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Abstract

Monte Carlo simulations are used to explore the small sample prop-
erties of a mean group and two pooled panel estimators of a regression
coefficient when the regressor is I(1). We compare and contrast the
effect of I(0) and I(1) errors and homogeneous and heterogeneous co-
efficients in a design based on two typical PPP panels. The results
confirm that the asymptotic theory is relevant to practical applica-
tions. With I(0) errors and homogeneous coefficients, the estimators
are unbiased, dispersion depends on the signal-noise ratio and falls at
rate T/N as expected. With (1) errors and no cointegration, the
estimators are unbiased and dispersion falls at rate v/N. When het-
erogeneity with 7(0) errors is introduced, the dispersion of the pooled
estimators falls at rate v/N but that of the mean group continues to
fall at rate Tv/N. Finally, the pooled estimators are likely to lead to
distorted inference both in the case of I(1) errors and of I(0) errors
with heterogeneous coefficients. The mean group estimators, however,
are generally correctly sized.

Keywords: Monte Carlo; response surface; spurious regression; PPP
JEL Classification: C32; F31

*Corresponding author: Tel: +44 0207 631 6418. Fax: +44 0207 631 6416. E-mail:
jecoakley@econ.bbk.ac.uk.



1 Introduction

Panel time-series, where both 7', the number of time periods, and N, the
number of groups, are large, play an increasing role in empirical research.
They are particularly important in international macroeconomics, since long
runs of data are often available for many countries. Such panels have been
used to study growth and convergence, the Feldstein-Horioka puzzle and,
most extensively, purchasing power parity (PPP). Baltagi and Kao (2000)
provide a survey of methods for non-stationary panels of this sort. When both
T and N are large, one can model heterogeneity by permitting coefficients
to vary between groups which is not possible in small 7" panels. Baltagi and
Griffin (1997) and Boyd and Smith (2000) show that such heterogeneity in
group-specific coefficients is important in practice. Such panels also offer the
prospect of overcoming the spurious regression problem which is not possible
with small NV panels or pure time series. Phillips and Moon (1999, 2000) and
Kao (1999) show that in such panels one can obtain consistent estimates of
an average long run parameter even when the variables do not cointegrate
or, equivalently, when the error term as well as the variables are I(1). The
intuition is that the noise — the covariance between the /(1) error and the
I(1) regressor — that produces the spurious regression problem is attenuated
by averaging over independent groups.

This paper uses Monte Carlo simulations to investigate the small-sample
properties of three panel estimators in a static linear regression model where
the variables are I(1); the errors are either /(0) (cointegration case) or I(1)
(no cointegration case); and the coefficients are either homogeneous or het-
erogeneous. The Monte Carlo design is calibrated on two contrasting PPP
panels: one is a T' > N monthly data panel while the other is a N > T
annual data panel. Accordingly the results cover many of the typical panel
dimensions used in applied work. The paper can be seen as a complement
to Taylor (2001) who explains how temporal aggregation and non-linearities,
because of bands of inaction, may make errors appear I(1) even when ad-
justment is quite rapid. We address the issue of whether one can estimate
the long run effects of price differentials on exchange rates even if the errors
are I(1) for those or other reasons.

If one knew the data generating process (DGP), one would use the in-
formation in levels in the cointegration case and first differences otherwise.
In principle one could test whether the variables cointegrate using any of
the tests for cointegration and unit roots in panels surveyed by Baltagi and



Kao (2000). In practice, as they emphasise, there are severe conceptual dif-
ficulties in formulating the appropriate hypotheses and the results are often
inconclusive. In this light, one can view our simulations as answering the
following question. What are the consequences of applying the various esti-
mators to the data in levels when one is not sure whether some or all of the
group-specific relations cointegrate?

Section 2 outlines the Monte Carlo design and reviews the estimators ex-
amined. Section 3 considers the properties of three static panel regression
estimators under 7(0) and I(1) errors when the regression coefficient is ho-
mogeneous across groups. We use response surface regressions to analyse the
effect of innovation variances and panel dimensions. Section 4 investigates
the case of heterogeneous slope coefficients. The PPP application is discussed
further in Section 5 and a final section concludes.

2 Monte Carlo design and estimators

A simple Monte Carlo design is employed to compare the effect of 1(0) and
I(1) error terms. Data are generated on a dependent variable y; and an ex-
ogenous regressor x;; for groupsi = 1,2, ..., N and time periodst =1,2,..., T,
according to:

Tit = XTip—1 1+ €ty Exit ™~ IN(Ov Ui,i) (1)
Uit = PUit—1 + Euit, Ewit ~ IN(0, Ui,i) (2)
Yit = BTt + Ui, (3)

where the disturbances €, ;; and ¢, ;; are also independent of each other. In
this design, z;; is strictly exogenous; the data have no deterministic trends,
the random walk for z; has no drift; there are homogenous, zero, inter-
cepts across groups; finally contemporaneous dependence between groups is
excluded.! In the first set of simulations we assume homogeneous slope co-
efficients 3, = # = 1. In the second set we allow 3; to vary over groups. We

!See Coakley and Fuertes (2000), Coakley, Fuertes and Smith (2001), Higgins and
Zakrajsek (1999), O’Connell (1998) and Pedroni (1997) for discussions of cross sectional
dependence.



consider both the cointegration case with p = 0 and no cointegration case
with p = 1. Since most of the properties of the estimators in the former case
are well known, the Monte Carlo results provide a yardstick for comparison
with the latter case.

