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We conjecture that a convex polytope is uniquely determined up to isometry by its edge-graph, edge
lengths and the collection of distances of its vertices to some arbitrary interior point, across all
dimensions and all combinatorial types. We conjecture even stronger that for two polytopes P ⊂ R

d

and Q ⊂ R
e with the same edge-graph it is not possible that Q has longer edges than P while also

having smaller vertex-point distances. We develop techniques to attack these questions and we verify
them in three relevant special cases: P and Q are centrally symmetric, Q is a slight perturbation of P,
and P and Q are combinatorially equivalent. In the first two cases the statements stay true if we replace
Q by some graph embedding q : V(GP) → R

e of the edge-graph GP of P, which can be interpreted as local
resp. universal rigidity of certain tensegrity frameworks. We also establish that a polytope is uniquely
determined up to affine equivalence by its edge-graph, edge lengths and the Wachspress coordinates
of an arbitrary interior point. We close with a broad overview of related and subsequent questions.

1 Introduction
In how far can a convex polytope be reconstructed from partial combinatorial and geometric data,
such as its edge-graph, edge lengths, dihedral angles, etc., optionally up to combinatorial type, affine
equivalence, or even isometry? Questions of this nature have a long history and are intimately linked
to the various notions of rigidity.

In this article we address the reconstruction from the edge-graph and some “graph-compatible”
distance data, such as edge lengths. It is well-understood that the edge-graph alone carries very little
information about the polytope’s full combinatorics, and trying to fix this by supplementing additional
metric data reveals two opposing effects at play.

First and foremost, we need to reconstruct the full combinatorics. As a general rule of thumb,
reconstruction from the edge-graph appears more tractable for polytope that have relatively few edges
(such as simple polytopes as proven by Blind & Mani [2] and later by Kalai [19]). (Though “few edges” is
not the best way to capture this in general, see [8] or [17].) At the same time, however, such polytopes
often have too few edges to encode sufficient metric data for reconstructing the geometry. This is most
evident for polygons, but happens non-trivially in higher dimensions and with non-simple polytopes as
well (see Figure 1).

In contrast, simplicial polytopes have many edges and it follows from Cauchy’s rigidity theorem
that such are determined up to isometry from their edge lengths; if we assume knowledge of the
full combinatorics. For simplicial polytopes, however, the edge-graph alone is usually not enough
to reconstruct the combinatorics in the first place (as evidenced by the abundance of neighborly
polytopes).
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2 | M. Winter

Fig. 1. Non-isometric realizations with the same edge lengths.

Fig. 2. A “pointed polytope”, that is, a polytope P ⊂ R
d with a point x ∈ int(P). In addition to the edge lengths we

also record the lengths of the gray bars—the “vertex-point distances”.

Fig. 3. Two non-isometric realizations of a pentagon with the same edge lengths and vertex-point distances. This
is possible because the point is not in the interior.

This leads to the following question: how much and what kind of data do we need to supplement to
the edge-graph to permit

(i) unique reconstruction of the combinatorics, also for polytopes with many edges (such as simplicial
polytopes), and at the same time,

(ii) unique reconstruction of the geometry, also for polytopes with few edges (such as simple poly-
topes).

Also, ideally the supplemented data fits into the structural framework provided by the edge-graph,
that is, contains on the order of #edges + #vertices datums.

We propose the following: besides the edge-graph and edge lengths, we also fix a point in the interior
of the polytope P, and we record its distance to each vertex of P (cf. Figure 2). We believe that this is
sufficient data to reconstruct the polytope up to isometry across all dimensions and all combinatorial
types.

Here and in the following we can assume that the polytopes are suitably translated so that the chosen
point is the origin 0 ∈ int(P).

Conjecture 1.1. Given polytopes P ⊂ R
d and Q ⊂ R

e with the origin in their respective interiors,
and so that P and Q have isomorphic edge-graphs, corresponding edges are of the same
length, and corresponding vertices have the same distance to the origin. Then P � Q (i.e., P
and Q are isometric via an orthogonal transformation).

Requiring the origin to lie in the interior is necessary to prevent counterexamples such as the one
shown in Figure 3. This conjecture vastly generalizes several known reconstruction results, such as for
matroid base polytopes or highly symmetric polytopes (see Section 5.1).

We also make the following stronger conjecture:

Conjecture 1.2. Given two polytopes P ⊂ R
d and Q ⊂ R

e with isomorphic edge-graphs, and so
that

(i) 0 ∈ int(Q),
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Rigidity, Tensegrity, and Reconstruction of Polytopes Under Metric Constraints | 3

Fig. 4. If x �∈ int(Q), then it is possible for Q to have shorter edges than P, while simultaneously also all vertices
farther away from x.

(ii) edges in Q are at most as long as their counterparts in P, and
(iii) vertex-origin distances in Q are at least as large as their counterparts in P,

then P � Q (P and Q are isometric via an orthogonal transformations).

Intuitively, Conjecture 1.2 states that a polytope cannot become larger (or “more expanded” as
measured in vertex-origin distances) while its edges are getting shorter. It is clear that Conjecture 1.1
is a consequence of Conjecture 1.2, and we shall call the former the “unique reconstruction version”
of the latter. Here, the necessity of the precondition 0 ∈ int(Q) can be seen even quicker: vertex-origin
distances can be increased arbitrarily by translating the polytope just far enough away from the origin
(see also Figure 4).

In this article we develop techniques that we feel confident point us the right way towards a
resolution of the conjectures. We then verify the conjectures in the following three relevant special
cases:

• P and Q are centrally symmetric (Theorem 4.4),
• Q is a slight perturbation of P (Theorem 4.5),
• P and Q are combinatorially equivalent (Theorem 4.7).

The last special case clarifies, in particular, the case of 3-dimensional polytopes. Also, our eventual
formulations of the first two special cases will in fact be more general, replacing Q by some embedding
q : V(GP) → R

e of the edge-graph GP, where q is no longer assumed to be the skeleton of any polytope.
These results can then also be interpreted as claiming rigidity, local or universal, of certain bar-joint or
tensegrity frameworks.

1.1 Notation and terminology
Throughout the article, all polytopes are convex and bounded, in particular, can be written as the convex
hull of their vertices:

P = conv{p1, ..., pn} :=
{∑

i

αipi | α ∈ �n

}
,

where �n := {x ∈ R
n
≥0 | x1 + · · · + xn = 1} denotes the set of convex coefficients.

If not stated otherwise, P ⊂ R
d will denote a polytope in d-dimensional space for d ≥ 2, though its

affine hull aff(P) might be a proper subspace of Rd. If dim aff(P) = d we say that P is full-dimensional. Our
polytopes are often pointed, that is, they come with a special point x ∈ int(P) (sometimes also on ∂P or
outside); but we usually translate P so that x is the origin. So, instead of distances from the vertices to
x, we just speak of vertex-origin distances.

By F(P) we denote the face-lattice of P, and by Fδ(P) the subset of δ-dimensional faces. We shall assume
a fixed enumeration F0(P) = {p1, ..., pn} of the polytope’s vertices (i.e., our polytopes are labelled), in
particular, the number of vertices will be denoted by n. We also often use a polytope Q ⊂ R

e whose
vertices are denoted F0(Q) = {q1, ..., qn}.

