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Chiral active membranes: Odd mechanics, spontaneous flows, and shape instabilities
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Living systems are chiral on multiple scales, from constituent biopolymers to large scale morphology, and
their active mechanics is both driven by chiral components and serves to generate chiral morphologies. We
describe the mechanics of active fluid membranes in coordinate-free form, with focus on chiral contributions to
the stress. These generate geometric “odd elastic” forces in response to mean curvature gradients but directed
perpendicularly. As a result, they induce tangential membrane flows that circulate around maxima and minima of
membrane curvature. When the normal viscous force amplifies perturbations the membrane shape can become
linearly unstable giving rise to shape instabilities controlled by an active Scriven-Love number. We describe
examples for spheroids, membranes tubes, and helicoids, discussing the relevance and predictions such examples
make for a variety of biological systems from the subcellular to tissue level.
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I. INTRODUCTION

The mechanics of active materials is distinct from that
of passive systems: Active stresses and forces are used to
enable motility, sustain flows and coordinate a multitude of
cellular functions essential for all living tissues. Theories of
biological tissues as active gels and active liquid crystals have
been successful in accounting for the hydrodynamics of the
cytoskeleton, actin cortex and a variety of tissues, cell popula-
tions, and biofilms [1–3]. In many cases these tissues are thin
and deformable, and may be modelled as a two-dimensional
surface whose active mechanics influences its shape [4–12].

Recently, the unique characteristics of chiral active me-
chanics has come to the fore [13–19]. A striking example is
provided by developing starfish embryos, which self-assemble
into rotating crystals displaying odd mechanics [18]. Odd
elastic materials are characterized by nonreciprocal interac-
tions that facilitate oscillations, work cycles, and sustained
locomotion [14,19–24]. More generally we note that chi-
ral structures are commonplace in biology, with well-known
examples including rotary motors [25], DNA [26], and iri-
descence [27], while left-right symmetry breaking is a basic
feature of morphogenesis and development [28–31]. Of par-
ticular note with regards to left-right symmetry breaking are
examples in the model organisms C. elegans, where chiral
flows in actomyosin occur in the zygote before the princi-
pal division [28], and Drosophila melanogaster, where chiral
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stresses in the hind-gut cause it to twist into its characteristic
“question mark” shape [30].

Here we describe the active mechanics of fluid membranes
in geometric, coordinate-free form, with focus on chiral as-
pects of the activity. The chiral activity contributes a tangential
membrane force in response to gradients of mean curvature
but acting at right angles to them, in a geometric counterpart
of odd elasticity [14,20]. This is an odd response to bending
elasticity, where the force acts along a direction that is fluid
and hence drives membrane flows. We describe general linear
deformations of spherical membranes, where the “odd” flows
are induced directly by the bending mode, and also the steady
odd flows generated by the geometry of spheroids with arbi-
trary aspect ratio.

In addition to the induced odd membrane flow, the vis-
cous force accompanying it has a normal component—the
Scriven-Love term—that can amplify the curvature gradients
generating the flow, resulting in a linear shape instability.
We analyze this for the case of membrane tubes, where the
instability leads to chiral symmetry breaking of the tube shape
in the growth of a helical deformation with handedness set by
the chiral activity. Finally, we also describe the odd mechanics
of helicoids, for which the “odd” flows drive a shape insta-
bility qualitatively similar to that of soap films [32,33], and
of “membrane ramps” used to describe the geometry of the
endoplasmic reticulum and plant photosynthetic membrane
[34–37].

II. MEMBRANE GEOMETRY AND FORCES

We represent the membrane by a surface smoothly em-
bedded in R3 and describe its geometry using the surface
gradient of the normal vector N, known as the shape oper-
ator S = −∇N [38–41]. This is a linear transformation on
the tangent space, whose eigenvalues k1, k2 are the principal
curvatures and eigenvectors the principal curvature directions.
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FIG. 1. Schematic illustration of membrane mechanics. (a) The basic tangential stresses I2, J, D, and J · D. The arrows (red) indicate the
forces acting on the highlighted patch (blue) from each part of its boundary. The mesh is aligned with the principal curvature directions of the
surface. (b) Schematic of a thin chiral active film illustrating how torque dipoles (inset) can give rise to the force ∼J · ∇H (red arrows), that is
forces perpendicular to gradients in mean curvature. The color represents the variation in mean curvature. (c) The Scriven-Love force arising
from the interaction of viscous stresses and membrane curvature. An extensional flow aligned with the principal curvature directions generates
a normal force; at 45◦ to the principal curvature axes there is no force.

The mean curvature H = 1
2 tr S = 1

2 (k1 + k2) and Gaussian
curvature KG = det S = k1k2 are the two scalar curvature
invariants.

The membrane mechanics is expressed by the form of
the stress tensor σ, and the force density f = ∇ · σ acting
on it [6,42,43]. We describe this briefly in coordinate-free
form. The force has normal and tangential components and,
likewise, so does the stress. The tangential stresses are equiv-
alent to a linear transformation on the tangent space and can
be described in terms of the natural structure of these, as
we illustrate in Fig. 1(a). They separate into isotropic and
anisotropic parts, each of which forms a two-dimensional
subspace. The isotropic subspace is spanned by the identity
I2, and the complex structure J [41,44,45], whose square is
minus the identity J2 = −I2, and which acts by 90◦ rota-
tion about the surface normal J · a = N × a for any tangent
vector a. The shape operator of the membrane provides a
basis for the anisotropic subspace, through its decomposition
S = HI2 + D into isotropic and anisotropic parts. The pair
D, J · D then forms a basis for the anisotropic subspace [46].
In the principal curvature basis they are represented by

D = k1 − k2

2

[
1 0
0 −1

]
, J · D = k1 − k2

2

[
0 1
1 0

]
. (1)

We illustrate the basic tangential stresses in Fig. 1(a).
The normal stresses are of the form a N, where a is a

tangent vector coming from the geometry. The natural choices
are the gradients of the scalar curvatures, ∇H , ∇KG; here we
restrict to the gradient of mean curvature. We summarize in
Table I this basis of geometric membrane stresses and the
force density associated to each of them. Other contributions
are formed from these by composition, or multiplication by
a function of the scalar curvatures. Details of calculating the
surface divergences are given in the Appendix B.

We now describe some generic aspects of these stresses,
starting with those of an equilibrium membrane. The geo-
metric stresses of an equilibrium membrane are distinguished
by having forces that are directed purely along the surface
normal. The simplest of these are proportional to I2, D − HI2

and ∇H N + HD. Together, they produce the equilibrium
membrane stress [47]

σeq = γ I2 − 2κ (∇H N + HD) + 2κH0(D − (H − H0)I2),

(2)

where γ is the membrane tension, κ is the bending modulus
and H0 is the spontaneous mean curvature. In general γ can
be a scalar function on the membrane; however, in the case
where it is constant the equilibrium stresses are associated to
a free energy

F =
∫ (

γ + κ

2
(2H − 2H0)2

)
dA, (3)

with dA denoting the surface area element.
Conversely, any geometric stress that produces a nonzero

tangential force is associated to a nonequilibrium process. For

TABLE I. Basis of geometric membrane stresses and their asso-
ciated force densities. Other contributions are formed from these by
composition or multiplication by a scalar.

