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The characteristics and performance of lithium-ion batteries
typically rely on the precise combination of materials in their
component electrodes. Understanding the impact of this
formulation and the interdependencies between each compo-
nent is critical in optimising cell performance. Such optimisation
is difficult as the cost and effort for the myriad of possible
combinations is too high. This problem is addressed by
combining a design of experiments (DoE) and advanced
statistical machine learning approach with comprehensive
experimental characterisation of electrode slurries and coatings.
An industry relevant graphite anode system is used, and with
the aid of DoE, less than 30 experiments are defined to map
impact of different weight fractions of active material (80–96 wt
%), conductive additive (Carbon Black at 1–10 wt%) and a two-
component binder system (Carboxymethyl Cellulose (CMC) at
1–3 wt% and Styrene Butadiene Rubber (SBR), at 1–7 wt%).
Using Explainable Machine Learning (XML) methods, correla-
tions between the formulation, slurry weight percentage (30–

50 wt% in water) and coating speed (1–15 m/min) are quanti-
fied. Slurry viscosity, while known to depend on the CMC
concentration, is also heavily influenced by carbon black and
SBR when at high concentration, as is common in research.
Viscosity increasing components also improve adhesion, by
improving dispersion and hindering binder migration. Conduc-
tivity of the coating on current collector is sensitive to the
current collector-coating interface, which makes it a highly
useful probe. Improvements in cell capacity are observed with
higher viscosity formulations (High weight percentage, CMC
content), attributed to reduction in migration and slumping of
the slurry on the current collector. SBR had a negative impact at
any concentration due to its insulating nature, and carbon black
reduces gravimetric capacity when included at high concen-
trations. The insights from this study facilitate the formulation
optimisation of electrodes providing improved slurry design
rules for future high performance electrode manufacturing.

Introduction

According to 2022 reports by BloombergNEF,[1] lithium-ion
battery (LIB) component prices have increased by 7% from
2021, the first yearly increase in a decade. The average price of

a LIB pack in 2022 was 151 $/kWh and is soaring due to the
rising cost of materials. While material costs dominate the
battery production cost, manufacturing processes still repre-
sents a significant portion at ~25% of the total cost.[2,3] They
also represent a significant portion of the energy used, e.g.
representing ~66% of the embedded energy in a LMO-Graphite
cell.[4] Therefore, the LIB manufacturing process still needs to be
optimised to minimise costs and CO2 emissions.

Optimising manufacturing poses significant challenges,
primarily due to its complex multi-stage nature and interdepen-
dencies between the stages. The current electrode manufactur-
ing process consists of five distinct stages:[5,6] (i) formulation
involving materials selection and ratio determination, (ii) slurry
mixing, (iii) coating the slurry onto a current collector, (iv) dry-
ying to eliminate the solvent, and (v) calendering, which
compresses the electrode to reduce porosity. Understanding
the precise impact of each of these stages on the final electrode
and cell performance is challenging, as they have knock-on
effects on subsequent processing steps. Thus, there is an
essential requirement for systematic generation of experimental
data and the development of process models to comprehen-
sively grasp these intricate relationships. The systematic and
model-based manufacturing for rechargeable energy storage
devices and particularly lithium-ion batteries has been a new
topic to the field. The data driven models for capturing the
dependency of the mixing,[7] coating process,[8,9]
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calendering,[10–12] drying[13,14] and electrolyte injection[15] are
shown to perform well in laboratory and pilot scale manufactur-
ing. These studies try to quantify the effect of some of the
critical decision factors, such as coating speed, coating gap,
calendering pressure, calendering roll temperature, drying air
speed and temperature, on the responses (such as coating
porosity, coating thickness) at the end of each step and
investigate that further towards the cell characterisations 9such
as capacity, internal resistance). Although some key results are
reported in this context, still many of the manufacturing steps
and their extensive set of parameters are not studied
sufficiently.

During the formulation stage, the selection of materials and
their respective ratios for the electrode takes place. Electrodes
typically consist of the active material, conductive additive, and
one or more binders. The choice of the active material depends
on the desired cell chemistry. Presently, widely used industrial
lithium cathodes include Nickel Manganese Cobalt Oxides
(NMC) and Lithium Iron Phosphate (LFP), while graphite-based
materials are commonly employed for lithium-ion anodes.[5,6,16]

The conductive additive, usually carbon black, is a fine-particle
conducting material that forms a conductive network within
the electrode, thereby enhancing its electronic conductivity.
Binders, which are typically polymeric materials, play a crucial
role. Polyvinylidene Fluoride (PVDF) is commonly used, neces-
sitating the use of N-methyl pyrrolidone (NMP) as a solvent to
dissolve the binder and create the electrode slurry. While this
solvent-based system is still utilised for NMC cathodes, graphite
anodes have transitioned to water-based processing. To repli-
cate the performance of PVDF, a combination of water-based
binders is employed. Common water-based binders in the
industry include carboxy methyl cellulose (CMC), which is
water-soluble and acts as a thickening agent, facilitating
suspension, and styrene-butadiene rubber (SBR), which is
suspended in water and imparts flexibility and adhesion to the
electrode upon solvent removal. However, the adhesion of
water-processed electrodes remains notably lower than those
made with NMP. This weak interface can result in delamination
caused by volume expansion and contraction during cell
cycling, leading to premature cell failure.[17,18] Furthermore, the
presence of non-conducting SBR can limit the rate performance
by reducing the overall electrode conductivity. Consequently,
the chosen formulation represents a balance between these
two factors, and the performance compromise must be carefully
evaluated considering the cost and environmental benefits
associated with water-based processing. A comprehensive
understanding of the relationship between formulation, elec-
trode conductivity, and adhesion is essential for optimizing
electrode manufacturing, particularly when water is used as the
solvent.

The chosen materials are combined with a solvent to form a
slurry. Various mixing equipment or extruders can be utilised,
with the ratio of ingredients and solids content affecting mixing
efficiency.[19,20] Inefficient mixing results in larger particle sizes,
leading to coating defects. Poor distribution of the conductive
additive and binder can also cause inadequate conductivity and
adhesion, respectively.[21] The slurry is then coated onto a

current collector, typically copper foil for anodes and aluminium
foil for cathodes. Slot die coaters are commonly employed in
the industry, although comma bar and blade coating methods
are also used on lab and pilot scales. The coatweight and
uniformity of the coating must be maintained to a tight
tolerance, as the anode and cathode must be balanced in the
final cell. The rheology and interfacial properties of the slurry,
such as surface tension impact the coating parameters along-
side the coating gap and material flow rate. High surface
tension produces higher thickness and coatweight as the slurry
‘beads up’ on the surface, but spreads out when the surface
tension is low.[7] The coating is subsequently dried in ovens to
remove the solvent, with careful attention to drying temper-
ature to prevent binder migration and ensure good adhesion.[17]

Calendering is performed to reduce porosity and enhance
energy density, although excessive calendering can hinder ion
transport. The preceding stages influence calendering, requiring
efficient binder distribution for flexibility and resistance against
cracking/delamination.[12,22] Due to numerous interdependencies
in the process, extracting relationships becomes complex.
Detailed information on the challenges can be found in recent
battery manufacturing roadmaps,[23] review articles[24,25] and
mapping studies.[26]

Investigating the impact of formulation and control varia-
bles on slurry and electrode characteristics through experimen-
tal methods is vital but challenging and costly, especially in
large-scale manufacturing. Thus, modelling approaches are
needed to overcome these limitations. Physical models have
been employed for specific stages, such as discrete element
modelling for structure evolution in calendering,[27] and compu-
tational fluid dynamics for air entrapment in coating.[28]

However, combining stages increases complexity, and physical
models often rely on empirical data from specific experiments.
Data-driven models offer an alternative, less computationally
complex method to explore the process, providing insights into
the dependencies of manufacturing outputs on physical proper-
ties.