The edge-graph of P is the finite simple graph GP = (V, E), where V = {1, ..., n} is compatible with the
vertex labelling, that is, i ∈ V corresponds to pi ∈ F0(P) and ij ∈ E if and only if conv{pi, pj} ∈ F1(P). The
graph embedding given by i �→ pi (with edges embedded as line segments) is called (1-)skeleton sk(P) of P.

When speaking of combinatorially equivalent polytopes P and Q, we shall implicitly fix a face-lattice
isomorphism φ : F(P)

∼−→ F(Q) compatible with the vertex labels, that is, φ(pi) = qi. This also allows us
to implicitly associate faces of P to faces of Q, for example, for a face σ ∈ F(P) we can write σQ for the
corresponding face in F(Q). Likewise, if P and Q are said to have isomorphic edge-graphs, we implicitly
assume a graph isomorphism GP

∼−→ GQ sending pi onto qi. We will then often say that P and Q have a
common edge-graph, say, GP.
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4 | M. Winter

We write P � Q to denote that P and Q are isometric. Since our polytopes are usually suitably
translated, if not stated otherwise, this isometry can be assumed as realized by an orthogonal
transformation.

Let us repeat Conjecture 1.2 using our terminology:

Conjecture 1.2. Given polytopes P ⊂ R
d and Q ⊂ R

e with the same edge-graph GP = (V, E), so that

(i) 0 ∈ int(Q),
(ii) edges in Q as most as long as in P, that is,

‖qi − qj‖ ≤ ‖pi − pj‖, for all ij ∈ E,

(iii) vertex-origin distances in Q are at least as larger as in P, that is,

‖qi‖ ≥ ‖pi‖, for all i ∈ V,

then P � Q.

1.2 Structure of the article
In Section 2 we prove the instructive special case of Conjecture 1.2 where both P and Q are simplices.
While comparatively straightforward, the proof helps us to identify a quantity – we call it the expansion
of a polytope – that is at the core of a more general approach.

The goal of Section 3 is to show that the “expansion” of a polytope is monotone in its edge lengths,
that is, decreases when the edge lengths shrink. In fact, we verify this in the more general context that
replaces Q by a general embedding q : V(GP) → R

d of P’s edge-graph. As a main tool we introduce the
Wachspress coordinates (a special class of generalized barycentric coordinates) and discuss a theorem of
Ivan Izmestiev.

In Section 4 we apply these results to prove Conjecture 1.2 for the three special cases: centrally
symmetric, close-by and combinatorially equivalent polytopes. We also discuss the special case of
inscribed polytopes. We elaborate how our tools can potentially be used to attack Conjecture 1.2.

In Section 5 we conclude our investigation with further thoughts on our results, notes on connections
to the literature, as well as many questions and future research directions. Despite being a conclusion
section, it is quite rich in content, as we found it more appropriate to gather many notes there rather
than to repeatedly interrupt the flow of the main text.

2 Warmup: A Proof for Simplices
To get acquainted with the task we discuss the instructive special case of Conjecture 1.2 where both P
and Q are simplices. The proof is reasonably short but contains already central ideas for the general case.

Theorem 2.1. Let P, Q ⊂ R
d be two simplices so that

(i) 0 ∈ int(Q),
(ii) edges in Q are at most as long as in P, and

(iii) vertex-origin distances in Q are at least as large as in P,

then P � Q.

Proof. By (i) we can choose barycentric coordinates α ∈ int �n for the origin in Q, that is, 0 = ∑
i αiqi.

Consider the following system of equalities and inequalities:

∑
i

αi‖pi‖2 =
∥∥∥ ∑

i

αipi

∥∥∥2+ 1
2

∑
i,j

αiαj‖pi − pj‖2

≥ ≤ ≤ (2.1)

[−1.5ex]
∑

i

αi‖qi‖2 =
∥∥∥ ∑

i

αiqi

∥∥∥2+ 1
2

∑
i,j

αiαj‖qi − qj‖2
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Rigidity, Tensegrity, and Reconstruction of Polytopes Under Metric Constraints | 5

The equalities of the first and second row can be verified by rewriting the norms as inner products
followed by a straightforward computation. The vertical inequalities follow, from left to right, using (iii),
the definition of α, and (ii) respectively.

But considering this system of (in)equalities, we must conclude that all inequalities are actually
satisfied with equality. In particular, equality in the right-most terms yields ‖pi − pj‖ = ‖qi − qj‖
for all i, j ∈ V(GP) (here we are using αi > 0). But sets of points with pairwise identical distances
are isometric. �

Why can’t we apply this proof to general polytopes? The right-most sum in (1) iterates over all vertex
pairs and measures, if you will, a weighted average of pairwise vertex distances in P. In simplices each
vertex pair forms an edge, and hence, if all edges decrease in length, this average decreases as well. In
general polytopes, however, when edge become shorter, some “non-edge vertex distances” might still
increase, and so the right-most inequality cannot be obtained in the same term-wise fashion. In fact,
there is no reason to expect that the inequality holds at all.

It should then be surprising to learn that it actually does hold, at least in some controllable
circumstances that we explore in the next section. This will allow us to generalize Theorem 2.1 beyond
simplices.

3 α-Expansion, Wachspress Coordinates and the Izmestiev Matrix
Motivated by the proof of the simplex case (Theorem 2.1) we define the following measure of size for a
polytope (or graph embedding p : V(GP) → R

d):

Definition 3.1. For α ∈ �n the α-expansion of P is

‖P‖2
α := 1

2

∑
i,j

αiαj‖pi − pj‖2.

The sum in the definition iterates over all pairs of vertices and so the α-expansion measures a
weighted average of vertex distances, in particular, ‖P‖α is a translation invariant measure. If all pairwise
distances between vertices decrease, so does the α-expansion.

The surprising fact, and main result of this section (Theorem 3.2), is that for a carefully chosen α ∈ �n

the α-expansion decreases already if only the edge lengths decrease, independent of what happens to
other vertex distances.

In fact, this statement holds true in much greater generality and we state it already here (it mentions
Wachspress coordinates which we define in the next section; one should read this as “there exist α ∈ �n

so that...”):

Theorem 3.2. Let P ⊂ R
d be a polytope with edge-graph GP = (V, E) and let α ∈ �n be the

Wachspress coordinates of some interior point x ∈ int(P). If q : V → R
e is some embedding of

GP whose edges are at most as long as in P, then

‖P‖α ≥ ‖q‖α ,

with equality if and only if q is an affine transformation of the skeleton sk(P), all edges of
which are of the same length as in P.

Indeed, Theorem 3.2 is not so much about comparing P with another polytope, but actually about
comparing the skeleton sk(P) with some other graph embedding q that might not be the skeleton of
any polytope and might even be embedded in a lower- or higher-dimensional Euclidean space. Morally,
Theorem 3.2 says: polytope skeleta are maximally expanded for their edge lengths, where “expansion” here
measures an average of vertex distances with carefully chosen weights.

The result clearly hinges on the existence of these so-called Wachspress coordinates, which we
introduce now.
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6 | M. Winter

3.1 Wachspress coordinates
In a simplex P ⊂ R

d each point x ∈ P can be expressed as a convex combination of the simplex’s vertices
in a unique way:

x =
∑

i

αipi.

The coefficients α ∈ �n are called the barycentric coordinates of x in P.
In a general polytope P ⊂ R

d there are usually many ways to express a point x ∈ P as a convex
combination of the polytope’s vertices. In many applications, however, it is desirable to have a canonical
choice, so to say “generalized barycentric coordinates”. Various such coordinates have been defined (see
[9] for an overview), one of them being the so-called Wachspress coordinates. Those were initially defined
by Wachspress for polygons [28], and later generalized to general polytopes by Warren et al. [30, 32]. A
construction, with a geometric interpretation due to [18], is given in Section 3.3 below.