Stress Force density

I2 2H N
J 0
D ∇H + 2(H2 − KG)N
J · D J · ∇H
∇H N ∇2H N − H∇H − D · ∇H
J · ∇H N J · D · ∇H − HJ · ∇H
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example, a stress proportional to D alone, and not D − HI2,
contributes a tangential force proportional to ∇H and acts
like an active Marangoni-like stress [6,7]. Equally, such a
stress can be viewed as a renormalization of equilibrium
moduli—here the spontaneous curvature—together with an
active contribution to the tension [6,48].

The basic stresses J, J · D, and J · ∇H N all generate
purely tangential forces. We refer to them as chiral stresses
as they involve an odd power of the complex structure J. They
represent a geometric form of odd elasticity [14,20], coupling
elastic membrane bending to in-plane stresses. This differs
from ordinary odd elasticity in both that the response is to
bending deformations rather than in-plane strains and that the
resulting force acts along a direction that is fluid rather than
solid. As such, they are analogous to the odd elasticity of
active cholesterics [15] but here realized in a two-dimensional
membrane.

Some insight into the active stresses can be gained from
comparison with a thin film of chiral active gel [1,2], see
Fig. 1(b). Such a gel with polarization p has an achiral active
stress ∝ pp, associated to microscopic force dipoles, and a
chiral active stress ∝ ∇ × (pp) + [∇ × (pp)]

T
, associated to

microscopic torque dipoles [13,49]. For a thin film polarized
(uniformly) along its normal direction, p = N, we can write
the achiral stress as pp = I3 − (I3 − NN), where I3 is the
identity in R3, and see that, modulo a bulk pressure in the film,
it behaves as an active membrane tension [50]. Similarly, for
the chiral active stress we can write

∇ × (pp) = (∇ × N)N − (N × ∇ )N = −HJ + J · D, (4)

so that the chiral activity of the gel acts like a membrane stress
proportional to J · D. Thus such a stress arises naturally from
the standard theories of active gels and liquid crystals with
microscopic active torques.

For the remainder of this paper we restrict ourselves to the
phenomenology of chiral stresses, for which we take the active
stress

σa = ζ J · D + ξ J · ∇H N, (5)

retaining the lowest order (symmetric) tangential and normal
contributions. This implicitly includes the chiral stress HJ as
any differences between this and J · D come only from effects
at the boundary, which we do not discuss here. For a more
detailed discussion of the equivalence of these stresses see
Appendix B.

III. VISCOUS STRESS AND DYNAMICAL EQUATIONS

We write the membrane velocity as V = v + vn N, where
v is the tangential component. Membrane incompressiblity is
given by

∇ · V = ∇ · v − 2Hvn = 0. (6)

The velocity gradients can be decomposed into tangential and
normal parts as ∇V = ∇‖v − vnS + (S · v + ∇vn)N, where
∇‖v = ∇v − (∇v · N)N is the covariant derivative of v. The
viscous stress comes from the symmetric part of the purely
tangential velocity gradients

σv = η(∇‖v + (∇‖v)T − 2vnS), (7)

where η is the membrane shear viscosity [51,52]. For motions
of viscous membranes at microscopic scales, inertia can be
neglected and Newton’s law reduces to the force balance 0 =
∇ · (σeq + σv + σa), which reads (for vanishing spontaneous
curvature H0 = 0)

η[∇2
‖ v + KG v − 2vn∇H − 2D · ∇vn]

+ ∇γ + ζ J · ∇H − ξS · J · ∇H

+ [2γ H − 2κ (∇2H + 2H (H2 − KG))

+ 2η(∇‖v : D − 2vn(H2 − KG))]N = 0. (8)

Here, the spatially varying surface tension can be viewed
as a Lagrange multiplier imposing the surface incompress-
ibility condition, as such it is essentially the negative of a
two-dimensional pressure on the surface [51,53]. If the mem-
brane is closed a pressure difference term should be added
to the normal force. Achiral active stresses would contribute
as per Table I. Equations (6) and (8) provide the governing
equations for the membrane in coordinate-free form. They
are equivalent, with some simplification, to those obtained
in Refs. [6,42] but the presentation in terms of intrinsically-
defined quantities is complementary and the phenomenology
of chiral activity is unexplored. We note that it is possible
to include other generalized viscosities, such as a bending
viscosity [8]; however, we do not discuss such terms here.

The chiral activity enters directly only into the tangential
force balance, where it serves to drive membrane flows. It
then also influences the membrane shape through the nor-
mal component of the viscous force, or Scriven-Love term
[52,54]. The relative strength of this force as compared to
membrane bending forces is described by the dimensionless
Scriven-Love number SL = ηV L/κ [11,54], where V is a
characteristic velocity and L a lengthscale. For the active
chiral stresses the velocity scale is V ∼ ζ/η or V ∼ ξ/ηL,
giving Scriven-Love numbers (or dimensionless activities)
ζ̄ = ζL/κ and ξ̄ = ξ/κ . For sufficiently large values of either
the normal viscous force can overcome membrane tension
and bending, allowing for a novel membrane instability where
perturbations to a nonflowing steady state create chiral flows
whose Scriven-Love force enhances the perturbation. For this,
the velocity gradients ∇‖v need to contain a part proportional
to D, which can come either from an extensional flow aligned
with the principal curvature axes or from a shear flow at ±45◦
to them; see Fig. 1(c) for a schematic illustration. We give
explicit examples below of this odd mechanical instability
for membrane tubes and helicoids, although we note that this
mechanism is generic and should also be present in more
complex shapes.

It is worth noting that the active chiral stresses have a
crossover lengthscale associated with them, Lc = ξ/ζ . For
lengthscales less than Lc the active stress ∼J · D dominates
the mechanics giving rise to forces along lines of constant
mean curvature whose magnitude is set by the perpendicular
gradient in mean curvature. For larger lengthscales the me-
chanics is dominated by the stress ∼J · ∇HN, which has a
similar mechanism but now with components weighted by the
principal curvatures. For our examples we will consider only
the first case and set ξ = 0 from this point onwards.
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FIG. 2. Odd mechanics of a sphere and spontaneous flow on a spheroid. (a) Odd mechanics of low-order multipole deformations of a
sphere expressed in terms of real spherical harmonics Yl,m. The arrows denote the flow induced by the odd force from gradients in mean
curvature. (b) Flows on a spheroid where the color indicates the mean curvature. Graph shows azimuthal velocity v(θ ) for both prolate and
oblate spheroids. Note the switch in handedness of flows from prolate to oblate.

IV. EXAMPLES

In this section, in order to outline the phenomenology of
these membranes, we consider the specific examples of a
spheroid, membrane tube, helicoid, and approximately min-
imal parking garage structures.