Gathering the necessary data for modelling requires a
comprehensive set of representative experiments and appro-
priate training data due to the large number of factors and
nonlinear relationships.[29,30] Conducting a full-factorial approach
with one variable at a time is impractical due to cost and time
constraints. Therefore, a customised design of experiments
(DoEs) with a reasonable number of cases is essential. The role
of DoEs in analysing LIB manufacturing processes is reviewed
and summarised.[31]

The limited experimental data makes it a real challenge to
correlate the control or compositional factors with the slurry
and coating quality. Such relations are hard to track with
standard statistical methods such as Pearson Correlations,[32] or
linear regressions. Latterly, it has been shown that machine
learning (ML) algorithms are capable of revealing such
interdependencies, and recent investigations based on machine
learning techniques for battery manufacturing process are well
reviewed already.[25] Highlighted is how a selection of regression
models such as support vectors machines,[33] decision trees[34]

and neural networks[35] when combined with explanation
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techniques can reveal the dependency between control and
response variables. Explainable Machine Learning (XML) tech-
nologies, such as Shapley values[34] and its computationally
effective version SHAP,[36] Accumulated Local Effects,[37] and
Feature Importance[38] XML, not only contribute to the model-
ling of the process, but also focus on cause and effect,
correlation, and dependency analysis for shedding light on the
black-box style ML representations.[8,11]

Despite advancements in modelling, there are still signifi-
cant knowledge gaps regarding the battery manufacturing
process. To address these gaps, a sequential approach is
necessary, studying the processes independently and gradually
incorporating complexity to encompass the entire process. This
study focuses on investigating the influence of electrode slurry
formulation on the physical properties of the slurry and
electrode, as well as its contribution to the final cell character-
istics. Building upon previous work[7] that examined the impact
of slurry properties on coating, this study further explores how
the desired rheology can be achieved through formulation and
its effects on electrochemistry. A typical industrial lithium-ion
anode system, specifically graphite, processed in water and
prone to poor adhesion and delamination issues, is utilised.
Graphite is the most common anode system used for lithium-
ion batteries, and hence optimisation of its manufacture has a
large potential for impact, reducing scrappage rates and startup
times for battery manufacturing lines. Graphite formulations
strike a balance between adhesion and conductivity, consider-
ing the non-conductive nature of binders added for flexibility
and adhesion that can negatively affect electrochemistry.
Consequently, systematic studies are essential to comprehend
the effects of formulation and processing on adhesion,
conductivity, and final electrochemistry. The objective of this
study is to elucidate the underlying physical relationships
governing electrode coating by expanding the combined
experimental-machine learning approach. We extend the scope
of the process to include slurry formulation and investigate
how its components impart specific properties to the slurry,
which, in turn, influence the coating quality. Additionally, we
broaden the experimental characterization to encompass exten-
sional rheology, coating adhesion, conductivity, and capacity in
a half cell. Finally, the incorporation of Design of Experiments
(DoE) facilitates a comprehensive approach from experimental
design to data analysis, enabling the extraction of manufactur-
ing relationships.

The structure of the paper is as follows. Firstly, the method-
ology of the research is given, it covers the design of experi-
ments plan and how the experiments are conducted in the
laboratory. The modelling techniques including binary logistic
regression for slurry mix quality prediction and multiple linear
regression (MLR) and Gaussian process regression (GPR) for
slurry and coating characteristic prediction are briefed in this
section followed by the machine learning explanation techni-
ques of accumulated local effects and multi-factor dependency
plots, and model performance evaluation metrics are also given
in this section. The main results and findings are outlined
followed by summary and conclusions.

Methodology

Design of Experiments Plan and Data Preparation

For the purpose of data capture a “mixture-process optimisa-
tion” DoE has been used. To the best of our knowledge, this is
the first study in the open literature applying this kind of DoE
to understand the combine effect of formulation (mixture
effects) with manufacturing operating variables on the lithium-
ion battery field.

For this DoE, the 6 input features considered were 4
formulation features (weight percentage of active material,
conductive additive, binder 1, and binder 2 in the electrode)
and 2 process features (coating speed and slurry solids weight
fraction). Mixture features are the components of the formula-
tion and must add up to a constant value (in this case, 100%).
Due to this constraint, it is not possible to increase one
component without reducing another, restricting the overall
design space. Process features are parameters which can be
individually varied while maintaining other features constant.
These can be actual processes (such as coating speed) or
general parameters (weight fraction).

To ensure that models have access to high quality data, the
range of the factors and responses have been carefully selected
based on the experts’ view. Also, each control factor has been
considered to have a minimum of 2 break points, for nonlinear
and more sensitive responses this has been 3. The data points
are designed by the DoE approach considering the levels of the
noise in the factor measurements such that a measurable
change in the reposes is evident given the input factor change.
With these considerations the dataset is balanced and spatially
distributed for modelling purposes.

In order to analyse the mixture and process features into a
single study, an optimal mixture-process design[39–41] was
created using the software Design-Expert® to generate the list
of 46 experiments, listed in Table 1 and plotted in Figure 1.
Note that the weight percentages displayed are the actual
values from the measured weights of materials, which vary very
slightly from the DoE due to weighing errors. The features and
levels were set based on experimental know-how. For formula-
tion, all components were included, and the ranges were
chosen to span the range between maximising active material
and maximising conductive additive and binder. Typically 10%
of each binder and conductive additive is the highest used in
literature so this was chosen as the limit.[42–44] Because a
combination of binders is used, a range of 1–3% for CMC was
chosen and 1–7% was chosen for SBR, giving a maximum of
10% binder overall. The lower limit for CMC was chosen
because higher concentrations were typically too thick to mix.
Weight fraction spanned from 30%, a low value where drying
time would be extended, to 50%, which from trials of the
mixing process is close to the maximum value for graphite to
achieve a good dispersion in water. This gave an active material
content between 80 and 97%. The interest responses were,
Viscosity (Pa.s), Extension Time (seconds), Coating Thickness
(μm), Coating Weight (gsm), Peel Adhesion Force (N), Con-
ductivity (S/m), and Capacity at its 3rd discharge cycle (mAh)
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Table 1. Complete design matrix from DoE.