The relevance of the Wachspress coordinates for our purpose is, however, not so much in their precise
definition, but rather in their relation to a polytope invariant of “higher rank” that we introduced next.

3.2 The Izmestiev matrix
At the core of our proof of Theorem 3.2 is the observation that the Wachspress coordinates are merely
a shadow of a “higher rank” object that we call the Izmestiev matrix of P; an (n × n)-matrix associated to
an n-vertex polytope with 0 ∈ int(P), whose existence and properties in connection with graph skeleta
were established by Lovász in dimension three [21], and by Izmestiev in general dimension [15]. We
summarize the findings:

Theorem 3.3. Given a polytope P ⊂ R
d with 0 ∈ int(P) and edge-graph GP = (V, E), there exists a

symmetric matrix M ∈ R
n ×n (the Izmestiev matrix of P) with the following properties:

(i) Mij > 0 if ij ∈ E,
(ii) Mij = 0 if i �= j and ij �∈ E,

(iii) dim ker M = d,
(iv) MXP = 0, where X�

P = (p1, ..., pn) ∈ R
d ×n, and

(v) M has a unique positive eigenvalue (of multiplicity one).

Izmestiev provided an explicit construction of this matrix that we discuss in Section 3.3 below.
Another concise proof of the spectral properties of the Izmestiev matrix can be found in the appendix
of [22].

Observation 3.4. Each of the properties (i) to (v) of the Izmestiev matrix will be crucial for
proving Theorem 3.2 and we shall elaborate on each point below:

(i) Theorem 3.3 (i) and (ii) state that M is some form of generalized adjacency matrix, having non-zero
off-diagonal entries if and only if the polytope has an edge between the corresponding vertices.
Note, however, that the theorem tells nothing directly about the diagonal entries of M.

(ii) Theorem 3.3 (iii) and (iv) tell us precisely how the kernel of M looks like, namely, ker M = span XP.
The inclusion ker M ⊇ span XP follows directly from (iv). But since P has at least one interior point
(the origin) it must be a full-dimensional polytope, meaning that rank XP = d. Comparison of
dimensions (via (iii)) yields the claimed equality.

(iii) let {θ1 > θ2 > · · · > θm} be the spectrum of M. Theorem 3.3 (v) then tells us that θ1 > 0, θ2 = 0 and
θk < 0 for all k ≥ 3.

(iv) M′ := M + γ Id is a non-negative matrix if γ > 0 is sufficiently large, and is then subject to the
Perron-Frobenius theorem (see Theorem A.1). Since the edge-graph GP is connected, the matrix M′

is irreducible. The crucial information provided by the Perron-Frobenius theorem is that M′ has an
eigenvector z ∈ R

n to its largest eigenvalue (that is, θ1 + γ ), all entries of which are positive. By an
appropriate scaling we can assume z ∈ int(�n), which is a θ1-eigenvector to the Izmestiev matrix
M, and in fact, spans its θ1-eigenspace.
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Rigidity, Tensegrity, and Reconstruction of Polytopes Under Metric Constraints | 7

Note that the properties (i) to (v) in Theorem 3.3 are invariant under scaling of M by a positive factor.
As we verify in Section 3.3 below,

∑
i,j Mij > 0, and so we can fix the convenient normalization

∑
i,j Mij = 1.

In fact, with this normalization in place we can now reveal that the Wachspress coordinates emerge
simply as the row sums of M:

αi :=
∑

j

Mij, for all i ∈ {1, ..., n}. (3.1)

This connection has previously been observed in [18, Section 4.2] for 3-dimensional polytopes, and we
shall verify the general case in the next section (Corollary 3.6).

3.3 The relation between Wachspress and Izmestiev
The Wachspress coordinates and the Izmestiev matrix can be defined simultaneously in a rather elegant
fashion: given a polytope P ⊂ R

d with d ≥ 2 and 0 ∈ int(P), as well as a vector c = (c1, ..., cn) ∈ R
n, consider

the generalized polar dual

P◦(c) := {
x ∈ R

d | 〈x, pi〉 ≤ ci for all i ∈ V(GP)
}
.

We have that P◦(1) with 1 = (1, ..., 1) is the usual polar dual. The (unnormalized) Wachspress coordinates
α̃ ∈ R

n of the origin and the (unnormalized) Izmestiev matrix M̃ ∈ R
n ×n emerge as the coefficients in the

Taylor expansion of the volume of P◦(c) at c = 1:

vol
(
P◦(c)

) = vol(P◦) + 〈c − 1, α̃〉 + 1
2 (c − 1)�M̃(c − 1) + · · · . (3.2)

In other words,

α̃i := ∂ vol(P◦(c))

∂ci

∣∣∣
c=1

and M̃ij := ∂2 vol(P◦(c))

∂ci∂cj

∣∣∣
c=1

. (3.3)

In this form, one might recognize the (unnormalized) Izmestiev matrix of P as the Alexandrov matrix of
the polar dual P◦.

Geometric interpretations for (3.3) were given in [18, Section 3.3] and [15, proof of Lemma 2.3]: for a
vertex pi ∈ F0(P) let Fi ∈ Fd−1(P◦) be the corresponding dual facet. Likewise, for an edge eij ∈ F1(P) let
σij ∈ Fd−2(P◦) be the corresponding dual face of codimension 2. Then

α̃i = vol(Fi)

‖pi‖ and M̃ij = vol(σij)

‖pi‖‖pj‖ sin�(pi, pj)
, (3.4)

where vol(Fi) and vol(σij) are to be understood as relative volume. The expression for α̃ is (up to a
constant factor) the cone volume of Fi in P◦, i.e., the volume of the cone with base face Fi and apex at
the origin. As such it is positive, which confirms again that we can normalize to α ∈ �n, and we see that
αi measures the fraction of the cone volume at Fi in the total volume of P◦. That M̃ can be normalized
follows from the next statement, which is a precursor to (3.1):

Proposition 3.5.
∑

j M̃ij = (d − 1)α̃i.

Proof. Observe first that vol(P◦(c)) is a homogeneous function of degree d, i.e.,

vol(P◦(tc)) = vol(tP◦(c)) = td vol(P◦(c))

for all t ≥ 0. Each derivative ∂ vol(P◦(c))/∂ci is then homogeneous of degree d − 1. Euler’s homogeneous
function theorem (Theorem E.1) yields

∑
j

cj
∂2 vol(P◦(c))

∂ci∂cj
= (d − 1)

∂ vol(P◦(c))

∂ci
.

Evaluating at c = 1 and using (3.3) yields the claim. �

We immediately see that
∑

i,j M̃ij > 0 and that we can normalize to
∑

i,j Mij = 1. For the normalized
quantities then indeed holds (3.1):
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8 | M. Winter

Corollary 3.6.
∑

i Mij = αj for all j ∈ {1, ..., n}.

Lastly, the following properties of the Wachspress coordinates and the Izmestiev matrix will be
relevant and can be inferred from the above.

Remark 3.7.

(i) The Wachspress coordinates of the origin and the Izmestiev matrix depend continuously on the
translation of P, and their normalized variants can be continuously extended to 0 ∈ ∂P. If the origin
lies in the relative interior of a face σ ∈ F(P), then αi > 0 if and only if pi ∈ σ . In particular, if 0 ∈
int(P), then α ∈ int �n.