A. Odd mechanics and counter-rotating flows
in spheroidal membranes

We now describe more explicitly the odd mechanics for
a spherical membrane; a similar analysis can also be given
for planar membranes. A sphere of radius R is an exact so-
lution of (6) and (8), with a pressure difference �P = 2γ /R
that is linearly stable to the chiral activity since for a sphere
D = 0 and the Scriven-Love term vanishes to linear order. We
consider an imposed normal displacement ψ and determine
the membrane flow to linear order from the tangential force
balance. It is natural to analyze the perturbations in terms of
spherical harmonics Yl,m. A uniform change in radius (l = 0)
does not induce any tangential flow, nor does a dipole mode
(l = 1) as to linear order it represents only a translation.
Higher harmonics induce a tangential flow

v = − ζ

2η
J · ∇ψ , (9)

proportional to the perturbation gradient but directed perpen-
dicularly to it; see Appendix C for details. For positive ζ

the flow is a right-handed circulation around maxima in the
displacement. In Fig. 2(a) we show the form of the response
for spherical harmonics at quadrupole (l = 2) and octupole
(l = 3) order. ψ can be viewed as an Eulerian displacement
field for the membrane, so that the response (9) has the char-
acter of odd elasticity in being linear in deformation gradients
with a twist [14,20].

The simplest deformation of the sphere is an axisymmetric
stretch to a spheroidal shape. This geometry is also amenable
to an exact solution for the tangential flows, beyond the lin-
ear response described in the previous paragraph, allowing
the full nonlinear geometry to be explored. For a spheroid

with principal semi-axes a, a, c described by the embedding
X = (a sin θ cos φ, a sin θ sin φ, c cos θ ), we obtain the exact
azimuthal flow v = v(θ ) eφ in the Appendix C, Eq. (C22). We
plot examples of the flows for both prolate (c > a) and oblate
(c < a) spheroids in Fig. 2(b). To first order in ( c

a − 1) the
azimuthal velocity is

v(θ ) = ζ

η

(
c

a
− 1

)
sin θ cos θ, (10)

reproducing the general result (9). Odd mechanics generates
circulating flows in the two “hemispheres” along the stretch
axis that are right handed, with ζ > 0, for a prolate spheroid
and left handed for an oblate spheroid. In the solution to the
full nonlinear geometry one finds that the position of maxi-
mum velocity is that of the highest gradient in mean curvature.
That is, offset closer to the poles in the case of a prolate
spheroid and closer to the equator for an oblate spheroid; see
Fig. 2(b) and Appendix C for details.

Intriguingly, exactly such flows are observed in C. elegans
zygotes as they undergo left-right symmetry breaking before
the principal division [28]. In Ref. [28] chiral active gel theory
theory was used to account for these flows by assuming a
varying strength of activity over a thin layer of cortex. Our
results establish that the same flows can be obtained from
uniform chiral activity purely as a consequence of the ge-
ometry. The geometric mechanism predicts that the direction
of circulation reverses between prolate and oblate spheroids,
which could be tested using experiments on reconstituted ac-
tive chiral membranes confined within artificial eggshells of
varying geometry.

B. Instability of a membrane tube

For any surface, which is not isotropic (totally umbilic),
small surface deformations will drive flows that, in turn, cou-
ple back into the shape equation by the Scriven-Love force. If
these forces are sufficiently large they can drive instabilities
in the membrane shape. To illustrate this with a concrete
example we take the case of a membrane tube. Such structures
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FIG. 3. Instability of an odd active membrane tube. Stability
diagram of wavenumber along the tube Q against active chiral stress
(Scriven-Love number) ζ̄ for m = ±1, 2, 3, 4. Schematic of the first
two left-handed unstable modes (m = 1, 2) with mean curvature
colored on the surface and vectors showing the flow along lines of
constant mean curvature.

occur readily in biology, from the membrane tubes of the
endoplasmic reticulum [55] to tissue structures such as the
Drosophila hindgut [30,31].

The principal curvature directions on the tube are axial and
azimuthal so that a diagonal shear flow, winding in barber-
pole fashion, will generate a normal Scriven-Love force.
When the shape change this produces amplifies the shear flow,
the tube will undergo a linear instability. This is shown in
Fig. 3. We consider perturbations of the tube radius by an
amount ψm(q, t ) exp{i(mθ + qz)} about its passive equilib-
rium radius r = √

κ/(2γ ), where θ, z are azimuthal and axial
coordinates and ψm/r � 1. The general equations (6) and (8)
give a growth equation for the mode ∂tψm ∼ Gm(q)ψm (see
Appendix C for details). Nondimensionalizing with length-
scale r, timescale τ = ηr2/κ and defining the active chiral
Scriven-Love number as ζ̄ = rζ/κ we find the dimensionless
growth rate as

Gm = (m2 + Q2)

4Q4
[ζ̄mQ(m2 + Q2 − 1)

− (m2 + Q2)(m4 + 2m2(Q2 − 1) + Q4 + 1)]. (11)

For large enough values of ζ̄ the membrane tube is linearly
unstable; the lowest threshold is for the |m| = 1 mode with
threshold at ζ̄ ≈ 5.3. Crucially for a mode to be unstable
it must have ζ̄mQ > 0, which explicitly selects a chirality
to the shape instability. That is, for positive ζ̄ , only modes
with mQ > 0 go unstable, i.e., left-handed helical deforma-
tions. The dimensionless growth rate Gm is shown in the
Appendix C and the stability diagram is shown in Fig. 3. In
the |m| = 1 case, the peak wavelength is given by Q∗ ≈ 4/ζ̄

in the small Q regime so that the wavelength of the modulation
is comparable to the tube circumference. For the |m| = 1
shape instability note that flows are driven exactly along the
lines of active force, that is along lines of constant mean
curvature; Fig. 3. The helical flows generated here are similar
in nature to the flows on a cylinder of fixed geometry with
active nematic stress [56]. As the magnitude of the activity is
increased the most unstable mode crosses over to higher |m|,

|m| = 2, 3, . . . , so that different morphologies can be realized
at sufficiently large activity. The crossover of fastest growing
mode from |m| = 1 to |m| = 2 occurs at ζ̄ ≈ 12.4. Note that
in the |m| = 2 case the flows do not correspond perfectly with
lines of constant mean curvature as the passive viscous forces,
which act to relax the shape of the tube (i.e., aligned with
gradients in mean curvature) play a larger role in the dynamics
than in the case of the helical bending mode.

Due to the ubiquitous nature of membrane tubes across
many scales in biology, such a generic odd elastic instability
could play a role in a variety of different systems. Of particular
note is the morphogenesis of the Drosophila hindgut, where
an epithelial tissue tubule undergoes a chiral twisting motion
to form a characteristic “question mark” shape [30,31]. We
speculate that such an odd elastic instability may be the driv-
ing force behind this shape transition.

C. Instabilities of minimal surfaces

As an additional illustration of these generic Scriven-Love
type instabilities we turn to the case of minimal surfaces.
Such surfaces have been considered extensively as exam-
ples of necks [57,58] and helical ramps in lipid membranes
[34,35,59]. In addition, such surfaces have generated consid-
erable interest as they describe the geometry of soap films
[32,33,60–62].

