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Abstract

The main topic of this thesis is the problem of proving homogenisation (convergence

to a stochastic differential equation) for fast-slow systems with deterministic fast

direction. Kelly & Melbourne used rough path theory to show that this problem

reduces to verifying certain statistical properties for the fast dynamics.

It is natural to consider the case where the fast dynamics is given by a

nonuniformly hyperbolic diffeomorphism in the sense of L.-S. Young. Indeed, this

class covers a wide variety of examples such as dispersing billiards, intermittent maps

and Hénon attractors. Moreover, our understanding of the statistical properties of

this class is generally very complete. However, until now it was not possible to verify

one of the statistical properties required to apply rough path theory for certain

nonuniformly maps with slow decay of correlations.

Our first result is that this property is satisfied by nonuniformly hyperbolic

maps in the sense of Young under optimal assumptions on the rate of decay of

correlations. The proof splits in two steps. First we prove that the map satisfies a

condition introduced by Leppänen which we call the Functional Correlation Bound.

Then we use a weak dependence argument to show that the required property follows

from the Functional Correlation Bound.

Our second main result is that the Functional Correlation Bound is in fact

a sufficient condition for homogenisation. Since the Functional Correlation Bound

is an elementary condition that is easy to write down, this could be useful for non-

dynamicists interested in applying homogenisation results. More generally, we give

elementary and explicit sufficient conditions for homogenisation in the case where

the fast dynamics is given by a family of dynamical systems.

Finally, we consider the problem of proving rates of convergence in the mul-

tidimensional weak invariance principle.

v



Chapter 1

Introduction

This thesis concerns statistical properties of chaotic dynamical systems, with a par-

ticular emphasis on the properties that arise when considering the deterministic

homogenisation problem for fast-slow systems. Before introducing this problem, let

us briefly discuss some well-known statistical properties of dynamical systems.

Let µ be a Borel probability measure on a metric spaceM and let T :M →M

be an ergodic µ-preserving transformation. Let v : M → Rd, d ≥ 1 be integrable.

Then by Birkhoff’s ergodic theorem, n−1
∑n−1

i=0 v ◦ T i →
∫
v dµ almost surely. This

is analogous to the strong law of large numbers, which says that if (Xn)n≥1 is a

sequence of integrable iid (independent and identically distributed) random vectors,

then n−1
∑n

i=1Xi → E[X1] almost surely.

More generally, if T :M →M is ‘chaotic’ enough and v is sufficiently regular,

then the sequence (v ◦ Tn)n≥1 obeys many of the same statistical limit laws as a

sequence of iid random vectors. Let v satisfy
∫
v dµ = 0. We say that v satisfies the

central limit theorem if n−1/2
∑n−1

i=0 v◦T i weakly converges to a normal distribution.

Define a piecewise constant random process Wn by

Wn(t) = n−1/2

[nt]−1∑
i=0

v ◦ T i for t ∈ [0, 1]. (1.0.1)

We view Wn as a random element of the space D([0, 1],Rd), that is the space of

functions h : [0, 1] → Rd that are right continuous and have left limits. We say

that v satisfies the weak invariance principle (WIP) if Wn weakly converges to a

Brownian motion. Note that if v satisfies the WIP, then it also satisfies the central

limit theorem.

Since the 1960s, both of these limit theorems have been studied for many

classes of chaotic dynamical systems [Sin60, Rat73, HK82, Dol04]. For example, if
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T is an Anosov diffeomorphism and µ is a Gibbs measure, then the WIP is satisfied

provided that v is Hölder.

1.1 Fast-slow systems

A wide variety of systems in applied mathematics can be split into variables that

evolve at radically different time-scales. Often one wishes to derive a simplified

equation for the slow variable that is valid in the limit as the time-scale separation

goes to infinity. There are many rigorous, widely applicable results in this direction

in the case where the fast variable is given by a stochastic differential equation

(see [PS08, Section 18.4]). In contrast, the case where the fast variable is given by

a chaotic dynamical system is less well-understood.

We consider discrete-time fast-slow systems on Rd ×M of the formx
(n)
k+1 = x

(n)
k + n−1a(x

(n)
k , yk) + n−1/2b(x

(n)
k , yk),

yk+1 = Tyk,
(1.1.1)

where x
(n)
0 ≡ ξ ∈ Rd is fixed and y0 is drawn randomly from (M,µ). Assume

that a, b : Rd ×M → Rd are regular and that
∫
M b(x, y)dµ(y) = 0 for all x ∈ Rd.

We call this system deterministic because the only source of randomness is the

initial condition y0. We are interested in finding an approximate description for

the slow dynamics x(n) that is valid in the limit as n → ∞. More precisely, we

wish to characterise the limiting behaviour of the random process Xn defined by

Xn(t) = x
(n)
[nt], t ∈ [0, 1]. In order to see what kind of limiting behaviour we should

expect, let us consider a very special case for the slow dynamics.

Example 1.1.1. Let ξ = 0, a ≡ 0 and b(x, y) = v(y). Then

Xn(t) = n−1/2

[nt]−1∑
i=0

v ◦ T i.

Hence if v satisfies the WIP, then Xn weakly converges to Brownian motion.

More generally, we are interested in proving that Xn weakly converges to a

stochastic differential equation driven by Brownian motion for all sufficiently regular

a, b. We refer to this as (deterministic) homogenisation.

In [Dol04] Dolgopyat proved homogenisation for a class of partially hyper-

bolic diffeomorphisms. In [MS11, GM13] Melbourne, Stuart & Gottwald initiated a

programme where homogenisation is derived from statistical properties of the fast
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dynamics. In particular, [GM13] proved that for certain special choices of the coef-

ficients a and b homogenisation follows from the WIP. However, it is not difficult to

find examples of slow dynamics where this approach breaks down:

Example 1.1.2. Take d = 2 and let ξ = 0, a(x, y) ≡ 0 and b(x, y) =

(
1 0

0 x1

)(
v1(y)

v2(y)

)
.

Write Xn = (X1
n, X

2
n) and let Wn = (W 1

n ,W
2
n) be as defined in (1.0.1). Denote

W 1
n(s

−) = limr↑sW
1
n(r). Then X1

n(t) =W 1
n(t) and

X2
n(t) =

[nt]−1∑
i=0

W 1
n(

i
n)(W

2
n(

i+1
n )−W 2

n(
i
n)) =

∫ t

0
W 1
n(s

−)dW 2
n(s),

where the above integral is interpreted in the Riemann-Stieltjes sense. Unfortunately,

knowing that Wn weakly converges to Brownian motion does not determine the weak

limit of
∫ t
0 (W

1
n)(s

−)dW 2
n(s).

Perhaps somewhat surprisingly, understanding the limiting behaviour of the

iterated integrals
∫ t
0 W

1
n(s

−)dW 2
n(s) is almost enough to prove homogenisation for

much more general slow dynamics.

Fix η ∈ (0, 1]. Let Cη0 (M) = {v : M → R | v is η-Hölder,
∫
M v dµ = 0}.

Given v = (v1, . . . , vk) ∈ Cη0 (M)k let Wn be as defined in (1.0.1) and define Wn ∈
D([0, 1],Rk×k) by

Wα,β
n (t) =

∫ t

0
Wα
n (s

−)dW β
n (s) = n−1

∑
0≤i<j<[nt]

vα ◦ T i vβ ◦ T j

for 1 ≤ α, β ≤ k, t ∈ [0, 1].

Theorem 1.1.3 ([KM16, Che+22]). Assume that

(i) (Iterated WIP) For all v ∈ Cη0 (M)k, k ≥ 1 we have that (Wn,Wn) weakly

converges to (W,W) in D([0, 1],Rk × Rk×k), where W is a Brownian motion

and W is a suitable matrix-valued process.

(ii) (Iterated moment bounds) There exists p > 1 such that∣∣∣∣∣∣
∑

0≤i<j≤n
v ◦ T iw ◦ T j

∣∣∣∣∣∣
Lp

= O(n)

for all v, w ∈ Cη0 (M).

Let a, b : Rd ×M → Rd be regular. Then Xn weakly converges to the solution of a

stochastic differential equation driven by Brownian motion.
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The above theorem is a special case of [Che+22, Theorem 2.10] and is proved

by rough path theory (see [Che+19] for a good survey on how rough path theory is

applied in this context). In [KM16] a similar theorem was proved under the stronger

assumption that moment bounds hold with p > 3.

Now that we have a sufficient condition for homogenisation in terms of sta-

tistical properties for T : M → M , the goal is to check these properties for a wide

class of fast dynamics. It is particularly natural to consider the class of nonuniformly

expanding/hyperbolic maps modelled by Young towers. This framework was intro-

duced by L.-S. Young [You98, You99] in order to study the statistical properties of

a broad generalisation of uniformly expanding/hyperbolic (Axiom A) dynamics. In

particular, it covers many physical examples such as Hénon attractors, dispersing

billiards, intermittent interval maps and the Poincaré map of the Lorenz attractor.

The statistical properties of a system modelled by a Young tower are deter-

mined by the tails of returns to the base of the tower. In particular, if we assume

that the tails decay at rate O(n−β) with β > 2, then the WIP is satisfied by any

Hölder mean zero observable so it is natural to consider homogenisation. (This

assumption is optimal; for β ≤ 2 there are examples where even the central limit

theorem fails for generic Hölder observables [Gou04].) By [KM16, MV16] the it-

erated WIP is also satisfied by mean zero Hölder observables. However, obtaining

iterated moment bounds in the full range β > 2 proved more problematic and even

in the nonuniformly expanding case this was only achieved recently [KKM22].

In Chapter 3, we extend iterated moment bounds to the case where T :

M →M is a nonuniformly hyperbolic map with O(n−β) tails for the optimal range

β > 2. By Theorem 1.1.3, this extends homogenisation results to examples such as

Bunimovich flowers [Bun73, CZ05a], a class of billiards with flat points considered

by Chernov & Zhang [CZ05a] and certain almost Anosov maps [EL21].

In order to prove moment bounds, we first prove that T :M →M satisfies an

elementary condition introduced by Leppänen [Lep17], which we call the Functional

Correlation Bound. Let us now motivate this condition, which is the main technical

tool used in this thesis.

By [MT14], T : M → M enjoys decay of correlations with rate O(n−(β−1)),

that is the correlation function

Cn(v, w) =

∫
M
v w ◦ Tn dµ−

∫
M
v dµ

∫
M
w dµ

4



satisfies |Cn(v, w)| = O(n−(β−1)) for all Hölder v, w :M → R. Note that

Cn(v, w) =

∫
M
G(x, Tnx)dµ(x)−

∫
M2

G(x1, T
nx2)dµ(x1)dµ(x2)

where G(x, y) = v(x)w(y). Hence, very loosely speaking, decay of correlations can

be thought of as quantifying how close the states of our system at times 0 and n

are to being independent. The Functional Correlation Bound generalises decay of

correlations by giving analogous bounds on expressions of the form∫
M
G(x, Tx, . . . , Tnx, Tmx, Tm+1x, . . . , T px)dµ(x)

−
∫
M2

G(x1, Tx1, . . . , T
nx2, T

mx2, T
m+1x2, . . . , T

px2)dµ(x1)dµ(x2)

for n≪ m ≤ p and general regular multivariable R-valued functions G.

In Section 3.4, we prove that the Functional Correlation Bound implies a

weak dependence lemma that is used throughout this thesis. We then finish Chap-

ter 3 by proving that this lemma implies iterated moment bounds.

In Chapter 4, we prove that the Functional Correlation Bound is a sufficient

condition for homogenisation by showing that it also implies the iterated WIP. Since

the Functional Correlation Bound is an elementary condition, this could be useful

for non-dynamicists interested in applying homogenisation results. We also provide

elementary sufficient conditions for homogenisation for a generalisation of (1.1.1)

where the fast dynamics is given by a family of dynamical systems Tn :M →M . We

then check these conditions for examples of families including intermittent Baker’s

maps and externally forced dispersing billiards.

1.2 Rates in the weak invariance principle

A different problem, which is the subject of Chapter 5, is to quantify the rate

of convergence in the WIP. Sharp convergence rates have been established in the

central limit theorem for many classes of dynamical systems [CP90, Gou05]. In

contrast, the first results on rates in the WIP for dynamical systems were obtained

only recently [AM19, LW22, Pav23] and give significantly worse rates than those

available for iid random vectors.

Again, we consider systems that satisfy the Functional Correlation Bound

with a sufficiently fast polynomial rate. We prove rates in theWIP in theWasserstein-

1 metric for Rd-valued Hölder observables. Our argument is based on Bernstein’s

classical ‘big block-small block’ method, whereas existing results for dynamical sys-
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tems use the martingale approximation method.

The rates that we obtain are independent of d and improve on those avail-

able in the literature for d > 1 [Pav23]. In particular, for systems that satisfy

the Functional Correlation Bound with a superpolynomial rate (including systems

modelled by Young towers with superpolynomial tails) we obtain a rate of the form

O(n−(1/4−δ)) for any δ > 0, whereas the rate obtained in [Pav23] is at best O(n−1/6).

1.3 Thesis outline

The chapters of this thesis are structured as follows:

� In Chapter 2, we recall some basic preliminary material on weak convergence.

� Chapter 3 is the first containing new results. First, we introduce the Functional

Correlation Bound and prove that is satisfied by nonuniformly hyperbolic maps

with polynomial tails. Then we show that the Functional Correlation Bound

implies iterated moment bounds.

� In Chapter 4, we provide elementary and explicit conditions (including the

Functional Correlation Bound) for homogenisation in the case where the fast

dynamics is given by a family of maps. We then verify these conditions for

certain families of nonuniformly hyperbolic maps.

� In Chapter 5, we prove rates of convergence in the multidimensional weak

invariance principle for systems that satisfy the Functional Correlation Bound.

� In Appendix A, we prove an iterated weak invariance principle for arrays of

random vectors.

1.4 Notation

� We endow Rd with the norm |y| =
∑d

i=1 |yi|. For a, b ∈ Rd we denote a⊗ b =

abT .

� We write an = O(bn) or an ≪ bn if there exists a constant C > 0 such that

an ≤ Cbn for all n ≥ 1. We write an = o(bn) if limn an/bn = 0 and an ∼ bn if

limn an/bn = 1.

� Let η ∈ (0, 1]. We say that a function v : M → R on a metric space (M,d)

is η-Hölder, and write v ∈ Cη(M), if ∥v∥η = |v|∞ + [v]η < ∞, where |v|∞ =

6



supM |v| and [v]η = supx ̸=y |v(x)− v(y)|/d(x, y)η. If η = 1 we call v Lipschitz

and write Lip(v) = [v]1.

� For 1 ≤ p ≤ ∞ we use | · |p to denote the Lp norm.
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Chapter 2

Preliminaries

2.1 Weak convergence

Let X be a metric space and let µ, µn be Borel probability measures on X for n ≥ 1.

We say that µn converges weakly to µ and write µn
w−→ µ if

lim
n→∞

∫
X
f dµn =

∫
X
f dµn

for all bounded, continuous functions f : X → R.
The following lemma provides a useful characterisation of weak convergence:

Lemma 2.1.1 (Portmanteau theorem). Let µn, µ be Borel probability measures on

(X , ρ) for n ≥ 1. The following are equivalent:

(i) µn
w−→ µ;

(ii)
∫
X f dµn →

∫
X f dµ for all bounded, Lipschitz f : X → R;

(iii) lim supn µn(F ) ≤ µ(F ) for all closed F ⊆ X ;

(iv) lim supn µn(U) ≥ µ(U) for all open U ⊆ X ;

(v) limn→∞ µn(B) = µ(B) for all Borel sets B ⊆ X with µ(∂B) = 0.

The equivalence of conditions (i)-(iv) is proved in [Bog18, Theorem 2.2.5].

By [Bog18, Theorem 2.4.1], (v) is equivalent to (i).

A random element of X is a measurable mappingX : Ω → X , where (Ω,F ,P)
is some probability space. The distribution of X is the probability measure PX =

X∗P. In this thesis, we consider the cases where X = Rd or X = D([0, 1],Rd) with
the metric induced by the supremum norm. If X = D([0, 1],Rd) then we call X a

random process.

8



Let X, Xn be random elements of X for n ≥ 1. We say that Xn
w−→ X if

PXn
w−→ PX .
We will also use the follow results:

Lemma 2.1.2 (Continuous mapping theorem). Let X and Y be metric spaces and

let X, (Xn)n≥1 be random elements of X . Assume that h : X → Y is continuous.

If Xn
w−→ X, then h(Xn)

w−→ h(X).

Lemma 2.1.3 (Slutsky’s Theorem [Bas11, Proposition A.42]). Let (Xn)n≥1, (Yn)n≥1

be sequences of random vectors defined on the same probability space. Suppose that

Xn
w−→ X and Yn

w−→ c where c is constant. Then Xn + Yn
w−→ X + c.

9



Chapter 3

The functional correlation

bound and iterated moment

bounds for nonuniformly

hyperbolic maps

3.1 Introduction

As discussed in the introduction of this thesis, we are interested in proving homogeni-

sation for systems modelled by Young towers. Let T : M → M be a nonuniformly

hyperbolic map modelled by a Young tower with invariant probability measure µ.

As part of the setup, there is a positive measure set Y ⊂ M and a return time

ϕ : Y → Z+. Define F : Y → Y by F (y) = T ϕ(y)(y). Roughly speaking, F

is assumed to be uniformly hyperbolic. In the special case where F is uniformly

expanding (Gibbs-Markov), T is called nonuniformly expanding.

The statistical properties of T : M → M are determined by the tails

µ(ϕ > n). Assume that µ(ϕ > n) = O(n−β) with β > 2. Then Hölder mean zero

observables satisfy the weak invariance principle (WIP) so it is natural to consider

homogenisation. In Theorem 1.1.3 we saw that proving homogenisation reduces

to verifying two statistical properties, namely the “iterated WIP” and “iterated

moment bounds”.

In [KM16, MV16] it was shown that the iterated WIP is satisfied by nonuni-

formly expanding/hyperbolic maps in the full range β > 2. However, obtaining

iterated moment bounds in the full range β > 2 proved more problematic. Indeed,

even in the nonuniformly expanding case this was only achieved recently [KKM22].

10



The case where T is nonuniformly hyperbolic is more challenging. In [You98]

it is assumed that T is exponentially contracting along stable manifolds. Under this

assumption, iterated moment bounds follow straightforwardly from the correspond-

ing bounds in the nonuniformly expanding case (see Remark 3.3.3 for more details).

However, this assumption fails for examples such as slowly-mixing billiards.

Without assuming uniform contraction along stable manifolds, previously it

was only possible to show iterated moment bounds for β > 5 [DMN20]. In this

chapter, we extend iterated moment bounds to the optimal range β > 2.

3.1.1 Illustrative examples

Many examples of invertible dynamical systems are modelled by Young towers.

For example, Axiom A (uniformly hyperbolic) diffeomorphisms, Hénon attractors

and the finite-horizon Sinai billiard are modelled by Young towers with exponential

tails and exponential contraction along stable manifolds [You98]. Hence for such

systems deterministic homogenisation results follow from [KM16]. We now give

some examples of slowly-mixing nonuniformly hyperbolic dynamical systems for

which it was not previously possible to show deterministic homogenisation, due to

a lack of control of iterated moments. We start with an example which is easy to

write down:

� Intermittent Baker’s maps. Let α ∈ (0, 1). Define g : [0, 1/2] → [0, 1] by

g(x) = x(1 + 2αxα). The Liverani-Saussol-Vaienti map T̄ : [0, 1] → [0, 1],

T̄ x =

 g(x), x ≤ 1/2,

2x− 1, x > 1/2

is a prototypical example of a slowly-mixing nonuniformly expanding map [LSV99].

As in [MV16, Exa. 4.1], consider an intermittent Baker’s map T : M → M ,

M = [0, 1]2 defined by

T (x1, x2) =

(T̄ x1, g
−1(x2)), x1 ∈ [0, 12 ], x2 ∈ [0, 1],

(T̄ x1, (x2 + 1)/2), x1 ∈ (12 , 1], x2 ∈ [0, 1].

Let π denote the projection onto the first coordinate. There is a unique T -

invariant probability measure µ such that π∗µ = µ̄. The map T is nonuniformly

hyperbolic and has a neutral fixed point at (0, 0) whose influence increases with

α. In particular, T is modelled by a Young tower with tails of the form ∼ n−β

where β = 1/α (see Subsection 4.4.1 for more details).
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For β > 2 the WIP holds for all Hölder observables. For β ≤ 2, the central limit

theorem fails for generic Hölder observables even for the T̄α dynamics [Gou04], so

it is natural to restrict to β > 2 when considering deterministic homogenisation.

By [DMN20] it is possible to show iterated moment bounds for β > 5. Our results

yield iterated moment bounds and hence deterministic homogenisation in the full

range β > 2.

Chaotic billiards provide many examples of slowly-mixing nonuniformly hyperbolic

maps. Markarian [Mar04], Chernov and Zhang [CZ05b] showed how to model many

examples of chaotic billiards by Young towers with polynomial tails.

We give two classes of chaotic billiards for which it is now possible to show

deterministic homogenisation:

� Bunimovich flowers [Bun73]. By [CZ05b] the billiard map is modelled by a

Young tower with tails of the form O(n−3(log n)3).

� Dispersing billiards with vanishing curvature. In [CZ05a] Chernov and

Zhang introduced a class of billiards modelled by Young towers with tails of the

form O((log n)βn−β) for any prescribed value of β ∈ (2,∞).

Other examples of maps modelled by a Young tower with tails of the form O(n−β)

with β ∈ (2, 5) include Wojtkowski’s system of two falling balls [BBNV12] and

certain almost Anosov maps [EL21].

3.2 Main results

Let (M,d) be a metric space. Fix η ∈ (0, 1] and let v : M → R. Let [v]η =

supx ̸=y |v(x)− v(y)|/d(x, y)η denote the η-Hölder seminorm of v.

Definition 3.2.1. Fix an integer q ≥ 1. Given a function G : M q → R and 0 ≤ i < q

we denote

[G]η,i = sup
x0,...,xq−1∈M

[G(x0, . . . , xi−1, ·, xi+1, . . . , xq−1)]η.

We call G separately η-Hölder, and write G ∈ Hη
q (M), if |G|∞ +

∑q−1
i=0 [G]η,i <∞.

Note that Hη
1(M) = Cη(M) is the space of η-Hölder observables. Fix γ > 0.

We consider dynamical systems which satisfy the following property:

Definition 3.2.2. Let µ be a Borel probability measure and let T : M → M be an

ergodic µ-preserving transformation. Suppose that there exists a constant C > 0
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such that for all integers 0 ≤ p < q, 0 ≤ n0 ≤ · · · ≤ nq−1,∣∣∣∣ ∫
M
G(Tn0x, . . . , Tnq−1x)dµ(x)

−
∫
M2

G(Tn0x0, . . . , T
np−1x0, T

npx1, . . . , T
nq−1x1)dµ(x0)dµ(x1)

∣∣∣∣
≤ C(np − np−1)

−γ
(
|G|∞ +

q−1∑
i=0

[G]η,i

)
(3.2.1)

for all G ∈ Hη
q (M). Then we say that T satisfies the Functional Correlation Bound

with rate n−γ.

A similar condition was introduced by Leppänen in [Lep17] and further stud-

ied by Leppänen and Stenlund in [LS17, LS20]. In particular, [Lep17] showed that

functional correlation decay implies a multi-dimensional CLT with bounds on the

rate of convergence. We are now ready to state the main results which we prove in

this chapter.