(ii) The Wachspress coordinates of the origin and the Izmestiev matrix are invariant under linear
transformation of P. This can be inferred from (3.4) via an elementary computation, as was done
for the Izmestiev matrix in [35, Proposition 4.6.].

3.4 Proof of Theorem 3.2
Recall the main theorem.

Theorem 3.2. Let P ⊂ R
d be a polytope with edge-graph GP = (V, E) and let α ∈ �n be the

Wachspress coordinates of some interior point x ∈ int(P). If q : V → R
e is some embedding of

GP whose edges are at most as long as in P, then

‖P‖α ≥ ‖q‖α ,

with equality if and only if q is an affine transformation of the skeleton sk(P), all edges of
which are of the same length as in P.

The proof presented below is completely elementary, using little more than linear algebra. In Section F
the reader can find a second shorter proof based on the duality theory of semi-definite programming.

Proof. At the core of this proof is rewriting the α-expansions ‖P‖α and ‖q‖α as a sum of terms, each of
which is non-increasing when transitioning from P to q:

‖P‖2
α =

∑
ij∈E

Mij‖pi − pj‖2 −
∥∥∥∑

i

αipi

∥∥∥2 + tr(MXPX�
P ) (3.5)

≤ ≤ ≤∑
ij∈E

Mij‖qi − qj‖2 −
∥∥∥∑

i

αiqi

∥∥∥2 + tr(MXqX�
q ) = ‖q‖2

α .

Of course, neither the decomposition nor the monotonicity of the terms is obvious; yet their proofs use
little more than linear algebra. We elaborate on this now.

For the setup, we recall that the α-expansion is a translation invariant measure of size. We can
therefore translate P and q to suit our needs:

(i) translate P so that x = 0, that is,
∑

i αipi = 0.
(ii) since then 0 ∈ int(P), Theorem 3.3 ensures the existence of the Izmestiev matrix M ∈ R

n x×n.
(iii) Let θ1 > θ2 > · · · > θm be the eigenvalues of M, where θ1 > 0 and θ2 = 0. By Observation 3.4 (iv) there

exists a unique θ1-eigenvector z ∈ int(�n).
(iv) translate q so that

∑
i ziqi = 0.

We are ready to derive the decompositions shown in (3.5): the following equality can be verified
straightforwardly by rewriting the square norms as inner products:

1
2

∑
i,j

Mij‖pi − pj‖2 =
∑

i

(∑
j

Mij

)
‖pi‖2 −

∑
i,j

Mij〈pi, pj〉,

We continue rewriting each of the three terms:

• on the left: Mij‖pi − pj‖2 is only non-zero for ij ∈ E (using Theorem 3.3 (ii)). The sum can therefore be
rewritten to iterate over the edges of GP (where we consider ij, ji ∈ E the same and so we can drop
the factor 1/2)
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Rigidity, Tensegrity, and Reconstruction of Polytopes Under Metric Constraints | 9

• in the middle: the row sums of the Izmestiev matrix are exactly the Wachspress coordinates of the
origin, that is,

∑
j Mij = αi.

• on the right: recall the matrix XP ∈ R
d ×n whose rows are the vertex coordinates of P. The

corresponding Gram matrix XPX�
P has entries (XPX�

P )ij = 〈pi, pj〉.
By this we reach the following equivalent identity:

∑
ij∈E

Mij‖pi − pj‖2 =
∑

i

αi‖pi‖2 −
∑

i,j

Mij(XPX�
P )ij,

We continue rewriting the terms on the right side of the equation:

• in the middle: the following transformation was previously used in the simplex case (Theorem 2.1)
and can be verified by straightforward expansion of the squared norms:

∑
i

αi‖pi‖2 = 1
2

∑
i,j

αiαj‖pi − pj‖2 +
∥∥∥∑

i

αipi

∥∥∥2
.

Note that the middle term is just the α-expansion ‖P‖2
α .

• on the right: the sum iterates over entry-wise products of the two matrices M and XPX�
P , which can

be rewritten as tr(MXPX�
P ).

Thus, we arrive at

∑
ij∈E

Mij‖pi − pj‖2 = ‖P‖2
α +

∥∥∥∑
i

αipi

∥∥∥2− tr(MXPX�
P ).

This clearly rearranges to the first line of (3.5). An analogous sequence of transformations works for q
(we replace pi by qi and XP by Xq, but we keep the Izmestiev matrix of P). This yields the second line of
(3.5). It remains to verify the term-wise inequalities.

For the first term we have

∑
ij∈E

Mij‖pi − pj‖2 ≥
∑
ij∈E

Mij‖qi − qj‖2

by term-wise comparison: we use that the sum is only over edges, that Mij > 0 for ij ∈ E (by Theorem 3.3
(i)), and that edges in q are not longer than in P.

Next, by the wisely chosen translation in setup (i) we have
∑

i αipi = 0, thus

−
∥∥∥∑

i

αipi

∥∥∥2 = 0 ≥ −
∥∥∥∑

i

αiqi

∥∥∥2
.

The final term requires the most elaboration. By Theorem 3.3 (iv) the Izmestiev matrix satisfies MXP =
0. So it suffices to show that tr(MXqX�

q ) is non-positive, as then already follows

tr(MXPX�
P ) = 0

?≥ tr(MXqX�
q ). (3.6)

To prove tr(MXqX�
q ) ≤ 0 consider the decomposition Xq = X1

q + · · · + Xm
q where MXk

q = θkXk
q (since M is

symmetric, its eigenspaces are orthogonal and Xk
q is the column-wise orthogonal projecting of Xq onto

the θk-eigenspace). We compute

tr(MXqX�
q ) =

∑
k,


tr(MXk
q(X



q)

�)

=
∑
k,


θk tr(Xk
q(X



q)

�) | by MXk
q = θkXk

q

=
∑
k,


θk tr((X

q)

�Xk
q) | by tr(AB) = tr(BA)

=
∑

k

θk tr((Xk
q)

�Xk
q). | since (X


q)
�Xk

q = 0 when k �= 
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10 | M. Winter

Again, we have been wise in our choice of translation of q in setup (iv):
∑

i ziqi = 0 can be written
as z�Xq = 0. Since z spans the θ1-eigenspace, the columns of Xq are therefore orthogonal to the θ1-
eigenspace, hence X1

q = 0. We conclude

tr(MXqX�
q ) =

∑
k≥2

θk tr((Xk
q)

�Xk
q) ≤ 0, (3.7)

where the final inequality follows from two observations: first, the Izmestiev matrix M has a unique
positive eigenvalue θ1, thus θk ≤ 0 for all k ≥ 2 (Theorem 3.3 (v)); second (Xk

q)
�Xk

q is a Gram matrix, hence
is positive semi-definite and has a non-negative trace.

This finalizes the term-wise comparison and established the inequality (3.5). It remains to discuss
the equality case. By now we see that the equality ‖P‖α = ‖q‖α is equivalent to term-wise equality in
(3.5); and so we proceed term-wise.

To enforce equality in the first term

∑
ij∈E

Mij‖pi − pj‖2 !=
∑
ij∈E

Mij‖qi − qj‖2

we recall again that Mij > 0 whenever ij ∈ E by Theorem 3.3 (i). Thus, we require equality ‖pi − pj‖ =
‖qi − qj‖ for all edges ij ∈ E. And so edges in q must be of the same length as in P.

