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Abstract
In the Fastest Mixing Markov Chain problem, we are given a graph G = (V , E) and
desire the discrete-time Markov chain with smallest mixing time τ subject to having
equilibriumdistribution uniformonV and non-zero transition probabilities only across
edges of the graph. It is well-known that the mixing time τRW of the lazy random walk
on G is characterised by the edge conductance � of G via Cheeger’s inequality:
�−1 � τRW � �−2 log |V |. Analogously, we characterise the fastest mixing time τ �

via a Cheeger-type inequality but for a different geometric quantity, namely the vertex
conductance � of G: �−1 � τ � � �−2(log |V |)2. This characterisation forbids
fast mixing for graphs with small vertex conductance. To bypass this fundamental
barrier, we consider Markov chains on G with equilibrium distribution which need
not be uniform, but rather only ε-close to uniform in total variation. We show that it is
always possible to construct such a chain withmixing time τ � ε−1(diamG)2 log |V |.
Finally, we discuss analogous questions for continuous-time and time-inhomogeneous
chains.
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1 Introduction

1.1 Fastest mixingMarkov chain set-up andmotivation

Sampling objects from a finite set is a basic primitive which has a myriad of appli-
cations. Sampling directly from such a set, however, may be computationally too
expensive or even impossible, for example, if the objects are nodes of a distributed
network. A common approach in these scenarios is to design a random walk (RW), or,
more generally, a Markov chain with state space corresponding to the set from which
we wish to sample and appropriate equilibrium distribution. Furthermore, to ensure
our sampling procedure is computationally efficient, we desire our Markov chain to
converge to equilibrium in a small number of steps, i.e., have fast mixing time.

This has wide-ranging applications: from shuffling cards [6, 15], to approximating
statistical physics models [16, 25] and analysing load-balancing protocols in dis-
tributed computing [36, 44]. Furthermore, approximately sampling from the uniform
distribution of a set can be used to estimate the size of the set itself [26]. This has been
applied to approximating the permanent of a matrix [24, 27] and counting the number
of independent sets [17], perfect matchings [18] and forests [4] in graphs.

Fundamental to these applications is a fast mixing time. Understanding in which
instances fast mixing is achievable and what the intrinsic obstacles to fast mixing are
is the focus of this paper. More precisely, we consider the following scenario.

• We are given a finite, undirected graph G = (V , E): the vertex set represents the
underlying state space, while the edge set E defines the transitions allowed.

• Our goal is to study the fastest mixing Markov chain satisfying these constraints.

We assume throughout that graphs are finite, undirected and connected.
This problem was originally introduced by Boyd, Diaconis and Xiao [12] as the

Fastest Mixing Markov Chain (FMMC) problem. Specifically, by considering only
reversible chains and optimising the spectral gap as a proxy for the mixing time, they
recast the problem of finding the fastest mixing Markov chain on a graph as a convex
optimisation problem. Analogously to Boyd, Diaconis and Xiao [12], we dedicate
most of our attention to reversible, time-homogenous chains in discrete-time. We do,
however, dedicate one section to questions in the continuous-time setting, first studied
in [43], and one short final section to time-inhomogeneous chains. Compared with
discrete-time chains, continuous-time and time-inhomogeneous chains are consider-
ably more powerful, but perhaps less natural from an application viewpoint.
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Tobe explicit and precise, a transitionmatrix P is reversiblewith respect to (w.r.t.)π
if π(u)P(u, v) = π(v)P(v, u) for all u, v ∈ V . Results on the spectral gap below—
both our own and those referenced—are always in the reversible set-up. We also
restrict to lazy chains, ie chains with P(v, v) ≥ 1

2 for all v ∈ V . This is without loss of
generality, since we are interested in maximising the spectral gap and this restriction
costs a factor of at most 1

2 in the optimal spectral gap.
There are a variety of choices for how “convergence to equilibrium” is measured.

It is typically measured in the total variation (TV ), or equivalently �1, distance. Other
popularmeasures, particularly in the statistics literature, include �2, orχ2, distance and
relative entropy, or Kullback–Leibler divergence. We also recall that �2 is equivalent
to �∞, or uniform, distance for reversible chains.

Nevertheless, no matter which one of these measure we choose, the long-term
convergence to equilibrium of a lazy, reversible Markov chain is governed by its
spectral gapγP .More precisely, given a transitionmatrix P of a lazy, reversibleMarkov
chain, let dP (t, x) denote the distance between Pt (x, ·) and its equilibriumdistribution
according to any of the aforementioned measures and let dP (t) := maxx∈V dP (t, x).
Then,

dP (t)1/t → γP as t → ∞.

See [31, Theorems 12.4 and 12.5] for details. The spectral gap thus determines the
asymptotic convergence to equilibrium without having to select a specific measure.

We now define formally the class of reversible Markov chains on a graph and then
the spectral gap and the relaxation and mixing times.

Definition (Markov Chains on a Graph) Let G = (V , E) be a graph and π a proba-
bility measure on V . We say that a Markov chain with transition matrix P is on G if
P ∈ [0, 1]V×V and P(u, v) > 0 implies either {u, v} ∈ E or u = v. We denote with
M(G, π) the set of lazy transition matrices on G which are reversible w.r.t. π .

Definition (Spectral Gap, Relaxation Time and Mixing Time) Let G = (V , E) be a
graph and π a probability measure on V . Let P ∈ M(G, π). The spectral gap is
γP := 1 − λP , where λP is the largest non-unitary eigenvalue of P . The relaxation
time is 1/γP . The (uniform) mixing time is τP (ξ) := inf

{
t ≥ 0

∣∣ d∞
P (t) ≤ ξ

}
for ξ ∈

[0, 1], where d∞ is the �∞-distance. Write τP := τP ( 14 ).

There is a standard relation between the relaxation and mixing times:

γ −1
P � τP � γ −1

P · logπ−1
min;

see [31, Theorems 12.4 and 12.5] for details. The “�” symbol hides a multiplicative
universal constant; we use the symbols “�” and “�” similarly. Typically, logπ−1

min �
log |V |. So, the relaxation time is a proxy for the mixing time, as well as characterising
long-term convergence to equilibrium.

We are now finally ready to formally introduce the FMMC problem.
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Definition (Fastest Mixing Markov Chain) Let G = (V , E) be a graph and let π be a
probability measure on V . The optimal spectral gap is defined as

γ �
π (G) := max

{
γP | P ∈ M(G, π)

}
.

The optimal relaxation time is 1/γ �
π (G). We write γ �(G), omitting the π , when π =

UV is uniform.
A transition matrix P is fast mixing if 1/γP is polylogarithmic in |V |, asymptoti-

cally. Analogously, a graphG admits a fast mixing chain if 1/γ �(G) is polylogarithmic
in |V |, asymptotically.

Previous work has been mainly focussed on finding useful formulations of the
problem or on solving particular cases; see Sect. 1.4 for further details. The primary
aim of our work, instead, is twofold:

(i) To control the optimal spectral gap in terms of geometric barriers in the graph;
(ii) To find ways to overcome these geometric barriers by slightly relaxing the FMMC

problem.

Finally, we centre our attention on the case where π = UV is the uniform distribution
on V . This case was also the main focus of the original series of papers studying the
FMMC problem.

1.2 Main results

This article includes multiple avenues of study, all on the theme of finding fast mix-
ing Markov chains. We introduce these and the main theorems that we prove in the
following subsections.

1.2.1 Characterisation of fast mixing on graphs

We are looking for some natural statistic of the graph G which characterises fast
mixing: we desire necessary and sufficient conditions for 1/γ �(G) to be ‘small’,
namely polylogarithmic in |V |.

Howwell-connected a graph is should, intuitively, influence how fast a chain on the
graph can mix. Thus, we would like to understand what kind of connectivity measure
best characterises fast mixing. A natural candidate is the edge conductance �� of a
graph, which is defined as follows.

Definition A.1 (Edge Conductance) The edge conductance ��(G) of a graph G =
(V , E) is

��(G) := min
S⊆V :0<vol(S)≤vol(V )/2

�(S) where �(S) := |E(S, Sc)|/ vol(S) for S⊆V ,

where E(S, Sc) is the edge boundary of S ⊆ V and vol(S) is the volume of S ⊆ V :

E(S, Sc) := {{x, y} ∈ E | x ∈ S, y /∈ S
}

and vol(S) :=
∑

x∈S deg(x).
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It is well-known the edge conductance �� characterises the spectral gap of the
lazy random walk (abbreviated RW) PRW on G via the discrete Cheeger inequality,
discovered in [23, 30]:

��(G)2 � γPRW � ��(G).

The lazy RW on a graph, however, does not have uniform equilibrium distribution,
unless the graph is regular. For this reason, it is natural to consider the uniform, or
maximum degree, RW PU which is defined by adding the appropriate number of self-
loops to each vertex so that the graph becomes regular. A simple calculation with the
Dirichlet characterisation gives

γPU ≤ γ �(G) ≤ 2dmaxγPU;

see [12, §7.2] for details. Applying this along with the discrete Cheeger inequality
gives

��(G)2 · dmin/dmax � γPU ≤ γ �(G) � dmaxγPU � dmax�
�(G) · dmax/dmin.

Fast mixing for low-degree graphs is thus characterised by the edge conductance
��(G):

(i) G admits a fast mixing chain if and only if PU is fast mixing;
(ii) PU is fast mixing if and only if 1/��(G) is polylogarithmic in |V |.

Such a simple characterisation does not hold if dmax is large. This may be slightly
counter-intuitive at first: adding edges can only increase the optimum γ �; but the lower
bound above gets worse as dmax increases. A striking example is given by taking two
cliques on n vertices and connecting them by a perfect matching; see Fig. 3 in §1.3. It
is a regular graph with �� � 1/n, but, as we will see later, it has γ � � 1. Informally,
γ � � 1 because we can replace the two cliques with two bounded degree expander
graphs without overly damaging its connectivity properties. This shows that edge
conductance is not the correct conductance measure for the FMMC problem.

This prompts us to consider an alternative notion of connectivity: the vertex con-
ductance ��. It measures how well connected a set is by comparing the number of
vertices in the boundary with its size. Contrastingly, edge conductance compares the
number of edges in the boundary with the total number of edges inside the set.

Definition A.2 (Vertex Conductance) The vertex conductance��(G) of a finite graph
G = (V , E) is

��(G) := min
S⊆V :0<|S|≤|V |/2 �(S) where �(S) := |∂S|/|S| for S ⊆ V ,

where ∂S is the vertex boundary of S ⊆ V :

∂S := {
y /∈ S | ∃ x ∈ S s.t. {x, y} ∈ E

}
.
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The example above in which two equisized cliques are connected by a perfect
matching has vertex conductance �� � 1. This agrees with our claimed optimal
spectral gap γ � � 1.

Vertex conductance has been used to provide upper bounds on the time to spread a
rumour in a graph and on the hitting times of RWs, by Giakkoupis [20] and Chandra
et al [13], respectively, amongst others. Roch [38, Proposition 2] showed that vertex
conductance represents a fundamental barrier to fast mixing: γ �(G) � ��(G). This
can be seen directly via a simple calculation comparing the edge conductance of any
reweighing of G, for which the RW on this weighted graph has uniform equilibrium
distribution, with the vertex conductance.

The edge and vertex conductances are comparable for low-degree graphs:

��(G) ≤ ��(G) ≤ dmax�
�(G).

Thus, the fact that the edge conductance ��(G) characterises fast mixing for low-
degree graphs means that the same holds for the vertex conductance ��(G):

��(G)2/d2max � γPU ≤ γ �(G) � ��(G).

We remove this dmax factor, at the cost of a log |V | factor, thus showing that vertex
conductance characterises the existence of a fast mixing chain for any graph. The
graph of Fig. 3 in §1.3 shows this does not hold for the edge conductance.

Theorem A (Characterisation of Fast Mixing) Let G = (V , E) be a finite graph. Then
γ �(G) satisfies

��(G)2/ log |V | � γ �(G) � ��(G).

Thus, vertex conductance characterises fast mixing for any graph.

The quadratic dependence on the vertex conductance in the lower bound is needed
for graphs such as the cycle. This has optimal spectral gap γ � � 1/n2 and vertex
conductance �� � 1/n; see [11]. We are not aware of a graph for which the log |V |
factor is needed, but we have reasons to believe that such a factor, or at least a factor
log dmax, is necessary. We elaborate.

Louis, Raghavendra and Vempala [32] essentially showed that, under the so-called
Small-Set Expansion Conjecture of Raghavendra and Steurer [37], for any ε > 0,
there is no polynomial-time algorithm that can distinguish between ��(G) ≤ ε and
��(G) � √

ε log dmax for any graph G = (V , E). The optimal spectral gap γ �(G)

can be computed in polynomial time, so removing the logarithmic factor in Theorem
A altogether would violate the Small Set Expansion Conjecture.