Active Material
(Graphite)
%

Conductive Additive
(Carbon Black)
%

Binder 1
(CMC)
%

Binder 2
(SBR)
%

Solids Weight
Fraction
%

Coating Speed
m/min

88.7 5.3 2.0 4.0 30.4 2

90.9 1.1 1.0 7.0 50.0 15

88.8 7.0 3.0 1.2 30.0 15

88.8 1.0 3.1 7.1 29.9 15

96.9 1.0 1.0 1.1 30.0 15

97.0 1.0 1.0 1.0 49.8 2

89.6 5.5 1.0 3.9 30.1 15

80.0 10.0 3.0 7.0 30.0 2

81.8 10.1 1.0 7.1 29.7 15

91.9 1.0 3.0 4.1 29.6 2

87.2 10.6 1.1 1.1 28.7 2

95.6 1.1 2.3 1.0 30.0 2

84.3 9.9 2.3 3.5 30.1 15

88.3 5.4 2.0 4.3 29.9 2

88.2 5.6 2.0 4.2 30.0 15

88.5 5.6 2.3 3.6 40.4 2

91.0 1.1 1.2 6.7 40.1 15

97.0 1.0 1.2 0.8 39.8 2

88.9 1.0 3.0 7.1 40.0 2

79.6 10.0 3.0 7.4 38.8 15

91.9 1.0 3.0 4.1 39.9 15

95.6 1.0 2.3 1.1 39.9 15

85.2 5.5 2.0 7.3 40.0 15

84.6 10.0 2.3 3.1 40.1 15

84.6 10.0 2.3 3.1 40.0 2

85.4 5.7 2.0 6.9 30.0 15

90.9 1.0 1.0 7.1 29.9 2

88.2 5.5 2.0 4.3 50.0 2

88.7 7.3 3.0 1.0 49.8 2

88.9 1.0 3.0 7.1 49.7 2

89.5 5.5 1.0 4.0 50.0 15

89.5 5.5 1.0 4.0 30.0 2

80.0 10.0 3.0 7.0 50.1 15

82.0 10.0 1.0 7.0 50.0 2

91.8 1.1 3.0 4.1 49.9 15

88.0 10.0 1.0 1.0 50.1 15

95.7 1.0 2.3 1.0 50.1 15

84.5 10.1 2.4 3.0 49.4 15

84.6 10.0 2.3 3.1 49.5 2

88.4 5.5 2.0 4.1 49.7 2

89.3 5.5 1.1 4.1 39.7 15

89.0 7.0 3.0 1.0 40.0 2

82.0 10.0 1.0 7.0 39.2 2

87.4 10.0 1.0 1.6 40.0 15

88.4 5.5 2.0 4.1 40.0 2

85.5 5.5 2.0 7.0 50.1 15
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which are fully described in the Experiments section. The
coating speed range was the upper and lower limit of the draw
down coater used (2 m/min to 15 m/min).

Among the 46 points, 20 experiments resulted in unusable
mixtures, those colored in red and labelled ‘bad’ in Table 1 and
Figure 1, due to various issues such as difficulties in completely
dispersing the solids. Because of this, only the 26 experiments
which resulted in usable slurries can be used for modelling
responses related to the slurry and electrode properties. The
only exception to this is the logistic regression model which will
be used to predict whether a slurry will be usable or not. This
model uses the entire data set of 46 experiments.

Note that, since the entire data set (which was defined
using DoE) will not be used for modelling the slurry and
electrode properties, the distribution of the remaining data
points need to be evaluated before they are used to create
models. Histograms shown in Figure 2 can be used to under-
stand the spread of the new data set. If the shapes of the
histograms of the final data sets are similar to the full data sets,
then the final data sets can generally be considered balanced
and can still be used for further modelling.

The red bars show the counts of the experiments which
resulted in unusable slurries. Note that the general distributions
of the remaining 26 data points (blue and green) are similar to

Figure 1. Design space showing (a) the mixture space and (b) the process space (for exact values please refer to Table 1).

Figure 2. Histograms showing the spread of the data of (a) active material, (b) conductive additive, (c) binder 1, (d) binder 2, (e) weight fraction, and (f) coating
speed. Red shows the data points which resulted in unusable slurries. The usable slurries with weight percent ~50% are shown in blue. The remaining usable
slurries (which were used in the modelling) are shown in green.
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the distribution of the entire data set (blue, red, and green),
with the exception of weight fraction, where most of the
unusable slurries are at ~50% weight fraction. Thus, in order to
maintain a balanced data set for weight fraction, all points
containing ~50% weight fraction (blue) must also be removed
from the 26 usable slurries. The remaining 24 data points are
shown in green. In general, the shapes of the green distribu-
tions are similar to the shapes of the full data sets. The only
exception to this is the weight fraction. However, the weight
fraction has a relatively balanced split between the points at
~30% and 40% weight fraction. Thus, the weight fraction data
set is still balanced. Overall, even if only a subset of the entire
data set can be used for the final modelling, this smaller data
set (comprising of 24 experiments) is still a balanced data set
and can be used.

Regarding data preparation and cleansing, given the
relatively small size of the data, manual data cleansing has been
performed to remove the unusable data as described earlier.
For the purpose of modelling the data has been normalised to
minimise the bias due to the different ranges and scales of
control factors that were used as model inputs.

Experiments

Materials

The active material for this study was BTR Graphite S360-E3,
conductive additive was Imerys carbon black C45, Binder 1 was
Ashland carboxymethyl cellulose (CMC), Binder 2 was Zeon Styrene-
Butadiene Rubber (SBR) BM-451B (40% suspension in water).

Mixing

Mixing procedure is kept constant for this study to avoid the
relationships becoming too complex, (although the mixing effi-
ciency is changed by changing the formulation).

CMC was pre-dispersed in water at 3.5 weight% using a Silverson
overhead mixer for 2 hours.

The slurries were mixed in vials in an Intertronics THINKY mixer. The
CMC solution was added followed by the carbon black; this was
mixed for 1 minute at 500 rpm followed by 5 minutes at 2000 rpm.
The graphite and water (to achieve the desired solids percentage)
was then added and the slurry mixed for 1 minute at 500 rpm
followed by 10 minutes at 2000 rpm and a 3 minute degas step at
2200 rpm. The SBR was then added before a final mix of 5 minutes
at 500 rpm.

The mixing efficiency was measured visually (whether the slurry
contained visible unmixed powder or clumps) and by Hegman
gauge to evaluate the particle size of the slurry. Slurries that visually
were not fully mixed or gave Hegman values above the desired
coating thickness (100 micron), were marked as not mixed and not
carried forward in the procedure.

