
Finding a Highly Connected Steiner Subgraph and
its Applications
Eduard Eiben #

Royal Holloway, University of London, Egham, UK

Diptapriyo Majumdar1 #

Indraprastha Institute of Information Technology Delhi, New Delhi, India

M. S. Ramanujan #

University of Warwick, Coventry, UK

Abstract
Given a (connected) undirected graph G, a set X ⊆ V (G) and integers k and p, the Steiner
Subgraph Extension problem asks whether there exists a set S ⊇ X of at most k vertices such that
G[S] is a p-edge-connected subgraph. This problem is a natural generalization of the well-studied
Steiner Tree problem (set p = 1 and X to be the terminals). In this paper, we initiate the study
of Steiner Subgraph Extension from the perspective of parameterized complexity and give a
fixed-parameter algorithm (i.e., FPT algorithm) parameterized by k and p on graphs of bounded
degeneracy (removing the assumption of bounded degeneracy results in W-hardness).

Besides being an independent advance on the parameterized complexity of network design
problems, our result has natural applications. In particular, we use our result to obtain new single-
exponential FPT algorithms for several vertex-deletion problems studied in the literature, where the
goal is to delete a smallest set of vertices such that: (i) the resulting graph belongs to a specified
hereditary graph class, and (ii) the deleted set of vertices induces a p-edge-connected subgraph of
the input graph.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Dynamic programming

Keywords and phrases Parameterized Complexity, Steiner Subgraph Extension, p-edge-connected
graphs, Matroids, Representative Families

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.45

Funding M. S. Ramanujan: Supported by Engineering and Physical Sciences Research Council
(EPSRC) grants EP/V007793/1 and EP/V044621/1.

1 Introduction

Given a simple undirected graph G = (V, E) and a set T ⊆ V (G), called terminals, the
Steiner Tree problem asks if there are at most k edges F ⊆ E(G) such that there is
a path between every pair of vertices of T in G′ = (V, F). Steiner Tree is one of the
fundamental problems in network design and is a well-studied problem in parameterized
complexity ([14, 9, 7, 3, 21]). We refer to Section 2 for definitions related to parameterized
complexity and graph theory. In this paper, we study the Steiner Subgraph Extension
problem, which is formally defined below.

Steiner Subgraph Extension
Input: A simple undirected graph G = (V, E), X ⊆ V (G) and integers k, p ∈ N.
Parameter: k + p

Goal: Is there S ⊇ X of size at most k such that G[S] is p-edge-connected?

1 Corresponding author
© Eduard Eiben, Diptapriyo Majumdar, and M. S. Ramanujan;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 45; pp. 45:1–45:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eduard.eiben@rhul.ac.uk
https://orcid.org/0000-0003-2628-3435
mailto:diptapriyo@iiitd.ac.in
https://orcid.org/0000-0003-2677-4648
mailto:R.Maadapuzhi-Sridharan@warwick.ac.uk
https://orcid.org/0000-0002-2116-6048
https://doi.org/10.4230/LIPIcs.MFCS.2023.45
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Finding a Highly Connected Steiner Subgraph and its Applications

Observe that this is a natural generalization of Steiner Tree problem. To the best of
our knowledge, the parameterized complexity status of Steiner Subgraph Extension is
unexplored even for arbitrary fixed constant p. When p = 2, Steiner Subgraph Extension
is closely related to a special variant of Edge-Connected Survivable Network Design
(defined by Feldman et al. [15]) problem. The goal of Edge-Connected Survivable
Network Design is to find a collection of “at most k edges” so that there are two edge-
disjoint paths between every pair of vertices in the terminal set. Abhinav et al. [1] studied
the above problem when p = n − k, with k as the parameter. Moreover, they aim to find an
(n − k)-edge-connected steiner subgraph with exactly ℓ vertices. In our problem, observe that
p ≤ k−1 as any graph with k vertices can be (k−1)-edge-connected and not p-edge-connected
for p ≥ k. If we set p = k − 1, then our problem becomes precisely the Clique problem,
where we want to decide if a graph has a clique with exactly k vertices, a W[1]-hard problem.
Hence, one must place further restrictions on the input when aiming for fixed-parameter
tractability. In this paper, we consider the Steiner Subgraph Extension problem when η

is the degeneracy of the input graph G and η is a fixed-constant. Note that many well-known
sparse graph classes are subclasses of graphs of bounded degeneracy. For instance, planar
graphs are 5-degenerate, graphs with treewidth (or treedepth or pathwidth) at most η are
(η + 1)-degenerate.

Our Contributions. The input to our problem Steiner Subgraph Extension is a simple
undirected graph with n vertices and η is a fixed constant. Recall that the parameter is k + p.
The first part of our paper proves that Steiner Subgraph Extension is FPT when the
input graph has constant degeneracy. In particular, we give an FPT algorithm with running
time 2O(pk+η)nO(1)-time for Steiner Subgraph Extension when the input graph G is
η-degenerate. The formal statement of the theorem is given below.

▶ Theorem 1. Steiner Subgraph Extension can be solved in time 2O(pk+η)nO(1), where
η is the degeneracy of the input graph.

In particular, on graphs of constant degeneracy and for constant p, the above result gives
a 2O(k)nO(1)-time algorithm, which is useful in several applications as we show in this paper.

The above result crucially relies on the use of the out-partition matroid, its linear
representability in deterministic polynomial-time, and a dynamic programming subroutine
using the notion of representative sets. We would like to highlight that Einarson et al.
[13] have studied the same problem when X is a vertex cover. Our dynamic programming
algorithm over representative sets has some similarities with the algorithm of Einarson et
al. [13] but X is not necessarily a vertex cover of G for Steiner Subgraph Extension.
Despite the fact that G is a bounded degenerate graph, designing an algorithm for Steiner
Subgraph Extension needs careful adjustment to the subproblem definitions and some
additional conditions have to be incorporated while constructing the collection of sets in the
DP formulation. Furthermore, our algorithm in Theorem 1 does not depend on η in the
exponent of n.

The second part of our paper describes some applications of our main result (Theorem 1)
to some natural problems in graph theory with connectivity constraints. Einarson et al. [13]
have initiated the study of p-Edge-Connected Vertex Cover with stronger connectivity
constraints. Being motivated by their results, we illustrate how Theorem 1 lays us a
foundation to design efficient deterministic parameterized singly exponential-time algorithms
for Bounded Degree Deletion Set, η-Treedepth Deletion Set, Pathwidth-One
Deletion Set and η-Path Vertex Cover with p-edge-connectivity constraints. Each of

E. Eiben, D. Majumdar, and M. S. Ramanujan 45:3

these problems are well-studied without the connectivity constraints (see [18, 5, 6] for more
details). We state the problem definitions below. Given an undirected graph G = (V, E), the
following questions are asked by these problems.

p-Edge-Connected η-Degree Deletion Set (p-Edge-Con-BDDS) asks if there
is S ⊆ V (G) such that G − S is a graph of maximum degree at most η and G[S] is
p-edge-connected.
p-Edge-Connected η-Treedepth Deletion Set (p-Edge-Con-η-TDDS) asks if
there is S ⊆ V (G) such that G − S has treedepth at most η and G[S] is p-edge-connected.
p-Edge Connected Pathwidth-1 Vertex Deletion (p-Edge-Con-PW1DS) asks if
there is S ⊆ V (G) such that G−S has pathwidth at most 1 and G[S] is p-edge-connected.
p-Edge-Connected η-Path Vertex Cover (p-Edge-Con-η-PVC) asks if there is
S ⊆ V (G) such that G − S has no Pη as subgraph and G[S] is p-edge-connected.

