modelled as a sequence of events that impact their final decision. In

this example, the ABM starts by initialising an individual’s socio-economic status,

XI . The individual then may receive an offer to migrate, XO. This offer either

comes with or without employment, XE . Finally, the individual makes a decision

as to whether they should migrate or not, XM . Each of the nodes in this diagram

has an if-then rule associated with its transitions. For instance, Figure 6.1 shows

an example heuristic rule for the decision to migrate. This rule shows how the

probability of migrating is dependent on the outcomes of previous events.

Start XO

EndXE XM

XI

Low SES

Mid-High SES

Do not receive offer

Receive offer

With employment

Without employment

Decide to migrate

Decide to not migrate

if XI == Low SES: 

 p(XM = Decide to migrate) = 0.8 

else if XE == With employment: 

 p(XM = Decide to migrate) = 0.6 

else :  
 p(XM = Decide to migrate) = 0.3 

Figure 6.1: Example of an agent based model for migration. Here, ‘SES’ refers to
socio-economic status.

As discussed in Subsection 6.4, by untangling the current representation, we

can obtain an event tree which is implied by the ABM. Within this class of ABM,

an agent’s transitions are determined by the outcomes of their previous transitions.

Therefore, the next transition is conditional on its previous events. Such events

define the situations in the CEG, providing a direct link between the CEG and the

ABM. The nodes in the ABM define the situations in the CEG, with the possible

transitions from that node represented by the floret around that situation. The

event tree thus obtained is shown in Figure 6.2. This is an example of an asymmetric

unfolding of events; if the migrant does not receive an offer to migrate, we do not
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need to consider whether the offer contains employment. This is denoted here as:

@XE |XO = no. (6.1)

Figure 6.2: Event tree representation of the ABM shown in Figure 6.1. Here, ‘SES’
refers to socio-economic status. The leaf nodes are suppressed to prevent visual
cluttering.

Next, by looking at the if-then rules within the ABM, we can identify the

implicit independence statements that exist within these rules. For the decision rule

regarding the decision to migrate, we have the independence statements:

XM ⊥⊥ XO, XE |XI = low (6.2)

XM ⊥⊥ XO|{XI = mid-high,XE 6= yes}. (6.3)

This provides the staging for the CEG. The staging can be represented by a staged

tree, an event tree with florets in the same stage coloured the same. The staged tree

for this example is shown in Figure 6.3.

For this example, we assume that the other rules in the ABM represent the

following statements:

• W2 (Yellow): Regardless of socio-economic status, the probability of receiving

an offer is the same.
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• W3 (Green): When an offer is received, the probability of it containing an

employment contract is the same, irrespective of socio-economic status.

• W4 (Orange): A migrant with low socio-economic status has the same prob-

ability of deciding to migrate, irrespective of whether they have received an

offer and whether their offer contained an employment contract.

• W6 (Pink): A migrant with mid-high socio-economic status has the same

probability of deciding to migrate if either (a) they receive an offer but it does

not contain an employment contract or (b) they do not receive an offer in the

first place.

Figure 6.3: Staged tree representation of the ABM. Here, ‘SES’ refers to socio-
economic status. The leaf nodes are suppressed to prevent visual cluttering.

From the staged tree, we can identify the nodes that are in the same position. In

this example, w4 and w6 have the same future unfoldings for all future events, and

are therefore in the same position.

Note that some nodes are the same stage but not the same position; w3

is one such example, where the probability of the offer having employment is the

same but the migrants’ longer-term decision-making will still be influenced by their

socio-economic status from earlier in the tree. This example demonstrates a context-

specific independence statement: the decision to migrate is independent of whether

you have an offer to migrate if your socio-economic status is low.
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Figure 6.4: A CEG representation of the above ABM with some examples of inde-
pendence statements. ‘SES’ stands for socio-economic status.

This example shows the CEG can model and provide a compact representa-

tion of the conditional independence hypotheses present in the ABM. The transfor-

mation from the ABM into the CEG now enables the natural transformation of the

model into a Bayesian framework with its associated previously described benefits.

6.4.3 Causality

Often, ABMs are used for what-if analysis [Farmer and Foley, 2009; Gorman et al.,

2006; Truszkowska et al., 2021]. These are used to give insight into different scenario

outcomes such as what the results of different policy options could be [Badham,

2020]. This is a causal algebra: it makes explicit the– very strong– assumptions

that take us from a model of an observational system into one that is manipulated.

This is comparable to a causal analysis done in a PGM. As CEGs are gen-

eralisations of discrete BNs, they share their accommodation of causal discovery

algorithms. For CEGs, their own causal algebra has been developed [Thwaites

et al., 2010].

It is important to not implicitly assume these properties. For example, as-

suming that a simulating model will continue to work after an intervention is made

implies that the naive manipulation of the simulator parallels the manipulation made

in practice. Secondly, it suggests that the real intervention will not have a knock-on

effect on other parts of the system simulated by other components of the ABM.

To illustrate this, we use the example in Section 6.1. Consider the following:

• An intervention is implemented: it increases the number of offers being made

with employment. This affects the number of migrants at stage w3 being given

an offer with employment.