Rheology

A sample of the slurry was characterised using a Netzsch Kinexus
Pro Plus rheometer with 40 mm roughened parallel plates. The
viscosity was measured between 0.1 and 100 s� 1, a value near the
middle of the range at 1.6 s� 1 was chosen for the machine learning

analysis. Frequency sweeps were performed between 0.1 Hz and
100 Hz at 0.5% strain and a data point at 1.6 Hz chosen for the ML
analysis. The central points in the range were selected to avoid
some noise encountered at lower rates (particularly for lowest
viscosity samples) and avoid any artefacts from inertia at the
highest shear rates. To study the SBR solutions alone, viscosity was
measured using a 40 mm 2 degree cone and plate, between rates
of 2.5 and 100 s-1 and an average taken. This was not used in the
machine learning

The extensional rheology was characterised using a Sey.mour
extensional rheometer constructed in house based on previous
designs.[45,46] The slurry was loaded to 1.9 mm plates with a
separation of 0.5 mm, which was rapidly moved to 5 mm in
~0.005 s. The filament was imaged and the time between the end
of the strike and the break-up of the filament measured using in-
house MATLAB code, averaged over 3 repeats.

Surface Tension

Surface tension was measured using a Biolin Scientific Sigma 702
force tensiometer with a Wilhelmy plate. Three measurements were
made and averaged for each slurry.

Coating

Coating was performed using an RK print coat instruments, K Coat
paint applicator with a vacuum bed and an Elcometer 3540 film
applicator with a 100 micron gap. The slurries were coated onto a
copper current collector (PI-KEM 9 micron copper foil, both sides
polished). Wet thickness was measured using an Elcometer 3236
wet thickness comb. The coating was dried on a hotplate for
30 min at 50 °C, before being dried in a vacuum oven at 120 °C. The
vacuum drying period varied (values given in data table) but was
found to have no significant impact on the cell testing or other
measured parameters.

The dry coating thickness was measured using a dial gauge, five
measurements were made in the corners (approx. ~2 cm in to avoid
edge effects) and centre and averaged (Note that the coating
thickness later discussed is this uncalendered thickness). The
coatweight was measured using a Mesys Ultrasound coatweight
measurement system, again five measurements were made in each
corner and the centre and averaged. The theoretical densities, of
the coatings were calculated from the ratios of added components
(Eq. 1), and the thickness and coatweight measurements were then
used to calculate porosity (Eq.2).

Theoretical Density; 1coating ¼

wt%Graphite

1Graphite
þ

wt%Carbon Black

1Carbon Black
þ
wt%CMC

1CMC
þ
wt%SBR

1SBR

� �
� 1 (1)

Porosity %ð Þ ¼ 1 �

Coatweight
Coating thickness

� �

1coating

0

@

1

A

0

@

1

A

*

100 (2)

Where 1Graphite =2.25 g/cm3, 1carbon Black =1.8 g/cm3 1CMC =1.6 g/cm3

and 1SBR =0.98 g/cm3.

Adhesion

Adhesion was measured using a 180 degree peel test developed
for the Netzsch Kinexus Pro Plus rheometer.[18] Coating was
attached to the upper and lower Plates as shown in Figure 3. The
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plates were separated at a speed of 10 mm/s and the axial force
transducer of the rheometer was utilised to measure the force as
the coating was peeled from the current collector in a 180°
configuration. When the force reached a plateau during peeling
this value was recorded and 3 repeats were averaged for each
coating.

Conductivity

Conductivity was measured using a Ossila 4-point probe on a
15 mm disc of coating on current collector. Probe spacing was
1.27 mm, tests were run with a target current of 100 mA and a
voltage increment of 0.1 V, with a thickness correction factor of
0.942. 50 repeats were performed at the target current and the
average value of the conductivity taken for ML.

Cell Making

The electrodes were tested in coin cells, a subset of 20 of the
coatings was chosen due to testing limitations, and three repeats of
each were performed. 1 coating (row 45 in Table 1) did not
complete formation all cells so was removed and additionally 1 cell
did not complete formation for coating 13, leaving 56 cells in total.

The electrodes for cell making were calendered down to a porosity
of 30% using an MTI MSK-HRP-01 calender. This was calculated
using Eq. 2. The final thickness and porosity values for each coating
are given in the attached data table, alongside the coatweight
(areal mass loading) for each electrode.

Electrode were cut into 15 mm discs using an EL-CELL electrode
cutter and assembled into a coin cell with a glass fibre separator
(Whatman GFA). 100 microlitres of electrolyte (1 M LiPF6 EC:EMC+

2% VC) was added. The counter electrode was a 15 mm lithium
disc with a thickness of 150 micron (areal capacity 30.7 mAh/cm2

using lithium capacity of 3860 mAh/g).

Electrochemical testing was performed at a temperature of 25 °C.
Formation was performed between 1.5 V and 0.005 V at C/20. The
theoretical capacity was used to determine this rate and was
calculated from the active mass of the graphite electrode, assuming
a theoretical capacity for graphite of 350 mAh/g (values given in
data table).

This was followed by a constant current, constant voltage (CCCV)
charge/discharge at C/10, the discharge cycle of which was used to
determine the capacity. Gravimetric capacity was calculated by
dividing the cell capacity by the active mass (mass of graphite) for
the electrode. Capacities and columbic efficiencies for the cycles

are given in the included data table. The raw cell data files are also
available on request.

Modelling and Analysis Methodology

Considering the control factors with levels given in Table 1 and
the response variables in the previous section, this section is
dedicated to the modelling and analysis techniques of this
study. Here three models are developed. A binary logistic
Regression model for deciding if the mixture is of acceptable
quality or not, the binary model is well suited to categorical
predictions with two classes. The other two models are
dedicated to predictions (regression). The models are selected
as examples of the ML techniques well suited to small datasets.
MLR is a first choice as the main purpose has been to
investigate if a simple model can provide enough interpret-
ability and predictability for the data. GPR is also selected as is
successful is most of the data with normal distributions. The
justification behind this choice is now included in the text.

Binary Logistic Regression

The binary logistic regression function,[41] was used to predict
whether a slurry was usable or unusable. The model response
was set to 1 (if the slurry is usable) and 0 (if not). Then the
probability for the slurry to be usable was estimated. As
mentioned previously, all 46 data points were used for this
model. Specifically, the data was randomly split into an 80–20
training-testing set, with the testing points chosen at random.

Multiple Linear Regression

In a multiple Linear Regression (MLR) model, the response is
calculated as the sum of each feature or interaction multiplied
by a coefficient.[41] The Kowalski–Cornell–Vining (KCV)[47] exper-
imental design able to fit quadratic terms was used in order to
model the curvature of the mixture and process features while
also limiting the required number of experimental runs.

The model represents the effects from the mixture features,
mixture-mixture interactions, mixture-process interactions, and
process-process interactions. Note that the sum of the effects
from the mixture features and the mixture-mixture interactions
models the quadratic mixture effects, meaning that curvature
effects due to mixture features can be modelled.