Applications to each of the above mentioned problems crucially rely on a property. The
property is that all minimal vertex-deletion sets that must be part of any optimal solution
can be enumerated in 2O(k)nO(1)-time for some fixed constant η. Since a graph of maximum
degree η is also an η-degenerate graph, we have the following result as a direct application of
our main result.

▶ Corollary 2. p-Edge-Con-BDDS admits a 2O(pk+kη)nO(1)-time algorithm.

Our second application is p-Edge-Con-PW1DS problem. The graphs of pathwidth at
most one are also 2-degenerate. But it is not straightforward to enumerate all the minimal
pathwidth one vertex deletion sets. So we use some additional characterizations of graphs of
pathwidth one and exploit some problem specific structures to prove our next result.

▶ Theorem 3. p-Edge-Con-PW1DS admits an algorithm that runs in 2O(pk)nO(1)-time.

Note that the algorithm for the above result does not directly invoke the subroutine from
Theorem 1. Instead, it uses some dynamic programming ideas that are closely similar to that
of Theorem 1 proof but also makes careful local adjustments to take care of some additional
constraints. Finally, our last two applications are p-Edge-Connected η-Treedepth
Deletion Set and p-Edge-Con-η-PVC problems and we have the following two results.

▶ Theorem 4. p-Edge-Con-η-TDDS admits an algorithm that runs in 222η
+O((p+η)k)n22η

-
time.

▶ Theorem 5. p-Edge-Con-η-PVC admits an algorithm that runs in 2O((p+η)k)nO(1)-time.

Organization of our paper. We organize the paper as follows. Initially in Section 2, we
introduce the basic notations related to graph theory, parameterized complexity and matroids.
Then, in Section 3, we prove our main result, i.e. Theorem 1. Then, in Section 4, we illustrate
the applications of our main result to design singly exponential-time algorithms for p-Edge-
Con-BDDS, p-Edge-Con-PW1DS, p-Edge-Con-η-TDDS and p-Edge-Con-η-PVC.

Related Work. Heggernes et al. [19] studied the parameterized comlexity of p-Connected
Steiner Subgraph that is the vertex-connectivity counterpart of our problem. The authors
in their paper have proved that when parameterized by k, the above mentioned problem is
FPT for p = 2 and W[1]-hard when p = 3. Nutov [23] has studied a variant of p-Connected
Steiner Subgraph problem in which they have studied Vertex Connectivity Aug-
mentation problem. Given an undirected graph G, a p-connected subgraph G[S], the

MFCS 2023

45:4 Finding a Highly Connected Steiner Subgraph and its Applications

Vertex Connectivity Augmentation problem asks if at most k additional edges can be
added to G[S] to make the subgraph (p + 1)-connected. In particular, Nutov [23] provided a
parameterized algorithm for the above mentioned problem. Feldman et al. [15] have studied
parameterized complexity of Vertex/Edge-Connected Survivable Network Design
Problem where given fixed constant p, they want to compute a subgraph that has minimum
number of edges and provides p-vertex/edge-connectivity between every pair of vertices in
the terminals.

2 Preliminaries

Sets, numbers and graph theory. We use N to denote the set of all natural numbers. For
r ∈ N, we use [r] to denote the set {1, . . . , r}. Given a set S and an integer k, we use

(
S

≤k

)
and

(
S
k

)
to denote the collection of all subsets of S of size at most k and of size exactly

k respectively. We use standard graph theoretic notations from Diestel’s book [10] for all
notations of undirected and directed graphs. For undirected graphs, we use uv ∈ E(G) to
denote that there is an edge between u and v. On the other hand for directed graphs, we
are more explicit. We use (u, v) to represent that the edge is directed from u to v. For
the directed graphs, the directed edges are also called arcs. We use the term arc and edge
interchangeably. In an undirected graph G, we use degG(v) to denote the degree of v in G.
When the graph is clear from the context, we drop this subscript and simply use deg(v). An
undirected graph G is called a degree-η-graph if every vertex of G has degree at most η. We
use ∆(G) to denote the max{degG(v) : v ∈ V (G)}, i.e. the maximum degree of any vertex
in G. It is clear from the definition that if a graph G is a degree-η-graph then ∆(G) ≤ η.
When we consider directed graphs, we have in-degree and out-degree for all the vertices. For
a vertex v, the in-degree of v is the number of arcs of the form (v, u) ∈ A and the out-degree
of v is the number of arcs of the form (u, v) ∈ A. A connected undirected graph G = (V, E)
is said to be p-edge-connected if at least two vertices and G − Y remains connected after
deleting at most p − 1 edges. Due to the Menger’s Theorem, a connected graph is said
to be p-edge-connected if and only if there are p edge-disjoint paths between every pair of
vertices. Given an undirected graph, a set S ⊆ V (G) is said to be a p-segment of G if for
every u, v ∈ S, there are p edge-disjoint paths from u to v in G. An undirected graph is said
to be an η-degenerate graph if every subgraph has a vertex of degree at most η. Given an
undirected η-degenerate graph G = (V, E), a sequence of vertices ρG = (v1, . . . , vn) is said
to be an η-degeneracy sequence if for every 2 ≤ i ≤ n, vi has at most η neighbors from the
vertices {v1, . . . , vi−1}. For an ℓ ∈ N, we use Pℓ to denote a path containing ℓ vertices and
Cℓ to denote a cycle containing ℓ vertices. A graph is said to be a degree-η-graph if every
vertex has degree at most η. It follows from the definition that every degree-η-graph is an
η-degenerate graph, but the converse does not hold true. An undirected graph is said to be
a caterpillar graph if every connected component is an induced path with hairs attached to
each of its pendant vertices. Given a directed graph D = (V, A), we define an outbranching
of D rooted at v ∈ V (D) is a subset A′ ⊆ A such that v has in-degree 0 and every other
vertex has in-degree exactly one in D′ = (V, A′).

We define the following two graph parameters treedepth and pathwidth that we use in
our paper.

