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Abstract

Neural sequence models have become prevalent owing to the sequential nature of

natural language and high expressiveness of neural networks. Despite achieving a

huge success, however, such frameworks are challenged for their ineptness in captur-

ing the global context or compressing holistic features such as style and topic, nor

could they disentangle latent representation into factors of interest and informative

variables.

In this thesis, we build models to learn topic representations capturing the

thematic feature as well as develop semi-supervised learning techniques to exploit

the inductive bias from few annotated data. We introduce (1) topic representation

learning via fine-tuning of denoising auto-encoders that fits topic modelling into a

seq2seq structure; (2) aspect-stance disentanglement using constrained priors that

improves classification of vaccination stance and text spans; (3) disentangled cross

attention to inject inductive bias of different dimensions with different objectives;

and (4) swapping auto-encoder that promotes the instance-level discrimination for

aspect-stance disentanglement in order to perform clustering along different latent

factor dimensions. Besides, a vaccination attitude dataset containing tweets about

Covid vaccines is constructed for the validation of the proposed approaches.

We provide empirical studies of the proposed models, showing that topic

representation acquired by fine-tuning language models is opportune for capturing

the latent semantics. More importantly, with few annotations, such representations

can be disentangled under the constraint of additional prior or by disentangled cross

attention, significantly improving the performance of stance classification and aspect

span detection. By incorporating the siamese network that forms the swapping

auto-encoder, we are able to cluster tweets along the axis of aspects that has been

successfully disentangled.
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Chapter 1

Introduction

Throughout history, texts have been essential in communication between humans

and machines, as well as among humans themselves. Texts are used for multiple

purposes, such as expressing emotions to human beings, providing instructions to

machines, and transmitting knowledge across generations. Language is a mirror

of mind [48]. The thoughts transmitted by texts are extraordinary complex, yet

it is surprisingly simple that texts are predominantly token sequences or strings.

The ability to comprehend text in a linear fashion is not only innate to humans,

but it is also theoretically advantageous, if not the most effective method for ma-

chines. This is evidenced by the utilization of paper tape I/O Turing Machines [274].

Therefore, the development of automated text comprehension systems holds signif-

icant potential, particularly in scenarios where only unstructured data are avail-

able [11, 18, 47, 262, 277]. The focus of this thesis is on the modelling of sequential

data using representation learning approaches in order to facilitate the understand-

ing of semantics, with applications in text classification and clustering.

1.1 Motivation

Text sequences are ubiquitous [275]. The sequential nature of languages gave rise to

myriads of sequence models [18], playing a fundamental role in Natural Language

Processing (NLP). The latter, which are better known as Sequence-to-Sequence

(Seq2Seq) models, has achieved great success across a range of NLP tasks, e.g.,

Speech Recognition [82, 119], Handwriting Recognition [81], Machine Translation [116],

Text Generation [293] and Language Modelling [18, 34], to name a few. Due to the

sequential structure inherent in natural languages, neural sequence models such as

LSTMs and Transformers [296] are well-suited for capturing the complex relation-

1



ships between tokens, sentences, paragraphs, and discourses.

Despite the tremendous success in various tasks, Seq2Seq models are less

efficient in capturing the global features or high-level properties such as style and

topic [27], when compared with latent variable models or Bayesian nonparamet-

ric approaches [31]. While the volume of online documents continues to grow, the

inability of models to comprehend vast amounts of unlabelled data has become

an aggravating problem [56, 226], compounded by the rapid increase of parame-

ters [14, 128, 167, 197]. It has been demonstrated that end-to-end learning easily

fits randomly generated training data despite the increase of parameters [312]. If

such a model is applied to text understanding, we will find it difficult to navigate

across domains and adapt to different styles, themes, or contexts. For example, in

a Vaccination Corpus [189], “rash” commonly refers to a symptom or disease. Con-

versely, in TV sitcoms (e.g., The Big Bang Theory)1 [42], the characters are often

reminded by “Don’t make any rash decisions”. In this situation, the model will

be easily confused by the switch of the domains. While this circumstance can be

mitigated by fine-tuning word embedding models (e.g., pre-trained language mod-

els) [213] or semi-supervised learning [99], the holistic properties of the local context,

scilicet the tone, topic and syntactic style at the sentence level [31], cannot be ap-

propriately captured. For instance, tweets are geared towards different topics, and

the TV transcripts are rendered with different emotions in different scenarios. On

the contrary, Bayesian models, e.g., the topic models, have a more principled way

to leverage the statistics of co-occurrences, uncovering the distributional property

of the latent topics in an unsupervised manner [150], with less parametric redun-

dancy [3]. Although there are variational recurrent neural networks [51] designed

for the generalization of the local context, such structures have not been fully ex-

ploited in the era of pre-training and fine-tuning. In this thesis, we aim to leverage

the expressiveness of neural sequence models and generalisation of Auto-Encoding

Variational Inference networks [123] to learn both the global and local contextual in-

formation at different levels from text, bringing them together into a semi-supervised

framework that can be used in a variety of NLP applications.

Aside from capturing the co-occurrence patterns, latent variable models show

advantages in exhibiting a certain level of disentanglement and interpretability —–

capturing human-understandable characteristics from data [118]. For example, a

person can distinguish negative vaccine-related tweets from a collection of negative

grocery reviews, as long as they recognize vaccines and food, even though they have

1https://bigbangtrans.wordpress.com/series-7-episode-24-the-status-quo-

combustion/
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never seen such training instances before. The abilities to generate new samples and

steer controllable factors are especially valued in Text Generation [243, 260] and Text

Style Transfer [115], where human initiatives are desired to create out-of-distribution

(OOD) data. These abilities also matter in sentiment analysis applications where

people often reach out to convey their experiences and seek emotional support [330].

If we take the dialogue system of GPT-3 as an example, a human interlocutor will

receive the following responses2: ‘Q: What is your favorite animal? A: My favourite

animal is dog. Q: Why? A: Because dogs are loyal and friendly.’. Although the

response of the agent seems plausible and coincides well with the commonsense

knowledge, it is less natural compared with ‘I once raised a dog in my childhood, he

is my best friend.’. It is often the case that the empathy and initiatives of human

beings which brings vibrancy to life are nonexistent in machines. While Seq2Seq

models excel in fitting the dependency, latent variable models are more effective in-

terpolating between the inferred hidden semantics, as reflected in recent generative

frameworks, such as Variational Auto-Encoding Bayes (VAE) [31, 123, 140] or Gen-

erative Adversarial Nets (GAN) [78, 170, 215], in generating controlled text [66] or

stylish images [204]. In this thesis, we delve into the intersection of Seq2Seq and la-

tent variable models, bridging the gap between prediction and interpolation. While

there are multitudes of work targeting text generation from a well-designed latent

space [53] (e.g., hyperbolic space), we introduce disentangled learning to factor out

independent components [109] such as stance and aspect. By extrapolating the

pre-trained model and disentangling the latent space, we hope that the structured

semantics will facilitate attitude detection in online posts.

Another desirable property we expect the sequential models to have is the

ability to cluster. After all, the notion of category does not spawn out of thin air, nor

are they provided by human annotations [134]. Recent years have witnessed a surge

of pre-trained language models in unsupervised self-learning for natural language

processing, yet their full potential of detecting emerging categories in the context

of online documents remains unexploited. As a motivating example, consider the

two tweets “If you’re worried about the blood clot, do not read the leaflet in a box of

Paracetamol !” and “There are some very interesting ties between this vaccines cre-

ators and the eugenics movement which is concerning considering it’s mainly been

promoted as a vaccine for poor folks in the third world.” The first tweet ironically

addressed vaccine side effects and the second one expressed instead specific political

concerns. This is different from traditional aspect-based sentiment analysis on prod-

uct reviews where a small number of exhaustive aspects are pre-defined. Traditional

2https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html

3

https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html


classifiers built upon sequence-to-sequence architectures [11, 47] and attention mech-

anisms [210, 305] fall short in detecting unseen points [14]. While recent progress

in NLP resorts to the ‘Human in the Loop’ [337] protocol or ‘Text span predic-

tion’ [185] scheme to accommodate this low-resource setting, they are of less practi-

cal use for open-domain tasks such as clustering and information retrieval, where a

unidimensional vector for semantic similarity measure is preferred [225]. In contrast,

denoising auto-encoder [98, 287] learns a bottleneck representation [167, 187] that

interpolates between data manifolds in its fine-tuning. Such representations can af-

ford similarity measures in clustering algorithms which boost the performance. More

importantly, the idea of hidden representation learning leads to the application of

disentanglement [19, 125, 172], in line with the intuition that humans categorize

text from independent perspectives. For example, the tweets “mRNA vaccines are

poison” and “The Pfizer vaccine is safe” are both targeting safety issues, whilst they

manifest the opposite stances. Most approaches will be obfuscated by the entan-

gled semantics, evidenced by clustering over stance rather than aspect. However,

given the presumption that these factors are independent components composing

the outward features, even few training samples can be generalized into prominent

biases [188]. To this end, we propose to learn disentangled representations that are

clustering-friendly in different dimensions and beneficial to downstream tasks. We

hope that the disentangled representations are elementary factors that generalise

well to unseen identities, even though there are few annotations available.

In the rest of this section, we first introduce the research objectives of this

thesis, followed by contributions towards these objectives. Finally we overview each

chapter and list the outline.

1.2 Research Objectives

The central theme of this thesis is situated in the intersection of sequential mod-

els and topic representation learning, with their applications to sentiment analysis

and text clustering. Sequence-to-sequence models provide powerful expressiveness,

fitting complex relationship between text sequences, while overparameterised in its

nature [14]. Topic modelling enforces a level of formality or compression to the

sequential models [27], enjoys better generalisation and disentanglement of latent

features [167], and can be easily tweaked to learn clustering-friendly representa-

tions [187]. With topic modelling, it is possible to derive holistic semantics from any

sentence [140, 187], enabling the disentanglement of latent representation into prim-

itive factors [172]. The latter would facilitate text clustering in the desired semantic
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space, and naturally allows the recombination of the factors through cross-attention,

which increases generalisation and improves the performance in the low-resource

tasks. Specifically, we focus on the Sentiment Analysis [253] task since sentiment

is the epitome of perceptible factors expressed in languages. A good representation

learning method of sentiment and its associated factors would be easily transferred

to other NLP tasks such as Text Generation [2, 292], where a certain level of di-

versity and interpretability is desired. Apart from sentiment analysis, we aim to

show the feasibility of disentangled learning in sequential modelling by applying the

disentangled representations to text span detection and text clustering. These are

two tasks curated in the low-data regime where human annotations are expensive,

time-consuming, and may face ethical issues. Recent advances in neural sequence

models barely addressed the data scarcity problem and out-of-distribution predic-

tion. In contrast, we assume that topic modelling captures holistic statistics while

sequential models encode the sequential dependencies. On this basis, we propose

to perform disentangled learning by modifying the architecture of the pre-trained

models.

The sequence-to-sequence relationships we are targeting are output-output

relationships and output-input relationships, depending on the data format, i.e.,

whether it is free-form texts or multiple-choice categories according to the LLaMA

taxonomy [270]. Among different levels of context, we primarily focus on sentence-

level dependency, e.g., the dependency between utterances in a user timeline or

conversation thread, using token-level representations of language models as atomic

representations. On top of sequence-to-sequence relationships, we aim to build topic

representation learning approaches that gauge sentence semantics. Ideally, topic

representations are low-dimensional embeddings that distil desirable properties from

collocations of words. Given the holistic implicature and condensation of LM’s

token-level semantics, it is reasonable to expect that such bottleneck representations

enable semantic search based on distance metrics, thereby allowing clustering in the

semantic space.

Aside from methodology innovations, we also work on dataset construction

to fuel the model with inductive biases that complement the knowledge transferred

by pre-trained language models. The introduction of the dataset can not only serve

as a test bed for the proposed model but also facilitate cross-domain adaptation. In

brief, the research objectives (ROs) we define in this thesis are:

RO 1 Modelling the intricate dependencies between different levels of

text. Modeling the dependencies of text sequences has always been a key

step in text understanding, and different NLP tasks require the adaptation of
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various building blocks tailored for diverse objectives. In the area of social

media analysis, we need to analyse communication flow, quantify the social

influence and predict opinion dynamics. In dialogue emotion detection, we

make predictions based on the historical conversational context. Despite the

variety of task objectives, we believe that sequence models are able to capture

the fundamental dependencies among textual components. Consequently, the

sequence-to-sequence framework will be customised to incorporate domain-

specific features, which is one of the key objectives of this thesis.

RO 2 Learning topic representations that gauge the global context and

capture thematic properties of sequential data. Topic representations

are assumed to encode the co-occurrence patterns within the local context,

as well as efficiently generalize the domain-specific statistics of the entire cor-

pus. On the other hand, sequence-to-sequence models tend to make accurate

predictions given abundant data labelled. We thereby plan to follow the semi-

supervised learning framework to combine the advantages of the two by first

performing unsupervised topic modelling and then training task-specific clas-

sifiers. With topic modelling, the model will capture the local context and

global context of sentences more efficiently, adding generalisability to the clas-

sification heads.

RO 3 Disentangling latent factors from unstructured text using sequen-

tial models. Disentangled learning allows the model to factor out variables

of variation associated with observational changes. Hence, the model could

recombine or sample from the latent space for the generation of novel data,

which in return increases its effectiveness in fitting new data points or inter-

polating between data manifolds. To this end, the aim is to learn disentan-

gled representations from sufficient new data and a limited amount of manual

annotations, which are clustering-friendly and will presumably improve clas-

sification results.

RO 4 Evaluation of topic modelling and disentangled learning on down-

stream tasks. We posit that the integration of sequence-to-sequence archi-

tecture, topic representation learning and disentangled learning will capture

latent semantics characterising both holistic features and compositional pat-

terns. On this provisos, we need to evaluate how the acquired representations

redeem the coherent semantics (w.r.t. human evaluations), and the extent to

which this learning process improved performance on downstream tasks. We

choose sentiment analysis and text clustering since both sentiment and clusters
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can be topic-dependent features, in addition to word representation learning

that requires cross-domain polysemy.

RO 5 Dataset curation. In order to be able to evaluate the generalisation capabil-

ity of our proposed framework, we intend to create datasets covering multiple

topics. The datasets will be made up of massive unannotated documents and

a handful of annotated instances to facilitate the evaluation of unsupervised

topic acquisition and disentangled learning in the low-resource setting. For

sentiment analysis, annotations are provided as aspect labels, aspect spans,

or stance polarities depending on the sub-task. For text clustering, we need

to provide an aspect label or argumentative pattern for each cluster as the

groundtruth.

1.3 Contributions

The work of this thesis is situated in the field of NLP addressing the research

objectives by jointly learning disentangled representations and training sequence-to-

sequence classifiers, under the semi-supervised framework. The major contributions

can be summarized as follows:

C. 1 We propose a novel generative model, namely JTW, to jointly learn topics and

topic-specific word embeddings. The model leverages both local co-occurrence

patterns and global topic distributions to derive contextualised meanings of

words. The generative process can also be applied to documents represented by

pre-trained language models to endow words with topic-dependent meanings.

The obtained word representation better captures word semantics in terms of

word similarity evaluation and word sense disambiguation, and the extracted

topics are semantically more coherent.

C. 2 We develop a neural temporal opinion model for the prediction of opinion

dynamics on Twitter taking into account both the temporal relation and user

context by means of sequence-to-sequence prediction and topic modelling. We

experimented on two Twitter datasets to show the benefits yielded by the

above method.

C. 3 We target the refinement of auto-encoders. We propose topic-driven fine-

tuning by inserting a topic layer into a language model whose representations

are acquired during the unsupervised training of a variational recurrent at-

tention network. The topic layer captures the conversational topics and tones
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which are subsequently applied to the sequence-to-sequence prediction of dia-

logue emotions. Moreover, we incorporate external knowledge from ATOMIC

by either SBERT-based extraction or COMET-based generation. We perform

empirical analysis to show its effectiveness.

C. 4 We consider the disentanglement of independent latent variables. We design a

semi-supervised framework, called VADet, for disentangled aspect/stance rep-

resentation learning and aspect span detection on tweet corpora. This model,

comprising both unsupervised topic representation learning and supervised

aspect-stance disentanglement, employs a denoising variational auto-encoder

to learn topic representations and uses a constraint on prior to induce the

disentanglement. We build a dataset which relates to vaccine attitude detec-

tion to afford fine-tuning on in-domain corpus and supervised training with

inductive biases and provide extensive evaluations on the proposed dataset.

C. 5 We explore the disentanglement of aspect and stance semantics in the task of

text clustering, where we exploits both denoising auto-encoder for topic acqui-

sition and inductive biases for clustering-friendly representation learning. We

adopt a swapping-auto encoder and devise a disentangled cross attention to im-

prove the disentanglement between aspect and stance. The proposed method

is evaluated on two Covid-19 vaccination corpora with various distance metrics

for text clustering, the result of which confirms that disentangled representa-

tions substantially improve the performance of clustering algorithms.

1.4 Publications

The work in this thesis is anchored in the following articles and publications, listed

in ascending order according to the year of publication.

• Lixing Zhu, Yulan He, Deyu Zhou. “A neural generative model for joint

learning topics and topic-specific word embeddings”. Transactions of the As-

sociation for Computational Linguistics (TACL), 2020.

• Lixing Zhu, Yulan He, Deyu Zhou. “Neural Temporal Opinion Modelling for

Opinion Prediction on Twitter”. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics (ACL), 2020.

• Lixing Zhu, Gabriele Pergola, Lin Gui, Deyu Zhou, Yulan He. “Topic-Driven

and Knowledge-Aware Transformer for Dialogue Emotion Detection”. In Pro-

ceedings of the 59th Annual Meeting of the Association for Computational
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Linguistics and the 11th International Joint Conference on Natural Language

Processing (ACL), 2021.

• Lixing Zhu, Zheng Fang, Gabriele Pergola, Rob Procter, Yulan He. “Disen-

tangled Learning of Stance and Aspect Topics for Vaccine Attitude Detection

in Social Media”. In Proceedings of The North American Chapter of the

Association for Computational Linguistics (NAACL) conference, 2022.

• Lixing Zhu, Runcong Zhao, Gabriele Pergola, Yulan He. “Disentangling

Aspect and Stance via a Siamese Autoencoder for Aspect Clustering of Vacci-

nation Opinions”, Findings of the Association for Computational Linguistics:

ACL 2023.

Co-authored publications are written in collaboration with other researchers during

the development of this thesis, but they do not form part of the thesis:

• Runcong Zhao, Miguel Arana Catania, Lixing Zhu, Elena Kochkina, Lin

Gui, Arkaitz Zubiaga, Rob Procter, Maria Liataka, Yulan He. “PANACEA:

An automated misinformation detection system on COVID-19”. In Proceed-

ings of the 17th conference of the European Chapter of the Association for

Computational Linguistics (EACL), 2023

1.5 Thesis Outline

Chapter 1 explains the research area and motivations, along with an overview of

the proposed methodologies.

Chapter 2 reviews the literature relevant to topic representation learning

and sequential modelling on text understanding. The methods span across pro-

totypical sequence-to-sequence models (e.g., BiLSTM, Transformer), neural topic

models, aspect-based sentiment classification models, disentangled learning meth-

ods, text clustering methods and semi-supervised approaches. Their relevance to

the proposed methodologies concludes each section of this chapter.

Chapter 3 elaborates the joint learning of topics and topic-dependent word

embeddings, where observed tokens are taken as generated from topic representa-

tions. Topics are inferred by a variational auto-encoder which allows a quick glimpse

of the entire corpus. Word representations can be encoded to topic distributions to

indicate multiple meanings of words. This chapter is based on the published work

of Zhu et al. 2020.
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Chapter 4 introduces a sequence-to-sequence model that integrates both

user neighbourhood context and tweet stream time interval for stance prediction.

We employ a bunch of attention mechanisms to aggregate user timelines and neigh-

bourhood context, which are shown able to improve the performance.

Chapter 5 presents a Seq2Seq model to detect emotions in dialogues, which

is composed of a topic layer inserted into a language model whose representations

are fine-tuned on downstream datasets. Then each utterance is linked to a phrasal

description of the commonsense knowledge such as the reaction of the subject. Fi-

nally, a transformer is applied to map a conversation (i.e., an utterance sequence)

to an emotion-label sequence. The results are shown to improve on several dialogue

emotion detection benchmarks.

Chapter 6 focuses on the task of vaccine attitude detection where the vac-

cination aspects are unknown and their semantics is entangled with stance. To

alleviate the data scarcity problem, a vaccine attitude dataset was constructed from

Covid-19 tweets and text span annotations, where the text span indicates the dis-

cussed aspect. Chapter 6 also involves the development of a vaccination atti-

tude detection model whose hidden representations are trained in a semi-supervised

paradigm. Firstly, part of the model, scilicet the denoising auto-encoder, is trained

on large amounts of unannotated tweets to learn latent topics via masked Language

Model (LM) learning. Then the model is fine-tuned on a small amount of Twitter

data annotated with stance labels and aspect text spans for simultaneous stance

classification and aspect span start/end position detection. The model promotes

disentanglement in the latent space by putting a constraint on the variational prior

and introducing inductive bias from annotations.

Chapter 7 describes a siamese neural network which combines methods of

disentangled learning (i.e., disentangled cross attention and swapping auto-encoder)

and clustering-friendly representation learning (i.e., denoising auto-encoder) to af-

ford open-domain attitude detection. The latent semantics which is entangled is

obtained from unsupervised training of a denoising auto-encoder, whose network

weights are retained and subsequently fine-tuned on pair-wise annotated instances.

The model enables the clustering algorithms to cluster in a particular semantic

space such as aspects based on the distance metrics such as Euclidean distance. Its

effectiveness has been demonstrated by empirical results, both quantitatively and

qualitatively.

Chapter 8 concludes the thesis and casts insights into future text under-

standing research by providing new challenges or proposing new directions.
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Chapter 2

Literature Review

Chapter Abstract

In this chapter, we first review the neural sequence models and neural

topic models that form the basis of the proposed approaches, then we

carry on with NLP applications on sentiment analysis and text clustering

that our methods are designed for. We begin with sequence-to-sequence

learning related to methods presented in Chapter 4, 5 and 6, along with

advancements such as RNN Encoder-Decoder and Transformers. Then

we move on to latent variable models for topic modelling. After that we

proceed with disentangled learning in conjunction with Chapter 6 and 7,

which is followed by concepts of semi-supervised learning. Finally, we

conclude this chapter with applications to sentiment analysis and text

clustering.

2.1 Neural Sequence Models

Neural Sequence Models map an input sequence {x1, x2, . . . , xN} to an output se-

quence {y1, y2, . . . , yT } by optimizing the joint probability of the output sequence:∏T
t=1 p(yt|x, y<t),

∏T
t=1 p(yt|x, y−t) or

∏T
t=1 p(yt|x) [18, 47, 277], where the first for-

mat is referred to as the autoregressive model in the case y = x [34] and the second is

commonly known as the masked language model [60, 67]. Nowadays this framework

has enjoyed great success since a wide spectrum of NLP tasks can be formulated as

predicting the next label based on the consumption of input and previously gener-

ated labels [54], as evidenced by RNN language models [180], named entity recogni-

tion (NER) [212], machine translation [262] and speech recognition [82]. The initial
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Seq2Seq paradigm comprises a single Recurrent Neural Network (RNN) to carry out

sequence labelling tasks [83] such as speech recognition, where labels are supposed

to be independent. However, for machine translation, there exist correlations be-

tween the target tokens, e.g., the syntax and grammar. In this concern, Sutskever et

al. [262] proposed to use a shifted-right prediction scheme that an LSTM produces

the target sentence after reading the input sequence.

2.1.1 RNN Encoder-Decoder

One of the difficulties of applying sequence-to-sequence models to machine trans-

lation is the alignment between the input and output sentence. For gauging the

influence from both the input and preceding output tokens at each prediction, an

additional RNN is placed parallel to the RNN of variable-length input, whose re-

currence is activated by both the foregoing output and the last state of the RNN of

input [47]. The RNN that sequentially reads the input is referred to as the Encoder,

whilst the RNN that iterates over the output is referred to as the Decoder.

Despite being an effective framework, the RNN encoder is less efficient in

aligning the semantics of output to those of input tokens, when compared with the

additive attention [11], scilicet the first prototype of query-key-value attention [277],

which computes the similarity between a target token (query) and a source token

(key) as the normalised sum of corresponding hidden representations. The similarity

score, i.e., the attention signal, is then used as the weight of the source token when

summing up all the RNN encoder hidden states (values). Prediction is based on

the updated RNN decoder hidden state activated by signals from both the previous

hidden state and the aggregated RNN encoder.

The structure of the RNN Encoder-Decoder model is depicted in Figure 2.1,

where the recurrent attention connects two RNNs. The attention mechanism is an

aggregation over all the encoder RNN’s hidden states weighted by similarity scores

which usually takes the form of adding two corresponding hidden representations,

as expressed as follows:

ct =

N∑
n=1

αtnhn (2.1.1)

αtn =
exp(etn)∑N
n=1 exp(etn)

(2.1.2)

etn = v⊤ tanh(Wsst−1 +Whhn) (2.1.3)

where v ∈ Rda×1 is a weight vector, st−1 ∈ Rds×1 and hn ∈ Rdh×1. Ws is a weight
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Figure 2.1: The RNN Encoder-Decoder architecture and the Self-Attention.

matrix of size Rda×ds and Wh ∈ Rda×dh .

Intuitively, the attention mechanism is a soft alignment between the anal-

ysed vector and all the context vectors. Variants of this architecture often use

different terminology to describe fundamentally similar ideas. For instance, Trans-

formers [277] used dot-product attention [164] to calculate the similarity score as

well as reduce the computational complexity. Rush et al. 2015 employed a weighted

dot-product for alignment instead of an alignment MLP, and expand the decoder

context from a single word to a context window. In the computationally less expen-

sive multiplicative variant [164], Eq. 2.1.3 is expressed as

etn = (Wsst−1)
⊤Whhn (2.1.4)

To this end, Galassi et al. 2021 summarised the nomenclatures and usages of various

attention architectures.

2.1.2 Self-Attention

All the aforementioned attentions work under the scenario of machine translation,

where the annotation is a sequence of tokens. It is also possible to apply the atten-

tion to a single sequence for the alignment between each word and other tokens in

the sequence [230], as opposed to a single LSTM for the modelling of sequential de-

pendence between words [30]. The right-hand side of Figure 2.1 shows several layers

of Self-Attention. The upper layer representation is computed from inner alignment

and weighted-sum of the lower layer, i.e., ct = h
(1)
t and st−1 = ht in Eq. 2.1.1- 2.1.3.

If we confine the alignment between each word and every token to the align-

ment between these and a parameterised vector, Eq. 2.1.3 degenerates to

etn = v⊤ tanh(Whhn + bh), (2.1.5)
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where bh is analogous to a bias and v weighs the importance of each dimension.

The attention above has demonstrated success in a spectrum of tasks replacing the

pooling function to aggregate the final layer of Recurrent Neural Networks (RNNs).

A notable work is the hierarchical attention networks (HAN) for document classi-

fication [305] where the Self-Attention is employed to produce a fixed-sized vector

that represents sentences or documents respectively. Baziotis et al. 2017 subse-

quently applied Self-Attention to Twitter sentiment classification and achieved su-

perior performance. Other works leverage Self-Attention to characterize the depen-

dence between questions and answers in QA [160], to align passages and questions

in Machine Reading Comprehension [240] and to attend to image patches in Image

Caption Generation [301].

2.1.3 Memory Network

The neural attention can capture salient features among a collection of vectors,

which naturally imitates the human brain behavior [8]. Unlike the LSTM’s cell state

that encodes relationship through recurrence, the neural attention allows the upper

layer to directly attend to past hidden states, thus circumventing the LSTM’s cell

state bottleneck. This is analogous to a highway bypass the redundant connections

or building blocks [90, 277, 278].

Despite the flexibility of skip-connections, the single-layered attention is in-

adequate for modelling the multiple hops over the long-term memory in comparison

with LSTMs [259], let alone the temporal order. If we keep the LSTM for gaug-

ing the transitive dependencies, the recurrence will cost most of the computation

since gradients propagating through RNN states must be calculated sequentially

and cannot be fully parallelised [220]. To mitigate the RNN performance bottle-

neck, Sukhbaatar et al. 2015 developed the Memory Network that is fully composed

of attention. In their model, as displayed in the right-hand side of Figure 2.1, the

Encoder RNN is substituted with a stack of L Self-Attention layers. Hence, the

RNNsearch [11] of multi-hop dependencies can be realised by bottom-up paths.

Inspired by this work, many sequence-to-sequence structures have replaced

the recurrent block with layers of Self-Attentions, such as the Convolutional Se-

quence to Sequence model (ConvS2S) [72], the Gated Graph Sequence Neural Net-

works [149], and the Long Short-Term Memory-Networks [44]. In terms of text

understanding tasks, the need for parallelisation in self-supervised learning on large

unannotated corpora spurred interests in auto-regressive language models [271].

Narayan et al. 2018 introduced Memory Networks for Text Summarization to han-

dle extremely-long dependencies. Similarly, the QA system developed by Miller et
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al. 2016 employed the key-valued memory network to index items from an external

knowledge base. Similar memory network is also exploited in [161, 162].

2.1.4 Transformer Encoder-Decoder

Memory networks circumvent the computation for long-range recurrence of RNN

states, at the cost of negligible performance impairment thanks to the parallelised

gradient descent on self-attentions. Despite the intriguing properties, memory net-

works are less effective in jointly modelling the recurrent dependencies between

labels and the alignment between the source sequence and target sequence, such as

machine translation [297], due to the absence of the decoder structure [277], and

caused by the limited expressiveness of stacking self-attentions when compared with

stacked LSTMs [329].

Encoder

A natural way to introduce position relationships to pure attention is to use the

positional encoding [245]. The word representations are added with positional en-

codings, so that the attention network could learn which position to attend to.