The coefficients model are estimated via minimizing the
sum of squares of the errors of each model.[40,41] The optimal
transformation parameter is also estimated via minimizing the
sum of squares of the errors of each model. However, when
equal to 1 is within the confidence interval of the minimum
transformation parameter, then it is set to 1.[41]

Although the KCV mode chosen can in principle fit a
quadratic model, in practice, not all terms may be statistically
significant which may result in a lower order model. To simplify
the model, model reduction is implemented via forward

Figure 3. Adhesion Testing with a rheometer.
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selection and minimizing the corrected Akaike Information
Criterion (AICc).[48] The base model is the sum of the linear
effects of the mixture features. Each regressor is then individu-
ally added to the base model, starting with the regressors with
the lowest order, and the model with the additional regressor
term is fit. The AICc is then calculated and the model with the
smallest AICc is used as the new base model. This process is
repeated until all regressors have been checked. Prior to model
parameter fitting, mixture features are scaled from their original
units to [0,1]. Process features are scaled from their original
units to [� 1,1].

For this model, only the 26 successful mixed slurries were
used. This works well since the KCV model employed requires a
minimum of 19 experiments for fitting.

The analysis of variance (ANOVA) was used to identify the
statistically significant model terms and the goodness-of-fit
through the R2 (see 2.3.4). To evaluate the predictive capabilities
of the models, the predictive R2 was used as described
elsewhere.[31] The F-statistics in the ANOVA table helps in
ranking the importance of each term, where higher F-values
indicate a higher association with the response.[7] In the present
work, statistically significant terms were identified by those
having a p-value lower than 0.05, and these are shown in the
ANOVA tables (see Supporting Information).

Gaussian Process Regression

Here Gaussian process regression has been chosen to provide
further insights to the modelling aspect besides MLR, showcase
how the predictability could change from one model to
another, and set a basis for comparison.

GPR is a method for non-parametric regression and
prediction via prior knowledge in a Bayesian framework as well
as the output prediction mean, variance and confidence
interval.[49] GPR has the ability of uncertainty expression for the
predictions[50] and rather than postulating a parametric form for
the prediction function, and estimating its parameters, it
assumes the function as a form of Gaussian process. In fact, GPR
has been preferred due to the nature of data that included
uncertainties as explained in the previous section. Other models
such as random forests, gradient boosted trees or similar could
also be practical but exploring them is not the purpose of this
paper.Regarding the GPR, considering an input (or feature), a
Gaussian process defines a probability distribution of responses
over functions.

There exist various options of kernel functions for a GPR
model. In this study, the rational quadratic kernel was used, and
its hyperparameters were optimised by grid search. The rational
quadratic kernel was selected for its ability to capture nonlinear
interdependencies, and the models produced using this kernel
had better statistics compared to models using other kernels.
This and other options of kernel are described by Rasmussen
and Williams.[51]

In order to calculate the model output, the optimisation of
the model’s hyperparameters is managed by minimising a
logarithmic cost function via gradient descent approach.[52,53]

Model Performance Evaluation

The performance of models described previously is validated
using a 80–20 ratio of train and test split of data. The models
are trained using the training data set and three complemen-
tary accuracy metrics are utilised to evaluate the model’s
performance only on the validation data. The first metric is the
root mean squared error (RMSE) which indicates the difference
between the predicted and measured output values across all
the range. The second performance metric is R-squared (R2),
(also known as goodness of fit[54]), This metric includes the sum
of the squared error and the total sum of squares obtained for
the average of all output values R2 is a unitless value in the
range of 0 and 1, where 1 refers to a perfect prediction
performance. The final metric is the mean absolute error (MAE)
calculated for all datapoints across the whole range.

While RMSE and MAE are desired to be as small as possible
for any models, the closer R2 to 1 is an indication of a better
prediction.

Impact Analysis and Interpretability

In the formulation and process factor analysis, not only the
predictability achieved by model is important but also the
possibility of explaining those is desired. While MLR is a white
box model with the insights into the contributions of the
predictors to the predictions, the more complex machine
learning models such as GPR appear as a black box without a
possibility to show the impact of each control variable on the
response. Here an impact analysis approach from the Explain-
able Machine Learning context is utilised, which is the
accumulated local effects (ALEs).[36] Beside that the probability
over the entire design space plots, ternary plots, are obtained
to highlight the mix impact of more than one control factor in
the whole space for each response.

Accumulated local effects are used to relate a particular
control variable to a response through the GPR model. In the
first order ALE calculation, the impact of one control variable is
being quantified for the response regardless of the other
control variables. To this aim, the space of control variable is
first divided into a limited number of intervals which are
specified by some lower and upper limits After the partitioning
of the control variables space, first the model predicts the
response based on the actual datapoint, then a prediction with
a data point replaced with the lower and upper limit of the
interval that covers that datapoint is performed. The difference
between these predictions is calculated and used for obtaining
an accumulated difference value Here, the purpose is to
quantify the impact of a particular control variable, therefore
during each prediction that variable is excluded from the pool
of control variables so that its impact becomes clear. To provide
a better overview about the strength of the impact of each
control variable on the response, the calculated ALE values are
all centred. For the multifactor contribution and factor analysis,
ternary plots, via the MLR are used. The value of each response
is first predicted over the entire design space. Since the MLR
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model contains the effects from 4 mixture features, the
response prediction, at minimum, requires two ternary plots.
Each ternary plot shows the predicted values of a response over
all possible combinations of the active material, conductive
additive, and binder 2, with one ternary plot showing the
predicted response at a low binder 1 level and the other for a
high binder 1 level. For each process factor that has a
contribution to the overall model, complementary set of ternary
diagrams are required. These plots are then used to show
changes in the response at all mixture compositions and at
different levels of the process features.

For sample-specific explanations SHAP is utilised here.

Results and Discussion

The results and discussion are separated into the prediction of
effective mixing (good or bad) and the effect of the input
factors (slurry formulation and weight fraction) on mixing,
followed by the model based on the successful mixes/coatings,
its parameters and prediction effectiveness, the impact of the

slurry variables on each of several key outputs, and discussion
forms the bulk of this section (3.3), with a final summary of the
key results (3.4).

Slurry Quality

Figure 4 maps the probability for the slurry to be mixed (visually
containing no unmixed powder with a Hegman gauge particle
size under 100 micron) or unmixed over all slurry formulations
and at different weight fractions. Here, only 5 of the input
variables are considered, as coating speed refers to the
subsequent coating of the slurry and thus has no impact on the
previous mixing.

The ternary plots show how composition affects the
probability of a mixture to be usable (green), unusable (red), or
with a 50% probability for to occur (white). Grey regions
represent mixtures which are outside the limits of the study.
The closer a point is to a specific vertex, the larger the weight %
of that compound in the mixture. For example in Figure 4
where Weight Fraction is low and the relative amount of

Figure 4. Probability over the entire design space for a slurry to mix (green) or remain unmixed (red).
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Binder 1 is low (upper left plot), the green area is mostly on the
opposite side of the Binder 2 vertex. This means that when a
mixture has a low weight fraction, low amount of binder 1, and
low amount of binder 2, it has a high probability of being
usable.