▶ Definition 6 (Treedepth). Given an undirected graph G = (V, E), td(G), i.e. the treedepth
of G is defined as follows. If |V (G)| = 1, then td(G) = 1. If G is connected, then
td(G) = 1 + minu∈V (G) td(G − {u}). Finally, if G1, . . . , Gr are the connected components of
G, then td(G) = maxr

i=1 td(Gi).

E. Eiben, D. Majumdar, and M. S. Ramanujan 45:5

Informally, a treedepth decomposition of an undirected graph G can be considered as a
rooted forest Y with vertex set V such that for each uv ∈ E(G), either u is an ancestor of
v or v is an ancestor of u in Y . The context of treedepth is also sometimes referred to as
elimination tree of G. It follows from the (recursive) definition above that treedepth of a
graph is referred to as the minimum depth of a treedepth decomposition of G, where depth
is defined as the maximum number of vertices in a root to leaf path.

▶ Definition 7 (Path Decomposition). A path decomposition of an undirected graph G = (V, E)
is a sequence (X1, . . . , Xr) of bags Xi ⊆ V (G) such that (i) every vertex belongs to at least
one bag, (ii) for every edge uv ∈ E(G), there is Xi such that u, v ∈ Xi, and (iii) for every
vertex v, the bags containing v forms a contiguous subsequence, i.e. (Xi, Xi+1, . . . , Xj). The
width of a decomposition is maxi∈[r] |Xi| − 1.

The pathwidth of a graph is defined as the smallest number η such that there exists a
path decomposition of width η. Informally, pathwidth is a measure how much a graph is
close to a path (or a linear forest). We use pw(G) to denote the pathwidth of G.

Given a class of graphs G, we say that G is polynomial-time recognizable, if given a graph
G, there is a polynomial-time algorithm that can correctly check if G ∈ G. A graph class is
said to be hereditary if it is closed under induced subgraphs.

Parameterized Complexity and W-hardness. A parameterized problem L is a subset
of Σ∗ × N for some finite alphabet Σ. An instance of a parameterized problem is a pair
(x, k) where x ∈ Σ∗ is the input and k is the parameter. A parameterized problem L ⊆
Σ∗ × N is said to be fixed-parameter tractable if there exists an algorithm A that given
(x, k) ∈ Σ∗ × N, the algorithm A runs in f(k)|x|c-time for some constant c independent of n

and k and correctly decides L. The algorithm A that runs in f(k)|x|O(1)-time is called a
fixed-parameter algorithm (or FPT algorithm). A fixex-parameter algorithm is said to be
a singly exponential FPT algorithm if it runs in ck|x|O(1)-time for some fixed constant c

independent of |x| and k. There is a hardness theory in parameterized complexity that is
associated with the notion of parameterized reduction and the hierarchy of parameterized
complexity classes. Broadly, the W-hierarchy (of parameterized complexity classes) is denoted
by FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP. Given two distinct parameterized problems L1 and L2,
there is a parameterized reduction from L1 to L2 if given an instance (x, k) of L1, an
algorithm A runs in g(k)|x|O(1)-time and outputs an equivalent instance (x′, k′) of L2 such
that k′ = f(k) for some function depending only on k. For more details on parameterized
complexity and its associated hardness theory, we refer to the books [8, 22, 11].

Matroids and Representative Families. We use the following definitions and results related
to matroid theory to design our algorithms.

▶ Definition 8. Given a universe U and a subfamily I ⊆ 2U , a set system M = (U, I) is
said to be a matroid if (i) ∅ ∈ I, (ii) if A ∈ I, then for all A′ ⊆ A, A′ ∈ I (hereditary
property), and (iii) if there exists A, B ∈ I such that |B| > |A|, then there is x ∈ B \ A such
that A ∪ {x} ∈ I (exchange property). The set U is called ground set of M and a set A ∈ I
is called an independent set of matroid M.

It follows from the definition that all maximal independent sets are of the same size. A
maximal independent set is called a basis. Let U be a universe with n elements and I =

(
U

≤r

)
.

The set system (U, I) is called a uniform matroid. Let G = (V, E) be an undirected graph
and I = {F ⊆ E(G) | G′ = (V, F) is a forest }. The set system (E(G), I) is called a graphic
matroid. Let U be partitioned as U1 ⊎ · · · ⊎ Ur and I = {A ⊆ U : |A ∩ Ui| ≤ 1 for all i ∈ [r]}.

MFCS 2023

45:6 Finding a Highly Connected Steiner Subgraph and its Applications

We say that (U, I) is a partition matroid. A matroid M is said to be representable over a
field F if there is a matrix A over F and a bijection f : U → Col(A) where Col(A) is the set
of columns of A such that B ⊆ U is an independent set of U if and only if the set of columns
{f(b) | b ∈ B} are linearly independent. A matroid representable over a field F is called a
linear matroid.

Given two matroids M1 = (U1, I1) and M2 = (U2, I2), the direct sum M = M1 ⊕ M2 is
the matroid (U1 ⊎ U2, I) such that I ∈ I if and only if I ∩ U1 ∈ I1 and I ∩ U2 ∈ I2. If M1
and M2 are represented by matrices A1 and A2 respectively then M = M1 ⊕ M2 also admits
a matrix representation.

Given a matroid M , a truncation of M to rank r is the matroid M ′ = (U, I ′) where a set
A ⊆ U is independent in M ′ if and only if A ∈ I and |A| ≤ r. Given a matroid M with its
representation (in matrix-form), the truncation of M can be computed in polynomial-time.
Let M = (U, I) be a matroid and X, Y ⊆ U . We say that X extends Y in M if X ∩ Y = ∅
and X ∪ Y ∈ I. Moreover, let S ⊆ 2U be a family. A subfamily Ŝ ⊆ S is a q-representative
of S if the following holds: for every set Y ⊆ U with |Y | ≤ q, there is a set X ∈ S such that
X extends Y if and only if there is a set X̂ ∈ Ŝ such that X̂ extends Y . We use Ŝ ⊆q

rep S to
denote that Ŝ is a q-representative family of S. The following result holds true due to Fomin
et al. [17, 20].

▶ Proposition 9. Let M = (U, I) be a linear matroid of rank n and p, q ≤ n over a field
F and let S = {S1, . . . , St} ⊆ I each having cardinality p. Then, there exists an algorithm
that computes a q-representative subfamily Ŝ ⊆q

rep S consisting of at most
(

p+q
q

)
sets using

O(
(

p+q
p

)2
tp3n2 + t

(
p+q

q

)ω
np) + (n + |U |)O(1) field operations over F. Here ω < 2.37 is the

matrix multiplication exponent.