We focus on the example of a helicoid, given by the
embedding Xhelicoid(u, v) = (sinh(αv) cos(αu)/α, sinh(αv)
sin(αu)/α, u), where α is the wavenumber of the helicoid.
The shape operator has purely off-diagonal form

S = −∇N = α sech2αv(euev + eveu), (12)

which couples to a nonzero Scriven-Love force for shear flows
directed along the helicoid axis. It is the instability associated
to this that we analyze. Perturbations of the helicoid in the
normal direction that vary along the transverse v coordinate
will drive spontaneous shear flows along the u direction (heli-
coid axis) and their coupling to the normal Scriven-Love force
creates the shape instability; see Fig. 4(a) for an illustration of
this phenomenology.

Here we consider a finite strip v ∈ [−L, L] of the heli-
coid and the lowest order perturbation of the form Xhelicoid +
δ cos(πv/2L)N. For simplicity we set κ = 0 here, which will
alter the shape dynamics, but leave the instability criterion
unchanged. One component of the tangential force balance
and the continuity equation gives γ (v) = γ0 and v · ev = 0,
which then leaves a system of coupled nonlinear boundary
value ODEs for the normal velocity (vn) and tangential veloc-
ity (vu = v · eu). In order to make progress we neglect forces
from the normal velocity in the tangential force balance and
compute the flows, which we show in Figs. 4(a) and 4(b). We
then compute the normal velocity vn(v), Fig. 4(b), allowing
us to find conditions for which parts of the initial perturbation
grow; the region of positive normal velocity in Fig. 4(b).
For full derivation see Appendix C. The normal perturbations
can be driven unstable when the Scriven-Love force becomes
larger than the restoring surface tension. Crucially this occurs
only when the active stress ζ and helical wavenumber α have
opposite signs, giving a handedness to the instability. This
is perhaps to be expected as the chirality of the helicoid
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FIG. 4. Chiral flows and instabilities of active helical structures. (a) Schematic of the helicoid with first nodal perturbation with mean
curvature colored on the surface and vectors showing the flow along lines of constant mean curvature. Inset gives a zoom in to the perturbation,
as viewed from above. (b) First nodal perturbation ψ (v) = δ cos(πv/2L), corresponding spontaneous flow field vu(v) and normal velocity
vn(v) plotted for δ = 0.2, ζ̃ = −10, and αL = 1. (c) Streamline surface plot of the chiral force J · ∇H on a “parking garage” approximately
minimal surface formed from the addition of helicoidal ramps for separation R = 2, and pitch p0 = 1.

essentially selects a handedness for the instability. Numeri-
cally we find the threshold criterion ζα � −6γ .

Finally, we consider an approximately minimal surface
formed by the addition of two helicoidal ramps of oppo-
site pitch. In complex coordinates we write this as X (z) =
(z(ξ, η), p0η) where p0 is the magnitude of the pitch, with
bipolar coordinates defined by ξ + iη = ln(z − R)/(z + R)
and 2R is the separation of the two helical motifs. This type
of configuration has been used to discuss the morphology of
helical “parking garage” ramps seen in several organelles such
as the rough endoplasmic reticulum (ER) [34–36]. Although it
is possible to map such surfaces onto exact minimal surfaces
[37], here we consider the approximate surfaces as a pertur-
bation and examine the forces that arise from H �= 0. We plot
the streamlines of the force J · ∇H in Fig. 4(c), which shows
vortex/antivortex sheets on the ramps of the structure; see
Appendix C for details. We speculate that chirally actuating
proteins, e.g., the ATP synthase [63], could induce such forces
thereby enabling increased mixing between the layers of or-
ganelles due to Taylor dispersion. Such active mixing could
have significant implications for protein and lipid production
in the ER.

V. DISCUSSION

In this paper we have presented coordinate-free equa-
tions for membrane hydrodynamics with active chiral stresses.
Such a presentation has allowed us to identify clear geometric
phenomenology associated with these active stresses. This
includes the generation of forces, which are proportional to
gradients in mean curvature and act in directions of constant
mean curvature, or weighted by the principal curvature di-
rections in the two simplest cases respectively. These stresses
represent a novel form of odd elasticity characterized by nor-
mal deformations giving rise to asymmetric tangential forces.
Such stresses lead to spontaneous shear flows in the presence
of mean curvature gradients, and shape instabilities charac-
terized by an active counterpart of the usual Scriven-Love

number. To illustrate the generic nature of the flows and shape
instabilities we have given explicit examples for spheroids,
tubes, and helicoids.

We note that many of these examples bear a resemblance
to phenomena seen in biology, including the counter-
rotating flows of the C. elegans zygote, and the Drosophila
melanogaster hindgut. Here our geometric representation
gives clear benefits as the flows along lines of constant mean
curvature could be used to infer the type of active stress
in tissues using modern 4D microscopy techniques, such as
lattice light sheet microscopy [64,65].

One aspect that we have not discussed is the coupling of
an active membrane to a concentration field, such as a protein
density. Such sources of activity have been discussed previ-
ously for achiral stresses [7,66] constructed with the vector
a = ∇φ where φ is the concentration field. The effects of con-
centration field couplings for chiral stresses is an interesting
open question.

The explicit calculations we have presented cover only
a few highly symmetric membrane shapes and can be use-
fully supplemented by more general numerical studies. There
remain significant open challenges associated with numeri-
cally solving, in full generality, the types of morphodynamic
equations discussed in this paper, although recent work de-
veloping stable finite element schemes for lipid membrane
hydrodynamics should be extendable to such active chiral
systems [43,67,68]. A notable advantage of our coordinate
free formulation is that this is the natural language to use for
surface finite-element methods [69]. Adapting such methods
to account for chiral stresses will allow for studies of increas-
ingly realistic biological and soft matter systems and open the
door to simulating increasingly rich theories of quantitative
mechanobiology.
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APPENDIX A: ELEMENTS OF DIFFERENTIAL
GEOMETRY AND NOTATIONAL CONVENTIONS

1. Membrane geometry

In this section we give a short summary of the geometry
of surfaces using the shape operator, covering those aspects
that we make use of in the main text. Some general references
include [38–41]. Our style of presentation is similar to analo-
gous analysis of director gradients in liquid crystals [70–72].