• The simulated intervention may not represent the intervention in practice: as

more offers include employment, they may not be as attractive as before as
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benefits are diluted amongst the greater number of offers. This having the

effect of decreasing the probability of those with offers with employment of

migrating.

• This intervention may affect the wider model: before the intervention, all

prospective migrants with low socio-economic status have the same probability

of migration irrespective of being offered employment. If increased offers of

employment were being made, migrants who had not been given these offers

could be less likely to migrate; if they are aware of ‘better offers’, they may

choose to ‘hold out’ in hope of something better.

Whilst this is a toy example, it illustrates why we should never automatically

assume that a CEG, or any other model, chosen or selected for a system where no

intervention is made can be extrapolated into a model that predicts what might

happen under intervention.

6.5 Eliciting information from a wider class of ABMs

In this subsection, we explore whether a wider class of ABM than those previously

described can be embellished into CEGs. This work is still ongoing and we outline

exciting further extensions to the work already completed here to illustrate the

potential of this application.

6.5.1 Scope of model

Firstly, it is important to state that some aspects of ABMs will not be suitable for

embellishing into a CEG. Some ABMs focus on emergent behaviour : population-

level behaviour caused by agent-to-agent interactions. Emergent behaviour is not

self-evident from the programming of individual agents, but results from agents

all interacting with the environment at once, influencing the decisions they make

[Gilbert and Terna, 2000]. One example of an ABM to model emergent behaviour

is in traffic modelling, where individual agents make decisions on where to drive

but the overall emergent behaviour dictates where blockages and congestion occurs.

Classes of models which are more suitable for embellishing with CEGs are those

with a focus on understanding individual pathways and the dependence structure

between them.

Therefore, in larger models of highly complex processes, some parts may be

more suitable for embellishing into a CEG than others. An effective strategy for

ensuring that this model is comprehensive and logical is to implement an Integrated
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Decision Support System (IDSS) [Barons et al., 2018] by modularising the complex

model into sub-models which interact with each other throughout the process. The

IDSS provides opportunities for coherent inference throughout the network of sub-

models, creating a comprehensive narrative through the multi-faceted probabilistic

interdependent systems. Inference can be validated because it can be performed

component by component, curated by relevant experts. This provides the oppor-

tunity for CEGs to be used where they are most appropriate, as a sub-model, and

for other models – such as those related to demography or, indeed, ABMs– to be

used at the points where they will be most effective. The IDSS structure maximises

the efficacy of the entire system, acknowledging that a single class of models– or a

single research domain– cannot best represent all parts of a complex process. The

IDSS has so far mainly been used for dynamic BNs and Multiregresssion Dynamic

Model classes but has also been recently used to model the interactions of several

agents using dynamic CEGs supplemented by another component represented by an

undirected graphical model [Shenvi et al., 2023].

Using an IDSS streamlines the model, meaning each sub-model only uses

the information necessary for its accurate representation; it is parsimonious. By

only including the parameters needed to explain the model effectively, we can be

more confident of the inferences our model represents. Although low parsimony

models (with more parameters) tend to have better fit, introducing many parameters

can increase model uncertainty, confuse relationships between variables and become

overly specific [Epstein, 1984].

In contrast, ABMs themselves have the potential to become unparsimonious

very quickly. As O’Sullivan et al. [2012] describe, the increasing ease with which

an ABM can be developed has led to a plethora of overly complex models, which

attempt to explain systems but have become too complex to explain themselves :

“we simply replace one difficult to understand phenomenon– the world itself – with

an equally hard to understand model” (pg. 113). This highlights the importance

that any additional features added to a model must make a difference that matters;

although it is tempting for modellers to use additional parameters, purpose must

be at the forefront of any additional complexities added into the model [Edmonds,

2017].

Whilst we are using the ABM as a representation of expert judgement, it is

possible that artefacts could exist in an ABM [Galán et al., 2009]. An artefact is

a mismatch between the set of assumptions in a model that the modeller believes

is creating a phenomenon and what is actually creating the phenomenon. These

mismatches can come in various forms such as using existing software or properties
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of the domain which do not align with the assumptions of a type of model. These

artefacts also exists within statistical models: for example, the choice of how some-

thing is distributed is often due to desirable properties of that family of distributions

which may not faithfully represent the underlying process. Therefore, when map-

ping from an ABM to a CEG (or any translation from one model to another), it is

important that the features being transferred represent the process being modelled

rather than features of the existing model.

6.5.2 Events with continuous outcomes

One of the immediate differences between ABMs and CEGs is that ABMs often have

continuous events whilst CEGs have only been defined on discrete spaces. When

the continuous nature of the events is a key part of the process being modelled, this

may be an example of a situation for which CEGs are unsuitable.

However, in many instances, discretising the model may be more appropri-

ate and transparent than using continuous variables: when outcomes are treated as

continuous, there are often implicit assumptions of their distributions, such as it be-

ing Gaussian, which may be inappropriate and therefore be even more constraining

than discretisation. For example, if the outcome relates to an amount of money,

which impacts whether future events take place, it may be instead more suitable to

categorise individuals by the amount of money they have, splitting the space and

probabilities of future actions they can take.