The rate of decay of correlations of a dynamical system modelled by a Young

tower is determined by the tails of the return time to the base of the tower. Indeed,

let T be a mixing transformation modelled by a two-sided Young tower with tails

of the form O(n−β) for some β > 1. In [MT14] by using ideas from [CG12], it was

shown that there exists C > 0 such that∣∣∣∣ ∫
M
v w ◦ Tndµ−

∫
M
vdµ

∫
M
wdµ

∣∣∣∣ ≤ Cn−(β−1) ∥v∥η ∥w∥η

for all n ≥ 1, v, w ∈ Cη(M). Our first main result is that the Functional Correlation

Bound holds with the same rate:

Theorem 3.2.3. Let β > 1. Let T be a mixing transformation modelled by a two-

sided Young tower whose return time has tails of the form O(n−β). Then T satisfies

the Functional Correlation Bound with rate n−(β−1).

Given v, w ∈ Cη(M) mean zero define

Sv(n) =
∑

0≤i<n
v ◦ T i, Sv,w(n) =

∑
0≤i<j<n

v ◦ T i w ◦ T j .

Our second main result is that the Functional Correlation Bound implies moment

estimates for Sv(n) and Sv,w(n). Let ∥·∥η = |·|∞ + [·]η denote the η-Hölder norm.

13



Theorem 3.2.4. Let γ > 1. Suppose that T satisfies the Functional Correlation

Bound with rate n−γ. Then there exists a constant C > 0 such that for all n ≥ 1,

for any mean zero v, w ∈ Cη(M),

(a) |Sv(n)|2γ ≤ Cn1/2 ∥v∥η.

(b) |Sv,w(n)|γ ≤ Cn ∥v∥η ∥w∥η.

Remark 3.2.5. By Theorem 1.1.3 to obtain deterministic homogenisation results it

suffices to prove the iterated WIP and iterated moment bounds. Let T be a mixing

transformation modelled by a two-sided Young tower with tails of the form O(n−β)

for some β > 2. By [MV16, Corollary 2.3], the Iterated WIP holds for all Hölder

observables. Together Theorem 3.2.3 and Theorem 3.2.4 give the iterated moment

bounds required in Theorem 1.1.3.

Remark 3.2.6. In this thesis we derive moment bounds for Hölder observables from

a functional correlation bound for separately Hölder functions. For systems mod-

elled by Young towers, one can also consider a wider class of dynamically Hölder

observables (see Subsection 3.3.1).

In [FV22], the author considered a functional correlation bound for sepa-

rately dynamically Hölder functions and showed that it implies moment bounds for

dynamically Hölder observables. The arguments used are essentially the same as

those in the proof of Theorem 3.2.4.

3.3 Young Towers

3.3.1 Prerequisites

Young towers were first introduced by L.-S. Young in [You98, You99], as a broad

framework to prove decay of correlations for nonuniformly hyperbolic maps. Our

presentation follows [BMT21]. In particular, this framework does not assume uni-

form contraction along stable manifolds and hence covers examples such as slowly

mixing billiard maps.

Gibbs-Markov maps: Let (Ȳ , µ̄Y ) be a probability space and let F̄ : Ȳ →
Ȳ be ergodic and measure-preserving. Let α be an at most countable, measurable

partition of Ȳ . We assume that there exist constants D0 > 0, θ ∈ (0, 1) such that

for all elements a ∈ α:

� (Full-branch condition) The map F̄ |a : a→ Ȳ is a measurable bijection.
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� For all distinct y, y′ ∈ Ȳ the separation time

s(y, y′) = inf{n ≥ 0 : F̄ny, F̄ny′ lie in distinct elements of α} <∞.

� Define ζ : a→ R+ by ζ = dµ̄Y /(d (F |−1
a )∗µ̄Y ). We have | log ζ(y)− log ζ(y′)| ≤

D0θ
s(y,y′) for all y, y′ ∈ a.

Then we call F̄ : Ȳ → Ȳ a full-branch Gibbs-Markov map.

Two-sided Gibbs-Markov maps Let (Y, d) be a bounded metric space

with Borel probability measure µY and let F : Y → Y be ergodic and measure-

preserving. Let F̄ : Ȳ → Ȳ be a full-branch Gibbs-Markov map with associated

measure µ̄Y .

We suppose that there exists a measure-preserving semi-conjugacy π̄ : Y →
Ȳ , so π̄ ◦ F = F̄ ◦ π̄ and π̄∗µY = µ̄Y . The separation time s(·, ·) on Ȳ lifts to

a separation time on Y given by s(y, y′) = s(π̄y, π̄y′). Suppose that there exist

constants K > 0, θ ∈ (0, 1) such that

d(Fny, Fny′) ≤ D0(θ
n + θs(y,y

′)−n) for all y, y′ ∈ Y, n ≥ 0. (3.3.1)

Then we call F : Y → Y a two-sided Gibbs-Markov map.

One-sided Young towers: Let ϕ̄ : Ȳ → Z+ be integrable and constant on

partition elements of α. We define the one-sided Young tower ∆̄ = Ȳ ϕ̄ and tower

map f̄ : ∆̄ → ∆̄ by

∆̄ = {(ȳ, ℓ) ∈ Ȳ × Z : 0 ≤ ℓ < ϕ̄(y)}, f̄(ȳ, ℓ) =

(ȳ, ℓ+ 1), ℓ < ϕ̄(y)− 1,

(F̄ ȳ, 0), ℓ = ϕ̄(y)− 1.

(3.3.2)

We extend the separation time s(·, ·) to ∆̄ by defining

s((ȳ, ℓ), (ȳ′, ℓ′)) =

s(ȳ, ȳ′), ℓ = ℓ′,

0, ℓ ̸= ℓ′.

Note that for θ ∈ (0, 1) we can define a metric by dθ(p̄, q̄) = θs(p̄,q̄).

Now, µ̄∆ = (µ̄Y × counting)/
∫
Ȳ ϕ̄dµ̄Y is an ergodic f̄ -invariant probability

measure on ∆̄.

Two-sided Young towers Let F : Y → Y be a two-sided Gibbs-Markov

map and let ϕ : Y → Z+ be an integrable function that is constant on π̄−1a for

each a ∈ α. In particular, ϕ projects to a function ϕ̄ : Ȳ → M that is constant on
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partition elements of α.

Define the one-sided Young tower ∆̄ = Ȳ ϕ̄ as in (3.3.2). Using ϕ in place

of ϕ̄ and F : Y → Y in place of F̄ : Ȳ → Ȳ , we define the two-sided Young tower

∆ = Y ϕ and tower map f : ∆ → ∆ in the same way. Likewise, we define an ergodic

f -invariant probability measure on ∆ by µ∆ = (µY × counting)/
∫
Y ϕdµY .

We extend π̄ : Y → Ȳ to a map π̄ : ∆ → ∆̄ by setting π̄(y, ℓ) = (π̄y, ℓ) for all

(y, ℓ) ∈ ∆. Note that π̄ is a measure-preserving semi-conjugacy; π̄ ◦ f = f̄ ◦ π̄ and

π̄∗µ∆ = µ̄∆. The separation time s on ∆̄ lifts to ∆ by defining s(y, y) = s(π̄y, π̄y′).

We are now finally ready to say what it means for a map to be modelled by

a Young tower:

Definition 3.3.1. Let T : M → M be a measure-preserving transformation on a

probability space (M,µ). Suppose that there exists Y ⊂M measurable with µ(Y ) > 0

such that:

� F = T ϕ : Y → Y is a two-sided Gibbs-Markov map with respect to some

probability measure µY .

� ϕ is constant on partition elements of π̄−1α, so we can define Young towers

∆ = Y ϕ and ∆̄ = Ȳ ϕ̄.

� There exist constants D0 > 0 and θ ∈ (0, 1) such that for all y, y′ ∈ Y ,

0 ≤ ℓ < ϕ(y) we have

d(T ℓy, T ℓy′) ≤ D0(d(y, y
′) + θs(y,y

′)) (3.3.3)

� The map πM : ∆ → M , πM (y, ℓ) = T ℓy is a measure-preserving semiconju-

gacy.

Then we say that T : M →M is modelled by a (two-sided) Young tower.

Remark 3.3.2. Here we have not assumed that the tower map f : ∆ → ∆ is mixing.

However, as in [Che99, Theorem 2.1, Proposition 10.1] and [BMT21] the a priori

knowledge that µ is mixing ensures that this is irrelevant.

Remark 3.3.3. (i) The map π̄ : Y → Ȳ is usually obtained by quotienting along

stable leaves. In particular, this is how π̄ is defined in [You98].

(ii) In [You98] it is assumed that the underlying dynamics T is exponentially con-

tracting along stable leaves. Under this assumption, control of iterated moments

follows easily from the nonuniformly expanding case in [KKM22]. Indeed, let

v : M → R be Hölder. Then the lifted observable ṽ = v ◦ πM can be written
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in the form ṽ = w ◦ π̄+ χ ◦ f − χ, where χ ∈ L∞(∆) and w : ∆̄ → R is dδ-Lipschitz

for some δ ∈ (0, 1) (see [KKM18, Section 5.1] for more details). Hence it is straight-

forward to show that iterated moment bounds for Hölder observables on M follow

from the corresponding bounds for dδ-Lipschitz observables on ∆̄.

From now on we suppose that T : M →M is a mixing transformation mod-

elled by a Young tower and that there exist constants β > 1, Cϕ > 0 such that

µY (ϕ ≥ n) ≤ Cϕn
−β for all n ≥ 1. Note that there exist δ > 0 and a finite set I ⊂ N

with gcd{I} = gcd{ϕ(y) : y ∈ Y } and µY (ϕ = k) ≥ δ for all k ∈ I.

We prove the following more refined version of Theorem 3.2.3:

Theorem 3.3.4. T satisfies the Functional Correlation Bound with rate n−(β−1).

Moreover, the implicit constant depends continuously on the system constants D0,

θ, δ, max{I}, β and Cϕ.

The fact that the implicit constant in the Functional Correlation Bound de-

pends continuously on the above system constants will be important in Chapter 4,

where we consider families of nonuniformly hyperbolic maps. Throughout the re-

mainder of this subsection, we use C > 0 to denote various constants that depend

continuously on the system constants D0, θ, δ, max{I}, β and Cϕ.

Before proceeding further, we recall and prove some standard facts about

Young towers. We quote results from [KKM19] because all of the estimates proved

in that article depend continuously on the above system constants.

Let ψn(x) = #{j = 1, . . . , n : f jx ∈ ∆0} denote the number of returns to

∆0 = {(y, ℓ) ∈ ∆ : ℓ = 0} by time n. The following bound is standard, see for

example [KKM19, Lemma 5.5].

Lemma 3.3.5. For all n ≥ 1, we have
∫
∆ θ

ψn dµ∆ ≤ Cn−(β−1)

The transfer operator L corresponding to f̄ : ∆̄ → ∆̄ and µ̄∆ is given point-

wise by

(Lv)(x) =
∑
f̄z=x

g(z)v(z), where g(y, ℓ) =

ζ(y), ℓ = ϕ(y)− 1,

1, ℓ < ϕ(y)− 1
.

It follows that for n ≥ 1, the operator Ln is of the form (Lnv)(x) =
∑

f̄nz=x gn(z)v(z),

where gn =
∏n−1
i=0 g ◦ f̄ i.

We say that z, z′ ∈ ∆̄ are in the same cylinder set of length n if f̄kz and

f̄kz′ lie in the same partition element of ∆̄ for 0 ≤ k ≤ n− 1. We use the following

distortion bound (see e.g. [KKM19, Proposition 5.2]):
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Lemma 3.3.6. For all n ≥ 1, for all points z, z′ ∈ ∆̄ which belong to the same

cylinder set of length n,

|gn(z)− gn(z
′)| ≤ Cgn(z)dθ(f̄

nz, f̄nz′).

We say that v : ∆̄ → R is dθ-Lipschitz if ∥v∥θ = |v|∞ + Lip(v) < ∞, where

Lip(v) = supx ̸=y |v(x)− v(y)|/dθ(x, y). If f : ∆ → ∆ is mixing then by [You99],∣∣∣∣Lnv − ∫ v dµ̄∆

∣∣∣∣
1

= O(n−(β−1) ∥v∥θ).

The same bound holds pointwise on ∆̄0:

Proposition 3.3.7. Suppose that f : ∆ → ∆ is mixing. Then for all dθ-Lipschitz

v : ∆̄ → R, for any n ≥ 1,∣∣∣∣1∆̄0

(
Lnv −

∫
∆̄
v dµ̄∆

)∣∣∣∣
∞

≤ Cn−(β−1) ∥v∥θ .

Proof. We first show that for all dθ-Lipschitz w : ∆̄ → R and all n ≥ 0,

sup
∆̄0

|Lnw| ≤ C(Lip(w)|θψn |1 + |w|1). (3.3.4)

Let x, x′ ∈ ∆̄0. Then we can pair preimages z, z′ of x, x′ so that z, z′ are in

the same cylinder set of length n. It follows that s(z, z′) = ψn(z
′) + s(x, x′). Write

(Lnw)(x)− (Lnw)(x′) = I1 + I2, where

I1 =
∑
f̄nz=x

gn(z)(w(z)− w(z′)), I2 =
∑

f̄nz′=x′

w(z′)(gn(z)− gn(z
′)).

Note that

|I1| ≤ Lip(w)
∑
f̄nz=x

gn(z)θ
ψn(z′)dθ(x, x

′) = Lip(w)(Lnθψn)(x′)dθ(x, x
′).

By bounded distortion (Lemma 3.3.6),

|I2| ≤ C
∑

f̄nz′=x′

|w(z′)|gn(z′)dθ(x, x′) = C(Ln|w|)(x′)dθ(x, x′).

It follows that |(Lnw)(x)| ≤ |(Lnw)(x′)|+Lip(w)(Lnθψn)(x′)+C(Ln|w|)(x′). Hence
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integrating over x′ ∈ ∆̄0 gives

|(Lnw)(x)| ≤ µ̄∆(∆̄0)
−1

∫
∆̄0

(|Lnw|+ Lip(w)|Lnθψn |+ CLn|w|)dµ̄∆

≤ µ̄∆(∆̄0)
−1
(
(1 + C) |w|1 + Lip(w)

∣∣∣θψn∣∣∣
1

)
.

The proof of (3.3.4) follows by noting that µ̄∆(∆̄0)
−1 =

∫
Ȳ ϕdµ̄Y ≤ Cϕ

∑
k≥1 k

−β.

Finally, let v : ∆̄ → R be dθ-Lipschitz and let k ≥ 1. Without loss of

generality take
∫
v dµ̄∆ = 0 and set w = Lk−[k/2]v. By [DP09, Lemma 2.2],

Lip(w) ≤ C ∥v∥θ. By (3.3.4), it follows that

sup
∆̄0

|Lkv| = sup
∆̄0

|L[k/2]w| ≤ C(Lip(w)|θψ[k/2] |1 + |w|1)

≤ C(∥v∥θ |θ
ψ[k/2] |1 + |Lk−[k/2]v|1).

Now by [KKM19, Theorem 2.7],
∣∣Lk−[k/2]v

∣∣
1
≤ C(k−[k/2])−(β−1) ∥v∥θ. By Lemma 3.3.5,

we have |θψ[k/2] |1 ≤ C[k/2]−(β−1). It follows that sup∆̄0
|Lkv| ≤ Ck−(β−1) ∥v∥θ, as

required.

When studying systems modelled by Young towers, it is natural to consider

the following class of observables:

Dynamically Hölder observables Fix θ ∈ (0, 1). For v : M → R, define

∥v∥H = |v|∞ + [v]H, [v]H = sup
y,y′∈Y,y ̸=y′

sup
0≤ℓ<ϕ(y)

|v(T ℓy)− v(T ℓy′)|
d(y, y′) + θs(y,y′)

.

We say that v is dynamically Hölder if ∥v∥H < ∞ and denote by H(M) the space

of all such observables.

Lemma 3.3.8. Let v : M → R be Lipschitz. Then [v]H ≤ D0Lip(v).

Proof. Let y, y′ ∈ Y , 0 ≤ ℓ < ϕ(y). By (3.3.3),

|v(T ℓy)− v(T ℓy′)| ≤ Lip(v)d(T ℓy, T ℓy′)

≤ D0Lip(v)(d(y, y
′) + θs(y,y

′)).

Let q ≥ 1. Given a function G : M q → R and 0 ≤ i < q we denote

[G]H,i = sup
x0,...,xq−1∈M

[G(x0, . . . , xi−1, ·, xi+1, . . . , xq−1)]H.

We call the function G separately dynamically Hölder, and write G ∈ SHq(M), if
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|G|∞ +
∑q−1

i=0 [G]H,i<∞.

3.3.2 Reduction to the case of a mixing Young tower

In proofs involving Young towers it is often useful to assume that the Young tower is

mixing, i.e. gcd{ϕ(y) : y ∈ Y } = 1. It is also natural to consider dynamically Hölder

observables. Hence in subsequent subsections we focus on the case where the Young

tower is mixing and prove a functional correlation for separately dynamically Hölder

functions:

Proposition 3.3.9. Suppose that T is modelled by a mixing two-sided Young tower

such that µ(ϕ ≥ k) ≤ Cϕn
−β for all n ≥ 1. Then for all integers 0 ≤ p < q, 0 ≤

n0 ≤ · · · ≤ nq−1, we have∣∣∣∣ ∫
M
G(Tn0x, . . . , Tnq−1x)dµ(x)

−
∫
M2

G(Tn0x0, . . . , T
np−1x0, T

npx1, . . . , T
nq−1x1)dµ(x0)dµ(x1)

∣∣∣∣
≤ C(np − np−1)

−γ
(
|G|∞ +

q−1∑
i=0

[G]η,i

)
(3.3.5)

for any G ∈ SHq(M).

Proof of Theorem 3.3.4. We can take η = 1 without loss of generality. Indeed, let

dη(x, y) = d(x, y)η. Let T be a transformation on (M,d) modelled by a Young tower.

Then all the assumptions in the definition of being modelled by a Young tower are

satisfied on (M,dη) with slightly different constants. Moreover, separately Hölder

functions with respect to d are separately Lipschitz with respect to dη.

Let d = gcd{ϕ(y) : y ∈ Y }. Set T ′ = T d and ϕ′ = ϕ/d. Construct a mixing

two-sided Young tower ∆′ = Y ϕ′ , with tower measure µ′∆. Define π′M : ∆′ → M by

π′M (y, ℓ) = (T ′)ℓy. Then T ′ is modelled by ∆′ with ergodic, T ′-invariant measure

(π′M )∗µ
′
∆. Next we show that µ = (π′M )∗µ

′
∆ by adapting an argument from [BMT21,

Section 4.1].

By assumption µ = (πM )∗µ∆ so µY is absolutely continuous with respect to

µ. Let B ⊂ M be a Borel set such that µ(B) = 0. Then for all ℓ ≥ 0 we have

µ((T ′)−ℓB) = µ(B) = 0 so µY ((T
′)−ℓB) = 0. Now

(π′M )−1B ⊂
⋃
ℓ≥0

[(T ′)−ℓB ∩ Y ]× {ℓ}
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so

(πM )∗µ
′
∆(B) ≤

∑
ℓ≥0

µ′∆([(T
′)−ℓB ∩ Y ]× {ℓ})

=
1∫

Y ϕ
′ dµY

∑
ℓ≥0

µY ((T
′)−ℓB) = 0.

Hence (πM )∗µ
′ is absolutely continuous with respect to µ. Now µ is mixing for T by

assumption and thus ergodic for T ′. Since distinct ergodic measures are mutually

singular, it follows that µ = (π′M )∗µ
′
∆.

Let G ∈ Hη
q (M) and fix integers 0 ≤ n0 ≤ · · · ≤ nq−1. Define n′i =

[ni/d], ri = ni mod d. We need to bound

∇G =

∫
M
G(Tn0x, . . . , Tnq−1x)dµ(x)

−
∫
M2

G(Tn0x0, . . . , T
np−1x0, T

npx1, . . . , T
nq−1x1)dµ(x0)dµ(x1).

Define G′ : M q → R by G′(x0, . . . , xq−1) = G(T r0x0, . . . , T
rq−1xq−1). Then

∇G =

∫
M
G′((T ′)n

′
0x, . . . , (T ′)n

′
q−1x)dµ(x)

−
∫
M2

G′((T ′)
n′
0x0, . . . , (T

′)n
′
p−1x0, (T

′)n
′
px1, . . . , (T

′)n
′
q−1x1)dµ(x0)dµ(x1).

Let [·]H′ denote the dynamically Hölder seminorm as defined with T ′, ϕ′ in place of

T, ϕ. Then by Proposition 3.3.9,

|∇G| ≤ C(n′p − n′p−1)
−γ
(∣∣G′∣∣

∞ +

q−1∑
i=0

[G′]H′,i

)

≤ Cdγ(np − np−1 − d)−γ
(
|G|∞ +

q−1∑
i=0

[G′]H′,i

)
.

Now fix 0 ≤ i < q. Let x0, . . . , xq−1 ∈M and write

v′(y) = G′(x0, . . . , xi−1, y, xi+1, . . . , xq−1)

= G(T r0x0, . . . , T
ri−1xi−1, T

riy, T ri+1xi+1, . . . , T
rq−1xq−1) = v(T riy).

Let y, y′ ∈ Y and 0 ≤ ϕ′(y) < ℓ. Then

|v′((T ′)ℓy)− v′((T ′)ℓy′)| = |v(T dℓ+riy)− v(T dℓ+riy′)| ≤ [G]H,i(d(y, y
′) + θs(y,y

′)),
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so [G′]H′,i ≤ [G]H,i. Finally, by Lemma 3.3.8 we have [G]H,i ≤ D0[G]1,i.

3.3.3 Approximation by one-sided functions

Let 0 ≤ p < q and 0 ≤ n0 ≤ · · · ≤ nq−1 be integers and consider a function

G ∈ SHq(M). In order to prove Proposition 3.3.9, we wish to bound

∇G =

∫
M
G(Tn0x, . . . , Tnq−1x)dµ(x)

−
∫
M2

G(Tn0x0, . . . , T
np−1x0, T

npx1, . . . , T
nq−1x1)dµ

2(x0, x1).

Now since πM : ∆ →M is a measure-preserving semiconjugacy

∇G =

∫
∆
H̃(x, fnpx)dµ∆(x)−

∫
∆2

H̃(x0, x1)dµ
2
∆(x0, x1) = ∇H̃ (3.3.6)

where H̃ : ∆2 → R is given by

H̃(x, y) = G̃(fn0x, fn1x, . . . , fnp−1x, fkpy, fkp+2y, . . . , fkq−1y),

where G̃ = G ◦ πM and ki = ni − np.

Let R ≥ 1. We approximate H̃(fR·, fR·) by a function H̃R that projects

down onto ∆̄. Our approach is based on ideas from Appendix B of [MT14].

Recall that ψR(x) = #{j = 1, . . . , R : f jx ∈ ∆0} denotes the number of

returns to ∆0 = {(y, ℓ) ∈ ∆ : ℓ = 0} by time R. Let QR denote the at most

countable, measurable partition of ∆ with elements of the form {x′ ∈ ∆ : s(x, x′) >

2ψR(x)}, x ∈ ∆. Choose a reference point in each partition element of QR. For

x ∈ ∆ let x̂ denote the reference point of the element that x belongs to. Define

H̃R : ∆
2 → R by

H̃R(x, y) = G̃
(
fR(f̂n0x), . . . , fR(f̂np−1x), fR(f̂kpy), . . . , fR(f̂kq−1y)

)
.

Lemma 3.3.10. The function H̃R lies in L∞(∆2) and projects down to a function

H̄R ∈ L∞(∆̄2). Moreover,

(i)
∣∣H̄R

∣∣
∞ = |H̃R|∞ ≤ |G|∞ .