One of the most interesting aspects of the proof of Theorem A, given in Sect. 2,
is that it does not directly relate the vertex conductance to the spectral gap. Rather,
it relates a variational characterisation of the optimal spectral gap, due to Roch [38,
Proposition 1], to a new connectivity measure for graphs which we introduce.We term
itmatching conductance and denote itϒ�. It is defined similarly to vertex conductance,
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but it replaces the size of the vertex boundary of a set S in the numerator with the
size of a maximum matching between S and Sc in E . A formal definition is given in
Definition 2.1. It can be viewed as a measure of fault tolerance of a graph: a graph has
small matching conductance if and only if we can remove a few vertices of the graph
and split the graph into two large, disconnected subsets.

It turns out the matching conductance of a graph is essentially equivalent to its
vertex conductance: ϒ�(G) � ��(G), uniformly over all graphs G; see Proposition
2.2. A specific set S of vertices, however, can have matching conductance ϒ(S) much
smaller than its vertex conductance�(S). This fact makes using matching, rather than
vertex, conductance essential in our proof.

1.2.2 Almost mixing

We introduced the FMMC problem to formalise our desire to construct a fast mixing
Markov chain. Theorem A, however, implies there are certain graphs, namely those
with small vertex conductance, for which this desire cannot be attained. It is then
natural to ask if we can slightly relax the constraints we imposed to overcome this
fundamental obstacle.

We answer this question affirmatively: we show that if the Markov chain is not
required to have equilibrium distribution exactly uniform, but only sufficiently close
to uniform, then all graphs with small diameter admit a fast-mixing Markov chain.
Before formalising this claim, we gain some intuition by considering the following
simple example, known as the dumbbell graph.

• Take two complete graphs H± = (V±, E±), each on n vertices. Choose v± ∈ V±,
respectively.

• Form D� = (V , E) by connecting both v± to a single ‘external’ vertex v� /∈
V+ ∪ V−:

V := V+ ∪ V− ∪ {v�} and E := E+ ∪ E− ∪ {{v+, v�}, {v−, v�}}.

Since D� has vertex conductance equal to 1/n, Theorem A implies that no chain with
uniform equilibrium distribution can have relaxation time of smaller order than n.

In light of the above, we propose the following RW, described by a weighting on
the edges of D�:

• give all edges which do not include any of {v+, v−, v�} unit weight;
• give the remaining edges weight εn.

The RW takes steps with distribution proportional to the edge weights. It is straightfor-
ward to check that the equilibrium distribution induced is at most ε far from uniform
in TV.

The fundamental barrier to fast mixing in D� is that any chain with uniform equi-
librium gets stuck in one side of the graph for a time at least order n in expectation.
Up-weighting the edges through the bottleneck means that the new RW transitions
between the two sides with expected time order 1/ε. This leads to a relaxation time
order 1/ε. This all comes at a cost of having invariant distribution ε far from uniform.
Further details are given in Sect. 1.3.
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Weare able to generalise this construction to general graphs and general equilibrium
distributions. The fast-mixingMarkov chainwe design is a RW on a carefullyweighted
breadth-first search (BFS) spanning tree, supplemented with self-loops. We establish
an upper bound of 12(diamG)2/ε on the relaxation time when we allow the RW to
have equilibrium distribution ε-far from uniform.

We now define precisely our set-up and formally state our result.

Definition B (Almost-Mixed Distributions) Let V be a finite set. LetD(V ) denote the
set of positive probability distributions on V . For ε ∈ [0, 1] and π ∈ D(V ), define

D(π, ε) := {
π ′ ∈ D(V )

∣∣ minx∈V π ′(x)/π(x) ≥ 1 − ε
}
.

In particular, if π ′ ∈ D(π, ε), then ‖π ′ − π‖TV ≤ ε.

We actually establish a stronger result than the one described above. The above
description says that there exists some reversible chain which is fast mixing: there
exist π ′ ∈ D(π, ε) and P ∈ M(G, π ′) such that γP � ε/(diamG)2. We prove that
any reversible chain can be perturbed into a fast mixing chain: for all π ∈ D(V )

and all P ∈ M(G, π), there exist π ′ ∈ D(π, ε) and Q ∈ M(G, π ′) such that
γQ � ε/(diamG)2 and Q(e) ≥ (1 − ε)P(e) for all e ∈ E .

Theorem B (Almost Mixing) Let G = (V , E) be a finite, connected graph and
π ∈ D(V ). Let ε ∈ (0, 1) and P ∈ M(G, π). There exist π ′ ∈ D(π, ε) and Q ∈
M(G, π ′) such that

γQ ≥ 1
12ε(diamG)−2 and Q(e) ≥ (1 − ε)P(e) for all e ∈ E .

A consequence of this spectral gap estimate is that

τQ ≤ 24ε−1(diamG)2 log(16π−1
min).

The matrix Q is obtained as a perturbation of P . Moreover, this perturbation is
actually independent of P: we construct aweighted BFS tree andmix itwith theweights
from P . A more refined statement, making this independence of the perturbation
explicit, is given in Theorem 3.1.

Many algorithms on graphs work well when applied to graphs with very good
connectivity properties, such as expanders. A way to utilise these algorithms for
non-expanders is to perform an expander decomposition: the graph is partitioned
into disjoint expanders and few edges connecting the expanders [42]. An alternative
approach, recently proposed by Bernstein, Gutenberg and Saranurak [7], re-weights
the vertices of the graph in order to obtain a type of vertex expander.

Our approach is in a very similar vein: we re-weight the edges of the graph to obtain
a very good edge expander, whilst increasing the total weight as little as possible. We
have not checked all the details, and their definition of vertex expansion is slightly
unusual, but it seems highly plausible that our algorithm, or a minor adjustment of it,
could be applied in their set-up.
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This diameter bound is a substantial improvement over the vertex conductance
lower bound on the optimal spectral gap from Theorem A. It comes at the cost of
having invariant distribution only ‘almost’ uniform—hence the name “almost mix-
ing”. We show in the next section that passing to the continuous-time setting allows
this diameter-squared bound to be maintained while having exactly uniform invariant
distribution. We use fundamentally the same chain: it is a RW on the same weighted
BFS tree, where the weights now represent the rate at which an edge is crossed.

1.2.3 Continuous-timemarkov chains

The discussion and results above all concern discrete-time Markov chains. It is also
natural to study the question of the fastest mixing Markov chain in continuous-time.
We restrict to the case where the target distribution π = UV . The question of the
FMMC in continuous-time was originally raised by Sun, Boyd, Xiao and Diaconis
[43] and has been studied subsequently by Sammer [39] and Montenegro and Tetali
[34]. We review their work in Sect. 1.4.

A continuous-timeMarkov chain on a graphG = (V , E)with uniform equilibrium
distribution can be represented by the RW on a weighted graph (G, q), where q : E →
R+, as follows.

Definition C.1 (RW onWeighted Graph) LetG = (V , E) be a graph and q : E → R+
a collection of non-negative weights. The RW on (G, q) jumps from x to y at rate
q({x, y}) for x, y ∈ V with {x, y} ∈ E . The Laplacian Lq ∈ R

V×V of the weighting
q is defined by

Lq
x,y := 1{{x, y} ∈ E} · q({x, y})−1{x= y}

∑

z∈V :{x,z}∈E q({x, z}) for x, y ∈ V .

The spectral gap, which we denote γq , is given by the second smallest eigenvalue of
Lq .

The spectral gap γq is intrinsically related to the mixing time τq , as in discrete-time:

γ −1
q � τq � γ −1

q · log |V | where τq := τq(
1
4 );

see [1, Lemma 4.23]. Again, fast mixingmeans relaxation time γ −1
q polylogarithmic in

|V |. The above relations thus imply that a polylogarithmic relaxation time characterises
fast mixing.

It is immediate to see that if all the rates are multiplied by some factor, then the
spectral gap changes by that factor too: γcq = cγq for any c > 0. We must therefore
impose some normalisation.

Definition C.2 (Normalisation) The rate at which the walk leaves the vertex x is given
by

q(x) :=
∑

y∈V 1{{x, y} ∈ V }q({x, y}) for x ∈ V .
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We call maxx∈V q(x) themaximal leave-rate and |V |−1 ∑
x∈V q(x) the average leave-

rate.

A natural normalisation is to require a maximal leave-rate of 1. It can be seen,
however, that this reduces to the discrete-time case via exponential-1 waiting times.
We impose instead an average leave-rate of 1, or, equivalently, q(E) ≤ 1

2 |E |. This
allows a few vertices to have abnormally large leave-rate, but rarely enough that the
average is not significantly affected. This will allow the RW to exit small ‘bottlenecks’
quickly, where the discrete-time walk would remain stuck for significant time. This
average leave-rate normalisationwas considered in [34, 39, 43].Montenegro andTetali
[34, §7.1] describe this normalisation as “rather powerful [compared with discrete-
time]” due to the fact that the maximal leave-rate may be very large.

The main result of this section states that, for any graph, it is possible to construct
a weighting with average leave-rate of 1 such that its spectral gap depends only on the
diameter of the graph.

Theorem C (Continuous-Time) Let G = (V , E) be a graph. There exists a weighting
w : E → R+ with average leave-rate at most 1 such that the RW on (G, w) satisfies

γw ≥ 1
16 (diamG)−2 and τw ≤ 8(diamG)2 log(16n).

Anupper boundon1/γ �(G)of order (diamG)2 is required for graphswith diffusive
behaviour, such as the cycle or the path. A lower bound of order diamG, however, is
not necessary, in general. This is in stark contrast to the discrete-time case. Indeed, in
continuous-time, a few edges can be up-weighted significantly with little affect on the
average. So if the ‘typical’ distance is much less than the maximal, a relaxation time
of smaller order than the diameter may well be achievable.

A highly related theorem is given in Sammer’s PhD thesis [39, §3.3]; see also [34,
§7.1]. They bound the optimal spectral gap γ �(G) in terms of the spread constant
c(G), introduced in [3], which is the maximal variance of a function that is Lipschitz
on the edges of G:

2c(G) ≤ 1/γ �(G) � c(G) log |V |.

The spread constant c(G) can be upper bounded by 1
4 (diamG)2, but there are examples

forwhich this is far from tight. Still, if a verygeneral, easy to calculate, bound is desired,
then we do not know of a better bound than c(G) � (diamG)2, which reduces to
approximately our bound. The spread constant c(G) can also be lower bounded by a
type of ‘typical’ distance; see [34, Corollary 7.2].

In contrast with our result, however, theirs is non-constructive, relying on the
famous, but non-constructive, Johnson–Lindenstrauss lemma [28]. Montenegro and
Tetali [34, Remark 7.3] comment on the difficulty of explicitly constructing such a
process: “It might be challenging and in general impractical a task to actually find
such a process explicitly.” Our construction is explicit and can actually be constructed
in time linear in the size of the graph.

Montenegro and Tetali [34, Remark 7.3] also comment on the existence of such a
fast mixing Markov chain in continuous-time: “The key [to the existence of such a

123



Geometric bounds on the fastest mixing Markov chain

chain]... might be that we were implicitly providing the continuous-time chain with
more power... by not requiring the rates in each row to sum to 1, but only the [average
rate to be 1].” This significant additional power allows bottlenecks to be traversed
quickly while maintaining an average leave-rate of 1. Indeed, the weighting w that
we construct has maxx∈V w(x) � n/ diamG, which may be far larger than 1.

This really emphasises the strength of our ‘almost mixing’ result, Theorem B: the
chain there is in discrete-time —or, equivalently, has maxx∈V q(x) ≤ 1— but still
attains a spectral gap only order ε smaller than that attained in the continuous-time
case of Theorem C. Of course, the cost is that the equilibrium distribution π ′ only
satisfies minx∈V π ′(x)/π(x) ≥ 1 − ε, not π ′ = π .

We expect that our continuous-time analysis can be adjusted to handle general
equilibrium distributions π with relatively little changed. We have not checked the
details, however. We focussed on the uniform case because it is, arguably, the most
important and the cleanest to present.

1.2.4 Time-inhomogeneous markov chains

Our attention has been so far restricted to time-homogeneousMarkov chains, in which
the transition probabilities do not change over time and are described by a single
transition matrix P . A time-inhomogeneous Markov chain, instead, is described by a
sequence (Pt )t∈N of transition matrices and an initial law μ0: the time-t law μt :=
P
(
Xt ∈ ·) is given by μt = μ0P1P2 · · · Pt for t ∈ N. A time-homogeneous chain has

Pt = P for all t ∈ N, for some P . Nevertheless, we close our section of results by
showing that they can lead to improvements over time-homogeneous chains.

Theorem D Let G = (V , E) be a connected graph and let π ∈ D(V ). There exists
a time-inhomogeneous Markov chain on G that perfectly mixes to π after 2 diamG
steps: μ2 diamG = π.

It is easy to see that diamG is a lower bound on the fastest ‘perfectly mixing’ chain.
If one only requires ‖P(

Xt ∈ ·) − π‖TV < 1
2 , then

1
2 diamG is a lower bound. Thus

the bound of 2 diamG above is tight up to a factor of at most 4.