6.5.3 Dynamic processes and time

ABMs often contain recurrent events. As stated in Section 6.4.1, these ABMs cannot

represented naturally in vanilla CEGs. However, these processes can be represented

in a Dynamic-CEG, DCEG [Barclay et al., 2015]. This is a CEG on an infinitely

large event tree, given by sequences of events which have no end.

Time is also often a part of an ABM’s modelling process. Whilst by default

a CEG has no time associated with the events outcomes, these can be incorpo-

rated thought the presence of holding times associated with their outgoing edges

in a Continuous Time DCEG, CT-DCEG [Shenvi and Smith, 2020b]. In a CT-

DCEG, each event has conditional transition probabilities and conditional holding

time distributions (which may have a different dependence structure).

Time can also be an important part of ABMs where probabilities and de-

pendence structures change over time, for example, when measuring academic per-

formance across different exam seasons. Freeman and Smith [2011b] provide an
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alternative Dynamic Chain Event Graph which models this sort of time series de-

velopment, using a multivariate time series on the probabilities in the discretised

model. Here, the staging of the CEG changes over time. Freeman and Smith [2011b]

show how fast, closed-form model selection algorithms can be adapted from standard

ones for discrete time modelling. These allow for both drifts on the probabilities

and change points in the current staging of the process. This and other methods

could be seamlessly transferred to this domain.

6.5.4 Multi-agent models

Most ABMs contain multiple agents (and some even contain multiple classes of

agent types such as migrants and recruiters) and the interactions between these

agents are a core component of the model. There are two established ways that

these models can be embellished into a CEG. An important consideration of this

process is defining a ‘unit’ in the model– in the case of migration, this could be

an individual or family group. Parsimony must, again, be integral to this decision:

where migrants are moving as a family, it would be more parsimonious to consider

them as a single unit than as individuals.

The first and simplest approach is to directly model the interactions as a se-

quence of events happening to an individual. This differs from the way interactions

in ABMs are often modelled, where agents’ movements dictate their proximity– and

therefore their interactions– with other agents. In formulating this process as a

CEG, the probability of interaction is directly modelled instead. For example, in an

ABM, it is common for agents’ movements to be governed by random walks with

interactions decided by proximity of other agents moving near them. This would

give a probability of two agents interacting which could be modelled instead. If

the spatial element of the model is not of key significance to the model, unlike in

the traffic modelling example, then by modelling the interactions directly, a more

parsimonious model can be used. In an ABM, interactions are modelled as actions

between specific agents (e.g. between a specific migrant and a specific recruiter).

In contrast, a CEG would model the probability of the different outcomes of in-

teractions, treating them as interactions within a relevant sampled population (e.g.

between any migrant at that stage in the CEG and any recruiter). Due to the nature

of CEGs, the population from which the interactions are sampled from is dependent

on previous events outcomes.

Secondly, another approach is to embellish the ABM into the framework

provided by a CEG as part of a hierarchical model. This has been done for modelling

terrorist groups with each individual in the group having a CEG within an IDSS
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representing their interactions [Shenvi et al., 2023]. This demonstrates the potential

to import ideas into an IDSS, making it possible to model agent interactions and

outcomes jointly within the model class.

6.6 Application

6.6.1 Models of Migration

Rationale

Researchers and policymakers are interested in modelling migration as they aim to

understand the mechanisms involved to inform policy. For example, organisations

may aim to promote safe labour migration in line with the UN’s Sustainable De-

velopment Goals to promote decent work, eradicate forced labour and end modern

slavery and human trafficking [United Nations, 2021].

Migration, particularly low-wage labour migrants or migrants in conflict-

affected settings, experience increased vulnerability to human trafficking and ex-

ploitation. It is estimated that 23% of victims of forced labour [International Labour

Organisation, 2017] and 60% of victims of human trafficking were outside their coun-

try of residence [United Nations Office on Drugs and Crime]. In order to inform

policymakers attempting to prevent exploitation, it is important to understand mi-

grants’ journeys and identify how individuals’ hyper-precarity and livelihood inse-

curity, experienced due to both employment and immigration, evolves on different

migration pathways [Lewis et al., 2015]. Migrants’ pathways are often complex and

non-linear, making many conventional modelling approaches unsuitable. The aim

of these models is to accurately replicate a population, its environment and the

interactions that occur.

History of migration modelling

Interest in modelling migration was initiated in the late 19th Century, when Raven-

stein [1885] identified areas of ‘absorption’ and ‘dispersion’ in Britain using the 1881

Census. Ravenstein’s “seven laws of migration” provide an insight into his analysis

and the relationships he identified. Over the following decades, researchers began to

compare the migratory behaviours of different demographic groups, initially begin-

ning with sex differentials, but increasingly considering migrant status with respect

to age, occupation, family status and motivation [Greenwood and Hunt, 2003]. In

the 1940s, Stewart [1947] applied the gravity model to migration, in contrast to

previous behaviourist ideas. Developments throughout the 20th Century included
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developing the gravity model further and developing systemic migration modelling

[Alonso, 1986; McFadden, 1981]. More recently, Agent Based Models have become

increasingly popular; Section 6.6.2 provides further details on these models.