(ii) For all x, y ∈ ∆,

|H̃(fRx, fRy)− H̃R(x, y)| ≤ C

(p−1∑
i=0

[G]H,i θ
ψR(f

nix) +

q−1∑
i=p

[G]H,i θ
ψR(f

kiy)

)
.
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(iii) For all ȳ ∈ ∆̄,

∥∥LR+np−1H̄R(·, ȳ)
∥∥
θ
≤ C

(
|G|∞ +

p−1∑
i=0

[G]H,i

)
.

Here we recall that ∥·∥θ denotes the dθ-Lipschitz norm, which is given by

∥v∥θ = |v|∞ + supx ̸=y |v(x)− v(y)|/dθ(x, y) for v : ∆̄ → R.

Proof. We follow the proof of Proposition 7.9 in [BMT21]. By definition H̃R is

piecewise constant on a measurable partition of ∆2. Moreover, this partition projects

down to a measurable partition on ∆̄, since it is defined in terms of s and ψR which

both project down to ∆̄. It follows that H̄R is well-defined and measurable. Part

(i) is immediate.

Let x, y ∈ ∆. Write H̃(fRx, fRy)− H̃R(x, y) = I1 + I2 where

I1 = G̃
(
fR(fn0x), . . . , fR(fnp−1x), fR(fkpy), . . . , fR(fkq−1y)

)
− G̃

(
fR(f̂n0x), . . . , fR(f̂np−1x), fR(fkpy), . . . , fR(fkq−1y)

)
,

I2 = G̃
(
fR(f̂n0x), . . . , fR(f̂np−1x), fRfkpy, . . . , fRfkq−1y

)
− G̃

(
fR(f̂n0x), . . . , fR(f̂np−1x), fR(f̂kpy), . . . , fR(f̂kq−1y)

)
.

Let ai = fnix and bi = fRfkiy. By successively substituting ai by âi,

I1 = G̃(fRa0, . . . , f
Rap−1, bp, . . . , bq−1)− G̃(fRâ0, . . . , f

Râp−1, bp, . . . , bq−1)

=

p−1∑
i=0

(
G̃(fRa0, . . . , f

Rai−1, f
Rai, f

Râi+1, f
Râp−1, bp, . . . , bq−1)

− G̃(fRa0, . . . , f
Rai−1, f

Râi, f
Râi+1, f

Râp−1, bp, . . . , bq−1)
)

=

p−1∑
i=0

(
ṽi(f

Rai)− ṽi(f
Râi)

)
(3.3.7)

where ṽi(x) = G̃(fRa0, . . . , f
Rai−1, x, f

Râi+1, . . . , f
Râp−1, bp, . . . , bq−1).

Fix 0 ≤ i < p. Since ai and âi are in the same partition element, s(ai, âi) >

2ψR(ai). Write ai = (y, ℓ), âi = (ŷ, ℓ). Then fRai = (FψR(ai)y, ℓ1) and similarly

fRâi = (FψR(ai)ŷ, ℓ1), where ℓ1 = ℓ + R − ΦψR(ai)(y). (Here, Φk =
∑k−1

j=0 ϕ ◦ F k.)
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Now by the definition of [G]H,i and (3.3.1),

|ṽi(fRai)− ṽi(f
Râi)| = |ṽi(FψR(ai)y, ℓ1)− ṽi(F

ψR(ai)ŷ, ℓ1)|

≤ [G]H,i(d(F
ψR(ai)y, FψR(ai)y′) + θs(F

ψR(ai)y,FψR(ai)y′))

≤ (D0 + 1)[G]H,i(θ
ψR(ai) + θs(ai,a

′
i)−ψR(ai))

≤ 2(D0 + 1)[G]H,iθ
ψR(ai).

Thus

|I1| ≤ 2(D0 + 1)

p−1∑
i=0

[G]H,iθ
ψR(f

nix).

By a similar argument,

|I2| ≤ 2(D0 + 1)

q−1∑
i=p

[G]H,iθ
ψR(f

kiy),

completing the proof of (ii).

Let x̄, x̄′, ȳ ∈ ∆̄. Recall that

LR+np−1H̄R(·, ȳ)(x̄) =
∑

f̄R+np−1 z̄=x̄

gR+np−1(z̄)H̄R(z̄, ȳ).

It follows that
∣∣LR+np−1H̄R(·, ȳ)

∣∣
∞ ≤

∣∣H̄R

∣∣
∞ ≤ |G|∞ . If dθ(x̄, x̄

′) = 1, then

|LR+np−1H̄R(·, ȳ)(x̄)− LR+np−1H̄R(·, ȳ)(x̄′)| ≤ 2 |G|∞ = 2 |G|∞ dθ(x̄, x̄
′).

Otherwise, we can write Lnp−1+RH̄R(·, ȳ)(x̄)−Lnp−1+RH̄R(·, ȳ)(x̄′) = J1+J2 where

J1 =
∑

f̄np−1+Rz̄=x̄

(
gnp−1+R(z̄)− gnp−1+R(z̄

′)
)
H̄R(z̄, ȳ),

J2 =
∑

f̄np−1+Rz̄′=x̄′

gnp−1+R(z̄
′)
(
H̄R(z̄, ȳ)− H̄R(z̄

′, ȳ)
)
.

Here, as usual we have paired preimages z̄, z̄′ that lie in the same cylinder set of

length np−1 + R. By bounded distortion (Lemma 3.3.6), |J1| ≤ C |G|∞ dθ(x̄, x̄
′).

We claim that |H̄R(z̄, ȳ)− H̄R(z̄
′, ȳ)| ≪

∑p−1
i=0 [G]H,idθ(x̄, x̄

′). It follows that |J2| ≪∑p−1
i=0 [G]H,idθ(x̄, x̄

′).

It remains to prove the claim. Choose points z, z′, y ∈ ∆ that project to
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z̄, z̄′, ȳ. Let ai = fniz, a′i = fniz′, bi = fR+niy. As in part (ii),

H̄R(z̄, ȳ)− H̄R(z̄
′, ȳ) = H̃R(z, y)− H̃R(z

′, y) =

p−1∑
i=0

(w̃i(f
Râi)− w̃i(f

Râ′i))

where w̃i(x) = G̃(fRâ0, . . . , âi−1, x, f
Râ′i+1, . . . , â

′
p−1, b̂p, . . . , b̂q−1).

Let 0 ≤ i < p. We bound Ei = w̃i(f
Râi) − w̃i(f

Râ′i). Without loss of

generality suppose that

ψR(â
′
i) ≥ s(âi, â

′
i)− ψR(âi),

for otherwise âi and â
′
i are reference points of the same partition element so âi = â′i

and Ei = 0. Now as in part (ii),

Ei ≤ (D0 + 1)(θψR(âi) + θs(âi,â
′
i)−ψR(âi))[G]H,i.

Note that

s(âi, â
′
i)− ψR(âi) ≥ min{s(âi, ai), s(ai, a′i), s(a′i, â′i)} − ψR(âi).

Since z̄, z̄′ lie in the same cylinder set of length R+ np−1, we have ψR(ai) = ψR(a
′
i)

and

s(ai, a
′
i) = s(f̄ni z̄, f̄ni z̄′) = s(x̄, x̄′) + ψR+np−1−ni(f̄

ni z̄)

≥ s(x̄, x̄′) + ψR(ai).

Now ai and âi are contained in the same partition element so s(âi, ai) − ψR(âi) ≥
ψR(âi) and

ψR(âi) = ψR(ai) = ψR(a
′
i) = ψR(â

′
i).

Hence s(âi, â
′
i)−ψR(âi) ≥ min{s(x̄, x̄′), ψR(ai)}. It follows that Ei ≤ 2(D0+

1)θs(x̄,x̄
′)[G]H,i, completing the proof of the claim.

3.3.4 Proof of Proposition 3.3.9

We continue to assume that β > 1 and that µY (ϕ ≥ n) ≤ Cϕn
−β. We also assume

that gcd{ϕ(y) : y ∈ Y } = 1 so that f : ∆ → ∆ is mixing. We say that V : ∆̄2 → R
is dθ-Lipschitz in x0 if

∥V ∥θ,0 = sup
x1∈∆

∥V (·, x1)∥θ <∞.
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Proposition 3.3.11. For any V ∈ L∞(∆̄2), we have∣∣∣∣∫
∆̄
V (x, f̄nx)dµ̄∆(x)−

∫
∆̄2

V (x0, x1)dµ̄
2
∆(x0, x1)

∣∣∣∣ ≤ Cn−(β−1) sup
y∈∆̄

∥V (·, y)∥θ

for all n ≥ 1.

Remark 3.3.12. Let V (x, y) = v(x)w(y) where v is dθ-Lipschitz and w ∈ L∞(∆̄).

Then we obtain that∣∣∣∣∫
∆̄
v w ◦ f̄ndµ̄∆ −

∫
∆̄
v dµ̄∆

∫
∆̄
w dµ̄∆

∣∣∣∣ ≤ Cn−(β−1) ∥v∥θ |w|∞ ,

so Proposition 3.3.11 can be seen as a generalisation of the usual upper bound on

decay of correlations for observables on the one-sided tower ∆̄.

Remark 3.3.13. Our proof of Proposition 3.3.11 is based on ideas from [CG12, Sec-

tion 4]. However, we have chosen to present the proof in full because (i) our as-

sumptions are weaker, in particular we only require β > 1 instead of β > 2 and V

need not be separately dθ-Lipschitz and (ii) we avoid introducing Markov chains.

Proof of Proposition 3.3.11. Write v(x) = V (x, f̄nx) so∫
∆̄
V (x, fnx) dµ̄∆(x) =

∫
∆̄
v dµ̄∆ =

∫
∆̄
Lnv dµ̄∆

=

∫
∆̄

∑
f̄nz=x

gn(z)V (z, f̄nz)dµ̄(x)

=

∫
∆̄

∑
f̄nz=x

gn(z)V (z, x)dµ̄∆(x) =

∫
∆̄
(Lnux)(x) dµ̄∆(x).

where ux(z) = V (z, x). Let ∆̄ℓ = {(y, j) ∈ ∆̄ : j = ℓ} denote the ℓ-th level of ∆̄. It

follows that we can decompose∫
∆̄
V (x, f̄nx)dµ̄∆(x)−

∫
∆̄2

V (x0, x1)dµ̄
2
∆(x0, x1) =

∑
ℓ≥0

Aℓ

where

Aℓ =

∫
∆̄ℓ

(
(Lnux)(x)−

∫
∆̄
V (z, x)dµ̄∆(z)

)
dµ̄∆(x).

For all ℓ ≥ 0,

|Aℓ| ≤ 2 |V |∞ µ̄∆(∆̄ℓ) = 2 |V |∞
µ̄Y (ϕ > ℓ)∫

ϕdµ̄Y
≪ |V |∞ (ℓ+ 1)−β.
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Hence, ∑
ℓ≥n/2

|Aℓ| ≪ |V |∞ n−(β−1).

Let x ∈ ∆̄ℓ, ℓ ≤ n. Then (Lnux)(x) = (Ln−ℓux)(x0) where x0 ∈ ∆̄0 is the unique

preimage of x under f̄ ℓ. Thus by Proposition 3.3.7,

|Aℓ| ≤
∫
∆̄ℓ

C(n− ℓ)−(β−1) ∥V (·, x)∥θ dµ̄∆ ≤ C(n− ℓ)−(β−1) sup
y∈∆̄

∥V (·, y)∥θ µ̄∆(∆̄ℓ).

Hence, ∑
ℓ≤n/2

|Aℓ| ≤ C(n/2)−(β−1) sup
y∈∆̄

∥V (·, y)∥θ
∑
ℓ≤n/2

µ̄∆(∆̄ℓ)

≤ C(n/2)−(β−1) sup
y∈∆̄

∥V (·, y)∥θ ,

completing the proof.

Proof of Proposition 3.3.9. Recall that we wish to bound

∇H̃ =

∫
∆
H̃(x, fnpx)dµ∆(x)−

∫
∆2

H̃(x0, x1)dµ
2
∆(x0, x1).

Without loss of generality assume that np − np−1 ≥ 2. Let R = [(np −
np−1)/2]. Write ∇H̃ = I1 + I2 +∇H̄R where

I1 =

∫
∆
H̃(x, fnpx)dµ∆(x)−

∫
∆
H̃R(x, f

npx)dµ∆(x),

I2 =

∫
∆
H̃R(x0, x1)dµ

2
∆(x0, x1)−

∫
∆2

H̃(x0, x1)dµ
2
∆(x0, x1),

∇H̄R =

∫
∆
H̃R(x, f

npx)dµ∆(x)−
∫
∆2

H̃R(x0, x1)dµ
2
∆(x0, x1)

=

∫
∆̄
H̄R(x, f̄

npx)dµ̄∆(x)−
∫
∆̄2

H̄R(x0, x1)dµ̄
2
∆(x0, x1).
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Now by Lemma 3.3.10(ii) and Lemma 3.3.5,

|I1| =
∣∣∣∣ ∫

∆
H̃(fRx, fR+npx)dµ∆(x)−

∫
∆
H̃R(x, f

npx)dµ∆(x)

∣∣∣∣
≪
∫
∆

(p−1∑
i=0

[G]H,iθ
ψR(f

nix) +

q−1∑
i=p

[G]H,iθ
ψR(f

np+kix)

)
dµ∆(x)

=

q−1∑
i=0

[G]H,i

∫
∆
θψRdµ∆ ≪

q−1∑
i=0

[G]H,iR
−(β−1). (3.3.8)

Similarly,

|I2| ≪
q−1∑
i=0

[G]H,iR
−(β−1). (3.3.9)

Now let uy(z) = H̄R(z, y) and V (x, y) = (Lnp−1+Ruy)(x). Then∫
∆̄2

V (x0, x1) dµ̄
2
∆(x0, x1) =

∫
∆̄2

H̄R(x0, x1) dµ̄
2
∆(x0, x1) (3.3.10)

and

V (x, f̄np−np−1−Rx) =
∑

f̄np−1+Rz=x

gnp−1+R(z)H̄R(z, f̄
np−np−1−Rx)

=
∑

f̄np−1+Rz=x

gnp−1+R(z)H̄R(z, f̄
npz) = (Lnp−1+Rû)(x)

where û(z) = H̄R(z, f̄
npz). Hence∫

∆̄
V (x, f̄np−np−1−Rx)dµ̄∆(x) =

∫
∆̄
Lnp−1+Rû dµ̄∆

=

∫
∆̄
û dµ̄∆ =

∫
∆̄
H̄R(x, f̄

npx) dµ̄∆(x). (3.3.11)

Now by Lemma 3.3.10(iii), supy∈∆̄ ∥V (·, y)∥θ ≪ |G|∞ +
∑p−1

i=0 [G]H,i. By Proposi-

tion 3.3.11, (3.3.10) and (3.3.11) it follows that

|∇H̄R| =
∣∣∣∣ ∫

∆̄
V (x, f̄np−np−1−Rx)dµ̄∆(x)−

∫
∆̄2

V (x0, x1)dµ̄
2
∆(x0, x1)

∣∣∣∣
≪ sup

y∈∆̄
∥V (·, y)∥θ (np − np−1 −R)−(β−1)

≪
(
|G|∞ +

p−1∑
i=0

[G]H,i

)
(np − np−1 −R)−(β−1). (3.3.12)
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Recall that R = [(np − np−1)/2]. Hence np − np−1 −R ≥ R. By combining (3.3.8),

(3.3.9) and (3.3.12) it follows that

|∇H̃| ≪
q−1∑
i=0

[G]H,i([(np − np−1)/2])
−(β−1),

as required.

3.4 An abstract weak dependence condition

We now give a weak dependence lemma that follows from the Functional Correlation

Bound. In most of our applications we use this lemma rather than applying the

Functional Correlation Bound directly.

Let e, q ≥ 1 be integers. For G = (G1, . . . , Ge) : M
q → Re and 0 ≤ i < q we

define [G]η,i =
∑e

j=1[Gj ]η,i. We write G ∈ Hη
q (M,Re) if |G|∞ +

∑q−1
i=0 [G]η,i <∞.

Let k ≥ 1 and consider k disjoint blocks of integers {ℓi, ℓi + 1, . . . , ui}, 0 ≤
i < k with ℓi ≤ ui < ℓi+1. Consider Re-valued random vectors Xi on (M,µ) of the

form

Xi(x) = Φi(T
ℓix, . . . , T uix)

where Φi ∈ Hη
ui−ℓi+1(M,Re), 0 ≤ i < k.

When the gaps ℓi+1 − ui between blocks are large, the random vectors

X0, . . . , Xk−1 are weakly dependent. Let X̂0, . . . , X̂k−1 be independent random vec-

tors with X̂i=d Xi.

Lemma 3.4.1. Suppose that T satisfies the Functional Correlation Bound with rate

n−γ for some γ > 0. Let R = maxi |Φi|∞. Then for all Lipschitz F : B(0, R)k → R,

∣∣Eµ[F (X0, . . . , Xk−1)]− E[F (X̂0, . . . , X̂k−1)]
∣∣

≤ C
k−2∑
r=0

(ℓr+1 − ur)
−γ
(
|F |∞ + Lip(F )

k−1∑
i=0

ui−ℓi∑
j=0

[Φi]η,j

)
,

where C > 0 is the constant that appears in the Functional Correlation Bound (3.2.1).

Recall that we have endowed Rk with the ℓ1 norm so |y| =
∑k

i=1 |yi|.

Proof. We proceed by induction on k. For k = 1 the inequality is trivial. Assume

that this lemma holds for k ≥ 1.
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Consider an enriched probability space which contains independent copies of

{Xi} and {X̂i}. Write

Eµ[F (X0, . . . , Xk)]− E[F (X̂0, . . . , X̂k)] = I1 + I2

where

I1 = E[F (X0, . . . , Xk−1, X̂k)]− E[F (X̂0, . . . , X̂k)] ,

I2 = Eµ[F (X0, . . . , Xk)]− E[F (X0, . . . , Xk−1, X̂k)] .

Since X̂k =d Xk and X̂k is independent of X0, . . . , Xk−1 and X̂0, . . . , X̂k−1,

I1 =

∫
M

(
Eµ
[
F
(
X0, . . . , Xk−1, Xk(y)

)]
− E

[
F
(
X̂0, . . . , X̂k−1, Xk(y)

)] )
dµ(y).

Let y ∈ M. The function Fy = F (·, . . . , ·, Xk(y)) : M
k → R satisfies Lip(Fy) ≤

Lip(F ). Hence by the inductive hypothesis,

|I1| ≤
∫ ∣∣Eµ[Fy(X0, . . . , Xk−1)]− E[Fy(X̂0, . . . , X̂k−1)]

∣∣dµ(y)
≤
∫
C

k−2∑
r=0

(ℓr+1 − ur)
−γ
(
|Fy|∞ + Lip(Fy)

k−1∑
i=0

ui−ℓi∑
j=0

[Φi]η,j

)
dµ(y)

≤ C
k−2∑
r=0

(ℓr+1 − ur)
−γ
(
|F |∞ + Lip(F )

k−1∑
i=0

ui−ℓi∑
j=0

[Φi]η,j

)
.

Now

I2 = Eµ[F (X0, . . . , Xk)]−
∫
M

Eµ
[
F
(
X0, . . . , Xk−1, Xk(y)

)]
dµ(y)

=

∫
M
F
(
X0(x), . . . , Xk(x)

)
dµ(x)−

∫
M2

F
(
X0(x), . . . , Xk−1(x), Xk(y)

)
dµ2(x, y).

Write

F (X0(x), . . . , Xk(x))

= F (Φ0(T
ℓ0x, . . . , T u0x);Φ1(T

ℓ1x, . . . , T u1x); . . . ;Φk(T
ℓkx, . . . , T ukx))

= G(T ℓ0x, . . . , T u0x;T ℓ1x, . . . , T u1x; . . . ;T ℓkx, . . . , T ukx).
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and

F (X0(x), . . . , Xk−1(x), Xk(y))

= G(T ℓ0x, . . . , T u0x;T ℓ1x, . . . , T u1x; . . . ;T ℓk−1x, . . . , T uk−1x;T ℓky, . . . , T uky)

where G : M s → R, s =
∑k

i=0(ui − ℓi + 1). By a straightforward calculation,

G ∈ Hη
s(M) and

s−1∑
i=0

[G]η,i ≤
k∑
i=0

ui−ℓi∑
j=0

Lip(F )[Φi]η,j .

Hence by the Functional Correlation Bound,

|I2| =
∣∣∣∣ ∫

M
G(T ℓ0x, . . . , T u0x; . . . ;T ℓkx, . . . , T ukx)dµ(x)

−
∫
M2

G(T ℓ0x, . . . , T u0x; . . . ;T ℓk−1x, . . . , T uk−1x;T ℓky, . . . , T uky)dµ2(x, y)

∣∣∣∣
≤ C(ℓk − uk−1)

−γ
(
|F |∞ +

k∑
i=0

ui−ℓi∑
j=0

Lip(F )[Φi]η,j

)
.

This completes the proof.

3.5 Moment bounds

In this section we prove Theorem 3.2.4. Throughout this section we fix γ > 1 and

assume that T : M →M satisfies the Functional Correlation Bound with rate n−γ .

In both parts of Theorem 3.2.4 we use the following moment bounds for

independent, mean zero random variables, which are due to von Bahr, Esseen [BE65]

and Rosenthal [Ros70], respectively:

Proposition 3.5.1. Fix p ≥ 1. There exists a constant C > 0 such that for all

k ≥ 1, for all independent, mean zero random variables X̂0, . . . , X̂k−1 ∈ Lp:

(i) If 1 ≤ p ≤ 2, then

E

[∣∣∣∣k−1∑
i=0

X̂i

∣∣∣∣p
]
≤ C

k−1∑
i=0

E
[
|X̂i|p

]
.

(ii) If p > 2, then

E

[∣∣∣∣k−1∑
i=0

X̂i

∣∣∣∣p
]
≤ C

((k−1∑
i=0

E
[
X̂2
i

])p/2
+

k−1∑
i=0

E
[
|X̂i|p

])
.
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Let v, w ∈ Cη(M) be mean zero. For b ≥ a ≥ 0 we denote

Sv(a, b) =
∑
a≤i<b

v ◦ T i, Sv,w(a, b) =
∑

a≤i<j<b
v ◦ T iw ◦ T j .

Note that Sv(n) = Sv(0, n) and Sv,w(n) = Sv,w(0, n). Some straightforward algebra

yields the following lemma.

Lemma 3.5.2. Fix ℓ ≥ 1 and 0 = a0 ≤ a1 ≤ · · · ≤ aℓ. Then,

(i) Sv(aℓ) =
ℓ−1∑
i=0

Sv(ai, ai+1).

(ii) Sv,w(aℓ) =
ℓ−1∑
i=0

Sv,w(ai, ai+1) +
∑

0≤i<j<ℓ
Sv(ai, ai+1)Sw(aj , aj+1).

We also need the following elementary lemma:

Lemma 3.5.3. Fix R > 0, p ≥ 1 and an integer k ≥ 1. Define F : [−R,R]k → R by

F (y0, . . . , yk−1) = |y0 + · · ·+ yk−1|p. Then |F |∞ ≤ (kR)p and Lip(F ) ≤ p(kR)p−1.

Proof. Note that |F |∞ ≤ (kR)p. Fix y = (y0, . . . , yk−1), y
′ = (y′0, . . . , y

′
k−1) ∈

[−R,R]k and set a = |y0 + · · · + yk−1|, b = |y′0 + · · · + y′k−1|. By the Mean Value

Theorem,

|F (y0, . . . , yk−1)− F (y′0, . . . , y
′
k−1)| = |ap − bp|

≤ pmax{ap−1, bp−1}|a− b|

≤ p(kR)p−1
k−1∑
i=0

|yi − y′i| = p(kR)p−1|y − y′|,

so Lip(F ) ≤ p(kR)p−1.