In general, as the amount of Binder 1 (CMC) increases, then
the probability for the slurry to mix also increases, except when
the weight fraction is high. Conversely, decreasing the weight
fraction also increases the probability for the slurry to be usable,
except when CMC content is low. Although the effect is smaller
than that of CMC and weight fraction, in general, having a
lower amount of conductive additive also increases the
probability to have a usable slurry, except when both CMC and
weight fraction are set too low. Therefore, the efficiency of a
fixed mixing procedure is a balance between CMC content,
weight fraction, and carbon black content.

This can be explained by the competing physical processes
to enable efficient mixing. As the mixing process was kept
constant, the formulation directly impacts the mixing efficiency
(although it should be noted that the slurries that did not
perform well here may mixed by more intensive mixing
processes). There is an optimum in the viscosity of the wet
components for mixing, too low and the particles will settle out
and agglomerate,[55,56] leading to unmixed clumps in the slurry.
Too high and the mixture will not perform well in the planetary
mixing process. As there is a limit to the force the mixer can
apply, for a given geometry the stress (force divided by area)
generated will also be limited, hence increasing the viscosity
(the ratio between stress and shear rate), results in a reduction
in shear rate, and thus a reduction in mixing efficiency.

The concentration of CMC is therefore key, as this thickens
the solvent matrix increasing viscosity and enabling efficient
suspension of the active and conductive additive. When this is
too low, particles will settle and mixing will be poor, but too
high and the wet components are too thick to efficiently mix
with the powders. A similar effect is seen for weight percentage,
which also causes an increase in viscosity. Carbon black
agglomerates in water but may form a network if the
concentration is sufficiently high, which will also serve to
increase the slurry viscosity, which leads to the small contribu-
tion to the mixing efficiency at high contents.[57,58]

Model Response Prediction

Table 2 summarises the results for the MLR and GPR models
developed for the prediction of the responses. To provide an
overview regarding their accuracy, the distribution of the
measured versus the predicted values are given in Figure 5 for
four of the seven responses. The graphs are an average of
various runs with the data being shuffled from one run to
another as explained earlier. The ANOVA tables for each of the
responses can be found in the SI, as well as the models.

In Figure 5, the black line is an indicator of the perfect
prediction, and the closer the datapoint to that line, the more
accurate the prediction. According to the results in Table 2,
viscosity and adhesion are most accurately modelled by MLR.
Coating thickness, coating weight, conductivity and gravimetric
discharge are better modelled by GPR. Extension time is equally
modelled by MLR and GPR.

The MLR shows that for all responses, there is always a
linear relationship between the mixture formulation compo-
nents with different levels of impact for each of the responses
(as will be described in the next section). The importance of
mixture component and process variable interaction can be
appreciated from the ANOVA tables. Different responses have
different important mixture-process combinations. In general,
weight fraction is a more important feature than Coating speed.
The two models perform differently for different response due
to their different capabilities in dealing with linear and non-
linear correlations between the control and response variables
as well as relatively small data sizes. GPR is as a whole a better
option since provides higher accuracy due to the nonlinear
interactions that are present.

Impact of processing factors and interpretability

In this section, the first and higher order impacts of the control
variables on the response are discussed. For the first order
impact, the ALE plots from the GPR models are given, centred
to the mean value of the predicted response. Each ALE graph
shows the impact of that isolated factor on an interest
response. The graphs are also include a confidence interval
which shows the levels of uncertainty involved in the
interpretation of such models. The narrower the bound the

Table 2. Prediction accuracy metrics for the MLR and the GPR models.

Metrics R2 MAE RMSE

Responses and Models MLR GPR MLR GPR MLR GPR

Viscosity (s-1) 0.94 0.85 1.06 2.54 3.03 4.04

Extension Time (seconds) 0.89 0.89 0.29 0.03 0.41 0.05

Coating Thickness (um) 0.83 0.92 4.68 2.67 5.23 3.36

Coating Weight (gsm) 0.84 0.88 2.27 2.89 2.98 4.21

Adhesion (N) 0.81 0.79 0.19 0.22 0.24 0.29

Conductivity (S/m) 0.50 0.60 7.1E5 5.1E5 8.7E5 7.1E4

Gravimetric Discharge Capacity (mAh/gact) 0.50 0.66 5.14 5.72 7.88 8.64
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more confidence is there regarding the local impacts of the
control factor on the response. Where the models are weaker,
such as for conductivity and gravimetric capacity there is also
less confidence on the provided explanations.

To study higher order impacts, the ternary plots from the
MLR models are presented. As there could exist a larger number
of combination of factors for ternary graphs, only a subset is
visualised in this study.

The first variable studied is the slurry shear viscosity. As
shown in Figure 6(c) and (d), both binders, CMC and SBR
increase the slurry viscosity, however the trend is slightly
different between them. For SBR until 4% the viscosity is almost
unchanged and then a steep increase is witnessed, whereas for
CMC, there is a steep increase between 2 and 2.5 wt%.
Conductive additive (Figure 6(b)) is seen to increase the
viscosity, with a steeper increase at 6 wt% and above, where
weight fraction (Figure 4(e)), gives a linear increase in viscosity.
While the ALE plots from GPR show individual effects, the
ternary plots from MLR show how all the effects of the features
come together to affect a specific response. The results from
GPR match those from MLR. Figure 6(f) shows that the viscosity
increases when Binder 1 (CMC), conductive additive, or weight
fraction are increased, or the amount of active material is
decreased. It also demonstrates the large effect CMC has on the
overall viscosity compared with the other contributions.

The trend with SBR content can be explained by the overlap
concentration. The viscosity change with concentration is
shown in Figure 7 for SBR (binder 2) alone in water. A steep
increase is seen above 10 weight% as the overlap concentration

is reached and the structure changes from small clusters of
polymer suspended in solution to a continuous percolated
network. Because in the electrode slurries used in this slurry
~30–50% of the weight is other solids, 5—7 weight% SBR
would give 10% SBR in the solvent phase. These values are still
slightly higher than the 4 weight% where the viscosity begins
to increase, so it is likely there is a collaborative effect, and that
the conductive additive and active participates in forming a
continuous network with the SBR, causing the viscosity
increase.

CMC is a much longer chain polymer and is dissolved in
solution, and so is above the overlap concentration at all weight
percentages used. However, it absorbs to the active material
particles, which is likely the reason for the change in gradient
above 2% as these interfaces are saturated and so additional
polymer goes solely into solution, leading to steeper increases
in viscosity.

The conductive additive, Carbon Black is known to form
large agglomerates and then percolated networks as concen-
tration increases in water.[59] The onset of this agglomeration
causes the viscosity increase at 6 wt%. As slurry weight fraction
increases there is less solvent present and the components
move close together, giving higher resistance to flow and
higher viscosity. Active material is also seen to reduce the
viscosity, but this is because more active means less space in
the formulation for binder and conductive additive, which each
increase viscosity.