The simulations are calibrated to match the panel dimensions and the
innovation volatilities of two contrasting PPP datasets. In the first N > T
panel the signal-noise ratio (the innovation variance of the regressor relative
to that of the disturbance) is large while in the second 7" > N panel it is
small. Panel I is based on the Boyd and Smith (1999) large N, small T
annual LDC dataset for (log) spot exchange rates and price differentials with
the following characteristics:

N =30,T=25,0,,; ~U[0.25F0.15], 0, ; = 0.14 Vi ?

Panel II is based on the Coakley and Fuertes (2001) small N, large T,
monthly OECD dataset with the following characteristics:

N =15, T =300, o,,; ~ U[0.0069 F 0.0019], 0,,; = 0.0329 Vi
This design allows for heterogeneity in the variance of x;; but not u;. The
simulations results are based on R = 10, 000 replications.?

2.1 Properties of the panel estimators

Three estimators based on static linear regressions are considered: the mean
group (MG) estimator or average of the group specific estimates suggested in
Pesaran and Smith (1995), the pooled OLS (POLS) estimator, and the fixed
effects (FE) or ‘within’ estimator. In each case the conventional standard er-
rors are calculated and the (true) hypothesis that the coefficient of z;; equals
unity is tested. The details of the estimators are set out in an Appendix. The
asymptotic (large N, large T') properties of the two pooled estimators in the
I(1) error case are established in Phillips and Moon (1999). The properties
of the MG estimator under the same conditions have not been established
and so the Monte Carlo results are of additional interest.

With I(0) errors and homogenous slopes, all three provide consistent
(large N, large T') estimates of the long run effects of z on y. The vari-

2The standard deviation estimate &, = 0.25 has been obtained from the price differen-
tial data {d;} as 6, = \/ZL S (Adyy — Ad;)2/(NT — N) and 6, is analogously obtained
from the real exchange rates.

3The simulations were programmed in GAUSS 3.2. No initial observations are dis-
carded, Ty = 0, and ;0 = 0 V¢ which amounts to using Z;; = x;; — x;0 for any x;.




ance of the MG estimator,
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is greater than or equal to the variance of the FE estimator,
N 2

A(B") =B = =

where S; = ZtT:l %, Ty = Ty — Ty, and 02 = N} Zf\il 02, If S; = S, they
are both equally efficient. The most efficient estimator is POLS because the
intercepts and slopes are identical and, since there is no serial correlation or

heteroskedasticity in the errors, conventional standard errors will be correct.
The variance of POLS is:

2(APOLS) _ 602
7 ~ 02(BNT — 2T — 1)(T + 1)

More generally, these estimators measure different long run parameters.
The MG provides estimates of the average long run parameter given by the
average over groups of the ratio of the covariance to the variance:

:N 12 Zt 1yztxzt _ i
=1 =1

t 1

while the two pooled estimators provide estimates of the long run average
parameter. In the FE case the latter is given by the ratio of these averages:

57 N (S )
N- 121 I(Zt lxzt)

In general, these will differ even as N, T" go to infinity. To see the relationship
between them, note that the FE estimator can be written as a weighted
average of the individual estimates:

- SYS )t A o

=1 =1




Hence, the difference between EMG, the unweighted average, and EFE, the
weighted average, will depend on the covariance between the 3, and the
weights, w;. They will coincide when S; = S or the w; are independent of
the Bz In Section 4 our DGP for the heterogeneous case assumes a positive
dependence between the w; and the Bi, and accordingly we expect the long
run average coefficient to exceed the average long run.

In the I(1) error, no-cointegration case, Phillips and Moon (1999) show
that the POLS and FE estimators are consistent estimators of the long run
average effect with a convergence rate of v/N. In this case conventional stan-
dard errors for the pooled and fixed effect estimators are wrong and Phillips
and Moon provide the correct asymptotic formulae for the levels regression
in a number of cases. The performance of these asymptotic standard errors
is important but we have left investigation of them as a matter for further
research. This is partly because as yet they are rarely used in practice and
partly because one needs to know the DGP to be able to identify the appro-
priate formulae for the standard errors. If one knew that the errors were (1),
the appropriate estimator would be POLS on first differences which would
have a variance of 02 /c2NT. In practice one does not know whether there
is cointegration or not and pre-testing is rarely unambiguous, particularly in
the case of a mix of cointegrating and non-cointegrating relationships or near
unit root processes.

3 Homogeneous slope coefficients

The empirical distributions of the computed panel estimates and t-statistics
(testing that the long run effect of x on y is equal to unity) are characterized
by their mean, sample standard deviation (SSD), minimum and maximum,
median, and moment coefficients of skewness and excess kurtosis in Table 1.