Formally, the input hi to a self-attention layer is decomposed as

hi = xi + pi, (2.1.6)

where pi is the positional encoding which Vaswani et al. 2017 choose to be a sinusoid

function and BERT [60] chooses to be a trainable embedding, xi is the fixed word

embedding.

On top of this, Vasawani et al. 2017 expanded the self-attention to the

multi-head self-attention layer to allow information flows from different subspaces.

Let the matrix H ∈ RN×dH represent N rows of hidden representations (i.e.,

[h1;h2; . . . ;hN ]), the self-attention of Eq. 2.1.5 is then expressed as:

headi = Attention(H) = softmax

(
HWQ(HWK)⊤√

dh

)
HWV , (2.1.7)

MultiHead(H) = [head1, head2, . . . ,headh]WO, (2.1.8)

where WQ ∈ RdH×dK , WK ∈ RdH×dK , WV ∈ RdH×dV , WO ∈ RhdV ×dV , and

softmax(·) denotes the softmax on each row. Note that here we denote hidden

representations by hn ∈ R1×dH . This is different from the vertical vector repre-

sentations in Eq. 2.1.1- 2.1.3. Most literature [45, 224, 323] refer to HWQ, HWK
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Figure 2.2: The Transformer Encoder-Decoder structure.

and HWV as queries, keys and values. We will use this nomenclature in future

discussions.

The recurrent attention of RNN Encoder-Decoder sidesteps redundant con-

nections between each decoder state and historical encoder states, similarly, such

gradient shortcuts could also exist across several layers when there are stacked self-

attentions. In the Transformer Encoder-Decoder framework, as illustrated in Fig-

ure 2.2, each Encoder layer is integrated with a residual connection [90] placed in

between its multi-head attention layer and that of the upper Encoder layer. This skip

connection enables direct information flows to avoid gradient vanishing or explosion

problems when the encoder goes deep. To further prevent exploding gradients and

stabilize learning towards convergence, layer normalization [10] is employed after

the residual connection.

Apart from the residual network, each Encoder layer consists of an identical

fully-connected feed-forward network which takes input from token embeddings at

each token position. This network is set to discern the influence of a token across

different layers.

The most desirable advantage of stacking the Transformer Encoder layers

compared with deep LSTMs is mass parallelisation. The direct connection between

positions allows for parallelisation, and the dot-product attention is more efficient
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than its additive counterpart yet leading to no performance drop credited to the

non-linearity of the residual connection plus ReLU layers.

Decoder

Memory network is proposed for Question Answering where the prediction is a single

label. For Language Modelling [294], stacking Transformer Encoders is prevalent as

most correlations are reflected in tuned masking strategies [6, 211]. In the context of

Machine Translation, however, there has to be a connection in the label side since the

prediction is no longer auto-regressive and label-to-label connection is indispensable.

In this regard, Vasawani et al. 2017 designed the Decoder network to consume the

shifted-right output from the proceeding Decoder layer. As depicted in Figure 2.2,

the decoder comprises T layers. Each layer accepts prediction from the previous

layer as the input for query, and the output matrix from the last encoder layer as

inputs for keys and values. The attention in a decoder layer is expressed as:

Attention(ot−1, H,H) = softmax

(
o⊤t−1WQ(HWK)⊤√

dh

)
HWV , (2.1.9)

where ot−1 is the output from the previous decoder layer. H is the output coming

from the last layer of the encoder.

2.1.5 Recent Advances in Transformers

The efficiency of Transformer gave rise to pre-trained language models in large

magnitudes [60, 91, 132, 155, 218, 304], since ELMo [213] had refreshed the state

of the art on a suite of NLP tasks using pre-trained deep BiLSTMs. In lieu of the

reduction in complexity [127], Sparse Attention [308] is proposed where each query

attends to a random set of keys. Performer [49] employs kernel function to convert

attention matrices to kernels, which simplifies matrices multiplication.

Another driving force behind applications of Transformers to language mod-

els is the refinement in modelling token order or token positions. In this avenue,

Shaw et al. 2018 designed relative position embedding to explicitly model the rela-

tive position in matrix multiplication. Yang et al. 2019 refined the relative position

embedding by adding a bias to the query matrix, which emphasizes the query-to-key

position. More recently, He et al. 2021 developed the disentangled attention, namely

DeBERTa, for token-to-token and token-to-position relations. The DeBERTa model

also leverages absolute position for MLM prediction, and is the first to outperform

the human baseline in the SuperGLUE [285] benchmark.
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Improving transformer expressiveness is also a notable series of efforts. Henry

et al. 2020 addressed the saturation of softmax function in the case where the dot-

product results are congruently large, and remedied it with layer normalization. The

same layer normalization is applied in replacement of the softmax layer to the dot-

product attention [228]. It was later argued that layer normalization is insufficient to

circumvent the rank collapse [62]. Therefore, residual connections and Multi-Layer

Perceptions (MLPs) are essential for sustaining the rank of H.

2.2 Topic Representation Learning

Topic representation learning aims to encode a sentence into a low-dimensional

space. The idea of encoding text into topic representations dates back to topic

models [23, 24, 117] where texts are represented as a distribution over the latent

variables. Earlier work explored Bayesian models or Bayesian nonparametric models

for the generative process of text observations [22, 84, 202, 267]. The merit of

generative models on topic representation learning is three-fold. Firstly, generative

models can handle the explosive amount of unlabelled data effectively and hence, fit

the training instances without the loss of generalization capability [312], as evidenced

by Bayesian nonparametric models. Secondly, the modelling of latent variables

enables disentanglement and causal reasoning of latent factors [238]. Thus, it is

opportune in such a framework to impose prior distributions or steer the generation

by tweaking latent factors. Lastly, the latent representations, whether disentangled

or not, can comply with various mathematical constraints, which allow similarity-

based operations such as clustering or semantic search [167, 187, 290, 335].

According to the OpenAI taxomony [120] and recent surveys [26, 122], ex-

isting deep generative models are categorized into five strands of work. The first,

autoregressive models, are considered as latent-variable-free models not involv-

ing any probabilistic generative process. Token generation is formulated as shifted-

right prediction or Denoising Auto-Encoders, such as Masked Language Models

(MLMs) [187, 287, 306, 333]. The second kin are normalising flows [61], which

assumes observations to be generated from samples of a latent variable through

a chain of invertible functions [124]. The third, Generative Adversarial Nets

(GANs) [78], introduces a discriminator to discriminate between the real instances

and the generated samples, which uses adversarial training alternating between

updating the discriminator and the generator. The fourth family of models are

Energy Based Models (EBMs) [133], where the optimised probability pθ(x) =

exp(−Eθ(x))/
∫
x exp(−Eθ(x)). EBMs customize the Energy Function Eθ(x) and op-
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timize θ based on the derivative of the log likelihood expressed as ∂ log pθ(x)/∂θ =

Epθ(x) [∂Eθ(x)/∂θ] − ∂Eθ(x)/∂θ. Score-based model [255] can be seen as an exten-

sion that surrogates the optimisation of pθ(x) by optimizing a score function [153],

thus circumventing the normalisation of exp(−Eθ(x)). The fifth, Variational Auto

Encoders (VAEs) [123], stems from the posterior estimation in Bayesion nonpara-

metrics, using parameterized inference network to maximize the Evidence Lower

Bound (ELBo) of pθ(x). Diffusion models can be viewed as an extension where the

forward generative network contains multiple hops on the latent variables through

Bayesian neural networks.

Of the most relevancy to this thesis is the VAE model. Like Energy Based

Model, VAE hinges on a decomposition of pθ(x), which is expressed as1 [23, 25]:

log pθ(x) = KL [qϕ(z|x)||pθ(z|x)] + Eqϕ(z|x) [log pθ(z,x)− log qϕ(z|x)] , (2.2.1)

where the second RHS term is called the Evidence Lower BOund (ELBO). It is worth

noting that Eq. 2.2.1 was originally discovered in Variational Inference [23, 117]

during the decomposition of KL [qϕ(z|x)||pθ(z|x)]2, and was collated by Kingma et

al. 2014 for generality, as will be introduced in § 2.2.2.

Eq. 2.2.1, which gives rise to this family of Probabilistic Graphical Models

(PGMs), can be understood from two perspectives. For the perspective of log pθ(x),

it is deemed as Maximum Likelihood Estimation (MLE) of θ [123]. For the per-

spective of KL [qϕ(z|x)||pθ(z|x)]3, one can regard it as Bayesian Inference of the

posterior distribution pθ(z|x) (whose point estimation is maximum a posteriori,

scilicet MAP) [282].

In the presence of the latent variables, the marginal likelihood over z, that

is
∫
z pθ(x, z), is typically intractable, leaving either the optimisation of log pθ(x) or

KL [qϕ(z|x)||pθ(z|x)] an ill-posed problem [117, 282]. Thankfully, due to the posi-

tivity of log pθ(x) and KL [qϕ(z|x)||pθ(z|x)], both can resort to the optimisation of

ELBO as an approximation, regardless of the trade-offs between the two objectives.

It is also possible that the generative process, AKA pθ(x|z) and pθ(z), con-

tains no parameters, and such an assumption favors some situations: if the data are

synthetically generated, or the real-world data is generated by known distributions

(e.g., tossing a dice) a priori, the latent variable model with parameterized genera-

1In LDA, the generative process is nonparametric. Therefore p(x) does not include θ.
2Note that the decomposition can also be applied to the case qϕ(z), i.e., where we do not

condition on x [123].
3In Variational Inference, the variational distribution is denoted as q(z|γ, ϕ). It is important to

note that the variational distribution is actually a conditional distribution [23], i.e., γ and ϕ are
functions of x after the optimization has been conducted.
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tive process will be over parameterized. From this fact, we dichotomize the PGMs

into two categories – Bayesian models and Bayesian neural networks.

In the context of Bayesian models, the training objective can be understood

as Bayesian inference. However, the object of finding pθ(z|x) is not restricted to ap-

proximation via a variational distribution, but is allowed to estimate from samples of

the de facto posterior. In this sense, Gibbs Sampling [73, 74] can be employed to de-

tour the intractability. In particular, Griffiths and Steyvers 2004 applied Collapsed

Gibbs Sampling [152] to obtain samples from pθ(z|x).

The rest of this section will review the Variational Auto-Encoders in details,

and give a brief introduction of posterior estimation methods for Bayesian models.

2.2.1 VAE for Topic Representation Learning

Let the Evidence Lower Bound be the target for optimization, the RHS term of

Eq. 2.2.1 is rewritten as

Eqϕ(z|x) [log pθ,η(z,x)− log qϕ(z|x)] (2.2.2)

= Eqϕ(z|x) [log pθ(x|z) + log pη(z)− log qϕ(z|x)] (2.2.3)

= Eqϕ(z|x)
[
log pθ(x|z)]− Eqϕ(z|x)[log qϕ(z|x)− log pη(z)

]
(2.2.4)

= Eqϕ(z|x) [log pθ(x|z)]−KL[qϕ(z|x)||pη(z)] , (2.2.5)

where ϕ, θ and η are free parameters to be trained. Note that we consider η to be

exclusive to pη(z) and pθ,η(z,x) = pθ(x|z) pη(z). It is assumed that {xn}Nn=1 and

{zn}Nn=1 are i.i.d. variables in the generative process. This assumption leads to the

factorization of the variational distribution. Therefore, Eq. 2.2.5 is expressed as

Eqϕ(zn|xn) [log pθ(xn|zn)]−KL[qϕ(zn|xn)||pη(zn)] , (2.2.6)

where xn is the BOW representation of the n-th document. The LHS term of

Eq. 2.2.6 is commonly interpreted as an AutoEncoder [51, 123, 125, 227]. The vari-

ational distribution and the generative prior are commonly customized as Gaussian

distributions such that

zn ∼ qϕ(zn|xn) = N (zn; fµ(xn), fσ(xn)) (2.2.7)

pη(zn) = N (zn;0, I), (2.2.8)

where fµ(·) and fσ(·) are MLPs parameterized by the variational parameters ϕ.

Under the BOW assumption, tokens are independent one-hot embeddings.
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Figure 2.3: The plate diagram of VAE. Circled variables are random variables and
those not circled are deterministic quantities. Shaded circles denote random ob-
served quantities.

For the purpose of reconstructing the one-hot representation, the decoder is special-

ized [123] as

pθ(xn,m|zn) =
exp(y

(xn,m)
n )∑V

v=1 exp(y
(v)
n )

, (2.2.9)

where yn = MLP(zn), (2.2.10)

V is the vocabulary size, and y
(v)
n is the v-th element of yn. The BOW assumption

and the specifications from Eq. 2.2.7 - 2.2.10 define the Neural Variational Document

Model (NVDM) [179], a special case of VAE in the text understanding regime.

Figure 2.3 depicts the structure of VAE, where the decoder is instantiated to softmax

MLP, and the encoder is a multivariate Gaussian with a diagonal covariance.

Reparameterization Trick

VAE relies on Stochastic Gradient Descent (SGD) to learn the parameters. However,

the Monte Carlo estimate of the expectation term in Eq. 2.2.6 requires sampling.

If we sample z
(s)
n ∼ N (zn; fµ(xn), fσ(xn)) directly, the derivatives w.r.t. the pa-

rameters (i.e., ∇ϕΣS
s=1z

(s)
n /S) would exhibit very high variance [123, 201], making

ϕ unable to converge to a local optimal. To circumvent this, a reparameterization

trick is developed:

z(s)n = fµ(xn) + fσ(xn)⊙ ϵ(s), (2.2.11)

where ϵ(s) ∼ N (0, I). (2.2.12)

Here, ⊙ denotes the element-wise product and z
(s)
n denotes the s-th sample from

N (zn; fµ(xn), fσ(xn)).
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Computing −KL[qϕ(zn|xn)||pη(zn)]

Since both qϕ(zn|xn) and pη(zn) are Gaussian distributions, the KL-divergence term

can be analytically computed as

−KL[qϕ(zn|xn)||pη(zn)] =
1

2

D∑
d=1

(
1 + log(σn[d]2)− µn[d]2 − σn[d]2

)
, (2.2.13)

where µn = fµ(xn) and σn = fσ(xn), (2.2.14)

D denotes the dimensionality of µn, and σn[d] is the d-th element of σn.

To this end, the ELBO for SGD to optimize w.r.t. ϕ and θ is[
1

S

S∑
s=1

Mn∑
m=1

log pθ(xn,m|z(s)n )

]
+

1

2

D∑
d=1

(
1 + log(σn[d]2)− µn[d]2 − σn[d]2

)
, (2.2.15)

where µn = fµ(xn), σn = fσ(xn), z
(s)
n = µn + σn ⊙ ϵ(s) and ϵ(s) ∼ N (0, I).

2.2.2 Bayesian Models for Topic Modelling

According to the taxonomy at the head of this section, the generative model will

be further dichotomized into two categories – Bayesian models and Bayesian neural

networks, if it follows Eq. 2.2.1 to decompose the log-likelihood. Bayesian models,

especially Bayesian nonparametric models circumvent the parametric redundancy,

and their convergence to true labels is backed by theoretical developments [24]. For

large-scale topic modelling of text, the most widely adopted method is the Latent

Dirichlet Allocation (LDA) [23].

Latent Dirichlet Allocation

The trait of a Bayesian model is mainly described by its generative process:

1. For each topic k ∈ {1, 2, . . . ,K}
• Draw a V − 1-dimensional simplex βk ∼ Dirichlet(η)

2. For each document n ∈ {1, 2, . . . , N}
• Draw a K − 1-dimensional simplex θn ∼ Dirichlet(α)

• For each token m ∈ {1, 2, . . . ,Mn}
* Draw a topic zn,m|θn ∼ Discrete(θn)

* Draw a word (piece) wn,m|βzn,m ∼ Discrete(βzn,m)

The beauty of the Latent Dirichlet Allocation is 2-fold. The simplex in the first

stage of the generative process, βk, is a distribution over the vocabulary. The
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symmetric Dirichlet prior induces the simplex to be highly concentrated on a few

of the values, which makes the topics distinct and easy to interpret, as well as

the topical distributions of each document. Secondly, the Dirichlet distribution

is conjugate to the multinomial distribution, which will facilitate the inference or

estimation by confining the posterior to another Dirichlet distribution.

As mentioned in the taxonomy, the learning of latent variables is often under-

stood as Bayesian inference of p(z|x) in Eq. 2.2.1, where two approaches – Collapsed

Gibbs Sampling and Variational Inference are widely adopted. The variational in-

ference is of the most relevance to this thesis. The variational inference for LDA

typically makes the mean-field assumption that the variational family factorizes as

q(β1:K ,θ1:N , z1:N |λ,γ,ϕ) =
∏K

k=1
q(βk|λk)

∏N

n=1
q(θn|γn)

∏Mn

m=1
q(zn,m|ϕn,m),

(2.2.16)

where q(βk|λk) and q(θn|γn) are Dirichlet distributions, since the posteriors of βk

and θn are Dirichlet distributions according to the Dirichlet-multinomial conjugate

and Bayes Ball rules. q(zn,m|ϕn,m) is a discrete distribution. The variational pa-

rameters can be solved by a fixed-point iteration method which firstly iterates over

n maximizing ELBO w.r.t. ϕn and θn, and secondly iterates over k maximizing

ELBO w.r.t. βk.

Inspirations for VAE-based Topic Modelling

VAE also maximises ELBO but specifies pη(zn) = N (0, I), which is suboptimal com-

pared with the Dirichlet distribution. However, choosing the Dirichlet distribution

as the prior pη(zn) raises two challenges: If we set q(·) to a Dirichlet family as well,

it will be difficult to apply the reparameterization trick. While if we choose Gaus-

sian distributions as the variational family q(·), the calculation of the KL-divergence

between p(·) and q(·) would be more problematic [258]. ProdLDA [258] sidesteps

these challenges by applying the logistic normal distribution to pη(zn), which can

approximate a Dirichlet distribution when its parameters are resolved by a closed

form using a Laplace approximation [258]. Therefore, both p(·) and q(·) are set to

LN (·), and both the RT and computation of KL[qϕ(zn|xn)||pη(zn)] become viable.

2.2.3 Recent Advances in VAE

AE and β-VAE

VAE optimises Eq. 2.2.6. However, it is also possible to learn a latent-feature dis-

criminative model [125] by stressing the optimisation of Eqϕ(zn|xn)[log pθ(xn|zn)] and
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relaxing the constraint of KL[qϕ(zn|xn)||pη(zn)]. On the other hand, if we specify

qϕ(zn|xn) to be a Dirac delta distribution (or its approximate equivalent) where all

the probability mass is placed at zn = fϕ(xn), the ELBO will reduce to an AutoEn-

coder with the deterministic function fϕ(xn) as the Encoder and log pθ(xn|zn) as

the Decoder, and log pη(fϕ(xn)) will be a regularizer in which pη(·) is often realised

as N (zn, δ) quantifying the complexity of the encoder function.

In contrast to the AutoEncoder, β-VAE [94] hinges on the choice of pη(zn),

which serves as the prior to presumably induce the disentanglement (§ 2.3) of the

latent variable. Successful disentanglement requires each component to correspond

to an interpretable distribution or tangible factor, which is reflected in the KL-

divergence term. Therefore, the loss objective is modified into

Eqϕ(zn|xn) [log pθ(xn|zn)]− β KL[qϕ(zn|xn)||pη(zn)] , (2.2.17)

where β is a hyperparameter controlling the strength of the correspondence. Higgins

et al. 2017 showed that β > 1 is a typical value to achieve good disentanglement,

indicating that unsupervised disentanglement heavily relies on the prior distribution.

VRNN

BOW representations of sentences omit the chronological order of tokens. Thus the

word meanings depend solely on co-occurrences, which inhibits the full potential of

representation learning. Conversely, it has been demonstrated that RNNs are more

capable of language modelling and hence learn more compact representations com-

pared with the vanilla Back Propagation (BP) network [18, 82, 180]. In the same

vein, latent codes of tokens (i.e., zn,m) shall have interrelations and such dependen-

cies are essential for the modelling of word-level or sentence-level semantics.

To this end, Chung et al. 2015 proposed a recurrent version of VAE, called

Variational Recurrent Neural network (VRNN), to explicitly model the depen-

dencies between latent random variables across subsequent timesteps. It is as-

sumed that both the generative network pθ(xt|z≤t,x<t) and the inference network

qϕ(zt|z<t,x≤t) are reliant on hidden states of an RNN. The resulting ELBO is ex-

pressed as

Eqϕ(z≤T |x≤T )

[
T∑
t=1

(log pθ(xt|z≤t,x<t)−KL(qϕ(zt|z<t,x≤t)||pθ(xt|z<t,x<t)))
]
.

(2.2.18)
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VAE with Normalizing Flows

The optimisation of ELBO requires the KL-divergence term of Eq. 2.2.6 to reach

0, which is hard because of the limited choices of approximating families (i.e.,

qϕ(zn|xn)) or the assumed priors. An ideal variational family would be a flexible one

that could contain the posterior distribution while minimising the KL divergence

w.r.t. the prior. Therefore, Rezende and Mohamed 2015 introduced normalizing

flows [263, 264] as the variational family. The normalizing flow transforms a base

variational distribution, e.g., a sphere Gaussian distribution, to a multi-modal dis-

tribution through a sequence of invertible maps expressed as

zK = fK ◦ fK−1 ◦ · · · ◦ f1(z) (2.2.19)

ln qK(zK) = ln q0(z)−
K∑
k=1

ln |1 + u⊤
k ϕk(zk−1)|, (2.2.20)

where ϕk(z) = h′(w⊤z + b)w and h′(·) is the derivative of a smooth element-wise

non-linearity. Then the ELBO expression in Eq. 2.2.2 can be rewritten as

Eqϕ(z|x) [log pθ,η(z,x)− log qϕ(z|x)] (2.2.21)

= Eq0(z0)[log pθ,µ(x, zK)− ln qK(zK)] (2.2.22)

= Eq0(z0)[log pθ,µ(x, zK)]− Eq0(z0)[ln q0(z0)] + Eq0(z0)

[
K∑
k=1

ln |1 + u⊤
k ϕk(zk−1)|

]
.

(2.2.23)

Henceforth, the prior can be included in the variational family along with flexibility,

i.e., choices other than Unit Gaussian, and the variational distribution will have

more expressiveness.

VAE with Pre-Trained Language Models

Enriching the expressiveness of the prior and the variational distribution has gar-

nered considerable interest in VAE research. In the wake of pre-trained language

models, it is feasible to graft LM components to the inference network and formu-

late the training as fine-tuning in a low-resource setting. A practical approach is

OPTIMUS [140], which is a modification of β-VAE that the inference network (i.e.,

Encoder) is BERT and the generative network (i.e., Decoder) is GPT-2. Notably,

they design the Memory Scheme and the Embedding Scheme to regularize the la-

tent variable with the variational prior. The Memory Scheme is operated by firstly
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reparametrizing zn and then appending the sample to the LM output as an extra

token. On the other hand, the Embedding Scheme adds the sample of the varia-

tional distribution to the LM output as a positional embedding. A number of recent

papers [167, 187, 287] also addressed the fine-tuning of LM under the VAE formula,

whilst their reconstruction objective is predicting the masked token in the same

way the original transformer was trained instead of training from scratch. Hence we

categorize them into Denoising Auto-Encoders and will discuss them in § 2.4.3.

Aside from grafting LM components, there are approaches utilizing off-the-

shelf structures or embeddings. TopicBERT [39] concatenates the NVDM em-

bedding with the [CLS] embedding of BERT to classify news articles into topics.

TBERT [207] reconstructs the BERT embeddings and shows the usefulness of topic

representations in paraphrase ranking. Bianchi et al. [20] proposed Neural Topic

Models with Language Model Pre-training (NTMLM). The model is an extension

of BOW neural topic models which consumes the concatenation of SBERT [225]

embedding and BOW representation to reconstruct the BOW representation. TC-

CTM [190] predicts the BOW representation with a similar architecture but with

an added fully-connected layer and softmax to produce a topic classification from

the LM hidden representations. In contrast, VIBERT [167] gave up the BOW re-

construction and only predicted a sentence label from the variational distribution,

as tailored for the low-resource fine-tuning scenario.

2.3 Disentangled Learning

Deep learning methods in NLP learn the hidden semantics of text, many of which

attempt to capture the independent latent factor to steer the generation of text [103,

115, 143, 210]. The ability to distinguish factors of variation from uninformative

ones is called disentanglement [19, 95, 172]. The idea of disentangling independent

components from their mixtures dates back to the linear Independent Component

Analysis [109], where multiple linearly mixed signals can be recovered to their orig-

inal source signals given that the source signals are non-Gaussian. Nowadays, there

is surging interest in non-linear ICA [101, 107]. The majority of the work employs

VAE [123] to learn controllable factors [35, 43, 94], as illustrated in β-VAE (§ 2.2.3)

where a scaling hyperparameter is placed to align the variational distribution to a

controllable prior.

However, theoretical studies on identifying factors of variations show that

unsupervised learning of disentanglement by optimising the marginal likelihood in

a generative model is impossible [157–159]. On the other hand, inductive biases
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from additional auxiliary variables or contrastive samples are helpful for extracting

the underlying latent variables from data [108]. To solve the identifiability prob-

lem, Khemakhem et al. [121] proposed a premise on the observed marginal density

pθ(x) to offer the identifiability guarantees, which is specified by ∀(θ, θ′) : pθ(x) =

p′θ(x) ⇒ θ = θ′. In other words, if any two different choices of model parameter

lead to the same marginal density, then they are equal and thus the models have the

same joint distributions pθ(x, z). Therefore, the situation that two solutions share

the same marginal density (i.e., pθ(x)) whilst convertible up to a transformation

and thus entangled will be prevented under this assumption.

More recently, Horan et al. [97] proposed to unleash the constraint on identi-

fiability to a more general assumption – the assumption of local isometry, that any

change in the latent variable is associated with a change in the observation. The

local isometry suffices to find a disentangled representation even with classical meth-

ods such as FastICA. While the correspondence between the variable of variations

and the observations induces disentanglement, the statistical correlations between

observed factors of variations pose problems for generative models attempting to

learn a disentangled representation. Träuble et al. [273] empirically studied these

effects and investigated two approaches to resolve the correlations.

2.4 Semi-supervised Language Representation Learn-

ing

Encoding words or other component units of language into compact, exploitable

representations has been the central theme of text understanding research. In gen-

eral, it is feasible to use representations acquired from self-supervised [88, 181] or

unsupervised learning [242] to codify the semantics for supervised learning, or even

to pave the foundation for reinforcement learning, as evidenced by recently devel-

oped pre-trained language models such as PaLM and GPT-3.5 [34, 50, 199]. In this

section, we first introduce word embedding and language modelling approaches that

build foundation representations for supervised learning or fine-tuning. Then we

proceed with literature reviews on Denoising Auto-Encoders.

2.4.1 Word Embedding

Word-level representation learning aims at encoding words through a lookup table

into a low-dimensional space as vectors or densities. Normally, word representa-

tions are encoded from the collocations of words in the local context, and thus
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can presumably summarize the syntactic and semantic regularities by observing the

co-occurrence. In this way, the dense representations of words will transfer the en-

coded statistics, usually reflected by word similarities, to boost the performance of

downstream tasks. Successful applications include question answering [52], textual

entailment [77], named entity recognition [131] and sentiment analysis [232], where

the embedded words serve as input to models for downstream tasks. The idea of

learning word representations by backpropagation (BP) neural networks was first

explored in [234]. Later on Deerwester et al. [1990] addressed this problem by latent

semantic indexing where word embeddings can be extracted by performing singu-

lar vector decomposition on word co-occurrence matrices. A notable approach is

the Skip-Gram model, also known as Word2Vec [181], which inherits the idea of

parametric vocabulary-to-vector mapping in the neural language model [18]. More

concretely, their model optimizes the function 1
N

∑N
n=1

∑C
c=1 log p(wn,c|xn), to max-

imize the log-likelihood of the context wn given the n-th word xn. The Skip-Gram

was further modified to scale up to large amounts of data by replacing the softmax

layer with hierarchical softmax or Negative Sampling (NEG) [182]. Pennington

et al. [2014] pointed out that Skip-Gram only utilizes local context while ignoring

the document-level word co-occurrence counts. Their proposed GloVe model inte-

grates the matrix factorization by modelling local context likelihood as document-

dependent.

Meanwhile, there is an emerging tendency towards applying density repre-

sentations to discriminate the nuance of information among senses. For example, the

Gaussian word embedding proposed in [280] represented words directly as Gaussian

distributions. Barkan [2017] extended the Skip-Gram by placing a Gaussian prior

on the parameterized word vectors. The parameters were learned via variational

inference [117]. Their model is the first to formulate the parameter optimization

problem as a posterior inference, which is typically used in probabilistic graphical

models. Bražinskas et al. [2018] represented words as posterior densities conditioned

on the pivot word and the associated context.

2.4.2 Pre-Trained Language Models

Language modelling is an effective approach to generating language representations,

usually at the token level. Unlike the word embedding, the objective of a language

model is to predict a joint distribution over a sequence of words {w1, w2, . . . , wT }:
p(w1, w2, . . . , wT ) =

∏T
t=1 p(wt|w1, w2, . . . , wt−1), which is essentially a generative

model and can be categorized into autoregressive models already defined in § 2.2.

In the case of computing the joint distribution by predicting the masked tokens,
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as practised in pre-trained MLMs [60], they are generalised as Denoising Auto-

Encoders. Though in this subsection we still refer to them as MLMs. In § 2.4.3,

we will discuss a variant of Denoising Auto-Encoders and distinguish them from

MLMs.