We consider the membrane to be a surface smoothly em-
bedded in R3 and represent its points, within R3, by X. We
denote the surface normal by N. Derivatives of quantities on
the membrane are induced from those of the ambient space.
The surface gradients are the gradients of R3 with the re-
striction that only derivatives along tangential directions are
possible; in an abuse of notation we denote this ∇N ≡ 0. We
represent the geometry of the membrane using the shape oper-
ator S = −∇N. This is a linear transformation on the tangent
space of the surface and we decompose it with respect to
the natural structure for these. There are two canonical linear
transformations, the identity I2 and the complex structure J,
which are both isotropic with respect to the action of rotations
about the surface normal. In any (positive) orthonormal basis
they are represented by the matrices

I2 =
[

1 0
0 1

]
, J =

[
0 −1
1 0

]
. (A1)

The remaining linear transformations are anisotropic and
form a two-dimensional subspace, the elements of which
transform amongst themselves under rotations about N as a
spin 2 object. The shape operator provides a natural basis
for the anisotropic subspace through its decomposition into
isotropic and anisotropic parts

S = −∇N = HI2 + D. (A2)

Here H is the mean curvature and D lies in the subspace
of anisotropic linear transformations; there is no component
along J by the Frobenius integrability theorem. The eigenvec-
tors of the shape operator E1, E2 are the principal curvature
directions of the surface and with respect to this orthonormal
basis the shape operator is represented by the matrix

S = k1 + k2

2

[
1 0
0 1

]
+ k1 − k2

2

[
1 0
0 −1

]
, (A3)

where k1 > k2 are the principal curvatures. The mean cur-
vature is H = 1

2 (k1 + k2) and k1 − k2 = 2
√

H2 − KG, where
KG = k1k2 is the Gaussian curvature.

Composition of D with the complex structure defines a
second anisotropic linear transformation, which we denote by
J · D. In the principal curvature basis it is represented by the
matrix

J · D = k1 − k2

2

[
0 1
1 0

]
. (A4)

With respect to the standard inner product on matrices D and
J · D are orthogonal; they provide a basis for the anisotropic
linear transformations on the tangent space. The eigenvectors
of J · D are the directions E± = 1√

2
(E1 ± E2), making an

angle ±π
4 with the principal curvature directions. They may

be called directions of “principal torsion” [70] as for curves
in the surface along these directions the Darboux torsion is
extremal.

2. Normal variations

We record here general first variation formulas for dis-
placements of the surface along its normal [47,51,72]. A
normal variation of the surface is given by displacing the
points according to X �→ X + ψ N. To first order, the change
in the surface normal is N �→ N − ∇ψ . The first order varia-
tion of the shape operator is

S = −∇N �→ S + ∇∇ψ + ψ S · S + N(S · ∇ψ ) + O(ψ2),
(A5)

from which we can deduce the first order variation of the mean
curvature

H �→ H + 1
2∇2ψ + ψ (2H2 − KG) + O(ψ2). (A6)

The first-order variation of D also follows from that for the
shape operator

D �→ (1 + 2Hψ ) D + ∇∇ψ − 1
2∇2ψ I2

+ N(D · ∇ψ ) − H∇ψ N + O(ψ2). (A7)

Finally, using KG = H2 − 1
2 D : D we obtain

KG �→ (1 + 2Hψ )KG + H∇2ψ − D : ∇∇ψ + O(ψ2).
(A8)

APPENDIX B: MEMBRANE FORCES

1. Geometric forces

To compute the membrane forces we need to know about
gradients of the shape operator. To summarize the basic identi-
ties [38–40] we make use of direct calculations in the principal
curvature basis. We write the connection

∇E1 = A E2 + k1 E1N, (B1)

∇E2 = −A E1 + k2 E2N, (B2)

where A is the (dual to the) connection form on the tangent
space. With this notation the gradient of the shape operator
reads

∇S = ∇k1 E1E1 + ∇k2 E2E2

+ (k1 − k2)A(E1E2 + E2E1)

+ k2
1 (E1E1N + E1NE1)

+ k2
2 (E2E2N + E2NE2). (B3)

The Codazzi-Mainardi-Peterson equations [38–40] assert that
J : ∇S = 0, where the contraction is on the first two slots.
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This gives

(E2 · ∇k1)E1 − (E1 · ∇k2)E2

+ (k1 − k2)[(E2 · A)E2 − (E1 · A)E1] = 0, (B4)

and we find the connection is given by

(k1 − k2)A = (E2 · ∇k1)E1 + (E1 · ∇k2)E2. (B5)

We remark that this can be expressed in fully intrinsic form as

A = 1

2(H2 − KG)
J · D · ∇H − 1

4(H2 − KG)
J · ∇(H2 − KG).

(B6)

Using (B5) we calculate the divergence of the shape operator
to be

∇ · S = 2∇H + 2(2H2 − KG)N, (B7)

and then decomposing S into its isotropic and anisotropic parts
we obtain

∇ · D = ∇H + 2(H2 − KG)N. (B8)

For the tangent space identity I2 and complex structure J we
record the short direct computations

∇ · I2 = ∇ · (I3 − NN) = −(∇ · N)N

= (tr S)N = 2H N, (B9)

∇ · J = ∇ · (E2E1 − E1E2)

= (−A · E1)E1 + (E2 · A)E2

− (E2 · A)E2 − (−A · E1)E1 = 0. (B10)

Finally, the divergence of J · D follows from writing it in the
principal curvature basis, J · D = k1−k2

2 (E1E2 + E2E1), and
then a short direct calculation

∇ · (J · D) = 1
2∇(k1 − k2) · (E1E2 + E2E1)

+ k1−k2
2 [(−A · E1)E1 + (E2 · A)E2

+ (E2 · A)E2 + (−A · E1
)
E1]

= 1
2 [−E2 · ∇(k1 + k2)E1 + E1 · ∇(k1 + k2)E2]

= J · ∇H . (B11)

This summarizes the calculation of the membrane forces as
recorded in Table I of the main text.

2. Equivalence of stresses and the Belinfante-Rosenfeld tensor

Certain stresses are divergence-free and hence produce no
bulk force; we refer to them as null stresses. We are unaware
of a general characterization; however, the simplest examples
are J, HJ + J · D and H2J + HJ · D − J · ∇H N. As an in-
terpretation, the second of these establishes the equivalence,
at the level of forces, of the antisymmetric tangential stress
HJ and the symmetric tangential stress −J · D. Further, it can
be written as the divergence of a third rank tensor, HJ + J ·
D = ∇ · (JN), and in this sense null stresses are reminiscent
of the Belinfante-Rosenfeld tensor [73–75]. We remark that
H2J + HJ · D − J · ∇H N = ∇ · (JHN) shares this structure.

3. Hydrodynamic stresses and forces

The membrane is given to flow with a velocity V = v +
vnN. The continuity equation for flows on the membrane is
given as

∇ · V = ∇ · v + vn∇ · N = ∇ · v − 2Hvn = 0, (B12)

which gives the classic result for the continuity equation on a
deformable curved surface [51]. The viscous stress tensor of
a two-dimensional fluid membrane in the Newtonian limit is
given by the purely tangential part of the symmetric velocity
gradient

σv = η(I3 − NN) · (∇V + (∇V)T ) · (I3 − NN)

= η(∇‖v + (∇‖v)T − 2vnS), (B13)

where η is the membrane viscosity and ∇‖v = ∇v − (∇v ·
N)N is the covariant derivative of v. The hydrodynamic force
is given by the divergence of this stress

fv = ∇ · σv = ∇‖ · σv + [(∇ · σv) · N]N, (B14)

and has both tangential and normal components. To simplify
the normal component we use

(∇ · σv) · N = ∇ · (σv · N) − σv : ∇N, (B15)

= 2H∇ · v + 2∇‖v : D − 2vn S : S, (B16)

= 2H∇ · v + 2∇‖v : D − 4vn(2H2 − KG).