We skip the second term for now and enforce equality in the last term:

0 = tr(MXPX�
P )

!= tr(MXqX�
q )

(3.7)=
∑
k≥2

θk tr((Xk
q)

�Xk
q).

Since θk < 0 for all k ≥ 3 (cf. Observation 3.4 (3)), for the sum on the right to vanish we necessarily have

tr((Xk
q)

�Xk
q) = 0 for all k ≥ 3 �⇒ Xk

q = 0 for all k ≥ 3.

Since we also already know X1
q = 0, we are left with Xq = X2

q, that is, the columns of Xq are in the θ2-
eigenspace (aka. the kernel) of M. In particular, span Xq ⊆ ker M = span XP, where the last equality
follows by Observation 3.4 (ii). It is well-known that if two matrices satisfy span Xq ⊆ span XP, then
the rows of Xq are linear transformations of the rows of XP, that is, TX�

P = X�
q for some linear map

T : Rd → R
e, or equivalently, qi = Tpi for all i ∈ V (see Theorem C.1 in the appendix for a short reminder

of the proof). Therefore, q (considered with its original translation prior to the setup) must have been
an affine transformation of sk(P).

Lastly we note that equality in the middle term of (3.5) yields no new constraints. In fact, by span Xq ⊆
ker M we have MXq = 0 and

∑
i

αiqi =
∑

i

( ∑
j

Mij

)
qi =

∑
j

(∑
i

Mijqi

)
= 0 =

∑
i

αipi.

Thus, identity in the middle term follows already from identity in the last term.
For the other direction of the identity case assume that q is an affine transformation of sk(P) with the

same edge lengths. Instead of setup (iv) assume a translation of q for which it is a linear transformation
of sk(P), i.e., X�

q = TX�
P for some linear map T : Rd → R

e. Hence
∑

i αipi = ∑
i αiqi = 0 and MXP = MXq = 0,

and (3.5) reduces to

‖P‖2
α =

∑
ij∈E

Mij‖pi − pj‖2 − 0 + 0 =
∑
ij∈E

Mij‖qi − qj‖2 − 0 + 0 = ‖q‖2
α .

�

As an immediate consequence we have the following:

Corollary 3.8. A polytope is uniquely determined (up to affine equivalence) by its edge-graph, its
edge lengths and the Wachspress coordinates of some interior point.
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Rigidity, Tensegrity, and Reconstruction of Polytopes Under Metric Constraints | 11

Fig. 5. Two affinely equivalent (but not isometric) polytopes with the same edge length. The edge directions trace
a circle on the “plane at infinity”.

Proof. Given polytopes P1 and P2 with the same edge-graph and edge lengths as well as points xi ∈ int(Pi)

with the same Wachspress coordinates α ∈ �n. By Theorem 3.2 we have ‖P1‖α ≥ ‖P2‖α ≥ ‖P1‖α , thus
‖P1‖α = ‖P2‖α . Then P1 and P2 are affinely equivalent by the equality case of Theorem 3.2. �

Remarkably, this reconstruction works across all combinatorial types and dimensions. That the
reconstruction is only up to affine equivalence rather than isometry is due to examples such as rhombi
and the zonotope in Figure 5. In general, such flexibility via an affine transformation happens exactly
if “the edge directions lie on a conic at infinity” (see [4, Proposition 4.2] or [5, Proposition 1.4]).

Lastly, the reconstruction permitted by Corollary 3.8 is feasible in practice. This follows from a
reformulation of Theorem 3.2 as a semi-definite program, which can be solved in polynomial time.
This is elaborated on in the alternative proof given in Section F.

4 Rigidity, Tensegrity, and Reconstruction
Our reason for pursuing Theorem 3.2 in Section 3 was to transfer the proof of the simplex case
(Theorem 2.1) to general polytopes with the eventual goal of verifying the main conjecture and its
corresponding “unique reconstruction version”:

Conjecture 1.2. Given polytopes P ⊂ R
d and Q ⊂ R

e with common edge-graph. If

(i) 0 ∈ int(Q),
(ii) edges in Q are at most as long as in P, and

(iii) vertex-origin distances in Q are at least as large as in P,

then P � Q.

Conjecture 1.1. A polytope P with 0 ∈ int(P) is uniquely determined (up to isometry) by its
edge-graph, edge lengths and vertex-origin distances.

In contrast to our formulation of Theorem 3.2, both of the above conjectures are false when stated for
a general graph embedding q : V(GP) → R

e instead of Q, even if we require 0 ∈ int conv(q). The following
counterexample was provided by Joseph Doolittle [7]:

Example 4.1. The 3-cube P := [−1, 1]3 ⊂ R
3 is inscribed in a sphere of radius

√
3. Figure 6 shows

an inscribed embedding q : V(GP) → R
2 with the same circumradius and edge lengths,

collapsing GP onto a path. In the circumcircle each edge spans an arc of length

2 sin−1
(1/

√
3) ≈ 70.5287◦ > 60◦.

The three edges therefore suffice to reach more than half around the circle. In other words, the
convex hull of q contains the circumcenter in its interior.
A full-dimensional counterexample in R

3 can be obtained by interpreting q as embedded in
R

2 × {0} follows by a slight perturbation.

Potential fixes to the “graph embedding versions” of Conjecture 1.1 and Conjecture 1.2 are discussed
in Section 5.2.
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12 | M. Winter

Fig. 6. A 2-dimensional embedding of the edge-graph of the 3-dimensional cube with the same circumradius and
edge lengths as the unit cube, also containing the origin in its convex hull.

While the general Conjecture 1.2 will stay open, we are confident that our methods point the right
way and highlight the essential difficulties. We overcome them in three relevant special cases, for some
of which we actually can replace Q with a graph embedding q : V(GP) → R

e. Those are

(i) P and q are centrally symmetric (Theorem 4.4).
(ii) q is a sufficiently small perturbation of sk(P) (Theorem 4.5).

(iii) P and Q are combinatorially equivalent (Theorem 4.7).

4.1 The remaining difficulty
On trying to generalize the proof of Theorem 2.1 beyond simplices using Theorem 3.2 we face the
following difficulty: Theorem 3.2 requires the α ∈ �n to be Wachspress coordinates of an interior
point x ∈ int(P), whereas in the proof of Theorem 2.1 we use that α is a set of barycentric coordinates
of 0 ∈ int(Q). While we have some freedom in choosing x ∈ int(P), and thereby α ∈ �n, it is not
clear that any such choice yields barycentric coordinates for 0 ∈ int(Q). In fact, this is the only
obstacle preventing us from proving Conjecture 1.2 right away. For convenience we introduce the
following map:

Definition 4.2. Given polytopes P ⊂ R
d and Q ⊂ R

e, the Wachspress map φ : P → Q is defined as
follows: for x ∈ P with Wachspress coordinates α(x) ∈ �n set

φ(x) :=
∑

i

αi(x)qi.

In cases where we are working with a graph embedding q : V(GP) → R
e instead of Q we have an

analogous map φ : P → conv(q).
Our previous discussion amounts to checking whether the origin is in the image of int(P) w.r.t. φ. While

this could be reasonably true if dim P ≥ dim Q, it is certainly too much to hope for if dim P < dim Q: the
image of φ(int(P)) ⊂ Q is of a smaller dimension than Q and easily “misses” the origin. Fortunately, we
can ask for less, which we now formalize in (i) of the following lemma:

Lemma 4.3. Let P ⊂ R
d be a polytope and q : V(GP) → R

e some embedding. If

(i) there exists an x ∈ int(P) with ‖φ(x)‖ ≤ ‖x‖ (e.g., φ(x) = 0),
(ii) edges in q are at most as long as in P, and

(iii) vertex-origin distances in q are at least as large as in P,

then q � sk(P) (via an orthogonal transformation).