Challenges with modelling migration

In the study of demography, there are three key aspects of population dynamics:

fertility, mortality and migration [Bijak, 2022]. Of these three processes, migration

is that which has the most uncertainty and complexity [Council et al., 2000]. These

issues are further compounded by different definitions of migration that exist in dif-

ferent organisations and the false dichotomy between voluntary and forced migration

[Erdal and Oeppen, 2018].

Modelling any system requires large amounts of high-quality data. Although

some data sources – such as censuses – can provide the information needed, many

are incomplete or do not deal with more informal methods of migration and forced

migration [McAlpine et al., 2020; Kraler and Reichel, 2011]. When studying migra-

tion pathways, as we are here, modellers are often reliant on migrant testimonies

and the additional complexities which they bring. Often, data has small sample

counts and high uncertainty; migrants may choose to not report all of their experi-

ences to protect their interests. Furthermore, securing interviews with populations

of marginalised, undocumented, or irregular migrants can be a huge challenge and, if

secured, researchers face serious issues of time scarcity, language barriers, and avail-

ability to follow up [McAlpine, 2021]. Survey data can be used but is not applicable

to entire migration models; rather, it can provide insights for individual transitions.

6.6.2 Agent Based Models of Migration

In recent years, ABMs have become increasingly popular for modelling migration

[McAlpine et al., 2020; Entwisle et al., 2016; Fu and Hao, 2018] due to their abil-

ity to explore ‘causal’ complexities which are inherent to populations and human

behaviour. Their ‘bottom up’ approach – focusing on individual-level decisions to

form an aggregate macro-level behaviour– can provide deep insights into the system

as a whole, with the aim of replicating its environment, populations and patterns

so as to recreate the observed outcomes in the real world system.

McAlpine et al. [2020]’s review of ABMs in migration research identifies that

current ABMs are overly-simplistic and the model development does not capture the

range and diversity of factors that impact on migrants’ behaviours and outcomes.

Many of the models assume migrants are making rational choices to optimise out-
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comes and do not reflect the true complexity of migrant decision-making processes.

Sometimes, decision-making was simplified and did not include the core elements so-

cial scientists have previously identified as being crucial to migrant decision-making

processes.

6.6.3 ABM of Thailand to Myanmar migration corridor

Section 6.4.2 illustrates an idealised example of when an ABM and a CEG are the

same. In reality, due to the different methodology used to create the models, there

is likely to be differences in these models due to the focus of the modelling technique

being on different processes.

In this section, we introduce an ABM of the migration process between Myan-

mar and Thailand, taken from McAlpine [2021]. We then explore how aspects of

this model can be used as elicited information to provide a CEG.

The Myanmar-Thailand Migration Planning and Intermediary Networks (MyTh

MAP-IN) ABM explores the experiences of economic migrants moving from Myan-

mar to Thailand, both through regular and irregular migration pathways. It aims

to provide a conceptual understanding of the relationship between choices migrants

make and the precarity of their situation.

The MyTh MAP-IN ABM uses three agent classes: migrants, intermediaries

and employers. Each class has different characteristics and properties. The model

environment includes areas which represent the origin and destination locations and

crossing points where migrants can move between locations.

The model consists of four sub-models, corresponding to parts of the mi-

grant’s journey (pre-migration, planning, transit and employment). Each sub-model

requires agents to act differently according to the decisions required in that sub-

model; some processes occur of multiple sub-models. Figure 6.5 shows the compu-

tational model and decisions which are made by agents over the ABM1.

Figure 6.5: Computational model of MyTH MAP-IN ABM, taken from McAlpine
[2021]

1Model code and documentation for the MyTh MAP-IN ABM can be found at:
https://github.com/feature-creature/MyThMaP-IN
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6.6.4 Embellishing into a CEG

Some elements of the ABM can easily and effectively be translated into a CEG. We

will show how this works in practice using an example from the third sub-model

MyTH MAP-IN ABM, describing how a migrant decides to move to a new country.

The rules that describe the modelling of the decision are given in Figure 6.6.

Figure 6.6: Part of the MyTh MAP-IN ABM, describing a decision about a border
crossing. Taken from McAlpine [2021]

Example 52 (Border crossing example) This decision is based on where their

planned destination is and whether they are in possession of a passport. An indi-

vidual decides to either cross the border by themselves or with a smuggler and, if by

themselves, whether to go officially or unofficially. This state is conditional on them

not having a plan to cross the border in advance, such as having transport organised

through a recruiter.

In this example, there are a finite number of variables of interest: presence of

passport, destination location plan, crossing alone or with a smuggler, and whether

they cross officially or not. Each of these variables has a finite number of discrete

values; in this case each is binary: passport or not, location A or B (used as a

proxy for the locations in the model), smuggler or self and official or unofficial.