(B17)

In simplifying the tangential component of the force we make
use of the standard result

∇‖ · ((∇‖v)T ) = ∇‖(∇‖ · v) + KG v, (B18)

obtained by commuting the order of covariant derivatives.
Finally, using the continuity equation to replace ∇ · v with
2H vn we find

fv = η(∇2
‖ v + KG v − 2vn∇H − 2D · ∇vn)

+ 2η[∇‖v : D − 2vn(H2 − KG)]N. (B19)

APPENDIX C: CALCULATIONAL DETAILS FOR
EXAMPLES DESCRIBED IN THE MAIN TEXT

1. Odd mechanics of a spherical vesicle

For a spherical membrane of radius R the unperturbed
geometry is isotropic; the shape operator is S = − 1

R I2 and
the surface is totally umbilic with D = 0. As a result, to linear
order there is no Scriven-Love force and the spherical mem-
brane is linearly stable. We focus on the linear description
of the purely tangential flows (vn = 0) induced by a normal
perturbation of the shape by an amount ψ . According to the
general first variation formulas the mean curvature of the
perturbed surface is

H = − 1

R
+ 1

2
∇2ψ + 1

R2
ψ + O(ψ2). (C1)

For purely tangential membrane flows, incompressibility
gives ∇ · v = 0, whose solution is

v = J · ∇ f , (C2)
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for some function f . From a direct calculation (in a local
basis) we find

∇2
‖ v = J · ∇(∇2 f ) + 1

R2
J · ∇ f . (C3)

We can now write the tangential force balance as

η J · ∇
(
∇2 f + 2

R2
f

)
+ ∇γ + ζ J · ∇

(
1

2
∇2ψ + 1

R2
ψ

)
= 0,

(C4)

and it follows that γ is constant and also that (∇2 + 2
R2 )( f +

ζ

2η
ψ ) is constant. It is natural to analyze the perturbations in

terms of spherical harmonics Yl,m. For l = 0 the perturbation
ψ is constant and there is no flow ( f = 0). For l = 1 we
find (∇2 + 2/R2)ψ = 0 and again there is no flow; this is a
reflection of the fact that the l = 1 modes are translations to

linear order. For all higher multipoles the flow is nontrivial
and given by

f = − ζ

2η
ψ. (C5)

To describe the response in a coordinate-free way, we adopt
Maxwell’s definition of the spherical harmonics in terms of
derivatives of 1

r [76–78]. Taking a1, . . . , al to be l (unit)
vectors in R3, an order l multipole is given by

ψ = ψlR
l+2∇a1 · · · ∇al

1

r

∣∣∣∣
r=R

, (C6)

where ψl is a dimensionless constant setting the amplitude.
For instance, for the quadrupoles, l = 2, we have

ψ = ψ2R

[
3(a1 · x)(a2 · x)

R2
− a1 · a2

]
|x|=R

, (C7)

and for the octupoles, l = 3, we find

ψ = ψ3

[
− 15(a1 · x)(a2 · x)(a3 · x)

R2
+ 3(a1 · a2)(a3 · x) + 3(a2 · a3)(a1 · x) + 3(a3 · a1)(a2 · x)

]
|x|=R

. (C8)

The associated flows are v = − ζ

2η
J · ∇ψ . We make use of the relation X = R N for the sphere and write these as

v = −3ζ

2η
ψ2[(a1 · N) N × a2 + (a2 · N) N × a1], (C9)

v = 3ζ

2η
ψ3[(5(a1 · N)(a2 · N) − a1 · a2)N × a3 + (5(a2 · N)(a3 · N) − a2 · a3)N × a1

+ (5(a3 · N)(a1 · N) − a3 · a1)N × a2], (C10)

for the quadrupoles (l = 2) and octupoles (l = 3), respec-
tively. We used these general results to generate Fig. 2(a) of
the main text.

2. Spheroidal membrane

In this section we summarize the calculational details for
the tangential flows on a spheroidal membrane with arbitrary
aspect ratio. We take the membrane to have the shape of an
ellipsoid with principal semi-axes a, a, c and embedding

X = (a sin θ cos φ, a sin θ sin φ, c cos θ ), (C11)

where θ, φ are standard spherical polar angles. We find

dX = eθ (a2 + (c2 − a2) sin2 θ )1/2 dθ + eφ a sin θ dφ,

(C12)

where

eθ = (a2 + (c2 − a2) sin2 θ )−1/2 (C13)

[a cos θ cos φ, a cos θ sin φ,−c sin θ ], (C14)

eφ = [− sin φ, cos φ, 0], (C15)

are an orthonormal basis for the tangent space. The unit out-
ward normal is

N = (a2 + (c2 − a2) sin2 θ )−1/2

× [c sin θ cos φ, c sin θ sin φ, a cos θ ], (C16)

and the shape operator is

S = −∇N = (a2 + (c2 − a2) sin2 θ )−3/2 c

a

×
{

−
(

a2 + 1
2 (c2 − a2) sin2 θ

)
I2

+ 1
2 (c2 − a2) sin2 θ [eθeθ − eφeφ]

}
. (C17)

We can read off the mean curvature and then a short direct
calculation gives

J · ∇H = (a2 + (c2 − a2) sin2 θ )−3

×
(

a2 + 1

4
(c2 − a2) sin2 θ

)
c

a
(c2 − a2) sin 2θ eφ.

(C18)

For the membrane flow, we look for a solution with purely
azimuthal velocity v = v(θ ) eφ . The gradient is

∇v = (a2 + (c2 − a2) sin2 θ )−1/2

×
(

∂θv eθ eφ − cos θ

sin θ
v eφeθ − c

a
v eφN

)
, (C19)
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and we then calculate directly that

∇‖ · (∇‖v + (∇‖v)T ) = (a2 + (c2 − a2) sin2 θ )−1

(
1

sin θ
∂θ (sin θ ∂θv) − 1

sin2 θ
v + 2v

)
eφ

− (a2 + (c2 − a2) sin2 θ )−2(c2 − a2) sin θ cos θ

(
∂θv − cos θ

sin θ
v

)
eφ. (C20)

It is clear that ∇v : D = 0 so that there is no Scriven-Love term and we only have to solve the tangential force balance, which
reduces to

1

sin θ
∂θ (sin θ ∂θv) − 1

sin2 θ
v + 2v − (c2 − a2) sin θ cos θ

a2 + (c2 − a2) sin2 θ

(
∂θv − cos θ

sin θ
v

)

= −2ζ

η
(a2 + (c2 − a2) sin2 θ )−2

(
a2 + 1

4
(c2 − a2) sin2 θ

)
c

a
(c2 − a2) sin θ cos θ. (C21)