[Table 1 around here]

In the C case, all three estimators seem unbiased with distributions that are
centred on unity and close to normal. A ranking in terms of efficiency based
on the SSD indicates that POLS is best, followed by FE and then MG. This is
exactly as expected from theory and the SSD for the FE and POLS are very
similar to their theoretical standard errors. The t-statistics have zero mean
and unit standard deviation as they should, suggesting reasonably accurate
inference.



In the NC case Table 1 shows that all three estimators remain unbiased
confirming the asymptotic results for the pooled estimators and suggesting
that the MG is also consistent. However, their standard deviations are much
larger than with cointegration. The lack of cointegration causes a much
greater deterioration in Panel II, dispersion increases by a factor of between
60 (MG and FE) and 170 (POLS), than in Panel I where dispersion increases
by a factor of between 4 and 14. Although the estimates are unbiased, the
dispersion in Panel II is such that the estimates would be of little practical
use. The efficiency ranking is now FE, followed by MG and POLS. There
are a number of other interesting features. The increase in dispersion of
the POLS estimates caused by I(1) errors greatly exceeds that of the FE
and the latter exceeds marginally that of the MG estimates. Although the
true intercepts are zero and both u;; and z;; have expected values of zero, in
particular samples they can have very different means since both are I(1).
The superiority of the FE estimator in terms of efficiency suggests that using
deviations from the group mean reduces this problem substantially.

Inference properties are examined in more detail in Table 2.

[Table 2 around here]

This table gives the empirical size (p,) and critical values (Z,) at a nominal
level v = 5% for the t-tests. The former is calculated using the (theoretical)
asymptotic critical values of a standard normal normal distribution, p, =
{# |t,]@| > 1.96}/R. Since the empirical distribution of # 4+ is approximately
symmetric (see Table 1), the empirical critical values Z, are calculated as the
value of the (1 — a/2)-quantile.

Table 2 confirms that the t-tests are approximately correctly sized for all
three estimators for both panels in the C case, though the MG is a little
oversized for Panel II using asymptotic critical values. This is not surprising
since it has only 14 degrees of freedom and the empirical critical value of 2.17
is close to the appropriate critical value of 2.145 from the t-distribution. In
the NC case, the MG tests retain the correct size while the FE and POLS
estimators show massive size distortions. The FE size distortion is smaller
than POLS for both panels and of a similar order of magnitude to that
reported in Kao’s (1999) analysis. The size characteristics are not surprising
since the conventional standard error formulae for POLS and FE are incorrect
with I(1) errors, while that for the MG estimator, which uses the cross-section
distribution of the estimates, remains appropriate.



The empirical distribution function (EDF) of the t-statistic for the three
estimators corroborates these findings. Figure 1 plots the EDF for Panel II
in the 7(0) and I(1) error case.

[Figure 1 around here]

Figure 1(A) shows that the EDF of the t-statistic for the three estimators is
very close to that of a standard normal. By contrast, Figure 1(B) shows that,
while the EDF of the t-statistic for the MG estimator is indistinguishable
from that of a standard normal, that of the POLS and FE has considerably
fatter tails. The EDF's for Panel I are very similar to those represented in
Figure 1.

We investigate the sensitivity of the results to panel dimension, X1 =
(N,T), and regressor and innovation standard deviations, X2 = (o, 04),
by repeating the simulations for different values of X1 and X2. The results
are then used as the dependent variable in a regression on the relevant val-
ues of X1 and X2. The individual Monte Carlo simulations use R = 500
replications.?

First consider the innovation standard deviations o,; and o, ; where the
former can be viewed as the ‘signal’ and the latter as the ‘noise’. Panel I
specifications are used for the individual Monte Carlo replications, N = 30,
T =25, and 03, = .25 and o) ; = .14 Vi (where the subscript i is hereafter
dropped for simplicity). Eight subsequent values for the latter are generated
as o) = 0.25 — 0.0315 and o7 = 0.14 — 0.0157, respectively, for j = 1,...,8.
This gives 81 different signal-noise ratio combinations varying from o, /o,
=.08 for o, = .002 and o, = .14 to 0,/0,=70 for o, = .25 and o, = .02.

To explore the effect of the signal-to-noise ratio on the bias and disper-
sion of the MG, POLS and FE panel estimators the results from the 81
simulations were used as observations in the regressions:

In(B) = a+blno,+clno, +v; (4)

A

InSSD() = a+blno,+clno, +v (5)

for both the C and NC cases. Since there is no reason to expect the errors of
these regressions to be homoskedastic, White’s heteroscedasticity-consistent
standard errors are used. The results are given in Table 3.

4Since the main results in Tables 1-2 still hold when the experiments were repeated for
R = 500 this number of replications is adopted to keep computational costs feasible.
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[Table 3 around here]

This shows that the SSD is proportional to the noise-to-signal ratio (o, /o)
with a coefficient close to unity for all three estimators. This explains the
different results for Panels I and II.