Combinations of these define the different states and the possible transitions between

them are described in Figure 6.6 and represented in Figure 6.7. Figure 6.7 shows the

heterogeneity in the model through structural zeros, including the use of smugglers

if aiming for Destination A, choosing an unofficial crossing for Destination A if

holding a passport, and choosing to cross the border alone if going to Destination
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B. Through the presence of nodes with a single emanating edge, it is possible to

represent deterministic transitions.
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Figure 6.7: Event tree of border crossing example.

The staged tree for this part of the ABM can be seen in Figure 6.8. This is

a small part of a larger staged tree representing the entire migration process- from

decision to migrate to arrival at their destination. The probabilities of preference of

destinations or holding a passport are greyed out as they are not decided in this part

of the model: they will have already been allocated in a previous part of the model.

However, the ABM in Figure 6.6 identifies these variables as defining the border

crossing decision, hence their inclusion in Figure 6.8.

The tree given in Figure 6.8 is not a staged tree of the whole process and is

just a sub-tree in the whole process that will appear multiple times, in any sequence

of events where a transport decision has not been made previously.

In this sub-tree, no two nodes are in the same stage. However, whenever this

sub-tree appears in the larger model, each vertex in white (v4 − v10) will be in the

same stage as their corresponding vertices in the other sub-trees.
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Figure 6.8: Staged tree of border crossing example.

This shows that we are able to use the ABM as a tool to elicit part of a staged

tree, providing a graphical representation of the decision process which could be

embellished as described in Subsection 6.3.

Out of Scope

Some parts of the MyTh MAP-IN model are not suitable for modelling with a

CEG. For example, in the first stage, planning, a key element is the individual

wealth fluctuations that occur and how this drives migrant motivation. These wealth

fluctuations are not capable of being integrated into a CEG as they are modelled as

a Markov process on a continuous variable, mostly providing small perturbations to

vary the number of individuals in the model that decide to migrate.

Figure 6.9: Part of the MyTh MAP-IN ABM, describing smuggling decisions. Taken
from McAlpine [2021].

Example 53 (Smuggler example) Figure 6.9 describes the process in the ABM

for how an agent finds a smuggler (18a), given that they have decided to. This

involves walking to the ‘smuggler zone’ where the smugglers are based, random walk-
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ing in that area and requesting an offer from a smuggler should they find one. This

rule also says that an offer is not received over a certain time period (30 days), the

individual stops their migration and returns home.

The core component of this process– finding a smuggler– could easily be mod-

elled using a CEG by directly modelling the probability that someone who is looking

for a smuggler finds one.

If time is a key factor in this model, using a CT-DCEG [Shenvi and Smith,

2020b] with holding times associated as to whether a smuggler is found or not could

faithfully represent this element of the ABM. A distribution of the length of holding

time would be required in this case if we are to fully represent the ABM; this holding

time distribution would have all values less than 30 in the instance when a smuggler

is found.

6.7 Discussion

In this chapter, we have demonstrated that we are able to use ABMs as a tool to

elicit CEGs. The benefits of this transformation are clear: it provides a compact

representation of its independence statements, directly from the topology of the

graph. This is valuable in identifying whether the model is making a plausible set

of assumptions and making the independence structure accessible to be understood

by those without a mathematical background, such as policymakers. The transfor-

mation into a CEG also allows for a natural conversion into a Bayesian framework

with additional benefits: improved uncertainty quantification, Bayesian inference

with available data and Bayesian model selection.

This works also highlights the benefits of considering different modelling

methodologies the different modelling perspectives can be considered. Comparing

between different model classes can be a helpful iterative process in selecting the

most effective way to model any process. For example, by considering the CEG,

it brings to the forefront what the pathways in the model are and the dependence

structure underlying the transitions.

Whilst this chapter specifically focuses on migration, CEGs have many po-

tential applications in other domains where ABMs have been used to represent

egocentric processes, such as dietary, voting or criminal behaviour. This research

reflects work in progress; further investigation is needed to extend this methodology

and increase the scope of ABMs that it applies to. Engaging with these ideas will

provide many opportunities for future research to build upon the work presented

in this paper, enabling for more full and direct CEG-like representations of a wide
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class of ABMs.
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Chapter 7

The Posterior Equivalence

Principle for Chain Event

Graphs

The benefit of informative priors was shown in Chapters 4 and 6 for managing

model uncertainty and model selection respectively. In a Bayesian analysis, when

using expert judgement in the form of priors, over the model space and on the

hyperparameters, it is important that they are used consistently. However, default

setting of these prior model probabilities and distributional parameters are usually

made without reference to each other.

In this chapter, we define a desirable condition, the Posterior Equivalence

Principle (PEP), which guarantees a consistency between priors. We also show how

we can set a prior over the set of models to satisfy this condition.

We begin this chapter with a motivational example in Section 7.1, identifying

the issues with default prior setting and how this can impact models. Next, in

Section 7.2, we define the PEP as a method for consistently setting priors over the

edges. We then prove how we can satisfy this principle through the choice of model

prior, demonstrating it through an example in Section 7.3. Finally, in Section 7.4,

we discuss the benefits of this approach and outline future work. We then apply

this principle to the CEG class and return to the initial motivating example to

demonstrate its functionality.
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7.1 Introduction

Example 54 (Motivating Example) Suppose we have some data from a school

of 600 students about their chosen lunch options. The data contains:

• Sex of child (Boy, girl),

• Lunch choice (Healthy, unhealthy).