The solution for the boundary conditions v(0) = v(π ) = 0 is given by

v(θ ) =
⎧⎨
⎩

ζ

2η

(
c2

a2 − 1
)1/2

arctanh
[(

1 − a2

c2

)1/2
cos θ

]
sin θ, c

a > 1 (prolate),

− ζ

2η

(
1 − c2

a2

)1/2
arctan

[(
a2

c2 − 1
)1/2

cos θ
]

sin θ, c
a < 1 (oblate),

(C22)

and is plotted in Fig. 2(b). Of particular note is the change in
sign, and hence directionality, of the flow between the prolate
and oblate cases. Finally, linearizing in (c/a) − 1 the solution
(for both prolate and oblate spheroids) reduces to

v(θ ) = ζ

η

(
c

a
− 1

)
sin θ cos θ. (C23)

3. Instability of an odd active membrane tube

In this section we summarize the calculation of the odd
mechanical shape instability for a membrane tube. We take
the unperturbed membrane to be the cylinder X(θ, z) =
(r cos θ, r sin θ, z) of radius r, for which the shape operator is
S = − 1

r eθeθ . Perturbing the surface by an amount ψ (θ, z, t )
along its normal, the general first variation formulas give the
mean and Gaussian curvature as

H = − 1

2r
+ 1

2

(
∂zzψ + 1

r2
∂θθψ + 1

r2
ψ

)
, (C24)

KG = −1

r
∂zzψ . (C25)

We then compute the odd active force density to be

ζ J · ∇H = ζ

2

[
e2

1

r
∂θ − e1 ∂z

](
∂zzψ + 1

r2
∂θθψ + 1

r2
ψ

)
.

(C26)

We write the membrane velocity as V = v1e1 + v2e2 +
vnN. To linear order, incompressibility gives

1

r
∂θv1 + ∂zv2 + vn

r
= 0

⇒ vn = −∂θv1 − r ∂zv2,

(C27)

and we find the hydrodynamic force is

fv = η(r(∂zθv2 + r∂zzv1) + 2(∂θθv1 + ∂θvn))

r2
e1

+ η(r(∂zθv1 + 2r∂zzv2) + ∂θθ v2)

r2
e2 − 2η(∂θv1 + vn)

r2
N.

(C28)

Balancing the tangential components against the chiral force
gives

e1 :
η(r ∂zθv2 + r2∂zzv1 + 2∂θθv1 + 2∂θvn)

r2

− ζ (∂zθθψ + r2∂zzzψ + ∂zψ )

2r2
+ 1

r
∂θγ = 0, (C29)

e2 :
η(r ∂zθ v1 + 2r2∂zzv2 + ∂θθv2)

r2

+ ζ (r2∂zzθψ + ∂θθθψ + ∂θψ )

2r3
+ ∂zγ = 0, (C30)

while the normal force balance yields the shape equation(
γ − κ

2r2

)(
− 1

r
+ 1

r2
(1 + ∂θθ + r2∂zz )ψ

)

− κ

r4
[(1+ ∂θθ + r2∂zz )2 − 2r2∂zz]ψ − 2η

r2
(∂θv1 + vn) = 0.

(C31)

The unperturbed membrane tube is in mechanical equilibrium
if the surface tension is γ = κ/(2r2); for the perturbed surface
γ will deviate from this value by an amount linear in ψ . Elim-
inating the active terms between the two tangential balances
we obtain an equation for the surface tension(

1

r2
∂θθ + ∂zz

)
γ = − 2η

(
1

r2
∂θθ + ∂zz

)(
1

r
∂θv1 + ∂zv2

)

− 2η

r3
∂θθvn, (C32)
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while by eliminating the surface tension we obtain

η

(
1

r2
∂θθ + ∂zz

)(
1

r
∂θv2 − ∂zv1

)
− 2η

r2
∂θzvn

= −ζ

2

(
1

r2
∂θθ + ∂zz

)(
1

r2
(ψ + ∂θθψ ) + ∂zzψ

)
. (C33)

After replacing vn with the tangential components of flow
using the continuity equation (C27), the equations (C32),
(C33) and (C31) may be considered to give a system that
solves for the surface tension and tangential components of
flow in terms of the normal surface displacement ψ . Finally,
the membrane dynamics is obtained from incompressibility to
give vn in terms of ψ and the kinematic condition vn = ∂tψ .
The analysis is facilitated by Fourier transforming (θ, z) →
(m, q) and gives the mode evolution equation

∂t ψ̃m(q) =
{

ζ

ηr

mqr(m2 + q2r2)(m2 − 1 + q2r2)

4q4r4
− κ

ηr2

(m2 + q2r2)2

4q4r4
[(m2 − 1 + q2r2)2 + 2q2r2]

}
ψ̃m(q). (C34)

We pass to dimensionless variables by setting Q = qr, ζ̄ = ζ r/κ and t̄ = (ηr2/κ )t to obtain

∂t̄ ψ̃m = m2 + Q2

4Q4
[ζ̄mQ(m2 − 1 + Q2) − (m2 + Q2)(m4 + 2m2(Q2 − 1) + Q4 + 1)]ψ̃m, (C35)

with growth rate Gm(Q) given in Eq. (11) of the main text.
This growth rate is plotted for several values of ζ̄ in Fig. 5.

4. Instability of a helicoid

We parameterise the helicoid as

X(u, v) =
(

sinh αv

α
cos αu,

sinh αv

α
sin αu, u

)
, (C36)

where α is a wavevector. The metric is ds2 = cosh2 αv(du2 +
dv2) and a right-handed orthonormal frame adapted to the
surface is

eu = [− tanh αv sin αu, tanh αv cos αu, sech αv], (C37)

ev = [cos αu, sin αu, 0], (C38)

N = [− sech αv sin αu, sech αv cos αu,− tanh αv]. (C39)

The shape operator is

S = −∇N = α sech2αv(euev + eveu), (C40)

FIG. 5. Growth rate for a perturbed tube. Left shows the growth
for the left handed helical (m = 1) mode for varying active Scriven-
Love number ζ̄ . Right shows the growth for a fixed ζ̄ but for different
values of m, i.e., single, double and triple helical deformations. As
active stress is increased modes of higher m value become more
unstable.

and the principal curvature directions are E1 = (eu + ev )/
√

2
and E2 = (ev − eu)/

√
2. The mean curvature vanishes (as the

helicoid is a minimal surface) and the Gaussian curvature is

KG = −α2 sech4αv. (C41)

We now deform the surface by displacing it by an amount
ψ (u, v, t ) along its normal and use the general first normal
variation formulas to compute the new geometry. The varia-
tion in mean curvature is given by

H = 1
2∇2ψ + α2 sech4αv ψ + O(ψ2)

= 1
2 (∇2 − 2KG)ψ + O(ψ2),

(C42)

and it follows that, to first order in ψ ,

∇2H + 2H (H2 − KG) = 1
2 (∇2 − 2KG)2ψ + O(ψ2). (C43)