To compute the conditional probability of the autoregressive model, tradi-

tional approaches use non-parametric N-gram smoothing models [80]. Bengio et

al. [2003] made the first attempt to utilise a vanilla Back Propagation (BP) network

for the N-gram autoregressive prediction and vectorized the vocabulary via a look-

up table. Mikolov et al. [2010] followed their work by employing a Recurrent Neural

Network (RNN) and a Softmax function to predict the conditional probability. Most

of the work was limited to training the context-free word representations (i.e., the

look-up table) at this stage until Howard and Ruder [99] discovered that the hid-

den states of the top layer of pre-trained LSTMs could be directly employed for

classification and performance could be further improved by adding an extra layer

for fine-tuning. They refreshed the state-of-the-art in multiple domain-agnostic

tasks. Finally, Peters et al. [213] proposed ELMO that exploited aggregated hid-

den states of deep BiLSTMs and unified the fine-tuning process. They showed that

pre-trained BiLMs provide superior representations or network weights beneficial

for downstream classification, whilst fine-tuning improves domain-specific perfor-

mance at the cost of perplexity impairments. More importantly, by probing into

different layers of the pre-trained model, they found that these layers encode semi-

supervision signals at different abstraction levels (i.e., higher-level LSTMs capture

semantics while lower-level states encode the syntax).

The success of ELMO inspired a broad range of semi-supervised frameworks

that ameliorate LM pre-training and fine-tuning. A family of them employed ad-

vanced Sequence-to-Sequence models (e.g., Transformers), among which we have

GPT/GPT-2 [218, 219], BERT [60], RoBERTa [155], XLNet [304], ALBERT [132],

T5 [221], and so on [294]. In particular, DeBERTa [91] designed disentangled at-

tention by itself and encoded the positional and word embeddings separately. From

the data-format perspective, Wolf et al. [294] distinguish between autoregressive

prediction and masked-token prediction in language models, suggesting that autore-

gressive LMs and MLMs are akin to sequence-to-sequence models, whilst they only

differ in the format of input-output token sequences. In this sense, the sequence-to-

sequence relationship modelled by autoregressive LMs are shifted-right token-level

dependencies between the output and either the inputs or the preceding outputs. For

autoregressive LMs, the output-output dependencies can be implicatures of output-

input relationships. For MLMs, those relationships reside in the cooccurrence of

29



non-special tokens and [MASK] tokens. It should be noted that dependencies among

the output sequence are modelled by the Decoder, and in Transformers of Encoders

only, what LMs can learn is limited to target-input sequence dependencies. This

accounts for the phenomenon that GPTs [34] comprise Decoders as building blocks.

On the other hand, Encoder-based LMs typically make consecutive predictions as

the word prediction mechanism, or employ mask-tune [6, 137] to compensate for the

output sequence dependency.

Recently, Large Language Models (LLMs) that have unified different tasks

as free-form generation or multiple-choice selection [34, 270], have demonstrated

remarkable success. The rationale is that massive training corpora encompass a

mixture of implicit tasks that LLMs can learn in the process of learning to predict

the next word. In particular, GPT-3 [34] features in-context learning to navigate ag-

nostic tasks. The goal of in-context learning is to allow the model to do a completion

given a prompt in a specific context formulated as pθ(completion|prompt, context),

where context is instantiated as free-form task descriptions and/or few-shot examples

illustrating the task, and prompt is a direct instruction for the completion. GPT-3

carries out in-context learning by prepending examples with task descriptions or

few-shot examples in the free-from texts. They rephrase or reformat the training

examples of each task to fulfill a single training objective which does not cater to

any task in particular. The resulting model, i.e., GPT-3, shows few-shot (or zero-

and one-shot) ability. In this avenue, instruction-tuning [291] has been developed for

the benefit of zero-shot prediction on unseen tasks. The instruction-tuning pipeline

comprises a manual template creation step which composes natural language in-

structions to describe the task for each dataset, and a fine-tuning step which tunes

a pretrained language model with examples from each dataset formatted via a ran-

domly sampled instruction template for that dataset. Similarly, the T0 model [236]

develops an interface for prompt collection and provides each dataset with multiple

prompt templates. Finally, Ouyang et al. [199] design Reinforcement Learning from

Human Feedback (RLHF) to mitigate the hallucination, i.e., to reduce the untrue

output, which features a 3-stage pipeline that (1) an 175B GPT-3 model is tuned us-

ing prompts sampled from a prompt dataset, in the same way as instruction-tuning;

(2) a 6B GPT-3 model is turned into a reward model, which learns from ranked

outputs annotated by labelers to calculate the reward signal for each output; (3)

the reward model updates the 175B GPT-3-driven completion policy using Proximal

Policy Optimization (PPO).

There are also attempts leveraging knowledge graphs [237] or event databases

[135] for the integrity of commonsense reasoning [28, 214]. The training and tuning
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setup has been optimised [155]. New benchmarks [284, 285] and metrics [318] have

been proposed for extensive evaluation.

2.4.3 Denoising Auto-Encoders

Deep pre-trained transformers encode tokens into tunable general-purpose represen-

tations, which improve the target-domain performance. This semi-supervised frame-

work has been demonstrated successful by a number of specific models [60, 91, 155].

However, token-level representations are susceptible to being overparameterized and

cumbersome as appeared in Neural Sequence Models discussed in § 2.2. For exam-

ple, averaging the BERT output layer (known as BERT embedding) or fine-tuning

the standalone [CLS] are inefficient in semantic search where the evaluation is more

about sentence-level similarities [225]. Text clustering also requires a fixed-length

sentence representation compatible with the clustering algorithms [299]. To mitigate

these, a bottleneck representation was introduced to distil the holistic properties of

a sentence. Such a representation is typically a condensation over intermediate

outputs, which is analogous to a pooling operation. Since MLMs pertain to De-

noising Auto-Encoders according to the § 2.2 taxonomy, and GPT-alike LMs are

essentially autoregressive models, their training objectives are compatible so that

the semi-supervised learning could be performed.

Specifically, Montero et al. [187] presents a sentence bottleneck autoencoder,

called AutoBot, which clamps the encoder representation into a fixed-size latent

code. The latent code is learnt from the reconstruction of the perturbed text for the

benefit of dynamically pooling semantic information from the pre-trained model’s

hidden states. Yang et al. [306] also developed a sentence representation encoder,

where the sentence representation functions as a trainable vector to prompt a con-

ditional masked language model. In another work, SentenceMIM [156] followed the

denoising auto-encoding strategy but did the training from scratch. The model pro-

duces sentence representations suitable for similarity-based clustering and QA. TS-

DAE [287] is another sentence embedding model targeting unsupervised fine-tuning

whose objective is to predict the masked tokens and bottleneck representation is

acquired from the fine-tuning. Recent LLMs, e.g., cpt-code [195] and E5 [288],

have combined Denoising Auto-Encoders with in-batch contrastive learning and

contrastive fine-tuning to learn dense representations and utilised such representa-

tions to index semantically-related pairs in their semantic-searching modular, which

supports relevant code search with a query in natural language.
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2.5 Applications

This chapter introduced the relevant models in a taxonomy where each branch is

self-contained and chronologically updated. While these strands of work progress

in diverse directions, some share intersections regarding modules and objectives,

which attracts attention to particular tasks. For example, aspect-based sentiment

analysis [203] often requires the identification of aspects/topics and their polari-

ties, so that the joint modelling of aspects topics and sentiments [150] shows an

advantage. Opinion extraction requires the disentanglement of aspect and senti-

ment [326]. Topic representation learning and language modelling collaboratively

play a vital role in these scenarios. Another notable task is Text Clustering [299]

which requires clustering-friendly representations [266]. In such a scenario, instruc-

tive annotation is laborious and often requires expert knowledge. Therefore, the

majority of approaches resort to the semi-supervised learning paradigm that pre-

trains distributed representations first and then fine-tunes an LM-based Denoising

Auto-Encoder. We will use these tasks as test beds in the following chapters to

evaluate the proposed models.

32



Chapter 3

A Neural Generative Model for

Joint Learning Topics and

Topic-Specific Word

Embeddings

Chapter Abstract

This chapter introduces a generative model to explore the local and

global context for joint learning topics and topic-specific word embed-

dings. We assume that global latent topics are shared across documents,

a word is generated by a hidden semantic vector encoding its contex-

tual semantic meaning, and its context words are generated conditional

on both the hidden semantic vector and global latent topics. Topics

are trained jointly with the word embeddings. The trained model maps

words to topic-dependent embeddings, which naturally addresses word

polysemy. We show experiments on word similarity evaluation and word

sense disambiguation, demonstrating the model’s effectiveness in word

representation learning. Besides word embeddings, the model extracts

more coherent topics than existing neural topic models or other models

for joint learning of topics and word embeddings.

33



3.1 Introduction

Probabilistic topic models assume words are generated from latent topics which can

be inferred from word co-occurrence patterns taking a document as global context.

In recent years, various neural topic models have been proposed. Some of them

are built on the Variational Auto-Encoder (VAE) [123] which utilizes deep neural

networks to approximate the intractable posterior distribution of observed words

given latent topics [29, 179, 258]. However, these models take the bag-of-words

(BOWs) representation of a given document as the input to the VAE and aim to

learn hidden topics that can be used to reconstruct the original document. They do

not learn word embeddings concurrently.

Other topic modeling approaches explore the pre-trained word embeddings

for the extraction of more semantically coherent topics since word embeddings cap-

ture syntactic and semantic regularities by encoding the local context of word co-

occurrence patterns. For example, the topic-word generation process in the tradi-

tional topic models can be replaced by generating word embeddings given latent

topics [55] or by a two-component mixture of a Dirichlet multinomial component

and a word embedding component [196]. Alternatively, the information derived

from word embeddings can be used to promote semantically-related words in the

Polya Urn sampling process of topic models [139] or generate topic hierarchies [324].

However, all these models use pre-trained word embeddings and do not learn word

embeddings jointly with topics.

While word embeddings could improve the topic modeling results, but con-

versely, the topic information could also benefit word embedding learning. Early

word embedding learning methods [181] learn a mapping function to project a word

to a single vector in an embedding space. Such one-to-one mapping cannot deal

with word polysemy, as a word could have multiple meanings depending on its con-

text. For example, the word ‘patient ’ has two possible meanings ‘enduring trying

circumstances with even temper ’ and ‘a person who requires medical care’. When

analyzing reviews about restaurants and health services, the semantic meaning of

‘patient ’ could be inferred depending on which topic it is associated with. One solu-

tion is to first extract topics using the standard Latent Dirichlet Allocation (LDA)

model and then incorporate the topical information into word embedding learning

by treating each topic as a pseudo-word [154].

Whereas the aforementioned approaches adopt a two-step process, by either

using pre-trained word embeddings to improve the topic extraction results in topic

modelling, or incorporating topics extracted using a standard topic model into word
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embedding learning, Shi et al. [248] developed a Skip-Gram-based model to jointly

learn topics and word embeddings based on the Probabilistic Latent Semantic Anal-

ysis (PLSA), where each word is associated with two matrices rather than a vector

to induce topic-dependent embeddings. This is a rather cumbersome setup. Foulds

[69] used the Skip-Gram to imitate the probabilistic topic model that each word is

represented as an importance vector over topics for context generation.

In this chapter, we design a neural generative model built on VAE, called the

Joint Topic Word-embedding (JTW) model, for jointly learning topics and topic-

specific word embeddings. More concretely, we introduce topics as tangible param-

eters that are shared across all the context windows. We assume that the pivot

word is generated by the hidden semantics encoding the local context where it oc-

curred. Then the hidden semantics is transformed to a topical distribution taking

into account the global topics, and this enables the generation of context words.

Our rationale is that the context words are generated by the hidden semantics of

the pivot word together with a global topic matrix, which captures the notion that

the word has multiple meanings that should be shared across the corpus. We are

thus able to learn topics and generate topic-dependent word embeddings jointly.

The results of our model also allow the visualization of word semantics because top-

ics can be visualized via the top words and words can be encoded as distributions

over the topics.1 In particular, we make the following contributions:

• We propose a novel Joint Topic Word-embedding (JTW) model built on VAE,

for jointly learning topics and topic-specific word embeddings;

• We perform extensive experiments and show that JTW outperforms other

Skip-Grams or Bayesian alternatives in both word similarity evaluation and

word sense disambiguation tasks, and can extract semantically more coherent

topics from data;

• We also show that JTW can be easily integrated with existing deep contextu-

alized word embedding learning model to further improve the performance of

downstream tasks such as sentiment classification.

3.2 Related Work

Skip-Gram approaches for word embedding learning The Skip-Gram, also

known as Word2Vec [182], maximizes the probability of the context words wn

given a centroid word xn. Pennington et al. [209] pointed out that Skip-Gram

neglects the global word co-occurrence statistics. They thus formulated the Skip-

1The code is accessible via http://github.com/somethingx02/topical_wordvec_models.
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Gram as a non-negative matrix factorization (NMF) with the cross-entropy loss

switched to the least square error. Another NMF-based method was proposed by Xu

et al. [300], in which the Euclidean distance was substituted with the Wasserstein

distance. Jameel and Schockaert [111] rewrote the NMF objective as a cumulative

product of normal distributions, in which each factor is multiplied by a von Mises-

Fisher (vMF) distribution of context word vectors, to hopefully cluster the context

words since the vMF density retains the cosine similarity.

Although the Skip-Gram-based methods attracted extensive attention, they

were criticized for their inability to capture the polysemy [216]. A pioneered solution

to this problem is the Multiple-Sense Skip-Gram (MSSG) model [194], where word

vectors in a context are first averaged then clustered with other contexts to obtain a

sense representation for the pivot word. In the same vein, Iacobacci and Navigli [110]

leveraged sense tags annotated by BabelNet [193] to jointly learn word and sense

representations in the Skip-Gram manner that the context words are parameterized

via a shared look-up table and sent to a BiLSTM to match the pivot word vector.

There have also been Bayesian extensions of the Skip-Gram models for word

embedding learning. Barkan [15] inherited the probabilistic generative line while

extending the Skip-Gram by placing a Gaussian prior on the parameterized word

vectors. The parameters were estimated via variational inference. In a similar vein,

Rios et al. [229] proposed to generate words in bilingual parallel sentences by shared

hidden semantics. They introduced a latent index variable to align the hidden se-

mantics of a word in the source language to its equivalence in the target language.

More recently, Bražinskas et al. [32] proposed the Bayesian Skip-Gram (BSG) model,

in which each word type with its related word senses collapsed is associated with a

‘prior’ or static embedding and then, depending on the context, the representation

of each word is updated by ‘posterior’ or dynamic embedding. Through Bayesian

modelling, BSG is able to learn context-dependent word embeddings. It does not

explicitly model topics, however. In our proposed JTW, global topics are shared

among all documents and learned from data. Also, whereas BSG only models the

generation of context words given a pivot word, JTW explicitly models the genera-

tion of both the pivot word and the context words with different generative routes.

Combining word embeddings with topic modeling Pre-trained word embed-

dings can be used to improve the topic modelling performance. For example, Das

et al. [55] proposed the Gaussian LDA model, which, instead of generating discrete

word tokens given latent topics, generates draws from a multivariate Gaussian of

word embeddings. Nguyen et al. [196] also replaced the topic-word Dirichlet multi-
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nomial component in traditional topic models, but by a two-component mixture of

a Dirichlet multinomial component and a word embedding component. Li et al.

[139] proposed to modify the Polya Urn sampling process of the LDA model by pro-

moting semantically-related words obtained from word embeddings. More recently,

Zhao et al. [324] proposed to adapt a multi-layer Gamma Belief Network to generate

topic hierarchies and also fine-grained interpretation of local topics, both of which

are informed by word embeddings.

Instead of using word embeddings for topic modeling, Liu et al. [154] proposed

the Topical Word Embedding model which incorporates the topical information

derived from standard topic models into word embedding learning by treating each

topic as a pseudo-word. Briakou et al. [33] followed this route and proposed a four-

stage model in which topics were first extracted from a corpus by LDA and then the

topic-based word embeddings were mapped to a shared space using anchor words

which were retrieved from the WordNet.

There are also approaches proposed to learn topics and word embeddings

built on Skip-Gram models jointly. Shi et al. [248] developed a Skip-Gram Topical

word Embedding (STE) model built on PLSA where each word is associated with

two matrices—one matrix used when the word is a pivot word and another used

when the word is considered as a context word. Expectation Maximization (EM)

is used to estimate model parameters. Foulds [69] proposed the Mixed-Membership

Skip-Gram model (MMSG), which assumes a topic is drawn for each context and

the word in the context is drawn from the log-bilinear model based on the topic

embeddings. Foulds trained their model by alternating between Gibbs sampling

and noise-contrastive estimation. MMSG only models the generation of context

words, but not pivot words.

While our proposed JTW also resembles the similarity to the Skip-Gram

model in that it predicts the context word given the pivot word, it is different from

the aforementioned approaches in that it assumes global latent topics shared across

all documents, and the generation of the pivot word and the context words follows

different generative routes. Moreover, it is built on VAE and is trained using neural

networks for more efficient parameter inference.

3.3 Joint Topic Word-embedding (JTW)

In this section, we describe our proposed Joint Topic Word-embedding (JTW) model

built on VAE, as shown in Fig. 3.1. We first give an overview of JTW, then present

each component of the model, followed by the training details.
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Following the problem setup in the Skip-Gram model, we consider a pivot

word xn and its context window wn = wn,1:C . We assume there are a total of N

pivot word tokens and each context window contains C context words. However,

as opposed to Skip-Gram, we do not compute the joint probability as a product

chain of conditional probabilities of the context word given the pivot. Instead, in

our model, context words are represented as BOWs for each context window by

assuming the exchangeability of context words within the local context window.

xn

πn

µn

σn

zn

ζn

Encoder Decoder

xp
n

wp
n,c

c∈[1,C]

n∈[1,N]

β
linear

MLP

linearwn

N
MLPsoftmax
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Figure 3.1: The Variational Auto-Encoder framework for the Joint Topic Word-
embedding (JTW) model. Boxes are “plates” indicating replicates. Shaded circles
represent the observed variables. β is a T × V matrix representing corpus-wide
latent topics.

We hypothesize that the hidden semantic vector zn of each word xn induces

a topical distribution that is combined with the global corpus-wide latent topics to

generate context words. Topics are represented as a probability matrix where each

row is a multinomial distribution measuring the importance of each word within a

topic. The hidden semantics zn of the pivot word xn is transformed to a topical

distribution ζn, which participates in the generation of context words. Our assump-

tion is that each word embodies a finite set of meanings that can be interpreted

as topics, thus each word representation can be transformed to a distribution over

topics. Context words are generated by first selecting a topic and then being sam-

pled according to the corresponding multinomial distribution. This enables a quick

understanding of word semantics through the topical distribution and at the same

time learning the latent topics from the corpus. The generative process is given

below:

• For each word position n ∈ {1, 2, 3, . . . , N}:

– Draw hidden semantic representation zn ∼ N (0, I)

– Choose a pivot word xn ∼ p(xn|zn)

– Transform zn to ζn with a multi-layered perceptron: ζn = MLP(zn)
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– For each context word position c ∈ {1, 2, 3, . . . , C}:
∗ Choose a topic indicator tn,c ∼ Categorical(ζn)

∗ Choose a context word wn,c ∼ p(wn,c|βtn,c)

Here, all the distributions are functions approximated by neural networks, e.g.,

p(xn|zn) ∝ exp(Mxzn + bx), which will be discussed in more details in the Decoder

section, tn,c indexes a row βtn,c in the topic matrix. We could implicitly marginalise

out the topic indicators, in which case the probability of a word would be written as

wn,c|ζn,β ∼ Categorical(σ(βTζn)), where σ(·) denotes the softmax function. The

prior distribution for zn is a multivariate Gaussian distribution with the mean 0

and covariance I, of which the posterior indicates the hidden semantics of the pivot

word when conditioned on {xn,wn}.
Although both JTW and BSG assume that a word can have multiple senses

and use a latent embedding z to represent the hidden semantic meaning of each

pivot word, there are some key differences in their generative processes. JTW first

draws a latent embedding z from a standard Gaussian prior which is deterministi-

cally transformed into topic distributions and a distribution over pivot words. The

pivot word is conditionally independent of its context given the latent embedding.

At the same time, each context word is assigned a latent topic, drawn from a shared

topic distribution which leverages the global topic information, and then drawn in-

dependently of one another. In BSG the latent embedding z is also drawn from a

Gaussian prior but the context words are generated directly from the latent embed-

ding z, as opposed to via a mixture model as in JTW. Therefore, JTW is able to

group semantically-similar words into topics, which is not the case in BSG.

Given the observed variables {x1:N ,w1:N}, the objective of the model is to

infer the posterior p(z|x,w). This is achieved by the VAE framework. As illustrated

in Figure 3.1, the JTW model is composed of an encoder and a decoder, each of

which is constructed by neural networks. The family of distributions to approximate

the posterior is Gaussian, in which µn and σn are optimized. As in VAE, we optimize

µn and σn through the training of parameters in neural networks (e.g., we optimize

Mπ in µn = MT
π πn + bπ instead of updating µn directly).

3.3.1 ELBO

The VAE naturally simulates the variational inference [117], where a family of

parameterized distributions qϕ(zn|xn,wn) are optimized to approximate the in-

tractable true posterior pθ(zn|xn,wn). This is achieved by minimizing the Kullback-

Leibler (KL) divergence between the variational distribution and the true posterior

39



for each data point:

KL(qϕ(zn|xn,wn)||pθ(zn|xn,wn))

= log pθ(xn,wn)−Eqϕ [log pθ(zn, xn,wn)− log qϕ(zn|xn,wn)],
(3.3.1)

where the expectation term is called the Evidence Lower Bound (ELBO), denoted as

L(θ, ϕ;xn,wn). VAE optimizes ELBO to presumably minimize the KL-divergence.

The ELBO is further derived as

L(θ, ϕ;xn,wn)

= Eqϕ(zn|xn,wn) [log pθ(xn,wn|zn)]−KL(qϕ(zn|xn,wn)||p(zn)).
(3.3.2)

The first term on the left-hand side of Equation 3.3.2, which is an expectation with

respect to qϕ(zn|xn,wn), can be estimated by sampling due to its intractability.

That is:

Eqϕ(zn|xn,wn) [log pθ(xn,wn|zn)] ≈ 1

S

S∑
s=1

log pθ(xn,wn|z(s)n ), (3.3.3)

where z
(s)
n ∼ qϕ(zn|xn,wn). Here we use z

(s)
n to represent the samples since the

sampled distribution is related to xn.

3.3.2 Encoder

The Encoder corresponds to qϕ(zn|xn,wn) in Equation 3.3.3. Recall that the varia-

tional family for approximating the true posterior is Gaussian Distribution param-

eterized by {µn, σn}. As such, the encoder is essentially a set of neural functions

mapping from observations to Gaussian parameters {µn, σn}. The neural functions

are defined as: πn = MLP(xn,wn), µn = MT
µ πn + bπ, σn = MT

σ πn + bσ, where

the MLP denotes the multi-layered perceptron and the context window wn is rep-

resented as a BOW that is a V -dimentional vector. The encoder outputs Gaussian

parameters {µn, σn}, which constitutes the variational distribution qϕ(zn|xn,wn).

In order to differentiate qϕ(zn|xn,wn) with respect to ϕ, we apply the reparameter-

ization trick [123] by using the following transformation:

z(s)n = µn + σn ⊙ ϵ(s)n
ϵ(s)n ∼ N (0, I).

(3.3.4)
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3.3.3 Decoder

The Decoder corresponds to pθ(xn,wn|z(s)n ) in Equation 3.3.3. It is a neural function

that maps the sample z
(s)
n to the distribution pθ(x

p
n,w

p
n|z(s)n ) with random variables

instantiated by xn and wn. More concretely, we define two neural functions to

generate the pivot word and the context words separately. Both the functions involve

an MLP, while the context words are generated independently from each other by

the topic mixture weighted by the hidden topic distributions. The neural functions

are expressed as:

p(xpn|z(s)n ) ∝ exp(Mxz
(s)
n + bx) (3.3.5)

ζ(s)n = MLP(z(s)n ) (3.3.6)

p(wpn,c|ζ(s)n ) ∝ exp(βTζ(s)n + bw) (3.3.7)

In this case, the MLP for the pivot word is specified as a fully-connected

layer. Recall that we represent the context window wn as BOW, the instantiated

probability pθ(xn,wn|z(s)n ) can be therefore derived as:

pθ(xn,wn|z(s)n ) ∝ exp(Mxz
(s)
n + bx)[xn]

∏V

v=1
exp(βTζ(s)n + bw)[v]wn[v] (3.3.8)

where exp(Mxz
(s)
n +bx)[xn] denotes the xn-th element of the vector exp(Mxz

(s)
n +bx).

3.3.4 Loss Function

We are now ready to compute ELBO in Equation 3.3.2 with the specified qϕ(zn|xn,wn)

and pθ(xn,wn|z(s)n ) in hand. Our final objective function that needs to be maximized

is:

L(θ, ϕ;xn,wn)

=
1

S

S∑
s=1

log pθ(xn,wn|µn + σn ⊙ ϵ(s)n ) +
1

2

D∑
d=1

(
1 + logσn[d]2 − µn[d]2 − σn[d]2

)
(3.3.9)

Here, D denotes the dimension of µ. S denotes the number of sample points required

for the computation of the expectation term. The loss function is the negative of

the objective function. The learning procedure is summarized in Algorithm 3.1.

41



Algorithm 3.1: Training of JTW model

Input: pivot words x1:N , context windows w1:N , learning rate η, learning
rate decay lrDecay, maximum iterative number maxIter, batch
size B, batch number NB;

Output: learned network parameters θ,ϕ;
1 Initialize θ, ϕ randomly;
2 i← 0, η ← 0.0005;
3 For convenience, define xB = xn:n+B, wB = wn:n+B as a minibatch;
4 while θ, ϕ not converged and i < maxIter do
5 Shuffle dataset x1:N ,w1:N ;
6 for 1 to NB do

7 Generate S samples ϵ(s) ∼ N (0, I);
8 Compute gradient g ← ∇θ,ϕL(θ, ϕ;xB,wB) according to

Equation 3.3.9;
9 Update parameters θ, ϕ using gradient g;

10 i← i+ 1, η ← η × lrDecay;

11 return θ, ϕ;

3.3.5 Prediction

After training, we are able to map the words to their respective representations using

the Encoder part of JTW. The Encoder takes a pivot word together with its con-

text window as an input and outputs the parameters of the variational distribution

considered to be the approximated posterior qϕ(z|xn,wn), which is a Gaussian dis-

tribution in our case. The word representations are Gaussian parameters {µn, σn}.
Because the output of the Encoder is formulated as a Gaussian distribution, the

word similarity of two words can be either computed by the KL-divergence between

the Gaussian distributions, or by the cosine similarity between their means. We use

the Gaussian mean µ to represent a word given its context. The universal repre-

sentation of a word type can be obtained by averaging the posterior means of all

occurrences over the corpus.

3.4 Experimental Setup

Dataset We train the proposed JTW model on the Yelp dataset2, which is a

collection of more than 4 million reviews on over 140k business categories. Although

the number of business categories is large, the vast majority of reviews falls into

5 business categories. The top Restaurant category consists of more than 40% of

2https://www.yelp.com/dataset/documentation/main
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reviews. The next top 4 categories, Shopping, Beauty&Spas, Automotive and Clinical

contains about 8%, 6%, 4% and 3% of reviews, respectively. The Clinical documents

are further filtered by business subcategories defined in Tran and Lee [272], which

are recognized as core clinical businesses. This results in 176, 733 documents for

the Clinical category. Because the dataset is extremely imbalanced, simply training

the model on the original dataset will likely overfit to the Restaurant category. We

thus balance the dataset by sampling roughly an equal number of documents from

each of the top 5 categories. The vocabulary size is set to 8, 000. We use Mallet3 to

filter out stopwords. The final dataset consists of 865, 616 documents with a total

of 101, 468, 071 tokens.

Parameter Setting The word semantics are represented as 100-dimensional vec-

tors (i.e., D = 100), which is a default configuration for word representations [32,

181]. The number of latent topics is set to 50. It has been previously studied

in Kingma and Welling [123] that the number of samples per data point can be set

to 1 if the batch size is large, (e.g. > 100). In our experiments, we set the batch size

to 2, 048 and the number of samples per data point, S, to 1. The context window

size is set to 10. Network parameters (i.e., θ, ϕ) are all initialized by a normal

distribution with a zero mean and 0.1 variance.

Baselines We compare the JTW model against four baselines:

• CvMF [111]. CvMF can be viewed as an extension of GloVe that modifies

the objective function by multiplying a mixture of vMFs, whose distance is

measured by cosine similarity instead of euclidean distance. The mixture

depicts the underlying semantics with which the words could be clustered.

• Bayesian Skip-Gram (BSG) [32]. BSG4 is a probabilistic word-embedding

method built on VAE as well, which achieved the state-of-art among other

Bayesian word-embedding alternatives [15, 280]. BSG infers the posterior or

dynamic embedding given a pivot word and its observed context and is able

to learn context-dependent word embeddings.

• Skip-gram Topical word Embedding (STE) [248]. STE adapted the

commonly known Skip-Gram by associating each word with an input matrix

and an output matrix and used the Expectation-Maximization (EM) method

3http://mallet.cs.umass.edu/
4https://github.com/ixlan/BSG
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with the negative sampling for model parameter inference. For topic gener-

ation, they need to evaluate the probability of p(wt+j |z, wt) for each topic z

and each skip-gram < wt;wt+j >, and represent each topic as the ranked list

of bi-grams.

• Mixed Membership Skip-Gram (MMSG) [69]. MMSG leverages mixed

membership modeling in which words are assumed to be clustered into topics

and the words in the context of a given pivot word are drawn from the log-

bilinear model using the vector representations of the context-dependent topic.

Model inference is performed using the Metropolis-Hastings-Walker algorithm

with noise-contrastive estimation.

Among the aforementioned baselines, CvMF and BSG only generate word

embeddings and do not model topics explicitly. Also, CvMF only maps each word

to a single word embedding whereas BSG can output context-dependent word em-

beddings. Both STE and MMSG can learn topics and topic-dependent embeddings

at the same time. However, in STE the topic dependence is stored in the rows of

word matrices and the word representations themselves are context-independent.