Figure 8 shows the impact of slurry characteristics on the
extension time to breakup for the mixture, a shorter extensional

Figure 5. The distribution of the predicted versus real values of the Viscosity MLR (a-1), Viscosity GPR (a-2), Adhesion MLR (b-1), Adhesion GPR (b-2), Coating
thickness MLR (c-1), Coating thickness GPR (c-2), Extension time to break up MLR (d-1), Extension time to break up GPR (c-2). Green refers to MLR model, Blue
the GPR model.
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time to breakup implies a lower extensional viscosity. Similar to
shear viscosity, CMC, Figure 8(c) and weight fraction, Figure 8(e)
have the strongest impact on the extension time. There are
subtle differences between the trends in shear and extension,
most notably both carbon black and SBR (Figure 8(b) and (d))
do not impact the extension until later weight percentages
than in shear (Figure 6(b) and (d)). According to Figure 8(f) the
MLR shows similar results. The extension time to break for the
mixture increases when the level of CMC is high and when the
weight fraction is also set to high.

While there can be different drivers for shear and exten-
sional viscosity, the results suggest for these anode slurries,
they are the same. The later onset of the change in extension
properties is because extension is sensitive to networks with
multiple branch points.[45] As the particle concentration in-
creases, the agglomerates grow and form branches (this has
been observed for Carbon Black[59]). While the presence of
agglomerates will affect the shear rheology, it is not until there
is a significant amount of branching that the extensional
viscosity notably increases. CMC and weight fraction have a
synergistic effect. Both features individually increase the

Figure 6. First order (a–e) and higher order (f) impact of slurry control variables on the shear viscosity at 1.6 s� 1.

Figure 7. Concentration dependance of viscosity of water-SBR (binder 2) solutions (averaged across shear rates from 2.5 to 100 s-1) demonstrating an overlap
concentration where viscosity increases at high concentrations.
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extension time to breakup. However, when combined, the
increase to the extension time to breakup is greater than their
individual effects.

Figure 9 summarises the results for the coatweight of the
electrode. Considering the range of the ALE values, the weight
fraction has the strongest impact, increasing the electrode coat
weight, Figure 9(e). Conductive additive, Figure 9(b), decreases
coat weight at weight percentages above 4 wt%, the same
point it begins to increase the viscosity. decrease with active
material weight percentage, Figure 9(a). There is a decrease in
coatweight with both CMC Figure 9(c) and SBR content Fig-
ure 9(d). The results from the MLR are generally similar in
Figure 8(f). Interestingly, weight fraction and the mixture
components have interaction effects on coat weight. When
CMC and weight fraction are both low, then SBR has a positive
effect on the coating weight, whereas when both the CMC
content and weight fraction are set to high, then the effect of
SBR to becomes negative.

The trend with coatweight is expected, as the coatings were
made at the same coating gap, so the higher weight
percentage slurries which contain less solvent, lead to a higher
mass of material in the dry coating.

The correlation between the rise is viscosity and coatweight
with conductive additive can be explained by the agglomer-
ation. These agglomerates are more prone to settling in the

vessel (carbon black typically requires surfactant or other
stabiliser to prevent settling in water at high weight
percentages[60]). This settling leads to a depletion in solids in the
slurry taken for coating, particularly for formulations otherwise
low in viscosity. This also explains why high active material
content leads to lower coatweight as it leaves little room in the
formulation for components which increase the viscosity and
reduce this settling. The trends with SBR and CMC can be
explained by density, SBR and CMC have lower density,
approximately 1.6 g/cm3 than graphite (2.2 g/cm3) so they
reduce the density of the coating and the coatweight. SBR also
promotes agglomeration at high weight contents which
reduces coatweight.

The interaction effects of CMC, SBR and weight fraction can
be explained by viscosity and resistance to settling. When CMC
content and weight fraction content is low, overall viscosity is
low and so the increase in viscosity provided by the SBR is
important to prevent settling. However, when CMC content and
weight fraction are high this effect disappears because they
both provide larger increases in viscosity.

The effect of slurry properties on adhesion is illustrated in
Figure 10. As expected, the rubber binder, SBR, has the largest
impact, as shown by the ALE, showing a steep linear increase in
adhesion with SBR content (Figure 10(d)). Conductive additive
shows a relatively minor effect, but there is a slight decrease

Figure 8. First order (a–e) and higher order (f) impact of slurry control variables on the extension time to breakup.
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with weight percentage (Figure 10(b)). Weight fraction has a
slight negative effect on adhesion (Figure 10(e)), while Binder 1,
CMC, Figure 10(c), shows a minimum in adhesion at intermedi-
ate weight percentages. Active material also shows relatively
little effect except at very high values (Figure 10(a)). MLR shows
a similar trend, where binder 2 dominates the adhesion,
universally increasing adhesion across the parameter space, this
is visible on Figure 9(f).

The dependency of adhesion on SBR, the rubber binder is
expected. The adhesion dependencies observed for the other
components can usually be ascribed to their effect on the SBR
distribution in the electrode. The carbon black, which tends to
agglomerate in water,[58,61] promotes co-agglomeration with the
SBR at high concentrations, making it less well distributed in
the electrode. Higher weight fraction slurries also have higher
coatweight and for thicker coatings, adhesion is known to
decrease as uniform distribution of binder is harder to achieve
and maintain throughout drying.[62] Active material only has an
effect when it is so high there that there is less space in
formulation for SBR.

While CMC in solution acts to thicken and increase
dispersion, it is crystalline when dried[63] which makes the
electrode more brittle and reduces adhesion. The reason for the
increase at high amounts is unclear, one possibility is the high
slurry viscosity impeding migration of SBR from the interface
during drying, leading to more SBR near the current collector

interface and better adhesion. The effect of viscosity on binder
migration has not been mapped out explicitly in the literature
for battery electrode slurries, however in models for binder
migration the viscosity term slows diffusion.[64,65]

As Figure 11 shows, the largest impact to the conductivity
comes from the weight fraction, which decreases the measured
conductivity, Figure 11(e). Conductive additive increases con-
ductivity, Figure 11(b), where CMC reduces the conductivity at
high weight percentages, Figure 11(c).

MLR via Figure 10(f) shows similar trends. Weight fraction
has a negative effect on the conductivity at all mixture
compositions. Increasing binder 2 also increases conductivity,
while increasing either CMC or the active material decreases
conductivity.

This conductivity was measured on current collector (which
is highly conductive), hence it does not represent the
conductivity of the coating alone and will depend highly on
how efficiently current can flow through the coating to the
current collector, and on the properties of the current collector-
coating interface. It therefore is expected to follow the trends in
adhesion, and this explains the relationship with SBR, which is
perhaps counter-intuitive, as addition of non-conducting SBR
results in an increase in conductivity. This is because the
improved adhesion and better contact of the coating with the
current collector. The change flattens at medium percentages

Figure 9. First order (a–e) and higher order (f) impact of slurry control variables on the coat weight
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Figure 10. First order (a–e) and higher order (f) impact of slurry control variables on the peel adhesion force.