Proof. Choose x ∈ int P with ‖φ(x)‖ ≤ ‖x‖, and note that its Wachspress coordinates α ∈ int �n are
strictly positive. In the remainder we follow closely the proof of Theorem 2.1: consider the system of
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Rigidity, Tensegrity, and Reconstruction of Polytopes Under Metric Constraints | 13

(in)equalities:

∑
i

αi‖pi‖2 =
∥∥∥∑

i

αipi

∥∥∥2+ 1
2

∑
i,j

αiαj‖pi − pj‖2 = ‖x‖2 + ‖P‖2
α

≥ ≤ ≤∑
i

αi‖qi‖2 =
∥∥∥∑

i

αiqi

∥∥∥2+ 1
2

∑
i,j

αiαj‖qi − qj‖2 = ‖φ(x)‖2 + ‖q‖2
α ,

where the two rows hold by simple computation and the vertical inequalities follow (from left to right)
by (iii), (i), and (ii) + Theorem 3.2 respectively. It follows that all inequalities are actually equalities. In
particular, since αi > 0 we find both ‖pi‖ = ‖qi‖ for all i ∈ V and ‖pi − pj‖ = ‖qi − qj‖ for all i, j ∈ V(GP),
establishing that q and sk(P) are indeed isometric via an orthogonal transformation. �

The only way for Lemma 4.3 (i) to fail is if ‖φ(x)‖ > ‖x‖ for all x ∈ int(P). By ii and (iii) we have
‖φ(x)‖ = ‖x‖ whenever x is a vertex or in an edge of P, which makes it plausible that (i) should not fail,
yet it seems hard to exclude in general.

In each of the three special cases of Conjecture 1.2 discussed below we actually managed to verify
0 ∈ φ(int(P)) in order to apply Lemma 4.3.

4.2 Central symmetry
Let P ⊂ R

d be centrally symmetric (more precisely, origin symmetric), that is, P = −P. This induces an
involution ι : V(GP) → V(GP) with pι(i) = −pi for all i ∈ V(GP). We say that an embedding q : V(GP) → R

d of
the edge-graph is centrally symmetric if qι(i) = −qi for all i ∈ V(GP).

Theorem 4.4 (centrally symmetric version). Given a centrally symmetric polytope P ⊂ R
d and a

centrally symmetric graph embedding q : V(GP) → R
e, so that

(i) edges in q are at most as long as in P, and
(ii) vertex-origin distances in q are at least as large as in P,

then q � sk(P).

Proof. Since P is centrally symmetric, we have 0 ∈ relint(P) and we can find Wachspress coordinates α ∈
int(�n) of the origin in P. Since the Wachspress coordinates are invariant under a linear transformation
(as noted in Remark 3.7 (ii)), it holds αi = αι(i). For the Wachspress map φ follow

φ(0) = 1
2

∑
i∈V

αiqi + 1
2

∑
i∈V

αι(i)qι(i) = 1
2

∑
i∈V

αiqi − 1
2

∑
i∈V

αiqi = 0,

The claim then follows via Lemma 4.3 �

It is clear that Theorem 4.4 can be adapted to work with other types of symmetry that uniquely fix
the origin, such as irreducible symmetry groups.

Theorem 4.4 has a natural interpretation in the language of classical rigidity theory, where it asserts
the universal rigidity of a certain tensegrity framework. In this form it was proven up to dimension three
by Connelly [3, Theorem 5.1]. We elaborate further on this in Section 5.3.

It is now tempting to conclude the unique reconstruction version of Theorem 4.4, answering Conjec-
ture 1.1 for centrally symmetric polytope. There is, however, a subtlety: our notion of “central symmetry”
for the graph embedding q : V(GP) → R

e as used in Theorem 4.4 has been relative to P, in that it forces q to
have the same pairs of antipodal vertices as P. It is, however, not true that any two centrally symmetric
polytopes with the same edge-graph have this relation. David E. Speyer [25] constructed a 12-vertex
4-polytope whose edge-graph has an automorphism that does not preserve antipodality of vertices.

4.3 Local uniqueness
Given a polytope P ⊂ R

d consider the space

EP := {q : V(GP) → R
d}
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14 | M. Winter

of d-dimensional embeddings of GP. We then have sk(P) ∈ EP. Since EP ∼=∼ R
n ×d (in some reasonable

sense) we can pull back a metric μ : EP × EP → R+.

Theorem 4.5 (local version). Given a polytope P ⊂ R
d with 0 ∈ int(P), there exists an ε > 0 with

the following property: if q : V(GP) → R
d is an embedding with

1) q is ε-close to sk(P), i.e., μ(q, sk(P)) < ε,
2) edges in q are at most as long as in P, and
3) vertex-origin distances in q are at least as large as in P,

then q � sk(P).

Theorem 4.5 as well can be naturally interpreted in the language of rigidity theory (see Section 5.3).
The proof below makes no use of this language.

In order to prove Theorem 4.5 we again show 0 ∈ φ(int(P)), which requries more work this time: since
0 ∈ int(P), there exists an ε-neighborhood Bε (0) ⊂ P of the origin. The hope is that for a sufficiently small
perturbation of the vertices of P the image of Bε (0) under φ is still a neighborhood of the origin.

This hope is formalized and verified in the following lemma, which we separated from the proof of
Theorem 4.5 to reuse it in Section 4.4. Its proof is standard and is included in Section D:

Lemma D.1. Let K ⊂ R
d be a compact convex set with 0 ∈ int(K) and f : K × [0, 1] → R

d a
homotopy with f (·, 0) = idK. If the restriction f |∂K : ∂K × [0, 1] → R

d yields a homotopy of ∂K in
R

d \ {0}, then 0 ∈ int f (K, 1).

In other words: if a “well-behaved” set K contains the origin in its interior, and it is deformed so that
its boundary never crosses the origin, then the origin stays inside.

Proof of Theorem 4.5. Since 0 ∈ int(P) there exists a δ > 0 with Bδ(0) ⊂ P.
Fix some compact neighborhood N ⊂ EP of sk(P). Then N × P is compact in EP × R

d and the map

N × P → R
d, (q, x) �→ φq(x) :=

∑
i

αi(x)qi

is uniformly continuous: there exists an ε > 0 so that whenever μ(q, q′) + ‖x − x′‖ < ε, we have ‖φq(x) −
φq′ (x′)‖ < δ/2. We can assume that ε is sufficiently small, so that Bε (sk(P)) ⊂ N. We show that this ε

satisfies the statement of the theorem.
Suppose that q is ε-close to sk(P), then

μ(sk(P), q) + ‖x − x‖ < ε �⇒ ‖x − φq(x)‖ = ‖φsk(P)(x) − φq(x)‖ < δ/2.

The same is true when replacing q by any linear interpolation q(t) := (1 − t) sk(P) + tq with t ∈ [0, 1].
Define the following homotopy:

f : Bδ(0) × [0, 1] → R
d, (x, t) �→ φq(t)(x).