1.3 Notable examples

We discuss briefly a few examples which are of particular interest.We always consider
the uniform distribution, i.e. π = UV , unless specified to the contrary.

1.3.1 Dumbbell graph

Let D� be the dumbbell graph with bells H± of size n. The bells H± need not be
cliques Kn ; they can be arbitrary connected graphs on n vertices. See Fig. 1 for an
illustration when H± = Kn .

Conductance Measures. It is straightforward to see that the set with the worst vertex
conductance is given by one side of the dumbbell graph: S = H− or S = H+. This
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shows that

��(D�) = �(H±) = 1/n.

This implies that the optimal relaxation time 1/γ �(D�) satisfies n � 1/γ �(D�) �
n2 log n.

It is easy to find a chain attaining the correct order of n−1 when H± = Kn , i.e. each
bell is a complete graph on n vertices. Define a weighting as follows. Each vertex gets
the same total weight.

• Place unit weights on all edges which do not include the centre v�.
• Give the edges {v−, v�} and {v+, v�} weight n − 1.
• Add self-loops of weight 2(n − 1) to each of the vertices in V \ {v−, v+, v�}.
The probability of stepping to v� from either of v± is 1

2 . This gives an order-n
hitting time of one clique from the other. This implies that our chain has relaxation

Fig. 1 Dumbbell graph D� with
n = 7: two cliques connected to
a single external vertex

Fig. 2 Star graph G� with n = 7
a central vertex connected to
leaves

Fig. 3 Matching graphM with
n = 7: two cliques connected
via a matching

Fig. 4 Source graph � with
n = 7 and k = 3: two cliques
connected via a ‘source’
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time order n. Contrast this with the suboptimal order n2 hitting and relaxation time
for the uniform RW.

Almost Mixing. If the graphs H± have polylogarithmic diameter then Theorem B pro-
vides a chain with polylogarithmic relaxation time. This is a substantial improvement
from linear. This is true regardless of the particular structure of H±: it just needs
log diam H± � log log n. If diam H± � 1, then we obtain relaxation time order 1,
known also as an expander.

We now explain very roughly how to construct this chain for this dumbbell example
D�. The general idea is to up-weight edges towards the central vertex v�, which is the
bottleneck. We do this is such a way to make the distance to v� behave somewhat like
an unbiased RW on Z. This way it should take time order (diam H±)2 to move from
H± to H∓.

It is natural to try to achieve this bias by rooting a spanning tree T at v� and then
up-weighting the vertices towards the root. This leads to a worst-case hitting time for
the root v� of order (diam T )2. We choose T to be a breadth-first search (BFS) tree
since this has diam T ≤ 2 diamG.

We give a more detailed overview in Sect. 3.2. We specifically chose the bottleneck
vertex v� to be the root of T above. It turns out that actually any choice of root suffices.
The reader may find this surprising at first; we did.More generally, suppose that o ∈ V
is any vertex and a BFS is rooted at o; we up-weight the edges towards o. Paths from
v �= o to o naturally go through bottlenecks. This automatically up-weights edges in
bottlenecks.

1.3.2 Binary tree

Let T = (V , E) be the complete binary tree on n = 2N − 1 vertices with depth
N ≈ log2 n.

Conductance Measures. It is straightforward to see that the set with the worst vertex
conductance is given by one side of the tree: the root, a child and all its descendants.
This gives

��(T) = 1/n.

This implies that the optimal relaxation time 1/γ �(T) satisfies n � 1/γ �(T) �
n2 log n.

T has bounded degree, so the maximum degree chain attains the correct order
relaxation time. This chain is just the simple RW, but with extra laziness at the leaves
to make the invariant distribution uniform. The correct relaxation time is order n; see
[41] for details.

AlmostMixing. It is very natural to root the BFS tree at the root o ofT. The up-weighting
will help pull the walk up the tree towards the root, allowing it to spread across the
width of the tree more easily. The weight given to the edge from x �= o to its parent is
given by the number of vertices in the subtree rooted at x . Precisely, if x is at distance
d ≥ 1 from the root, then the weight is 2N−d − 1. The up-weighting means that the
distance from the root behaves roughly as an unbiased RW. The hitting time of the
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root is then order N 2 � (log n)2. Once the RW hits the root, which branch it takes
after is uniformly distributed. Thus, once it hits the leaves again, it is uniform on the
leaves and so approximately mixed. The total time for this is order N 2 � (log n)2.

Our method does not know, however, that there is anything special about the root of
the binary tree. Any vertex can be picked as the root of the BFS tree. Viewed from this
vertex, T is like a complete binary tree of some depth, but with some of the branches
pruned. The depth is at most 2N . The same ideas give relaxation and mixing time
order N 2 � (log n)2.

1.3.3 Star graph

Let G� = (V , E) be the star graph with centre v� and n leaves. See Fig. 2 for an
illustration.

Conductance Measures. There is a simple dichotomy for the vertex boundary of a set
S �= ∅ in the star graph G�: if v� ∈ S, then ∂S = Sc; if v� /∈ S, then ∂S = {v�}.
Thus any S ⊆ V with |S| = � 1

2n� and v� /∈ S satisfies �(S) = 1/|S| � 1/n. It is
straightforward to see that this gives the correct order: place unit weights on all the
edges and weight-(n − 1) self-loops on all the non-central vertices; it is easy to see
that this chain has mixing time order n.

Another measure of vertex conductance replaces the ∂S with the symmetric union
∂symS := ∂S ∪ ∂Sc; denote the vertex conductance with ∂sym by �sym. Again, there
is a simple dichotomy for S �= ∅: if v� ∈ S, then ∂symS = Sc ∪ {v�}; if v� /∈ S, then
∂symS = S ∪ {v�}. Thus ��

sym � 1.
The difference between the two measures is that if the boundary of S is small,

then that of Sc is large. The use of ∂S, as opposed to ∂symS, is thus important in
Theorem A.

It is well-known that the spectral gap γ is characterised by a variational form.
The relationship between spectral gap γ and the edge conductance �� of the simple
RW is given by the well-known Cheeger inequalities. A related variational form was
introduced by Bobkov, Houdré and Tetali [8], which they denote λ∞. They establish
various Cheeger-type relationships between λ∞ and the vertex conductance ��

sym. In
particular, they show, for any graph, that

(��
sym)2 � λ∞ � ��

sym;

see [8, Theorems 1 and 2]. It is immediate from the definitions that λ∞/dmax � γ � �
λ∞.

In light of [8] and our TheoremA, it is natural to wonder whether λ∞ can be directly
related to the optimal spectral gap γ �, without a dmax factor. The example of the star
graph G� shows that this is not possible: ��

sym � 1 and thus λ∞ � 1, but �� � 1/n
and so γ � � 1/n. This shows that λ∞ is really not the correct parameter for the FMMC
problem.

Almost Mixing. Obtaining an ‘almost mixing’ chain with order 1/ε mixing time is
simple: place ε weights on all the edges and weight-1 self-loops to all non-central
vertices. The total weight of the central vertex is ε(n − 1). The remainder of the
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weight is spread uniformly. Thus the distribution π induced by this weighting is in
D(G�, ε). It is easy to see that the mixing time is order 1/ε.

1.3.4 Complete graphs connected via a matching

Let M = (V , E) be two n-cliques H± = (V±, E±), connected via a matching:
enumerate V± as {v1±, ..., vn±} and connect vi+ with vi− for all i ∈ {1, ..., n}. See Fig. 3
for an illustration.

Conductance Measures. If vi+ ∈ S but vi− /∈ S, then vi− ∈ ∂S. From this, ��(M) � 1
follows easily. It is not too hard to show that the optimal spectral gap γ �(M) is of
the same order: just replace the two cliques by two 3-regular expanders and leave the
perfect matching in place. The lazy simple RW on this edge-induced subgraph of M
has order-1 spectral gap.

Almost Mixing. The optimal spectral gap is order 1, so there is no need for ‘almost
mixing’.

1.3.5 Complete graphs connected via a ‘source’

Let � = (V , E) be two n-cliques H± as ‘bells’, connected via a ‘source’: choose
v0 ∈ H− and v1, ..., vk ∈ H+; connect v0 with each of {vi }ki=1. See Fig. 4 for an
illustration.

Conductance Measures. One may think at first that this ‘source’ of k edges, rather
than just a single edge, give rise to faster mixing; indeed, �(H−) = k/n. However,
removing the source from the set gives �(H− \ v0) = 1/(n − 1). So in fact the vertex
conductance of the source graph � is almost the same as that of the dumbbell graph
D�.

The edge conductance of the graph does improve with k: �(�) � k/n2. But this
is always at most 1/n. So the improvement from k is not enough to outweigh the fact
that the uniform RW has spectral gap far from the optimal—unless k � n.

Anoptimal spectral gap canbe achievedby choosing an arbitrary 3-regular expander
as a subgraph of each of the cliques and connecting these via a single edge. The uniform
RW on this sparse subgraph then has spectral gap order 1/n.

Almost Mixing. We can use exactly the same construction as in the dumbbell graph
D�, picking an arbitrary edge amongst the k connecting edges.

1.4 Review of previous work

We now review previous related work. The FMMC question was originally introduced
by Boyd, Diaconis and Xiao [12], which was the first in a series of articles [9–12, 43]
by those authors along with Parrilo and Sun. It has subsequently been studied by [2,
14, 19, 21, 34, 38, 39]. We roughly collect these by theme.
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1.4.1 Finding useful formulations

Boyd, Diaconis and Xiao [12]. This original work introduces the FMMC question
and then primarily studies equivalent formulations. In our view, the most important
contribution of that paper, beyond the introduction of the very interesting FMMC
question, is their formulation of the FMMC optimisation problem as a semi-definite
program (SDP). This allows the computation of an optimal solution in polynomial
time via standard convex optimisation techniques. The SDP leads naturally to a dual
formulation, which found use in subsequent work [34, 38, 39].

Roch [38]. Roch takes the dual formulation of [11] much further, writing the optimal
spectral gap γ �

π (G) as a minimisation of the variance of a certain constrained graph
embedding. To quote him, “Informally, to obtain [a lower bound on the optimal spectral
gap] we seek to embed the graph into R

|V | so as to ‘spread’ the nodes as much as
possible under constraints over the distances separating nodes connected by edges.”
He re-derives the upper bound γ �

π (G) � �π(G) using this formulation. This shows
vertex conductance is a fundamental barrier to fastmixing.Our result shows that vertex
conductance is essentially the fundamental barrier to fast mixing.

Sun, Boyd, Xiao and Diaconis [43]. The paper [43] is of a similar flavour to [12] but
in the continuous-time set-up. We discuss it in detail in Sect. 1.4 below.

1.4.2 Special cases and particular examples

Boyd, Diaconis, Sun and Xiao [11]. The special case of the path with uniform dis-
tribution is studied in the short note [11], as a follow-on from [12]. They show that
the ‘uniform chain’, i.e., the unbiased RW with 1

2 -holding at the ends, has the largest
spectral gap.

Boyd, Diaconis, Parrilo and Xiao [9, 10]. The FMMC problem on graphs with rich
symmetryproperties is studied in [10]. They are able to solvevarious cases analytically:
edge-transitive graphs, such as the cycle; Cartesian products of graphs, such as the
two-dimensional torus and the hypercube; distance-transitive graphs, such as Petersen,
Hamming and Johnson graphs. They then use algebraic methods to study FMMC on
orbit graphs. This uses powerful representation theory arguments developed in [9].

Cihan and Akar [14]. Many similar scenarios, such as edge-transitive graphs, are
studied in [14]. The focus is on two SDP methods. They study the degree-biased and
uniform equilibria.

Jafarizadeh and Jamalipour [21]. Symmetric K -partite graphs and connections to
sensor networks are considered in [21]. They compare numerically with aMetropolis–
Hastings algorithm.

Allison and Shader [2].Graphswhich are overlapping unions of two cliques are studied
in [2]. Here are are two cliques, say of sizes r + s and r + t , respectively, and there
are s overlapping vertices. The FMMC problem is solved analytically for such graphs.

Fill and Kahn [19]. A rather different approach is taken in [19]. Their paper is focussed
on comparison inequalities and majorisation of measures. They use these to analyse
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the FMMC problem. This use of majorisation allows them to study a distance, such as
TV, separation or �2, rather than the spectral gap, which is only a proxy for the mixing
time.

1.4.3 Continuous-time set-up

Sun, Boyd, Xiao and Diaconis [43]. The study of the FMMC question in continuous-
time was initiated in [43]. The structure and goals of this paper are similar to [12]. The
primary contribution is a convex SDP formulation as well as some dual formulations.

Recall that a normalisation on the weights was required. Indeed, doubling all the
weights doubles the spectral gap. We imposed an “average leave-rate of 1”. A slightly
more general ‘weighted average’ is considered in [43]. A number of physical inter-
pretations of this normalisation are given.