Let G = (V, E) be an undirected graph and DG = (V, AE) is defined as follows. For
every uv ∈ E(G), we add (u, v) and (v, u) into AE and fix vr ∈ V . Since the definition
of DG is based on G = (V, E), we call the pair (DG, vr) an equivalent digraph of G with
root vr. Then, an out-partition matroid with root vr for DG is the partition matroid with
ground set AE where arcs are partitioned according to their heads and arcs (u, vr) are
dependent. Equivalently, what it means is that a set of arcs F ⊆ AE is an independent
in the out-partition matroid with root vr if and only if vr has in-degree 0 in F and every
other vertex has in-degree at most 1 in F . The graphic matroid in the ground set AE is
the graphic matroid for G where every arc is represented by its underlying undirected edge
and the antiparallel arcs (u, v), (v, u) represent distinct copies of uv. Then, {(u, v), (v, u)}
becomes a dependent set. The following two propositions are proved by Agrawal et al. [2]
and Einarson et al. [13] respectively.

▶ Proposition 10 (Agrawal et al. [2])). Let G = (V, E) be an undirected graph, vr ∈ V

and DG = (V, AE) as defined above. Then, G is p-edge-connected if and only if DG has p

pairwise arc-disjoint out-branchings rooted at vr.

▶ Proposition 11 (Einarson et al. [13]). Let G = (V, E) be an undirected graph, vr ∈ V and
DG = (V, AE) as defined above. Then, F is the arc set of an out-branching rooted at vr if
and only if |F | = |V (G)| − 1 and F is independent both in the out-partition matroid for DG

with root vr and the graphic matroid for G with ground set AE.

Let G be an undirected graph, X ⊆ V (G) and p be an integer. It is not immediate
whether in polynomial-time we can check whether there exists a feasible solution, that is,
a set S ⊇ X such that G[S] is p-edge-connected. The following lemma illustrates that the
above can be achieved in polynomial-time. In fact, in this case the input graph does not
have to be a bounded degenerate graph.

E. Eiben, D. Majumdar, and M. S. Ramanujan 45:7

▶ Lemma 12 (⋆).2 Let G = (V, E) be a connected undirected graph and X ⊆ V (G). Then, we
can check in polynomial-time if there exists a set S ⊇ X such that G[S] is a p-edge-connected
subgraph.

We refer to Oxley [24] for more details on matroid theory and a survey by Panolan and
Saurabh [25] for more information on use of matroids in FPT algorithms.

3 Algorithm for STEINER SUBGRAPH EXTENSION

This section is devoted to the proof of the main contribution of our paper. We first provide
a singly exponential algorithm for Steiner Subgraph Extension (we restate below) when
the input graph has bounded degeneracy. We assume that a fixed constant η is the degeneracy
of G. We restate the problem definition.

Steiner Subgraph Extension
Input: An undirected graph G = (V, E), X ⊆ V (G) and integers k, p ∈ N.
Parameter: k + p

Goal: Is there S ⊇ X of size at most k such that G[S] is p-edge-connected?

Let (G, X, k) be given as an input instance and σ be a degeneracy sequence for the
vertices of G − X witnessing that G − X is also an η-degenerate graph. Note that one can
compute a degeneracy sequence easily in polynomial time by iteratively picking the minimum
degree vertex, hence, we assume an ordering σ = (u1, . . . , u′

n) of the vertices of G − X is
given along with the input. Due to Lemma 12, we can check if there exists a feasible solution
S ⊇ X (not necessarily of size at most k) such that G[S] is p-edge-connected subgraph. So,
we can assume without loss of generality that a feasible solution actually exists. We first
state a proposition that we use later in the proof of our result.

▶ Proposition 13 ([13]). Let G = (V, E) be an undirected graph, vr ∈ V , and DG = (V, AE)
such that (DG, vr) is an equivalent digraph with root vr. We also assume that M is a direct
sum M1 ⊕ · · · ⊕ M2p+1 as follows. The matroids M1, M3, . . . , M2p−1 are the copies of graphic
matroid of G on ground set E, the matroids M2, M4, . . . , M2p are the copies of out-partition
matroids with ground set AE with root vr, and the matroid M2p+1 is a uniform matroid over
AE with rank p(k − 1). Furthermore, suppose that F ⊆ AE, then the followings two are
equivalent.

(i) F is the set of p pairwise arc-disjoint out-branchings rooted at vr in DG[S] for some
S ∈

(
V (G)

k

)
and vr ∈ S.

(ii) |V (F)| = k, |F | = p(k − 1), vr ∈ V (F), and there is an independent set I in M such
that every arc a ∈ F occurs in I precisely in its copies in matroids M2i−1, M2i and
M2p+1 for some i ∈ {1, . . . , p}.

In addition, a linear representation of M and the truncation of M to M̂ of rank 3p(k − 1)
can be computed in deterministic polynomial-time.

Our algorithm for Steiner Subgraph Extension works as follows. There are two
cases. If X = ∅, then we choose an arbitrary vertex u ∈ V (G) and set X = {u}. There are
n = |V (G)| possible choices of X. For each such choice we assign vr = u ∈ X. Otherwise, it is
already the case that X ̸= ∅. Therefore, we can assume without loss of generality that X ̸= ∅.

2 Due to lack of space, the lemmas marked ⋆ and the other omitted proofs can be found in the full version.

MFCS 2023

45:8 Finding a Highly Connected Steiner Subgraph and its Applications

On the other hand, if X ̸= ∅ and G[X] is p-edge-connected, then we can trivially output
yes-instance since |X| ≤ k. So, we are in the situation that G[X] is not p-edge-connected
and |X| < k. In the algorithm, we use the above characterization and representative sets
framework to check if X can be extended to a p-edge-connected subgraph G[S] with at most
k vertices. We fix an arbitrary vertex vr ∈ X. Due to Proposition 13, there is an independent
set I such that (i) X ⊂ V (I) and |V (I)| = k, (ii) |I| = 3p(k − 1), and (iii) every arc that is
in I is represented precisely in three matroids M2i−1, M2i and M2p+1 for some i ∈ [p].

We will build the set I via dynamic programming procedure. Since X is already included
in V (I) it allows us to replace the first condition with |V (I) \ X| = k − |X|. The purpose of
this dynamic programming is to construct a table that keeps track of |V (I) \ X| and |I|. Let
{v1, . . . , vn′} be a degeneracy sequence of the vertices of G − X and X = {Ai | Ai = N(vi) ∩
{v1, . . . , vi−1} \ X}. Each entry of the dynamic programming table T [((i, j, q, Y), (Z, ℓ))]
will contain a collection of independents sets of M that is a (3p(k − 1) − q))-representative
family of all the independent sets I of M such that |V (I) \ X| = i, |I| = q, Y = Aj ∩ V (I),
the largest index of V (G) − X that occurs in V (I) is j and Z = Aℓ ∩ V (I) for some ℓ > j.
Informally, it means that every independent set |I| has size q in M , V (I) intersects Aj

exactly in Y , and V (I) spans i vertices from G − X, vj ∈ V (I), and V (I) has no vertex from
{vj+1, . . . , vn′}. Furthermore, for every 1 ≤ j < n′, V (I) intersects Aℓ exactly in Z for some
ℓ > j. Observe that for j = n′, there is no index ℓ > j. Then we denote ℓ = n′ + 1 and Z = ∅
to keep the DP-states well-defined. We prove the following lemma that illustrates how a
dynamic programming algorithm can construct all the entries of a table T [((i, j, q, Y), (Z, ℓ))]
for i ≤ k − |X|, j ≤ n′, q ≤ 3p(k − 1), Y ⊆ Aj , Z ⊆ Aℓ and ℓ > j. Indeed, if j = n′, then
ℓ = n′ + 1 and Z = ∅. Observe that there are at most 2ηn possible choices of Y and 2ηn

possible choices for (Z, ℓ) in the DP table T . The following lemma illustrates how we compute
the DP-table entries.