We have f (·, 0) = id. That is, if x ∈ ∂Bδ(0) then ‖f (x, 0)‖ = δ, as well as

‖f (x, t)‖ ≥ ‖f (x, 0)‖ − ‖f (x, 0) − f (x, t)‖ ≥ δ − δ/2 = δ/2,

and f (x, t) �= 0 for all t ∈ [0, 1]. Since Bδ(0) is compact and convex, the homotopy f satisfies the conditions
of Lemma D.1 and we conclude 0 ∈ f (Bδ(0), 1) = φq(Bδ(0)) ⊆ φq(int(P)). Then q � sk(P) follows via
Lemma 4.3. �

The polytope P in Theorem 4.5 is assumed to be full-dimensional. This is necessary, since allowing
sk(P) to deform beyond its initial affine hull already permits counterexamples such as shown in Figure 7.
Even restricting to deformations with 0 ∈ int conv(q) is not sufficient, as shown in the next example:
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Fig. 7. If q in Theorem 4.5 is not restricted to aff(P), the vertex-origin distances can be increased by moving out of
the affine hull.

Example 4.6. Consider the 3-cube as embedded in R
3 × {0} ⊂ R

3 × R
2 ∼= R

5. Let p1, ..., p8 ∈ R
3 ×

{0} be its vertices, and let q1, ..., q8 ∈ {0} × R
2 be the vertices as embedded in Figure 6 (on the

right). Since both share the same edge lengths and vertex-origin distances, so does the
embedding tp + sq whenever t2 + s2 = 1. Observe further that for both pi and qi the origin can
be written as a convex combination using the same coefficients α ∈ �n (use an α with αi = αj

whenever pi = −pj). It follows 0 ∈ int conv(tp + sq).

4.4 Combinatorially equivalent polytopes
In this section we consider combinatorially equivalent polytopes P, Q ⊂ R

d and prove the following:

Theorem 4.7 (combinatorial equivalent version). Let P, Q ⊂ R
d be combinatorially equivalent

polytopes so that

(i) 0 ∈ int(Q)

(ii) edges in Q are at most as long as in P, and
(iii) vertex-origin distances in Q are at least as large as in P.

Then P ∼= Q.

In particular, since the combinatorics of polytopes up to dimension three is determined by the edge-
graph, this proves Conjecture 1.2 for d, e ≤ 3.

Once again the proof uses Lemma 4.3. Since 0 ∈ int(Q), we can verify 0 ∈ φ(int(P)) by showing
that the Wachspress map φ : P → Q is surjective. This statement is of independent interest, since the
question whether φ is bijective is a well-known open problem for d ≥ 3 (see Conjecture 5.11). Our proof
of surjectivity uses Lemma D.1 and the following:

Lemma 4.8. Given a face σ ∈ F(P), the Wachspress map φ sends σ onto the corresponding face
σQ ∈ F(Q). In particular, φ sends ∂P onto ∂Q.

Proof. Given a point x ∈ relint(σ ) with Wachspress coordinates α ∈ �n, the coefficient αi is non-zero if
and only if the vertex pi is in σ (Remark 3.7 (i)). The claim φ(x) ∈ σQ follows immediately. �

Lemma 4.9. The Wachspress map φ : P → Q is surjective.

Proof. We proceed by induction on the dimension d of P. For d = 1 the Wachspress map is linear and
the claim is trivially true. For d > 1 recall that φ sends ∂P to ∂Q (by Lemma 4.8). By induction hypothesis,
φ is surjective on each proper face, thus surjective on all of ∂P.

To show surjectivity in the interior, we fix x ∈ int(Q); we show x ∈ im φ. Let ψ : Q → P be the
Wachspress map in the other direction (which is usually not the inverse of φ) and define ρ := φ ◦ψ : Q →
Q. Note that by Lemma 4.8 ρ sends each face of Q to itself and is therefore homotopic to the identity on
Q via the following linear homotopy:

f : Q × [0, 1] → Q, (y, t) �→ (1 − t)x + tρ(x).

Since faces of Q are closed under convex combination, f (·, t) sends ∂Q to itself for all t ∈ [0, 1].
Thus, f satisfies the assumptions of Lemma D.1 (with K chosen as Q), and therefore x ∈ f (Q, 1) =
im ρ ⊂ im φ. �

The proof of Theorem 4.7 follows immediately:
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Proof of Theorem 4.7. Since 0 ∈ int(Q) and the Wachspress map φ : P → Q is surjective (by Lemma 4.9),
there exists x ∈ P with φ(x) = 0. Since φ(∂P) = ∂Q (by Lemma 4.8), we must have x ∈ int(P). P � Q then
follows via Lemma 4.3. �

Corollary 4.10. A polytope with the origin in its interior is uniquely determined by its
face-lattice, its edge lengths and its vertex-origin distances.

If the origin lies not in P then a unique reconstruction is not guaranteed (recall Figure 3). However, if
0 ∈ ∂P then we can say more. Recall the tangent cone of P at a face σ ∈ F(P):

TP(σ ) := cone{x − y | x ∈ P, y ∈ σ }.

Theorem 4.11. Let P, Q ⊂ R
d be combinatorially equivalent polytopes with the following

properties:

(i) 0 ∈ relint(σQ) for some face σQ ∈ F(Q), σP is the corresponding face in P, and P and Q have isometric
tangent cones at σP and σQ .

(ii) edges in Q are at most as long as in P.
(iii) vertex-origin distances in Q are at least as large as in P.

Then P � Q.

Property (i) is always satisfied if, for example, σQ is a facet of Q, or if σQ is a face of codimension two
at which P and Q agree in the dihedral angle.

Proof. The proof is by induction on the dimension d of the polytopes. The induction base d = 1 is clearly
satisfied. In the following we assume d ≥ 2.

Note first that we can apply Theorem 4.7 to σP and σQ to obtain σP � σQ via an orthogonal
transformation T : R

d → R
d, in particular 0 ∈ relint(σP) ⊆ P. By (i) this transformation extends to

the tangent cones at these faces. Let F1,Q , ..., Fm,Q ∈ Fd−1(Q) be the facets of Q that contain σQ , and let
F1,P, ..., Fm,P ∈ Fd−1(P) be the corresponding facets in P. Then Fi,P and Fi,Q too have isometric tangent cones
at σP resp. σQ , and Fi,P � Fi,Q follows by induction hypothesis.

Now choose a point xQ ∈ R
d beyond the face σQ (i.e., above all facet-defining hyperplanes that contain

σQ , and below the others) so that xP := TxQ is beyond the face σP. Consider the polytopes Q′ := conv(Q ∪
{xQ}) and P′ := conv(P∪{xP}). Since xQ lies beyond σQ , each edge of Q′ is either an edge of Q, or is an edge
between xQ and a vertex of some facet Fi,Q ; and analogously for P′. The lengths of edges incident to xQ

depend only on the shape of the tangent cone and the shapes of the facets Fi,Q , hence are the same for
corresponding edges in P′. Thus, P′ and Q′ satisfy the preconditions of Theorem 4.7, and we have P′ � Q′.

Finally, as xQ → 0, we have Q′ → Q and P′ → P (in the Hausdorff metric), which shows that P � Q. �

Thus, if the origin lies in the interior of P or a facet of P then Theorem 4.7 applies. If the origin lies in
a face of codimension three, then counterexamples exist.

Example 4.12. Consider the pentagons from Figure 3 as lying in the plane R
2 × {1}, with their

former origins now at (0, 0, 1). Consider the pyramids

P∗ := conv(P ∪ {0}) and Q∗ := conv(Q ∪ {0}).