Let k ≥ 1, n ≥ 2k and define ai = [ in2k ] for 0 ≤ i ≤ 2k. Note that

n
2k − 1 ≤ ai+1 − ai ≤ n

2k + 1 ≤ n
k . (3.5.1)

For 0 ≤ i < k let Xi = Sv(a2i, a2i+1). Let X̂0, . . . , X̂k−1 be independent random

variables with X̂i =d Xi.

Proposition 3.5.4. There exists a constant C > 0 such that

Eµ

[∣∣∣∣ k−1∑
i=0

Xi

∣∣∣∣2γ
]
≤ Ck1+γnγ ∥v∥2γη + E

[∣∣∣∣ k−1∑
i=0

X̂i

∣∣∣∣2γ
]
,
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for all n ≥ 2k, k ≥ 1, for any v ∈ Cη(M).

Proof. Note that

Xi(x) =

a2i+1−1∑
q=a2i

v(T qx) = Φi(T
ℓix, . . . , T uix),

where ℓi = a2i, ui = a2i+1 − 1 and

Φi(x0, . . . , xui−ℓi) =

ui−ℓi∑
j=0

v(xj).

Let R = maxi |Φi|∞ . Then

Eµ

[∣∣∣∣ k−1∑
i=0

Xi

∣∣∣∣2γ
]
= Eµ[F (X0, . . . , Xk−1)]

where F : [−R,R]k → R is given by F (y0, . . . , yk−1) = |y0 + · · ·+ yk−1|2γ . Hence by

Proposition 3.4.1,

Eµ

[∣∣∣∣ k−1∑
i=0

Xi

∣∣∣∣2γ
]
≤ A+ E

[∣∣∣∣ k−1∑
i=0

X̂i

∣∣∣∣2γ
]

where

|A| ≤ C

k−2∑
r=0

(ℓr+1 − ur)
−γ
(
|F |∞ + Lip(F )

k−1∑
i=0

ui−ℓi∑
j=0

[Φi]η,j

)
. (3.5.2)

It remains to bound A. First we bound the expressions [Φi]η,j . Fix 0 ≤ i < k

and 0 ≤ j ≤ ui − ℓi. For x0, . . . , xk−1, x
′
j ∈M ,

|Φi(x0, . . . , xui−ℓi)− Φi(x0, . . . , xj−1, x
′
j , xj+1 . . . , xui−ℓi)| = |v(xj)− v(x′j)|

so [Φi]η,j ≤ [v]η. Note that by (3.5.1), |Φi|∞ ≤ (a2i+1 − a2i) |v|∞ ≤ n
k |v|∞ . Hence

by Lemma 3.5.3,

|F |∞ ≤ 2γ(n |v|∞)2γ (3.5.3)

and Lip(F ) ≤ 2γ(n |v|∞)2γ−1.
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Thus

Lip(F )

k−1∑
i=0

ui−ℓi∑
j=0

[Φi]η,j ≤2γ(n |v|∞)2γ−1
k−1∑
i=0

ui−ℓi∑
j=0

[Φi]η,j

≤2γ(n |v|∞)2γ−1
k−1∑
i=0

(ui − ℓi + 1)[v]η

≤2γ(n |v|∞)2γ−1n[v]η. (3.5.4)

Now by (3.5.1), ℓr+1 − ur = a2r+2 − (a2r+1 − 1) ≥ n
2k for each 0 ≤ r ≤ k− 2. Hence

k−2∑
r=0

(ℓr+1 − ur)
−γ ≤ k( n2k )

−γ = 2γk1+γn−γ . (3.5.5)

Substituting (3.5.3), (3.5.4) and (3.5.5) into (3.5.2) gives

|A| ≤ 2γk1+γn−γ
(
2γ(n |v|∞)2γ + 2γ(n |v|∞)2γ−1n[v]η

)
≤ 21+γγCk1+γn−γ (n ∥v∥η)

2γ = 21+γγCk1+γnγ ∥v∥2γη ,

as required.

We are now ready to prove the moment bound for Sv(n) (Theorem 3.2.4(a)).

Proof of Theorem 3.2.4(a). We prove by induction that there exists D > 0 such

that

|Sv(m)|2γ ≤ Dm1/2 ∥v∥η (3.5.6)

for all m ≥ 1, for any mean zero v ∈ Cη(M).

Claim. There exists C > 0 such that for all mean zero v ∈ Cη(M), for any

D > 0, for any k ≥ 1 and any n ≥ 2k such that (3.5.6) holds for all m < n, we have

|Sv(n)|2γ2γ ≤ C(k1+γ + k1−γD2γ)nγ ∥v∥2γη .

Now fix k ≥ 1 such that Ck1−γ ≤ 1
2 . Fix D > 0 such that Ck1+γ ≤ 1

2D
2γ

and (3.5.6) holds for all m < 2k and any mean zero v ∈ Cη(M). Then the claim

shows that for any n ≥ 2k such that (3.5.6) holds for all m < n, we have |Sv(n)|2γ2γ ≤
D2γnγ ∥v∥2γη . Hence by induction, (3.5.6) holds for all m ≥ 1.

It remains to prove the claim. Note that in the following the constant C > 0

may vary from line to line.
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Fix n ≥ 2k and assume that (3.5.6) holds for all m < n. By Lemma 3.5.2(i),

Sv(n) =

2k−1∑
i=0

Sv(ai, ai+1) = I1 + I2,

where

I1 =
k−1∑
i=0

Sv(a2i, a2i+1), I2 =
k−1∑
i=0

Sv(a2i+1, a2i+2).

We first bound |I1|2γ . Write Xi = Sv(a2i, a2i+1) so that I1 =
∑k−1

i=0 Xi. By

Proposition 3.5.4,

|I1|2γ2γ = Eµ

[∣∣∣∣ k−1∑
i=0

Xi

∣∣∣∣2γ
]
≤ Ck1+γnγ ∥v∥2γη + E

[∣∣∣∣ k−1∑
i=0

X̂i

∣∣∣∣2γ
]
. (3.5.7)

We now bound E
[
|
∑k−1

i=0 X̂i|2γ
]
by using Proposition 3.5.1 and the inductive hy-

pothesis.

Fix 0 ≤ i < k. By stationarity, Xi = Sv(a2i, a2i+1) =d Sv(a2i+1 − a2i). Thus

by the inductive hypothesis (3.5.6), Eµ
[
|Xi|2γ

]
≤ D2γ(a2i+1 − a2i)

γ ∥v∥2γη . Hence

by (3.5.1),

k−1∑
i=0

E
[
|X̂i|2γ

]
≤

k−1∑
i=0

D2γ(a2i+1 − a2i)
γ ∥v∥2γη

≤
k−1∑
i=0

D2γ(n/k)γ ∥v∥2γη = D2γk1−γnγ ∥v∥2γη .

Now by the Functional Correlation Bound, |Eµ[v v ◦ Tn] | ≤ Cn−γ ∥v∥2η. By a stan-

dard calculation, it follows that Eµ
[
Sv(n)

2
]
≤ Cn ∥v∥2η. Thus

k−1∑
i=0

E
[
X̂2
i

]
=

k−1∑
i=0

Eµ
[
Sv(a2i+1 − a2i)

2
]

≤
k−1∑
i=0

C(a2i+1 − a2i) ∥v∥2η ≤ C(a2k−1 − a0) ∥v∥2η

≤ Cn ∥v∥2η .
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By Proposition 3.5.1(ii), it follows that

E

[∣∣∣∣k−1∑
i=0

X̂i

∣∣∣∣2γ
]
≤ C

(
(Cn ∥v∥2η)

γ +D2γk1−γnγ ∥v∥2γη
)

≤ C(1 +D2γk1−γ)nγ ∥v∥2γη .

Hence by (3.5.7), overall

|I1|2γ2γ ≤ C(k1+γ +D2γk1−γ)nγ ∥v∥2γη .

Exactly the same argument applies to |I2|2γ2γ . The conclusion of the claim follows by

noting that

|Sv(n)|2γ2γ = |I1 + I2|2γ2γ ≤ 22γ(|I1|2γ + |I2|2γ).

We now prove Theorem 3.2.4(b). Our proof follows the same lines as that of

part (a).

Let n, k ≥ 1. Recall that ai =
[
in
2k

]
. For 0 ≤ i < k define mean zero random

variables Xi on (M,µ) by

Xi = Sv,w(a2i, a2i+1)− Eµ[Sv,w(a2i, a2i+1)] .

Let X̂0, . . . , X̂k−1 be independent random variables with X̂i =d Xi.

The following proposition plays the same role that Proposition 3.5.4 played

in the proof of Theorem 3.2.4(a).

Proposition 3.5.5. There exists a constant C > 0 such that for any v, w ∈ Cη(M),

Eµ

[∣∣∣∣ k−1∑
i=0

Xi

∣∣∣∣γ
]
≤ Cknγ ∥v∥γη ∥w∥

γ
η + E

[∣∣∣∣ k−1∑
i=0

X̂i

∣∣∣∣γ
]

for all n ≥ 2k, k ≥ 1.

Proof. Note that

Xi(x) =
∑

a2i≤q<r≤a2i+1−1

v(T qx)w(T rx)− Eµ[Sv,w(a2i, a2i+1)]

= Φi(T
ℓix, . . . , T uix),

where ℓi = a2i, ui = a2i+1 − 1 and

Φi(x0, . . . , xui−ℓi) =
∑

0≤q<r≤ui−ℓi

v(xq)w(xr)− Eµ[Sv,w(a2i, a2i+1)] .
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Let R = maxi |Φi|∞. Observe that

Eµ

[∣∣∣∣ k−1∑
i=0

Xi

∣∣∣∣γ
]
= Eµ[F (X0, . . . , Xk−1)] ,

where F : [−R,R]k → R is given by F (y0, . . . , yk−1) = |y0 + · · · + yk−1|γ . Hence by

Lemma 3.4.1,

Eµ

[∣∣∣∣ k−1∑
i=0

Xi

∣∣∣∣γ
]
≤ A+ E

[∣∣∣∣ k−1∑
i=0

X̂i

∣∣∣∣2γ
]

where

|A| ≤ C

k−2∑
r=0

(ℓr+1 − ur)
−γ
(
|F |∞ + Lip(F )

k−1∑
i=0

ui−ℓi∑
j=0

[Φi]η,j

)
. (3.5.8)

It remains to bound A. The first step is to bound the expressions [Φi]η,j . Fix

0 ≤ i < k, 0 ≤ j ≤ ui − ℓi. Let x0, . . . , xk−1, x
′
j ∈M. Note that

Φi(x0, . . . , xui−ℓi)− Φi(x0, . . . , xj−1, x
′
j , xj+1 . . . , xui−ℓi) = J1 + J2,

where

J1 =
∑

j<r≤ui−ℓi

(v(xj)w(xr)− v(x′j)w(xr)),

J2 =
∑

0≤q<j
(v(xq)w(xj)− v(xq)w(x

′
j)).

Now,

|J1| ≤
∑

j<r≤ui−ℓi

|v(xj)− v(x′j)||w(xr)| ≤ |w|∞
∑

j<r≤ui−ℓi

|v(xj)− v(x′j)|

and similarly |J2| ≤ |v|∞
∑

0≤q<j |w(xj)− w(x′j)|, so

[Φi]η,j ≤ (ui − ℓi) ∥v∥η ∥w∥η .

Now recall from (3.5.1) that ui − ℓi + 1 = a2i+1 − a2i ≤ n/k so

k−1∑
i=0

ui−ℓi∑
j=0

[Φi]η,j ≤
k−1∑
i=0

(ui − ℓi + 1)2 ∥v∥η ∥w∥η ≤
n2

k ∥v∥η ∥w∥η . (3.5.9)
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Next note that

|Φi|∞ ≤
∑

0≤q<r≤ui−ℓi

|v|∞ |w|∞ + |Sv,w(a2i, a2i+1)|∞

≤ 2(n/k)2 |v|∞ |w|∞

so by Lemma 3.5.3, |F |∞ ≤
(
2n2

k |v|∞ |w|∞
)γ

and Lip(F ) ≤ γ
(
2n2

k |v|∞ |w|∞
)γ−1

.

Combining these bounds with (3.5.5), (3.5.8) and (3.5.9) yields that

|A| ≤ C2γk1+γn−γ
(
(2n

2

k |v|∞ |w|∞)γ + γ(2n
2

k |v|∞ |w|∞
)γ−1 n2

k ∥v∥η ∥w∥η
)

≤ 22γ(1 + γ/2)Cknγ ∥v∥γη ∥w∥
γ
η ,

as required.

We are now ready to prove Theorem 3.2.4(b).

Proof of Theorem 3.2.4(b). We prove by induction that there exists D > 0 such

that

|Sv,w(m)|γ ≤ Dm ∥v∥η ∥w∥η (3.5.10)

for all m ≥ 1, for any v, w ∈ Cη(M) mean zero.

Claim. There exists C > 0 such that for all v, w ∈ Cη(M) mean zero, for

any D > 0, any k ≥ 1 and any n ≥ 2k such that (3.5.10) holds for all m < n, we

have

|Sv,w(n)|γγ ≤ C
(
kγ + (k1−γ + k−γ/2)Dγ

)
(n ∥v∥η ∥w∥η)

γ .

Now fix k ≥ 1 such that C(k1−γ + k−γ/2) ≤ 1
2 . Fix D > 0 such that

Ckγ ≤ 1
2D

γ and (3.5.10) holds for all m < 2k and any mean zero v, w ∈ Cη(M).

Then the claim shows that if n ≥ 2k and (3.5.10) holds for all m < n, then

|Sv,w(n)|γγ ≤ Dγ(n ∥v∥η ∥w∥η)γ . Hence by induction, (3.5.10) holds for all m ≥ 1.

It remains to prove the claim. Note that in the following the constant C > 0

may vary from line to line.

Fix n ≥ 2k and assume that (3.5.10) holds for all m < n. Recall that

ai =
[
in
2k

]
for 0 ≤ i ≤ 2k. By Lemma 3.5.2(ii),

Sv,w(n) =
∑

0≤i<j<2k

Sv(ai, ai+1)Sw(aj , aj+1) +
2k−1∑
i=0

Sv,w(ai, ai+1) = I1 + I2 + I3 + I4,
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where

I1 =
∑

0≤i<j<2k

Sv(ai, ai+1)Sw(aj , aj+1), I2 =
2k−1∑
i=0

Eµ[Sv,w(ai, ai+1)] ,

I3 =
k−1∑
i=0

(
Sv,w(a2i, a2i+1)− Eµ[Sv,w(a2i, a2i+1)]

)
,

I4 =

k−1∑
i=0

(
Sv,w(a2i+1, a2i+2)− Eµ[Sv,w(a2i+1, a2i+2)]

)
.

Recall from (3.5.1) that ai+1 − ai ≤ n/k. Hence by Theorem 3.2.4(a),

|I1|γ ≤
∑

0≤i<j<2k

|Sv(ai, ai+1)Sw(aj , aj+1)|γ

≤
∑

0≤i<j<2k

|Sv(ai, ai+1)|2γ |Sw(aj , aj+1)|2γ

≤
∑

0≤i<j<2k

C2(ai+1 − ai)
1/2 ∥v∥η (aj+1 − aj)

1/2 ∥w∥η

≤
∑

0≤i<j<2k

C2(n/k)1/2 ∥v∥η (n/k)
1/2 ∥w∥η ≤ Ckn ∥v∥η ∥w∥ .

Now by the Functional Correlation Bound, |Eµ[v w ◦ Tn] | ≤ Cn−γ ∥v∥η ∥w∥η. By a

standard calculation, it follows that |Eµ[Sv,w(n)]| ≤ Cn ∥v∥η ∥w∥η. Thus

|I2| ≤
2k−1∑
i=0

|Eµ[Sv,w(ai, ai+1)] |

≤
2k−1∑
i=0

C(ai+1 − ai) ∥v∥η ∥w∥η = C(a2k − a0) ∥v∥η ∥w∥η

= Cn ∥v∥η ∥w∥η .

We now bound |I3|γγ . Note that I3 =
∑k−1

i=0 Xi, where Xi = Sv,w(a2i, a2i+1) −
Eµ[Sv,w(a2i, a2i+1)] . Hence by Proposition 3.5.5,

|I3|γγ = Eµ

[∣∣∣∣ k−1∑
i=0

Xi

∣∣∣∣γ
]
≤ Cknγ ∥v∥γη ∥w∥

γ
η + E

[∣∣∣∣ k−1∑
i=0

X̂i

∣∣∣∣γ
]
. (3.5.11)

Fix 0 ≤ i < k. By stationarity, Xi =d Sv,w(a2i+1 − a2i)−Eµ[Sv,w(a2i+1 − a2i)] . Now

by the inductive hypothesis (3.5.10), |Sv,w(a2i+1 − a2i)|γ ≤ D(a2i+1−a2i) ∥v∥η ∥w∥η ,
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so

|Xi|γ ≤ |Sv,w(a2i+1 − a2i)|γ + |Eµ[Sv,w(a2i+1 − a2i)] |

≤ 2D(a2i+1 − a2i) ∥v∥η ∥w∥η .

It follows that

k−1∑
i=0

E
[
|X̂i|γ

]
≤

k−1∑
i=0

2γDγ(a2i+1 − a2i)
γ(∥v∥η ∥w∥η)

γ

≤
k−1∑
i=0

2γDγ(n/k)γ(∥v∥η ∥w∥η)
γ = 2γDγk1−γ(n ∥v∥η ∥w∥η)

γ .

If 1 < γ ≤ 2, then by Proposition 3.5.1(i),

E

[∣∣∣∣ k−1∑
i=0

X̂i

∣∣∣∣γ
]
≤ 2γCDγk1−γ(n ∥v∥η ∥w∥η)

γ .

Suppose on the other hand that γ > 2. Note that

|X̂i|2 ≤ |X̂i|γ ≤ 2D(a2i+1 − a2i) ∥v∥η ∥w∥η

so

k−1∑
i=0

E
[
X̂2
i

]
≤

k−1∑
i=0

4D2(a2i+1 − a2i)
2(∥v∥η ∥w∥η)

2

≤
k−1∑
i=0

4D2(n/k)2(∥v∥η ∥w∥η)
2 = 4D2k−1(n ∥v∥η ∥w∥η)

2.

Hence by Proposition 3.5.1(ii),

E

[∣∣∣∣ k−1∑
i=0

X̂i

∣∣∣∣γ
]
≤ C

((
4D2k−1(n ∥v∥η ∥w∥η)

2
)γ/2

+ 2γDγk1−γ
(
n ∥v∥η ∥w∥η

)γ)
= 2γCDγ(k−γ/2 + k1−γ)(n ∥v∥η ∥w∥η)

γ .

Hence for any γ > 1,

E

[∣∣∣∣ k−1∑
i=0

X̂i

∣∣∣∣γ
]
≤ CDγ(k−γ/2 + k1−γ)(n ∥v∥η ∥w∥η)

γ .
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By (3.5.11), it follows that

|I3|γγ ≤ C
(
k +Dγ(k−γ/2 + k1−γ)

)
(n ∥v∥η ∥w∥η)

γ .

Exactly the same argument applies to |I4|γγ . The conclusion of the claim follows by

noting that

|Sv,w(n)|γγ = |I1 + I2 + I3 + I4|γγ ≤ 4γ(|I1|γγ + |I2|γγ + |I3|γγ + |I4|γγ)

≤ C
[
kγ + 1 + 2

(
k +Dγ(k−γ/2 + k1−γ

)]
(n ∥v∥η ∥w∥η)

γ

≤ C
[
kγ +Dγ(k−γ/2 + k1−γ)

]
(n ∥v∥η ∥w∥η)

γ ,

as required.
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Chapter 4

Deterministic homogenisation

for families

4.1 Introduction and statement of main results

We now return to the deterministic homogenisation problem that motivated us in

Chapter 3. Recall that µ is a Borel probability measure on a metric space M and

T :M →M is an ergodic µ-preserving transformation.

By Theorem 1.1.3 ([Che+22, Theorem 2.10]), deterministic homogenisation

reduces to proving two statistical properties for T : M → M . In Theorem 3.2.4

we showed that one of these statistical properties, namely iterated moment bounds,

follows from an abstract functional correlation bound. Thus it is natural to ask

whether the Functional Correlation Bound is a sufficient condition for homogenisa-

tion.

Indeed, homogenisation results have many interesting physical applications

(cf. [PS08, Sect. 11.8]), particularly in stochastic climate theory [GCF17]. As such,

it is desirable to find a sufficient condition for homogenisation that is accessible to

a broad audience.

Before proceeding further, let us discuss other possible sufficient conditions

for homogenisation. For many classes of chaotic dynamical systems (particularly

ones with some hyperbolicity), it is possible to prove bounds on the correlations

Cn(v, w) =

∫
M
v w ◦ Tndµ−

∫
M
v dµ

∫
M
w dµ

for all Hölder v, w : M → R. Moreover, correlation bounds play a crucial role in

most standard proofs of the central limit theorem, so it is natural to seek a sufficient
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condition for homogenisation in terms of decay of correlations.

Fast decay of the autocorrelations Cn(v, v) is not enough to guarantee that

v : M → R satisfies the central limit theorem, see [GM14] for a counterexample.

More generally, fast decay of correlations for Hölder observables is not thought to

be sufficient to prove the central limit theorem.

Let v = (v1, . . . , vd) ∈ L∞(M,Rd) with
∫
v dµ = 0. Suppose that there exists

a sequence an > 0 such that
∑

n≥1 a
1/3
n <∞ and

∣∣Cn(vi, w)∣∣ ≤ an |w|∞ for all w ∈ L∞(M), 1 ≤ i ≤ d. (4.1.1)

Then v satisfies the statistical properties required by [KM16]. However, if T is

invertible, then this condition fails whenever v ̸= 0.

Our first main result is that homogenisation holds whenever the Functional

Correlation Bound is satisfied with a fast enough rate. Before stating this result, let

us recall the homogenisation problem that we are interested in. Consider a fast-slow

system on Rd ×M of the form

x
(n)
k+1 = x

(n)
k + n−1a(x

(n)
k , yk) + n−1/2b(x

(n)
k , yk), yk+1 = Ty(n), (4.1.2)

where x
(n)
0 ≡ ξ is fixed and y0 is drawn randomly from (M,µ). Assume that∫

M b(x, y)dµ(y) = 0 for all x ∈ Rd. We are interested in the limiting behaviour of

the random process Xn defined by Xn(t) = x
(n)
[nt] for t ∈ [0, 1]. We view Xn as a ran-

dom element of the space D([0, 1],Rd), that is the space of functions h : [0, 1] → Rd

that are right continuous with left limits. We endow D([0, 1],Rd) with the sup-norm

topology.

Let us now describe our regularity assumptions on the coefficients a, b : Rd×
M → Rd. For α ≥ 0, κ ∈ [0, 1] define Cα,κ(Rd×M,M) to be the space of functions

f : Rd ×M → Rd such that

∥f∥Cα,κ =
∑

|k|≤[α]

sup
x∈Rd

∥∥∥Dkf(x, ·)
∥∥∥
κ
+
∑

|k|=[α]

∥∥Dkf(x, ·)−Dkf(x′, ·)
∥∥
κ

|x− x′|α−[α]
<∞.

Here Dk is the differential operator acting in the x component.

Fix parameters α > 2 + d
γ and κ ∈ (0, 1). Let a ∈ C1+κ,0(Rd ×M,Rd) and

b ∈ Cα,η(Rd ×M,Rd). Our first main result is as follows:

Theorem 4.1.1. Suppose that T satisfies the Functional Correlation Bound with

rate k−γ, γ > 1. Then Xn
w−→ X in D([0, 1],Rd), where X is the solution of a

stochastic differential equation driven by Brownian motion.
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We refer to [Che+22, Sect. 2] for explicit expressions for the drift and diffusion

coefficients of the stochastic differential equation satisfied by X.