Now consider the effect of the panel dimensions, N and 7. The spec-
ifications are again based on Panel I, 0,, = .25 Vi, 0,; = .14 Vi. Let
N, T = {25,50, 75,100, 150, 200, 250, 300, 350} which gives 81 observations
in the regressions:

In(
In SSD(

) = a+blnN+clnT +v; (6)
) = a+blnN+clnT+w (7)

= @I

Table 4 reports the results.
[Table 4 around here]

It shows that in the C case the three estimators are unbiased irrespective of
N and T and POLS is more efficient than FE and MG. The SSD for the
three estimators falls at rate T as in the pure time series C case and falls
with the group dimension at rate v/N. In the NC case all three estimators
remain unbiased, dispersion still falls at rate /N while it does not change
with 7" as the theory indicates. The asymptotic theory clearly works well in
these samples.

4 Heterogeneous slope coefficients

In this section the assumption of common slope coefficients is relaxed. We
allow (3; to vary randomly across groups, with E((3;) = 1. For the POLS and
FE estimator this will lead to the presence of an extra I(1) component (3, —
B)x; in the error term and the composite error term will be heteroskedastic.
Our model of heterogeneous coefficients introduces dependence between the
coefficients and the regressors as follows:

B, = 15+ 04 0z~ U[0.25 F 0.15] (Panel I
B, = 9931 +0us 0u; ~ U0.0069 F 0.0019] (Panel II).



This positive dependence should cause the ratio of the average covariance to

average variance to exceed the average of the ratio, leading to a difference

between the two pooled estimators and the MG. Note that by construction

the heterogeneity in Panel I is much larger than in Panel II. However, the

heterogeneity in both cases is quite small relative to that typically observed.
The results are reported in Tables 5 and 6

[Tables 5, 6 around here]

In Panel I, where the heterogeneity is large, the mean of the MG estimator
remains around unity and the mean of the FE and POLS increases to about
1.06, in both the I(0) and I(1) case. The effect is in the direction we would
expect, given the positive covariance between (3, and o0, ; in our Monte Carlo
design, but it is not large in economic terms. It does, however, result in a
marked increase in the t-ratio for the FE and POLS. This is partly because
the null hypothesis is no longer appropriate, based as it is on the average long
run, Hy : § = 1= E(B;), rather than the long run average. The dispersion
of the t-ratio falls below the correct value of unity for the MG estimator
but is well above that for the other two. In the I(0) case the efficiency
of the MG estimator in the heterogeneous case is identical to that in the
homogeneous case. By contrast, the efficiency of the other two estimators
falls relative to the homogeneous case. The ranking now becomes FE, MG,
POLS rather than POLS, FE, MG. In the I(1) case the dispersion of all
three estimators is similar to the homogeneous case. In Panel II, where the
heterogeneity is small, the properties of the panel estimators are very similar
to the homogeneous case.

Table 6 investigates inference in the heterogeneous case and should be
compared with Table 2 for the homogeneous case. In Panel II, where het-
erogeneity is small, the results are very similar to the homogeneous case. In
Panel I, the combination of the inappropriate estimated standard errors and
the difference between the hypothesized value and the long run average drive
the rejection frequencies of the POLS and FE to almost 100%. In the I(0)
case, the size of the MG test is pushed down by the lower than appropriate
variance of the t-ratio, though it does remarkably well in the /(1) case.

These insights are illustrated graphically by the EDF of the t-statistic
plotted in Figure 2.

[Figure 2 around here]
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Figure 2(A) illustrates how in the (0) case the distribution of the POLS
and FE departs notably from that of a standard normal in shifting to the
right and exhibiting larger dispersion. By contrast, the distribution of the
MG t-ratio remains fairly close to a standard normal, especiallly in the I(1)
case. A comparison of EDFs in Figure 2(B) and Figures 1(A) and 1(B)
corroborates the view that the properties of the statistics in panels with
small heterogeneity are indistinguishable from those in homogeneous panels.

We estimated response surfaces for Panel I, where the heterogeneity is
large, using R=500. Using N,T = {25, 50, 75, 100, 150, 200, 250, 300, 350}
we obtain 81 observations to fit functional forms (9) and (10). The results
are given in Table 7.

[Table 7 around here]

In the I(1) error case the results are almost exactly the same as in the
homogeneous case, the dispersion of the estimators falls with v/N but not
with 7. In the I(0) error case, the MG behaves as it did in the homogeneous
case with its dispersion falling with Tv/N. Since every group cointegrates,
the estimator for each group and its mean are both superconsistent and so
the dispersion of the MG estimator also falls with 7.

The big change is in the performance of the POLS and F'E estimators in
the I(0) error case where the dispersion falls with /N but not with 7. The
explanation is that when a homogeneous slope is wrongly imposed the panel
does not cointegrate because of the presence of the I(1) term (8; — §)zu
in the error. Accordingly the two pooled estimators show the characteristic
effects of I(1) errors: virtually no gain in efficiency with increased time-series
dimension. The coefficient on In T is significantly greater than zero but the
estimated values of -0.02 for POLS and -0.08 for FE are very small. Figure 3
plots the evolution of S.S D(B) with T" as suggested by the estimated response
surfaces.