In contrast, MMSG associates each word with a topic distribution; it could pro-

duce contextualized word embeddings by summing up topic vectors weighed by the

posterior topic distribution given a context. We probe different topic counts and

find the best setting for methods with topics or mixtures. In all the baselines, the

dimensionality of word embeddings is tuned and finally set to 100.

3.5 Experimental Results

We compare JTW with baselines on both word similarity and word-sense disam-

biguation tasks for the learned word embeddings. We also present the topic co-

herence and qualitative evaluation results for the extracted topics. Furthermore,

we show that JTW can be easily integrated with deep contextualized word embed-

dings to improve further the performance of downstream tasks such as sentiment

classification.

3.5.1 Word Similarity

The word similarity task [68] has been widely adopted to measure the quality of

word embeddings. In the word similarity task, a number of pair-wise words are

given. Each pair of words should be assigned with a score that indicates their relat-

edness. The calculated scores are then compared with the golden scores by means
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Table 3.1: Spearman rank correlation coefficient on 7 benchmarks.

Benchmarks SG CvMF BSG STE MMSG JTW (std. dev.)

WS353-SIM 0.610 0.597 0.529 0.582 0.579 0.598 (.014)
WS353-ALL 0.571 0.615 0.551 0.538 0.558 0.606 (.012)
MEN 0.649 0.632 0.656 0.650 0.627 0.653 (.006)
SimLex-999 0.321 0.313 0.271 0.301 0.281 0.344 (.005)
SCWS 0.620 0.637 0.652 0.622 0.624 0.640 (.010)
MTurk771 0.548 0.524 0.555 0.554 0.596 0.546 (.010)
MTurk287 0.534 0.517 0.572 0.641 0.599 0.639 (.006)

Average 0.550 0.548 0.541 0.555 0.552 0.575 (.004)

of Spearman rank-order correlation coefficient. Because the word similarity task

requires context-free word representations, we aggregate all the occurrences and ob-

tain a universal vector for each word. The distance used for similarity scores is cosine

similarity. For STE, we use AvgSimC following Shi et al. [248]. We further make a

comparison with the results of the Skip-Gram (SG) model5, which maps each word

token to a single point in an Euclidean space without considering different senses

of words. All the approaches are evaluated on the 7 commonly used benchmarking

datasets. For JTW, we average the results over 10 runs and also report the standard

deviations.

The results are reported in Table 3.1. It can be observed that among the

baselines, BSG achieves the lowest score on average, followed by MMSG. Although

JTW clearly beats all the other models on SimLex-999 only, it only performs slightly

worse than the top model in 5 out of the remaining 6 benchmarks. Overall, JTW

gives superior results on average. A noticeable gap can be observed on the Stanford’s

Contextual Word Similarities (SCWS) dataset where JTW, MMSG and BSG give

better results compared with SG, CvMF and STE. This can be explained by the fact

that, in SCWS, golden scores are annotated together with the context. However, SG,

CvMF and STE can only produce context-independent word vectors. The results

show the clear benefit of learning contextualized word vectors. Among the topic-

dependent word embeddings, JTW built on VAE appears to be more effective than

the PLSA-based STE and the mixed membership model MMSG, achieving the best

overall score when averaging the evaluation results across all seven benchmarking

datasets. The small standard deviation of JTW indicates that the performance is

consistent across multiple runs.

5https://code.google.com/archive/p/word2vec/
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Table 3.2: Accuracy on the lexical substitution task.

Model CvMF BSG STE MMSG JTW

Accuracy 0.440 0.453 0.433 0.474 0.487

3.5.2 Lexical Substitution

While the word similarity tasks focus more on the general meaning of a word (since

word pairs are presented without context), in this section, we turn to the lexical

substitution task [269, 307], which was designed to evaluate the word-embedding

learning methods regarding their ability to disambiguate word senses. The lexical

substitution task can be described by the following scenario: Given a sentence and

one of its member words, find the most related replacement from a list of candidate

words. As stated in Thater et al. [269], a good lexical substitution should not only

capture the relatedness between the candidate word and the original word, but also

imply the correctness with respect to the context.

Following Bražinskas et al. [32], we derive the setting from Melamud et al.

[176] to ensure a fair comparison between the context-free word embedding methods

and the context-dependent ones. In detail, for JTW and BSG, we capture the

context of a given word using the BOW representation, and derive the representation

of each candidate word taking account of the context. For CvMF and STE, the

similarity score is computed using

BalAdd(x, y) =
C cos(y, x) +

∑C
c=1 cos(y, wc)

2C
, (3.5.1)

where y is the candidate word and x denotes the original word. For MMSG, the

original word’s representation is calculated as the sum of its associated topic vec-

tors weighed by the word’s posterior topical distribution. Given an original word

and its context, we choose the candidate word with the highest similarity score. We

compare the performance of various models on lexical substitution using the dataset

from the SemEval 2007 task 106 [173], which consists of 1,688 instances. Because

some words have multiple synonyms as annotated in the dataset, we would consider

a chosen candidate word as a correct prediction if it hits one of the ground-truth

replacements. We report in Table 3.2 the accuracy scores of different methods.

Context-sensitive word embeddings generally perform better than context-free al-

ternatives. STE can only learn context-independent word embeddings and hence

gives the lowest score. BSG is able to learn context-dependent word embeddings

6http://www.dianamccarthy.co.uk/task10index.html
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and outperforms CvMF. Among the joint topic and word embedding learning meth-

ods, STE performs the worst, showing that associating each word with two matrices

and learning topic-dependent word embeddings based on PLSA appear to be less

effective. Both JTW and MMSG show superior performances compared to BSG.

JTW outperforms MMSG because JTW also models the generation of pivot word in

addition to context words and the VAE framework for parameter inference is more

effective than the annealed negative contrastive estimation used in MMSG.

3.5.3 Topic Coherence
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Figure 3.2: Topic coherence scores versus the number of topics.

Because only STE and MMSG can jointly learn topics and word embeddings

among the baselines, we compare our proposed JTW with these two models in terms

of topic quality. The evaluation metric we employed is the topic coherence metric

proposed in Röder et al. [231]. The metric extracts co-occurrence counts of the topic

words in Wikipedia using a sliding window of size 110. For each top word a vector

is calculated whose elements are the normalized point-wise mutual information be-

tween the word and every other top word. Given a topic, the arithmetic mean of all

vector pairs’ cosine similarity is treated as the coherence measure. We calculate the

topic coherence score of each extracted topic based on its associated top ten words

using Palmetto7 [233]. The topic coherence results with the topic number varying

between 10 and 200 are plotted in Figure 3.2. The graph shows that JTW scores the

highest under all the topic settings. It gives the best coherence score of 0.416 at 50

topics, and gradually flattens with the increasing number of topics. MMSG exhibits

an upward trend up to 100 topics, and drops to 0.365 when the topic number is

7https://github.com/dice-group/Palmetto
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Table 3.3: Example topics discovered by JTW and MMSG, each topic is represented
by the top 10 words sorted by their likelihoods. The topic labels are assigned
manually. Semantically less coherent words are highlighted by italics.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Food Shopping Beauty Automotive Clinical

JTW

good great hair car compassionate
food friendly recommend told caring

chicken service highly phone personable
place staff place called courteous
pizza shop experience care therapy
love clean fabulous vehicle competent

cheese helpful great time knowledgeable
salad nice nail BMW passionate
red amazing nails insurance physician

delicious customer awesome wanted respectful

MMSG

food friendly massage place therapy
service staff spa service physical
great great back time pain
good helpful great back back
place service time customer massage

friendly clean good car recommend
staff place massages people great
nice nice facial good therapist
back store therapist money work

prices super body give highly

set to 150. STE undergoes a gradual decrease and then stabilizes with the topic

number beyond 150.

3.5.4 Extracted Topics

We present in Table 3.3 the example topics extracted by JTW and MMSG. It can

be easily inferred from the top words generated by JTW that Topic 1 is related to

‘Food ’, whereas Topic 5 is about the ‘Clinical Service’, which is identified by the

words ‘caring ’ and ‘physician’. It can also be deduced from the top words that

Topic 2, 3 and 4 represent ‘Shopping ’, ‘Beauty ’ and ‘Automotive’, respectively. In

contrast, topics produced by MMSG contain more semantically less coherent words

as highlighted by italics. For example, Topic 1 in MMSG contains words relating to
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both food and staff. This might be caused by the fact that, in MMSG, training is

performed as a two-stage process by first assigning topics to words using Gibbs Sam-

pling then estimating the topic vectors and word vectors from word co-occurrences

and topic assignments via maximum likelihood estimator. This is equivalent to a

topic model with parameterized word embeddings. Conversely, in JTW, latent vari-

ables in the generative process are recognized as word representations. Parameters

reside in the generative network, and are inferred by the VAE. No extra parameters

are introduced to encode the words. Therefore, the topics extracted tend to be more

identifiable.

3.5.5 Visualization of Word Semantics

The extracted topics allow the visualization of word semantics, which facilitates the

interpretation [142, 303]. In JTW, a word’s semantic meanings can be interpreted as

a distribution over the discovered latent topics. This is achieved by aggregating all

the contextualized topical distribution of a particular word throughout the corpus.

Meanwhile, when a word is placed under a specific context, its topical distribution

can be directly transformed from its contextualized representation. We chose three

words—‘plastic’, ‘bar ’ and ‘patient ’—to illustrate the polysemous nature of them.

To further demonstrate their context-dependent meanings, we also visualize the

topic distribution of the following three sentences: (1) Effective patient care requires

clinical knowledge and understanding of physical therapy ; (2) Restaurant servers

require patient temperament ; (3) You have to bring your own bags or boxes but you

can also purchase plastic bags. The topical distribution for the pivot words and the

three example sentences are shown in Figure 3.3.

We can deduce from the overall distributions that the semantic meaning of

‘plastic’ distributes almost equally on two topics, ‘shopping ’ and ‘beauty ’, while the

meaning of ‘bar ’ is more prominent on the ‘food ’ and ‘shopping ’ topics. ‘Patient ’

has a strong connection with the ‘clinical ’ topic, though it is also associated with the

‘food ’ topic. When considering a specific context about the patient care, Sentence

1 has its topic distribution peaked at the ‘clinical ’ topic. Sentence 2 also contains

the word ‘patient ’, but it now has its topic distribution peaked at ‘food ’. Sentence

3 mentioned ‘plastic bags’ and its most prominent topic is ‘shopping ’. These re-

sults show that JTW can indeed jointly learn latent topics and topic-specific word

embeddings.
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Figure 3.3: The overall topical distributions and contextualized topical distributions
of the example words and the contextualized topical distribution of three example
sentences. Note that the x-axis denotes the five example topics shown in Table 4.

3.5.6 Integration with Deep Contextualized Word Embeddings

Advances in deep contextualized word representation learning have significantly im-

pacted natural language processing [141]. Different from traditional word embed-

ding learning methods such as Word2Vec or GloVe, where each word is mapped

to a single vector representation, deep contextualized word representation learning

methods are typically trained by language modelling and generate a different word

vector for each word depending on the context in which it is used. A notable work

is ELMo [213], which is commonly regarded as the pioneer for deriving deep con-

textualized word embeddings [60]. ELMo calculates the weighted sum of different

Table 3.4: Results on the 5-class sentiment classification by 10-fold cross validation
on the Yelp reviews.

Model
Criteria

Precision Recall Macro-F1 Micro-F1
JTW 0.5713±.021 0.5639±.014 0.5599±.016 0.7339±.015
ELMo 0.6091±.005 0.6053±.001 0.6056±.002 0.7610±.005
BERT 0.6293±.014 0.5952±.006 0.6041±.012 0.7626±.005
JTW-ELMo 0.6286±.008 0.6110±.004 0.6168±.008 0.7783±.004
JTW-BERT 0.6354±.014 0.6081±.009 0.6045±.014 0.7806±.005
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layers of a multi-layered BiLSTM-based language model, using the normalized vec-

tor to represent the corresponding word. Another more recent work is BERT [60].

In contrast to ELMo, BERT [60] was proposed to apply the bidirectional training

of Transformer to masked language modelling. Because of its capability of effec-

tively encoding contextualized knowledge from massive external corpora in word

embeddings, BERT has refreshed the state-of-art results on a number of NLP tasks.

While Word2Vec/GloVe and ELMo/BERT represent the two opposite ex-

tremes in word embedding learning, with the former learning a single vector rep-

resentation for each word and the latter learning a separate vector representation

for each occurrence of a word, our proposed JTW sits in the middle that it learns

different word vectors depending on which topic a word is associated with. Never-

theless, we can incorporate ELMo/BERT embeddings into JTW. This is achieved

by replacing the BOW input with the pre-trained ELMo/BERT word embeddings

in the Encoder-Decoder architecture of JTW, making the resulting word embed-

dings better at capturing semantic topics in a specific domain. More precisely, the

training objective is switched to the cosine value of half the angle between the input

ELMo/BERT vector and decoded output vector formulated as:

pθ(xn,wn|z(s)n ) ∝ cos(
1

2
arccos(

x⊤n · x(p)n
∥xn∥∥x(p)n ∥

))
∏C

c=1
cos(

1

2
arccos(

w⊤
n,c · w(p)

n,c

∥wn,c∥∥w(p)
n,c∥

)),

(3.5.2)

where x
(p)
n and w

(p)
n,c are the reconstructed representations generated from z

(s)
n by

Equation 3.3.5 and Equation 3.3.7, respectively. Recall that, the input to the model

has been encoded by pre-trained word vectors (e.g., 300-dimensional vectors). Our

training objective is to make the reconstructed x
(p)
n and w

(p)
n,c as close as possible

to their original input word embeddings. The difference is measured by the angle

between the input and the output vectors. Normalized ELMo/BERT vectors can

be transformed to the polar coordinate system with trigonometric functions, which

forms a probability distribution by∫ π

0

1

2
cos

θ

2
dθ = 1, (3.5.3)

and the function is monotone to the similarity between the input ELMo/BERT

embeddings and the reconstructed output embeddings, which reaches its peak when

xn = x
(p)
n (i.e., θ = 0). Therefore, we are able to replace Equation 3.3.8 with

Equation 3.5.2 when an ELMo/BERT is attached. The input vectors of the Encoder

are then the embeddings produced by ELMo/BERT, and the Decoder output is the

reconstructed word embeddings aligned with the input.
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We resort to the sentiment classification task on Yelp and compare the per-

formance of JTW, ELMo and BERT8, and the integration of both, JTW-ELMo and

JTW-BERT, by 10-fold cross validation. In all the experiments, we fine-tune the

models on the training set consisting of 90% documents sampled from the dataset

described in Section 3.4 and evaluate on the 10% data that serves as the test set. We

employ the further pre-training scheme [261] that different learning rates are applied

to each layer, and slanted triangular learning rates are imposed across epochs when

adapting the language model to the training corpus [99]. The classifier used for all

the methods is an attention hop over a BiLSTM with a softmax layer. The ground

truth labels are the five-scale review ratings included in the original dataset. The

5-class sentiment classification results in precision, recall, macro-F1 and micro-F1

scores are reported in Table 3.4.

It can be observed from Table 3.4 that a sentiment classifier trained on

JTW-produced word embeddings gives worse results compared with that using the

deep contextualized word embeddings generated by ELMo or BERT. Nevertheless,

when integrating the ELMo or BERT front-end with JTW, the combined model,

JTW-ELMo and JTW-BERT, outperforms the original deep contextualized word

representation models, respectively. It has been verified by the paired t-test that

JTW-ELMo outperforms ELMo and BERT at the 95% significance level on Micro-

F1. The results show that the proposed JTW is flexible and can be easily integrated

with pre-trained contextualized word embeddings to capture the domain-specific

semantics better compared to directly fine-tuning the pre-trained ELMo or BERT on

the target domain, hence leading to improved sentiment classification performance.

3.6 Summary

Driven by the motivation that combining word embedding learning and topic mod-

elling can mutually benefit each other, we propose a probabilistic generative frame-

work that can jointly discover more semantically coherent latent topics from the

global context and learn topic-specific word embeddings, which naturally addresses

the problem of word polysemy. Experimental results verify the effectiveness of the

model on word similarity evaluation and word sense disambiguation. Furthermore,

the model can discover latent topics shared across documents, and the encoder of

JTW can generate the topical distribution for each word. This enables an intuitive

understanding of word semantics. We have also shown that our proposed JTW

can be easily integrated with deep contextualized word embeddings to improve the

8https://github.com/google-research/bert
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performance of downstream tasks further.
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Chapter 4

A Neural Opinion Dynamics

Model for Temporal Stance

Prediction

Chapter Abstract

In this chapter, we model users’ posting behaviour on social media as

a temporal point process to jointly predict the posting time and the

stance label of the next tweet, given a user’s historical tweet sequence

and tweets posted by their neighbours. Opinion prediction on Twitter is

challenging since users’ opinions are not only volatile but also changeable

over time due to the influences from their neighbours on social networks

or arguments they encounter that undermine their beliefs. To tackle this,

we design a topic-driven attention mechanism to capture the dynamic

topic shifts in the neighbourhood context. In what follows, we first in-

troduce the background of neural opinion dynamics. Then we proceed to

the network structure. Finally, we report experimental results on post-

ing time prediction and stance prediction. The proposed model showed

higher accuracy compared to several competitive baselines.

4.1 Introduction

Social media platforms allow users to express their opinions online towards various

subject matters. Despite much progress in sentiment analysis in social media, the
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prediction of opinions, however, remains challenging. Opinion formation is a com-

plex process. An individual’s opinion could be influenced by their own prior belief,

their social circles and external factors. Existing studies often assume that socially

connected users hold similar opinions. Social network information is integrated with

user representations via weighted links and encoded using neural networks with at-

tention or Graphical Convolutional Networks (GCNs) [40, 138]. This strand of work,

including [41, 59, 331], leverages both the chronological tweet sequence and social

networks to predict users’ opinions.

The majority of previous work requires a manual segmentation of a tweet se-

quence into equally-spaced intervals based on either tweet counts or time duration.

Models trained on the current interval are used to predict users’ opinions in the next

interval. However, we argue that such a manual segmentation may not be appropri-

ate since users post tweets at different frequencies. Also, the time interval between

two consecutively published tweets by a user is important to study the underlying

opinion dynamics system and hence should be treated as a random variable.

Inspired by the multivariate Hawkes process [1, 64], we propose to model a

user’s posting behaviour by a temporal point process that when user u posts a tweet

d at time t, they need to decide on whether they want to post a new topic/opinion,

or post a topic/opinion influenced by past tweets either posted by other users or by

themselves. We thus propose a neural temporal opinion model to jointly predict the

time when the new post will be published and its associated stance. Instead of using

the fixed formulation of the multivariate Hawkes process, the intensity function of

the point process is automatically learned by a gated recurrent neural network. In

addition, one’s neighbourhood context and the topics of their previously published

tweets are also taken into account for the prediction of both the posting time and

stance of the next tweet.

4.2 Related Work

The prediction of real-time stances on social media is challenging, partly caused by

the diversity and fickleness of users [5]. A line of work mitigated the problem by

taking into account the homophily that users are similar to their friends [86, 174].

For example, Chen et al. [40] gauged a user’s opinion as an aggregated stance of

their neighbourhood users. Linmei et al. [151] took a step further by exploiting the

extracted topics, which discern a user’s focus on neighbourhood tweets. Related

works in this strand also include the application of GCNs, with which the social

relationships are leveraged to enrich the user representations [59, 138].
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Figure 4.1: Overview of the Neural Temporal Opinion Model.

On the other hand, several works have utilized the chronological order of

tweets. Chen et al. [41] presented an opinion tracker that predicts a stance every

time a user publishes a tweet, whereas [331] extended the previous work by intro-

ducing a topic-dependent attention. Shrestha et al. [249] considered diverse social

behaviors and jointly forecast them through a hierarchical neural network. Zhao

et al. [327] employed Poisson factorization to deal with trunks of streaming docu-

ments. However, the aforementioned work requires a manual segmentation of a tweet

sequence. Furthermore, they are unable to predict when a user will next publish

a tweet and what its associated stance is. These problems can be addressed using

the Hawkes process [89], which has been successfully applied to event tracking [257],

rumor detection [4, 163, 336] and retweet prediction [129]. A combination of the

Hawkes process with recurrent neural networks, called Recurrent Marked Temporal

Pointed Process (RMTPP), was proposed to automatically capture the influence

of the past events on future events, which shows promising results on geolocation

prediction [64]. Benefiting from the flexibility and scalability of neural networks,

several work has been done in this vein including event sequence prediction [175]

and failure prediction [298]. Our work is partly inspired by RMTPP, but departs

from the previous work by jointly considering users’ social relations and topical

attentions for stance prediction on social media.
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4.3 Neural Temporal Opinion Model

We present the overall architecture in Figure 4.1. The input to the model at time

step i consists of user’s own tweet xi, bag-of-word representation xbi , time interval τi

between the i− 1th tweet and the ith tweet, user embedding u, and neighbours’ tweet

queue {di,1, di,2, . . . , di,L}. At first, a Bi-LSTM layer is applied to extract features

from input tweets. Then the neighbourhood tweets are processed by a stacked Bi-

LSTM/LSTM layer for the extraction of neighbourhood context, which is fed into

an attention module queried by the user’s own tweet hi and topic zi. The output

of the attention module is concatenated with tweet representation, time interval τi,

user representation u, and topic representation zi, which is encoded from xbi via a

Variational Autoencoder (VAE). Finally, the combined representation is sent to a

GRU cell, whose hidden state participates in computing the intensity function and

the softmax function, for the prediction of the posting time interval and the stance

label of the next tweet. In the following, we elaborate the model in more details:

Tweet representation: Words in tweets are mapped to pre-trained word embed-

dings [17]1, which is specially trained for tweets. Then Bi-LSTM is used to generate

the tweet representation.

Topic extraction: The topic representation zi in Figure 4.1 captures the topic

focus of the ith tweet. It is learned by VAE [123], which approximates the intractable

true posterior by optimising the reconstruction error between the generated tweet

and the original tweet. Specifically, we convert each tweet to the bag-of-word for-

mat weighted by term frequency, xbi , and feed it to two inference neural networks

defined as fµϕ and fΣϕ
. These generate the mean and variance of a Gaussian dis-

tribution from which the latent topic vector zi is sampled. Then the approximated

posterior would be qϕ(zi|xbi) = N (zi|fµϕ(xbi), fΣϕ
(xbi)). To generate the observa-

tion x̃bi conditional on the latent topic vector zi, we define the generative network

as pφ(xbi |zi) = N (xbi |fµφ(zi)), fΣφ(zi)). The reconstruction loss for the tweet xbi is

then:

Lx = Eqϕ(zi|xbi )[log pφ(xbi |zi)]−KL(qϕ(zi|xbi)||p(zi)) (4.3.1)

Neighbourhood Context Attention: To capture the influence from the neigh-

bourhood context, we first input the neighbours’ recent L tweets to an LSTM in

a temporal ascending order. The output of the LSTM is weighed by the attention

1https://github.com/cbaziotis/datastories-semeval2017-task4
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signals queried by the user’s ith tweet and topic:

ci =
L∑
l=1

αlh
c
i,l (4.3.2)

αl ∝ exp([hTi , z
T
i ]tanh(Whh

c
i,l +Wzz

c
i,l)) (4.3.3)

where {hci,1, hci,2, . . . , hci,L} denotes the hidden state output of each tweet di,l in the

neighbourhood context, zci,l denotes the associated topic, hi is the representation of

the user’s own tweet at time step i, and both Wh and Wz are weight matrices.

We use this attention mechanism to align the user’s tweet to the most relevant

part in the neighbourhood context. Our rationale is that a user would attend to

their neighbours’ tweets that discuss similar topics. The attention output ci is then

concatenated with a user’s own tweet hi and the extracted topic zi. We further

enrich the representation with the elapsed time τi between the posting time of the

current tweet and the last posted tweet, and add a randomly initialised user vector

u to distinguish the user from others. The final representation is passed to a GRU

cell for the joint prediction of the posting time and stance label of the next tweet.

Temporal Point Process: The goal of NTOM is to forecast the time gap till

the next post, together with the stance label. Instead of modelling the time interval

value based on regression analysis, we use the GRU [46] to simulate the temporal

point process.

At each time step, the combined representation [ci, hi, zi, τi, u] is input to the

GRU cell to iteratively update the hidden state taking into account the influence of

previous tweets:

gi = fGRU (gi−1, ci, hi, zi, τi, u) (4.3.4)

where gi is the hidden state of GRU cell. Given gi, the intensity function is formu-

lated as:

λ∗(t) = λ(t|Hi) = exp(bλ + vTλ gi + wλt) (4.3.5)

Here, Hi summarises all the tweet histories up to tweet i, bλ denotes the base density

level, the term vTλ gi captures the influence from all previous tweets and wλt denotes

the influence from the instant interval. The likelihood that the next tweet will be

posted at the next interval τ given the history is:

f∗(τ) = λ∗(τ) exp
(
−
∫ τ

0
λ∗(t)dt

)
(4.3.6)
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Figure 4.2: Number of users versus number of tweets.

The expectation for the occurrence of the next tweet can be estimated using:

τ̂i+1 =

∫ ∞

0
τ · f∗(τ)dτ (4.3.7)

Loss: We expect the predicted interval to be close to the actual interval as much

as possible by minimising the Gaussian penalty function:

Ltime =
1

σ
√

2π
exp

(−(τi+1 − τ̂i+1)
2

2σ2
)

(4.3.8)

For the stance prediction we employ the cross-entropy loss denoted as Lstan.

The final objective function is computed as:

L = ηLx + βLtime + γLstan (4.3.9)

where η, β and γ are coefficients determining the contribution of various loss func-

tions.

4.4 Experimental Setup

We perform experiments on two publicly available Twitter datasets2 [331] on Brexit

and US election. The Brexit dataset consists of 363k tweets with 31.6%/29.3%/39.1%

supporting/opposing/neutral tweets towards Brexit. The Election dataset consists

of 452k tweets with 74.2%/20.4%/5.4% supporting/opposing/neutral tweets towards

Trump. We filter out users who posted less than 3 tweets and are left with 20, 914

users in Brexit and 26, 965 users in Election. We plot in Figure 4.2 the number of

users versus the number of tweets and found that over 81.6% users have published

fewer than 7 tweets, we, therefore, set the maximum length of the tweet sequence of

2https://github.com/somethingx01/TopicalAttentionBrexit
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each user to 7. For users who have published more than 7 tweets, we split their tweet

sequence into multiple training sequences of length 7 with an overlapping window

size of 1. For each user, we use 90% of their tweets for training and 10% (round up)

for testing.

The settings are η = 0.2, β = 0.4 and γ = 0.4. We set the topic number to 50

and the vocabulary size to 3k for the tweet bag-of-words input to VAE. The mini-

batch size is 16. We use Adam optimizer with a learning rate of 0.0005 and a learning

rate decay of 0.9. The evaluation metrics are accuracy for stance prediction and

Mean Squared Error (MSE) for posting time prediction. The results are compared

against the following baselines:

- CSIM W [41] gauges the social influence by an attention mechanism for the pre-

diction of the user sentiment of the next tweet.

- NOD [331] takes into account the neighborhood context and pre-extracted topics

for tweet stance prediction.

- LING+GAT [59] places a GCN variant over linguistic features to extract node

representations. Tweets are aggregated by users for user-level prediction.

We also perform an ablation study on our model by removing the topic extrac-

tion component (NTOM-VAE) or removing the neighbourhood context component

(NTOM-context). In addition, to validate that NTOM does benefit from point pro-

cess modelling and can better forecast the time and stance of the next tweet, we

remove the intensity function (i.e. no Eq. (5)-(7)) and directly use vanilla RNN and

its variants including LSTM and GRU to predict the true time interval. Further-

more, to investigate if is is more beneficial to use GCN to encode the neighbourhood

context, we learn tweet representation using GCN3 [87], which preserves high-order

influence in social networks through convolution. As in [138], we use a 2-hop GCN

and denote the variant as NTOM-GCN. For the Brexit dataset, MSE is measured in

hours, while for the Election dataset it is measured in minutes due to the intensive

tweets published within two days.

4.5 Results

We report in Table 4.1 the stance prediction accuracy and MSE scores of predicted

posting time. Compared to baselines, NTOM consistently achieves better perfor-

mance on both datasets, showing the benefit of modelling the tweet posting sequence

as a temporal point process. In the second set of experiments, we study the effect

of temporal process modelling. The results verify the benefit of using the intensity

3https://github.com/williamleif/GraphSAGE
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Model
Brexit Election

Acc. MSE Acc. MSE

CSIM W 0.653 – 0.656 –
NOD 0.675 – 0.690 –
LING+GAT 0.692 – 0.704 –

RNN 0.636 7.81 0.659 9.62
LSTM 0.677 3.37 0.683 4.51
GRU 0.691 2.80 0.693 3.92

NTOM-VAE 0.697 2.67 0.705 4.01
NTOM-context 0.665 3.34 0.682 4.78
NTOM-GCN 0.680 2.65 0.706 4.29
NTOM 0.713 2.59 0.715 3.70

Table 4.1: Stance prediction accuracy and Mean Squared Errors of predicted posting
time on the Brexit and Election datasets.

function, with at least a 2% increase in accuracy and 0.2 decrease in MSE compared

with vanilla RNN and its variants. In the ablation study, removing the neighbour-

hood context component caused the largest performance decline compared to other

components, verifying the importance of social influence in opinion prediction. Re-

moving either VAE (for topic extraction) or intensity function (using only GRU)

results in slight drops in stance prediction and more noticeable performance gaps

in time prediction. It can also be observed that using GCN to model higher-order

influence in social networks does not bring any benefits, possibly due to extra noise

introduced to the model.

To investigate the effectiveness of the context attention that is queried by

topics, we first select some example topics from the topic-word matrix in VAE. The

label of each topic is manually assigned based on its associated top 10 words. Then

we display a tweet’s topic distribution together with its neighbourhood tweets’ topic

distribution. We also visualize the attention weights assigned to the 3 neighbourhood

tweets.