This data is represented in the event tree in Figure 7.1.

s0

s1
Boys
289

s2

Girls
311

s3
Healthy option

151

s4

Unhealthy Option
138

s5

Healthy option
244

s6

Unhealthy Option
67

Figure 7.1: Event tree of the school’s options data with edge counts

Suppose we have some elicited information about the edge probabilities to use

as a prior. These could be elicited by considering experts’ judgements as phantom

samples observed through the process as recommended by Collazo et al. [2018] and

Heckerman et al. [1995], as in Section 3.3.1. Suppose for vertex s0, s1 and s2, these

are Beta(2500, 2500), Beta(1250, 1250), Beta(1250, 1250) respectively. These have

the same strength (effective sample size) in influencing the posterior edge probabili-

ties as observing 5000 students with an equal number of boys and girls who are also

equally likely to choose each lunch option. This is a very strong prior relative to the

amount of data observed.

We set the hyperstage such that we only consider situations being in the same

stage if they correspond to the same event as detailed in Section 3.4.1. Therefore,

there are two possible CEGs for this event tree: either s1 and s2 are in the same

stage, or they are not. We set an equal prior probability over each CEG in the equiv-

alence class as typically done, for example by Shenvi [2021]. For a fixed ordering of
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variables or events, each different staging of a CEG is in its own equivalence class.

Therefore, this is to assume a priori that each of the possible models are equally

likely (a uniform prior). In this instance, the likelihood of model C is given by:

p(y|C) =

K∏
i=1

Γ(ᾱi)

Γ(ᾱ∗i )

ki∏
j=1

Γ(α∗ij)

Γ(αij)

 , (7.1)

as in Section 3.3, which can alternatively be written as

p(y|C) =
K∏
i=1

[
Γ(ᾱi)∏ki
j=1 Γ(αij)

×
∏ki
j=1 Γ(α∗ij)

Γ(ᾱ∗i )

]
. (7.2)

In this equation, the left part of the product is the contribution from the prior

over the edges and the right part is from the combination of the posterior.

In the example, the BF of the situations in the same stage, C′, compared to

them in different stages, C, is:

p(y|C) =

[
Γ(5000)

Γ(5000 + 600)

Γ(2500 + 289)Γ(2500 + 311)

Γ(2500)2

]
[

Γ(2500)

Γ(2500 + 289)

Γ(1250 + 151)Γ(1250 + 138)

Γ(1250)2

]
[

Γ(2500)

Γ(2500 + 311)

Γ(1250 + 244)Γ(1250 + 67)

Γ(1250)2

]
=

Γ(5000)

Γ(5600)

Γ(1401)Γ(1388)Γ(1494)Γ(1317)

Γ(1250)4

p(y|C′) =

[
Γ(5000)

Γ(5000 + 600)

Γ(2500 + 289)Γ(2500 + 311)

Γ(2500)2

]
[

Γ(5000)

Γ(5000 + 600)

Γ(2500 + 151 + 244)Γ(2500 + 138 + 67)

Γ(2500)2

]
=

Γ(5000)2

Γ(5600)2

Γ(2789)Γ(2811)Γ(2895)Γ(2705)

Γ(2500)4

BF (C′, C) =
p(y|C′)
p(y|C)

=
Γ(5000)

Γ(5600)

Γ(1250)4

Γ(2500)4

Γ(2789)Γ(2811)Γ(2895)Γ(2705)

Γ(1401)Γ(1388)Γ(1494)Γ(1317)
.

This gives a BF of 0.0975. Therefore, the model with these situations apart

would be the MAP model and, even when performing BMA, the model with the
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situations together would have a smaller relative weighting.

However, if we have strong prior information reflected on the edges which

represents that s1 and s2 having the same distribution, does it not make more sense

that they should be in the same stage?

The solution to the problem raised in this example is clearly that the as-

sumption that all of the models should be set as a default to equally likely a priori

is very questionable when there is strong prior information about the transition

probabilities. This raises the question of how the prior over the set of models could

be set in a way that is consistent with the prior conditional transition probability

parameters.

7.2 Posterior Equivalence Principle (PEP)

Little work has been done on setting the priors over the set of models for CEGs.

That which has been done, such as in Collazo and Smith [2016], is not focused on

prior setting for expert elicitation but for the soundness of model selection, using

non-local priors. Here, we wish to set priors over the model space that are consistent

with the priors set over the edges.

More formally, we define this consistency as follows:

Definition 55 (Posterior Equivalence Principle (PEP)) Given any two CEGs,

C and C′, that represent the same staging on the same event tree in the same set of

models S – but with different priors, α, and data, y,– that share constant α∗ij for

all edges ij, as the sum of the prior, αij, and the data, yij, over that edge:

α∗ij = αij + yij , (7.3)

we say that the PEP is satisfied if the joint distribution of the model and the data

are the same, p(C, y) = p(C′, y).