▶ Lemma 14. Given matroid M of rank r = 3p(k − 1) as described above, the entries of the
table T [((i, j, q, Y), (Z, ℓ))] for i ≤ k − |X|, j ≤ n′, j < ℓ, q ≤ 3p(k − 1), Y ⊆ Aj and Z ⊆ Aℓ

can be computed in 2O(pk+η)nO(1)-time.

Proof. We describe a procedure Construct(T [((i, j, q, Y), (Z, ℓ))]) for i ≤ k − |X|, j ≤ n′ and
q ≤ 3p(k − 1) as follows. Observe that every arc of I occurs in three copies, one in M2i−1,
one in M2i and the other in M2p+1. Given an arc a ∈ AE , we use Fa,i to denote the set that
contains the copies of a in M2i−1, M2i and M2p+1. In the first part, we describe constructing
the table entries T [((0, 0, q, Y), (Z, ℓ))] as follows.

➢ (i) For all 1 ≤ ℓ ≤ n′, we initialize T [((0, 0, 0, ∅), (∅, ℓ))] = {∅}.
➢ (ii) Consider the set of all the arcs in DG[X]. We construct T [((0, 0, q + 3, ∅), (∅, ℓ))]

from T [((0, 0, q, ∅), (∅, ℓ))] as follows. For every I ∈ T [((0, 0, q, ∅), (∅, ℓ))], for every arc
a ∈ DG[X], (1 ≤ j ≤ m), and i ∈ {1, . . . , p}, we add I ∪ Fa,i such that Fa,i extends I.

➢ (iii) Finally, we invoke Proposition 9 to reduce T [((0, 0, q + 3, ∅), (∅, ℓ))] into a (3p(k −
1) − q − 3)-representative family of size 2O(pk+η)nO(1).

When we consider the table entries T [((i, j, q + 3, Y), (Z, ℓ))] such that j = 0, observe that
Y = Z = ∅. The reason is that for any I ∈ T [((i, j, q + 3, Y), (Z, ℓ))] with the assumption of
j = 0 implies that i = 0 and no vertex from G − X is part of V (I). Since Y, Z ⊆ V (G) \ X,
it must be that Y = Z = ∅. So, we consider only those entries in this first phase.

We analyze the running-time of the above process. Given T [((0, 0, q, ∅), (∅, ℓ))], computing
T [((0, 0, q + 3, ∅), (∅, ℓ))] requires polynomial in the size of |T [((0, 0, q, ∅), (∅, ℓ))]|. Then,
computing a (3p(k − 1) − q − 3)-representative family requires 2O(pk)-time.

The process of computing table entries for T [((i, j, q, Y), (Z, ℓ))] for Y ⊆ Aj and Z ⊆ Aℓ

for ℓ > j is more complex and needs more careful approach. We consider a lexicographic
ordering of the indices ((i, j, q, Y), (Z, ℓ)) and consider one by one as follows. For every

E. Eiben, D. Majumdar, and M. S. Ramanujan 45:9

i ≥ 1, we compute the collection of independent sets in T [((i, j, q, Y), (Z, ℓ))] using the
collection of independent sets of T [((i′, j′, q′, Y ′), (Z ′, ℓ′))] for j′ < j, j′ < ℓ′, i = i′ + 1,
and q′ < q as follows. We want to include vj into V (I) such that |V (I) \ X| = i. We
look at all the previous subproblems in the lexicographic ordering one by one. Suppose
that I ′ ∈ T [((i′, j′, q′, Y ′), (Z ′, ℓ′))]. By definition, it holds true that Y ′ = V (I ′) ∩ Aj′ and
Z ′ = Aℓ′ ∩ V (I ′). We say that I ′ is extendable to a set I ∈ T [((i, j, q, Y), (Z, ℓ))] if i = i′ + 1,
Z ′ = Y , and ℓ′ = j. Observe that by definition V (I) and V (I ′) both intersect Aj exactly
in Y , i.e. V (I) ∩ Aj = Y and V (I ′) ∩ Aj = Y . Moreover, j is the next larger index vertex
included in V (I) after vj′ .

We construct the table entries of T [((i, j, q, Y), (Z, ℓ))] using the table entries of
T [((i′, j′, q′, Y ′), (Z ′, ℓ′))] as follows.

Let d be the number of arcs that are incident to vj such that either the other endpoints
have lower indices or the other endpoint is in X. Formally, we consider the arcs that are
either of the form (vj′ , vj), (vj , vj′) ∈ AE such that j′ < j or of the form (u, vj), (vj , u) for
some u ∈ X. Since G is an η-degenerate graph, observe that d ≤ 2η + 2|X| ≤ 2(k + η).
We create a set F of arcs as follows. For every arc a incident to vj , we consider the sets
Fa,h for every h ∈ [p]. We either add Fa,h into F for some h ∈ [p], or do not add Fa,h into
F . This ensures that there are (p + 1)d ≤ (p + 1)2η+2k possible collections of arc-sets. For
every nonempty such arc-set F and for every I ′ ∈ T [((i′, j′, q′, Y ′), (Z ′, ℓ))] satisfying Y = Z ′,
i = i′ + 1 and ℓ′ = j (in other words I ′ that is extendable to a set in T [((i, j, q, Y), (Z, ℓ))]),
we add I ′ ∪ F into T [((i, j, q′ + |F |, Y), (Z, ℓ))] when F extends I ′ and q = q′ + |F |. Finally,
invoke Proposition 9 to reduce T [((i, j, q, Y), (Z, ℓ))] into its (3p(k − 1) − q)-representative
family containing at most 23p(k−1) sets.

Observe that for every set I ′ ∈ T [((i′, j′, q′, Y ′), (Z ′, ℓ′))], there are at most (p + 1)2η sets
I = I ′ ∪ F that are added to the slot T [((i, j, q, Y), (Z, ℓ))]. Hence we have that

|T [((i, j, q, Y), (Z, ℓ))]| ≤ (p + 1)2|X|+2η23pk(p + k + η)O(1)

Since the number of indices is 4ηn2, the above implies that computing all the table entries
can be performed in 2O(pk+η)nO(1)-time. This completes the proof of the lemma. ◀

Our next lemma ensures that the vertices of any independent set of size 3p(k−1) computed
by the above lemma induces a p-edge-connected subgraph.