Figure 4.3 illustrates the example topics, topic distribution and attention

signals towards context tweets. Here, x2 and x4 denote a user’s 2nd and 4th tweets

respectively. The most recent 3 neighbourhood tweets are denoted as d1, d2, d3. Blue

in the leftmost separate column denotes the attention weights, and each row on top

of T1, T2 and T3 denotes the topic distribution. It can be observed that the user’s

concerned topic shifts from immigration to Boris Johnson in 2 time steps. The drift

also appears in the neighbour’s tweets. Higher attention weights are assigned to the

neighbour’s tweets which share similar topical distribution as the user. We can thus
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x4

d3
d2
d1

Topic Top wordsp Words

T1 immigration immigration, stop, free, work, change, countries, immigrants, 
migrants, migration, open

T2 Boris Johnson Boris, live, Johnson, politics, sturgeon, TV, Nicola, morning, 
takebackcontrol, guy

T3 vote remain voteremain, strongerin, Cameron, eureferendum, David, 
inorout, pm, eudebate, osborne, positive

well played tonight boris ! u absolutely smashed it ! #brexit

x2

d3
d2

d1

yes , open borders with no way of planning strains on nhs…

T1 T2 T3x4

T1 T2 T3x2

bbc debate remain team has two aggressive bullies…
vote leave on thursday ! make it our independence day

…eu is a closed protectionist market we pay than we ever…

absolutely correct , so many reasons to vote leave

then vote leave for the sake of the fishermen . vote leave
#brexit and we will all still be europeans free to do them all

Figure 4.3: Distribution over 3 topics and attention signals on 3 neighbourhood
tweets, respectively in 2-time steps. Topics are labelled based on the top 10 words.
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infer that the topic vector does help select the most relevant neighbourhood tweet.

4.6 Summary

We have proposed a novel Neural Temporal Opinion Model (NTOM) to address

users’ changing interests and dynamic social context. We model users’ tweet posting

behaviour based on a temporal point process for the joint prediction of the posting

time and stance label of the next tweet. Experimental results verify the effectiveness

of the model. Furthermore, the visualisation of the topics and attention signals

shows that NTOM captures the dynamics in the focused topics and contextual

attention.
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Chapter 5

Topic-Driven and

Knowledge-Aware Transformer

for Dialogue Emotion Detection

Chapter Abstract

In this chapter, we cope with challenges in dialogue emotion detection

as it often requires the identification of thematic topics, the relevant

commonsense knowledge, and the intricate transition patterns between

the affective states to capture the holistic pattern underlying a conver-

sation. We first design a topic-augmented language model (LM) with an

additional layer specialized for topic detection. The topic-augmented

LM is then combined with commonsense statements derived from a

knowledge base based on the dialogue contextual information. Finally,

a transformer-based encoder-decoder architecture fuses the topical and

commonsense information and performs the emotion label sequence pre-

diction. The model has been experimented on four datasets in dialogue

emotion detection, demonstrating its superiority empirically over the ex-

isting state-of-the-art approaches. Quantitative and qualitative results

show that the model can discover topics which help in distinguishing

emotion categories.
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5.1 Introduction

The abundance of dialogues extracted from online conversations and TV series pro-

vides an unprecedented opportunity to train models for automatic emotion detec-

tion, which are essential for developing empathetic conversational agents or chatbots

for psychotherapy [37, 100, 113, 314]. However, capturing the contextual semantics

of personal experience described in one’s utterance is challenging. An instance is “I

just passed the exam” where the emotion can be either happy or sad depending on

the expectation of the subject. There are strands of works utilizing the dialogue con-

text to enhance the utterance representation [113, 169, 314], where recurrent units

handled influences from historical utterances, and attention signals were further

introduced to intensify the positional order of the utterances.

However, despite the salient progress made by the aforementioned methods,

detecting emotions in dialogues is still challenging due to how emotions are expressed

and how their meaning can vary based on the topic discussed, as well as the implicit

knowledge shared between participants. Figure 5.1 gives an example of how topics

and background knowledge could impact the mood of interlocutors. Normally, di-

alogues around specific topics carry specific language patterns [241], affecting not

only the utterance’s meaning but also the particular emotions conveyed by spe-

cific expressions. Dialogue emotion detection methods so far did not put emphasis

on modelling these holistic properties of dialogues (i.e., conversational topics and

tones). Consequently, they were fundamentally limited in capturing the affective

states of interlocutors related to the particular themes discussed. Besides, emotion

and topic detection heavily relies on leveraging underlying commonsense knowledge

shared between interlocutors. Although there have been attempts in incorporating

it, such as the Ghosal et al. [76]’s COSMIC, existing approaches do not perform

fine-grained extraction of relevant information based on both the topics and the

emotions involved.

Recently, the Transformer architecture [277] has empowered language models

to transfer large quantities of data to low-resource domains, making it viable to

discover topics in conversational texts. On top of this, we propose to add an extra

layer to the pre-trained language model to model the latent topics, which are learned

by fine-tuning dialogue datasets to alleviate the data sparsity problem. Inspired by

the success of Transformers, we use the Transformer Encoder-Decoder structure to

perform the Seq2Seq prediction in which an emotion label sequence is predicted

given an utterance sequence (i.e., each utterance is assigned with an emotion label).

We posit that the dialogue emotion of the current utterance depends on the historical
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(a): Food and Restaurant

(b): Office

A: Could I have some fish?
B: Certainly. And what vegetables would you like?

A: Oh , spinach , I think.
A: I like drinking tea at teahouses.

B: Oh, so do I.

☺

B: Great. We can chat while enjoying a cup there.
A: Why don't we go for one now?

☺

A: Let's go!
☺
☺

A: I went to Salt Lake City on business. What's up?
B: I got fired.☹

A: How come? Last time ... You told me it was a good job.
B: It's a long story . In a word , I didn't do a good job of it.☹

Figure 5.1: Utterances around particular topics carry specific emotions in the Daily-
Dialog dataset. Utterances carrying positive (smiling face) or negative (crying face)
emotions are highlighted in colour. Other utterances are labeled as ‘Neutral ’.

dialogue context and the predicted emotion label sequence for the past utterances.

We leverage attention mechanisms and gating mechanisms to incorporate various

commonsense knowledge retrieved by multiple approaches1.

5.2 Related Work

Dialogue Emotion Detection Majumder et al. [169] recognized the importance

of dialogue context in dialogue emotion detection. They used a Gated Recurrent

Unit (GRU) to capture the global context which is updated by the speaker ad-hoc

GRUs. At the same time, Jiao et al. [113] presented a hierarchical neural network

model that comprises two GRUs for the modelling of tokens and utterances respec-

tively. Zhang et al. [314] explicitly modelled the emotional dependencies on context

and speakers using a Graph Convolutional Network (GCN). Meanwhile, Ghosal

et al. [75] extended the prior work [169] by taking into account the intra-speaker

dependency and relative position of the target and context within dialogues. Mem-

ory networks have been explored in [114] to allow bidirectional influence between

utterances. A similar idea has been explored by Li et al. [144]. While the majority

of works have been focusing on textual conversations, Zhong et al. [328] enriched ut-

1Code and trained models are available at http://github.com/something678/TodKat

66

http://github.com/something678/TodKat


terances with concept representations extracted from the ConceptNet [256]. Ghosal

et al. [76] developed COSMIC which exploited Atomic [237] for the acquisition

of commonsense knowledge. Unlike the aforementioned approaches, we propose a

topic-driven and knowledge-aware model built on a Transformer Encoder-Decoder

structure for dialogue emotion detection. The proposed Seq2Seq structure is iden-

tical to KET [328] in that emotions are predicted taking into account both the

historical utterances and emotions and that a decoder is employed to handle these

contexts.

Latent Variable Models for Dialogue Context Modelling Latent variable

models, normally described in their neural variational inference form named Varia-

tional Autoencoder (VAE) [123], have been studied extensively on learning thematic

representations of individual documents [179, 226, 258]. They have been successfully

applied to dialogue generation for the benefit of capturing thematic characteristics

while retaining a level of flexibility between conversations. This line of work, in-

cluding those based on hierarchical recurrent VAEs [205, 241, 310] and conditional

VAEs [71, 247, 254], encode each utterance with historical latent codes and autore-

gressively reconstruct the input sequence. On the other side, pre-trained language

models are used as embedding inputs to VAE-based models [7, 207]. More recent

work by Li et al. [140] employs BERT and GPT-2 as the encoder-decoder structure

of VAE. However, these models have to be either trained from scratch or built upon

pre-trained embeddings. They are therefore not fitting the low-resource setting of

dialogue emotion detection, and cannot benefit from the co-occurrence pattern of

utterances within dialogues.

Knowledge Base and Knowledge Retrieval ConceptNet [256] captures com-

monsense concepts and relations as a semantic network, which encompasses the

spatial, physical, social, temporal, and psychological aspects of everyday life. In

more recent work, Sap et al. [237] built Atomic, a knowledge graph centred on

events rather than entities. Owing to the expressiveness of events and ameliorated

relation types, using Atomic achieved competitive results against human evaluation

in the task of If-Then reasoning.

Alongside the development of knowledge bases, recent years have witnessed

the thriving of new methods for training language models from large-scale text cor-

pora as an implicit knowledge base. As shown in [214], pre-trained language models

perform well in recalling relational knowledge involving triplet relations about en-

tities. Bosselut et al. [28] proposed COMmonsEnse Transformers (Comet) which
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learns to generate commonsense descriptions in natural language by fine-tuning pre-

trained language models on existing commonsense knowledge bases such as Atomic.

Compared with extractive methods, language models fine-tuned on knowledge bases

have a distinct advantage of being able to generate knowledge for unseen events,

which is of great importance for tasks which require the incorporation of common-

sense knowledge such as emotion detection in dialogues.

5.3 Methodology

5.3.1 Problem Setup

A dialogue is defined as a sequence of utterances {x1, x2, . . . , xN}, which is annotated

with a sequence of emotion labels {y1, y2, . . . , yN}. Our goal is to develop a model

that can assign the correct label to each utterance. As for each utterance, the raw

input is a token sequence, i.e., xn = {wn,1, wn,2, . . . , wn,Mn} where Mn denotes the

length of an utterance. We address this problem using the Seq2Seq framework [262].

In the Seq2Seq framework, the model consecutively consumes an utterance xn and

predicts the emotion label yn based on the earlier utterances seen so far and their

associated predicted emotion labels. The joint probability of emotion labels for a

dialogue is:

Pθ(y1:N |x1:N ) =

N∏
n=1

Pθ(yn|x≤n, y<n) (5.3.1)

It is worth mentioning that the subsequent utterances are unseen to the model at

each predictive step. Learning is performed via optimising the log-likelihoods of

predicted emotion labels.

The proposed topic-driven and knowledge-aware transformer consists of two

main components, the topic-driven language model fine-tuned on dialogues and

the knowledge-aware transformer for emotion label sequence prediction for a given

dialogue. In what follows, we will describe each of the components in turn.

5.3.2 Topic Representation Learning

We propose to insert a topic layer into an existing language model and fine-tune

the pre-trained language model on the conversational text for topic representation

learning. Topic models, often formulated as latent variable models, play a vital

role in dialogue modelling [241] due to the explicit modelling of ‘high-level syntactic

features such as style and topic’ [31]. Despite the tremendous success of applying

topic modelling in dialogue generation [71, 247, 254], there is scarce work exploiting
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latent variable models for dialogue emotion detection. To this end, we borrow

the architecture from VHRED [241] for topic discovery, with the key modification

that both the encoder RNN and decoder RNN are replaced by layers of a pre-

trained language model. Furthermore, we use a transformer multi-head attention in

replacement of the LSTM to model the dependence between the latent topic vectors.

Unlike VHRED, we are interested in the encoder part to extract the posterior of

the latent topic z, rather than the recurrent prior of z in the decoder part since the

latter is intended for dialogue generation. We assume each utterance corresponds to

a latent variable compacting its internal topic, and we impose sequential dependence

on the topic transitions. Figure 5.2 gives an overview of the VAE-based model which

aims at learning the latent topic vector during the fine-tuning of the language model.

nth utterance

...

zn

Encoder (LMφ)

...

nth utterance
 with masks

n+1th utterance

...

zn+1

...

n+1th utterance
   with masks

Decoder (LMθ)

Latent Vector

Output

Input

Topic-driven fine-tuning

Figure 5.2: Topic-driven fine-tuning of a pre-trained LM.

Specifically, the pre-trained language model is decomposed into two parts,

the encoder and the decoder. By retaining the pre-trained weights, we transfer

representations from high-resource tasks to the low-resource setting, which is the

case for dialogue emotion datasets.

Encoder

The training of topic discovery part of TodKat comprises a VAE at each time

step, however with its latent variable dependent on the previous latent code. Each

utterance is input to the VAE encoder with a recurrent hidden state, the output

of which is a latent vector ideally compressing the topic discussed in the utterance.

The latent vectors are tied through a recurrent hidden state to reflect the constraint

that they are within the same dialogue. We use LMϕ to denote the network of lower
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layers of the language model (before the topic layer) and xLn to denote the output

from LMϕ given the input xn. The variational distribution for the approximation

of the posterior will be

qϕ(zn|x≤n, z<n) = N (zn|fµϕ(xLn , hn−1), fσϕ(xLn , hn−1)), (5.3.2)

where hn−1 = fτ (zn−1, x
L
n−1), for n > 1. (5.3.3)

Here, fµϕ(·) and fσϕ(·) are multi-layer perceptrons (MLPs), fτ can be any transition

function (e.g., a recurrent unit). We employ the transformer multi-head attention

with its query being the previous latent variable zn−1, that is,

fτ (zn−1, x
L
n−1) = Attention(zn−1, x

L
n−1, x

L
n−1). (5.3.4)

We initialise h0 = 0 and model the transition between hn−1 and hn by first gener-

ating zn from hn−1 using Eq. 5.3.2, then calculating hn by Eq. 5.3.3.

Decoder

The decoder network reconstructs xn from zn at each time step. We use Gaussian

distribution for both the generative prior and the variational distribution. Since we

want zn to be dependent on zn−1, the prior for zn given the preceding hidden state

is p(zn|hn−1) = N (zn|fµγ (hn−1), fσγ (hn−1)). where fµγ (·) and fσγ (·) are MLPs.

The posterior for zn is pθ(zn|x≤n, z<n), which is intractable and is approximated by

qϕ(zn|x≤n, z<n) of Eq. 5.3.2. We denote the higher layers of the language model as

LMθ. Then the reconstruction of x̂n given zn and xLn can be expressed as:

x̂n = LMθ(zn, x
L
n). (5.3.5)

Note that this is different from dialogue generation in which an utterance is gener-

ated from the latent topic vector. Here, we aim to extract the latent topic from the

current utterance and therefore train the model to reconstruct the input utterance

as specified in Eq. 5.3.5. To make the combination of zn and xLn compatible for

LMθ, we need to perform the latent vector injection. As in [140], we employ the

“Memory” scheme that zn becomes an additional input for LMθ, that is, the input

to the higher layers becomes [zn, x
L
n ].
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Training

The training objective is the Evidence Lower Bound (ELBO):

Eqϕ(z≤N |x≤N )[log pθ(x≤N |z≤N )]−KL[qϕ(z≤N |x≤N )||p(z≤N )] (5.3.6)

Eq. 5.3.6 factorizes and the expectation term becomes

Eqϕ(z≤N |x≤N )

[
N∑
n=1

log pθ(xn|z≤n,x<n)

]
, (5.3.7)

and the KL term becomes

N∑
n=1

KL[qϕ(zn|x≤n, z<n)||p(zn|z<n,x<n)], (5.3.8)

where p(zn|z<n,x<n) is the prior for zn. After training, we can extract the topic rep-

resentation from the encoder part of the model, which is denoted as zn = LMenc
ϕ (xn).

Meanwhile, the entire language model has been fine-tuned, which is denoted as

un = LMCLS(xn).

5.3.3 Knowledge-Aware Transformer

Transformer Encoder-Decoder Classifier

...

znh[CLS]

nth utterance

un{u0, u1, ..., un-1}

...

zih[CLS]

1:n-1 utterances

Transformer Encoder

Transformer Decoder

yn on

QVK

VK

ci cn

candidate events

Knowledge Graph

SBERT COMET

At
te

nt
io

n

Pointer Network





Event: PersonX has to to go to work

xIntent: To get a raise
xReact: Be tired

oReact: Be worried

Figure 5.3: Knowledge-aware transformer.

The topic-driven LM fine-tuning stage allows the LM to discover a topic

representation from a given utterance. After fine-tuning, we attach the fine-tuned

components to a classifier and train the classifier to predict the emotion labels.
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We propose to use the Transformer Encoder-Decoder structure as the classifier,

and consider the incorporation of commonsense knowledge retrieved from external

knowledge sources. In what follows, we first describe how to retrieve commonsense

knowledge from a knowledge source, then we present the detailed structure of the

classifier.

Commonsense Knowledge Retrieval

We use Atomic2 as a source of external knowledge. In Atomic, each node is a

phrase describing an event. Edges are triples such as ⟨event, relation type,

event⟩, linking from one event to another. There are a total of nine relation types,

of which three are used: xIntent, the intention of the subject (e.g., ‘to get a raise’),

xReact, the reaction of the subject (e.g., ‘be tired ’), and oReact, the reaction of

the object (e.g., ‘be worried ’), since they are defined as the mental states of an

event [237].

Given an utterance xn, we can compare it with every node in the knowledge

graph, and retrieve the most similar one. The method for computing the similarity

between an utterance and events is SBERT [225]. We extract the top-K events, and

obtain their intentions and reactions, which are denoted as {esIn,k, esRn,k, eoRn,k}, k =

1, . . . ,K.

On the other hand, there is a knowledge generation model, called Comet3,

which is trained on Atomic. It can take xn as input and generate the knowledge

(e.g., the intention or the reaction) with the desired event relation types specified

(e.g., xIntent, xReact or oReact). The generated knowledge can be unseen in

Atomic since Comet is essentially a fine-tuned language model. Again, we ask

Comet to generate the K most likely events, each with respect to the three event

relation types. The produced events are denoted as {gsIn,k, gsRn,k, goRn,k}, k = 1, . . . ,K.

Knowledge Selection

With the knowledge retrieved from Atomic, we build a pointer network [281] to ex-

clusively choose the commonsense knowledge either from SBERT or Comet in order

to circumvent the case that no matched events are found by SBERT. The pointer

network calculates the probability of choosing the candidate knowledge source as

P (I(xn, en, gn) = 1) = σ([xn, en, gn]Wσ),

2https://homes.cs.washington.edu/~msap/atomic/
3https://github.com/atcbosselut/comet-commonsense
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where I(xn, en, gn) is an indicator function with value 1 or 0, and σ(x) = 1/(1 +

exp(−x)). We envelope σ with Gumbel Softmax [112] to make the one-hot distri-

bution4. The integrated commonsense knowledge is expressed as

cn = I(xn, en, gn)en + (1− I(xn, en, gn))gn,

where cn = {csIn,k, csRn,k, coRn,k}Kk=1.

With the knowledge source selected, we proceed to select the most informa-

tive knowledge. We design an attention mechanism [11] to integrate the candidate

knowledge. Recall that we have a fine-tuned language model which can calculate

both the [CLS] and topic representations. Here we apply the language model to the

retrieved or generated knowledge to obtain the [CLS] and the topic representation,

denoted as [cn,k, zn,k]. The attention mechanism is performed by calculating the dot

product between the utterance and every other normalised knowledge tuple:

vk = tanh([cn,k, zn,k]Wα), (5.3.9)

αk =
exp(vk[zn, un]⊤)∑
k exp(vk[zn, un]⊤)

, cn =
K∑
k=1

αkcn,k.

Here, we abuse cn to represent the knowledge phrases aggregated by k. We further

aggregate the cn by event type using a self-attention and the final event represen-

tation is denoted as cn.

Transformer Encoder-Decoder

We use a Transformer encoder-decoder to map an utterance sequence to an emotion

label sequence, thus allowing for modelling the transitional patterns between emo-

tions and taking into account the historical utterances as well. Each utterance is

converted to the [CLS] representation concatenated with the topic representation zn

and knowledge representation cn. We enforce a masking scheme in the self-attention

sub-layer of the encoder to make the classifier predict emotions in an auto-regressive

way, that is, only the past utterances are visible to the encoder. This masking, pre-

venting the query from attending to future keys, is more natural due to the fact

that the subsequent utterances are unseen when predicting an emotion of the cur-

rent utterance. As for the decoder, the output of the previous decoder block is input

as a query to the self-attention sub-layer. The training loss for the classifier is the

4We have also experimented with a soft gating mechanism by aggregating knowledge from
SBERT and Comet in a weighted manner. But the results are consistently worse than those
using a hard gating mechanism.
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negative log-likelihood expressed as:

L = −
N∑
n=1

log pθ(yn|u≤n,y<n),

where θ denotes the trainable parameters.

5.4 Experimental Setup

In this section, we present the details of the datasets used, the methods for compar-

ison, and the implementation details of our models.

Datasets We use the following datasets for experimental evaluation:

DailyDialog [148] is collected from daily communications. It takes the Ekman’s six

emotion types [65] as the annotation protocol, that is, it annotates an utterance with

one of the six basic emotions: anger, disgust, fear, happiness, sadness, or surprise.

Those showing ambiguous emotions are annotated as neutral.

MELD [217] is constructed from scripts of ‘Friends’, a TV series on urban life. Same

as DailyDialog, the emotion label falls into Ekman’s six emotion types, or neutral.

IEMOCAP [36] is built with subtitles from improvised videos. Its emotion labels

are happy, sad, neutral, angry, excited and frustrated.

EmoryNLP [309]5 is also built with conversations from ‘Friends’ TV series, but

with a slightly different annotation scheme that disgust, anger and surprise become

peaceful, mad and powerful.

Following Zhong et al. [328] and Ghosal et al. [76], the ‘neutral ’ label of

DailyDialog is not counted in the evaluation due to the extreme imbalance. For

MELD and EmoryNLP, we consider a dialogue as a sequence of utterances from the

same scene id. Table 5.1 summarizes the statistics of each dataset.

Baselines We compare the performance of TodKat with the following methods:

HiGRU [113] simply inherits the recurrent attention framework that an attention

layer is placed between two GRUs to aggregate the signals from the encoder GRU

and pass them to the decoder GRU.

DialogueGCN [75] creates a graph from interactions of speakers to take into account

the dialogue structure. A Graph Convolutional Network (GCN) is employed to

encode the speakers. Emotion labels are predicted with the combinations of the

global context and speakers’ status.

5https://github.com/emorynlp/emotion-detection
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DD MELD IEMOCAP EmoryNLP

#Dial. 13,118 1,432 151 827
Train 11,118 1,038 100 659
Dev. 1,000 114 20 89
Test 1,000 280 31 79

#Utt. 102,979 13,708 7,333 9,489
Train 87,170 9,989 4,810 7,551
Dev. 8,069 1,109 1,000 954
Test 7,740 2,610 1,523 984

#Cat. 7 7 6 7

Table 5.1: Statistics of the benchmarks for dialogue emotion detection. Every
benchmark has provided a training set, a development set and a testing set, which
is detailed in the number of utterances.

KET [328] is the first model which integrates common-sense knowledge extracted

from ConceptNet and emotion information from an emotion lexicon into conver-

sational text. A Transformer Encoder is employed to handle the influence of past

utterances.

COSMIC [76] is the state-of-the-art approach that leverages Atomic for improved

emotion detection. Comet is employed in their model to retrieve the event-eccentric

commonsense knowledge phrases from Atomic.

Settings We modified the script6 of language model fine-tuning in the Hugging

Face library [294] for the implementation of topic-driven fine-tuning. We use one

transformer encoder layer. As for the decoder, there are N layers where N is the

number of utterances in a dialogue. On each training set, we train the topic model

for 3 epochs, with learning rate set to 5e-5 to prevent overfitting to the low-resource

dataset. The classifier is built on the Transformers7 package in Hugging Face. The

language model we employ is RoBERTa [155]. Each utterance is padded by the

<pad> token of RoBERTa if it is less than the maximum length of 128. The maximum

number of utterances in a dialogue is set to 36, 25, 72 and 25 respectively for

DD [148] 8, MELD [217] 9, IEMOCAP [36] 10 and EmoryNLP [309] 11. Dialogues

with shorter lengths are padded with NULL. It is worth noting that this step is

6https://huggingface.co/transformers/v2.0.0/examples.html
7https://huggingface.co/transformers/
8http://yanran.li/dailydialog.html
9https://github.com/declare-lab/MELD

10https://sail.usc.edu/iemocap/iemocap_release.htm
11https://github.com/emorynlp/emotion-detection
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performed after RoBERTa due to the random noises introduced by RoBERTa. The

number of retrieved or generated events from Atomic under the relation types

‘intentions’ and ‘reactions is set to 5, respectively, i.e., K = 5.

5.5 Results and Analysis

Comparison with Baselines Experiment results of TodKat and its ablations

are reported in Table 5.2. HiGRU and DialogueGCN results were produced by

running the code published by the authors on the four datasets.

Among the baselines, COSMIC gives the best results. Our proposed Tod-

Kat outperforms COSMIC on both MELD and EmoryNLP in weighted Avg-F1 and

Micro-F1. TodKat also achieves superior results than COSMIC on DailyDialogue

in Macro-F1 and gives nearly the same result in Micro-F1. TodKat is inferior to

COSMIC on IEMOCAP. It is however worth mentioning that COSMIC was trained

with 132 instances on this dataset, while for all the other models the training-and-

validation split is 100 and 20. As such, the IEMOCAP results reported on COSMIC

[76] are not directly comparable here. COSMIC also incorporates the commonsense

knowledge from Atomic but with the modified GRUs. Our proposed TodKat,

built upon the topic-driven Transformer, appears to be a more effective architecture

for dialogue emotion detection. Compared with KET, the improvements are much

more significant, with over 7% increase on MELD, and close to 5% gain on Daily-

Dialog. KET is also built on the Transformer, but it considers each utterance in

isolation and applies commonsense knowledge from ConceptNet. TodKat, on the

contrary, takes into account the dependency of previous utterances and their associ-

ated emotion labels for the prediction of the emotion label of the current utterance.

DialogueGCN models interactions of speakers and it performs slightly better than

KET. But it is significantly worse than TodKat. It seems that topics might be

more useful in capturing the dialogue context.

Ablation Study The lower half of Table 5.2 presents the F1 scores with the

removal of various components from TodKat. It can be observed that with the

removal of the topic component, the performance of TodKat drops consistently

across all datasets except IEMOCAP in which we observe a slight increase in both

weighted average F1 and Micro-F1. This might be attributed to the size of the data

since IEMOCAP is the smallest dataset evaluated here, and the small dataset size

doesn’t favour the discovery of topics. Without using the commonsense knowledge

(‘−KB’), we observe a more drastic performance drop compared to all other com-
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ponents, with a nearly 2.2% drop in F1 on EmoryNLP, showing the importance of

employing commonsense knowledge for dialogue emotion detection. Comparing two

different ways of extracting knowledge from Atomic, direct retrieval using Sbert

or generation using Comet, we observe mixed results. Overall, the Transformer

Encoder-Decoder with a pointer network is a conciliator between the two methods,

yielding a balanced performance across the datasets.

Office

(a) DailyDialog

Family

(b) MELD

Topic Utterances Emotion

Office

A: How are you doing, Christopher?
B: To be honest, I’m really fed up with

work at the moment. I need a break!
A: Are you doing anything this weekend?
B: I have to work on Saturday all day!

I really hate my job!

disgust

Family

A: Yeah, I-I heard. I think it’s great! Ohh,
I’m so happy for you!

B: I can’t believe you’re getting married!
C: Yeah.
D: Monica and Rachel made out.

happy

(c) Representative utterances and their topics

Figure 5.4: T-SNE visualization on DailyDialog and MELD. Utterances with the
same colour have the same emotion label as shown in the last column. Visualization
and highlight of the neutral utterances are omitted for clarity. Each cluster is
exemplified by a group of utterances.
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Relationships between Topics and Emotions To investigate the effectiveness

of the learned topic vectors, we perform t-SNE [276] on the test set to study the

relationship between the learned topic vectors and the ground-truth emotion labels.

The results on DailyDialog and MELD are illustrated in Figure 5.4(a) and (b).

Latent topic vectors of utterance are used to plot the data points, whose colors

indicate their ground-truth emotion labels. We can see that the majority of the

topic vectors cluster into polarized groups. Few clusters are bearing a mixture of

polarity, possibly due to the background topics such as greetings in the datasets.

Topics can be interpreted using the attention scores of Eq. 5.3.4. The top-10

most-attended words are selected as the representative words for each utterance.

As in [57], we construct bag-of-words12 that represent 141 distinct topics. Given

the attended words of an utterance cluster are grouped based on their latent topic

representations, we label the word collection with the dominant theme name. We

refer to the theme names as topics in Figure 5.4c. It can be observed that utterances

associated with office carry ‘disgust’ emotions, while those related to family are

prone to be ‘happy’. There are also cases where similar utterances exhibit different

emotions due to the changes in topics, e.g., “A: Johnny died yesterday, we knew

that it was coming, but. B: Like just last week, he was doing so well.” and “A:

Then all of a sudden they give him a microphone, he asked me to marry him, like,

onstage. B: He scored points.”, showing that the emotion of interlocutors heavily

depends on the topics they are talking about. Usually, topics play a major part in

determining the emotion, but emotional transition also contributes to the changes.

We further compute the Spearman’s rank-order correlation coefficient to

quantitatively verify the relationship between the topic vectors and emotion vectors.

For an utterance pair, a similarity score is obtained separately for their correspond-

ing topic vectors as well as their emotion vectors. We then sort the list of emotion

vector pairs according to their similarity scores to see how its order coordinates

with that of topic vector pairs using the Spearman’s rank-order correlation coeffi-

cient. The results are 0.60, 0.58, 0.42 and 0.54 with p-values ≪ 0.01 respectively

for DailyDialog, MELD, IEMOCAP and EmoryNLP, showing that there is a strong

correlation between the clustering of topics and that of emotion labels. IEMOCAP

has the lowest correlation score, which is inline with the results in Table 2 that the

discovered latent topics did not improve the emotion classification results.