Sammer [39] and Montenegro and Tetali [34]. The FMMC problem is considered by
Sammer [39, §3.3]. It is referenced and discussed by byMontenegro andTetali [34, §7].
We discussed their work in detail immediately after TheoremC.We add a small caveat
to that discussion.

Montenegro and Tetali [34, §7.1] claim to impose a scaling of q(V ) ≤ 1 on their
edge weightings q : E → R+; contrast this with our imposition of q(V ) ≤ n. Their
scaling immediately implies that the relaxation time is at least order n; this contradicts
their theorem. There are a couple of other points where there seem to be issues with
the scalings, in particular in application of results from [43]. It may be possible to
rectify these issues, but we have not checked carefully.

1.5 Subsequent work

Following the release of our paper on arXiv in late 2021, two papers [22, 29] extending
our work on the FMMC question were released, almost simultaneously, in early 2022.

Kwok, Lau and Tung [29]. We posed the open question of

improving ��(G)2/ log |V | � γ �(G) to ��(G)2/ log dmax � γ �(G)

in Theorem A and also proving an analogous result for general equilibrium distribu-
tions, rather than restricted to the uniform distribution. This was the inspiration for [29]
(private communication). They solve both open problems and they also generalise our
framework to optimal higher-order eigenvalues. The extension to non-uniform equi-
librium distribution was the main challenge and, whilst their solution follows the
framework of our proof, it required a significant number of new ideas.

Jain, Pham and Vuong [22]. The above improvement from log |V | to log dmax was
also established in [22] independently, but only in the set-up of a uniform equilibrium
distribution.
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2 Vertex conductance and the optimal spectral gap

This section is devoted to a proof of Theorem A. In Sect. 2.1, we define the matching
conductance of a graph, which plays a central role in the proof of Theorem A. We
also show in Proposition 2.2 that matching and vertex conductance of a graph differ
by at most a universal constant factor. Sect. 2.2 contains the necessary notation and
preliminaries needed in the proof of Theorem A. In Sect. 2.3, we relate the optimal
spectral gap of a graph to its matching conductance. This relation is formalised in
Theorem 2.10. Notice that Theorem 2.10 together with Theorem 2.2 directly imply
Theorem A.

2.1 Thematching conductance of a graph

A matching is a set of edges such that any pair of edges in the set do not share
an endpoint. Given a set of (undirected) edges E together with a weight function
w : E → R≥0, a maximum matching for E is a matching with maximum total weight
(if E is the edge set of an unweighted graph, we assume w is equal to one on E). We
denote with ν(E) the weight of a maximum matching for E :

ν(E) � max
matching F⊆E

∑

e∈F
w(e).

We can now define the matching conductance of a graph.

Definition 2.1 LetG = (V , E)be a graph and∅ �= S ⊂ V . Thematching conductance
of S is defined as

ϒ(S) � ν(E(S, Sc))

|S| .

The matching conductance of G is defined as

ϒ�(G) � min
S : 0<|S|≤|V |/2ϒ(S).

The next proposition relates matching and vertex conductance.

Proposition 2.2 Let G = (V , E) be a graph. Then, it holds that

ϒ�(G) ≤ ��(G) ≤ 4ϒ�(G).

Proof. The inequality ϒ�(G) ≤ ��(G) is obvious: for any S ⊆ V , ν(E(S, Sc)) must
be smaller than the size of the vertex boundary of S. Therefore, ϒ(S) ≤ �(S) for any
S ⊆ V , which yields the inequality.

The proof of ��(G) ≤ 4ϒ�(G) is slightly more involved. In particular it’s not true
that �(S) � ϒ(S) for any S ⊆ V . Figure4 provides an example of a graph with a
set with small matching conductance, but large vertex conductance. Nevertheless, the
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worst vertex conductance of a set in a graph is related to the matching conductance of
the graph. To prove this, consider |S| ≤ |V |/2 with ϒ(S) = ν(E(S, Sc))/|S|. We can
assume ϒ(S) ≤ 1/4, otherwise ϒ�(G) > 1/4 ≥ ��(G)/4. Let M be a maximum
matching for E(S, Sc), that is |M | = ν(E(S, Sc)), and V (M) ⊂ V be the set of
vertices adjacent to edges in M . Now consider the set T = S \ V (M). We claim T
has small vertex conductance. To this end, consider ∂T . It holds that |∂T | ≤ |V (M)|.
Indeed, any u ∈ Sc\V (M) cannot be in ∂T , otherwise there would exist an edge
between a vertex S \ V (M) and a vertex in Sc \ V (M), and this would contradict the
maximality of M . Therefore, since |V (M)| = 2|M | and |M | = ϒ(S) · |S| ≤ |S|/4,
we have that

��(G) ≤ |∂T |
|T | ≤ 2ν(E(S, Sc))

|S| − 2|M | ≤ 2ν(E(S, Sc))

|S|/2 = 4ϒ(S) = 4ϒ�(G).

2.2 Definitions and preliminaries

Given a set of vertices V , together with a set of edges E on V , a fractional matching
is a function f : E → [0, 1] such that, for any v ∈ V ,

∑
e�v f (e) ≤ 1. Moreover, the

fractional matching number of E , denoted by ν∗(E), is the maximum total weight of
a fractional matching for E :

ν∗(E) = max
f : E→[0,1]

∑

e∈E
w(e) f (e),

where the maximisation is over valid fractional matchings.
Notice that ν∗(E) is the solution of a linear program which is a convex relaxation

for ν(E). As such, ν(E) ≤ ν∗(E). A useful characterisation of ν∗(E) is the following.

Proposition 2.3 The fractional matching number of E, ν∗(E), is equal to the minimum
of the following linear program.

min
g : V→R≥0

∑

u∈V
g(u)

subject to g(u) + g(v) ≥ w(u, v) ∀ {u, v} ∈ E .

Proof This simply follows from linear programming duality.

With a slight abuse of notation we will also use ν(G) and ν∗(G) to denote the
maximum (fractional) matching weight on the edge set of G.

Up until nowwehave considered onlymatchings in undirected graphs. For technical
reasons, however, we will also need to consider matchings in directed graphs. Given a
set

−→
E ⊆ V × V of directed edges, a directed matching

−→
M ⊆ E is a set of edges such

that, if (u, v), (w, z) ∈ −→
M and (u, v) �= (w, z), then u �= w and v �= z. Alternatively,

a directed matching can be seen as a subgraph where each vertex has indegree and
outdegree at most one, whereas an undirected matching is a subgraph where each
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vertex has degree at most one. Analogously to the undirected case, we denote with
ν(

−→
E ) the weight of a maximum matching in

−→
E .

Definition 2.4 Given an undirected (weighted) graph G = (V , E, w), an orientation−→
G = (V ,

−→
E , w) is a directed graph constructed by replacing each undirected edge

{u, v} ∈ E with a directed edge (u, v) (with arbitrary orientation) having weight
w(u, v).

The next lemma relates the maximummatching weight in an undirected graph with
the maximum matching weight of its orientation.

Proposition 2.5 For any graph G = (V , E, w) and an orientation
−→
G , it holds that

ν(
−→
G ) ≤ 4ν(G).

Proof Let M ⊆ E be a matching returned by the greedy algorithm for finding a
maximal matching on G, which works as follows: let e1, . . . , em be an ordering of the
edges of G such that w(e1) ≥ · · · ≥ w(em). Then, greedy incrementally construct M
by adding ei to it, for i = 1, . . . ,m, as long as this operationmaintains the property that
M is a matching. Denote with ei1 , . . . , ei|M| the edges of M ordered non-increasingly
according to their weight.

Let
−→
M∗ be a maximummatching in

−→
G . We upper bound its total weight as follows.

Let
−→
M 0 = −→

M∗ and, for j = 1, . . . , |M |, let −→M j be the directed graph obtained from−→
M j−1 by removing all edges incident to one of the endpoints of ei j . Since M is

maximal by construction,
−→
M |M| is empty. Moreover, at each iteration j we remove

at most four edges, since there are at most four edges in
−→
M∗ that share an endpoint

with ei j . Notice these edges cannot share an endpoint with {e1, . . . , ei j−1} otherwise
they would have been removed in a previous iteration. Therefore, they must all have
weight less than or equal to w(ei j ). This is because the matching {e1, . . . , ei j−1} can
be augmented by adding any one of these edges (or rather, their undirected equivalent)
without breaking the property of it being a matching. But then, their weight must
be less than or equal to w(ei j ), since otherwise greedy would have chosen one of

those instead of ei j . Hence, we have proved that 4ν(G) ≥ ν(
−→
M∗), from which the

proposition follows.

2.3 Matching conductance and the fastest mixing problem

The following result is due to Roch [38] and gives a variational characterisation of
γ �(G). It follows from the fact that γ �(G) can be expressed as the solution to a
semidefinite program for which strong duality holds.

Proposition 2.6 Let G = (V , E) be a graph of n vertices. Then, γ �(G) is equal to the
minimum of the following optimisation problem.

min
f : V→R

n

g : V→R≥0

∑
u∈V g(u)

∑
u∈V ‖ f (u)‖2
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subject to
∑

u∈V
f (u) = 0

g(u) + g(v) ≥ ‖ f (u) − f (v)‖2 ∀ {u, v} ∈ E .

Remark 2.7 The variational characterisation actually given by Roch [38] doesn’t
include a non-negativity constraint for the function g. The function g, however, needs
to be non-negative whenever, as in our case, Markov chains on G are allowed non-
negative holding probabilities. More precisely, for any u ∈ V and P transition matrix
of a Markov chain on G, if we allow P(u, u) > 0, then we need to require g(u) ≥ 0.

The variational characterisation of γ �(G) given by Proposition 2.6 requires min-
imising over n-dimensional embeddings of the vertices in the graph. It is often more
convenient to work with one-dimensional embeddings. For this reason, we introduce
the following parameter.

Definition 2.8 Let G = (V , E) be a graph of n vertices. We denote with γ (1)(G) the
minimum of the following optimisation problem.

min
f : V→R

g : V→R≥0

∑
u∈V g(u)

∑
u∈V f (u)2

subject to
∑

u∈V
f (u) = 0

g(u) + g(v) ≥ ( f (u) − f (v))2 ∀ {u, v} ∈ E .

The following proposition shows that γ (1)(G) is a O(log n)-approximation of
γ �(G).

Proposition 2.9 Let G = (V , E) be a graph. It holds that

γ �(G) ≤ γ (1)(G) � log n · γ �(G).

The proof of this proposition uses a standard trick (see, e.g., Montenegro and Tetali
[34]):

(i) we apply the Johnson–Lindenstrauss lemma [28] to show that considering only
O(log n)-dimensional embeddings suffices to obtain a constant approximation
for γ �(G);

(ii) we transform such O(log n)-dimensional embedding into a one-dimensional
embedding, but in doing so we will lose a O(log n) factor.

Proof. The relation γ �(G) ≤ γ (1)(G) follows trivially since computing γ (1)(G) can
be seen as minimising over the same set of n-dimensional embeddings as for γ �(G),
with the additional constraint that only the first coordinate can be non-zero.

To prove the upper bound, let f : V → R
n, g : V → R≥0 be the minimiser achiev-

ing γ �(G) in Proposition 2.6. Then, the Johnson–Lindenstrauss lemma ensures there
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exists an embedding f̃ : V → R
d such that d = O(log n) and, for any u, v ∈ V ,

1

2
‖ f (u) − f (v)‖2 ≤ ‖ f̃ (u) − f̃ (v)‖2 ≤ ‖ f (u) − f (v)‖2,

and

1

2
‖ f (u)‖2 ≤ ‖ f̃ (u)‖2 ≤ ‖ f (u)‖2.

Now let

i � argmax
j∈{1,...,d}

∑

u,v∈V

(
f̃ (u) j − f̃ (v) j

)2
,

and define h : V → R as

h(u) = f̃ (u)i − 1

n

∑

v∈V
f̃ (v)i

for any u ∈ V .
By construction,

∑

u∈V
h(u) =

∑

u∈V
f̃ (u)i −

∑

u∈V

1

n

∑

v∈V
f̃ (v)i = 0.

Moreover, for any u, v ∈ V ,

(h(u) − h(v))2 = ( f̃ (u)i − f̃ (v)i )
2 ≤ ‖ f̃ (u) − f̃ (v)‖2 ≤ ‖ f (u) − f (v)‖2.

Therefore, (h, g) is a feasible solution to the optimisation problem of Definition 2.8.
Finally,

∑

u∈V
h(u)2 = 1

2n

∑

u,v∈V
(h(u) − h(v))2

= 1

2n

∑

u,v∈V
( f̃ (u)i − f̃ (v)i )

2

≥ 1

2nd

∑

u,v∈V

∥∥ f̃ (u) − f̃ (v)
∥∥2

≥ 1

4nd

∑

u,v∈V
‖ f (u) − f (v)‖2

= 1

2d

∑

u∈V
f (u)2,
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where we used the fact that both h and f are centred at zero. Therefore,

γ (1)(G) ≤
∑

u∈V g(u)
∑

u∈V h(u)2
≤ 2d ·

∑
u∈V g(u)

∑
u∈V f (u)2

≤ 2dγ �(G) � log n · γ �(G).