The condition γ > 1 in Theorem 4.1.1 is sharp. For γ ≤ 1 there are ex-

amples where the central limit theorem fails for generic Hölder observables (see

Example 4.1.4 for more details).

4.1.1 More general fast-slow systems

Until now we have assumed that the fast direction yk in (4.1.2) is independent of n.

Let Tn : M → M be a family of maps with invariant probability measures µn. We

generalise (4.1.2) by considering fast-slow systems on Rd ×M of the form

x
(n)
k+1 = x

(n)
k + n−1an(x

(n)
k , y

(n)
k ) + n−1/2bn(x

(n)
k , y

(n)
k ), y

(n)
k+1 = Tny

(n)
k . (4.1.3)

Here x
(n)
0 ≡ ξ is fixed and y

(n)
0 is drawn randomly from (M,µn). The homogenisa-

tion problem we are interested in is the same as before, only now Xn is a stochas-

tic process on (M,µn). This homogenisation problem was previously considered

by [KKM18, KKM22, Che+22]. In particular, in [KKM22, Che+22] this problem

was settled for families of nonuniformly expanding maps.

We now give a generalisation of Theorem 4.1.1 for families Tn that satisfy

the Functional Correlation Bound in the following uniform sense.

Let Tn : M →M, n ∈ N∪{∞}, be a family of dynamical systems with invari-

ant probability measures µn. Suppose that Tn satisfies the Functional Correlation

Bound with rate k−γ for each n, and that the constant C > 0 can be chosen inde-

pendently of n. Then we say that the family Tn satisfies the Functional Correlation

Bound uniformly with rate k−γ .

As before, fix parameters κ ∈ (0, 1) and α > 2 + d
γ . We assume that an ∈

C1+κ,0(Rd×M,Rd), bn ∈ Cα,η(Rd×M,Rd) for all n ≥ 1 and that supn ∥an∥C1+κ,0 <

∞. Moreover, we assume that there exist functions ā ∈ C1+κ(Rd,Rd) and b∞ ∈
Cα,η(Rd × M,Rd) such that limn→∞

∫
an(x, y)dµn(y) = ā(x) for all x ∈ Rd and

limn→∞ ∥bn − b∞∥Cα,η = 0.

Our main result on homogenisation for fast-slow systems of the form (4.1.3)

is as follows:

Theorem 4.1.2. Let Tn : M → M be a family of dynamical systems that satisfies

the Functional Correlation Bound uniformly with rate k−γ, γ > 1. Suppose that

lim
n→∞

∫
M
vw ◦ T jn dµn =

∫
M
vw ◦ T j∞ dµ∞ (4.1.4)
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for all j ≥ 0 and all η-Hölder v, w :M → R. Then Xn
w−→ X in D([0, 1],Rd), where

X is the solution of a stochastic differential equation driven by Brownian motion.

Note that Theorem 4.1.1 follows from Theorem 4.1.2 by taking Tn ≡ T ,

µn ≡ µ.

Remark 4.1.3. It is straightforward to check that condition (4.1.4) holds provided

that

(A1) T∞ is continuous µ∞-a.e. and µn is statistically stable, i.e. µn
w−→ µ∞.

(A2) limn→∞ µn(x ∈M : d(T jnx, T
j
∞x) > a) = 0 for all a > 0 and j ≥ 0.

Conditions (A1)-(A2) are similar to condition (7.2) in [KKM18]. Many ex-

amples of families of nonuniformly expanding maps are strongly statistically stable:

the measures µn are all absolutely continuous with respect to some reference measure

m and dµn/dm → dµ∞/dm in L1(m). For such examples, it is fairly straightfor-

ward to check conditions (A1) and (A2). In contrast, for many natural examples of

families of nonuniformly hyperbolic diffeomorphisms the measures µn are mutually

singular so strong statistical stability fails.

Condition (4.1.4) is easier to check in certain situations. In particular, in

Subsection 4.4.2 we show that it is also possible to verify condition (4.1.4) for an

example where statistical stability is proved by Keller-Liverani perturbation theory.

We end this introduction by explaining how Theorem 4.1.2 applies to inter-

mittent Baker’s maps, which we previously saw in Subsection 3.1.1.

Example 4.1.4. Let α ∈ (0, 1). Define gα : [0, 12 ] → [0, 1] by gα(x) = x(1 + 2αxα).

Recall that the Liverani-Saussol-Vaienti [LSV99] map is given by

T̄α : [0, 1] → [0, 1], T̄α(x) =

gα(x), x < 1
2 ,

2x− 1, x ≥ 1
2 .

The map T̄α is an archetypal example of a nonuniformly expanding map with slow de-

cay of correlations. Let M = [0, 1]2. Consider an intermittent Baker’s map [MV16]

given by

Tα :M →M, Tα(x, y) =

(T̄α(x), g
−1
α (y)), x < 1

2 ,

(T̄α(x),
1
2(y + 1)), x ≥ 1

2 .
(4.1.5)

The map Tα is invertible and there is a unique probability measure µα such that

π∗µα = µ̄α, where π denotes the projection onto the first coordinate. By Theo-

rem 3.2.3, both T̄α and Tα satisfies the Functional Correlation Bound with rate
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k1−1/α. For α ≥ 1
2 , the central limit theorem fails for generic Hölder observables

even for the T̄α dynamics [Gou04]. Hence it is natural to restrict to the range α < 1
2

when considering homogenisation.

Let αn ∈ (0, 12) satisfy αn → α∞ ∈ (0, 12). Let T̄n = T̄αn, Tn = Tαn and µn =

µαn. In [KKM22] homogenisation is obtained for the family T̄n. By Theorem 4.1.2,

we obtain homogenisation for the family Tn, see Subsection 4.4.1 for more details.

Notation: Throughout this chapter, we write →µn to denote weak convergence

with respect to a specific family of probability measures µn on the left-hand side.

So Xn →µn X means that Xn is a family of random variables on (M,µn) and

Xn
w−→ X.

4.2 Proof of Theorem 4.1.2

This section is dedicated to the proof of Theorem 4.1.2. We proceed by apply-

ing [Che+22, Theorem 2.17]. In Subsection 4.2.1, we prove the iterated WIP, which

is one of the main hypotheses of [Che+22, Theorem 2.17]. Then in Subsection 4.2.2,

we complete the proof of Theorem 4.1.2.

4.2.1 The Iterated WIP

Let γ > 1. Throughout this subsection, Tn, n ≥ 1 is a family of maps that satisfies

the Functional Correlation Bound uniformly with rate k−γ .

Fix d ≥ 1. Let vn : M → Rd, n ≥ 1 be a family of observables with

supn≥1 ∥vn∥η <∞ and
∫
vn dµn = 0. Recall that for a, b ∈ Rd we denote a⊗b = abT .

For t ≥ 0 define

Wn(t) = n−1/2
∑

0≤r<[nt]

vn ◦ T rn , Wn(t) = n−1
∑

0≤r<s<[nt]

vn ◦ T rn ⊗ vn ◦ T sn.

Let v : M → Rd and k, n ≥ 1. Define Sv(k, n) =
∑

0≤r<k v ◦ T rn and Sv(k, n) =∑
0≤r<s<k v ◦ T rn ⊗ v ◦ T sn.

Lemma 4.2.1. For each n ≥ 1, the limits

Σn = lim
k→∞

k−1Eµn[Svn(k, n)⊗ Svn(k, n)] , En = lim
k→∞

k−1Eµn[Svn(k, n)]
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exist and are given by

Σn = Eµn[vn ⊗ vn] +
∑
ℓ≥1

(
Eµn [vn ⊗ vn ◦ T ℓn] + Eµn [vn ◦ T ℓn ⊗ vn]

)
,

En =
∑
ℓ≥1

Eµn
[
vn ⊗ vn ◦ T ℓn

]
.

(4.2.1)

Moreover, the convergence is uniform in n.

Proof. We first prove the existence of the limit En. Note that

Eµn[Svn(k, n)] =
k−1∑
ℓ=1

k−ℓ−1∑
r=0

Eµn
[
vn ⊗ vn ◦ T ℓn

]
=

k−1∑
ℓ=1

(k − ℓ)Eµn
[
vn ⊗ vn ◦ T ℓn

]
.

Let 1 ≤ i, j ≤ d and ℓ ≥ 1. Define G : M2 → R by G(x, y) = vin(x)v
j
n(y). By the

Functional Correlation Bound,

|Eµn
[
vinv

j
n ◦ T ℓn

]
| =

∣∣∣∣ ∫ G(x, T ℓnx)dµn(x)

∣∣∣∣
≪ ℓ−γ

∥∥vin∥∥η ∥∥vjn∥∥η + ∣∣∣∣ ∫ vindµn

∫
vjndµn

∣∣∣∣ = ℓ−γ
∥∥vin∥∥η ∥∥vjn∥∥η .

It follows that for all n ≥ 1,∣∣∣∣∑
ℓ≥1

Eµn
[
vn ⊗ vn ◦ T ℓn

]
− k−1Eµn[Svn(k, n)]

∣∣∣∣
≤ k−1

k−1∑
ℓ=1

ℓ
∣∣Eµn[vn ⊗ vn ◦ T ℓn

]∣∣+∑
ℓ≥k

∣∣Eµn[vn ⊗ vn ◦ T ℓn
]∣∣

≪ k−1
k−1∑
ℓ=1

ℓ1−γ +
∑
ℓ≥k

ℓ−γ ≪ k−1(1 + k2−γ) + k1−γ ≪ k1−γ + k−1 = o(1),

which proves the existence of the limit En. Since

Eµn[Svn(k, n)⊗ Svn(k, n)] = kEµn[vn ⊗ vn] + Eµn[Svn(k, n)] + Eµn[Svn(k, n)]
T

and Σn = Eµn[vn ⊗ vn] + En + ETn it follows that

∣∣Σn − k−1Eµn[Svn(k, n)⊗ Svn(k, n)]
∣∣≪ k1−γ + k−1 = o(1), (4.2.2)

as required.

We are now ready to state the main result of this subsection:

47



Theorem 4.2.2 (Iterated WIP). Suppose that limn→∞Σn = Σ and limn→∞En =

E. Then (Wn,Wn) → (W,W) in the sense of finite-dimensional distributions, where

W is a Brownian motion with covariance Σ and W(t) =
∫ t
0 W ⊗ dW + Et. This

means that for all ℓ ≥ 1 and 0 ≤ t1, . . . , tℓ ≤ 1,

((Wn,Wn)(t1), . . . , (Wn,Wn)(tℓ)) →µn ((W,W)(t1), . . . , (W,W)(tℓ)).

Here the stochastic integral
∫
W ⊗ dW is interpreted in the Itô sense.

Our proof of the Iterated WIP (Theorem 4.2.2) is inspired by the proof of

the central limit theorem in [CM06, Chap. 7], which is based on Bernstein’s ‘big

block-small block’ technique. Let 0 < b < a < 1. We split {0, . . . , n − 1} into

alternating big blocks of length p = [na] and small blocks of length q = [nb]. Let

k denote the number of big blocks, which is equal to the number of small blocks.

Then k = [n/(p+q)] = O(n1−a). The last remaining block is of length at most p+q.

Let B ⊂ {0, . . . , n − 1} denote the set of terms contained in big blocks. Let

t ∈ [0, 1]. Then Wn(t) = I1(t) + I2(t) and Wn(t) = J1(t) + J2(t) + J3(t), where

I1(t) =
1

n1/2

∑
0≤r<[nt] : r∈B

vn ◦ T rn , I2(t) =
1

n1/2

∑
0≤r<[nt] : r/∈B

vn ◦ T rn ,

J1(t) =
1

n

∑
0≤r<s<[nt] : r,s∈B

vn ◦ T rn ⊗ vn ◦ T sn,

J2(t) =
1

n

∑
0≤r<s<[nt] : r/∈B,s∈B

vn ◦ T rn ⊗ vn ◦ T sn,

J3(t) =
1

n

∑
0≤r<s<[nt] : s/∈B

vn ◦ T rn ⊗ vn ◦ T sn.

(4.2.3)

Remark 4.2.3. In [CM06, Chap. 7] the central limit theorem is proved under

a hypothesis on decay of multiple correlations, where the Functional Correla-

tion Bound (3.2.1) is only assumed for functions G : M q → R of the form

G(x0, . . . , xq−1) =
∏q−1
i=0 vi(xi). This hypothesis is strong enough to control the

characteristic function of I1(t). However, functions G which are not of the above

form arise naturally when we consider the characteristic function of J1(t).

We first show that the terms I2(t), J2(t), J3(t) that involve small blocks can

be neglected.

Lemma 4.2.4. Suppose that a > b+1
2 . Let t ∈ [0, 1]. Then I2(t) →µn 0, J2(t) →µn 0

and J3(t) →µn 0 as n→ ∞.

Proof. We show that |J3(t)|L1(µn)
→ 0. By the same line of argument,
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|I2(t)|L1(µn)
→ 0 and |J2(t)|L1(µn)

→ 0.

Write {0, . . . , [nt] − 1} \ B =
⋃k+1
i=1 Ci where Ci denotes the intersection of

{0, . . . , [nt] − 1} with the ith small block for 1 ≤ i ≤ k. Also, Ck+1 denotes the

intersection of {0, . . . , [nt] − 1} with the last remaining block. Write Ci = {ℓ, ℓ +
1, . . . , u}. Then

∑
0≤r<s<[nt] : s∈Ci

vn ◦ T rn ⊗ vn ◦ T sn =
ℓ−1∑
r=0

u∑
s=ℓ

vn ◦ T rn ⊗ vn ◦ T sn

+
∑

ℓ≤r<s≤u
vn ◦ T rn ⊗ vn ◦ T sn.

Hence by Theorem 3.2.4,∣∣∣∣∣∣
∑

0≤r<s<[nt] : s∈Ci

vn ◦ T rn ⊗ vn ◦ T sn

∣∣∣∣∣∣
L1(µn)

≤

∣∣∣∣∣
ℓ−1∑
r=0

vn ◦ T rn

∣∣∣∣∣
L2(µn)

∣∣∣∣∣
u∑
s=ℓ

vn ◦ T sn

∣∣∣∣∣
L2(µn)

+

∣∣∣∣∣∣
∑

ℓ≤r≤s≤u
vn ◦ T rn ⊗ vn ◦ T sn

∣∣∣∣∣∣
L1(µn)

≪ ℓ1/2#C
1/2
i +#Ci ≪ #C

1/2
i n1/2. (4.2.4)

Let 1 ≤ i ≤ k. Then #Ci ≤ q = [nb]. Also, k = O(n1−a) and #Ck+1 = O(na).

Thus

|J3(t)|L1(µn)
≤ 1

n

k+1∑
i=1

∣∣∣∣∣∣
∑

0≤r<s<[nt] : s∈Ci

vn ◦ T rn ⊗ vn ◦ T sn

∣∣∣∣∣∣
L1(µn)

≪ 1

n
(n1−an

1
2
(b+1) + n

1
2
(a+1)) ≪ n

1
2
(b+1)−a + n

1
2
(a−1) = o(1),

as required.

For 1 ≤ i ≤ k let

Xi = n−1/2
∑

0≤r<p
vn ◦ T r+(i−1)(p+q)

n ,

Xi = n−1
∑

0≤r<s<p
(vn ◦ T rn ⊗ vn ◦ T sn) ◦ T (i−1)(p+q)

n .
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For 0 ≤ t ≤ 1 define

W̃n(t) =
∑

1≤i≤[kt]

Xi, W̃n(t) =
∑

1≤i<j≤[kt]

Xi ⊗Xj .

Lemma 4.2.5. Suppose that a > b+1
2 . Let t ∈ [0, 1]. Then

Wn(t)− W̃n(t) →µn 0, Wn(t)− W̃n(t)−
[kt]∑
i=1

Xi →µn 0.

Proof. Recall the definitions of I1 and J1 from (4.2.3). Let t ∈ [0, 1]. Since [kt](p+q)

is the first term of the ([kt] + 1)th big block,

I1

(
[kt](p+ q)

n

)
=

∑
1≤i≤[kt]

Xi, J1

(
[kt](p+ q)

n

)
=

∑
1≤i≤[kt]

Xi +
∑

1≤i<j≤[kt]

Xi ⊗Xj .

Hence

Wn([kt]
p+q
n ) =

∑
1≤i≤[kt]

Xi + I2([kt]
p+q
n ) = W̃n(t) + I2([kt]

p+q
n )

and similarly

Wn([kt]
p+q
n ) = W̃n(t) +

∑
1≤i≤[kt]

Xi + J2([kt]
p+q
n ) + J3([kt]

p+q
n ).

By Lemma 4.2.4, it follows that Wn([kt]
p+q
n ) − W̃n(t) →µn 0 and Wn([kt]

p+q
n ) −

W̃n(t) −
∑[kt]

i=1Xi →µn 0. It remains to show that Wn(t) −Wn([kt]
p+q
n ) →µn 0 and

Wn(t)−Wn([kt]
p+q
n ) →µn 0. Let 0 ≤ t′ ≤ t. Let C = {[nt′], . . . , [nt]−1}. By (4.2.4),

∣∣Wn(t)−Wn(t
′)
∣∣
L1(µn)

=

∣∣∣∣∣∣n−1
∑

0≤r<s<[nt] : s∈C

vn ◦ T rn ⊗ vn ◦ T sn

∣∣∣∣∣∣
L1(µn)

≪ n−1/2#C1/2 ≪ n−1/2([nt]− [nt′])1/2

≪ (n−1 + t− t′)1/2.

Now, [kt]p+qn =
[[

n
p+q

]
t
]p+q
n → t as n → ∞ so

∣∣Wn(t)−Wn([kt]
p+q
n )
∣∣
L1(µn)

→ 0.

By a similar argument, Wn(t)−Wn([kt]
p+q
n ) →µn 0.

Proposition 4.2.6. Suppose that b > γ−1. Let t ∈ [0, 1]. Then
∑[kt]

i=1Xi →µn tE

as n→ ∞.

Proof. First note that [kt]/n ∼ t/p. Hence by Lemma 4.2.1 and the fact that
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limn→∞En = E,

lim
n→∞

[kt]∑
i=1

Eµn[Xi] = lim
n→∞

[kt]Eµn[X1] = lim
n→∞

Eµn

 t
p

∑
0≤r<s<p

vn ◦ T rn ⊗ vn ◦ T sn


= lim

n→∞
tp−1Eµn[Svn(p, n)] = tE.

It remains to show that

lim
n→∞

Eµn

∣∣∣∣∣
[kt]∑
i=1

(Xi − Eµn[Xi])

∣∣∣∣∣
 = 0.

Write Xi(x) = Φi(T
ℓi
n x, . . . , T

ui
n x) where ℓi = (i− 1)(p+ q), ui = ℓi + p− 1 and

Φi(y0, . . . , yui−ℓi) =
1

n

∑
0≤r<s≤ui−ℓi

vn(yr)⊗ vn(ys).

Let R = maxi |Φi|∞ and define F : BRd×d(0, R)
[kt] → R by F (z1, . . . , z[kt]) =

|
∑[kt]

i=1(zi − Eµn[Xi])|.
Let (X̂i) be independent copies of (Xi). By Lemma 3.4.1,

Eµn

∣∣∣∣ [kt]∑
i=1

(Xi − Eµn[Xi])
∣∣∣∣
 ≤ A+ E

∣∣∣∣ [kt]∑
i=1

(X̂i − Eµn[Xi])
∣∣∣∣


where

|A| ≤ C

[kt]−1∑
r=1

(ℓr+1 − ur)
−γ
(
|F |∞ + Lip(F )

[kt]∑
i=1

ui−ℓi∑
j=0

[Φi]η,j

)
.

Note that |Φi|∞ ≤ p2

n |vn|2∞. By a similar calculation to the bound on [Φi]η,j in the

proof of Proposition 3.5.5, [Φi]η,j ≤ 1
n(ui − ℓi) ∥vn∥2η =

p−1
n ∥vn∥2η.

Let z = (z1, . . . , z[kt]), z
′ = (z′1, . . . , z

′
[kt]) ∈ (Rd×d)[kt]. Then

|F (z)− F (z′)| =
∣∣∣∣ [kt]∑
i=1

zi − z′i

∣∣∣∣ ≤ [kt]∑
i=1

|zi − z′i| = |z − z′|

so Lip(F ) ≤ 1. Moreover,

|F |∞ ≤
[kt]∑
i=1

(R+ |Eµn[Xi] |) ≤
[kt]∑
i=1

(R+ |Φi|∞) ≤ 2kp2

n
|vn|2∞ .
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Now pk ≤ n and ℓr+1 − ur = q + 1 ≥ nb so

|A| ≤ Ckq−γ
(
2kp2

n
|vn|2∞ +

kp2

n
∥vn∥2η

)
≪ k2p2

n
q−γ ≤ nq−γ

≪ n1−bγ = o(1).

It remains to prove that E
[
|
∑[kt]

i=1(X̂i − Eµn[Xi])|
]
→ 0. Without loss of generality

take γ ≤ 2. By von Bahr-Esseen’s inequality (Proposition 3.5.1(i)),

E

∣∣∣∣ [kt]∑
i=1

(X̂i − Eµn[Xi])
∣∣∣∣
 ≤

∣∣∣∣∣∣
[kt]∑
i=1

(X̂i − Eµn[Xi])

∣∣∣∣∣∣
γ

≪

 [kt]∑
i=1

∣∣∣X̂i − E[Xi]
∣∣∣γ
γ

1/γ

.

Now by Theorem 3.2.4,∣∣∣X̂i − Eµn[Xi]
∣∣∣
γ
= |Xi − Eµn[Xi]|γ ≤ 2 |Xi|γ

=
2

n

∣∣∣∣∣∣
∑

0≤r<s<p
vn ◦ T rn ⊗ vn ◦ T sn

∣∣∣∣∣∣
γ

= O(p/n)

so

E

∣∣∣∣ [kt]∑
i=1

(X̂i − Eµn[Xi])
∣∣∣∣
≪ ([kt](p/n)γ)1/γ ≪ k(1−γ)/γ = o(1),

as required.

Proposition 4.2.7. Suppose that a+ γb > 2. Then

(W̃n, W̃n) →µn

(
W,

∫
W ⊗ dW

)
in D([0, 1],Rd × Rd×d).

Before proving this proposition, we record a result that will be useful

both here and in Chapter 5. Let (X̂i) be independent copies of (Xi) and define

(Wn,Wn) ∈ D([0, 1],Rd × Rd×d) by

(Ŵn, Ŵn)(t) =

 ∑
1≤i≤[kt]

X̂i,
∑

1≤i<j≤[kt]

X̂i ⊗ X̂j


for t ∈ [0, 1].

Lemma 4.2.8. There exists a constant C > 0 such that for any n ≥ 1,

(i) |Eµn[G(W̃n)] − E[G(Ŵn)] | ≤ Cn3/2−a−bγLip(G) for all Lipschitz functions
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G : D([0, 1],Rd) → R.

(ii) |Eµn[H(W̃n, W̃n)]−E[H(Ŵn, Ŵn)] | ≤ Cn2−a−bγLip(H) for all Lipschitz func-

tions H : D([0, 1],Rd × Rd×d) → R.

Proof. We proceed by applying the weak dependence lemma (Lemma 3.4.1). Note

that

Xi(x) = Φi(T
ℓi
n x, . . . , T

ui
n x)

where ℓi = (i− 1)(p+ q), ui = ℓi + p− 1 and

Φi(y0, . . . , yui−ℓi) = n−1/2
ui−ℓi∑
r=0

vn(yr).

Let 0 ≤ r ≤ ui − ℓi. Then [Φi]η,r ≤ n−1/2[vn]η. Let R = maxi |Φi|∞ ≤ pn−1/2 |vn|∞ .