[Figure 3 around here]

The base variation for the MG is larger but for Panel I the MG dominates
the POLS for T' > 27 and the FE for T' > 31. If individual groups cointegrate
with different coefficients, the penalty for pooling grows rapidly with 7'

11



5 PPP application

This section reports the results of estimating a PPP regression using the
three estimators. Data on nominal exchange rates and consumer (CPI) and
wholesale price indices (WPI) were taken from Datastream for a panel of
OECD countries, 1972:1-1998:12. Four panels were constructed using the
German mark (DM) and US dollar (US$) as numeraire and the CPI and
WPI price series.?

ADF test results indicated that the unit root null could not be rejected at
the 5% level for the individual real exchange rates in the four panels This
implies the absence of time series cointegration between e, the logarithm of
the exchange rate and d;;, the logarithm of the price differential. However in
the light of our small sample findings the long run relationship between the
nominal exchange rate and the price differential can be analysed using panel
estimators even when there is no cointegration.” We distinguish between
two interpretations of PPP. One implies stationary real exchange rates or
cointegration between nominal exchange rates and the price differential and
is called PPP(0). The other refers to the case where price differentials are
fully reflected in the nominal exchange rate but in the presence of an I(1)
error and is called PPP(1).

Table 8 reports the dispersion of the parameter estimates of Bz

[Table 8 around here]

The dispersion is very large, much larger than we assumed for Panels I and
II in the Monte Carlo. Both the SSD and range of the estimates for the CPI
panels exceed those for the WPI panels. Some dispersion would be expected
because these are probably spurious regressions, but country specific speci-
fication errors must also play a part. As the Monte Carlo results indicated,
both lack of cointegration and heterogeneity will distort inference based on

’The composition of the four panels is slightly different. The CPI panels have 18
countries: Austria, Canada, Denmark, Finland, Germany, Greece, Japan, Netherlands,
Sweden, Spain, Switzerland, United Kingdom, United States, Belgium, France, Italy, Nor-
way, Portugal. The WPI panels exclude the latter five countries and include Ireland.
Excluding the numeraires this gives N = 17 and N = 13 groups, respectively.

6Overall there was just one rejection in the four panels. Detailed results are available
from the authors on request.

"In this section we ignore the problem of cross sectional dependence in panels which is
examined in Coakley, Fuertes and Smith (2001).
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the pooled estimators and we would expect to over-reject the null § = 1
using the POLS and FE estimators. To control for excessive heterogeneity,
the number of standard deviations from the mean, Z(3,) = (3, — 3)/o(8,),
is calculated and, using Z > 2, the following potential outliers in the distri-
bution of Bz are identified: Austria for both DM panels, and Japan and the
United Kingdom for the CPI-US$ and WPI-US$ panels, respectively. For
relatively small IV, as in this case, the MG estimator is likely to be sensitive
to outliers.
The panel results and a t-statistic for 3 = 1 are reported in Table 9.3

[Table 9 around here]

Except for the 0.78 MG estimate for the CPI-DM panel, all the estimates lie
in the range 0.93-1.1. For the US dollar panels, the MG is higher than the
pooled estimates, though the difference is not large. The test based on the
MG estimator provides support for the PPP(1) hypothesis in three of the four
panels.” Futhermore, the statistic for the CPI-DM panel at -2.642 represents
only a marginal rejection at the 5% level from a Student-t distribution with
16 degrees of freedom.

By contrast, inference based on the two pooled estimators rejects long
run PPP in three out of the four panels with relatively large t-statistics.
These contrasting results — and in particular the negative verdict on PPP(1)
from the pooled regression estimators — is consistent with our Monte Carlo
findings of oversized inference in the I(1) error, heterogeneous slope case.
Moreover, since the simulations indicated that inferences based on the MG
estimator are appropriate in the latter context, we conclude that the evidence
points towards PPP(1) both for the US dollar and DM panels despite the
presence of a stochastic trend in the real exchange rate indicated by the unit
root tests.

These results have a number of general implications for applied work.
First, one can estimate and test for long run effects in panels even when
the variables do not cointegrate. In other words, long run effects are not
exclusively associated with cointegrating relationships. On that basis we dis-
tinguish between PPP(0) and PPP(1) and provide estimates and test results

8Note that the nominal exchange rate variable had to be normalised on the base year
(1995) exchange rate for the POLS regression.

9The same qualitative results are obtained after discarding the countries identified
earlier as outliers.
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for the latter case. Secondly, since panels permit consistent estimation of a
regression parameter even in the presence of an (1) error, it follows that one
cannot make inferences about the nature of the error from the estimated co-
efficients. The fact that in panel PPP regressions the coefficient of the price
level differential is unity does not imply that real exchange rates are neces-
sarily stationary. Given this it would be wise to use a range of alternative
estimators and examine and interpret the differences between them. Finally
conclusions about efficiency and hypothesis testing are further complicated
by the fact that the pooled and mean group estimators are estimating dif-
ferent long run parameters. Thus it is important for researchers to be clear
about the difference between the average long run or the long run average as
potential measures of a long run relationship.