Suppose we fix f : V → R that minimises the optimisation problem above. Then,
by Proposition 2.3, γ (1)(G) can be seen as the fractional matching value of a graph
G f which is constructed from G by reweighing each edge {u, v} by ( f (u) − f (v))2.
Together with Proposition 2.9, this hints towards a connection between the matching
conductance of G and γ �(G). This connection is formalised in Theorem 2.10, which
is the main result of this section.

Theorem 2.10 Let G = (V , E) be a graph. It holds that

ϒ�(G)2 � γ (1)(G) � ϒ�(G).

Moreover, this implies that

ϒ�(G)2

log n
� γ �(G) � ϒ�(G).

The proof of Theorem 2.10 follows the standard template of the proof of the discrete
Cheeger inequality. To upper bound γ (1)(G) it suffices to construct test functions f , g
from a set S minimising the matching conductance of G. The other direction is more
complicated and, similarly to the case of the “hard direction” of the discrete Cheeger
inequality, it requires using the function f that minimises γ (1)(G) to construct sweep
sets and analyse the matching conductance of such sets. Analysing the matching
conductance of these sweep sets, however, is not as straightforward as analysing their
edge conductance as in the proof of the standard discrete Cheeger inequality.

We split the proof of Theorem 2.10 in several lemmata. The first one, Lemma 2.11,
relates the maximum matching of cuts in the graph to the maximum matching of a
weighted directed graph appositely constructed.

Lemma 2.11 Let G = (V , E) be an unweighted undirected graph and let f : V →
R≥0. Let

−→
G f = (V ,

−→
E f , w f ) be a directed weighted graph constructed as follows:

(i) for any u, v ∈ V , (u, v) ∈ −→
E f if and only if {u, v} ∈ E and f (u) < f (v);

(ii) for any (u, v) ∈ −→
E f , w f (u, v) = f (v)2 − f (u)2.

For any t > 0, define St = {u ∈ V : f (u)2 > t}. Then, it holds that,
∫ ∞

0
ν(E(St , S

c
t )) dt ≤ 2ν(

−→
G f ).

Proof For any t ∈ [0,∞), let Mt ⊆ E(St , Sct ) be a matching achieving value
ν(E(St , Sct )). Notice that, for any t , theremight be several distinct maximummatching
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for E(St , Sct ): we just pick one of them arbitrarily. We have that

∫ ∞

0
ν(E(St , S

c
t )) dt =

∫ ∞

0

∑

e∈E
1{e ∈ Mt } dt .

Notice that, for any edge {u, v} ∈ E with f (u) < f (v),

{t ∈ [0,∞) : {u, v} ∈ Mt } ⊆
[
f (u)2, f (v)2

)
.

Let
−→
M ⊆ −→

E f output by an execution of greedy on
−→
G f , which works as follows.

We first order the edges
−→
E f = {e1, . . . , em} of −→

G f such that w f (e1) ≥ w f (e2) ≥
· · · ≥ w f (em). For i = 1, . . . ,m, we incrementally construct

−→
M by including ei for

i = 1, . . . ,m as long as adding this edge doesn’t break the property of
−→
M being a

directed matching. This is the same algorithm as the one described in the proof of
Proposition 2.5, with the difference that we are now constructing a directed instead of
an undirected matching.

Consider now {u, v} ∈ E such that f (u) < f (v) and {u, v} ∈ Mt for some t ≥ 0.
Then, there must exist an edge (u′, v′) ∈ −→

M such that u = u′ or v = v′ (since greedy
outputs a maximal matching) and

w f (u
′, v′) = f (v′)2 − f (u′)2 ≥ f (v)2 − f (u)2.

The inequality above holds because otherwise greedywould have picked (u, v) instead
of (u′, v′). This implies that [ f (u), f (v)) ⊆ [ f (u′), f (v′)) and t ∈ [ f (u′), f (v′)).

For any t ≥ 0, let ht : E → E be the function that maps any {u, v} ∈ E such
that f (u) < f (v) and {u, v} ∈ Mt to an edge (u′, v′) as above. Notice that for any
edge (u′, v′) ∈ −→

M and any t ≥ 0, there can be at most two edges in Mt that share an
endpoint with (u′, v′). Hence, |h−1

t (u′, v′)| ≤ 2.
Therefore, since {t ∈ [0,∞) : {u, v} ∈ Mt } ⊆ [

f (u)2, f (v)2
)
as noted above, we

have

∑

{u,v}∈E

∫ ∞

0
1{{u, v} ∈ Mt } dt ≤ 2

∑

(u′,v′)∈−→
M

∫ ∞

0
1{h−1

t (u′, v′) ∩ Mt �= ∅}dt

≤ 2
∑

(u′,v′)∈−→
M

(
f (v′)2 − f (u′)2

)

≤ 2ν(
−→
G f ).

The lemma follows by observing that

∫ ∞

0
ν(E(St , S

c
t )) dt =

∫ ∞

0

∑

e∈E
1{e ∈ Mt } dt =

∑

e∈E

∫ ∞

0
1{e ∈ Mt } dt ≤ 2ν(

−→
G f ),
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where we can swap the signs of integration and summation since the matchings {Mt :
t ≥ 0} can be chosen so that we need to consider only at most n−1 different matchings
(since there are at most n − 1 different sets St ), which implies that the integral can
actually be computed as a finite sum.

The next lemma shows how to construct a set of small matching conductance given
a “good” non-negative function f : V → R≥0.

Lemma 2.12 Let G = (V , E) be a graph and f : V → R≥0 such that 0 <

|{u ∈ V : f (u) �= 0}| < |V |. Let λ be the minimum of the following optimisation
problem.

min
g : V→R≥0

∑
u∈V g(u)

∑
u∈V f (u)2

subject to g(u) + g(v) ≥ ( f (u) − f (v))2 ∀ {u, v} ∈ E .

Then, there exists a set S ⊆ {u ∈ V : f (u) > 0} such that ϒ(S) ≤ 8
√
2λ.

Proof. Let St = {u ∈ V : f (u)2 > t} for t ≥ 0. We have that

min
t : 0<|St |<|V | ϒ(St ) ≤

∫ ∞
0 ν(E(St , Sct )) dt∫ ∞

0 |St | dt
.

First notice the denominator is equal to

∫ ∞

0
|St | dt =

∑

u∈V
f (u)2.

We now upper-bound the numerator. Let
−→
G f = (V ,

−→
E f , w f ) be the directed

weighted graph defined in Lemma 2.11:

(i) for any u, v ∈ V , (u, v) ∈ −→
E f if and only if {u, v} ∈ E and f (u) < f (v);

(ii) for any (u, v) ∈ −→
E f , w f (u, v) = f (v)2 − f (u)2.

Notice that this is an orientation of a graph G f = (V , E f , w f ) where each directed

edge (u, v) ∈ −→
E f is replaced by {u, v} ∈ E . Therefore, by Lemma 2.11 and Propo-

sition 2.5, we have that

∫ ∞

0
ν(E(St , S

c
t )) dt ≤ 2ν(

−→
G f ) ≤ 8ν(G f ).

We now want to relate ν(G f ) to λ. Let M be a maximum matching in G f . By
applying Cauchy–Schwartz and the triangle inequality,
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ν(G f ) =
∑

{u,v}∈M
w f (u, v)

=
∑

{u,v}∈M

∣∣∣ f (u)2 − f (v)2
∣∣∣

=
∑

{u,v}∈M
| f (u) − f (v)| · | f (u) + f (v)|

≤
√ ∑

{u,v}∈M
( f (u) − f (v))2

√ ∑

{u,v}∈M
( f (u) + f (v))2

≤
√ ∑

{u,v}∈M
( f (u) − f (v))2

√ ∑

{u,v}∈M
2

(
f (u)2 + f (v)2

)

≤
√ ∑

{u,v}∈M
( f (u) − f (v))2

√
2

∑

u∈V
f (u)2,

where the first inequality follows from Cauchy–Schwartz, while the second from the
inequality (a+b)2 ≤ 2a2+2b2 for any a, b ∈ R. Notice that

∑
{u,v}∈M ( f (u)− f (v))2

can be interpreted as the weight of a matching in an undirected graph obtained from
G by reweighing each edge {u, v} with weight ( f (u) − f (v))2. Therefore, we can
apply Proposition 2.3 and the definition of λ to show that

∑

{u,v}∈M
( f (u) − f (v))2

≤ min
g : V→R≥0

{
∑

u∈V
g(u)

∣∣∣∣∣
g(u) + g(v) ≥ ( f (u) − f (v))2 ∀ {u, v} ∈ E

}

≤ λ
∑

u∈V
f (u)2.

Putting all together, we obtain

min
t

ϒ(St ) ≤
∫ ∞
0 ν(St ) dt∫ ∞
0 |St | dt

≤ 8ν(G f )∑
u∈V f (u)2

≤ 8
√
2λ

∑
u∈V f (u)2

∑
u∈V f (u)2

≤ 8
√
2λ.

We are now finally ready to prove Theorem 2.10.

Proof of Theorem 2.10 Westart by proving the “easy side” of theCheeger-type inequal-
ity, i.e., γ (1)(G) � ϒ�(G). Let S ⊂ V such that |S| ≤ |V |/2 and ϒ(S) = ϒ�(G).
Define f : V → R as

f (u) =
{

1√
2|S| if u ∈ S

− 1√
2|V \S| if u /∈ S.
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Let M be a maximum matching for E(S, Sc), i.e., |M | = ν(E(S, Sc)). Denote with
V (M) the set of vertices incident to M . Define g : V → R as

g(u) =
{
2/|S| if u ∈ V (M)

0 otherwise.

By construction, f , g satisfy the constraints of the optimisation problem of Def-
inition 2.8. Moreover,

∑
u∈V g(u) = 2V (M)/|S| = 4ν(E(S, Sc))/|S|, while∑

u∈V f (u)2 = 1. Therefore,

γ (1)(G) ≤
∑

u∈V g(u)
∑

u∈V f (u)2
= 4ϒ(S) = 4ϒ�(G).

We now turn the attention to the “harder side”, i.e., ϒ�(G)2 � γ (1)(G). Let
f , g : V → R minimise γ (1)(G). We cannot directly apply Lemma 2.12 with f
since f is not non-negative and might be supported over the entire V . For this reason,
we define two non-negative functions h−, h+ : V → R≥0 as follows. Let c be the
median of f , i.e., order the vertices in V such that f (u1) ≤ f (u2) ≤ · · · ≤ f (un)
and set c � f (u�n/2�). For any u ∈ V , define h−(u) � max{0,−( f (u) − c)} and
h+(u) � max{0, f (u) − c}. If ∑

u∈V h−(u)2 ≥ ∑
u∈V h+(u)2, we define h � h−,

otherwise h � h+. We now apply Lemma 2.12 with h.
First notice that

∑

u∈V
h(u)2 ≥ 1

2

∑

u∈V
( f (u) − c)2 ≥ 1

2

∑

u∈V
f (u)2,

since
∑

u∈V f (u) = 0 because f is a feasible solution to the optimisation problem of
Definition 2.8. Moreover, for any {u, v} ∈ E ,

(h(u) − h(v))2 ≤ ( f (u) − f (v))2 ≤ g(u) + g(v).

We can then apply Lemma 2.12 with

λ �
∑

u∈V g(u)
∑

u∈V h(u)2
≤ 2

∑
u∈V g(u)

∑
u∈V f (u)2

= 2γ (1)(G)

Therefore, there exists S ⊆ {u ∈ V : h(u) > 0} such that ϒ(S) ≤ 8
√
2λ. Moreover,

by construction the support of h has size at most |V |/2. Hence,

ϒ�(G) ≤ ϒ(S) ≤ 8
√
2λ ≤ 16

√
γ (1)(G).
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3 Almost mixing

3.1 Set-up andmain result

The previous section was devoted to estimating mixing-type statistics for the FMMC
problem: we controlled the maximal spectral gap γP amongst all transition matrices
P on a given graph G = (V , E) which are reversible w.r.t. the uniform distribution in
terms of the vertex conductance of G. The purpose of the current section is to relax
the condition that the invariant distribution of P , which we denote πP , is exactly UV :
we allow πP to be ε-far from uniform in TV. We show that this can allow a significant
speed up in the mixing time versus requiring the invariant distribution to be exactly π :
we explicitly construct a Markov chain with spectral gap order at least ε/(diamG)2.

Recall that we write D(V ) for the set of positive probability distributions on a set
V and

D(π, ε) = {
π ′ ∈ D(V )

∣∣ minx∈V π ′(x)/π(x) ≥ 1 − ε
}

for π ∈ D(V ) and ε ∈ [0, 1].