Define πk : B(0, R)k → D([0, 1],Rd×Rd×d) and ρk : B(0, R)k → D([0, 1],Rd×Rd×d)
by

πk(x1, . . . , xk)(t) =

[kt]∑
i=1

xi, ρk(x1, . . . , xk)(t) =

 [kt]∑
i=1

xi,
∑

1≤i<j≤[kt]

xi ⊗ xj


for t ∈ [0, 1]. Then W̃n = πk(X1, . . . , Xk) and Ŵn = πk(X̂1, . . . , X̂k). Similarly,

(W̃n, W̃n) = ρk(X1, . . . , Xk) and (Ŵn, Ŵn) = ρk(X̂1, . . . , X̂k).

Now for all (x1, . . . , xk), (x
′
1, . . . , x

′
k) ∈ B(0, R)k,

sup
t∈[0,1]

∣∣∣∣∣
[kt]∑
i=1

xi −
[kt]∑
i=1

x′i

∣∣∣∣∣ ≤
k∑
i=1

|xi − x′i|,

so Lip(πk) ≤ 1. Also,

sup
t∈[0,1]

∣∣∣∣∣ ∑
1≤i<j≤[kt]

(xi ⊗ xj − x′i ⊗ x′j)

∣∣∣∣∣ ≤ ∑
1≤i<j≤k

|xi ⊗ xj − x′i ⊗ x′j |

≤
∑

1≤i<j≤k
|xi ⊗ (xj − x′j)|+ |(xi − x′i)⊗ x′j |

≤ 2kR

k∑
j=1

|xj − x′j |.

Thus Lip(ρk) ≤ 1 + 2kR.

Let G : D([0, 1],Rd) → R be Lipschitz. Without loss of generality assume
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that G(0) = 0, for otherwise we can consider G′ = G−G(0). Thus

|G ◦ πk|∞ ≤ Lip(G) |πk|∞ ≤ kRLip(G) ≪ n1/2Lip(G). (4.2.5)

By applying Lemma 3.4.1 with F = G ◦ πk, we obtain that |Eµn[G(W̃n)] −
E[G(Ŵn)] | ≤ A, where

A = C

k−1∑
r=1

(ℓr+1 − ur)
−γ
(
|G ◦ πk|∞ + Lip(G ◦ πk)

k∑
i=1

ui−ℓi∑
j=0

[Φi]η,j

)
.

Note that ui − ℓi = p− 1 and ℓi+1 − ui = q + 1 ≥ nb for 1 ≤ i ≤ k. Thus

k−1∑
r=1

(ℓr+1 − ur)
−γ ≤ kn−bγ ≪ n1−a−bγ (4.2.6)

and
k∑
i=1

ui−ℓi∑
j=0

[Φi]η,j ≤ kpn−1/2[vn]η ≤ n1/2[vn]η. (4.2.7)

By combining these bounds with (4.2.5) it follows that

A≪ n1−a−bγ
(
|G ◦ πk|∞ + Lip(G ◦ πk)n1/2

)
≪ n1−a−bγ

(
Lip(G)n1/2 + Lip(G)Lip(πk)n

1/2

)
≤ 2n3/2−a−bγLip(G).

This completes the proof of (i).

Let H : D([0, 1],Rd × Rd×d) → R be Lipschitz. Without loss of generality

assume that H(0) = 0. Thus

|H ◦ ρk|∞ ≤ Lip(H) |ρk|∞ ≤ kRLip(H)Lip(ρk) ≪ n1/2Lip(H)Lip(ρk).

Now applying Lemma 3.4.1 with F = H ◦ ρk yields that

|Eµn[H(W̃n, W̃n)]− E[G(Ŵn, Ŵn)] | ≤ A,

where

A = C

k−1∑
r=1

(ℓr+1 − ur)
−γ
(
|H ◦ ρk|∞ + Lip(H ◦ πk)

k∑
i=1

ui−ℓi∑
j=0

[Φi]η,j

)
.
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Now by (4.2.6) and (4.2.7),

A≪ n1−a−bγ
(
|H ◦ ρk|∞ + Lip(H ◦ ρk)n1/2

)
≪ n3/2−a−bγLip(H)Lip(ρk)

≤ n3/2−a−bγLip(H)(1 + 2kR) ≪ n2−a−bγLip(H).

This completes the proof of (ii).

We are now ready to complete the proof of Proposition 4.2.7.

Proof of Lemma 4.2.7. By the portmanteau theorem (Lemma 2.1.1), it suffices to

prove that

lim
n→∞

Eµn
[
H(W̃n, W̃n)

]
= E

[
H

(
W,

∫
W ⊗ dW

)]
for all bounded Lipschitz H : D([0, 1],Rd × Rd×d) → R. Since a + bγ > 2, by

Lemma 4.2.8(ii), we have limn→∞
∣∣Eµn[H(W̃n, W̃n)] − E[H(Ŵn, Ŵn)]

∣∣ = 0. It re-

mains to show that

(Ŵn, Ŵn) →µn

(
W,

∫
W ⊗ dW

)
in D([0, 1],Rd × Rd×d).

Indeed, once we have proved this it follows that

lim
n→∞

Eµn[H(W̃n, W̃n)] = lim
n→∞

E[H(Ŵn, Ŵn)] = E
[
H

(
W,

∫
W ⊗ dW

)]
,

completing the proof of this proposition.

Note that n/k ∼ p. Hence, by Lemma 4.2.1 and the fact that limn→∞Σn =

Σ,

lim
n→∞

[kt]∑
i=1

E[X̂i ⊗ X̂i] = lim
n→∞

[kt]E[X̂1 ⊗ X̂1]

= lim
n→∞

[kt]

n
Eµn

[
p−1∑
r=0

vn ◦ T rn ⊗
p−1∑
r=0

vn ◦ T rn

]
= lim

n→∞

t

p
Eµn[Svn(p, n)⊗ Svn(p, n)] = Σt.

Hence hypothesis (i) of Proposition A.1 is satisfied with χn,i = X̂i. Now by Theo-
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rem 3.2.4,

k∑
i=1

E
[
|X̂i|2γ

]
= kn−γEµn

[∣∣∣∣ p−1∑
r=0

vn ◦ T rn
∣∣∣∣2γ
]
≪ kn−γpγ

≤ k(kp)−γpγ = k1−γ = o(1)

(4.2.8)

so hypothesis (ii) of Proposition A.1 is satisfied with p = γ. This completes the

proof.

We are now ready to prove the iterated WIP (Theorem 4.2.2).

Proof of Theorem 4.2.2. Since γ > 1, we can choose 0 < b < a < 1 such that

b > γ−1, a > b+1
2 and a + γb > 2. Then the conditions of Lemma 4.2.5 and

Propositions 4.2.6 and 4.2.7 are satisfied. Let 0 ≤ t1, t2, . . . , tℓ ≤ 1, ℓ ≥ 1. Write

(
(Wn,Wn)(t1), (Wn,Wn)(t2), . . . , (Wn,Wn)(tℓ)

)
= K1 +K2 +K3,

where

K1 = (A(t1), A(t2), . . . , A(tℓ)),

K2 =

((
0,

[kt1]∑
i=1

Xi
)
,

(
0,

[kt2]∑
i=1

Xi
)
, . . . ,

(
0,

[ktℓ]∑
i=1

Xi
))

,

K3 =
(
(W̃n, W̃n)(t1), (W̃n, W̃n)(t2), . . . , (W̃n, W̃n)(tℓ)

)
.

Here A(t) = (Wn(t)− W̃n(t),Wn(t)− W̃n(t)−
∑[kt]

i=1Xi).
By Lemma 4.2.5, K1 →µn 0 and by Proposition 4.2.6,

K2 →µn ((0, t1E), (0, t2E), . . . , (0, tℓE)).

Moreover, by Proposition 4.2.7,

K3 →µn

((
W (t1),

∫ t1

0
W⊗dW

)
,
(
W (t2),

∫ t2

0
W⊗dW

)
, . . . ,

(
W (tℓ),

∫ tℓ

0
W⊗dW

))
.

Hence by Slutsky’s theorem (Lemma 2.1.3),

K1 +K2 +K3 →µn

(
(W,W)(t1), (W,W)(t2), . . . , (W,W)(tℓ)

)
,

as required.
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4.2.2 Completing the proof of Theorem 4.1.2

We now have all the ingredients needed to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. We proceed by applying [Che+22, Theorem 2.17], so we

need to check Assumptions 2.11 and 2.12 from [Che+22].

By the arguments in the proof of [KKM22, Proposition 3.9], Assumptions

2.11 and 2.12(ii)(a) follow from (4.1.4) and Theorem 3.2.4. Since µn is Tn-invariant

for all n, Assumption 2.12(i) also follows from Theorem 3.2.4 (cf. [Che+22, Remark

2.13]).

It remains to verify Assumption 2.12(ii)(b). Let vn ∈ Cη(M,Rd), n ∈
N ∪ {∞}, with Eµn[vn] = 0 and supn≥1 ∥vn∥η < ∞. We assume that

limn→∞ |vn − v∞|∞ = 0. Define Σn and En as in (4.2.1). It suffices to prove that

limn→∞Σn = Σ∞ and limn→∞En = E∞. Assumption 2.12(ii)(b) then follows from

Theorem 4.2.2, with

B1(v, w) = Eµ∞[vw] , B2(v, w) =

∞∑
ℓ≥1

Eµ∞
[
vw ◦ T ℓ∞

]
.

We show that limn→∞En = E∞; the proof that limn→∞Σn = Σ∞ is similar. By

Lemma 4.2.1, the series En =
∑

ℓ≥1 Eµn
[
vn ⊗ vn ◦ T ℓn

]
is convergent uniformly in n.

Hence it suffices to show that limn→∞ Eµn
[
vn ⊗ vn ◦ T ℓn

]
= Eµ∞

[
v∞ ⊗ v∞ ◦ T ℓ∞

]
for

each fixed ℓ ≥ 1. Write Eµn
[
vn ⊗ vn ◦ T ℓn

]
− Eµ∞

[
v∞ ⊗ v∞ ◦ T ℓ∞

]
= A(n) + B(n),

where

A(n) = Eµn
[
vn ⊗ vn ◦ T ℓn − v∞ ⊗ v∞ ◦ T ℓn

]
,

B(n) = Eµn
[
v∞ ⊗ v∞ ◦ T ℓn

]
− Eµ∞

[
v∞ ⊗ v∞ ◦ T ℓ∞

]
.

Now, ∣∣∣vn ⊗ vn ◦ T ℓn − v∞ ⊗ v∞ ◦ T ℓn
∣∣∣
∞

≤ |vn − v∞|∞ |vn|∞ + |v∞|∞ |vn − v∞|∞

so A(n) → 0 as n→ ∞. Finally, by (4.1.4), we have B(n) → 0.

4.3 Uniform families of nonuniformly hyperbolic maps

In Theorem 3.3.4 we showed that mixing transformations modelled by a Young tower

with O(n−β), β > 1 tails satisfy the Functional Correlation Bound. Moreover, we

showed that the implicit constant in the Functional Correlation Bound depends
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continuously on various system constants associated with T . Consequently, it is

straightforward to give necessary conditions for a family of nonuniformly hyperbolic

transformations to satisfy the Functional Correlation Bound with a uniform rate.

Let Tn : M →M, n ≥ 1 be a family of mixing transformations with invariant

probability measures µn. Suppose that Tn is modelled by a Young tower for each n

(see Definition 3.3.1).

Definition 4.3.1. Let β > 1. We call Tn : M → M a uniform family of nonuni-

formly hyperbolic maps with O(k−β) tails if:

(i) The constants D0 > 0, θ ∈ (0, 1) in Subsection 3.3.1 can be chosen independent

of n ≥ 1.

(ii) There exists Cϕ > 0 such that the return time functions ϕn : Yn → Z+ satisfy

µYn(ϕn ≥ k) ≤ Cϕk
−β for all n, k ≥ 1.

(iii) There exist δ > 0 and K > 0 such that for all n there exists In ⊂ [1,K] with

µYn(ϕn = k) ≥ δ for k ∈ In and gcd{In} = gcd{ϕn(y) : y ∈ Yn}.

We are now ready to state the main result of this section, which follows

immediately from Theorem 3.3.4:

Theorem 4.3.2. Let Tn be a uniform family of nonuniformly hyperbolic maps with

O(k−β) tails. Then the family Tn satisfies the Functional Correlation Bound uni-

formly with rate k−(β−1).

4.4 Examples of families of dynamical systems

In this section we consider examples of families of dynamical systems for which we

can verify the hypotheses of Theorem 4.1.2.

4.4.1 Intermittent Baker’s maps

Let I = [0, 1], M = I2. Fix a family of intermittent Baker’s maps Tn : M → M ,

n ∈ N ∪ {∞}, as in (4.1.5) with parameters αn ∈ (0, 12) such that limn→∞ αn =

α∞ ∈ (0, 12). Recall that Tn is a skew product map of the form

Tn(x, z) = (T̄n(x), hn(x, z)), hn(x, z) =

gn,0(z), x < 1
2 ,

gn,1(z), x ≥ 1
2 ,

where T̄n : I → I is the Liverani-Saussol-Vaienti map with parameter αn and

gn,0, gn,1 are the inverse branches of T̄n. The projection π : M → I, π(x, z) = x
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defines a semiconjugacy between Tn and T̄n. By [LSV99], there is a unique T̄n-

invariant ergodic probability measure µ̄n which is absolutely continuous with respect

to Lebesgue. Let µn be the unique Tn-invariant probability measure such that

π∗µn = µ̄n (we construct this measure in Lemma 4.4.3).

Proposition 4.4.1. Tn, n ∈ N ∪ {∞}, is a uniform family of nonuniformly hyper-

bolic maps with O(k−1/α) tails, where α = supn αn.

Proof. For each n, we take Ȳ = [1/2, 1] and let ϕ̄n : Ȳ → Z+ be the first return time

to Ȳ , i.e. ϕ̄n(y) = inf{k ≥ 1 : T̄ kn (y) ∈ Ȳ }. Then by [You99, Section 6], the first

return map F̄n = T̄ ϕ̄nn : Ȳ → Ȳ is a Gibbs-Markov map and there exists a constant

C > 0 such that µ̄n(ϕ̄n > k) ≤ Ck−1/αn for all k ≥ 1. Moreover, by [KKM17,

Example 5.1] both the constant C and the constants that appear in the definition

of Gibbs-Markov map can be chosen independently of n. It follows that condition

(ii) in Definition 4.3.1 is satisfied.

Note that {ϕ̄n = 1} = [3/4, 1]. By [LSV99, Lemma 2.4], infn infI dµ̄n/dLeb >

0. Hence infn µ̄n|Ȳ (ϕ̄n = 1) > 0, and so condition (iii) in Definition 4.3.1 is satisfied.

Let Y = Ȳ × I and let ϕn : Y → Z+ be the first return time to Y . Then

ϕn = ϕ̄n ◦π|Y and π|Y defines a semiconjugacy between Fn = T ϕnn : Y → Y and F̄n.

We now complete the proof of condition (i) in Definition 4.3.1 by verifying

that (3.3.1) and (3.3.3) hold with constants D0, θ that are uniform in n. Denote

ψn,k(x) = #{j = 0, . . . , k − 1 : T̄ jnx ∈ Ȳ }. We claim that

d(T kn (x1, z1), T
k
n (x2, z2)) ≤ 2

(
1
2

)s(x1,x2)−ψn,k(x1) + (12)ψn,k(x1) d(z1, z2) (4.4.1)

for all k ≥ 1, n ∈ N∪ {∞}, (x1, z1), (x2, z2) ∈ Y . It is straightforward to check that

both (3.3.1) and (3.3.3) follow from this claim with D0 = 2, θ = 1
2 .

Let x1, z1, z2 ∈ I. Then for i = 1, 2,

T kn (x1, zi) = (T̄ knx1, gn,a(k−1) ◦ · · · ◦ gn,a(0)(zi)), (4.4.2)

where a(j) = 1{T̄ jnx1 ∈ Ȳ }. Since
∣∣g′n,0∣∣∞ ≥ 1 and

∣∣g′n,1∣∣∞ = 1
2 , by the mean value

theorem it follows that

d(T kn (x1, z1), T
k
n (x1, z2)) ≤

k−1∏
j=0

∣∣g′n,a(j)∣∣∞d(z1, z2) ≤ (12)ψn,k(x1) d(z1, z2). (4.4.3)

Let x1, x2 ∈ Ȳ . Without loss of generality assume that s(x1, x2) > ψn,k(x1), for

otherwise (4.4.1) is satisfied trivially. Since ϕn is the first return time to Ȳ , it

follows that for all 0 ≤ j < k we have T̄ jnx1 ∈ Ȳ if and only if T̄ jnx2 ∈ Ȳ . Hence
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by (4.4.2), d(T kn (x1, z1), T
k
n (x2, z1)) = d(T̄ knx1, T̄

k
nx2).Note that F̄

ψn,k+1
n = T̄ rn , where

r =
∑ψn,k

ℓ=0 ϕ̄n ◦ F̄
ℓ
n. Since r(x1) = r(x2) > k and T̄ ′

n ≥ 1, it follows that

d(T̄ knx1, T̄
k
nx2) ≤ d(T̄ r(x1)n x1, T̄

r(x1)
n x2) = d(F̄

ψn,k+1
n x1, F̄

ψn,k+1
n x2). (4.4.4)

Now T̄ ′
n ≥ 1 and T̄ ′

n = 2 on Ȳ so

d(F̄ny, F̄ny
′) ≥ 2d(y, y′) (4.4.5)

whenever y, y′ ∈ Ȳ belong to the same partition element. By [Alv20, Lemma 3.2],

it follows that

d(F̄
ψn,k+1
n x1, F̄

ψn,k+1
n x2) ≤

(
1
2

)s(x1,x2)−(ψn,k(x1)+1)
. (4.4.6)

For completeness, let us recall the proof of (4.4.6). By the definition of the separation

time s, the points F̄ jx1 and F̄ jx2 belong to the same partition element for all

0 ≤ j < s(x1, x2). Hence by backward induction on j, the bound (4.4.5) implies

that

d(F̄ jnx1, F̄
j
nx2) ≤

(
1
2

)s(x1,x2)−j d(F̄ s(x1,x2)n x1, F̄
s(x1,x2)
n x2) ≤

(
1
2

)s(x1,x2)−j
for all 0 ≤ j ≤ s(x1, x2). Now by assumption, ψn,k(x1) = ψn,k(x2) < s(x1, x2) and

so (4.4.6) follows by taking j = ψn,k(x1)+1. Finally, we obtain the claim (4.4.1) by

combining (4.4.3) with (4.4.4) and (4.4.6).

By Theorem 4.3.2, it follows that the family Tn satisfies the Functional Cor-

relation Bound uniformly with rate k−(1/α−1). In the remainder of this subsection

we verify that condition (4.1.4) is satisfied by verifying the conditions (A1), (A2)

from Remark 4.1.3. It follows that our main result, Theorem 4.1.2, applies to the

family Tn.

By [FT09] (see also [Kor16, BT16]), µ̄n is strongly statistically stable, i.e.

dµ̄n/dLeb → dµ̄∞/dLeb in L1(Leb). The following lemma immediately implies that

(A2) holds and will also be useful in the proof that µn is statistically stable, as

required by (A1).

Lemma 4.4.2. For all a > 0, for all j ∈ N,

lim
n→∞

µ̄n

(
x : sup

z∈I
d(T jn(x, z), T

j
∞(x, z)) > a

)
= 0. (4.4.7)

Proof. Let ε > 0. Choose K ⊂ I compact such that 1
2 /∈ T̄ i∞(K) for 0 ≤ i ≤ j and
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µ̄∞(K) ≥ 1− ε. Then T jn → T j∞ uniformly on K × I so for all a > 0,

lim sup
n→∞

µ̄∞

(
x : sup

z∈I
d(T jn(x, z), T

j
∞(x, z)) > a

)
≤ µ̄∞(I \K) < ε.

It follows that (4.4.7) holds with µ̄∞ in place of µ̄n. The inequality (4.4.7) follows

by strong statistical stability.

Note that T∞ is continuous on I2 \ ({1
2}× I) so T∞ is continuous µ∞-a.e. In

the remainder of this subsection, we complete the verification of condition (A2) by

showing that µn is statistically stable. We closely follow the strategy that Alves &

Soufi [AS14] used to prove statistical stability for the Poincaré maps of geometric

Lorenz attractors.

First let us recall the standard procedure for constructing invariant measures

for skew products with contracting fibres. Given a bounded, measurable function

ϕ :M → R, define ϕ+ : I → R by ϕ+(x) = supz∈I ϕ(x, z).

Lemma 4.4.3. Let n ∈ N ∪ {∞}. There exists a unique probability measure µn

such that for any continuous function ϕ :M → R,∫
M
ϕdµn = lim

m→∞

∫
I
(ϕ ◦ Tmn )+dµ̄n. (4.4.8)

Moreover, the convergence is uniform in n. Besides, µn is ergodic and is the unique

Tn-invariant probability measure such that π∗µn = µ̄n.

Proof. We first show that the maps Tn uniformly contract fibres in the sense that

diam
(
Tmn π

−1(x)
)
→ 0 as m→ ∞, uniformly in x and n. (4.4.9)

Fix x and n. By (4.4.2) and the fact that gn,0 and gn,1 are inverse branches of T̄n,

Tmn π
−1(x) = {T̄m∞(x)} ×H(I)

where H : I → I is an inverse branch of T̄mn . By [Lep17, equation (5)], there

exists C > 0 such that for all m,n ≥ 1, for any inverse branch H of T̄mn we have

diam(H(I)) ≤ Cm−1/ supn αn . This proves (4.4.9). The rest of the proof that the

limit (4.4.8) exists and the convergence is uniform in n proceeds exactly as in [AS14,

Proposition 3.3] (with Pn and fn changed to Tn and T̄n). In [Ara+09, Corollary 6.4]

it is shown that µn indeed defines a Tn-invariant probability measure and that the

ergodicity of µn follows from the ergodicity of µ̄n.
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Let ν be a Tn-invariant probability measure such that π∗ν = µ̄n. Let ϕ :

M → R be continuous. Then for all m,∣∣∣∣ ∫
M
ϕdν −

∫
I
(ϕ ◦ Tmn )+dµ̄n

∣∣∣∣ = ∣∣∣∣ ∫
M

(
ϕ ◦ Tmn − (ϕ ◦ Tmn )+ ◦ π

)
dν

∣∣∣∣
≤
∫
M

|ϕ ◦ Tmn − (ϕ ◦ Tmn )+ ◦ π|dν.

Let (x, y) ∈M . Note that (ϕ◦Tmn )+(π(x, y)) = supz∈I ϕ◦Tmn (x, z). Hence by (4.4.9)

and uniform continuity of ϕ,

sup
(x,y)∈M

|ϕ ◦ Tmn (x, y)− (ϕ ◦ Tnm)+(π(x, y))| ≤ sup
x

sup
p1,p2∈Tmn π−1(x)

|ϕ(p1)− ϕ(p2)| → 0

as m → ∞. Hence
∫
ϕdν = limm→∞

∫
(ϕ ◦ Tmn )+dµ̄n =

∫
ϕdµn. Since ϕ is an

arbitrary continuous function, ν = µn as required.

Lemma 4.4.4. For all m ≥ 1,

lim
n→∞

∫
(ϕ ◦ Tmn )+dµ̄n =

∫
(ϕ ◦ Tm∞)+dµ̄∞.

Proof. We proceed as in [AS14, Lemma 3.2].

Write
∫
(ϕ ◦ Tmn )+dµ̄n −

∫
(ϕ ◦ Tm∞)+dµ̄∞ = In + Jn, where

In =

∫
(ϕ ◦ Tmn )+ − (ϕ ◦ Tm∞)+ dµ̄n, Jn =

∫
(ϕ ◦ Tm∞)+dµ̄n −

∫
(ϕ ◦ Tm∞)+dµ̄∞.