6 Conclusions

This paper has used Monte Carlo simulations to examine how the aymptotic
(large N large T') results on the properties of pooled estimators in Phillips
and Moon (1999) perform in panels which are typical of applied, particularly
PPP, research. We also consider the performance of an alternative estima-
tor, the mean group. The experiments confirm that the asymptotic results
hold fairly well for small sample sizes and hence apply in empirically relevant
situations. Both the pooled and mean group estimators appear unbiased,
with dispersion that falls at rate v/N even when the error term is I(1) and
therefore the individual time-series regressions are spurious. The efficiency of
the estimators depends on the ratio of the error innovation to the regressor
innovation and, in some circumstances, the variance of the estimators can
be very large. The simulations also confirm the asymptotic result that con-
ventional standard errors for the pooled estimators are seriously misleading
and inference based on them in unreliable. Interestingly, the standard errors
for the mean group estimator are broadly correct for all the data generating
processes considered.

The results for the (1) case are very similar irrespective of whether the
regression parameters are heterogeneous or homogeneous. In the 7(0)-error
and heterogeneous-f3 case, the standard error of the mean group estimator
declines at rate Tv/N. However, because heterogeneity induces an extra I (1)
term in the disturbance, the standard errors of the pooled estimators declines
only at rate v/N as in the I(1) error case. While the pooled estimators

14



may have an efficiency advantage over the mean group estimator in small
T samples, they rapidly lose this as 1" grows. Finally in the light of these
findings, the evidence suggests that the PPP hypothesis — that nominal
exchange rates and price differentials move one-for-one in the long run —
seems to hold even if real exchange rates are subject to permanent shocks.
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Appendix: Panel Estimators

Denote
T N
g = T Z Yi; §= (NT)™ Z Zyit
=1 i=1 t=1
Yit = Yit — Yi

and define analogous measures for xz;;.

i) Mean group (MG) estimator
Separate OLS regressions are run for each groupt=1,2,..., N :

Vit = Q; + B3 Tip + Uy, (A1)

and from the individual estimates and their standard deviation:

T T
By = UuTu) Y T
t=1 t=1

o(B) = \| S (Bi= B2/(N - D),

we compute the MG estimator, its standard error and ¢ statistic for the null
of § =1 against the alternative § # 1 :

:ﬂzgj:

1@y = 3" = 1)/se(3"°).

i1) Pooled OLS (POLS) estimator
The NT observations are pooled to fit the OLS regression:
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Yit = o+ By + i,

The corresponding POLS estimates are:

BPOLS _ S S (Y — W) (@ — )

Efil 2:{:1(3”# —7)?

~POLS S
where s% =

~POLS ~POLS BPOLS

tB )= —1)/se )-

i11) Fized effects (FE) estimator
We pool the NT observations to fit the OLS regression:

Yit = 0 + B + w,

The corresponding FE estimates are:

BFE _ Zfil Zthl YitTit

N T ~
Zi:l Zt:l mzzt

- Y Y
\/Zfil Sy (@i — 7)? (NT —2)

N T A9
~FE S . 1 Uy
Where 82 _ Zz—l Zt—l 7

) = =
\/ Zfil Zthl %?t NT = (N + 1)

~FE

1B = (3" = 1)/se(B).

se(
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Table 1 Summary statistics (Homogeneous slope)

A) PANEL I

Mean  SSD Min. Mazx. Median Skew. Kurt-3
i) 1(0) errors
AME1.0001 .0164  .9356 1.0617 1.0003 .0138  .1634
pPOLS1.0001  .0056  .9782 1.0244 1.0002 .0249  .1570
pFE - 1.0001 .0096 .9627 1.0359 1.0002 .0159  .0383
tgme  .0035 1.0205 -4.2151 4.1064 .0211 -.0288 .0494
tgrors 0193 9997 -3.7318 3.7177 0266  .0198 -.0350
teer 0149 9945 -3.7473 3.4870 .0156  .0085 -.0327
it) I(1) errors
MG 1.0002 0734 7044 1.3548  1.0004 -.0124 .0933
pPOLS 11,0007 0785  .6598 1.3183  1.0005 -.0219 .1494
BEE - 1.0004 .0601  .7429 1.2056  1.0000 -.0191 .1211
tgme  .0036  1.0309 -4.8001 4.2294 .0046 .0127 .0439
tgrous 0502  4.1573 -20.0027 16.4573 .0298 -.0023 .1588
tyee 0128 31110 -13.1621 12.2589 .0006 -.0042 .1143
B) PANEL II