12Word lists and their corresponding theme names are crawled from https://www.

enchantedlearning.com/wordlist/.
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Dataset
Relation Type

{sI, sR, oR, sE, oE} All

DailyDialog 0.5718↓ 0.5664↓
MELD 0.6578↓ 0.6460↓

IEMOCAP 0.6163↑ 0.6073↓
EmoryNLP 0.4055↓ 0.3892↓

Table 5.3: Micro-F1 scores of TodKat with more commonsense relation types
retrieved from Atomic included for training. Here, “sE” and “oE” represent effect
of subject and effect of object, respectively. “All” denotes the incorporation of all
nine commonsense relation types from Atomic.

Impact of Relation Type We investigate the impact of commonsense relation

types on the performance of TodKat. We expand the relation set to five relation

types and all nine relation types, respectively. According to [237], there are other

relation types including {sNeed, sWant, oWant, sEffect, oEffect}, which identifies the

prerequisites and post conditions of the given event, and {sAttr}, the “If-Event-

Then-Persona” category of relation type that describes how the subject is perceived

by others. We calculate the Micro-F1 scores of TodKat with these two categories of

relation types added step by step. From Table 5.3 we can conclude that the inclusion

of two extra relation types or all relation types degrades the F1 scores on almost

all datasets. An exception occurs on IEMOCAP where the F1 score rises by 0.5%

when adding “sE” and “oE” relations, possibly due to the fact that the dataset

is abundant in events. Hence the extra event descriptions offer complementary

knowledge to some extent. While on other datasets neither the incorporation of

“If-Event-Then-Event” nor the incorporation of “If-Event-Then-Persona” relation

types could bring any benefit.

Impact of Attention Mechanism With the knowledge retrieved from Atomic

or generated from Comet, we are able to infer the possible intentions and reactions

of the interlocutors. However, not all knowledge phrases contribute the same to the

emotion of the focused utterance. We study the attention mechanism in terms of

selecting the relevant knowledge. We show in Table 5.4 a heat map of the attention

scores in Eq. 5.3.9 to illustrate how the topic-driven attention could identify the

most salient phrase. The utterance ‘Oh my God, you’re a freak.’ will be erroneously

categorized as ‘mad ’ without using the topic-driven attention (shown in the last row

of Table 5.4).
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te

x
t A: Alright, go on.

B: Ok, I have to sleep on the west side
because I grew up in California
and otherwise the ocean would be
on the wrong side.

A: Oh my God, you’re a freak.
B: Yeah. How about that.

Neutral
Neutral

Joyful
Neutral

T
op

ic
-D

ri
ve

n
A

tt
en

ti
o
n A wants to be liked

Joyful ✓

A wants to be accepted
A wants to be a freak
A will feel satisfied
A will feel ashamed
A will feel happy
B will feel impressed
B will feel disgusted
B will feel surprised

A: Oh my God, you’re a freak. Mad ✗

Table 5.4: Illustration of Attention mechanism in Eq. 5.3.9 that helps distinguish
the retrieved knowledge.

5.6 Summary

We have designed a Topic-Driven and Knowledge-Aware Transformer model that

incorporates topic representation and the commonsense knowledge from Atomic

for emotion detection in dialogues. A topic-augmented language model based on

fine-tuning has been developed for topic extraction. Pointer networks and additive

attention have been explored for knowledge selection. All novel components have

been integrated into the Transformer Encoder-Decoder structure, enabling Seq2Seq

prediction. Empirical results show the model’s effectiveness in topic representation

learning and knowledge integration, which have both boosted the performance of

emotion detection.
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Chapter 6

Disentangled Learning of Stance

and Aspect Topics for Attitude

Detection

Chapter Abstract

We target the disentanglement of tweets regarding stance and aspect top-

ics in this chapter for the benefit of vaccination attitude detection. Our

goal is to detect the stance expressed in a tweet (i.e., ‘pro-vaccination’,

‘anti-vaccination’, or ‘neutral ’), identify a text span that indicates the

concerning aspect of vaccination, and cluster tweets into groups that

share similar aspects. To this end, we propose a novel latent representa-

tion learning model that jointly learns a stance classifier and disentangles

the latent variables capturing stance and aspect. The model employs a

semi-supervised framework that comprises an LM-based VAE and a fine-

tuned text span predictor. We build a dataset called VADet, on which

we validate the proposed approach. The results show that the VADet

model is able to learn disentangled stance and aspect topics, and out-

performs several aspect-based sentiment analysis models on both stance

detection and tweet clustering.
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6.1 Introduction

The aim of vaccine attitude detection in social media is to extract people’s opinions

towards vaccines by analysing their online posts. This is closely related to aspect-

based sentiment analysis in which both aspects and related sentiments need to be

identified. Previous research has been largely focused on product reviews and relied

on aspect-level sentiment annotations to train models [16], where aspect-opinions are

extracted as triples [208], polarized targets [166] or sentiment spans [92]. However,

for the task of vaccine attitude detection on Twitter, such a volume of annotated

data is barely available [130, 206]. This scarcity of data is compounded by the

diversity of attitudes, making it difficult for models to identify all aspects discussed

in posts [189].

As representative examples, consider the two tweets about personal experi-

ences with vaccination at the top of Figure 6.1. The two tweets, despite addressing

a common aspect (vaccine side-effects), express opposite stances towards vaccines.

However, the aspect and the stances are so fused together that the whole of the

tweets need to be considered to derive the proper labels, making it difficult to dis-

entangle them using existing methodologies. Additionally, in the case of vaccines

attitude analysis, there is a wide variety of possible aspects discussed in posts, as

shown at the bottom of Figure 6.1, where one tweet ironically addressed vaccine side-

effects and the second one expressed instead of specific political concerns. This is

different from traditional aspect-based sentiment analysis on product reviews where

only a small number of aspects need to be pre-defined.

The recently developed framework for integrating Variational Auto-Encoder

(VAE) [123] and Independent Component Analysis (ICA) [121] sheds light on this

problem. VAE is an unsupervised method that can be used to glean information

that must be retained from the vaccine-related corpus. Meanwhile, a handful of

annotations would induce the separation of independent factors following the ICA

requirement for prior knowledge and inductive biases [108, 158, 159]. To this end,

we could disentangle the latent factors that are either specific to the aspect or to the

stance, and improve the quality of the latent semantics learned from unannotated

data.

We frame the problem of vaccine attitude detection as a joint aspect span

detection and stance classification task, assuming that a tweet, which is limited to

280 characters, would usually only discuss one aspect. In particular, we extend

a pre-trained language model (LM) by adding a topic layer, which aims to model

the topical theme discussed in a tweet. In the absence of annotated data, the
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The AstraZeneca one is rough for up to 48 hours; after that you 
may still be a bit swollen but you'll basically feel fine. I've had that 
and the virus, and the vaccine is far less unpleasant.

Have felt for the past 24 hours that I’ve been run over by three 
double decker buses after the AstraZeneca vaccine yesterday 
morning. Starting to feel a little normal now but it’s not been nice!

This is quite baffling. I got my second Pfizer vaccine last week and I 
have gone totally off chocolate! As side effects go, it’s not so bad.

There are some very interesting ties between this vaccines creators 
and the eugenics movement which is concerning considering it’s 
mainly been promoted as a vaccine for poor folks in the third world.

Figure 6.1: Top: Expressions of aspects entangled with expressions of opinions.
Bottom: Vaccine attitudes can be expressed towards a wide range of aspects/topics
relating to vaccination, making it difficult to pre-define a set of aspect labels as
opposed to corpora typically used for aspect-based sentiment analysis.

topic layer is trained to reconstruct the input message built on VAE. Given the

annotated data, where each tweet is annotated with an aspect span and a stance

label, the learned topic can be disentangled into a stance topic and an aspect topic.

The stance topic is used to predict the stance label of the given tweet, while the

aspect topic is used to predict the start and ending positions of the aspect span.

By doing so, we can effectively leverage both unannotated and annotated data for

model training. To evaluate the effectiveness of our proposed model for vaccine

attitude detection on Twitter, we have collected over 1.9 million tweets relating

to COVID vaccines between February and April 2021. We have further annotated

2,800 tweets with both aspect spans and stance labels. In addition, we have also

used an existing Vaccination Corpus1 in which 294 documents related to the online

vaccination debate have been annotated with opinions towards vaccination. Our

experimental results on both datasets show that the proposed model outperforms

existing opinion triple extraction model and BERT QA model on both aspect span

extraction and stance classification. Moreover, the learned latent aspect topics allow

the clustering of user attitudes towards vaccines, facilitating easier discovery of

positive and negative attitudes in social media. The contribution of this work can

1https://github.com/cltl/VaccinationCorpus
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be summarised as follows2:

• We have proposed a novel semi-supervised approach for joint latent stance/aspect

representation learning and aspect span detection;

• The developed disentangled representation learning facilitates better attitude

detection and clustering;

• We have constructed an annotated dataset for vaccine attitude detection.

6.2 Related Work

This work is related to three lines of research: aspect-based sentiment analysis,

disentangled representation learning, and vaccine attitude detection.

Aspect-Based Sentiment Analysis (ABSA) aims to identify the aspect terms

and their polarities from text. Much work has been focusing on this task. The

techniques used include Conditional Random Fields (CRFs) [171], Bidirectional

Long Short-Term Memory networks (BiLSTMs) [17], Convolutional Neural Net-

works (CNNs) [321], Attention Networks [211, 305], DenseLSTMs [295], NestedL-

STMs [186], Graph Neural Networks [311] and their combinations [283, 286], to name

a few. Zhang et al. [317] framed this task as text span detection, where they used

text spans to denote aspects. The same annotation scheme was employed in [145],

where intra-word attentions were designed to enrich the representations of aspects

and predict their polarities. Li et al. [146] formalized the task as a sequence labeling

problem under a unified tagging scheme. Their follow-up work [147] explored BERT

for end-to-end ABSA. Peng et al. [208] modified this task by introducing opinion

terms to shape the polarity. A similar modification was made in [325] to extract

aspect-opinion pairs. Position-aware tagging was introduced to entrench the offset

between the aspect span and opinion term [302]. More recently, instead of using

pipeline approaches or sequence tagging, Barnes et al. [16] adapted syntactic de-

pendency parsing to perform aspect and opinion expression extraction, and polarity

classification, thus formalizing the task as structured sentiment analysis.

Disentangled representation learning Deep generative models learn the hid-

den semantics of text, of which many attempt to capture the independent latent fac-

tor to steer the generation of text in the context of NLP [63, 103, 115, 140, 143, 210].

The majority of the aforementioned work employs VAE [125] to learn controllable

2Our source code and dataset are available at http://github.com/somethingx1202/VADet
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factors, leading to the abundance of VAE-based models in disentangled representa-

tion learning [35, 43, 94]. However, previous studies show that unsupervised learning

of disentanglement by optimising the marginal likelihood in a generative model is

impossible [157]. While it is also the case that non-linear ICA is unable to uncover

the true independent factors, Khemakhem et al. [121] established a connection be-

tween those two strands of work, which is of particular interest to us since the

proposed framework learns to approximate the true factorial prior given few exam-

ples, recovering a disentangled latent variable distribution on top of additionally

observed variables. In the proposed approach, stance labels and aspect spans are

additionally observed on a handful of data, which could be used as inductive biases

that make disentanglement possible.

Vaccine attitude detection Very little literature exists on attitude detection

for vaccination. In contrast, there is growing interest in Covid-19 corpus construc-

tion [250]. Of particular interest to us, Banda et al. [13] built an on-going tweet

dataset that traces the development of Covid-19 by 3 keywords: “coronavirus”,

“2019nCoV” and “corona virus”. Hussain et al. [105] utilized hydrated tweets from

the aforementioned corpus to analyze the sentiment towards vaccination. They used

lexicon-based methods (i.e., VADER and TextBlob) and pre-trained BERT to clas-

sify the sentiment in order to gain insights into the temporal sentiment trends. A

similar approach has been proposed in [102]. Lyu et al. [165] employed a topic

model to discover vaccine-related themes in twitter discussions and performed sen-

timent classification using lexicon-based methods. However, none of the work above

constructed datasets about vaccine attitudes, nor did they train models to detect

attitudes. Morante et al. [189] built the Vaccination Corpus (VC) with events, attri-

butions and opinions annotated in the form of text spans, which is the only dataset

available to us to perform attitude detection.

6.3 Proposed Approach

The goal of our work is to detect the stance expressed in a tweet (i.e., ‘pro-vaccination’,

‘anti-vaccination’, or ‘neutral ’), identify a text span that indicates the concerning

aspect of vaccination, and cluster tweets into groups that share similar aspects. To

this end, we propose a novel latent representation learning model that jointly learns

a stance classifier and disentangles the latent variables capturing stance and aspect

respectively. Our proposed Vaccine Attitude Detection (VADet) model is firstly

trained on a large amount of unannotated Twitter data to learn latent topics via
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masked Language Model (LM) learning. It is then fine-tuned on a small amount of

Twitter data annotated with stance labels and aspect text spans for simultaneously

stance classification and aspect span start/end position detection. The rationale is

that the inductive bias imposed by the annotations would encourage the disentan-

glement of latent stance topics and aspect topics. In what follows, we will present

our proposed VADet model, first under the masked LM learning and later extended

to the supervised setting for learning disentangled stance and aspect topics.

6.3.1 VADet in the masked LM learning

Very grateful to those at Oxford @user and 
everyone from the @user as I got my first 
#COVID19 vaccine . Quick , painless and no side 
effects . Well apart from this weird urge to buy 

p
os
iti
ve

I got my first #COVID19 vaccine Very grateful to those at Oxford @user and everyone 
from the @user as I got my first #COVID19 vaccine . 
Quick , painless and no side effects .

[CLS] Very [MASK] to those at Oxford…

!

[CLS] Very grateful to those at Oxford…
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Figure 6.2: VADet in masked language model learning. The latent variables are
encoded via the topic layers incorporated into the masked language model.

We insert a topic layer into a pre-trained language model such as ALBERT,

as shown in Figure 6.2, allowing the network to leverage pre-trained information

while fine-tuned on an in-domain corpus. We assume that there is a continuous

latent variable z involved in the language model to reconstruct the original text

from the masked tokens. We retain the weights of a language model and learn

the latent representation during the fine-tuning. More concretely, the topic layer

partitions a language model into lower layers and higher layers denoted as ψ and

θ, respectively. The lower layers constitute the Encoder that parameterizes the

variational posterior distribution denoted as qϕ(z|ψ(w)), while the higher layers

reconstruct the input tokens, which is referred to as the Decoder.

The objective of VAE is to minimize the KL-divergence between the varia-

tional posterior distribution and the approximated posterior. This is equivalent to
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maximizing the Evidence Lower BOund (ELBO) expressed as:

Eqϕ(z|ψ(w))[log pθ(w
H |z, ψ(w))]−KL[qϕ(z|ψ(w))||p(z)], (6.3.1)

where qϕ(z|ψ(w)) is the encoder and pθ(w
H |z, ψ(w)) is the decoder. Here, w =

[wCLS, w1:n], since the special classification embedding wCLS is automatically prepended

to the input sequence [60], wH denotes the reconstructed input.

Following [123], we choose a standard Gaussian distribution as the prior, de-

noted as p(z), and the diagonal Gaussian distribution as the variational distribution,

which is analogous to a regularizer [265]. The decoder computes the probability of

the original token given the latent variable sampled from the Encoder. We use the

Memory Scheme [140] to concatenate z and ψ(w), making the latent representation

compatible for higher layers of the language model. Then the latent presentation z

is passed to θ to reconstruct the original text.

6.3.2 VADet with disentanglement of aspect and stance

One of the training objectives of vaccine attitude detection is to detect the text

span that indicates the aspect and to predict the associated stance label. Existing

approaches rely on structured annotations to indicate the boundary and dependency

between aspect span and opinion words [16, 302], or use a two-stage pipeline to detect

the aspect span and the associated opinion separately [208]. The problem is that

the opinion expressed in a tweet and the aspect span often overlap. To mitigate this

issue, we instead separate the stance and aspect from their representations in the

latent semantic space, that is, disentangling latent topics learned by VADet into

latent stance topics and latent aspect topics.

A recent study in disentangled representation learning [157] shows that un-

supervised learning of disentangled representations is theoretically impossible from

i.i.d. observations without inductive biases, such as grouping information [29] or

access to labels [159, 273]. As such, we extend our model to a supervised setting in

which the disentanglement of the latent vectors can be trained on annotated data.

Figure 6.3 outlines the overall structure of VADet in the supervised setting.

On the right-hand side, we show VADet learned from the annotated aspect text

span [wa : wb] under masked LM learning. The latent variable za encodes the hidden

semantics of the aspect expression. We posit that the aspect span is generated from

a latent representation with a standard Gaussian distribution being its prior. The
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Figure 6.3: VADet in supervised learning. The text segment highlighted in blue
is the annotated aspect span. The right part learns latent aspect topic za from
aspect text span [wa : wb] only under masked LM learning. The left part learns
jointly latent stance topic zs and latent aspect topic zw from the whole input text,
and trained simultaneously for stance classification and aspect start/end position
detection.

ELBO for reconstructing the aspect text span is:

LA = Eqϕ(za|ψ(wa:b))[log pθ(w
H
a:b|za, ψ(wa:b))]−KL[qϕ(za|ψ(wa:b))||p(za)], (6.3.2)

where wHa:b denotes the reconstructed aspect span. Ideally, the latent variable za

does not encode any stance information and only captures the aspect mentioned in

the sentence. Therefore, the zs for the language model on the right hand side is

detached and the reconstruction loss for [CLS] is set free.

On the left hand side of Figure 6.3, we train VADet on the whole sentence.

The input to VADet is formalized as: ‘[CLS] text’. Instead of mapping an input

to a single latent variable z, as in masked LM learning of VADet, the input is now

mapped to a latent variable decomposing into two components, [zs, zw], one for the

stance and another for the aspect. We use a conditionally factorized Gaussian prior

over the latent variable zw ∼ pθ(zw|wa:b), which enables the separation of zs and

zw since the diagonal Gaussian is factorized and the conditioning variable wa:b is

observed.

We establish an association between zw and za by specifying pθ(zw|wa:b) to

be the encoder network of qϕ(za|wa:b), since we want the latent semantics of aspect
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span to encourage the disentanglement of attitude in the latent space. In other

words, the prior of zw is configured as the approximate posterior of za to enforce the

association between the disentangled aspect in a sentence and the de facto aspect.

As a result, the ELBO for the original text is written as

Eqϕ(zw|ψ(w))[log pθ(w
H |zw, ψ(w))]

−KL[qϕ(zw|ψ(w))||qϕ(zw|ψ(wa:b))],
(6.3.3)

where wH denotes the reconstructed input text, zw|w ∼ N (µϕ(ψ(w)), σ2ϕ(ψ(w))).

The KL-divergence allows for some variability since there might be some semantic

drift from the original semantics when the aspect span is placed in a longer sequence.

The annotation of the stance label provides an additional input. To exploit

this inductive bias, we enforce the constraint that zs participates in the generation

of [CLS], which follows an approximate posterior qϕ(zs|ψ(w[CLS])). We place the

standard Gaussian as the prior over zs ∼ N (0, I) and obtain the ELBO

Eqϕ(zs|ψ(w[CLS]))[log pθ(w
H
[CLS]|zs, ψ(w[CLS]))]

−KL[qϕ(zs|ψ(w[CLS]))||p(zs)]
(6.3.4)

Since the variational family in Eq. 6.3.1 are Gaussian distributions with

a diagonal covariance, the joint space of [zs, zw] factorizes as qϕ(zs, zw|ψ(w)) =

qϕ(zs|ψ(w))qϕ(zw|ψ(w)) [191].

Assuming zw to be solely dependent on ψ(w1:n), we obtain the ELBO for the

entire input sequence:

LS = Eqϕ(zw)Eqϕ(zs)[log pθ(w
H |z, ψ(w))]

−KL [qϕ(zw|ψ(w1:n))||qϕ(zw|ψ(wa:b))]

−KL[qϕ(zs|ψ(w))||p(zs)].
(6.3.5)

Note that the expectation term can be decomposed into the expectation term in

Eq. 6.3.3 and Eq. 6.3.4 according to the decoder structure. The derivation is elab-

orated on below:

Derivation of the Decomposed ELBO Unsupervised training is based on maximizing

the Evidence Lower Bound (ELBO):

Eqϕ(zs,zw|ψ(w))[log pθ(w|zs, zw, ψ(w))]−KL[qϕ(zs, zw|ψ(w))||p(zs, zw)],

where z is partitioned into zs and zw. Like standard VAE [123], the variational
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distribution is a multivariate Gaussian with a diagonal covariance:

qϕ(zs, zw|ψ(w)) = N (zs, zw|µ, σ2I),

where µ = [µs, µw] and σ = [σs, σw]. Since the coveriance matrix is diagonal, zs and

zw are uncorrelated. Therefore, the joint probability is decomposed into:

qϕ(zs, zw|ψ(w)) = qϕ(zs|ψ(w))qϕ(zw|ψ(w)),

where qϕ(zs|ψ(w)) = N (zs|µs, σs), ϕ are the variational parameters. The prior of

[zs, zw] ∼ N (zs, zw|0, I) can also be decomposed into the product of p(zs) and p(zw),

then the KL term becomes:

KL[qϕ(zs|ψ(w))||p(zs)] + KL[qϕ(zw|ψ(w))||p(zw)].

As for the decoder pθ(w|zs, zw, ψ(w)), the reconstruction of each masked token and

w[CLS] are independent from each other, i.e., they are not predicted in an autore-

gressive way. Therefore, the joint probability is decomposed into:

pθ(w|zs, zw, ψ(w)) = pθ(w[CLS]|zs, zw, ψ(w)) pθ(w1:n|zs, zw, ψ(w))

We customize the decoder network to make w[CLS] solely dependent on zs, and

obtain

Eqϕ(zs)Eqϕ(zw)[log pθ(w[CLS]|zs, ψ(w)) + log pθ(w1:n|zw, ψ(w))]

Here, we omit ψ(w) for notational simplicity. Given the supervision of annotated

aspect spans, the prior of zw is constrained by qϕ(zw|ψ(wa:b)) (a.k.a., the encoder

of wa:b), this will change the KL term into:

KL[qϕ(zs|ψ(w))||p(zs)] + KL[qϕ(zw|ψ(w1:n))||qϕ(zw|ψ(wa:b))],

and finally the ELBO is expressed as

Eqϕ(zs)[log pθ(w[CLS]|zs, ψ(w))]

+ Eqϕ(zw)[log pθ(w1:n|zw, ψ(w))]

−KL[qϕ(zs|ψ(w))||p(zs)]
−KL[qϕ(zw|ψ(w1:n))||qϕ(zw|ψ(wa:b))].
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Training objective Finally, we perform stance classification and classification

for the starting and ending position over the aspect span of a tweet. We use the

negative log-likelihood loss for both the stance label and aspect span:

Ls =− log p(ys|wH[CLS]),
La =− log p(ya|MLP(wH1:n))− log p(yb|MLP(wH1:n)),

where MLP is a fully-connected feed-forward network with tanh activation, ys is the

predicted stance label, ya and yb are the starting and ending position of the aspect

span. The overall training objective in the supervised setting is:

L = Ls + La − LS − LA

6.4 Experimental Setup

6.4.1 Datasets

We evaluate our proposed VADet and compare it against baselines on two vacci-

nation attitude datasets.

VAD

VAD is our constructed Vaccine Attitude Dataset. Following Hussain et al. [105],

we crawl tweets using the Twitter streaming API with 60 pre-defined keywords

relating to COVID-19 vaccines (e.g., Pfizer, AstraZeneca, and Moderna). We col-

lected tweets between February 7th and April 3rd, 2022 using 60 vaccine-related

keywords. The exhaustive list is: ‘covid-19 vax’, ‘covid-19 vaccine’, ‘covid-19 vac-

cines’, ‘covid-19 vaccination’, ‘covid-19 vaccinations’, ‘covid-19 jab’, ‘covid-19 jabs’,

‘covid19 vax’, ‘covid19 vaccine’, ‘covid19 vaccines’, ‘covid19 vaccination’, ‘covid19

vaccinations’, ‘covid19 jab’, ‘covid19 jabs’, ‘covid vax’, ‘covid vaccine’, ‘covid vac-

cines’, ‘covid vaccination’, ‘covid vaccinations’, ‘covid jab’, ‘covid jabs’, ‘coronavirus

vax’, ‘coronavirus vaccine’, ‘coronavirus vaccines’, ‘coronavirus vaccination’, ‘coro-

navirus vaccinations’, ‘coronavirus jab’, ‘coronavirus jabs’, ‘Pfizer vaccine’, ‘BioN-

Tech vaccine’, ‘Oxford vaccine’, ‘AstraZeneca vaccine’, ‘Moderna vaccine’, ‘Sputnik

vaccine’, ‘Sinovac vaccine’, ‘Sinopharm vaccine’, ‘Pfizer jab’, ‘BioNTech jab’, ‘Ox-

ford jab’, ‘AstraZeneca jab’, ‘Moderna jab’, ‘Sputnik jab’, ‘Sinovac jab’, ‘Sinopharm

jab’, ‘Pfizer vax’, ‘BioNTech vax’, ‘Oxford vax’, ‘AstraZeneca vax’, ‘Moderna vax’,

‘Sputnik vax’, ‘Sinovac vax’, ‘Sinopharm vax’, ‘Pfizer vaccinate’, ‘BioNTech vac-

cinate’, ‘Oxford vaccinate’, ‘AstraZeneca vaccinate’, ‘Moderna vaccinate’, ‘Sputnik
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vaccinate’, ‘Sinovac vaccinate’, ‘Sinopharm vaccinate’.

Only English tweets were collected. Retweets were discarded. For pre-

processing, hyperlinks, usernames and irregular symbols were removed. Emojis and

emoticons were converted to their literal meanings using an emoticon dictionary3.

The final dataset comprises 1.9 million English tweets. We randomly sample a sub-

set of tweets for annotation. Upon an initial inspection, we found that over 97% of

tweets mentioned only one aspect. As such, we annotate each tweet with a stance

label and a text span characterizing the aspect. The annotation guideline comprises

four questions:

• What is the stance towards vaccination?

• What is the Aspect Span? (i.e., Events or targets, it can be nouns, noun

phrase, clause or sentence with verbal predicates).

• What is the opinion term/span? It should be opinion expressions, comprising

both explicit and implicit expressions of stance.

• What is the Aspect category? It should be one of the pre-defined aspect

categories (shown in Table 6.4).

The annotators have the choice to skip some of the questions if they find it difficult

to answer. Taking the tweet ‘Very grateful to those at Oxford. I’ve got my first

#Covid19 vaccine.’ as an example, the annotators are expected to answer with:

‘Pro-vaccine’, ‘I’ve got my first #Covid19 vaccine’, ‘Very grateful to those at Oxford.

I’ve got my first #Covid19 vaccine’, ‘2 ’. If an annotator chooses to skip a tweet at

any step of the process, this tweet will be recorded as skipped and the annotator will

not be assigned with similar tweets. We first had a trial run where each annotator

was asked to annotate the same set of tweets. Any disagreement was recorded and

discussed to refine our annotation guideline in order to achieve consistency between

the annotators.

In total, 2,800 tweets have been annotated in which 2,000 are used for training

and the remaining 800 are used for testing. The statistics of the dataset is listed

in Table 6.1. The stance labels are imbalanced. On the other hand, the average

opinion length is longer than the average aspect length, and is close to the average

tweet length. For the purpose of evaluation on tweet clustering and latent topic

disentanglement, we further annotate tweets with a categorical label indicating the

aspect category. Inspired by [189], we identify 24 aspect categories and each tweet is

annotated with one of these categories. It is worth mentioning that aspect category

labels are not used for training.

3https://wprock.fr/en/t/kaomoji/
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VAD VC

Specification Train Test Train Test

# tweets 2000 800 1162 531
# anti-vac. 638 240 822 394
# neutral 142 76 41 27
# pro-vac. 1220 484 299 110

Avg. length 33.5 34.13 29.6 30.24
len(aspect) 17.5 18.75 1.03 1.08
len(opinion) 27.97 29.01 3.25 3.15

# tokens 67k 27.3k 34.4k 16.8k

Table 6.1: Dataset Statistics. ‘# tweets’ denotes the number of tweets in VAD,
and for VC it is the number of sentences. ‘anti-vac.’ means anti-vaccination while
‘pro-vac.’ means pro-vaccination. ‘Avg. length’ and ‘# token’ measure the number
of word tokens.

VC

Vaccination Corpus [189] consists of 294 Internet documents about online vaccine

debate annotated with events, 210 of which are annotated with opinions (in the form

of text spans) towards vaccines. The stance label is considered to be the stance for

the whole sentence. Those sentences with conflicting stance labels are regarded as

neutral. We split the dataset into a ratio of 2:1 for training and testing. This

eventually left us with 1,162 sentences for training and 531 sentences for testing.

6.4.2 Baselines

We compare the experimental results with the following baselines:

BertQA [146]: a pre-trained language model well-suited for span detection. With

BertQA, attitude detection is performed by first classifying stance labels then pre-

dicting the answer queried by the stance label. The text span is configured as the

ground-truth answer. We rely on its HuggingFace4 [294] implementation. We em-

ploy ALBERT [132] as the backbone language model for both BertQA and VADet.

ASTE [208]: a pipeline approach consisting of aspect extraction [146] and sentiment

labelling [145].

4https://huggingface.co/transformers/model_doc/albert.html#

albertforquestionanswering
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6.4.3 Hyper-parameters and Training Details

The dimensions of za, zw and zs are 768, 768 and 32, respectively. For each tweet, the

number of samples from ϵ ∼ N (0, I) is 1. We modified the LM-fine-tuning script5

from the HuggingFace library to implement VADet in the masked LM learning.