Now for all x ∈ I,

|(ϕ ◦ Tmn )+(x)− (ϕ ◦ Tm∞)+(x)| ≤ sup
y∈I

|ϕ ◦ Tmn (x, z)− ϕ ◦ Tm∞(x, z)|. (4.4.10)

Since M is compact, ϕ is uniformly continuous on M . Hence for any ε > 0 there

exists δ > 0 such that |ϕ(z)− ϕ(z′)| < ε for all z, z′ ∈M with d(z, z′) < δ. Let

Sn =
{
x ∈ I : sup

y∈I
d(Tmn (x, y), Tm∞(x, y)) ≥ δ

}
.

Then by (4.4.10),

|In| ≤
∫
Sn

|(ϕ ◦ Tmn )+ − (ϕ ◦ Tm∞)+| dµ̄n +
∫
I\Sn

|(ϕ ◦ Tmn )+ − (ϕ ◦ Tm∞)+| dµ̄n

≤ 2 |ϕ|∞ µ̄n(Sn) + ε.
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By Lemma 4.4.2, µ̄n(Sn) → 0 as n → ∞. Since ε > 0 is arbitrary, it follows that

In → 0.

Finally, note that

|Jn| =
∣∣∣∣ ∫ (ϕ ◦ Tm∞)+

(
dµ̄n
dLeb

− dµ̄∞
dLeb

)
dLeb

∣∣∣∣ ≤ |ϕ|∞

∣∣∣∣ dµ̄ndLeb
− dµ̄∞
dLeb

∣∣∣∣
L1(Leb)

.

Hence by strong statistical stability, Jn → 0 as n→ ∞.

We can now complete the proof that µn is statistically stable, i.e. µn
w−→ µ∞.

Let ϕ :M → R be continuous. Then by Lemmas 4.4.3 and 4.4.4,∫
M
ϕdµ∞ = lim

m→∞

∫
I
(ϕ ◦ T̄m∞)+dµ̄∞ = lim

m→∞
lim
n→∞

∫
I
(ϕ ◦ T̄mn )+dµ̄n.

Since
∫
I(ϕ ◦ T̄

m
n )dµ̄n →

∫
M ϕdµn as m→ ∞ uniformly in n, we can swap the limits

as m→ ∞ and n→ ∞ in the above expression. Thus∫
M
ϕdµ∞ = lim

n→∞
lim
m→∞

∫
I
(ϕ ◦ T̄mn )+dµ̄n = lim

n→∞

∫
M
ϕdµn,

as required.

4.4.2 Externally forced dispersing billiards

A Sinai billiard table on the two-torus T2 is a set of the form Q = T2 \ ∪iBi where
{Bi} is a finite collection of open sets such that B̄i ∩ B̄j = ∅ for i ̸= j. It is assumed

that the sets Bi have C
3 boundaries with positive curvature. The billiard flow on

Q × S1 is induced by the motion of a particle that moves in straight lines at unit

speed on Q and collides elastically with the boundary ∂Q. We say that the table

has finite horizon if there exists a constant L > 0 such that any line of length L in

T2 intersects ∂Q.

In [Che01, Che08] Chernov studied perturbations of the finite horizon Sinai

billiard flow where a small stationary force F acts on the particle between its colli-

sions with ∂Q. We refer to [Che01, Section 2] for the precise details of the model.

In particular, it is assumed that the force preserves an additional integral of motion

and that the phase space obtained by restricting to one of its level sets is a compact

3-dimensional manifold with boundary.

Consider the flow obtained upon restricting to one of these level sets. The

assumptions then guarantee that the collision map TF with the table can be

parametrised on the same space M = ∂Q × [−π/2, π/2] as the collision map of

63



the unperturbed Sinai billiard flow. Let (Fn)n∈N be a sequence of admissible forces

such that Fn → F∞ = 0 in C2 and define Tn = TFn :M →M . By [Che01, Theorem

2.1], the map Tn admits a unique SRB measure µn for all n ∈ N ∪ {∞}.

Lemma 4.4.5. For all γ > 1 the family Tn : M → M , n ∈ N ∪ {∞}, satisfies the

Functional Correlation Bound uniformly with rate k−γ.

Remark 4.4.6. In principle, it should be possible to prove this lemma by verifying

that the family Tn is a uniform family of nonuniformly hyperbolic maps and ap-

plying Theorem 4.3.2. Indeed, for each n, the system Tn is modelled by a Young

tower with exponential tails [Che01]. However, the construction of the base of the

tower in [Che01] is quite intricate so it seems difficult to check condition (iii) in

Definition 4.3.1.

Proof. In [LS17], Leppänen & Stenlund considered the finite horizon Sinai billiard

map and proved a functional correlation bound for separately dynamically Hölder

functions. Recall the definition of the past/future separation times s± and the

dynamically Hölder function classes H± from [LS17, Section 2].

We first show that separately Hölder functions are separately dynamically

Hölder with parameters independent of n. By [Che08, p.95], there exist constants

C > 0, Λ > 1 independent of n such that d(x, y) ≤ CΛ−s+(x,y) whenever x, y ∈
M belong to the same local unstable manifold. Similarly, d(x, y) ≤ CΛ−s−(x,y)

whenever x, y ∈ M belong to the same local stable manifold. Let v ∈ Cη(M). It

follows that

|v(x)− v(y)| ≤ [v]ηd(x, y)
η ≤ Cη[v]η(Λ

−η)s+(x,y)

whenever x and y belong to the same local unstable manifold. Hence v ∈
H+(C

η[v]η,Λ
−η). Similarly, v ∈ H−(C

η[v]η,Λ
−η). Let G : M q → R,

q ≥ 1 be separately η-Hölder and set c = Cηmaxi[G]η,i, ϑ = Λ−η. Then

G(x0, . . . , xi−1, ·, xi+1, . . . , xq−1) ∈ H−(c, ϑ) ∩ H+(c, ϑ) for all x0, . . . , xq−1 ∈ M ,

0 ≤ i < q.

It remains to explain why the arguments used in the proof of [LS17, Theorem

2.4] go through with system constants M0,M1 and θ0, θ1 uniform in n. The result

then follows by applying [LS17, Theorem 2.4] with K = 2, F = G and c, ϑ as defined

above.

Note that [LS17, Lemma 4.1] merely gives the usual decomposition of µ into

a standard family. Let {(ξq, νq) : q ∈ Q} be as defined in that lemma. By [Che08,

p. 96], {(ξq, νq) : q ∈ Q} is a proper standard family. In particular, there exists a

constant M1 > 0 independent of n such that λ({q ∈ Q : |ξq| ≤ ε}) ≤M1ε for all ε >
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0. By [CM06, p.171], it follows that there exists a constantM ′
1 independent of n such

that
∫
Q |ξq|−1dλ(q) ≤ M ′

1, so [Lep17, Lemma 4.3] goes through. Finally, it follows

from the growth lemma ([Che01, Proposition 5.3]) and the equidistribution property

([Che08, Proposition 2.2]) that [LS17, Lemma 4.2] goes through with constants a0,

M0 and θ0 that are uniform in n. The rest of the proof of [LS17, Theorem 2.4]

proceeds exactly as in [LS17].

We finish this subsection by showing that condition (4.1.4) is satisfied. It

follows that Theorem 4.1.2 applies to the family Tn.

Lemma 4.4.7. Condition (4.1.4) is satisfied.

Proof. For n ∈ N∪{∞}, Demers & Zhang [DZ13] considered the action of the trans-

fer operator Ln associated with Tn on certain spaces of distributions. In particular,

if ν is a finite signed measure, then Lnν = (Tn)∗ν.

Fix η ∈ (0, 1]. The article [DZ13] constructs Banach spaces (B, ∥·∥B) and

(Bw, ∥·∥Bw) with the following properties:

(i) There is a sequence of continuous embeddings B ↪→ Bw ↪→ (Cη(M))′.

(ii) For each n, Ln is a well-defined bounded linear operator on both B and Bw.
Moreover, supn ∥Ln∥Bw <∞.

(iii) ([DZ13, Theorem 2.2]) For each n, we have µn ∈ B and µn is the unique

element of B such that Lnµn = µn and µn(1) = 1.

(iv) ([DZ13, Theorem 2.11]) ∥Ln − L∞∥B→Bw → 0 as n→ ∞. By [DZ13, Theorem

2.1], it follows that µn → µ∞ in Bw.

(v) ([DZ13, Lemma 5.3]) Let v ∈ Cη(M). Then v is a bounded multiplier on B
(that is, h 7→ vh is a well-defined bounded operator on B). Moreover, v is a

bounded multiplier on Bw.1

Fix v ∈ Cη(M) and k ≥ 0. For n ∈ N∪{∞}, define a signed probability measure νn

by νn = vµn. Then Lknνn(w) = νn(w ◦ T kn ) = µn(vw ◦ T kn ) for all w ∈ Cη(M), so it

sufficient to prove that Lknνn → Lk∞ν∞ in (Cη(M))′. Now µn ∈ B so by properties

(v) and (ii) we have νn ∈ B and Lknνn ∈ B. Hence by (i), it suffices to show that

Lknνn → Lk∞ν∞ in Bw.
1Since the definitions of the weak norm and the strong stable norm are similar, this follows easily

from the arguments used to bound the strong stable norm at the beginning of the proof of [DZ13,
Lemma 5.3].
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Write Lknνn − Lk∞ν∞ = In + Jn, where In = Lkn(νn − ν∞) and

Jn = Lknν∞ − Lk∞ν∞ =

k−1∑
j=0

Ljn(Ln − L∞)Lk−j−1
∞ ν∞.

By properties (ii) and (iv),

∥In∥Bw ≤ sup
n

∥∥∥Lkn∥∥∥Bw ∥vµn − vµ∞∥Bw ≤ Cv sup
n

∥∥∥Lkn∥∥∥Bw ∥µn − µ∞∥Bw → 0

as n→ ∞. Using properties (ii) and (iv) again, we have

∥Jn∥Bw ≤
k−1∑
j=0

sup
n

∥∥Ljn∥∥Bw ∥Ln − L∞∥B→Bw

∥∥∥Lk−j−1
∞

∥∥∥
B
∥ν∞∥B → 0

as n→ ∞.

Remark 4.4.8. Note that we have not used any facts about the anisotropic Banach

spaces in [DZ13] apart from properties (i)-(v). These properties arise naturally in

situations where statistical stability is proved by Keller-Liverani perturbation theory

(see e.g. [GL06, DL08]).
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Chapter 5

Rates of convergence in the

multidimensional weak

invariance principle

5.1 Statement of results

Let T :M →M be an ergodic, measure-preserving transformation on a probability

space (M,µ). Let v ∈ L2(M,Rd) be mean zero. Define a random process Wn ∈
D([0, 1],Rd) by

Wn(t) = n−1/2

[nt]−1∑
r=0

v ◦ T r for t ∈ [0, 1].

Recall that v is said to satisfy the weak invariance principle (WIP) if Wn
w−→ W

whereW is a Brownian motion. As before, we endow D([0, 1],Rd) with the topology

induced by the sup-norm |·|∞.

Throughout this chapter we assume that T :M →M is a map that satisfies

the Functional Correlation Bound with rate n−γ , γ > 1. Fix d ≥ 1 and let v ∈
Cη(M,Rd) be mean zero. By our main homogenisation result (Theorem 4.1.1), we

know that Wn
w−→W where W is a Brownian motion with covariance

Σ = Eµ[v ⊗ v] +
∑
ℓ≥1

(
Eµ[v ⊗ v ◦ T ℓ] + Eµ[v ◦ T ℓ ⊗ v]

)
so v satisfies the WIP.

In this chapter, we consider the rate at which Wn weakly converges to W .

In order to make sense of this question, we need a way to metrise weak convergence

67



of probability measures on D = D([0, 1],Rd). Let M1(D) denote the set of Borel

probability measures on D such that x 7→ |x|∞ is integrable. The Kantorovich

metric on M1(D) is defined by

κ(µ, ν) = sup

{∫
D
f dµ−

∫
D
f dν

∣∣∣∣f : D → R is Lipschitz and Lip(f) ≤ 1

}
.

It is straightforward to see that κ is indeed a metric on M1(D). By the portmanteau

theorem (Lemma 2.1.1), if µ, (µn)n≥1 ∈ M1(D) with κ(µn, µ) → 0, then µn
w−→ µ.

For random processes X1, X2 ∈ D we write κ(X1, X2) = κ(PX1 ,PX2), where

PXi is the distribution of Xi. We are now ready to state the main result of this

chapter:

Theorem 5.1.1. Let T : M → M satisfy the Functional Correlation Bound with

rate n−γ, γ > 1 and suppose that v : M → Rd is η-Hölder and mean zero. Assume

that Σ is nondegenerate. Then there is a constant C > 0 such that κ(Wn,W ) ≤
Cn−r(γ) for all n ≥ 1, where

r(γ) =

1
8 − 1

8γ , 1 < γ < 4

1
4 − 5

8γ , γ ≥ 4
.

The exact formula for r : (1,∞) → (0, 14) could be improved by more careful

arguments. However, since our proof is based on Bernstein’s ‘big block-small block’

technique, it does not seem possible to obtain a rate better than O(n−1/4).

Remark 5.1.2. (i) The matrix Σ is typically nondegenerate. Indeed, let γ > 2 and

suppose that Σ is degenerate. Then there exists a nonzero vector c ∈ Rd such that

cTΣc = 0. Let w = cT v. Then
∑

n n|Eµ[ww ◦ Tn] | ≪
∑

n n
1−γ < ∞. By [CLB01,

Lemme 2.2], it follows that w is an L2 coboundary, i.e. there exists u ∈ L2 such that

w = u− u ◦ T .
(ii) Rather than considering Wn, one often considers the continuous process Xn

defined by setting Xn(j/n) = Wn(j/n) for j = 0, . . . , n and linearly interpolating

in between. That is, Xn(t) = Wn(t) + n−1/2(nt − [nt])v ◦ T [nt] for t ∈ [0, 1]. Since∣∣ supt∈[0,1] |Xn(t) −Wn(t)|
∣∣
∞ ≤ n−1/2 |v|∞, we have κ(Wn, Xn) ≤ n−1/2 |v|∞. By

Theorem 5.1.1, it follows that κ(Xn,W ) = O(n−r(γ)).

5.1.1 Comparison with existing results

Most results in the literature on rates of convergence in the weak invariance prin-

ciple consider bounds in the Prokhorov metric or the Wasserstein-p metric. Before
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discussing existing results, let us recall the definition of these metrics and their re-

lation to the Kantorovich metric. A more complete account of metrics on spaces of

measures can be found in Chapter 3 of [Bog18].

The Prokhorov metric on the space of Borel probability measures is defined

by

π(µ, ν) = inf{ε > 0 : ν(B) ≤ µ(Bε)+ε, µ(B) ≤ ν(Bε)+ε for all Borel sets B ⊂ D}.

Here Bε denotes the open ε-neighbourhood of the set B.

Let µ and ν be Radon probability measures on D. A coupling between µ

and ν is a Radon measure on D2 for which the projections on the first and second

factors coincide with µ and ν, respectively. Let Π(µ, ν) denote the set of couplings

between µ and ν.

For p ≥ 1, let Pp
r (D) denote the set of Radon probability measures on D

such that x 7→ |x|p∞ is integrable. The Wasserstein-p metric on Pp
r (D) is defined by

Wp(µ, ν) = inf
σ∈Π(µ,ν)

(∫
D2

|x− y|p∞ dσ(x, y)

)1/p

.

Note that Wp is indeed a metric on Pp
r (D), see [Bog18, p.118] for more details.

The metrics that we have just introduced are related as follows:

Lemma 5.1.3. Fix p ≥ 1. Let µ, ν ∈ Pp
r (D). Then

(i) κ(µ, ν) = W1(µ, ν).

(ii) π(µ, ν) ≤ Wp(µ, ν)
p
p+1 .

Proof. Part (i) is Theorem 3.2.7 in [Bog18]. The proof of (ii) is similar to the proof

of Proposition 2.6 in [LW22], however, we give the details because our setting is

somewhat different. Let ε > 0 and let B ⊂ D be Borel. Let σ ∈ Π(µ, ν). Since we

have endowed D with the sup-norm metric, we have that

ν(B) = σ((x, y) ∈ D2 : y ∈ B)

≤ σ((x, y) ∈ D2 : x ∈ Bε) + σ((x, y) ∈ D2 : |x− y|p∞ ≥ ε)

≤ µ(Bε) +
1

εp

∫
D2

|x− y|p∞ dσ(x, y).

Taking the infimum over σ ∈ Π(µ, ν) yields that ν(B) ≤ µ(Bε) + ε−pWp(µ, ν)
p. By

interchanging µ and ν, we also have µ(B) ≤ ν(Bε) + ε−pWp(µ, ν)
p.
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Let ε = Wp(µ, ν)
p
p+1 . Then ε = ε−pWp(µ, ν)

p so ν(B) ≤ µ(Bε) + ε and

µ(B) ≤ ν(Bε)+ε. Since B ⊂ D was an arbitrary Borel set, it follows that π(µ, ν) ≤
ε.

Let Xn be as defined in Remark 5.1.2. Then Xn andW both have continuous

sample paths. Since C([0, 1],Rd) is complete and separable, any probability measure

on C([0, 1],Rd) is Radon. It follows that W1(Xn,W ) = κ(Xn,W ).

To the author’s knowledge, Antoniou & Melbourne [AM19] were the first

to study the problem of obtaining rates in the WIP for dynamical systems. They

obtained rates in the Prokhorov metric for R-valued Hölder observables on nonuni-

formly expanding maps modelled by Young towers with O(n−β) tails with β > 2. In

particular, for nonuniformly expanding maps with superpolynomial tails the rates

are of the form O(n−(1/4−δ)) for any δ > 0. More recently, Liu & Wang [LW22]

have obtained similar rates in the Wasserstein-p metric in the same setting but they

require the map to have O(n−β) tails with β > 4. The arguments in both papers

are based on the martingale approximation method.

Recall that by Theorem 3.2.3, mixing nonuniformly expanding/hyperbolic

maps modelled by Young towers with O(n−β) tails satisfy the Functional Correlation

Bound with rate n−(β−1). Hence our results also apply in this setting, however the

rates that we obtain in the Wasserstein-1 metric are worse than those in [LW22].

By Lemma 5.1.3(ii) these results also yield rates in the Prokhorov metric, however,

these rates are worse than the ones obtained in [AM19].

In his PhD thesis, Paviato [Pav23] has obtained rates in the Wasserstein-1

metric for Rd-valued Hölder observables on nonuniformly expanding maps. By the

same method, he has also obtained rates in the multidimensional WIP for nonuni-

formly expanding semiflows. The rates that he obtains are independent of d but are

at best O(n−1/6) for d > 1 because obtaining optimal rates in the multidimensional

WIP is still an open problem for martingales (see the introduction of [CDM21] for

more details).

Hence our main theorem improves on existing results for d > 1. Moreover,

even for d = 1 it is the first result on rates that applies to slowly-mixing invertible

maps such as the examples given in Subsection 3.1.1.

In our main theorem we only prove bounds in the Kantorovich metric. Nev-

ertheless, in some of our arguments we work with the Wasserstein-p metric because

this is equally convenient. In future work, the author plans to consider bounds in

the Wasserstein-p metric and the Prokhorov metric. We also plan to remove the

assumption that Σ is nondegenerate.
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5.2 Preliminaries

In this section we state and prove some probabilistic results that are useful in the

proof of our main theorem.

Lemma 5.2.1. Fix p ≥ 2. There exists a constant C > 0 such that for all k ≥ 1,

for all independent, mean zero random variables X̂1, . . . , X̂k ∈ Lp,

E

[∣∣∣∣ max
1≤j≤k

∣∣∣ j∑
i=1

X̂i

∣∣∣∣∣∣∣p
]
≤ C

(( k∑
i=1

E
[
|X̂i|2

])p/2
+

k∑
i=1

E
[
|X̂i|p

])
.

Proof. Define M(t) =
∑[kt]

i=1 X̂i. Then M is a martingale (see Appendix A). Hence

by Doob’s maximal inequality,∣∣∣∣∣ max
1≤j≤k

∣∣∣∣ j∑
i=1

X̂i

∣∣∣∣
∣∣∣∣∣
p

=

∣∣∣∣ sup
0≤t≤1

|M(t)|
∣∣∣∣
p

≤ p

p− 1

∣∣∣∣∣
k∑
i=1

X̂i

∣∣∣∣∣
p

.

The result follows by Rosenthal’s inequality (Proposition 3.5.1).

Lemma 5.2.2 ([Ser70, Corollary B.2]). Let p > 2. Let (Xn)n≥1 be a sequence of

mean zero random variables defined on the same probability space. Suppose that

there exists a constant M > 0 such that∣∣∣∣∣
a+n∑
i=a+1

Xi

∣∣∣∣∣
p

≤Mn1/2 for all a ≥ 1, n ≥ 1.

Then there exists a constant C > 0 such that∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ a+j∑
i=a+1

Xi

∣∣∣∣
∣∣∣∣∣
p

≤ Cn1/2 for all a ≥ 1, n ≥ 1.

Corollary 5.2.3. Let v ∈ Cη(M,Rd) be mean zero. Then there exists C > 0 such

that ∣∣∣∣∣ max
1≤j≤n

∣∣∣∣ j−1∑
i=0

v ◦ T i
∣∣∣∣
∣∣∣∣∣
2γ

≤ Cn1/2 for all n ≥ 1.

Proof. Since µ is T -invariant,∣∣∣∣∣
a+n−1∑
i=a

v ◦ T i
∣∣∣∣∣
2γ

=

∣∣∣∣∣
n−1∑
i=0

v ◦ T i
∣∣∣∣∣
2γ
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for all a ≥ 0. Now by Theorem 3.2.4,
∣∣∑n−1

i=0 v ◦T i
∣∣
2γ

= O(n1/2). The result follows

by Lemma 5.2.2.

It is well-known that Brownian motion is a.s. α-Hölder continuous for all

α < 1/2. Let us recall the following standard bound on the α-Hölder norm of

Brownian motion (cf. [RY99, p. 28]).

Lemma 5.2.4. Let B be a standard d-dimensional Brownian motion. Let α ∈
(0, 1/2). Then ∣∣∣∣ sup

0≤s<t≤1

|B(t)−B(s)|
|t− s|α

∣∣∣∣
p

<∞

for all 1 ≤ p <∞.

Lemma 5.2.5 ([GZ09, Theorem 3]). Let p ∈ (2,∞). Then there exists a constant

C > 0 such that the following holds. Let (X̂i)
k
i=1 be iid mean zero random vectors in

Lp. Then there exists a probability space supporting random vectors (X̃i)
k
i=1 with the

same joint distribution as (X̂i)
k
i=1 and iid random vectors (Zi)

k
i=1 with distribution

N (0,E[X̂1 ⊗ X̂1]) such that∣∣∣∣∣ max
1≤j≤k

∣∣∣∣ j∑
i=1

X̃i −
j∑
i=1

Zi

∣∣∣∣
∣∣∣∣∣
p

≤ Ck1/p
∣∣X̂1

∣∣
p

σmax(V )

σmin(V )
,

where σ2min(V ) and σ2max(V ) are the minimal and maximal positive eigenvalues of

V = kE[X̂1 ⊗ X̂1], respectively.

We now use this lemma to prove a weak invariance principle with rates for

iid random vectors. Define Yk ∈ D([0, 1],Rd) by Yk(t) =
∑[kt]

i=0 X̂i for t ∈ [0, 1].