For the membrane flow we write as usual V = v + vn N
and have the general form of the continuity equation ∇ · v =
2Hvn, but if we work to first order then this reduces to
∇ · v = 0, i.e., the tangential part of the membrane flow is
incompressible. The general solution is

v = J · ∇ f , (C44)

for some function f . From a direct calculation we find

∇2
‖ (J · ∇ f ) = J · ∇(∇2 f ) − α2 sech4αv J · ∇ f , (C45)

and can then write the tangential and normal force balances

η[J · ∇(∇2 f ) − 2α2 sech4αv J · ∇ f

− 2α sech3αv(eu ∂vvn + ev ∂uvn)]

+ ∇γ + ζ

2
J · ∇((∇2 + 2α2 sech4αv)ψ ) = 0, (C46)

γ (∇2 + 2α2 sech4αv)ψ − κ (∇2 + 2α2 sech4αv)2ψ

+ 2η[α sech2αv(∂uu f − ∂vv f + 2α tanh αv ∂v f )

− 2α2 sech4αv vn] = 0. (C47)

From here we develop only the case where there is invari-
ance along the axis of the helicoid and there is no dependence
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on u. Then the ev component of the tangential force balance
gives that the tension γ is constant, to linear order, while the
eu component gives

∂v (sech2αv ∂vv f ) − 2α2 sech4αv ∂v f + 2α sech2αv ∂vvn

+ ζ

2η
∂v (sech2αv(∂vv + 2α2 sech2αv)ψ ) = 0. (C48)

From the normal force balance we obtain the normal compo-
nent of velocity as

vn = γ

4ηα2
cosh2 αv(∂vv + 2α2 sech2αv)ψ

− κ

4ηα2
cosh4 αv(sech2αv ∂vv + 2α2 sech4αv)2ψ

− 1

2α
cosh4 αv ∂v (sech2αv ∂v f ). (C49)

In order to make progress here we can consider a simple
numerical bootstrapping procedure. To do this we neglect
the contribution to the tangential force balance from the
normal velocity gradients and solve the following equation
numerically:

∂v (sech2αv ∂vv f ) − 2α2 sech4αv ∂v f

+ ζ

2η
∂v (sech2αv(∂vv + 2α2 sech2αv)ψ ) = 0

(C50)

for a deformation defined by ψ = δ cos(πv/2L), where we
choose L = α = 1. This is solved for f using NDSolve in
Mathematica with boundary conditions f (L) = 0, f ′(L) =
f ′(−L) = 0 to give no flow at the frame of the helicoid. The
solution is then substituted directly into (C49) for the normal
velocity to produce the figures in the main text.

Numerically, we find that the activity produces instability
of the otherwise stable helicoid when ζα � −6γ . The exact
value of the critical activity for instability will be a little
different but the coupling of the sign of ζ and handedness of
the helicoid will be robust.

In order to compare to the case of a soap film we can make
a simplifed approximation to the equations. Neglecting tan-
gential flow and Fourier transforming v → q and expanding
around v = 0 we can reduce (C49) to

∂t ψ̄q ≈ γ

4ηα2
(2α2 − q2)ψ̄q − κ

4ηα2
(2α2 − q2)2ψ̄q. (C51)

In the absence of activity this captures the well-known
instability of the helicoid [32,33,60], albeit for a critical
size qc = √

2α ⇒ αvc = π/(2
√

2) ≈ 1.11 that is a little
smaller than the exact value, ≈1.19968. The bending rigid-
ity also introduces a finite size to the linear growth rate of
q∗ =

√
2α2 − γ /2κ .

5. Multiple helicoids and “parking garage” structures

A well-known extension of the helicoid are the surfaces
composed of an array of helicoidal axes, or screw dislo-
cations, given parametrically by X = (x, y, h(x + iy)) for a
“height function” h. The helicoid is recovered by the choice
h = (1/α) arctan(y/x). By taking superpositions of helicoids
at different (x, y) positions we obtain “parking garage” struc-
tures, ramps and twist-grain boundaries. These surfaces have

FIG. 6. Helicoidal “parking garage” ramps in bipolar coordi-
nates. (Left) bipolar coordinates in R2 with the orthonormal basis
{eξ , eη} labeled. (Right) Helicoidal ramp of opposite handedness
plotted for pitch p0 = 1 and separations R = 2. Contours on the
surface denote the lines of constant bipolar coordinate.

been used to model structures in the rough endoplasmic retic-
ulum (ER) [34,35] and plant photosynthetic membrane [36].

We give the calculation explicitly for the simplest case of
a pair of helicoidal axes with opposite handedness, creating
ramps between the layers in stacked membrane sheets such as
the ER. The geometry is conveniently described using bipolar
coordinates (ξ, η) for the xy plane (see Fig. 6)

ξ + iη = ln
x + iy − R

x + iy + R
, (C52)

x + iy = −R sinh ξ

cosh ξ − cos η
+ i

R sin η

cosh ξ − cos η
. (C53)

The helical axes are located at x = ±R, y = 0. We will also
make use of the orthonormal basis for the bipolar coordinate
system

eξ = cosh ξ cos η − 1

cosh ξ − cos η
ex − sinh ξ sin η

cosh ξ − cos η
ey, (C54)

eη = sinh ξ sin η

cosh ξ − cos η
ex + cosh ξ cos η − 1

cosh ξ − cos η
ey. (C55)

Using the bipolar coordinate system the surface can be param-
eterized as

X(ξ, η) = (x(ξ, η), y(ξ, η), p0η), (C56)

where p0 is a constant setting the helical pitch. Infinitesimal
displacements on the surface are given by

dX = [eξ , 0]
R

cosh ξ − cos η
dξ

+
[

eη,
p0(cosh ξ − cos η)

R

]
R

cosh ξ − cos η
dη,

(C57)

which gives an orthonormal basis for the tangent space to the
surface

e1 = [eξ , 0], (C58)

e2 =
(

1 + p2
0(cosh ξ − cos η)2

R2

)−1/2

×
[

eη,
p0(cosh ξ − cos η)

R

]
, (C59)
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and the unit normal

N =
(

1 + p2
0(cosh ξ − cos η)2

R2

)−1/2[
− p0(cosh ξ − cos η)

R
eη, 1

]
. (C60)

The shape operator is given by

S = − (p0�)3 sin η

2R
(1 + (p0�)2)−3/2[e1e1 + e2e2] − p0� sin η

2R
(2 + (p0�)2)(1 + (p0�)2)−3/2[e1e1 − e2e2]

+ p0� sinh ξ

R
(1 + (p0�)2)−1[e1e2 + e2e1],

(C61)

where we write � = (cosh ξ − cos η)/R for brevity, and we then calculate the chiral active force density from

J · ∇H = 3

2R2

(
p0�

1 + (p0�)2

)3{
e1

[
sin2 η + 1 + (p0�)2

3
(cosh ξ − cos η) cos η

]
− e2(1 + (p0�)2)1/2 sinh ξ sin η

}
. (C62)

We use this expression for the chiral force density to produce Fig. 4(c) of the main text.
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