As shown in Section 3.3, for a CEG, the posterior model is made of a com-

bination of florets each with distribution θi:

p(θi|yi, C) =

K∏
i=1

Γ(ᾱ∗ij)∏kj
j=1 Γ(α∗ij)

ki∏
j=1

θ
α∗ij−1

ij . (7.4)

Apart from the stage and tree structure which determine K and ki, the set

of posterior conditional transition probability parameters is determined uniquely by

the vectors α∗ij .
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Therefore, PEP is the condition that the joint distribution of the model and

the data, the general BD score, is uniquely determined by the posterior conditional

transition probability parameters.

7.3 Satisfying the PEP

To satisfy PEP for CEGs, we propose the following prior for Mi ∈ S:

p(Mi) ∝
K∏
i=1

Γ(β̄i)

Γ(ᾱi)

ki∏
j=1

Γ(αij)

Γ(βij)

 . (7.5)

We define this prior as the PEP prior. Here, as before, αij is the prior parameters

for the transition probabilities and βij is the uniform model edge prior, a prior edge

count that is believed to correspond to all models being equally likely; this could

be set to correspond to default weakly informative priors, such as those suggested

in Neapolitan [2003]. We must condition that for all i and j, βij ≤ αij . When

βij = αij for all i and j, this gives the uniform prior.

We will now demonstrate why this setting of the prior over the space of CEGs

satisfies the PEP. The PEP-prior in Equation (7.5) gives the following general BD

score for model Mi:

p(Mi,y) = p(Mi)p(y|Mi)

∝
K∏
i=1

Γ(β̄i)

Γ(ᾱi)

ki∏
j=1

Γ(αij)

Γ(βij)

 K∏
i=1

Γ(ᾱi)

Γ(ᾱ∗i )

ki∏
j=1

Γ(α∗ij)

Γ(αij)


=

K∏
i=1

 Γ(β̄i)

Γ(ᾱ∗i )

ki∏
j=1

Γ(α∗ij)

Γ(βij)

 . (7.6)

This score depends only on the choice of βi for the PEP-prior and the pos-

terior conditional transition probability parameters. Therefore, if we use the same

βi values for the PEP-priors, the PEP is satisfied.

Example 56 (Motivating example continued ) We return to our example of

lunch choices of school children using the same data and parameter prior as before.

We use the proposed structural prior from the previous section, the PEP-

prior, with uniform model edge priors βi, being that specified in Neapolitan [2003]:

total prior weight is equal to the maximum number of outgoing edges. These uniform

119



s0

s1Boys
 1

s2

Girls
  1

s3Healthyoption
     0.5

s4
UnhealthyOption
        0.5

s5
Healthyoption
      0.5

s6

Unhealthy Option
         0.5

Figure 7.2: Event tree of the school’s options with beta values along the edge that
are judged to be equivalent to a uniform prior over the set of models.

model edge priors are shown in Figure 7.2.

This gives a PEP-prior over the possible models of:

p(C) ∝
[

Γ(2)

Γ(5000)

Γ(2500)2

Γ(1)2

] [
Γ(1)

Γ(2500)

Γ(1250)2

Γ(0.5)2

]2

, (7.7)

p(C ′) ∝
[

Γ(2)

Γ(5000)

Γ(2500)2

Γ(1)2

] [
Γ(2)

Γ(5000)

Γ(2500)2

Γ(1)2

]
. (7.8)

This gives a prior probability of 0.986 of the situations being combined1.

1Calculated by taking their log and then normalising.
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p(y|C) =

[
Γ(2)

Γ(5600)

Γ(2500 + 289)Γ(2500 + 311)

Γ(1)2

]
[

Γ(1)

Γ(2500 + 289)

Γ(1250 + 151)Γ(1250 + 138)

Γ(0.5)2

]
[

Γ(1)

Γ(2500 + 311)

Γ(1250 + 244)Γ(1250 + 67)

Γ(0.5)2

]
=

Γ(2)

Γ(5600)

Γ(1401)Γ(1388)Γ(1494)Γ(1317)

Γ(0.5)4

p(y|C′) =

[
Γ(2)

Γ(5000 + 600)

Γ(2500 + 289)Γ(2500 + 311)

Γ(1)2

]
[

Γ(2)

Γ(5000 + 600)

Γ(2500 + 151 + 244)Γ(2500 + 138 + 67)

Γ(1)2

]
=

Γ(2)2

Γ(5600)2

Γ(2789)Γ(2811)Γ(2895)Γ(2705)

Γ(1)4

BF (C′, C) =
p(y|C′)
p(y|C)

=
Γ(2)

Γ(5600)

Γ(0.5)4

Γ(1)4

Γ(2789)Γ(2811)Γ(2895)Γ(2705)

Γ(1401)Γ(1388)Γ(1494)Γ(1317)

This gives a BF of 6.79, meaning the situations should be combined.

7.4 Discussion

Here, we have defined an invariant condition, PEP, that can be used in model

selection of CEGs when expert elicitation is involved. This condition means that

the priors over the model space do not need to be elicited separately from the

effective sample size of the florets.