Corollary 5.2.6. Let p ∈ (2,∞). Then there exists C > 0 such that for all k ≥ 1,

for any sequence of iid mean zero random vectors (X̂i)
k
i=1 in Lp we have

Wp(Yk,W ) ≤ Ck1/p
(∣∣X̂1

∣∣
p

σmax(V )

σmin(V )
+ |E[X̂1 ⊗ X̂1]

1/2 |
)
,

where W is a Brownian motion with covariance V = kE[X̂1 ⊗ X̂1].

Proof. Define Ak, Ỹk ∈ D([0, 1],Rd) by Ak(t) =
∑[kt]

i=1 Zi and Ỹk(t) =
∑[kt]

i=1 X̃i.

Then by Lemma 5.2.5,

∣∣∣∣ sup
0≤t≤1

|Ỹk(t)−Ak(t)|
∣∣∣∣
p

=

∣∣∣∣∣ max
1≤j≤k

∣∣∣∣ j∑
i=1

X̃i −
j∑
i=1

Zi

∣∣∣∣
∣∣∣∣∣
p

≤ Ck1/p
∣∣X̂1

∣∣
p

σmax(V )

σmin(V )
.

72



It follows that

Wp(Yk, Ak) = Wp(Ỹk, Ak) ≤ Ck1/p
∣∣X̂1

∣∣
p
σmax(V )/σmin(V ). (5.2.1)

Now let W be a Brownian motion with covariance V . Then(
W

(
j

k

)
−W

(
j − 1

k

))
1≤j≤k

=d (Zj)1≤j≤k.

Define Ãk ∈ D([0, 1],Rd) by

Ãk(t) =

[kt]∑
i=1

(
W

(
j

k

)
−W

(
j − 1

k

))
=W

(
[kt]

k

)
.

It follows that Ãk =d Ak. Write W = V 1/2B, where B is a standard Brownian

motion. Then

|Ã(t)−W (t)| =
∣∣∣∣V 1/2

(
B(t)−B

(
[kt]

k

))∣∣∣∣
≤ k1/2|E[X̂1 ⊗ X̂1]

1/2 |
∣∣∣∣B(t)−B

(
[kt]

k

)∣∣∣∣ .
Since |t− 1

k [kt]| ≤
1
k , it follows from Lemma 5.2.4 that∣∣∣∣∣ sup

0≤t≤1

∣∣∣∣B(t)−B

(
[kt]

k

)∣∣∣∣
∣∣∣∣∣
p

≤ k−(1/2−1/p)

∣∣∣∣ sup
0≤s<t≤1

|B(t)−B(s)|
|t− s|1/2−1/p

∣∣∣∣
p

≤ Ck−(1/2−1/p).

Hence

Wp(Ak,W ) = Wp(Ãk,W ) ≤ Ck1/p|E[X̂1 ⊗ X̂1]
1/2 |.

The result follows by combining this bound with (5.2.1).

5.3 Proof of Theorem 5.1.1

We decompose {0, . . . , n− 1} into big blocks and small blocks in the same manner

as in the proof of the iterated WIP (Theorem 4.2.2). Let 0 < b < a < 1. Recall

that we split {0, . . . , n− 1} into alternating big blocks of length p = [na] and small

blocks of length q = [nb]. Again we let k denote the number of big blocks, which is

equal to the number of small blocks. For n ≥ 1, we denote Sn =
∑n−1

r=0 v ◦ T r.
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Let 1 ≤ i ≤ k. Recall that

Xi = n−1/2Sp ◦ T (i−1)(p+q) and W̃n(t) =

[kt]∑
i=1

Xi

for 0 ≤ t ≤ 1. Hence Xi is the sum of n−1/2v ◦ T r over the ith big block.

We also define

Yi = n−1/2Sq ◦ T p+(i−1)(p+q) and Rn(t) =

[kt]∑
i=1

Yi.

Thus Yi is the sum of n−1/2v ◦ T r over the ith small block.

Lemma 5.3.1. There exists a constant C > 0 such that W2γ(Wn, W̃n + Rn) ≤
Cn

(1−a) 1−γ
2γ for all n ≥ 1.

Proof. Let t ∈ [0, 1]. Since {0, . . . , [kt](p+ q)− 1} is the union of first [kt] big blocks

and the first [kt] small blocks,

n−1/2S[kt](p+q) =

[kt]∑
i=1

(Xi + Yi) = Ŵn(t) +Rn(t).

Now since n ≥ k(p + q), we have [nt] ≥ [kt(p + q)] ≥ [kt](p + q). Let h(t) =

[nt]− [kt](p+ q). Then

Wn(t) = n−1/2S[nt] = n−1/2S[kt](p+q) + n−1/2Sh(t) ◦ T [kt](p+q)

= W̃n(t) +Rn(t) + n−1/2Sh(t) ◦ T [kt](p+q).

Recall that n− k(p+ q) ≤ p+ q. Hence

h(t) ≤ nt− (kt− 1)(p+ q) = t(n− k(p+ q)) + p+ q ≤ 2(p+ q).

It follows that∣∣∣Wn(t)−
(
W̃n(t) +Rn(t)

)∣∣∣ = n−1/2|Sh(t)| ◦ T [kt](p+q) ≤ A ◦ T [kt](p+q),
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where A = n−1/2maxj≤2(p+q) |Sj |. Hence∣∣∣∣ sup
0≤t≤1

∣∣∣Wn(t)−
(
W̃n(t) +Rn(t)

)∣∣∣∣∣∣∣2γ
2γ

≤ Eµ

[∣∣∣∣ sup
0≤t≤1

A ◦ T [kt](p+q)

∣∣∣∣2γ
]

= Eµ

[∣∣∣∣max
0≤i≤k

A ◦ T i(p+q)
∣∣∣∣2γ
]
.

Now by Corollary 5.2.3, we have |A|2γ ≪ n−1/2(p+ q)1/2 ≪ n(a−1)/2. It follows that

Eµ

[∣∣∣∣max
0≤i≤k

A ◦ T i(p+q)
∣∣∣∣2γ
]
≪ Eµ

[
k∑
i=0

|A ◦ T i(p+q)|2γ
]

= (k + 1)Eµ
[
|A|2γ

]
≪ n1−anγ(a−1) = n(1−a)(1−γ),

which completes the proof.

Let (X̂i) be independent copies of (Xi) and define Ŵn(t) =
∑[kt]

i=1 X̂i for

t ∈ [0, 1].

Lemma 5.3.2. There exists a constant C > 0 such that κ(W̃n + Rn, Ŵn) ≤
C(n3/2−a−bγ + n(b−a)/2) for all n ≥ 1.

Proof. By Lemma 4.2.8(i), κ(W̃n, Ŵn) ≪ n3/2−a−bγ .

Let (Ŷ i) be independent copies of (Yi) and define R̂n(t) =
∑[kt]

i=1 Ŷ i for

t ∈ [0, 1]. By making some minor modifications to the proof of Lemma 4.2.8(i),

it follows that κ(Rn, R̂n) ≪ n3/2−b−aγ ≤ n3/2−a−bγ .

Next we bound
∣∣sup0≤t≤1 |R̂n(t)|

∣∣
1
. By working componentwise, without loss

of generality we can assume that (Ŷ i) are R-valued. Now, Ŷ i =d Yi =d n
−1/2Sq so

by Theorem 3.2.4, |Ŷ i|2 ≪ n−1/2q1/2 ≪ n(b−1)/2. Hence by Lemma 5.2.1,

∣∣∣∣ sup
0≤t≤1

|R̂n(t)|
∣∣∣∣
2

=

∣∣∣∣∣ max
1≤j≤k

∣∣∣ j∑
i=1

Ŷi

∣∣∣∣∣∣∣∣
2

≪
( k∑
i=1

E
[
|Ŷi|2

])1/2

≪ k1/2n(b−1)/2 ≪ n(b−a)/2.

Since |·|∞ is 1-Lipschitz it follows that

Eµ
[
sup

0≤t≤1
|Rn(t)|

]
≤ κ(Rn, R̂n) + E

[
sup

0≤t≤1
|R̂n(t)|

]
≪ n3/2−a−bγ + n(b−a)/2.

Hence κ(W̃n +Rn, W̃n) ≤
∣∣sup0≤t≤1 |Rn(t)|

∣∣
1
≪ n3/2−a−bγ + n(b−a)/2.
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Let Vn = kE[X̂1 ⊗ X̂1], so Vn = E[Ŵn(1)⊗ Ŵn(1)] is the covariance of

Ŵn(1). Before proceeding further, we need a bound on the difference between Vn

and the limiting covariance Σ.

Lemma 5.3.3. There exists a constant C > 0 such that for all n ≥ 1,

|Vn − Σ| ≤ C(na(1−γ) + nb−a + na−1).

Proof. Since X̂1 =d X1, we have Vn = kEµ[X1 ⊗X1] = kn−1Eµ[Sp ⊗ Sp] . Recall

that by (4.2.2),

|p−1E[Sp ⊗ Sp]− Σ| ≪ p−1 + p1−γ .

Since kp ≤ n and p = [na] ≥ 1
2n

a, it follows that

∣∣Vn − kp
n Σ
∣∣ = kp

n

∣∣p−1E[Sp ⊗ Sp]− Σ
∣∣≪ n−a + na(1−γ).

Now n− k(p+ q) ≤ p+ q so

∣∣(kp
n − 1

)
Σ
∣∣ ≤ 1

n(kq + p+ q)|Σ| ≪ 1
n(n

1−anb + na) = nb−a + na−1.

Hence

|Vn − Σ| ≪ n−a + na(1−γ) + nb−a + na−1 ≪ na(1−γ) + nb−a + na−1,

as required.

Lemma 5.3.4. There exists a constant C > 0 such that for all n ≥ 1,

W2γ(Ŵn,W ) ≤ C(n
(1−a) 1−γ

2γ + na(1−γ) + nb−a).

Proof. By Corollary 5.2.6,

W2γ(Ŵn,W
(Vn)) ≤ Ck1/(2γ)

(∣∣X̂1

∣∣
2γ

σmax(Vn)

σmin(Vn)
+ |E[X̂1 ⊗ X̂1]

1/2 |
)
,

where W (Vn) is a Brownian motion with covariance Vn. Now X̂1 =d X1 = n−1/2Sp

so by Theorem 3.2.4, we have |X̂1|2γ ≪ n−1/2p1/2. By Lemma 5.3.3, Vn → Σ.

Since Σ is positive definite, it follows that σmax(Vn)/σmin(Vn) → σmax(Σ)/σmin(Σ).

Moreover, V
1/2
n → Σ1/2 so

|E[X̂1 ⊗ X̂1]
1/2 | = k−1/2|V 1/2

n | ≪ k−1/2.
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Since k =
[
n
p+q

]
∼ n/p ∼ n1−a, it follows that

W2γ(Ŵn,W
(Vn)) ≪ k1/(2γ)(n−1/2p1/2 + k−1/2)

≪ (n/p)
1−γ
2γ ≪ n

(1−a) 1−γ
2γ . (5.3.1)

Write W (Vn) = V
1/2
n B, where B is a standard Brownian motion. Let W = Σ1/2B,

so W is a Brownian motion with covariance Σ. Note that

|W (Vn)(t)−W (t)| = |(V 1/2
n − Σ1/2)B(t)| ≤ |V 1/2

n − Σ1/2||B(t)|.

Since Σ is positive definite, by [HJ85, equation (7.2.13)],

∥V 1/2
n − Σ1/2∥2 ≤ ∥Σ−1/2∥2∥Vn − Σ∥2,

where ∥ · ∥2 denotes the spectral norm. Hence by Lemma 5.3.3,∣∣∣∣ sup
0≤t≤1

|W (Vn)(t)−W (t)|
∣∣∣∣
2γ

≪ |Vn − Σ|
∣∣∣∣ sup
0≤t≤1

|B(t)|
∣∣∣∣
2γ

≪ na(1−γ) + nb−a + na−1.

By combining this bound with (5.3.1), it follows that

W2γ(Ŵn,W ) ≤ W2γ(Ŵn,W
(Vn)) +W2γ(W

(Vn),W )

≪ n
(1−a) 1−γ

2γ + na(1−γ) + nb−a + na−1

≪ n
(1−a) 1−γ

2γ + na(1−γ) + nb−a,

as required.

We now have all the estimates required to prove our main theorem.

Proof of Theorem 5.1.1. By Lemmas 5.3.1 and 5.3.2,

κ(Wn, Ŵn) ≤ κ(Wn, W̃n +Rn) + κ(W̃n +Rn, Ŵn)

≪ n
(1−a) 1−γ

2γ + n3/2−a−bγ + n(b−a)/2.

By Lemma 5.3.4,

κ(Ŵn,W ) ≤ W2γ(Ŵn,W ) ≪ n
(1−a) 1−γ

2γ + na(1−γ) + nb−a.
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Hence κ(Wn,W ) ≪ n−r(γ) where

r(γ) = min
{
(1− a)

γ − 1

2γ
, a(1− γ), a+ bγ − 3

2
, a(γ − 1), a− b,

a− b

2

}
= min

{
(1− a)

γ − 1

2γ
, a+ bγ − 3

2
, a(γ − 1),

a− b

2

}
. (5.3.2)

Recall that 0 < b < a < 1 are arbitrary. Finally we show how to choose a and b in

order to obtain the closed form expression for r(γ) in the statement of this theorem.1

Let 1 < γ ≤ 4. Choose a = 3
4 and b = 9

8γ+4 < a. Then

a+ bγ − 3

2
=
a− b

2
=

3(γ − 1)

4(2γ + 1)
.

Hence

r(γ) = min
{γ − 1

8γ
,
3(γ − 1)

4(2γ + 1)
,
3(γ − 1)

2

}
=
γ − 1

8γ
.

Let γ > 4 and choose a = 1
2 , b =

5
4γ < a. Then a+ bγ − 3

2 = 1
4 so

r(γ) = min
{γ − 1

4γ
,
1

4
,
1

2
(γ − 1),

1

4
− 5

8γ

}
=

1

4
− 5

8γ
,

as required.

1These choices of a and b are suboptimal, however, we have been unable to find a closed form
expression for the maximum of (5.3.2) over 0 < b < a < 1.
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Appendix A

A limit theorem for triangular

arrays of random vectors

In this appendix, we state and prove an iterated WIP for triangular arrays of random

vectors. Our assumptions are similar to those of Lyapunov’s classical central limit

theorem.

Proposition A.1. Fix d ≥ 1. Let (χn,i)n≥1,1≤i≤kn be an array of mean zero Rd-
valued random vectors such that (χn,i)1≤i≤kn are independent for each n ≥ 1. Sup-

pose that

(i) There exists a matrix Σ ∈ Rd×d such that for all t ∈ [0, 1],

lim
n→∞

E

[tkn]∑
i=1

χn,i ⊗
[tkn]∑
i=1

χn,i

 = tΣ.

(ii) There exists p > 1 such that limn
∑kn

i=1 E
[
|χn,i|2p

]
= 0.

Define random processes Ŵn ∈ D([0, 1],Rd) , Ŵn ∈ D([0, 1],Rd×d) by

Ŵn(t) =
∑

1≤i≤[tkn]

χn,i and Ŵn(t) =
∑

1≤i<j≤[tkn]

χn,i ⊗ χn,j .

Then (Ŵn, Ŵn)
w−→ (W,

∫
W⊗dW ) in D([0, 1],Rd×Rd×d) with the sup-norm topol-

ogy, where W is a Brownian motion with covariance Σ and the stochastic integral∫
W ⊗ dW is interpreted in the Itô sense.

In the following we make use of convergence results for continuous-time mar-

tingales. Let (Ω,A,P) be a probability space. Let (At)t∈[0,1] be a filtration, i.e. a

79



collection of sub-σ-algebras of A satisfying As ⊆ At for all 0 ≤ s ≤ t ≤ 1. Let

(Mt)t∈[0,1] be a collection of Rd-valued random vectors on (Ω,A,P). We say that

(Mt)t∈[0,1] is a martingale with respect to (At)t∈[0,1] if for all 0 ≤ s ≤ t ≤ 1,

(i) Mt is At-measurable

(ii) Mt ∈ L1

(iii) E[Mt|As] =Ms a.s.

For n ≥ 1, t ∈ [0, 1] let Fn
t be the σ-algebra generated by χn,1, . . . , χn,[tkn].

Then (Fn
t )t∈[0,1] forms a filtration and Ŵn is an (Fn

t )t∈[0,1]-martingale. Indeed,

conditions (i) and (ii) are immediate. Moreover, for all 0 ≤ s ≤ t ≤ 1, the random

vectors χn,[skn]+1, . . . , χn,[tkn] are independent of Fn
s so

E[Ŵn(t)|Fn
s ] = E

[ ∑
1≤i≤[skn]

χn,i

∣∣∣Fn
s

]
+ E

[ ∑
[skn]<i≤[tkn]

χn,i

∣∣∣Fn
s

]

= Ŵn(s) +
∑

[skn]<i≤[tkn]

E[χn,i] = Ŵn(s).

Hence condition (iii) is satisfied.

For X ∈ D[0, 1], let X(t−) = lims↑tX(s) and define

J(X, t) = sup{X(s)−X(s−) : 0 < s ≤ t}.

Let t ∈ [0, 1]. Let 0 = tn0 < tn1 < · · · < tnℓn = t be a nested sequence of partitions

such that the mesh size maxi |tni+1 − tni | → 0. For Y ∈ D[0, 1] define the quadratic

covariation of X and Y by

[X,Y ](t) = lim
n→∞

ℓn−1∑
i=0

(X(tni+1)−X(tni ))(Y (tni+1)− Y (tni ))

where the limit is taken in probability, whenever this limit exists. Let ∆X(t) =

X(t)−X(t−). If X and Y are piecewise constant then

[X,Y ](t) =
∑

0<s≤t
∆X(s)∆Y (s).

Define the Itô integral by

∫ t

0
XdY = lim

n→∞

ℓn−1∑
i=0

X(tni )(Y (tni+1)− Y (tni ))
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where the limit is taken in probability, whenever this limit exists.

If X and Y are piecewise constant then∫ t

0
XdY =

∑
0<s≤t

X(s−)∆Y (s). (A.1)

In the following, we temporarily consider weak convergence with respect to the

Skorokhod topology on D([0, 1],Rd). At the end of the proof of Proposition A.1 we

will explain why weak convergence also takes place in the sup-norm topology.

Lemma A.2 (Martingale WIP, [Whi07]). For n ≥ 1, let Mn = (M1
n, . . . ,M

d
n) be a

martingale in D([0, 1],Rd) with respect to a filtration (Fn
t )t∈[0,1] satisfying Mn(0) =

0. Let Σ ∈ Rd×d be positive semidefinite. Suppose that

(i) limn→∞ E[J(Mn, 1)] = 0.

(ii) For all t ≥ 0 and 1 ≤ a, b ≤ d, [Ma
n ,M

b
n](t)

p−→ Σabt.

Then Mn
w−→ W in D([0, 1],Rd) where W is a Brownian motion with covariance

Σ.

Corollary A.3. Under the assumptions of Proposition A.1, we have Ŵn
w−→W in

D([0, 1],Rd) where W is a Brownian motion with covariance Σ.

Proof. Note that Ŵn(t) − Ŵn(t−) = χn,i if t = i
kn

for some 1 ≤ i ≤ kn and 0

otherwise. Hence J(Ŵn, 1) = max1≤i≤kn |χn,i|. Thus

E[J(Ŵn, 1)]
2 = E

[
max

1≤i≤kn
|χn,i|

]2
≤ E

[
max

1≤i≤kn
|χn,i|2

]
(A.2)

Let ε > 0. Note that

kn∑
i=1

E
[
|χn,i|21 {|χn,i| > ε}

]
≤

kn∑
i=1

1

ε2p−2
E
[
|χn,i|2p1 {|χn,i| > ε}

]
→ 0 (A.3)

by Proposition A.1(ii). Now for all n ≥ 1, 1 ≤ i ≤ kn we have

|χn,i|2 ≤ ε2 + |χn,i|21
{
|χn,i|2 > ε

}
.
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Hence

E
[
max

1≤i≤kn
|χn,i|2

]
≤ ε2 + E

[
max

1≤i≤kn
|χn,i|21

{
|χn,i|2 > ε

}]
≤ ε2 + E

[
kn∑
i=1

|χn,i|21 {|χn,i| > ε}

]
.

By (A.2) and (A.3), it follows that lim supn E[J(Ŵn, 1)] ≤ ε. Since ε > 0 was

arbitrary, it follows that condition (i) of Lemma A.2 is satisfied.

Fix t ∈ [0, 1] and 1 ≤ a, b ≤ d. By condition (i) of Proposition A.1,

lim
n→∞

E
[
[Ŵ a

n, Ŵ
b
n](t)

]
= lim

n→∞
E

[
[tkn]∑
i=1

χan,iχ
b
n,i

]
= tΣab. (A.4)

Let 1 < p < 2 be as in Proposition A.1. By von Bahr-Esseen’s inequality (Proposi-

tion 3.5.1(i)),

E

∣∣∣∣∣
[tkn]∑
i=1

(
χan,i χ

b
n,i − E[χan,i χbn,i]

)∣∣∣∣∣
p
 ≤ C

[tkn]∑
i=1

E
[∣∣∣χan,i χbn,i − E[χan,i χbn,i]

∣∣∣p] .
Now,

E
[∣∣∣χan,i χbn,i − E[χan,i χbn,i]

∣∣∣p] ≤ 2pE
[
|χan,i χbn,i|p

]
≤ 2pE

[
|χn,i|2p

]
.

By condition (i) of Proposition A.1, it follows that

[tkn]∑
i=1

(
χan,i χ

b
n,i − E[χan,i χbn,i]

)
−→ 0 in Lp.

Hence by (A.4),

[Ŵ a
n, Ŵ

b
n](t) =

[tkn]∑
i=1

χan,i χ
b
n,i −→ tΣab

in Lp, so condition (ii) of Lemma A.2 is satisfied.

We use the following result from [JMP89, KP91] to complete the proof of

Proposition A.1:

Lemma A.4 ([KP91, Thm 2.2]). For each n ≥ 1, let (Xn, Yn) ∈ D([0, 1],Rd ×
Rd) be an Fn

t -adapted process and let Yn be an Fn
t -martingale. Suppose that
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supn E[[Y a
n , Y

a
n ](t)]<∞ for all 1 ≤ a ≤ d and t ∈ [0, 1] and that (Xn, Yn)

w−→ (X,Y )

in D([0, 1],Rd × Rd). Then(
Xn, Yn,

∫
Xn ⊗ dYn

)
w−→
(
X,Y,

∫
X ⊗ dY

)
in D([0, 1],Rd × Rd × Rd×d).

Proof of Proposition A.1. Take Xn = Yn = Ŵn. By (A.1), for all 1 ≤ a, b ≤ d,

∫ t

0
Ŵ a

n dŴ
b
n =

[tkn]∑
j=1

Ŵ a( jkn−)χbn,i =

[tkn]∑
j=1

j−1∑
i=1

χan,iχ
b
n,j = Ŵab

n (t).

Now by Corollary A.3, Ŵn
w−→ W in D([0, 1],Rd) so by the continuous mapping

theorem (Lemma 2.1.2), (Ŵn, Ŵn)
w−→ (W,W ) in D([0, 1],Rd × Rd). As shown in

the proof of Corollary A.3, for all t ∈ [0, 1] and 1 ≤ a ≤ d the quadratic covariation

[Ŵ a
n, Ŵ

a
n](t) converges in L1, so supn E[[Ŵ a

n, Ŵ
a
n](t)] < ∞. Hence Lemma A.4

applies and it follows that (Ŵn, Ŵn)
w−→ (W,

∫
W⊗dW ) in D([0, 1],Rd×Rd×d) with

Skorokhod topology. Since the limit (W,
∫
W ⊗ dW ) has continuous sample paths,

by [Bil99, Section 15] we also have weak convergence in the sup-norm topology.
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