Figure 11. First order (a–e) and higher order (f) impact of slurry control variables on the coating conductivity measured on foil.
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of SBR, when the effects of improved adhesion start to compete
with the reduction in conductivity in the coating.

Conductive additive, as expected increases coating con-
ductivity and thus the conductivity measured, but this is a
smaller effect than the properties that effect the coating-current
collector interface. The decrease in conductivity with weight
fraction follows the trend in adhesion, Figure 9(d), where the
increase in coatweight leads to less uniform distribution of SBR
and thus poorer current collector-coating contact. CMC thickens
the slurry, reducing mixing efficiency and impeding dispersion
of SBR (for interface adhesion) and carbon black (for coating
conductivity).

It is surprising that the properties of the coating-current
collector interface dominate this measurement so heavily, and
parameters that affect the coating conductivity (e.g., conduc-
tive additive) have smaller effects. This highlights the need for
measurements on non-conductive substrates if the true coating
conductivity is to be probed, but also shows that measurements
on current collector have a unique ability to probe the
interface.

The impact of the formulation on the cell discharge capacity
is shown in Figure 12. Gravimetric capacity is used (in mAh/g)
based on the active mass, to account for the difference in
coatweight between the electrodes as well as the differences in
formulation. Weight fraction has the most significant impact on
the value of the discharge gravimetric capacity of the cell,
Figure 12(e). With a higher percent of weight fraction the
discharge gravimetric capacity increases. Binder 2 (SBR), Fig-
ure 12(d) shows the second most significant impact, having a

negative effect on the cell capacity, where Binder 1 (CMC)
provides a small increase in capacity. Other factors show smaller
impacts, Active material has a direct linear relation, serving to
increase the capacity. Conductive additive shows relatively little
effect until ~6%, which is same point at which it starts to
increase the viscosity. The MLR via Figure 12(f) also shows
similar results. At higher values of weight fraction and across
the range of Binder 1, a smaller ratio of binder 2 and higher
values of conductive additive plus active material means a
higher discharge capacity.

The positive effect of weight fraction is interesting because
it shows that high weight fractions are not just desirable
because they reduce energy and time required for drying, but
also have a positive impact on the electrochemistry. Weight
fraction and CMC content are the viscosity-increasing factors,
which provide the benefits of hindering migration during
drying, prevent spreading of slurry on the surface of the current
collector, and reducing settling of components in the slurry.

Over-incorporation of SBR is known to hinder the electro-
chemistry by slowing of electron transport. This shows the gains
that can be achieved by reducing the SBR content and looking
towards alternative methods for improving the mechanical
properties of the coating.

Reaching the percolation concentration for Carbon Black
has a negative impact on the electrochemistry, despite the
viscosity increase being favourable. As discussed, agglomerates
form above this concentration, that are difficult to disperse
uniformly and may settle out during standing of the slurry/
coating, leading to non-uniform coatings.

Figure 12. First order (a–e) and higher order (f) impact of slurry control variables on 3rd cycle discharge capacity of cells.
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Summary

Overall, several key dependencies and recommendations are
identified in this study. The slurry viscosity is an important
consideration which contributes to many of the other parame-
ters. CMC contributes most to the slurry viscosity, as expected,
however, carbon black and SBR, which are assumed not to
contribute to slurry rheology in water, actually increase the
viscosity at high concentrations. The high weight percentages
are above those used in industry but are commonly utilised in
research. The slurry structure can be very different when
moving to lower weight percentages of carbon black and SBR
and so this raises an important point and consideration for
scaleup of battery research to industry.

Adhesion is mostly determined by SBR content, but
interesting co-dependencies are observed, where high slurry
viscosity may improve SBR dispersion and impede binder
migration resulting in better adhesion. A surprising result
observed in the conductivity data indicated that SBR improved
the conductivity on current collector. This is due to the
measurement technique and likely measurements on non-
conductivity substrate would show the opposite trend. How-
ever, it highlights that conductivity on current collector is a
useful parameter for studying the coating-current collector
interface and, should be added to the toolbox for electrode
characterisation.

Cell capacity improved in higher viscosity formulations, with
high weight percentage and CMC content. This is likely due to
the combined benefits of better suspension in the slurry,
reducing spread on the current collector surface, and hindering
component migration during drying, all of which contribute to
a more uniform structure. Non-conductive SBR had a negative
impact on capacity and reduction of SBR content is highlighted
as a path towards performance improvements. Carbon Black,
despite promoting conductivity, lowered capacity beyond its
overlap concentration, suggesting that the overlapping struc-
tures of carbon black in the slurry are detrimental to the
electrochemistry. Care therefore needs to be taken that the
amount of carbon black used is not excessive, especially when
attempting to reduce solvent content, which will increase the
CB% in solution.

As viscosity is highly influential upon the performance
properties of the electrode, future work should evaluate the
rheology more completely. Differences between shear and
extension are shown to give insights into the slurry structure,
but evaluation of more subtleties in the rheology, shear rate
dependant flow curves, or elastic and viscous moduli extracted
from oscillatory tests, could provide greater information upon
the impact upon properties such as capacity, adhesion and
conductivity. Additionally, model testing on data from larger
manufacturing lines is important for scalability. Finally, the
approach demonstrated here for graphite anodes could be
applied to other chemistries such as lithium ion cathodes and
sodium ion electrodes. Another direction is to improve the
accuracy of predictive models including responses such as
adhesion and conductivity. In terms of the data analysis,

expanding the explainability to quantified importance of the
features is also suggested for follow up studies.

Conclusions

The formulation dependence of slurry and coating properties
has been explored for a water-based graphite anode system,
utilising an affordable set of experiments via a systematic DoE
and machine learning to draw out key dependencies and
isolate the response from individual variables. The value of a
combined experimental-statistical approach is demonstrated,
using experimental design and data extraction to systematically
study relationships in battery manufacturing. The results
showed both expected and more subtle relationships. The
importance of the slurry rheology is highlighted, as shear and
extensional viscosity are linked to electrode conductivity,
adhesion, and final cell capacity. This demonstrates the
importance of optimising the slurry rheology, which is often
ignored, to obtain good final cell performance. Formulations
with lower, industry-typical levels of binder and conductive
additive, showed dramatically different behaviour to those with
higher, research-typical, contents where additional material
interactions form in the slurry. These highlight the very different
material structures between research and industrial slurries, and
suggest that care that must be taken to ensure research is
scalable. Many additional subtle relationships highlight the
importance of manufacturing parameters on the electrode and
cell. It is crucial to bear in mind these interrelationships while
optimizing industrial production systems and developing new
technologies, as overlooking the proper tuning of the manu-
facturing process could lead to missed opportunities.
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