Mean  SSD Min. Mazx. Median Skew. Kurt-3
i) 1(0) errors
MY 1.0002 .0140  .9432 1.0640 1.0002 .0137  .1307
pFOES1.0001 0062 9716 1.0298 9999  .0583  .4357
gFE - 1.0002 0103 9512 1.0365 1.0001 .0225  .1876
tgue 0183  1.0769 -4.7639 4.7760 .0152 -.0151 .2548
tgrors 0116 1.0044 -4.4018 3.7264 -.0147 .0273  .0441
teer 0145 1.0031 -4.3065 3.3878 .0055 .0118 -.0102
i1) I(1) errors
MG 9978 8341  -2.4154  4.1996 .9883  .0192 .1332
pFOES 9949  1.0357 -2.9439  6.1529 .9815 .0182 .2125
gEE 9994 7779 -1.6974  4.0661  1.0047 -.0135 .0761
tgue  -.0035 1.0807 -5.0416 4.9543 -0154 .0084 .4785
tgrors -.0149 14.8476 -66.8688 64.7852 -2580 .0392 .2818
tgre 0072 11.0579 -42.1452 42.3121 .0652 -.0011 .1088
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Table 2 Empirical size and critical values

PANEL 1 PANEL II
I(0) errors  I(1) errors  I(0) errors  I(1) errors
Pos  Zos  Pos  Zos Pos 205 Pos 205

MG 532 198 577 206 7.07 217 682 2.16
POLS 5.06 199 64.02 821 494 1.99 89.50 29.69
FE 461 194 5237 6.17 488 196 8&85.66 21.81
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Table 3 Response surfaces for innovation variances

i) 1(0) errors

MG POLS FE
g S5D(P) g S5D(p) g S5D(pB)
a -.0064 -3.737 -.0011 -4.5278 -.0055 -4.0161
(-1.221) (-232.005)  (-578) (-272.833)  (-1.040) (-231.047)
b 7.84E-05 -.9994 -.0004 -.9955 .0011 -1.0001
(029)  (-353.832)  (-.299) (-364.186)  (.383) (-389.834)
& -.0024 9958 -.0001 1.0088 -.0029 9996
(-1.028) (183.203)  (-133) (184.466)  (-1.060) (182.441)
R?  -.0133 9996 -.0179 9995 .0009 9997
it) I(1) errors
a .0038 -2.1668 -.0346 -1.8780 .0034 -2.1512
(200)  (-115.120)  (-738) (-100.464)  (.311) (-112.611)
b .0003 -.9997 .0361 -.9986 -.0086 -.9965
(024)  (-506.340)  (.938) (-478.090)  (-1.219) (-380.061)
& .0010 9955 -.0407 1.0002 .0074 9983
((108)  (174.951)  (-1.209) (160.929)  (1.102) (165.716)
R*  -.0255 9997 .0571 9996 .0965 9995

Notes: t-ratios in parentheses. Panel I specifications are used. Functional forms:

In(f) =a+bln N +clnT + v;

A

InSSD(B) =a+bInN+clnT +wv
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Table 4 Response surfaces for panel dimensions

i) 1(0) errors

MG POLS FE
5 SSD(B) s SSD(B) s SSD(B)
a  -.0006 6424 ~.0002 ~.1631 ~.0005 3538
(-1.692)  (26.067) (-1.595)  (-5.413) (-1.938)  (14.453)
b 6.37TE-5  -.4996 7.78E-6  -.5149 3.93E-5  -.5053
(1.722)  (-124.493) (.644)  (-117.138) (1.621) (-112.375)
¢ 6.13E-5  -1.0064 2.85E-5  -.9980 5.54E-5  -1.0017
(1.463) (-263.821) (2.278)  (-220.859) (1.875) (-238.169)
R?2 1231 .9989 1331 9987 1487 19988
it) I(1) errors
a  .0005  -1.0262 ~.0039 _.7097 ~.0015  -1.0316
(.236)  (-45.205) (-1.193)  (-33.257) (-.751)  (-37.353)
b 6.42E-5  -.5001 .0005 ~.5121 .0002 ~.5024
(214)  (-132.449) (1.028)  (-131.506) (.569)  (-117.594)
¢ -.0002 ~.0039 .0003 -.0013 .0001 .0003
(-.970)  (-.957) (.688) (-.384) (.645) (.085)
R?2  -.0161 19943 .0109 19953 ~.0135 9944

Notes: t-ratios in parentheses. Panel I specifications are used. Functional forms:

In(f) =a+bln N +clnT + v;

A

InSSD(B) =a+bInN+clnT +wv
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Table 5 Summary statistics (Heterogeneous slopes)

A) PANEL I

Mean SSD Min Max Median  Skew  Kurt-3
i) 1(0) errors
gME1.0070  .0164 9286  1.0691  1.0071 .0269  .0541
pPOES 10598 0165 9941  1.1133  1.0598 -.0264 -.1806
gEP1.0607 .0152 1.0037 1.1115 1.0607 -.0228 -.0405
teme 3572 7453 -1.8188 3.9983  .3082 4129  .2447
tgrors 10.1642 3.4301 -.8285 24.9962 9.9166 .4080  .1951
terr 63322 1.8772 3493 155978 6.2277 3202  .1885
it) I(1) errors
gME T 1.0093 .0788  .7226 1.3374 1.0088 .0184 .0950
BPOLS 10639 .0793 7341 1.3525 1.0639 -.0686 .1658
BFE1.0642 .0606 .8178 1.3164 1.0648 -.0435 .0024
tgme 1471 1.0078 -3.5733  4.2683 .1148  .1834 .0451
tgrors 3.4901 4.2785 -15.7760 20.8615 3.4371 .0643 .1697
tyre 33933 3.2026 -8.6983  17.7462 3.2834 .0621 -.0133
B) PANEL II