We use default settings for the training script (i.e., Trainer in the HuggingFace

library6), except for the batch size which is set to 128. The data pre-processor

for the masked language model is the data collator for language modeling7, which

provides the function of randomly masking the tokens. The tokenizer for the data

collator is the ready-to-use ALBERT tokenizer8. For the pre-trained language model

(i.e., ALBERT) employed in this model, we inherit the default setting from the

AlbertConfig class. We train VADet for 5 epochs on the un-annotated corpus.

In the supervised training of VADet, we use a batch size of 64. The learning

rate is initialized to 2e−5 with a linear warm-up schedule. We employ 5-fold training

in which the training set is split into 5 subsets, of which 4 are used for training

and the rest is for validation at the end of each epoch, and the final prediction is

an ensemble of 5 independently-saved models. We train each model for 5 epochs,

which takes roughly 2 hours on a node of a single Nvidia RTX 2080 GPU.

6.4.4 Evaluation Metrics

For stance classification, we use accuracy and Macro-averaged F1 score. For as-

pect span detection, we follow Rajpurkar et al. [223] in adopting exact match (EM)

accuracy of the starting-ending position and Macro-averaged F1 score of the over-

lap between the prediction and ground truth aspect span. For tweet clustering, we

follow Xie et al. [299] and Zhang et al. [313] and use the Normalized Mutual Infor-

mation (NMI) metric to measure how the clustered group aligns with ground-truth

categories. In addition, we also report the clustering accuracy.

In all our experiments, VADet is firstly pre-trained in an unsupervised way

on our collected 1.9 million tweets before fine-tuning on the annotated training set

from the VAD or VC corpora.

5https://github.com/huggingface/transformers/blob/master/examples/pytorch/

language-modeling/run_mlm.py
6https://huggingface.co/docs/transformers/master/en/main_classes/trainer#

transformers.Trainer
7https://huggingface.co/docs/transformers/main_classes/data_collator
8https://huggingface.co/docs/transformers/master/en/model_doc/albert#

transformers.AlbertTokenizer
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Model VAD VC

Stance Acc. F1 Acc. F1

BertQA 0.754 0.742 0.719 0.708
ASTE 0.723 0.710 0.704 0.686
VADet 0.763 0.756 0.727 0.713

Aspect Span Acc. F1 Acc. F1

BertQA 0.546 0.722 0.525 0.670
ASTE 0.508 0.684 0.467 0.652
VADet 0.556 0.745 0.541 0.697

Cluster Acc. NMI Acc. NMI

DEC (BertQA) 0.633 58.1 0.586 52.8
K-means (BERT) 0.618 56.4 0.571 50.1
DEC (VADet) 0.679 60.7 0.605 54.7

Table 6.2: Results for stance classification, aspect span extraction and aspect clus-
tering on both VAD and VC corpora.

6.5 Experimental Results

6.5.1 Classification and Aspect Span Detection

In Table 6.2, we report the performance on attitude detection. In stance classifi-

cation, our model outperforms both baselines with more significant improvements

on ASTE. On aspect span extraction, VADet yields even more noticeable improve-

ments, with a 2.3% increase in F1 over BertQA on VAD, and 2.7% on VC. These

results indicate that the successful prediction relies on the hidden representation

learned in the unsupervised training. The disentanglement of stance and aspect

may have also contributed to the improvement.

6.5.2 Cluster Semantic Coherence Evaluation

To assess whether the learned latent aspect topics would allow meaningful catego-

rization of documents into attitude clusters, we perform clustering using the disen-

tangled representations that encode aspects, i.e., zw. Deep Embedding Clustering

(DEC) [299] is employed as the backend. For comparison, we also run DEC on the

aspect representations of documents returned by BertQA. For each document, its

aspect representation is obtained by averageing over the fine-tuned ALBERT rep-

resentations of the constituent words in its aspect span. To assess the quality of

clusters, we need the annotated aspect categories for documents in the test set. In

VAD, we use the annotated aspect labels as the ground-truth categories whereas
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in VC we use the annotated event types. Results are presented in the lower part

of Table 6.2. We found a prominent increase in NMI score over the baselines. Us-

ing the learned latent aspect topics as features, DEC (VADet) outperforms DEC

(BertQA) by 4.6% and 1.9% in accuracy on VAD and VC, respectively. We also

notice that using K-means as the clustering approach directly on the BERT-encoded

tweet representations gives worse results compared to DEC. A similar trend is ob-

served on the NMI metric. The improvements are shown visually in Figure 6.4 where

the clustered groups produced by VADet are more identifiable. In the absence of

categorical labels, the perspective expressed by each group can be inferred from the

constituent tweets. For example, the tweet ‘@user Georgian nurse dies of allergic

reaction after receiving AstraZeneca Covid19 vaccine’ lies in the centroid of the red

group, which relates to safety concerns.

(a) VADet (b) BertQA

Figure 6.4: Clustered groups of VADet and BertQA on the VAD dataset. Each
color indicates a ground truth aspect category. The clusters are dominated by: (1)
Red: the (adverse) side effects of vaccines; (2) Green: explaining personal experi-
ences with any aspect of vaccines; and (3) Cyan: the immunity level provided by
vaccines.

We also evaluate the semantic coherence of the clustered tweets. The seman-

tic coherence is the extent to which tweets within a cluster belong to each other,

which is employed as an evaluation metric for cluster quality evaluation in an unsu-

pervised way. Recent work of Bilal et al. [21] found that Text Generation Metrics

(TGMs) align well with human judgement in evaluating clusters in the context of mi-

croblog posts. TGM by definition measures the similarity between the ground-truth

and the generated text. The rationale is that a high TGM score means sentence
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pairs are semantically similar. Here, two metrics are used: BERTScore, which cal-

culates the similarity of two sentences as a sum of cosine similarities between their

tokens’ embeddings [318], and BLEURT, a pre-trained adjudicator that fine-tunes

BERT on an external dataset of human ratings [239]. As in [21], we adopt the

Exhaustive Approach that for a cluster C, its coherence score is the average TGM

score of every possible tweet pair in the cluster:

f(C) =
1

N2

∑
i,j∈[1,N ],i<j

TGM(tweeti, tweetj).

Figure 6.5 shows the BERTScore and the BLEURT score of VADet and

baselines on two datasets. The VADet shows consistent improvements across the

datasets. This indicates that tweets clustered using the latent aspect topics gen-

erated by VADet are semantically more similar, thus validating the assumption

that disentangled representations are more effective in bringing together tweets of a

similar gist.

DEC
(BertQA)

K-means
(Bert)

 DEC
(VADet)

Vaccine Attitude Dataset

0

0.1

0.2

0.3

0.4

BERTScore
BLEURT

DEC
(BertQA)

K-means
(Bert)

 DEC
(VADet)

Vaccination Corpus

0

0.1

0.2

0.3

0.4

BERTScore
BLEURT

Figure 6.5: Semantic coherence evaluated in two metrics.

6.5.3 Ablations

We conduct ablation studies to investigate the effect of semi-supervised learning that

uses the variational latent representation learning approach and aspect-stance dis-

entanglement on the latent semantics. We study their effects on stance classification

and aspect span detection. The results are reported in Table 6.3.

We can observe that on VAD without disentangled learning or unsupervised

pre-training results in the degradation of the stance classification performance. How-
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Model VAD VC

Stance Acc. F1 Acc. F1

VADet 0.763 0.756 0.727 0.713
VADet-D 0.751 0.746 0.736 0.716
VADet-U 0.741 0.734 0.712 0.698

Aspect Span Acc. F1 Acc. F1

VADet 0.556 0.745 0.541 0.697
VADet-D 0.540 0.728 0.537 0.684
VADet-U 0.528 0.712 0.525 0.653

Table 6.3: Results of stance classification and aspect span detection of VADet
without disentanglement (-D) or unsupervised pre-training (-U).

ever, on VC, we see a slight increase in classification accuracy without disentangled

learning. We attribute this to the vagueness of the stance which might cause the

model to disentangle more than it should be. On the aspect span detection task,

we observe consistent performance drop across all metrics and on both datasets.

In particular, without the pre-training module, the performance drops more signifi-

cantly. These results indicate that semi-supervised learning is highly effective with

VAE, and the disentanglement of stance and aspect serves as a useful component,

which leads to noticeable improvements.

6.6 Summary

This chapter presents a semi-supervised model to detect user attitudes and distin-

guish aspects of interest in vaccines on social media. We employed a Variational

Auto-Encoder to encode the main topical information into the language model by

unsupervised training on a massive, unannotated dataset. The model is then fur-

ther trained under a semi-supervised setting that leverages annotated stance labels

and aspect spans to induce the disentanglement between stances and aspects in a

latent semantic space. We empirically showed the benefits of such an approach for

attitude detection and aspect clustering over two vaccine corpora. Ablation stud-

ies show that disentangled learning and unsupervised pre-training are important

to effective vaccine attitude detection. Further investigations on the quality of the

disentangled representations verify the effectiveness of the disentangled factors.
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Label Definition

1

AstraZeneca: How health organisations/institution, communities,

groups, individuals and other entities position themselves towards

vaccines

2
AstraZeneca: Explaining personal experiences with any aspect of

vaccines

3

AstraZeneca: The achievement that vaccines have brought

(vaccines save lives, protect the community, protect future

generations)

4
AstraZeneca: The (adverse) side effects of vaccines: illnesses,

symptoms, deaths

5 AstraZeneca: The immunity level provided by vaccines

6
AstraZeneca: The economic effect of vaccination (less illnesses,

less expenses for family and society)

7
AstraZeneca: Discussing the personal freedom to choose in

relation to vaccines

8
AstraZeneca: Discussing the relation between vaccines and

religion, conspiracy or moral attitudes

9

Pfizer or Moderna: How health organisations/institution,

communities, groups, individuals and other entities position

themselves towards vaccines

10
Pfizer or Moderna: Explaining personal experiences with any

aspect of vaccines

11

Pfizer or Moderna: The achievement that vaccines have brought

(vaccines save lives, protect the community, protect future

generations)

12
Pfizer or Moderna: The (adverse) side effects of vaccines: illnesses,

symptoms, deaths

13 Pfizer or Moderna: The immunity level provided by vaccines

14
Pfizer or Moderna: The economic effect of vaccination (less

illnesses, less expenses for family and society)

15
Pfizer or Moderna: Discussing the personal freedom to choose

in relation to vaccines

16
Pfizer or Moderna: Discussing the relation between vaccines

and religion, conspiracy or moral attitudes
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17

Other Brands or not mentioned: How health

organisations/institution, communities, groups, individuals and

other entities position themselves towards vaccines

18
Other Brands or not mentioned: Explaining personal

experiences with any aspect of vaccines

19

Other Brands or not mentioned: The achievement that vaccines

have brought (vaccines save lives, protect the community,

protect future generations)

20
Other Brands or not mentioned: The (adverse) side effects of

vaccines: illnesses, symptoms, deaths

21
Other Brands or not mentioned: The immunity level provided

by vaccines

22
Other Brands or not mentioned: The economic effect of

vaccination (less illnesses, less expenses for family and society)

23
Other Brands or not mentioned: Discussing the personal freedom

to choose in relation to vaccines

24
Other Brands or not mentioned: Discussing the relation between

vaccines and religion, conspiracy or moral attitudes

Table 6.4: The predefined aspect categories and their definitions.
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Chapter 7

Disentangling Aspect and

Stance via a Siamese

Autoencoder for Aspect

Clustering

Chapter Abstract

In this chapter, we build models to disentangle the aspect and the stance

in the task of vaccination opinion mining. The disentangled representa-

tion enables us to cluster tweets based on aspect similarity rather than

sentence similarity, allowing the model to deal with unseen tweets more

effectively. We first use a denoising autoencoder built on a pre-trained

language model to capture the vaccine-related topics from myriads of

unlabelled tweets. We then enable the disentanglement of the latent

space by using biases from stance labels and aspect text spans handled

by the disentangled cross attention. Finally, we introduce the Swap-

ping Autoencoder to align evidence of stance and aspect to latent vec-

tors by swapping the presumed aspect embedding of a tweet with that

of another discussing the same aspect. The three components are in-

tegrated into a clustering-friendly representation learning method that

produces disentangled representations for aspect-oriented clustering of

tweets. In experiments on two Twitter vaccination corpora, we show

that the model discovered disentangled representations which improved

clustering results. With a classification head for inductive biases, the

model can make stance predictions comparable to backbone language
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models.

7.1 Introduction

Mining public opinions about vaccines from social media has been hindered by the

wide variety of users’ attitudes, and the continuously new aspects arising in the

public debate of vaccination [106]. The most recent approaches have adopted holistic

frameworks built on morality analysis [200] or neural-based models predicting users’

stances on different aspects of the online debate [334]. So far, these frameworks have

been frequently framed via well-known tasks, such as aspect classification or text

span detection, that use supervision to train text classifiers. However, such a direct

usage of the supervision information has constrained the models to predefined aspect

classes and restricted their flexibility in generalising to opinions with aspects never

seen before (e.g., new moral issues or immunity level).

To mitigate this limitation, some of the most promising approaches have been

devised as supervised models generating clustering-friendly representations [266].

These have recently shown promising results on open-domain tasks when combined

with pre-trained language models (PLM) thanks to their flexibility, generalisation,

and need for minimal tweaks [225, 252]. However, despite the improved capabilities

in capturing the overall text semantics, existing models for text clustering [177, 184,

246, 313] still struggle to distinguish between the mixed users’ stances and aspects

on vaccination, and as a result, they often generate clusters that do not reflect the

novel aspects of interest. As an illustrating example, consider the tweets “mRNA

vaccines are poison” and “The Pfizer vaccine is safe”, that the majority of existing

methodologies are prone to cluster into different groups due to the opposite stances

manifested, despite the fact that both of them are targeting safety issues.

To address the aforementioned problem, we posit that a model should be

able to (i) disentangle the stance from the aspect discussed, and simultaneously

(ii) use the generated representations in a framework (e.g., clustering) that ease

the integration of aspects never seen before. We thus propose a novel representation

learning approach, called the Disentangled Opinion Clustering (DOC) model, which

performs disentangled learning [172] via text autoencoders [31, 187], and generates

cluster-friendly representations suitable for the integration of novel aspects. The

proposed model, DOC, learns clustering-friendly representations through a denois-

ing autoencoder [187] driven by out-of-the-box Sentence-BERT embeddings [225],
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and disentangles stance from opinions by using the supervision signal to drive a

disentangled cross-attention mechanism and a Swapping Autoencoder[204].

We conducted an experimental assessment on two publicly available datasets

on vaccination opinion mining, the Covid-Moral-Foundation (CMF) dataset [200]

and the Vaccination Attitude Detection (VAD) corpora [334]. We first assessed the

quality of the disentangled representation in generating aspect-coherent clusters.

Then, we measured the generalisation of the proposed approach via a cross-dataset

evaluation by performing clustering on a novel dataset with unknown aspect cat-

egories. Finally, we showed the benefit of this approach on the traditional stance

classification task, along with a report on the thorough ablation study highlighting

the impact of each model component on the clustering quality and the degree of

disentanglement of the generated representations.

7.2 Related Work

The proposed work is related to sentence bottleneck representations, disentangled

latent representations, clustering in NLP and vaccination opinion mining.

Sentence Bottleneck Representation Sentence representation learning typi-

cally aims to generate a fixed-sized latent vector that encodes a sentence into a

low-dimensional space. In recent years, in the wake of the wide application of pre-

trained language models (PLMs), several approaches have been developed leveraging

the pre-trained information to encode sentence semantics. The most prevalent work

is the SBERT [225] that fine-tunes BERT [60] on the SNLI dataset [30] through a

siamese pooling structure. The learned representations are immediately applicable

to a wide range of tasks, such as information retrieval and clustering, significantly

reducing the effort required to generate the task-specific representations [268]. More

recently, Montero et al. [187] presented a sentence bottleneck autoencoder, called

AutoBot, that learns a latent code by reconstructing the perturbated text. Their

model indicates the importance of topic labels as reconstruction objectives.

Disentangled Latent Representation Earlier works explored disentangled rep-

resentation to facilitate domain adaptation [19, 125, 172]. In recent years, John et al.

[115] generated disentangled representations geared to transfer holistic style such as

tone and theme in text generation. Park et al. [204] proposed the Swapping autoen-

coder to separate texture encoding from structure vectors in image editing. The

input images are formed in pairs to induce the model to discern the variation (e.g.,
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structure) while retaining the common property (e.g., texture). However, recent

studies show that disentanglement in the latent space is theoretically unachievable

without access to some inductive bias [157]. It is suggested that local isometry be-

tween variables of interest is sufficient to establish a connection between the observed

variable and the latent variable [97, 158], even with few annotations [159]. This is

in line with [225] which illuminates our work to utilize labels and reconstruction of

perturbed text to induce the disentanglement.

Text Clustering The recent development in neural architectures has reshaped

clustering practices [299]. For example, Zhang et al. [316] leveraged transformer

encoders for clustering over the user intents. Several methods utilised PLM embed-

dings to discover topics which were subsequently used for clustering news articles

and product reviews [104, 178]. Others exploited the neural components, i.e., the

BiLSTM-CNN [315], the CNN-Attention [79] and the Self-Attention [319] to offer

end-to-end clustering. Zhang et al. [313] developed the Supporting Clustering with

Contrastive Learning (SCCL) model by augmenting the disparity between short

text. A notable work is DS-Clustering [252], which extracts aspect phrases first and

then clusters the aspect embeddings. Outside of clustering methods, there is a surg-

ing interest in clustering-friendly representation learning [266]. Yet, few methods

cluster documents along a particular axis or provide disentangled representations to

cluster over a subspace.

Vaccination Opinion Mining The task of vaccination opinion mining is com-

monly carried out on social media to detect user attitudes and provide insights to

be used against the related ‘infodemic’ [38, 130, 289, 320]. Recent approaches rely

on semantic matching and stance classification with extensions including human-

in-the-loop protocols and text span prediction to scale to the growing amount of

text [200, 334].

7.3 Disentangled Opinion Clustering Model

We build our approach upon two vaccination opinion corpora [200, 334]. In both

corpora, a small number of tweets are labelled, each of which is annotated with

a stance label (‘pro-vaccine’, ‘anti-vaccine’ and ‘neutral ’) and a text span or an

argumentative pattern denoting an aspect. For example, for the tweet, ‘The Pfizer

vaccine is safe.’, its stance label is ‘pro-vaccine’ and the argumentative pattern is

‘vaccine safety ’. Since vaccination opinions explode over time, supervised classifiers
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‘The Pfizer ������ is safe’

z

DeBERTa Encoder

Cross Attention

us ua

DeBERTa Decoder

‘The Pfizer vaccine is safe’

Figure 7.1: Disentangled Opinion Clustering (DOC) model in unsupervised learning.
A tweet is fed into an autoencoder with DeBERTa as both the encoder and decoder
to learn the latent sentence vector z.

or aspect extractors would soon become outdated and fail to handle constantly

evolving tweets. In an effort to mitigate this issue, we address the problem of

vaccination opinion mining by learning disentangled stance and aspect vectors of

tweets in order to cluster tweets along the aspect axis.

Our proposed model, called Disentangled Opinion Clustering (DOC), is shown

in Figure 7.1 - 7.2. It is trained in two steps. In unsupervised learning (Figure

7.1), a tweet is fed into an autoencoder with DeBERTa as both the encoder and

the decoder to learn the latent sentence vector z. Here, each tweet is mapped to

two embeddings, the context embedding us which encodes the stance label informa-

tion and the aspect embedding ua which captures the aspect information. Under

unsupervised learning, these two embeddings are not distinguished. Together with

the hidden representation of the input text, H, they are mapped to the latent sen-

tence vector z by cross-attention. As the autoencoder can be trained on large-scale

unannotated tweets relating to vaccination, it is expected that z would capture the

vaccine-related topics.

Then in the second step of supervised learning (Figure 7.2), the DeBERTa-

based autoencoder is fine-tuned to learn the latent stance vector zs and the latent

aspect vector za using the tweet-level annotated stance label and aspect text span

(or the argumentative pattern ‘vaccine safety ’ in Figure 7.2) as the inductive bias.

Here, the latent stance vector zs is derived from us. It is expected that zs can be

used to predict the stance label. On the other hand, the latent aspect vector za is

derived from ua only, and it can be used to generate the SBERT-encoded aspect
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(a) Disentanglement with Inductive Biases (b) Swapped Auto-Encoder

Figure 7.2: Disentangled Opinion Clustering (DOC) Model in supervised learning.
(a) Disentanglement with inductive biases. The DeBERTa-based autoencoder
is fine-tuned to learn the latent stance vector zs and the latent aspect vector za using
the tweet-level annotated stance label and aspect text span (or the argumentative
pattern ‘vaccine safety ’ for the input tweet) as the inductive bias; (b) Swapping
autoencoder. To enable a better disentanglement of zs and za, for the two tweets
discussing the same aspect but with different stance labels, tweet B’s aspect em-
bedding uBa is replaced by the tweet A’s aspect embedding uAa . As the two tweets
discuss the same aspect, their aspect embeddings are expected to be similar. As
such, we can still reconstruct tweet B using the latent content vector zBc derived
from the swapped aspect embedding. Note that (a) and (b) are learned simultane-
ously.

text span. Both zs and za, together with the hidden representation of the input

text H, are used to reconstruct the original text through the DeBERTa decoder.

The training instances are organized in pairs since we use the idea of swapped au-

toencoder (shown in Figure 7.2(b)) to swap the aspect embedding of one tweet with

that of another if both discuss the same aspect. The resulting latent vector can

still be used to reconstruct the original tweet. In what follows, we describe the two

steps, unsupervised and supervised learning, in detail.

7.3.1 Unsupervised Learning of Sentence Representation

Due to the versatility of PLMs, sentence representations are usually derived directly

from contextualised representations generated by the PLMs. However, as has been

previously discussed in Montero et al. [187], sentence representations derived in

this way cannot guarantee reliable reconstruction of the input text and are there-

fore less suitable for efficient conditional text generation. Partly inspired by the
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use of autoencoder for sentence representation learning as in [187], we adopt the

autoencoder architecture to initially guide the sentence representation learning by

fine-tuning it on vaccination tweets. Rather than RoBERTa [155], we adopt De-

BERTa, a variant of BERT in which each word is represented using two vectors

encoding its content and position. The attention weight of a word pair is computed

as a sum of four attention scores calculated from different directions based on their

content/position vectors, i.e., content-to-content, content-to-position, position-to-

content, and position-to-position. Instead of representing each word by a content

vector and a position vector, we modify DeBERTa by representing an input sentence

using two vectors, a context embedding us encoding its stance label information and

an aspect embedding ua encoding its aspect information. We will discuss later in

this section how to perform disentangled representation learning with us and ua.

During the unsupervised learning stage, we do not distinguish between us and ua

and simply use u = [us,ua] to denote them.

More specifically, we train the autoencoder Autobot on an unannotated

Twitter corpus with the masked token prediction as the training objective. The

encoder applies the multi-head attention to clamp the hidden representations of

the top layer of the pre-trained transformer. If we use H to denote the hidden

representations, the multi-head attention can be expressed as:

headi = softmax

(
uWQ(HWK)⊤√

dH

)
HWV , (7.3.1)

z = [head1,head2, . . . ,headh]WO, (7.3.2)

where H ∈ Rn×dH , WQ ∈ R2dH×dK ,WK ∈ RdH×dK , WV ∈ RdH×dV , headi ∈ RdV

and WO ∈ RhdV ×dz . u ∈ R2dH is generated from a fully-connected layer over the

hidden vectors. The bottleneck representation z is supposed to encode the semantics

of the whole sentence.

The transformer decoder comprises n layers of cross-attention such that the

output of the previous layer is processed by a gating mechanism [96]. The recurrence

is repeated n times to reconstruct the input, where n denotes the token length of

the input text.

7.3.2 Injecting Inductive Biases by Disentangled Attention

Recent work on disentanglement learning suggested unsupervised disentanglement

is impossible without inductive bias [159]. In the datasets used in our experiments,

there are a small number of labelled tweets. We can use the tweet-level stance
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labels and the annotated aspect text spans as inductive bias. Here, the disentangled

attention of DeBERTa is utilized to mingle different factors. Assuming each sentence

is mapped to two vectors, the context vector us encoding its stance label information

and the aspect vector ua encoding its aspect information, we can then map us to

a latent stance vector zs which can be used to predict the stance label, and map

ua to a latent aspect vector za which can be used to reconstruct the aspect text

span. We use the cross-attention between us and ua to reconstruct the original

input sentence.

Stance Classification Let hCLS denote the hidden representation of the [CLS]

token, the stance bias is injected by classification over the stance categories:

zs = softmax

(
usWq,s(hCLSWk,CLS)

⊤
√
dH

)
hCLSWv,CLS, (7.3.3)

ŷs = softmax(zsW ), Ls = −y(i)s log ŷ(i)s . (7.3.4)

Essentially, we use us as query and hCLS as key and value to derive zs, which is

subsequently fed to a softmax layer to predict a stance label ŷs. The objective

function for stance classification is a cross-entropy loss between the true and the

predicted labels.

Aspect Text Span Reconstruction We assume ua encoding the sentence-level

aspect information and use self-attention to derive the latent aspect representation

za. To reconstruct the aspect text span from za, we use the embedding generated by

SBERT [225] as the targeted aspect text span embedding since SBERT has been em-

pirically shown achieving the state-of-the-art on Semantic Textual Similarity (STS)

tasks. Those clustering-friendly representations, if they encode the argumentative

patterns or aspect spans alone, are strong inductive biases in the axis of aspects.

Specifically, the sentence embedding of the aspect expression is generated by

a Gaussian MLP decoder [123]:

za = softmax

(
uaWq,a(uaWk,a)⊤√

dH

)
uaWv,a, (7.3.5)

La = − logN (ya; MLPµ(za),MLPσ(za)I), (7.3.6)

where xa denotes the aspect text span in the original input sentence, ya is the

ground-truth aspect text span embedding produced by ya = SBERT(xa), whose
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value is used for computing the Gaussian negative log-likelihood loss1.

Input Text Reconstruction To reconstruct the original input text, we need to

make use of both the latent stance vector zs and the latent aspect vector za. Here

we use the cross attention of these two vectors to derive the content vector zc.

Qc = uWq,c, Kc = HWk,c, Vc = HWv,c,

Qs = usWq,s, Ks = usWk,s,

Qa = uaWq,a, Ka = uaWk,a,

aj = QcK
c⊤
j +QcK

⊤
s +Kc

jQs +QcK
⊤
a +Kc

jQa

headi = softmax

(
a√
5dH

)
HWv,c,

zc = [head1,head2, . . . ,headh]WO, (7.3.7)

where u = [us,ua], aj is the j-th element of a, and Kc
j represents the j-th row of

Kc. The resulting zc is the content representation for reconstructing the original

sentence.

7.3.3 Disentanglement of Aspect and Stance

Although the inductive biases, i.e., the tweet-level stance labels and annotated as-

pect text spans, are used to learn the latent stance vectors zs and the aspect vectors

za as discussed in the last subsection, there could still be possible dependences be-

tween the two latent variables. To further the disentanglement, we propose to swap

the learned aspect embeddings of two tweets discussing the same aspect in Siamese

networks. We draw inspiration from the Swapping Auto-Encoder [204] where a con-

stituent vector of a Generative Adversarial Network (GAN) is swapped with that

produced by another image. The original swapping autoencoder was designed for

image editing and required a patch discriminator with texture cropping to the cor-

responding disentangled factors with the desired properties. In our scenario, such

alignment is instead induced by tweets discussing the same aspect.

We create pairs of tweets by permutations within the same aspect group

{xA,xB}A,B∈Gk,A ̸=B. Here, by abuse of notation, we use k to denote the k-th aspect

group, Gk. The groups are identified by tweets with the same aspect label, regardless

of their stances. We sketch the structure of pair-wised training in Figure 7.2(b). The

tweets are organized in pairs and a bottleneck representation is obtained for each

1https://pytorch.org/docs/stable/generated/torch.nn.GaussianNLLLoss.html
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tweet:

zA = enc(xA), zB = enc(xB). (7.3.8)

We would like zA to disentangle into latent factors, i.e., the variation in a factor of

zA is associated with a change in xA [158]. Unlike the majority of work [115, 322]

that directly splits zA in the latent space, we assume that the entangled vector is

decomposed by a causal network. We train a vector u = [us,ua] to trigger the

activation of the networks (i.e., the self-attentions in Eq. 7.3.3-Eq. 7.3.7). The

outputs of the networks are independent components that encode the desiderata.

If zs and za are parameterized independent components triggered by us and ua

respectively, the substitution of uBa with uAa can be regarded as soft exchanges

between zAa and zBa .

Based on this provisos, we substitute uBa with uAa to cause changes in zBc .

This substitution will also be reflected by changes in zBa . In practice, we train

on all permutations with the same aspect group, regardless of the stance. The

reconstruction loss for each latent factor (i.e., stance and aspect) is calculated once

to balance the number of training examples unless it is content text generated from

the swapped bottleneck representation.

Formally, the Swapping Auto-Encoder presented in Figure 7.2(b) can be

expressed as

QBs = uBs Wq,s, KB
s = uBs Wk,s,

QAa = uAaWq,a, KA
a = uAaWk,a,

aj = QcK
c⊤
j +QcK

B⊤
s +Kc

jQ
B
s +QcK

A
a
⊤

+Kc
jQ

A
a ,

headi = softmax

(
a√
5dH

)
HWv,c,

zBc = [head1,head2, . . . ,headh]WO,

zBs = softmax

(
uBs Wq,s(KCLS)

⊤
√
dH

)
VCLS,

zBa = softmax

(
QAa (KA

a )⊤√
dH

)
uAaWv,a,

where zBc is input to the decoder for the reconstruction of xB. Note that the above

equations are specially used in the swapping autoencoder for the computation of

zB. If there is no substitution in the latent space, the above equations will not be

calculated.
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Aspect Group Pro-Vax Anti-Vax Neutral

CMF

Care/Harm 70 11 2
Fairness/Cheating 25 18 13
Loyalty/Betrayal 25 0 5
Authority/Subversion 20 46 13
Purity/Degradation 2 15 0
Liberty/Oppression 6 62 5
Non-moral 167 47 41

VAD

Health Institution 400 84 36
Personal Experience 381 16 3
Vaccines Save Lives 12 1 0
(Adverse) Side Effects 179 256 63
Immunity Level 433 113 52
Economic Effects 23 12 5
Personal Freedom 5 18 7
Moral Attitudes 5 43 2

Table 7.1: Dataset statistics of CMF and VAD. We list the number of pro-vaccine,
anti-vaccine and neutral tweets in each group.