Let u : E → R+, let A, B, S ⊆ V , let x ∈ V and let E ′ ⊆ E . We use the following
notation.

u(x) :=
∑

y∈V u({x, y}) and u(S) :=
∑

x∈S u(x);
E(A, B) := {{x, y} ∈ E | x ∈ A, y ∈ B

}
and u(E ′) :=

∑

e∈E ′ u(e).

Define the transition matrix Pu ∈ [0, 1]V×V by

Pu(x, y) := u({x, y})/u(x) for x, y ∈ V with x �= y;
Pu(x, x) := 1 −

∑

y∈V \{x} Pu(x, y) for x ∈ V .

Abbreviate the spectral gap as γu := γPu . Define the probability measure πu : V →
[0, 1] by

πu(x) := u(x)/u(V ) for x ∈ V .

Pu is the transition matrix of the RW on the weighted graph and πu is its invariant
distribution. It is the unique invariant distribution if the edge set {e ∈ E | u(e) �= 0}
is connected.

The following theorem is a refinement of Theorem B.

Theorem 3.1 (‘Almost Mixing’) Let G = (V , E) be a graph and let π ∈ D(V ).
There exists an edge weighting w1 : E → R+, depending only on G and π , with unit
total weight, i.e. w1(V ) = 1, and the following property. Let ε ∈ (0, 1). Let P be
a transition matrix on G which is reversible w.r.t. π ; it need not be irreducible. Let
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w0 : E → R+ be the unique edge weighting of G with Pw = P and w0(V ) = 1.
Define the transition matrix Q via the superposition weighting w := w0 + εw1:

Q := Pw where u(e) := w0(e) + εw1(e) for e ∈ E .

Then minx∈V πw(x)/π(x) ≥ 1− ε. Let Q′ := 1
2 (I + Q) denote its lazification. Then

γQ′ ≥ 1
48ε(diamG)−2 and τQ′(ξ)

≤ 24ε−1(diamG)2 log(ξ−2π−1
min) for all ξ ∈ (0, 1).

Immediate consequences of these properties are ‖πw − π‖TV ≤ ε,

Q(e) ≥ (1 − ε)P(e) for all e ∈ E and

τQ′ = τQ′( 14 ) ≤ 24ε−1(diamG)2 log(16π−1
min).

We remark briefly on the ‘independence’ of the perturbation by εw1.

Remark 3.2 (Independence of Perturbation) The weighting w = w0 + εw1 can be
seen as a perturbation of w0 by εw1, since we are most interested in the case where
ε is very small—indeed, we want the new equilibrium distribution to be very close
to π . We emphasise that the perturbation weighting w1 does not depend on the base
weighting w0; rather, w1 is a function only G and π .

We fix a graph G = (V , E) and a probability measure π ∈ D(V ) throughout this
section. We do not always repeat these in statements below. Also, we write n := |V |.

We start by proving a slightly weaker statement. Assume that w0 corresponds to
unit-self loops:

w0({x, y}) = 0 for all x, y ∈ V with x �= y and w0({v})
= π(v) for all v ∈ V .

The corresponding transition matrix Pw0 is diagonal and thus reversible w.r.t. any
measure. We then extend the argument to handle arbitrary initial weightings w0 in the
Sect. 3.5.

3.2 Outline and proof given later results

We start by giving a very brief outline with cross-references to the results proved
in the following subsections. We then flesh out this outline, giving a more detailed
description.

Outline of Proof: Very Brief The proof has four key steps.

(i) We construct a weighted spanning tree; see Definition 3.11.
(ii) We control the difference between the invariant distribution of the RW on this

weighted tree and the target distribution π ; see Lemma 3.12.
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(iii) We estimate the conductance of this weighted tree; see Proposition 3.13.
(iv) We relate its spectral gap and conductance using canonical paths; see Corol-

lary 3.14.

Outline of Proof: More Detailed We now flesh out the above details somewhat for π =
UV .

• Let T = (V , F) be a BFS spanning tree of G, rooted at v�. We choose a weighting
w� : F → (0,∞) such that the weights increase towards the root v� in such a way
that w� has edge conductance order 1. We then rescale the w� to get w̃� with total
weight w̃�(V ) = εn.

• Define w : E → R+ by adding unit-weight self-loops to w̃�. The total weight
w(V ) = (1 + ε)n and w(x) ≥ 1 for all x . Thus the invariant distribution π ′
satisfies minx∈V π ′(x) ≥ (1 − ε)/n.

• It remains to analyse the edge conductance of w, which is intimately related to
the original total weight w�(V ). We can choose the weights such that w�(V ) �
n diamG. We then apply a Cheeger-type inequality to deduce a spectral gap lower
bound of order ε/(diamG)2.

We now describe how to choose the weighting w�. Let Tx ⊆ T denote the
subtree rooted at x and consisting of all descendants of x . We choose the weight
w�({x,prt(x)}) := |Tx |, where prt(x) is the (unique) parent of x , for x �= o. This
way, the conductance of a subtree Tx in the weighted tree (T , w�) is precisely 1. We
emphasise that this is in the weighted tree (T , w�). We need to rescalew� and combine
it with the unit-weight self-loops to get an approximately uniform weighting.

It turns out that w�(F) � n diam T � n diamG. This then gives rise to a
final conductance �� � ε/ diamG. The standard Cheeger inequality then gives
γ � ε2/(diamG)2. We improve this to γ � �∗/(diam T ) by applying the canonical
paths method, using the fact that T is a tree.

The proof for generalπ is very similar. One gives the self-loop at x weightπ(x) and
defines w�({x,prt(x)}) := π(Tx ). This is the natural extension. The same arguments
follow through.

3.3 Preliminaries

We introduce some preliminary material which is used throughout the proof, as well
as in Sect. 4. The majority of it will be familiar to a reader well-versed in RWs and
mixing time analysis.

First, we generalise the notation of edge conductance of the graph, herein abbre-
viated conductance. We introduced this in Definition A.1 for RWs on unweighted
graphs, i.e. unit weights on all edges. Reversible RWs correspond to a general weight-
ing u : E → R+, as in the above notation. The (edge) conductance of a reversible RW
is the (edge) conductance of that weighted graph.

Definition 3.3 (Edge Conductance) Let G = (V , F) be a graph and u : F → R+ be a
weighting. The conductance �u(S) of a set S ⊆ V with πu(S) > 0 w.r.t. u is defined
to be
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�u(S) := πu
(
F(S, Sc)

)

πu(S)
= u

(
F(S, Sc)

)

u(S)
.

The conductance ��
u of u is defined to be

��
u := min

S⊆V :0<πu(S)≤1/2
�u(S).

The adjusted conductance �̃u(S) of a set S ⊆ V with 0 < πu(S) < 1 is defined
similarly:

�̃u(S) := πu
(
F(S, Sc)

)

πu(S)πu(Sc)
and �̃�

u := min
S⊆V :0<πu(S)<1

�̃u(S).

Remark 3.4a (Conductance: Original and Adjusted Relations) The definition of the
adjusted conductance does not need the restriction πu(S) ≤ 1

2 as �̃u(S) is invariant
under complementation:

�̃u(S) = �̃u(S
c) for all S ⊆ V with 0 < πu(V ) < 1.

The following inequalities between �u and �̃u are immediate:

�u(S) ≤ �̃u(S) for all S ⊆ V with 0 < πu(S) < 1;
1
2 �̃u(S) ≤ �u(S) for all S ⊆ V with 0 < πu(S) ≤ 1

2 .

1
2 �̃

�
u ≤ ��

u ≤ �̃�
u whatever the graph. �

Remark 3.4b (Conductance: Connectivity Assumption)Wemay assume that S induces
a connected subset T [S]when analysing��

u . Indeed, if S = A ∪̇ B with F(A, B) = ∅,
then

�u(S) = u
(
F(A, Ac)

) + u
(
F(B, Bc)

)

u(A) + u(B)
≥ min

{
�u(A), �u(B)

}
,

using the fact that F(S, Sc) = F(A, Ac) ∪̇ F(B, Bc) and that

a + b

a′ + b′ ≥ min

{
a

a′ ,
b

b′

}
for all a, a′, b, b′ > 0. �

Next, we introduce the canonical paths method and use it to relate the spectral gap
to the conductance in trees. A proof of Proposition 3.6 can be found in [40, Theorem5].

Definition 3.5 (Paths) Let G = (V , F) be a graph. � : {0, ..., L} → V is an F-path
from x to y if

�(0) = x, �(L) = y and {�(� − 1), �(�)} ∈ F for all � ∈ [1, L].

The length of a path � : {0, ..., L} → V is defined to be |�| := L.
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Proposition 3.6 (Canonical Paths: General) Let G = (V , E) be a connected graph
and u : E → R+ be a weighting. Let �x,y be an arbitrary F-path from x to y for
x, y ∈ V . The spectral gap γu of the RW on (G, u) satisfies

γu ≥ min
e∈E

{(
u(e)/u(V )

)/∑

x,y∈V 1{e ∈ �x,y}πu(x)πu(y)|�x,y |
}
.

Corollary 3.7 (Canonical Paths: Trees) Let T = (V , F) be a connected tree and u :
F → (0,∞) be a weighting. The spectral gap γu of the RW on (T , u) satisfies

γu ≥ �̃�
u/ diam T .

Proof Let �x,y be the shortest path between x and y for all x, y ∈ V . Then |�x,y | ≤
diam T for all x, y ∈ V . Removing the edge e = {e−, e+} ∈ F disconnects the
graph, leaving two components, with e− ∈ V in one component and e+ ∈ V in
the other. Denote the component containing e± by T e±. The canonical paths method
(Proposition 3.6) then implies that

γu ≥ 1

diam T
· min
e∈F

u(e)/u(V )

πu(T e+)πu(T e−)
= �̃u(T e+)

diam T
≥ �̃�

u

diam T
.

This uses the fact that T e+ ∪̇ T e− = V and F(T e+, T e−) = e for all e ∈ F .

Remark 3.8 A more general statement is proved by Miclo [33, Theorem 1] (article in
French). He does not require the graph T to be a tree at the cost of replacing diam T
in the denominator of the bound by the longest path in T ; eg, if T has a Hamiltonian
path, then the denominator becomes n − 1. He gives two proofs, one of which uses a
canonical paths style argument.

Finally, we introduce some notation for trees and prove a counting lemma. This
lemma, innocuous as it may appear, is fundamental to multiple calculations. The
notation and definitions above were for any graph T = (V , F). Assume that T is a
tree for the rest of this preliminary section.

Definition 3.9 (Tree Notation) Let T = (V , F) be a tree rooted at o.

• Let anc(z) denote the unique shortest path from z to the root o, including both z
and o.

• Let Vy := {z ∈ V | y ∈ anc(z)} and Ty := T [Vy] denote the subtree rooted at y.
• Let prt(x) denote the parent of x �= o, ie the unique neighbour y of x satisfying

y ∈ anc(x).

Lemma 3.10 (Counting Weighted Subtrees) For all measures μ on V and all x ∈ V ,
we have

∑

y∈Tx\{x} μ(Ty) ≤ μ(Tx ) diam T .
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Proof. z ∈ Ty if and only if y ∈ anc(z); if y ∈ Tx ∩ anc(z), then z ∈ Tx . Thus

∑

y∈Tx\{x} μ(Ty) =
∑

y∈Tx\{x}
∑

z∈Ty μ(z)

=
∑

y∈V
∑

z∈V μ(z)1{y ∈ Tx \ {x}}1{z ∈ Ty}
=

∑

z∈V μ(z)
∑

y∈V 1{y ∈ anc(z) ∩ Tx \ {x}}1{z ∈ Tx }
≤

∑

z∈Tx μ(z) depth Tx = μ(Tx ) depth Tx ≤ μ(Tx ) diam T .

3.4 Construction via a weighted spanning tree

First, we define a weighted spanning tree (T , w).

Definition 3.11 (Weighted Spanning Tree) Let o ∈ V and let T = (V , F) be a BFS tree
rooted at o. Supplement F with a self-loop at each vertex of V . Define the following
weightings w0/1 : F → R+:

w0({x, y}) := π(x)1{x = y} for x, y ∈ V ;
w1({x,prt(x)}) := π(Tx ) for x ∈ V \ {o}.

Define the weighting w : F → R+ via a linear combination:

w := w0 + ηw1 where η := 1
2ε/ diam T .

T is a BFS tree, so � := diam T satisfies � ≤ 2 diamG.

The distribution πw induced by w is close to π in the following sense.

Lemma 3.12 (πw Close to π ) The weighted tree (T , w) and its induced distribution
πw satisfy

w(V ) ≤ 1 + ε and min
x∈V πw(x)/π(x) ≥ 1/(1 + ε) ≥ 1 − ε.

Proof First, the subtree counting lemma (Lemma 3.10) implies that

w1(V ) = 2w1(F) = 2
∑

e∈F w1(e) = 2
∑

x∈V \{o} w1({x,prt(x)})
= 2

∑

x∈To\{o} π(Tx ) ≤ 2π(To)� = 2�.