Mean SSD Min Mazx  Median Skew  Kurt-3
i) 1(0) errors
gME 9999 0140  .9447 1.0551 .9999 -.0215 .1747
pPOES1.0004 0060 .9740 1.0270 1.0003 .0036  .2414
GEE - 1.0002 .0101 9583 1.0385 1.0004 -.0449 .2203
tgme  -.0063 1.0855 -4.9365 4.4814 -.00497 -.0532 .3118
tgrors 0654 1.0024 -3.6226 3.4534 .0506  .0119  -.0942
tgrr 0237 1.0172 -3.6116 3.5886 .0334 -.0361 .0637
i1) I(1) errors
gME 10109 7798  -2.0940 5.0838  1.0082 -.0009 .1457
pPOES 10148 1.0021  -2.9602 5.0172  1.0178 -.0161 .2390
gEE 1.0070 .7442  -1.8474 4.1161  1.0087 -.0209 .0753
tgue  .0124  1.0684 -4.2912 58753 0111 -.0134 .3799
tgrors 2189  14.9120 -56.8570 64.8759 .2638 -.0015 .2150
tere 0983 10.9928 -42.7103 50.0137 .1273  -.0201 .1104
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Table 6 Empirical size and critical values (Heterogenous slopes)

PANEL 1 PANEL II
I(0) errors  I(1) errors 1(0) errors (1) errors
D.os Zos  Pos 205 Pos 205 Pos 205

MG 236 193 543 217 7.05 212 694 2.14
POLS 99.79 17.45 73.39 12.04 5.05 2.02 89.17 29.74
FE 99.55 10.31 71.89 9.81 5.68 2.04 85.21 21.47
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Table 7 Response surfaces (Heterogeneous slopes)

i) 1(0)errors

MG POLS FE
g S5D() g S5D(P) g S5D(B)
a -.0074 .8320 .0422 -2.367 .0439 -2.311
(-.642)  (21.103)  (3.915) (-24.432)  (4.138) (-20.397)
b -1.82E-4 -.4942 3.22E-4  -.4936 0.09E-5  -.4980
(-128)  (-90.521)  (.262) (-38.470)  (.0417) (-34.797)
& 1.83E-3 -1.008 1.53E-3 -2.71E-2 1.52-3  -8.12E-2
(1.183)  (-178.991)  (1.121) (-2.209)  (1.122)  (-5.670)
R? .0034 9977 .0052 9612 .0036 .9540
it) I(1) errors
a -.0023 -.8347 .0376 -.7635 .0394 -1.0616
(-308)  (-13.926)  (6.258) (-20.050)  (6.806) (-22.150)
b -7.949E-4 -.4895 1.78E-3  -.5068 1.09E-3  -.5002
(-554)  (-43.309)  (1.481) (-65.619)  (1.395) (-71.776)
& 1.31E-3 -5.49E-3 1.01E-3 -5.40E-3 8.59E-4  -.0033
(1.183)  (-.654) (1.286)  (-.889) (1.089)  (-.476)
R? -.0047 9755 .0353 9871 .0252 9847

Notes: t-ratios in parentheses. Panel I specifications are used. Functional forms:

In(f) =a+bln N +cInT + v;

A

InSSD(B) =a+bInN+clnT +wv
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Table 8 Dispersion of group estimates 3,

Panel a(8;) Min. Maz. Z(B) = f(,HB) =2
CPI.DM 3439 ( Ajﬁ?a) (é;fjfa) (fﬁifﬁg)
CPI-USS 3582 (Fii?:?ld) &fﬁﬁ) éﬁgﬁ)
WPI-DM 3157 ( Aiziia) (Swit.iz))zlznd) <f{12?1?1i)
WPIL-US$ et (Unitef?(oiigdom) (*1]:;;?) _?515{5)8
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Table 9 Panel estimates of static PPP regressions

MG FE POLS
CPI-DM panel
B(se) 0.780(.083) 0.933(.004) 0.968(.004)
t-statistic (G=1) -2.642* -18.847* -7.436*
CPI-US$ panel
B(se) 1.084(.087) 0.964(.007) 1.004(.006)
t-statistic (G=1) .965 -5.167* 0.702
WPI-DM panel
B(se) 1.044(.088) 1.036(.004) 1.066(.004)
t-statistic (G=1) 1.505 8.427* 15.666*
WPI-US$
B(se) 1.108(.068) 1.001(.008) 1.069(.006)
t-statistic (G=1) 1.570 1.570 12.072*

Notes: *indicates rejection of the long run PPP hypothesis.
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