Given LBc = dec(zBc ), the final objective function is written as

L = LAc + λsLAs + λaLAa + λBLBc , (7.3.9)

where λs, λa and λB are hyper-parameters controlling the importance of each de-

sirable property. In our experiments we choose λs = λa = 1 and λB = 0.5.

7.4 Experimental Setup

7.4.1 Datasets

Statistics We conduct our experimental evaluation on two publicly available Twit-

ter datasets about the Covid-19 vaccination: the Covid Moral Foundation (CMF)

dataset [200] and the Vaccination Attitude Detection (VAD) corpus [334]. CMF is a

tweet dataset focused on the Covid-19 vaccine debates, where each tweet is assigned

an argumentative pattern. VAD consists of 8 aspect categories further refined by

vaccine bands. Similar to the argumentative pattern in the CMF dataset, each

tweet is characterised by a text span indicating its aspect. The dataset statistics

are reported in Table 7.1, with examples shown in 7.2. The train/test split follows
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4 : 1. For the unsupervised pre-training of sentence bottleneck representations, we

combine the unlabelled Covid-19 datasets from both CMF2 and VAD3 repositories.

The final dataset consists of 4.37 million tweets.

Format In the Covid-Moral-Foundation (CMF) dataset, each tweet is associated

with a pre-defined and manually annotated argumentative pattern. The annotated

tweets are categorized by moral foundations that can be regarded as coarse aspects

distilled from argumentative patterns. Each moral foundation is associated with two

polarities (e.g., care/harm), and is treated as the group label of a cluster of tweets.

The polarity is given by the vaccination stance label. Among the examples in Ta-

ble 7.2, ‘The vaccine is safe’ is the argumentative pattern, while ‘Care/Harm’ is the

categorical label denoting the aspect group. An exhaustive list of the argumentative

patterns can be found in the original paper of Pacheco et al. [200].

In Vaccination Attitude Detection (VAD), a training instance comprises a

stance label, a categorical aspect label and an aspect text span. For example,

Table 7.2 shows the tweet ‘Study reports Oxford/AstraZeneca vaccine is protective

against Brazilian P1 strain of COVID19.’ is annotated with the text span ‘Ox-

ford/AstraZeneca vaccine is protective against Brazilian P1 strain of COVID19’,

and its aspect belongs to the aspect category ‘Immunity Level’.

7.4.2 Baselines

We employ 5 baseline approaches: SBERT4, AutoBot5, DS-Clustering, VADet6,

and SCCL7, of which SBERT and AutoBot are sentence embedding-approaches

capturing the sentence-level semantic distance or similarity. VADet also learns dis-

entangled representations. However, it is noteworthy that it employed DEC [299] as

the clustering algorithm, and here we test its representations on distance-based clus-

tering. SCCL performs joint representation learning and document clustering. DS-

Clustering is a pipeline approach that predicts a text span and employs SBERT to

generate an aspect embedding. For clustering-friendly representation learning meth-

ods, we examine their performance using k-means and its variant k-medoids [136],

and the Agglomerative Hierarchical Clustering (AHC). The comparison involves

three tasks: tweet clustering based on aspect categories (intra- and cross-datasets),

2https://gitlab.com/mlpacheco/covid-moral-foundations
3https://github.com/somethingx1202/VADet
4https://github.com/UKPLab/sentence-transformers
5https://github.com/ivanmontero/autobot
6https://github.com/somethingx1202/VADet
7https://github.com/amazon-research/sccl
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CMF

Tweet
Argumentative Aspect

Pattern Group

Vaccine decreases
your chances of
getting severe
life-threat.

The vaccine
is safe

Care/Harm

There is no way
someone can tell
me that the COVID
vaccine does not
cause harm to
pregnant women.

The covid
vaccine is harmful

for pregnant women
and kids

Care/Harm

The tyranny is not
locking down and
not using the vaccine
to appease the
crazies who think
it’s oppression.

The vaccine
mandate is not

oppression because
it will help to

end this pandemic

Liberty/
Oppression

VAD

Tweet
Aspect Aspect
Span Group

Study reports
Oxford/AstraZeneca
vaccine is protective
against Brazilian P1
strain of COVID19.

Oxford/AstraZeneca
vaccine is protective
against Brazilian P1
strain of COVID19

Immunity
Level

@user @user
@user team, told
Reuters while the
government admits,
it is unknown
whether COVID19
mRNA Vaccine
BNT162b2 has an
impact on fertility.

COVID19 mRNA
Vaccine BNT162b2
has an impact on

fertility

(Adverse)
Side

Effects

Table 7.2: Training examples of CMF and VAD. In CMF, Argumentative Patterns
are pre-defined phrases indicating an aspect. In VAD, aspect spans are text sub-
sequence of the annotated tweets.
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and tweet-level stance classification. For stance classification, we employ RoBERTa

and DeBERTa, and use their averaged embeddings for clustering.

7.4.3 Evaluation Metrics

First, we use Clustering Accuracy (CA) and Normalized Mutual Information (NMI)

to evaluate the quality of clusters in line with [244, 266]. NMI is defined as NMI =(
2× I(y; ŷ)

)
/
(
H(y) + H(ŷ)

)
, where I(y; ŷ) denotes the mutual information between

the ground-truth labels and the predicted labels, H(·) denotes their entropy. Then

we employ BERTScore [318] to evaluate the performance of models in clustering

in the absence of ground-truth cluster labels. BERTScore is a successor of Cosine

Similarity [115] that measures the sentence distance by calculating the cross distance

between their corresponding word embeddings. We follow Bilal et al. [21] to compute

the averaged BERTScore as

AvgBS =
1

K

K∑
k=1

1(|Gk|
2

) ∑
i,j∈Gk
i<j

BS(tweeti, tweetj), (7.4.1)

where |Gk| is the size of the k-th group or cluster. We report the average performance

for all the models. As a quantitative evaluation metric for disentanglement, we use

the Mean Correlation Coefficient (MCC).

7.4.4 Training Details

We experiment with a pre-trained DeBERTa8 base model. The hidden size is dH =

768. We set both dV and dK = 768, and dz = 1024. The learning rate is initialised

with η = 3e− 5 and the number of epochs is 10. We use Linear Warmup to enforce

the triangular learning rate.

We train the model with two Titan RTX graphics cards on a station of an

Intel(R) Xeon(R) W-2245 CPU. The training process takes less than 9 hours, with

the inference time under 30 minutes.

7.5 Experimental Results

7.5.1 Clustering-Friendly Representation

Clustering Results We first show the advantages of disentangled representa-

tions in clustering. With the representations obtained from SBERT and AutoBot,

8https://huggingface.co/docs/transformers/model_doc/deberta-v2
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we employ k-means to perform clustering. Since the similarity between sentences

in SBERT is measured by cosine similarity which is less favorable for k-means al-

gorithm, we also use k-medoids to ensure a fair comparison. The other baseline

approaches are run with their default settings. We assign the aspect labels to

the predicted clusters with the optimal permutation such that the permutation of

{1, . . . ,K} yields the highest accuracy score, where K denotes the total number of

clusters. For the CMF dataset, we set K = 7, and on VAD K = 8.

Models
CMF VAD

CA NMI
Avg
BS

CA NMI
Avg
BS

SBERT-k-means 49.2 47.6 18.2 60.5 58.3 19.2
SBERT-k-medoids 50.8 48.1 18.5 62.1 60.1 19.5
SBERT-AHC 51.7 48.5 18.9 64.4 61.2 20.9
AutoBot-k-means 49.2 47.4 18.5 62.8 60.4 20.1
AutoBot-k-medoids 52.5 49.5 19.5 65.6 62.5 20.7
AutoBot-AHC 52.5 48.5 18.9 63.5 60.8 20.5
DS-C-k-means 50.0 47.7 18.5 63.5 60.5 20.7
DS-C-k-medoids 52.5 48.3 18.8 64.7 61.9 21.3
DS-C-k-AHC 50.8 47.8 18.6 64.4 61.5 21.7
VADet 51.7 47.9 18.0 65.4 61.4 20.7
SCCL 48.3 46.9 18.2 63.2 60.8 19.9
RoBERTa-k-means 35.0 35.2 15.0 45.8 46.6 15.7
DeBERTa-k-means 35.8 37.1 15.2 47.7 47.4 16.2
DOC-k-means 51.7 47.8 18.5 64.2 60.7 20.3
DOC-k-medoids 54.2 51.0 20.7 66.7 63.1 21.4
DOC-AHC 52.5 49.1 19.1 66.7 63.6 22.8

Table 7.3: Clustering results. Representation learning models are listed with the
affiliated clustering methods.

Table 7.3 lists the performance of baseline methods on all the tasks and

datasets. We see consistent improvements across all the evaluation metrics using

our proposed DOC. When compared with end-to-end methods (i.e., VADet and

SCCL) whose intermediate representations cannot be used to calculate a distance,

the disparity depends on DOC’s clustering approaches employed. On CMF, VADet

outperforms SCCL. But DOC gives superior performance overall regardless of the

clustering approaches used, showing the flexibility of the DOC representations. In

comparisons against representation learning methods, DOC takes the lead as long

as it is attached with competent clustering algorithms. This shows the benefit

of clustering with disentangled representations since the clustering algorithm will
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no longer obfuscate the stance polarities and the aspect categories. DOC achieves

higher scores on the VAD dataset compared to CMF, with more prominent improve-

ment over the baselines, which may be credited to the increased size of the dataset.

When DOC is evaluated with different clustering algorithms, k-medoids excels on

CMF, while AHC outperforms the others on VAD, showing that cosine similarity

is more appropriate for distance calculation since the k-means algorithm relies on

Euclidean distance.

Models
VAD → CMF CMF → VAD

CA NMI
Avg
BS

CA NMI
Avg
BS

SBERT-AHC 51.6 49.8 19.3 52.4 50.5 17.9
AutoBot-k-medoids 53.1 50.6 20.1 53.7 51.0 18.1
DS-C-k-medoids 54.1 51.2 20.2 54.9 52.4 19.0
VADet 53.5 50.1 19.6 55.2 52.8 19.3
SCCL 48.6 47.0 18.5 53.6 51.6 18.5
DOC-k-medoids 55.3 51.9 21.7 56.2 53.8 19.5
DOC-AHC 53.5 50.4 19.8 55.8 53.7 19.2

Table 7.4: Cross-dataset evaluation results. Each representation learning model is
listed with the most performant clustering method.

Cross-Dataset Evaluation In this context, the most interesting property of

clustering-friendly representations is their ability to perform clustering in novel

datasets whose categories are unknown in advance. To assess this, we use the mod-

els trained on CMF to perform clustering on VAD, and repeat the process vice

versa. We specify the number of clusters as 7 and 8, respectively. The alignment

between the clustered groups and gold labels is solved by the Hungarian algorithm.

Note that direct aspect classification across datasets would not be possible since

an accurate mapping between the two sets of classes cannot be established. Ta-

ble 7.4 reports the performance of cross-dataset clustering. Our metrics of interest

are still CA, NMI and averaged BERTScore. All the methods show a performance

drop on VAD overall, while the performance on CMF turns out to be a bit higher.

DOC-k-medoids achieved competitive results across the datasets, demonstrating

that clustering-friendly representations disentangle the opinions and, as a result,

can integrate unknown aspects.

Stance Classification We report in Table 7.5 the results of DOC, RoBERTa and

DeBERTa. For DOC, we only report DOC-AHC since stance labels are by-products

of clustering-friendly representations. We see the DOC performance on CMF close
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Models
CMF VAD

Micro F1 Macro F1 Micro F1 Macro F1

RoBERTa 72.3±.5 71.2±.4 76.7±.1 75.9±.1
DeBERTa 74.0±.6 73.5±.6 77.8±.2 76.8±.2
DOC-AHC 73.5±.6 72.7±.6 78.0±.2 76.8±.2

Table 7.5: Stance classification results.

to that of DeBERTa, and that the improvement on VAD is marginal. This may

be attributed to the absence of the swapping operation on zs, and therefore the

stance latent vector may contain other semantics or noise. Nevertheless, DOC is still

preferred over DeBERTa considering its significant performance gain over DeBERTa

on aspect clustering.

Model
CMF VAD

CA AvgBS CA AvgBS

Component

DOC-k-means 51.7 18.5 64.2 20.3
w/o pre-trained LM 43.3 16.2 48.4 16.7
w/o inductive bias 50.0 18.0 62.3 19.2
w/o swapped codes 50.8 17.8 62.8 19.0

Choice of Context Vectors

MLP 51.7 18.5 64.2 20.3
CLS 50.0 17.6 63.2 19.5
MEAN 48.3 17.4 60.7 18.7

Table 7.6: Ablation study on removal of components and choices of context vectors.

Ablations Study We study the effects by taking away components of different

functionality in disentanglement, and experiment with different choices of context

vectors, i.e., us and ua. The results are shown in Table 7.6. We see a significant

performance drop without loading the pre-trained weights for the language model.

The removal of inductive biases and the swapped autoencoder both hamper the

clustering of the model across the metrics. The performance gap is more obvious

without the inductive bias, which we attribute to the weaker supervision induced by

swapping the latent codes. Ablating choices of context vectors shows the superiority

of the MLP strategy. In contrast, the performance of the context vector generated

by mean pooling is rather poor. It shows that the context vector produced by

mean-pooling can hardly trigger the disentanglement of the hidden semantics.

118



7.5.2 Evaluation of Disentangled Representations

Quantitative Performance As with the nonlinear ICA community [121], we

use Mean Correlation Coefficient (MCC) to quantify the extent to which DOC

managed to learn disentangled representations. Here, the Point-Biserial Correlation

Coefficient between dist(za, z̄
k
a) (i.e., the distance between the aspect vector and

the centroid of cluster k) and Y (i.e., the dichotomous variable indicating whether

it belongs to or not belongs to group k in ground truth) is chosen to measure the

isometry between za and k. Notice that we specify dist as Euclidean Distance here.

However, isometry does not hinge on the Euclidean Distance, and it could be easily

substituted with Cosine Similarity, in which case the mean is no longer the best

estimation for the cluster center and would be replaced by the medoid of cluster k.

The clustering method would be k-medoids accordingly.

DOC
DS-C

AutoBot
SBERT

DeBERTa

RoBERTa
0

0.2

0.4

0.6

0.8

1
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DOC
DS-C

AutoBot
SBERT

DeBERTa

RoBERTa
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0.8
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Figure 7.3: Boxplots of MCC for all representation learning models over the 5 runs.
The representations are used for k-means clustering in the Euclidean space. A high
MCC score indicates the strong correlation between dist(za, z̄

k
a) and za ∈ Gk.

For each cluster k ∈ {1, 2, . . . ,K}, we calculate the correlation coefficient

between dist(za, z̄
k
a) and Y . We then obtain MCC by averaging the correlation

coefficients. A high MCC indicates that the group identity of a data point is closely

associated with the geometric position of its za in the latent space, which means that

za captures the group information. The results are shown in Figure 7.3. We observe

consistent improvement over the sentence representation models. DS-Clustering is

able to encode tweets into aspect embeddings. Nevertheless, its distance between

aspect latent vectors is a weaker indicator for group partition compared with that of

DOC, suggesting that za discovered by DOC better captures the difference between

aspects.
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Clustering with Different Latent Vectors We experiment clustering using the

disentangled aspect vectors za or the content vectors z (i.e., without the disentan-

glement of aspects and stances) on both CMF and VAD datasets, and have the

detailed results reported in Table 7.7. It can be observed that using the disentan-

gled aspect vectors for clustering gives better results compared to using the content

vectors, regardless of the clustering approaches used. On CMF, the best results are

obtained using k-medoids, while on VAD, similar results are obtained using either

k-medoids or AHC.

Latent Vector
CMF VAD

CA AvgBS CA AvgBS

DOC-k-means-za 51.7 18.5 64.2 20.3
DOC-k-means-z 48.3 17.5 60.7 18.7
DOC-k-medoids-za 54.2 20.7 66.7 21.4
DOC-k-medoids-z 50.8 18.0 61.4 18.9
DOC-AHC-za 52.5 19.1 66.7 22.8
DOC-AHC-z 49.2 17.8 61.9 19.0

Table 7.7: Clustering accuracy and average BERTScore with different latent vectors.

Qualitative Results We illustrate in Figure 7.4 and Figure 7.5 the clustering

results and the latent space of the entangled/disentangled representation projected

by the t-SNE method. Figure 7.4(a-b) display the cluster assignments after per-

mutation, whereas Figure 7.5(a-b) show the ground-truth labels. The class labels

are rendered by colours whose detailed mapping is provided in Figure 7.5. From

Figure 7.4, we see clear improvements in terms of clustering quality on both datasets

when the model is compared against the DeBERTa-averaged-embedding. Figure 7.5

shows more separated groups thanks to the disentangled representation, providing

strong distance-based discrimination for the clustering algorithms. As a result, sim-

ple clustering methods like k-means can achieve competitive results against deep

clustering methods (i.e., SCCL and VAD), which have access to weak labels or data

augmentations.

Color Mappings in Visualisation We illustrate in Figure 7.5 the color mapping

from t-SNE plots to the true aspect category labels. It is shown that the vectors

are more separated and their grouping aligns closer to the ground-truth labels when

they are clustered on the space of za, indicating that such latent vectors provide

strong distance-based discrimination among groups in the Euclidean space, as has
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(a) CMF

(b) VAD

Clustering results by DOC DeBERTa-averaged-embedding

DOC space of zDOC space of za 

Figure 7.4: 2-D plots of the data points projected by t-SNE.

been used as a distance metric in the t-SNE algorithm. We also experiment with

cosine-similarity metric for k-medoids and the results have been reported in the

Experiments section.

7.6 Limitations

There are a few limitations we would like to address. First of all, the number of

clusters needs manual configuration. This is a limitation of the clustering algo-

rithms [299] since we need to set a threshold for convergence, which consequentially

pinpoints k. An expedient alternative is to analyse the dataset for the realistic set-

tings or probe into k for the optimal setup, which is, however, beyond the scope

of this work. Another limitation is the pre-requisite for millions of unannotated

data. The autoencoder needs enormous data to learn bottleneck representations.

Its performance would be hindered without access to abundant corpora. Lastly,

the performance of the acquired clustering-friendly representations depends on the

similarity metric chosen. Efforts need to be made to find the best option, whether

it is Euclidean distance or cosine similarity, etc.
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Figure 7.5: t-SNE plots on CMF and VAD. Each dot is a tweet encoded using
either the disentangled aspect vector za (left subfigure) or the latent content vector
z (right subfigure). Different colors indicate the true aspect category labels.
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7.7 Summary

We have introduced DOC, a Disentangled Opinion Clustering model for vaccina-

tion opinion mining from social media. DOC is able to disentangle users’ stances

from opinions via a disentangling attention mechanism and a swap-autoencoder. It

was designed to process unseen aspect categories thanks to the clustering approach,

leveraging clustering-friendly representations induced by out-of-the-box Sentence-

BERT encodings and the disentangling mechanisms. The experimental assessment

demonstrated the benefit of the disentangling mechanism on the quality of aspect-

based clusters and the generalization capability across datasets with different aspect

categories outperforming existing approaches in terms of generalisation and coher-

ence of the generated clusters.
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Chapter 8

Conclusion

In this thesis, we have worked on topic representation learning on sequential data,

with applications to text classification and clustering.

The thesis addresses several limitations in sequence-to-sequence modelling,

as explained in §1.1 and §2.2, to increase the machines’ understanding of the text.

We develop methods for word representation learning and disentanglement-focused

sentence-level representation learning. Topic representation learning is also delved

into for capturing the semantics holistically and for the generalization across datasets.

We show the benefits of using topic representations and pre-trained word representa-

tions in sequence-to-sequence modelling by testing the proposed approaches on sev-

eral classification tasks. The benefits of topic modelling and sequence-to-sequence

fine-tuning also include increased generalization, as reflected by text clustering re-

sults.

The models we designed are combinations of autoregressive models and latent

variable models according to the taxonomy elaborated in §2.2. In particular, the au-

toregressive models are pre-trained LMs designated for sequence-to-sequence predic-

tion, which are advantageous in gauging dependencies within local contexts. There

are also sequence-to-sequence modules (e.g., Transformers) employed for higher-

level dependencies, such as documents or conversations. The employment of latent

variable models leads the model to compress the collocations into fixed-size repre-

sentations, allowing the interpolation over the semantic space and disentanglement

of latent variables, thus leading to increased generalization.

In what follows, we summarize the contributions with regard to each research

question, pointing out the limitations while outlooking the research directions to the

future.
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8.1 Overall Summary

Having introduced the motivation and listed the contributions in §1, we discuss the

related literature in §2 in a taxonomy where each branch is chronologically updated.

We then present the main body of our work in §3 - 7. Now, we attempt to summarize

the approaches to the research objectives outlined in §1.2.

To model the intricate dependencies between different levels of text, we design

the Joint Topic Word-embedding (JTW) model to gauge semantics at the word

level and sentence level simultaneously (§3). We develop a neural opinion dynamics

model, called NTOM, to forecast users’ stances in their timelines based on sequence-

to-sequence prediction (§4). Chapter §5 utilises Transformers to detect emotions of

utterances in dialogues, and Chapter §6 - §7 employs pre-trained language models

to provide text span prediction or learn inductive biases from a text sequence.

The research question of how to capture holistic properties of sequential

data is answered by topic representation learning methods developed in Chapter §3

where topics are explicitly modelled as a matrix, and Chapter §5 - 7 where topics are

attained with fine-tuning of language models. We insert a latent variable into hidden

layers as a bottleneck representation and form the topic representation learning as

denoising an LM-based auto-encoder.

The VADet model (§6) provides a semi-supervised framework that can ac-

quire topic representations via denoising auto-encoder and disentanglement of such

representations can be achieved in fine-tuning with constrained priors and induc-

tive biases. Additionally, the DOC model (§7) induces the disentanglement by

disentangled cross attention and swapping auto-encoder. We find that disentangled

learning is promising in detecting aspect-related text spans. The disentangled rep-

resentations are clustering-friendly with distance metrics, which allow for improved

flexibility across a range of applied datasets.

We provide extensive analysis of the quality of the acquired representations.

In particular, the neural sequence models (i.e., NTOM, TodKAT and VADet) are

tested by sequence labelling on social media or conversational datasets. The im-

proved performance shows that sequence modelling is a viable approach. Meanwhile,

the quality of topic representations is evaluated from perspectives of clustering and

usefulness in classification. Hence, the research question can be answered affirma-

tively.

We build a dataset, namely the VAD dataset (§6.4.1), from social media text

and annotate the dataset with aspect text spans and stance labels, which allows

for the evaluation of attitude detection. The annotation contains a categorical la-

125



bel indicating the aspect category for the evaluation of clustering and latent topic

disentanglement. The dataset is supplemented with a large unannotated corpus to

learn the topic representation before the supervised learning.

8.2 Limitations and Outlooks

Chapter §3 studies the joint topic word embedding model. One limitation is on pivot

words of the sliding window, which are presumably independent. It is more realistic

to introduce dependencies between pivot words as implied by Bamler and Mandt

[12], in which circumstance the context scope will be implicitly expanded to the

entire document. The discourse relationships can also be considered to model the

semantic drifts between different contexts. Amid the recent development of LLMs

that encapsulate the word representations and provide the standardised outputs

as free-form text or multiple-choice selection, it is desirable to learn topic repre-

sentations which the standardised predictions can be grounded into. Such topic

representations can sit in the middle, finding supporting examples with semantic

search.

Chapter §4 models the social impacts with a fixed-size neighbourhood con-

text. It is, however, possible to use attention-based aggregation (e.g., Graph At-

tention Nets [279] and Variational Graph Auto-Encoders [126]) to account for het-

erogeneous structure and contents. It is also feasible to encode the graph structure

into hyperbolic representations. For the usage of LLMs in social media analysis,

how to simulate social skills remains an open problem [168]. Work needs to be done

to apply LLMs to tasks that require structure prediction. A user case is to instruct

an LLM to generate the graph structure in a layout language.

The topic representation learning approach presented in Chapter §5 - 7

frames the topics as intermediate latent variables between LM hidden layers, based

on the notion that different levels’ hidden states capture different abstract levels.

However, it could also be helpful to consider multiple layers of latent variables (e.g.,

the diffusion process) for richer representations. The disentanglement of the latent

variable is induced by a factorized and conditional prior in VAD, and for DOC the

inductive bias is the isometry between the latent code and the group label. However,

the assumption that the disentangled latent codes align with the desired factors does

not always hold (e.g., in some cases the aspects are biased and thus independent

of the stance). In such circumstances, latent relations or combinatorial structures

should be considered. This could naturally be the next step in this vein.
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8.3 Future Directions

Large Language Models have unified a wide range of NLP tasks (§ 2.4.2) recently.

In lieu of the modular nature of GPT-4 [198] which combines diverse objectives

for pre-training and employs RLHF for instruction-tuning, it is natural to consider

wrapping the foundation models with a general reinforcement learning algorithm

that masters chess and other games [251], or automata theories that encompass

Turing Machines [274]. We can draw an analogy between the foundation mod-

els and cortex of brain that extracts representations or meanings of words. These

representation extractors and knowledge retrievers or memory indexers are syner-

gically operated by brain moderators in this sense. For topic representation learn-

ing here, modules can be built to steer LLMs to produce those low-dimensional,

clustering-friendly representations. From the dataset perspective, there is surge of

need for acquiring diverse prompts, besides a multitude of training examples formed

as prompt-completion pairs [199]. However, the supervision provided by the data

points is limited, since the reward is implicit and the model needs to extrapolate

from the annotations, which has been implemented by reinforcement learning from

human feedbacks. In contrast, the open world [222] presents an ideal source of

supervision, where the model can be rewarded with incentives derived from world

mechanisms [9] that synergistically complements the audience model with the ev-

eryday commonsense.
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[224] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael

Widrich, Lukas Gruber, Markus Holzleitner, Thomas Adler, David P. Kreil,

Michael K. Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp

Hochreiter. Hopfield networks is all you need. In 9th International Confer-

ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May

3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?

id=tL89RnzIiCd.

[225] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings us-

ing Siamese BERT-networks. In Proceedings of the 2019 Conference on Empir-

ical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3982–

3992, Hong Kong, China, November 2019. Association for Computational

Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/

D19-1410.

[226] Mehdi Rezaee and Francis Ferraro. A discrete variational recurrent topic

model without the reparametrization trick. In H. Larochelle, M. Ranzato,

163

http://jmlr.org/papers/v21/20-074.html
https://openaccess.thecvf.com/content/CVPR2023/papers/Raistrick_Infinite_Photorealistic_Worlds_Using_Procedural_Generation_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Raistrick_Infinite_Photorealistic_Worlds_Using_Procedural_Generation_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Raistrick_Infinite_Photorealistic_Worlds_Using_Procedural_Generation_CVPR_2023_paper.pdf
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=tL89RnzIiCd
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410


R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Infor-

mation Processing Systems, volume 33, pages 13831–13843. Curran Asso-

ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/

file/9f1d5659d5880fb427f6e04ae500fc25-Paper.pdf.

[227] Danilo Rezende and Shakir Mohamed. Variational inference with normaliz-

ing flows. In Francis Bach and David Blei, editors, Proceedings of the 32nd

International Conference on Machine Learning, volume 37 of Proceedings of

Machine Learning Research, pages 1530–1538, Lille, France, 07–09 Jul 2015.

PMLR. URL https://proceedings.mlr.press/v37/rezende15.html.

[228] Oliver Richter and Roger Wattenhofer. Normalized attention without prob-

ability cage. arXiv preprint arXiv:2005.09561, 2020. URL https://arxiv.

org/abs/2005.09561.

[229] Miguel Rios, Wilker Aziz, and Khalil Sima’an. Deep generative model for joint

alignment and word representation. In Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers), pages 1011–1023,

New Orleans, Louisiana, June 2018. Association for Computational Linguis-

tics. doi: 10.18653/v1/N18-1092. URL https://aclanthology.org/N18-

1092.
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[231] Michael Röder, Andreas Both, and Alexander Hinneburg. Exploring the space

of topic coherence measures. In Proceedings of the Eighth ACM International

Conference on Web Search and Data Mining, WSDM ’15, pages 399–408, New

York, NY, USA, 2015. ACM. ISBN 978-1-4503-3317-7. doi: 10.1145/2684822.

2685324. URL http://doi.acm.org/10.1145/2684822.2685324.

[232] Sara Rosenthal, Noura Farra, and Preslav Nakov. SemEval-2017 task 4:

Sentiment analysis in Twitter. In Proceedings of the 11th International

Workshop on Semantic Evaluation (SemEval-2017), pages 502–518, Vancou-

ver, Canada, August 2017. Association for Computational Linguistics. doi:

10.18653/v1/S17-2088. URL https://aclanthology.org/S17-2088.

164

https://proceedings.neurips.cc/paper/2020/file/9f1d5659d5880fb427f6e04ae500fc25-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9f1d5659d5880fb427f6e04ae500fc25-Paper.pdf
https://proceedings.mlr.press/v37/rezende15.html
https://arxiv.org/abs/2005.09561
https://arxiv.org/abs/2005.09561
https://aclanthology.org/N18-1092
https://aclanthology.org/N18-1092
http://arxiv.org/abs/1509.06664
http://arxiv.org/abs/1509.06664
http://doi.acm.org/10.1145/2684822.2685324
https://aclanthology.org/S17-2088


[233] Frank Rosner, Alexander Hinneburg, Michael Röder, Martin Nettling, and
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