The setting of the PEP-prior raises an interesting question of what βi values

should be chosen. However, we would argue that this is not a new issue and simply

formalises the idea of what should be used as a default weakly informative prior

that corresponds to a uniform prior over the set of models, as used when there is no

expert elicitation.

Outside of expert elicitation, this work has application to dynamic CEGs

as described in Freeman and Smith [2011b], in which the modelled process is fixed

but the staging can change over time. Through the use of a discount factor, PEP

allows for a way of exploring the change of staging over different time periods whilst
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maintaining consistency over how previous years’ data was treated.
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Chapter 8

Discussion

In Section 8.1, we summarise the main contributions of this thesis. Section 8.2

gives details on work which continues beyond the completion of this thesis, in terms

of software development related to the cegpy package and short-term avenues for

future research.

In additional to those outlined in Section 8.2, each research chapter concluded

with a discussion regarding the potential further avenues for research related to that

particular field.

8.1 Summary of the contributions of the Thesis

The four research chapters of this thesis include significant contributions to the

CEG research community. In addition to the individual elements of research pre-

sented, we provided code for the new cegpy package, increasing the accessibility of

non-stratified CEGs to applied statisticians and providing opportunities to further

expand understanding of CEGs. The cegpy package was used as a tool to develop

the research in Chapters 4 and 5.

In Chapter 4, we presented a framework for performing BMA for CEGs using

Occam’s window and demonstrated the benefits of this approach compared to using

a MAP estimate. We proved that, by sampling the model space, we can obtain a

consistent estimator of the BMA and defined one such sampler. In our analysis of

BMA’s benefits, we defined the most refined union and coarsest intersection of a set

of CEGs and demonstrated how this can be used to interpret the output of a BMA.

In Chapter 5, we defined the totally-ordered hyperset and hyperstage. We

presented a model selection algorithm that scales quadratically with the number of

situations, MPC, using the totally-ordered hyperstage. We defined the BCEG, an
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expansion of the model space of CEGs capable of representing more complicated

relationships between events. Through the use of a number of datasets, we demon-

strated that MPC outputted comparably scoring models to AHC in much faster

time and that BCEGs are able to obtain better scoring models than those in a typ-

ical CEG model space. Through a worked example, we demonstrated the increased

explainability using a BCEG.

In Chapter 6, we demonstrated the differences in representation of a flow

diagram and a CEG. We also detailed the benefits of eliciting a CEG from an

ABM and illustrated how, for an existing ABM, parts of it can easily and effectively

translated into a CEG. We also highlighted future areas of research in which a larger

class of ABMs, with a range of features, can be used to elicit CEG-based models.

We finished this chapter by demonstrating this approach in the domain of migration

research.

In Chapter 7, we defined an invariance condition, the PEP, to ensure that

priors over the set of models and priors of the parameters of the models are set

consistently. We also demonstrate how the PEP can be satisfied through the choice

of model prior, the PEP-prior, that depends on a choice of prior edge counts that

corresponds to a uniform prior being set over the model space.

8.2 Future work

Below we detail some other potential avenues for future research:

• As discussed in Section 3.6, the cegpy package was developed to aid the use of

CEGs to a wider range of users. In order for this package to provide a useful

tool for the community, it is important that it both incorporates a range of

describable features, including methodology advances, and is regularly main-

tained, as demonstrated by the popularity of BNs supported by a range of

well maintained and easy to use software. This thesis includes methodologi-

cal advancements that were demonstrated by building on the cegpy package.

Adding this functionality to cegpy and other existing CEG methodology is an

important next step in furthering the use of CEGs.

• The research in this thesis focuses on methodological advancements for a fixed

tree. An obvious extension is to consider how to perform BMA when there is

not a fixed ordering over the sequence of events. This would involve exploring

the statistical equivalence class of CEGs and determining cardinality in order

to set the model’s priors in a way such that models that are represented
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multiple times in the model space are not a priori more likely.

• As discussed in Section 6.3.1, there is currently no algorithm that traverses

the equivalence class of CEGs in order to output the simplest representation

of a CEG. The existence of such an algorithm could provide compact repre-

sentations of elicited situations to an extent further than the standard CEG

by removing florets with a single edge and combining florets when no staging

information was lost.

• Further extensions on embellishing ABMs of migration is planned with do-

main experts and current collaborators. This work will involve modelling the

relationship between migration and sexual exploitation. Although this thesis

has focused on the technical challenges encountered over the course of this

work, there are many exciting avenues of work springing from these.

• During my PhD, I also engaged in another project where, in collaboration with

Jim Smith, we used a CEG in a dynamic hierarchical model, linking these to

another class of models called flow graphs. This contained some novel work,

linking CEGs and flow graphs to decision analysis. Over the coming months,

we plan to extend these model classes so that they might apply to a wider

domain base.

• Recent research has seen many developments in the methodology surrounding

CEGs, demonstrating them as being widely applicable due to the asymmetric

relations they can represent. A key focus of future research should be to work

with an increased range of domains, engaging with experts. This will allow

the benefits of CEGs to be utilised in a wider domain area and facilitate the

opportunity to encounter further methodological challenges that arise from

the domains being modelled, thereby improving the CEG class as a whole.

Thank you for reading this thesis.
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