▶ Lemma 15. There is a set I ∈ T [((k − |X|, j, 3p(k − 1), Y), (Z, ℓ))] for some Y ⊆ Aj and
Z ⊆ Aℓ if and only if there exists S ⊃ X such that G[S] is a p-edge-connected subgraph of G

with k vertices.

Proof (Sketch). 3 First part of the proof is forward direction (⇒). Let I ∈ T [((k −
|X|, j, 3p(k − 1), Y), (Z, ℓ))] be an independent set for some j ∈ [n′], Y = Aj ∩ V (I) and
Z = V (I)∩Aℓ. Let S = V (I) and it follows that |S \X| = k −|X|. Note that |I| = 3p(k −1).
Due to Proposition 13, every arc of DG occurs precisely in three copies. Recall that I was
constructed by adding arcs Fa,i for some i ∈ [p] when the arc a incident to v ∈ V (G) \ X

was added. But, Fa,i contains a copy of arc a in M2p+1. Therefore, the construction of
I ensures that no two distinct sets Fa,i and Fa,i′ both are added. Hence DG[V (I)] has p

pairwise arc-disjoint out-branchings rooted at vr and it follows from Proposition 10 that
G[S] is p-edge-connected.

The other part of the proof is the backward direction (⇐). Let G[S] be p-edge-connected
with |S| = k, such that X ⊆ S and vj is the vertex with highest index from {v1, . . . , v′

n} =
V (G)\X. It follows from Proposition 10 that there are p pairwise arc-disjoint out-branchings

3 A complete detailed proof can be found in the full version.

MFCS 2023

45:10 Finding a Highly Connected Steiner Subgraph and its Applications

in DG[S] rooted at vr. Then, by Proposition 13, there is an independent set I such that
V (I) = S containing the the set of arcs F ⊆ AE such that |F | = p(k − 1) and |I| = 3p(k − 1).
We complete our proof by justifying that I is a candidate independent set of M for the slot
T [((k −|X|, j, 3p(k −1), Y), (Z, ℓ))] for some Z = V (I)∩Aℓ and ℓ > j. If we prove that there
is Y ⊆ N(vj) ∩ {v1, . . . , vj−1} such that T [((k − |X|, j, 3p(k − 1), Y), (Z, ℓ))] ̸= ∅, then we
are done. We can give a proof of this claim by induction on i, j, q that T [((k − |X|, j, 3p(k −
1), Y), (Z, ℓ))] ̸= ∅. ◀

Using Lemma 14 and Lemma 15, we are ready to prove our theorem statement of our
main result, i.e. Theorem 1 (we restate below).

▶ Theorem 1. Steiner Subgraph Extension can be solved in time 2O(pk+η)nO(1), where
η is the degeneracy of the input graph.

Proof. We assume without loss of generality that X ̸= ∅ and G[X] is not p-edge-connected.
Also, we use (G, X, k, p) to denote the input instance. Let {v1, . . . , vn′} be a degeneracy
sequence of the vertices of G − X and consider an arbitrary vertex vr ∈ X. The first step
is to invoke Proposition 13 and construct a matroid M . We can also assume without loss
of generality that (G, X, k − 1, p) is a no-instance. Our next step is to invoke Lemma 14
and compute the table entries T [((i, j, q, Y), (Z, ℓ))] for all i ∈ {1, . . . , k − |X|}, j ∈ [n′],
q ≤ 3p(k − 1), Y ⊆ Aj , Z ⊆ Aℓ and ℓ > j. It follows from Lemma 14 that all the table
entries can be computed in 2O(pk+η)nO(1)-time. Moreover, it follows from the Lemma 15 that
for any I ∈ T [((k − |X|, j, 3p(k − 1), Y), (Z, ℓ)], it holds that G[V (I)] is a p-edge-connected
subgraph. This completes the correctness proof of our algorithm. We finally output S = V (I)
as the solution to the input instance. ◀

4 Applications of STEINER SUBGRAPH EXTENSION to some Graph
Theoretic Problems

In this section, we describe some applications of our main result (Theorem 1) in parameterized
algorithms. But before that, we prove the following lemma (proof is similar to the proof of
Lemma 12).

▶ Lemma 16 (⋆). Let G be an input graph, p be a fixed constant, and G be a polynomial-time
recognizable hereditary graph class. Then, there exists a polynomial-time algorithm that can
check if there is a set S ⊆ V (G) such that G − S ∈ G and G[S] is p-edge-connected.

The above lemma implies that for any polynomial-time recognizable (hereditary) graph
class G, we can test in polynomial-time if a feasible p-edge-connected vertex subset exists
whose deletion results in a graph of class G. Note that the class of all pathwidth-one graphs
is a polynomial-time recognizable graph class. Moreover, for every fixed constant η, the class
of all degree-η-graphs, or the class of all η-treedepth graphs, or the class of all graphs with
no Pη as subgraphs are all polynomial-time recognizable graph classes. So, we can test the
existence of feasible solutions for all our problems in polynomial-time.

Singly Exponential Algorithm for p-EDGE-CONNECTED-η-DEGREE DELETION SET. Now,
we explain how Theorem 1 implies a singly exponential algorithm for p-Edge-Connected
η-Degree Deletion Set problem. We formally state the problem below.

E. Eiben, D. Majumdar, and M. S. Ramanujan 45:11

T2

C5 with hairs attached.

Figure 1 An illustration of T2 and a cycle with hairs attached.

p-Edge-Connected η-Degree Deletion Set (p-Edge-Con-BDDS)
Input: An undirected graph G = (V, E) and an integer k.
Parameter: k

Goal: Is there S ⊆ V (G) such that ∆(G − S) ≤ η and G[S] is p-edge-connected?

The following is the first application of our main result (Theorem 1). As we have a
guarantee from Lemma 16 that we can test if an input graph has a feasible solution to our
problems, we assume without loss of generality that the input graph actually has a feasible
solution. We use this assumption for all our subsequent problems.

▶ Corollary 2. p-Edge-Con-BDDS admits a 2O(pk+kη)nO(1)-time algorithm.

The first part of the algorithm4 for the above result uses enumeration of all minimal
vertex subsets the removal of which results in a graph of maximum degree at most η and
then it invokes Theorem 1.

Singly Exponential Algorithm for p-EDGE-CON-PW1DS. Now, we describe a singly
exponential time algorithm for p-Edge Connected Pathwidth-1 Vertex Deletion
problem using Theorem 1. We formally define the problem as follows.

p-Edge-Con-PW1DS
Input: An undirected graph G = (V, E) and an integer k.
Parameter: k

Goal: Is there S ⊆ V (G) such that G[S] is p-edge-connected and pw(G − S) ≤ 1?