Trivially, w0(V ) = ∑
x∈V π(x) = 1. Thus

w(V ) = w0(V ) + ηw1(V ) ≤ 1 + ( 12ε/�) · (2�) = 1 + ε.

Second, w(x) ≥ w0(x) = π(x) and thus πw(x) = w(x)/w(V ) ≥ π(x)/(1 + ε)

for all x ∈ V .
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Next, we control the conductance of this weighted spanning tree.

Proposition 3.13 (Conductance) Let (T , w) be the weighted spanning tree from Def-
inition 3.11. The conductance ��

w of the RW on (T , w) satisfies

��
w ≥ 1

6ε/�.

Proof. First, suppose that o /∈ S. Choose x ∈ S with dist(x, o) minimal. We may
assume that T [S] is connected, by Remark 3.4b. These together imply that S ⊆ Vx

and

{
x,prt(x)

} = F(Tx , T
c
x ) ⊆ F(S, Sc).

This implies that

�w(S) = w
(
F(S, Sc)

)

w(S)
≥ w

(
F(Tx , T c

x )
)

w(Tx )
= �w(Tx ).

The definition of w gives

�w(Tx ) = w({x,prt(x)})
w(Tx )

= ηπ(Tx )

π(Tx ) + ∑
y∈Tx ηπ(Ty)

.

The tree counting lemma (Lemma 3.10), then implies that

�w(Tx ) ≥ ηπ(Tx )

π(Tx ) + η�π(Tx )
= η

1 + η�
= ε

(2 + ε)�
≥ ε

3�
,

recalling that η = 1
2ε/�. We have thus shown that

�w(S) ≥ ε

3�
for all S ⊆ V with o /∈ S �= ∅.

Importantly, this inequality does not require πw(S) ≤ 1
2 .

Next, suppose that o ∈ S and πw(S) ≤ 1
2 . The relations of Remark 3.4a imply that

�w(S) ≥ 1
2 �̃w(S) = 1

2 �̃w(Sc) ≥ 1
2�w(Sc).

But now S′ := Sc satisfies o /∈ S′ and S′ �= ∅. Thus the previous case implies that

�w(Sc) = �w(S′) ≥ 1
3ε/�.

Importantly, this case did not require πw(S′) ≤ 1
2 . Combining gives

�w(S) ≥ 1
6ε/� for all S ⊆ V with 0 < πw(S) ≤ 1

2 .
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Finally, we apply the canonical paths method for trees (Corollary 3.7) to deduce a
bound on the spectral gap for (T , w).

Corollary 3.14 (Spectral Gap) Let (T , w) be the weighted spanning tree from Defini-
tion 3.11. The spectral gap γw of the RW on (T , w) satisfies

γw ≥ 1
6ε/�

2 ≥ 1
24ε/(diamG)2.

Proof This is an immediate consequence of the canonical paths method for trees
(Corollary 3.7) and Proposition 3.13, along with the relations of Remark 3.4a. Also,
� ≤ 2 diamG.

We have now almost proved the main result. We just need to make sure the chain
is lazy and convert the spectral gap result into a mixing time result.

Proof of Theorem 3.1 whenw0 = π The Markov chain constructed is a RW on a
weighted BFS tree. It is defined in Definition 3.11. Denote the invariant distribution of
the RW on this weighted tree by π ′. Lemma 3.12 establishes the claim on the invariant
distribution.

The spectral gap bound is proved via Proposition 3.13 andCorollary 3.14. Precisely,
Corollary 3.14 defines a reversible chain Q satisfying γQ ≥ 1

24ε/(diamG)2.
The mixing time bound will follow from the spectral gap bound via a standard

mixing time–spectral gap relation. To apply this relation, we first pass from Q to its
lazy version Q′ := 1

2 (I +Q′). This ensures that the spectral gap and absolute spectral
gap agree. Q and Q′ have the same invariant distribution and that γQ′ = 1

2γQ .Asimple
calculation establishes the mixing time claim using the spectral–mixing relation; see
[1, Lemma 4.23] for details of this relation.

It remains to handle the case of generalw0, i.e. wherew0 is any unit edge weighting
with π as its induced invariant distribution. This is done in the next subsection.

3.5 Perturbation to arbitrary base chain

The analysis up to this point has shown the existence of a fast ‘almost mixing’ chain.
Precisely, we defined a weighted graph by constructing an appropriately weighted BFS
tree and supplementing it with π -weighted self-loops. We can think of the self-loops
as a ‘base’ weighting which is reversible w.r.t. π . We denoted the ‘base’ weightingw0
and the ‘tree’ weighting w1; recall Definition 3.11.

We now explain how to extend this to an arbitrary ‘base’ weightingw0. The analysis
is extremely similar to that of the self-loops case above: we simply take an arbitrary
base weighting w0 and superimpose on it the same weighted BFS tree. Some small
adjustments are needed, but not many.

Let w0 : E → R+ be an arbitrary unit edge weighting of E . Define E ′ := {e ∈ E |
w0(e) �= 0}, the edge set of the graph induced by w0. π is the invariant distribution
of the w0-weighted RW.
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Construction. Wedefine theweighted tree (T , w1) exactly as before inDefinition 3.11:
T = (V , F) is an arbitrary BFS tree and w1({x,prt(x)}) = π(Tx ) for x ∈ V \{o}; set
w := w0 + εw1. The proof of Lemma 3.12 is unchanged, showing that the induced
distribution πw is close to π .

Canonical Paths and Adjusted Conductance. We can no longer use the canonical paths
method for trees (Corollary 3.7) since the weighting does not necessarily give rise to
a tree. The ‘extra edges’—ie, those corresponding to non-self-loops in w0—can only
increase the conductance. Intuitively, these cannot harmmixing, but wemust establish
this carefully.

First, we adjust the proof of the canonical paths method for trees, i.e. the deduction
of Corollary 3.7 from Proposition 3.6. We use the same canonical paths �, defined
by paths in the BFS tree T . The bound on the spectral gap γ does not require a lower
bound on �(S) for arbitrary S; rather, it only needs a lower bound on �(Tx ) for all
x ∈ V .

The fact that E ′ = ∅ when w0 is only self-loops meant that the set of edges
emanating from the set Tx was given by F(Tx , T c

x ) = {x,prt(x)}. More generally, it
is given by {x,prt(x)}∪E ′(Tx , T c

x ).But this is always a superset of {x,prt(x)}, so the
edge conductance is always larger than if the edges from E ′ were ignored. Motivated
by this, define the following adjustment of edge conductance:

�̂w(Tx ) := w({x,prt(x)})/w(V )

πw(Tx )πw(T c
x )

for x ∈ V and �̂�
w := min

x∈V �̂w(Tx ).

This is the edge conductance where only the boundary edges in the tree T = (V , F)

are considered. The same proof as for canonical paths for trees then implies that

γw ≥ �̂�
w/�, recalling that � = diam T .

Conductance Analysis. The analysis of the conductance in Proposition 3.13 needs to
be adjusted. We need only analyse the conductance of complete subtrees Tx and
must regard the boundary as only F(Tx , T c

x ) = {x,prt(x)}, not the full boundary
(E ′ ∪ F)(Tx , T c

x ). The proof of Proposition 3.13 applies almost unchanged to control
�̂�

w: we obtain

�̂�
w ≥ 1

6ε/�.

The only point to be noted is the establishment of the equality w0(Tx ) = π(Tx ).
Previously, this was obvious from the self-loop weightings. It still holds here, since the
invariant distribution induced by w0 is π and w0 has unit total weight, by assumption.
Thus, in fact, w0(x) = π(x) for all x ∈ V .

Conclusion. We combine the two results above, exactly as before, to obtain

γw ≥ �̂�
w/� ≥ 1

6ε/�
2 ≥ 1

24ε/(diamG)2.

The conversion of this into a lazy chain and then into a mixing estimate is unchanged.
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4 Continuous-timemarkov chains

4.1 Set-up, main result and outline

We have been studying discrete-time Markov chains throughout this paper. It is nat-
ural to ask the same question for continuous-time chains. Our attention is devoted to
continuous-time Markov chains which are reversible w.r.t. the uniform distribution.
Such chains can always be represented as a RW on a weighted graph (G, w) where
w : E → R+ is a weighting on the edge of G = (V , E).

Our main result for continuous-time chains is simple to state: we impose a normal-
isation of |V |−1 ∑

e∈E w(e), ie the average rate at which the RW leaves a vertex is at
most 1; we define a weighting w and show an upper bound of order (diamG)2 on the
spectral gap of this RW.

Theorem 4.1 (Fast Mixing Continuous-Time Markov Chain) Let G = (V , E) be a
graph. There exists a weighting w : E → R+ with average rate |V |−1 ∑

x∈V w(x) ≤
1 and such that the Markov chain induced by this weighting has spectral gap γw and
mixing time τw(·) satisfying

γw ≥ 1
16 (diamG)−2 and τw(ξ) ≤ 8(diamG)2 log(ξ−2|V |) for all ξ ∈ (0, 1).

Proof of Theorem 4.1: Outline The outline is the same as in discrete-time.

(i) We construct a weighted spanning tree; see Definition 4.2.
(ii) We control the total weight of the spanning tree; see Lemma 4.3.
(iii) We estimate the conductance of this weighted tree; see Proposition 4.5.
(iv) We relate its spectral gap and conductance using canonical paths; see Corol-

lary 4.6.

We fix a graphG = (V , E) and always take π := UV to be the uniform distribution
on V . We do not always repeat these in statements below. Also, we write n := |V |.

4.2 Proof via adjustments to discrete-time case

The proof in continuous-time is surprisingly similar to that used in discrete-time.

• We construct the same weighted tree (T , w), except that we do not include the
self-loops; contrast Definitions 3.11 and 4.2.

• The invariant distribution of a RW on a graph with weights on the edges is always
uniform. Thus we do not need an analogue of Lemma 3.12. We require the total
weight to be at most n, instead of requiring the invariant distribution to be close
to a given measure.

• Weuse the sameargument to control the conductance; cf Proposition3.13.Theonly
differences is that now we do not include the self-loop weight in the calculation.

• The canonical paths argument applies in continuous-time; cf Corollaries 3.7 and
3.14.

First, we define the weighted spanning tree (T , w); cf Definition 3.11.
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Definition 4.2 (Weighted Spanning Tree) Let o ∈ V and let T = (V , F) be a BFS tree
rooted at o. Define the following weightings w : F → R+ by

w({x,prt(x)}) := 1
2 |Tx |/ diam T . for x ∈ V \ {o}.

T is a BFS tree, so � := diam T satisfies � ≤ 2 diamG.

This is equivalent to the tree-weight in the discrete-time case; see w1 in Defini-
tion 3.11. The particular scaling is chosen so that the total weight of w is at most n,
as the next lemma shows.

Lemma 4.3 (Total Weight of w)We have w(V ) ≤ n.

Proof. This is an immediate consequenceof the subtree counting lemma (Lemma3.10):

w(V ) = 2w(F) = 2
∑

x∈V \{o} w({x,prt(x)}) =
∑

x∈To\{o} |Tx |/� ≤ |To| = n.

Next, we control the conductance of this weighted spanning tree; cf Proposi-
tion 3.13. To do this, we must first give the precise definition of conductance in
continuous-time.

Definition 4.4 (Conductance) Let T = (V , F) be a graph and let u : F → R+ be a
weighting. The conductance �u(S) of a set S ⊆ V with πu(S) > 0 w.r.t. u is defined
to be

�u(S) := u
(
F(S, Sc)

)/|S|.

The conductance ��
u of u is defined to be

��
u := min

S⊆V :0<πu(S)≤1/2
�u(S).

Proposition 4.5 (Conductance) Let (T , w) be the weighted spanning tree from Defi-
nition 3.11. The conductance ��

w of the RW on (T , w) satisfies

��
w ≥ 1

4�
−1.

Proof. The same reductions as used in Proposition 3.13 show that it suffices to show
that

�w(Tx ) ≥ 1
2�

−1 for all x ∈ V .

But this is immediate from the definition of w:

�w(Tx ) = w({x,prt(x)})/|Tx | = 1
2 |Tx |�−1/|Tx | = 1

2�
−1.
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Finally, we apply the canonical paths method for trees (Corollary 3.7) to deduce a
bound on the spectral gap for (T , w); cf Corollary 3.14. We must adjust this to apply
in continuous-time; see Proposition 4.7 and Corollary 4.8.

Corollary 4.6 (Spectral Gap) Let (T , w) be the weighted spanning tree from Defini-
tion 3.11. The spectral gap γw of the RW on (T , w) satisfies

γw ≥ 1
4�

−2.

Proof This is an immediate consequence of the canonical paths method for trees in
continuous-time (Corollary 4.8) and Proposition 4.5.

It remains to adjust the method of canonical paths to continuous-time.