We use the following characterization that are related to pathwidth one graphs.

▶ Proposition 17 ([16, 4]). A graph G has pathwidth at most one if and only if it does not
contain a cycle or T2 as a subgraph.

▶ Proposition 18 ([26]). If G is a graph that does not contain any T2, C3, C4 as subgraphs,
then each connected component of G is either a tree, or a cycle with zero or more pendant
vertices (“hairs”) attached to it. (See Figure 1 for an illustration)

Observe that the graphs of pathwidth one do not have T2, C3, C4 as subgraphs. We prove
the following lemma now.

▶ Lemma 19 (⋆). Let G be an undirected graph that does not have any T2, C3, C4 as subgraphs.
Then, a 2-degeneracy sequence of G can be constructed in polynomial-time. Moreover, for
every connected component D of G, a partition D = C⊎P can be computed in polynomial-time
such that C is an induced path (or cycle) and P is the set of pendant vertices attached to C.

4 We refer to the full version for the proof

MFCS 2023

45:12 Finding a Highly Connected Steiner Subgraph and its Applications

It follows from Proposition 17 and Proposition 18 that any pathwidth one vertex deletion
set must intersect all the subgraphs T2, C3, C4 of a graph. But, once we have a set X such
that G − X has no T2, C3, C4 as subgraphs, then there are some connected components of
G − X that can have cycles. In particular, due to Proposition 18, it holds that if a connected
component of G − X has a cycle, then it must be a cycle with some (possibly empty set
of) pendant hairs attached to it. Then, we would need to find S ⊃ X such that G[S] is
p-edge-connected and S contains at least one vertex from each of these cycles. This requires
us to design an algorithm that uses the ideas similar to Lemma 14 and Lemma 15 but also
has to satisfy an additional condition. We state the following lemma and give a proof for
completeness.

▶ Lemma 20 (⋆). Let G = (V, E) be an undirected graph and X ⊆ V (G) such that G − X

has no T2, C3, C4 as subgraphs. Then, there exists an algorithm that runs in 2O(pk)nO(1)-time
and computes S ⊇ X of size at most k such that G − S has pathwidth at most one and G[S]
is a p-edge-connected subgraph.

Using the above lemma, we provide an 2O(pk)nO(1)-time algorithm for p-Edge Con-
nected Pathwidth-1 Vertex Deletion problem as follows.

▶ Theorem 3. p-Edge-Con-PW1DS admits an algorithm that runs in 2O(pk)nO(1)-time.

Proof. Let (G, k) be an instance of p-Edge Connected Pathwidth-1 Vertex Deletion
problem. First we enumerate all minimal vertex subsets X of size at most k such that G − X

has no T2, C3, C4 as subgraphs. Since T2 has 7 vertices, C3 has 3 vertices and C4 has 4
vertices, it takes O∗(7k)-time to enumerate all such subsets the deletion of which results in a
graph that has no C3, C4, T2 as subgraphs. Let X be one such set such that G − X has no
C3, C4, T2 as subgraphs. Due to Propositions 17 and 18, if D is a connected component of
G − X, then either D is a caterpillar, or a cycle with hairs attached to it. It follows from
Lemma 19 that there is a polynomial-time algorithm that gives a 2-degeneracy sequence ρ of
the vertices of G − X. Moreover, if D is a connected component of G − X, then ρ provides a
partition of D = C ⊎ P such that C is a cycle and P is the set of hairs attached to C. In
particular, the vertices of C are put first, followed by the vertices of P in ρ. Furthermore,
putting the vertices of C first followed by the vertices of P gives a 2-degeneracy ordering
of D. For each such subset X, we invoke Lemma 20 to give an algorithm that runs in
2O(pk)nO(1)-time and outputs S such that X ⊆ S and G − S has pathwidth at most one.
The correctness of this algorithm also follows from the proof of Lemma 20. This completes
the proof of this theorem. ◀

Singly Exponential Time Algorithms for p-EDGE-CON-η-TDDS and p-EDGE-CON-η-PVC.
Finally, we describe how we can get 2O(pk)nO(1)-time algorithm for p-Edge-Connected
η-Treedepth Deletion Set and p-Edge-Connected η-Path Vertex Cover problems.
Note that both p and η are fixed constants. We restate the problem definitions below.

p-Edge-Connected η-Treedepth Deletion Set (p-Edge-Con-η-TDDS)
Input: An undirected graph G = (V, E) and an integer k.
Parameter: k

Goal: Is there S ⊆ V (G) such that G[S] is p-edge-connected and td(G − S) ≤ η.

E. Eiben, D. Majumdar, and M. S. Ramanujan 45:13

p-Edge-Connected η-Path Vertex Cover
Input: An undirected graph G = (V, E) and an integer k.
Parameter: k

Goal: Is there an S ⊆ V (G) with at most k vertices such that G − S has no Pη as
subgraphs and G[S] is p-edge-connected?

It is clear from the problem definition that a set S is called an η-path vertex cover of G if
G − S has no Pη as subgraph. The following proposition holds true for graphs of treedepth
at most η.

▶ Proposition 21 ([12]). If a graph G has treedepth at least η + 1, then it has a connected
subgraph H such that td(H) > η and |V (H)| ≤ 22η .

The above proposition implies that η-Treedepth Deletion Set problem can be
characterized as H-Hitting Set problem where H contains only subgraphs of bounded
size. It follows from the definition that p-Edge-Con-η-PVC can be formulated in p-edge-
connected H-Hitting Set problem. It means that every minimal p-edge-connected
η-treedepth deletion set contains a minimal η-treedepth deletion set and every minimal every
minimal p-edge connected η-path vertex cover contains a minimal η-path vertex cover. We
prove the following lemma that explains how we can construct a collection of all the minimal
such solutions of size at most k.

▶ Lemma 22 (⋆). Given a (connected) undirected graph G = (V, E) and an integer k, the
collection of all minimal η-treedepth deletion sets and the collection of all minimal η-path
vertex covers can be obtained in 22ηknO(1)-time and ηknO(1)-time respectively.

The above lemma implies the next two results5 as other applications of our main result.

▶ Theorem 4. p-Edge-Con-η-TDDS admits an algorithm that runs in 222η
+O((p+η)k)n22η

-
time.

Observe that a graph with no Pη as subgraph has treedepth at most η + 1. It means that
such a graph also has bounded degeneracy. So, we have the following theorem.

▶ Theorem 5. p-Edge-Con-η-PVC admits an algorithm that runs in 2O((p+η)k)nO(1)-time.