Proposition 4.7 (Canonical Paths in Continuous-Time: General) Let G = (V , E) be
a graph and u : E → R+ be a weighting. Let γx,y be an F-path from x to y for all
x, y ∈ V . The spectral gap γu of the RW on (G, u) satisfies

γu ≥ nmin
e∈E

{
Qu(e)

/ ∑

x,y∈V 1{e ∈ γx,y}|γx,y |
}
.

Proof The discrete-time case is proved in [40, Theorem 5]. It involves the variational
characterisation of the spectral gap in terms of theDirichlet form. This characterisation
holds both in discrete- and continuous-time; see [1, §3.6]. The proof in [40] then
passes almost unchanged to the continuous-time set-up, recalling that now the invariant
distribution is uniform.

Concretely, one can rescale the weights, setting w̃(·) := cw(·) for some value c
such that maxx∈V w̃(x) = 1. This can then be realised by placing mean-1 exponential
wait times between jumps of a discrete-time chain P . One then applies the canonical
paths method to P . The Dirichlet form is linear in this scalingmeaning that the scaling
can be ‘undone’ at the end.

Remark (Cheeger-Inequality in Continuous-Time) We remark that while a scaling
argument as used above does apply for the usual discrete-time Cheeger inequality,
namely γ ≥ 1

2 (�
�)2, the bound is quadratic in the scaling. Thus a factor of c is lost.

See [1, Theorem 4.40]. In our set-up, maxx∈V w(x) may be as large as (n − 1)/�.

This would lead to a lower bound of 1/(n�) on the spectral gap, rather than 1/�2 as
we were able to achieve using canonical paths.

Analogous arguments to those used in the special case that G is a tree, ie deducing
Corollary 3.7 from Proposition 3.6, apply in the continuous-time set-up too.

Corollary 4.8 (Canonical Paths in Continuous-Time: Trees) Let T = (V , F) be a tree
and u : F → (0,∞) be a weighting. The spectral gap γu of the RW on (T , u) satisfies

γu ≥ ��
u/ diam T .

We now have all the ingredients required to deduce the main result.
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Proof of Theorem 4.1 The Markov chain constructed is a RW on a weighted tree. It is
defined in Definition 3.11. Lemma 4.3 bounds the total weight of this tree by n, as
required.

The spectral gap bound is proved via Proposition 4.5 and Corollary 4.6. The mixing
time bound is then deduced from the spectral gap bound via the (continuous-time)
spectral gap–mixing time relation; see [1, Lemma 4.23] for details of this relation.

4.3 Hitting time of the root

The following result is not needed for the proof, but it is a nice little result and its
proof is extremely simple, given a reference regarding hitting times in trees. Write τx
for the hitting time of vertex x .

Lemma 4.9 (Hit Root in Diameter Squared) Let G = (V , E) be a graph. For all
o ∈ V , there exists a weighting w : E → R+ with average rate 1

n

∑
x∈V w(x) ≤ 1

and such that the Markov chain induced by this weighting has worst-case expected
hitting time of o satisfying

max
x∈V Ex (τo) ≤ 8(diamG)2.

We use the weighted spanning tree (T , w) used above, i.e. from Definition 4.2.
Precisely, the tree T = (V , F) is rooted at some vertex o ∈ V and

w({x,prt(x)}) := 1
2 |Tx |/ diam T for x ∈ V \ {o}.

Moments of hitting times of the root in reversible Markov chains on trees were inves-
tigated by Zhang [45]. The following result is a special case of [45, Theorem 1.1].

Theorem 4.10 (Hitting Times in Trees; cf [45, Theorem 1.1]) Let T = (V , F) be a
finite tree and q : F → (0,∞) a weighting. Let o ∈ V and root the tree at o; use the
notation of Definition 3.9. Let τo denote the hitting time of the root. For all x ∈ V , we
have

Ex
(
τo

) =
∑

y∈anc(x)\{o} |Ty |/q({y,prt(y)}).

The hitting time result of Lemma 4.9 follows easily from this.

Proof of Lemma 4.9 Let (T , w) be the weighted spanning tree from Definition 3.11.
We have |Ty |/w({y,prt(y)}) = 2 diam T for all y. Thus applying Theorem 4.10 to
this weighted tree gives

Ex
(
τo

) = |anc(x) \ {o}| · 2 diam T ≤ 2(diam T )2 ≤ 8(diamG)2,

since diam T ≤ 2 diamG. The weighting satisfies w(V ) ≤ n by Theorem 4.3. Theo-
rem 4.9 follows.
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Remark 4.11 (Inspiration) This result of Zhang [45] was the inspiration behind our
choice of weighted spanning tree in both the discrete- and continuous-time set-ups.
Particularly, the simplicity of the formula when one takes q({x,prt(x)}) := |Tx |
encouraged us to try this weighting.

We had originally tried to make the distance to the root behave roughly like an
unbiased RW on the integers—this gives the right “diameter-squared” bound. This
means balancing the weights on either ‘side’ of a vertex. This works for some trees,
e.g. the path, rooted at one end, and the binary tree. But it does not combine well:
attaching a path and binary tree, each of the same depth, at their root gives rise to a
“diameter-cubed” hitting time of the root.

Although we have phrased the continuous-time proof as an adjustment to the
discrete-time one, we actually developed the continuous-time argument first. Indeed,
this is natural because any edge weighting gives rise to the uniform distribution in
continuous-time, so there is no need to do any superposition with a ‘base’ weighting,
such as self-loops.

5 Time-inhomogeneousmarkov chains

The content of this section is somewhat different from the previous ones. Our desire,
as always, is to sample from a distribution π on a set V via some Markov process
which only uses transitions permitted by the graph G. The difference here is that we
use a time-inhomogeneous Markov chain.

Markov chains are typically time-homogeneous. Discrete-time chains are then
described by a transition matrix P and an initial law μ0. The time-t law μt is then
given by applying P t times to μ: μt = μ0Pt . Continuous-time chains are described
in a somewhat similar manner. Time-inhomogeneous chains are allowed to use a dif-
ferent transition matrix at each step: P1 is used for the first step, P2 for the second and
so on. The time-t law μt is then given by μt = μ0P1 · · · Pt . The special case where
Pt = P for all t , for some P , reduces to the time-homogeneous case.

Our main result for time-inhomogeneous chains is simple to state: given a graph
G = (V , E) and π ∈ D(V ), we exhibit a time-inhomogeneous Markov chain which
satisfies μ2 diamG = π.

Theorem 5.1 Let G = (V , E) be a connected graph and let π ∈ D(V ). There exists
a time-inhomogeneous Markov chain on G obtaining perfect mixing after 2 diamG
steps: μ2 diamG = π.

We fix a graph G = (V , E) and a probability measure π ∈ D(V ) throughout this
section. We do not always repeat these in statements below.

Proof of Theorem 5.1 Our argument proceeds by induction on the depth of the tree.
Choose o ∈ V and a breadth-first search (BFS) tree T = (V , F) rooted at o

arbitrarily. Given x ∈ V , let Vx denote the set of vertices for which x lies in the unique
shortest path to the root o; let Tx := T [Vx ]. Write �(x) := depth Tx for the depth of
Tx , i.e. the maximal distance maxy∈Tx dist(y, x) to the root of Tx . We construct the
time-inhomogeneous chain inductively
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Suppose that X0 = o; we cover the general case later. We claim that there exists
a chain Xo on To such that Xo

�(o) ∼ π |Vo. This is trivially true if To is a singleton,
which has depth 0. Assume now that |To| ≥ 2. Define the first transition matrix P1
to keep X at o with probability π(o) and otherwise move to x with {o, x} ∈ F with
probability proportional to π(Tx ):

P1(o, o) := π(o) and P1(o, x) := π(Tx ) for x ∈ V with {o, x} ∈ V .

Let Pk(o, o) = 1 for all k ≥ 2. Thus if X1 = o then Xk = o for all k ≥ 1.
There exists a chain Xx on Tx such that Xx

�(x) ∼ π |Vx for each x ∈ V , by the
inductive hypothesis. Importantly, Tx ∩ Ty = ∅ if {o, x}, {o, y} ∈ F and x �= y. We

can thus define sequences Px := (Px
k )

�(x)
k=1 of transition matrices for each x ∈ V with

{o, x} ∈ F and each Px defined on a disjoint set by induction. Define Px
k := I for

k > �(x). These can then be combined into a single sequence (Pk)
�(o)
k=2 : if X

o
1 = x ,

then we use sequence Px . Then

Xo
�(o) = Xx

�(x) ∼ π |Vx conditional on Xo
1 = x �= o,

noting that �(x) = �(o) − 1. Thus, for y �= o,

Po
(
Xo

�(o) = y
) =

∑

x∈V :{o,x}∈F Px
(
Xx

�(x) = y
)
Po

(
Xo
1 = x

)

=
∑

x∈V :{o,x}∈F
(
1{y ∈ Vx } π |Vx (y)

) · π(Vx )

=
∑

x∈V :{o,x}∈F 1{y ∈ Vx } · (
π(y)/π(Vx )

) · π(Vx )

= π(y)
∑

x∈V :{o,x}∈F 1{y ∈ Vx } = 1/|To|.

This argument is no more than a formalisation of the following informal verbal
description.

• If the walk is at x , then stay at x with probability π(x)/π(Vx ).
• Otherwise, move to the children of x with probability proportional to their π -
measure.

• If at some point the walk stays put, then keep it at that state indefinitely.

This completes the argument when X0 = o. It remains to consider the case that
X0 �= o. Direct all edges towards o and run for �(o) steps. Precisely, set

P0(x, y) := 1{x �= o, y = prt(x)} + 1{x = y = o},

where prt(x) is the unique neighbour of x �= o on the unique shortest path from x to
o. If �(o) steps are made according to this matrix, then X�(o) = o, regardless of Xo.
We then apply the construction from the case X0 = o, all shifted by �(o).

In summary, we obtain a time-inhomogeneous Markov chain X with X2�(o) ∼ π .
Finally,�(o) = depth T ≤ diamG. Keeping X fixed during (2�(o), 2 diamG] gives
X2 diamG ∼ π .
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6 Open problems and concluding remarks

We have studied fundamental barriers to fast mixing on graphs. We have essentially
shown that three geometric quantities characterise the mixing properties of a graph:
edge conductance characterises fast mixing for the simple random walk and vertex
conductance characterises the fastest mixing time, whilst the diameter characterises
the fastest almost-mixing time.

There are a few questions left open by our work. First, Theorem A implies that the
fastest mixing time on a graph is at most order (��)−2 log2 |V |. It is natural to ask
if this log2 |V | factor can be improved to log |V |. This improvement would require
departing from the framework of our proof, at least if dmax � 1 is permitted, since
we believe the optimal relaxation time 1/γ � can be of order (��)−2 log dmax; see the
discussion after Theorem A.

Another open problem prompted by our work is to construct a graph sparsifier,
i.e., an edge-induced sparse subgraph, that approximately preserves the vertex con-
ductance of the original graph. Our work together with a result by Batson, Spielman
and Srivastava [5] implies that it is possible to construct an order n-size sparsifier of
G with vertex conductance at least order ��(G)2/ log n. It is then natural to ask if we
can obtain a better approximation.

Can our results spur new algorithmic applications?Wemention two. First, wewould
like to design a distributed algorithm to compute a fast mixing Markov chain on G,
where G also represents the topology of the distributed network. Second, is it possible
to design a local algorithm, in the spirit of Spielman and Teng [42], that outputs a
subset of nodes with small vertex conductance?

We discussed the application of our almost-mixing result—or, more precisely,
the weighted-tree construction—to the objective of turning a non-expander into an
expander; see the discussion after Theorem B. We would also like to find a more
sampling-based application, but have not found a particularly satisfying one yet.
In many scenarios, one has a target distribution π to sample from—e.g., the uni-
form distribution. One approximately samples from π by running a Markov chain
X with equilibrium distribution π for its ε-mixing time t . The output Xt satisfies
‖Xt − π‖TV ≤ ε. If one instead runs a Markov chain X ′ with equilibrium dis-
tribution π ′ for its ε-mixing time t ′, then the output X ′

t ′ satisfies ‖X ′
t ′ − π‖TV ≤

‖X ′
t ′ − π ′‖TV + ‖π ′ − π‖TV ≤ 2ε if ‖π ′ − π‖TV ≤ ε. Thus, there is no real disadvan-

tage in adjusting the equilibrium distribution slightly.
Many natural graph structures have small diameter and thus give rise to a fast

almost-mixing Markov chain. For example, the graph structure of the Ising model
on an n-graph has diameter at most 2n. Thus, one gets fast—that is, polynomial-in-
n—almost mixing for any temperature; this can be used to approximate the partition
function. Similar statements hold for sampling independent sets via the hardcoremodel
or counting the number of proper colourings on a graph.

Unfortunately, in all these scenarios, actually calculating the weights on the super-
imposed tree—which need not be a BFS tree; any tree T can be used, giving a bound of
(diam T )2—is computationally infeasible since it often entails knowing the partition
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function already. We hope that a useful application of this result can be found, but we
are yet to find one ourselves.
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