5 Conclusions and Future Work

There are several possible directions of future work. Our main result proves that Steiner
Subgraph Extension is FPT when the removal of terminals results in a bounded degenerate
graph. If is unclear if Steiner Subgraph Extension is FPT even when G − X is an
arbitrary graph class and p is a fixed constant. Proving such a (positive or negative) result
Steiner Subgraph Extension remains an interesting future work. If p = 2, then finding
p-vertex/edge-connected steiner subgraph admits kO(k)nO(1)-time algorithm [19, 15]. It
remains open if a 2-vertex-connected steiner subgraph can be obtained in 2O(k)nO(1)-time
even when the set of terminals is a vertex cover of the input graph. On the perspective of
applications of Theorem 1, we have been successful in designing singly exponential-time FPT
algorithms for p-Edge-Con-BDDS, p-Edge-Con-η-TDDS, p-Edge-Con-PW1DS and p-
Edge-Con-η-PVC. But, our results do not capture several other graph classes. For instance,

5 The proofs of the next two theorems can be found in the full version.

MFCS 2023

45:14 Finding a Highly Connected Steiner Subgraph and its Applications

the above algorithm crucially relies that all minimal vertex deletion sets without connectivity
requirements can be enumerated in 2O(k)nO(1)-time and that a bounded degeneracy sequence
can be computed in polynomial-time. Therefore, obtaining an FPT algorithm with singly
exponential running time for each of Feedback Vertex Set, Cluster Vertex Deletion,
Cograph Vertex Deletion with p-edge-connectivity constraints (even with p = 2) also
remain interesting open problems.

References
1 Ankit Abhinav, Susobhan Bandopadhyay, Aritra Banik, and Saket Saurabh. Parameterized

algorithms for finding highly connected solution. Theor. Comput. Sci., 942:47–56, 2023.
2 Akanksha Agrawal, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Fast exact

algorithms for survivable network design with uniform requirements. Algorithmica, 84(9):2622–
2641, 2022.

3 MohammadHossein Bateni, Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dániel Marx.
A PTAS for planar group steiner tree via spanner bootstrapping and prize collecting. In
Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 570–583. ACM, 2016.

4 Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev
Mac, and Frances A. Rosamond. The undirected feedback vertex set problem has a poly(k)
kernel. In Hans L. Bodlaender and Michael A. Langston, editors, Parameterized and Exact
Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September
13-15, 2006, Proceedings, volume 4169 of Lecture Notes in Computer Science, pages 192–202.
Springer, 2006.

5 Radovan Cervený and Ondrej Suchý. Faster FPT algorithm for 5-path vertex cover. In Peter
Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen,
Germany, volume 138 of LIPIcs, pages 32:1–32:13. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019.

6 Radovan Cervený and Ondrej Suchý. Generating faster algorithms for d-path vertex cover.
CoRR, abs/2111.05896, 2021. arXiv:2111.05896.

7 Rajesh Hemant Chitnis, Andreas Emil Feldmann, Mohammad Taghi Hajiaghayi, and Dániel
Marx. Tight bounds for planar strongly connected steiner subgraph with fixed number of
terminals (and extensions). SIAM J. Comput., 49(2):318–364, 2020.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Celina M. H. de Figueiredo, Raul Lopes, Alexsander Andrade de Melo, and Ana Silva.
Parameterized algorithms for steiner tree and dominating set: Bounding the leafage by the
vertex leafage. In Petra Mutzel, Md. Saidur Rahman, and Slamin, editors, WALCOM:
Algorithms and Computation – 16th International Conference and Workshops, WALCOM
2022, Jember, Indonesia, March 24-26, 2022, Proceedings, volume 13174 of Lecture Notes in
Computer Science, pages 251–262. Springer, 2022.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

12 Zdenek Dvorák, Archontia C. Giannopoulou, and Dimitrios M. Thilikos. Forbidden graphs for
tree-depth. Eur. J. Comb., 33(5):969–979, 2012.

13 Carl Einarson, Gregory Z. Gutin, Bart M. P. Jansen, Diptapriyo Majumdar, and Magnus
Wahlström. p-edge/vertex-connected vertex cover: Parameterized and approximation algo-
rithms. J. Comput. Syst. Sci., 133:23–40, 2023.

https://arxiv.org/abs/2111.05896

E. Eiben, D. Majumdar, and M. S. Ramanujan 45:15

14 Andreas Emil Feldmann and Dániel Marx. The complexity landscape of fixed-parameter
directed steiner network problems. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
27:1–27:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

15 Andreas Emil Feldmann, Anish Mukherjee, and Erik Jan van Leeuwen. The parameterized
complexity of the survivable network design problem. In Karl Bringmann and Timothy Chan,
editors, 5th Symposium on Simplicity in Algorithms, SOSA@SODA 2022, Virtual Conference,
January 10-11, 2022, pages 37–56. SIAM, 2022.

16 Michael R. Fellows and Michael A. Langston. On search, decision and the efficiency of
polynomial-time algorithms (extended abstract). In David S. Johnson, editor, Proceedings
of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washington, USA, pages 501–512. ACM, 1989.

17 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016.

18 Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh.
Uniform kernelization complexity of hitting forbidden minors. ACM Trans. Algorithms,
13(3):35:1–35:35, 2017.

19 Pinar Heggernes, Pim van ’t Hof, Dániel Marx, Neeldhara Misra, and Yngve Villanger. On the
parameterized complexity of finding separators with non-hereditary properties. Algorithmica,
72(3):687–713, 2015.

20 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic
truncation of linear matroids. ACM Trans. Algorithms, 14(2):14:1–14:20, 2018.

21 Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. On subexponential parameterized
algorithms for steiner tree and directed subset TSP on planar graphs. In Mikkel Thorup,
editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 474–484. IEEE Computer Society, 2018.

22 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
23 Zeev Nutov. Parameterized algorithms for node connectivity augmentation problems. CoRR,

abs/2209.06695, 2022. arXiv:2209.06695.
24 James G. Oxley. Matroid theory. Oxford University Press, 1992.
25 Fahad Panolan and Saket Saurabh. Matroids in parameterized complexity and exact algorithms.

In Encyclopedia of Algorithms, pages 1203–1206. Springer, 2016.
26 Geevarghese Philip, Venkatesh Raman, and Yngve Villanger. A quartic kernel for pathwidth-

one vertex deletion. In Dimitrios M. Thilikos, editor, Graph Theoretic Concepts in Computer
Science – 36th International Workshop, WG 2010, Zarós, Crete, Greece, June 28-30, 2010
Revised Papers, volume 6410 of Lecture Notes in Computer Science, pages 196–207, 2010.

MFCS 2023

https://arxiv.org/abs/2209.06695

	1 Introduction
	2 Preliminaries
	3 Algorithm for STEINER SUBGRAPH EXTENSION
	4 Applications of STEINER SUBGRAPH EXTENSION to some Graph Theoretic Problems
	5 Conclusions and Future Work