These polytopes have the origin in a vertex (a face of codimension three), have the same
edge-graphs, edge lengths and vertex-origin distances, yet are not isometric. Examples with
the origin in a high-dimensional face of codimension three can be constructed by considering
prisms over P∗ resp. Q∗.

We do not know whether Theorem 4.7 holds if the origin lies in a face of codimension two (see
Question 5.13).
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4.5 Inscribed polytopes
It is worthwhile to formulate versions of Theorem 4.7 for inscribed polytopes, that is, polytopes where
all vertices lie on a common sphere – the circumsphere. For inscribed polytopes we can write down a
direct monotone relation between edge lengths and the circumradius.

Corollary 4.13 (inscribed version). Given two combinatorially equivalent polytopes P, Q ⊂ R
d so

that

(i) P and Q are inscribed in spheres of radii rP and rQ respectively,
(ii) Q contains its circumcenter in the interior, and

(iii) edges in Q are at most as long as in P,

Then rP ≥ rQ , with equality if and only if P � Q.

Proof. Translate P and Q so that both circumcenters lie at the origin. Suppose that rP ≤ rQ . Then all
preconditions of Theorem 4.7 are satisfied, which yields P � Q, hence rP = rQ . �

This variant in particular has already found an application in proving the finitude of so-called
“compact sphere packings” with spheres of only finitely many different radii [20].

Interestingly, the corresponding “unique reconstruction version” does not require any assumptions
about the location of the origin or an explicit value for the circumradius. In fact, we do not even need
to apply our results, as it already follows from Cauchy’s rigidity theorem (Theorem B.1).

Corollary 4.14. An inscribed polytope of a fixed combinatorial type is uniquely determined, up
to isometry, by its edge lengths.

Proof. The case d = 2 is straightforward: given any circle, there is only a single way (up to isometry) to
place edges of prescribed lengths. Also, there is only a single radius for the circle for which the edges
reach around the circle exactly once and close up perfectly. This proves uniqueness for polygons.

If P is of higher dimension then its 2-dimensional faces are still inscribed, have prescribed edge
lengths, and by the 2-dimensional case above, corresponding 2-faces in P and Q are therefore isometric.
Then P � Q follows from Cauchy’s rigidity theorem (Theorem B.1). �

5 Conclusion, Further Notes, and Many Open Questions
We conjectured that a convex polytope is uniquely determined up to isometry by its edge-graph, edge
lengths and the collection of distances between its vertices and some interior point, across all dimen-
sions and combinatorial types (Conjecture 1.1). We also posed a more general conjecture expressing
the idea that polytope skeleta, given their edge lengths, are maximally expanded (Conjecture 1.2).
We developed techniques based on Wachspress coordinates and the so-called Izmestiev matrix that
led to us to resolve three relevant special cases: centrally symmetric polytopes (Theorem 4.4), small
perturbations (Theorem 4.5), and combinatorially equivalent polytopes (Theorem 4.7). We feel confident
that our approach already highlights the essential difficulties in verifying the general case.

In this section we collected further thoughts on our results, notes on connections to the literature,
as well as many questions and future research directions.

5.1 Consequences of the conjectures
Conjecture 1.1 vastly generalizes several known “reconstruction from the edge-graph” results. The
following is a special case of Conjecture 1.1: an inscribed polytopes with all edges of the same length
would be uniquely determined by its edge-graph. This includes the following special cases:

• The reconstruction of matroids from their base exchange graph: a matroid can be identified with
its matroid base polytopes, which is a 01-polytopes (hence inscribed) and has all edges of length√

2. This reconstruction has been initially proven in [14] and recently rediscovered in [24].
• The reconstruction of simultaneously vertex- and edge-transitive polytopes from their edge-graph:

this was proven in [34, 36], essentially using the tools of this article.
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Fig. 8. Already the skeleton of the cube is not rigid if considered as a tensegrity framework with struts for edges
and central cables. Twisting the top and bottom face lengthens the edge struts but keeps the central cables of a
fixed length. This corresponds to the infinitesimal flex shown on the left.

It would imply an analogous reconstruction from the edge-graph for classes of polytopes such as the
uniform polytopes or higher-dimensional inscribed Johnson solids [16].

Secondly, a positive answer to Conjecture 1.1 would also resolve Question 6.6 in [35] on whether the
metric coloring can capture the Euclidean symmetries of a polytope.

5.2 Conjecture 1.2 for graph embeddings
In Example 4.1 we show that Conjecture 1.2 does not hold when replacing Q by some more general
graph embedding q : V(GP) → R

e of GP, even if 0 ∈ int conv(q).
Our intuition for why this fails, and also what distinguishes it from the setting of our conjectures

and the verified special cases is, that the embedding of Example 4.1 does not “wrap around the origin”
properly. It is not quite clear what this means for an embedding of a graph, except that it feels right to
assign this quality to polytope skeleta, to embeddings close to them, and also to centrally symmetric
embeddings.

One possible formalization of this idea is expressed in the conjecture below, that is even stronger
than Conjecture 1.2 (the idea is due to Joseph Doolittle):

Conjecture 5.1. Given a polytope P ⊂ R
d and a graph embedding q : V(GP) → R

e of its edge-graph
GP, so that

(i) for each vertex i ∈ V(GP) the cone

Ci := qi + cone{qj − qi | ij ∈ E(GP)}

contains the origin in its interior,
(ii) edges in q are at most as long as in P, and

(iii) vertex-origin distances in q are at least as large as in P,

then sk(P) � q.

Note that since
⋂

i Ci ⊆ conv(q), (i) already implies 0 ∈ int conv(q).

5.3 Classical rigidity of frameworks
We previously commented on a natural interpretation of Theorem 4.4 and Theorem 4.5 in the language
of classical rigidity theory (we refer to [6] for any rigidity specific terminology used below).

Consider the edges of P as cables that can contract but not expand, and connect all vertices of P to
the origin using struts that can expand but not contract. This is known as a tensegrity framework, and we
shall call it the tensegrity of P. Theorem 4.5 then asserts that these tensegrities are always (locally) rigid.

Using the language of rigidity, a number of natural follow up questions arise. So it turns out that
swapping cables and struts does not necessarily preserve rigidity; see Figure 8 for an example. As a
consequence, the tensegrity of a polytope is not necessarily infinitesimally rigid, because infinitesimally
rigid frameworks stay rigid under swapping cables and struts.

Lacking first-order rigidity, we might ask for higher-order rigidity instead:

Question 5.2. Is the tensegrity of a polytope always second-order rigid, or perhaps even prestress
stable?
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Fig. 9. An octagon and an embedding of its edge-graph with longer edges but equally long central cables, showing
that the respective tensegrity framework is not globally rigid under forced central symmetry.

Fig. 10. Two Schlegel diagrams of 4-polytopes: of the pyramid with the 3-cube as base facet (left) and of the 4-cube
(right).

Fig. 11. A flexible Schlegel diagram (left), and a rigid Schlegel diagram (right).

For an interpretation of Theorem 4.4 as a tensegrity framework, consider a cable at each edge as
before, but each central strut now connects a vertex pi to its antipodal counterpart −pi, and is fixed in
its center to the origin. Theorem 4.4 then asserts that this tensegrity framework is universally rigid, i.e.,
it has a unique realization across all dimensions.

Here too, swapping cables and struts does not preserve universal or even global rigidity (see Figure 9).
It does not preserve local rigidity either (see Example 5.3).

Example 5.3. Consider the 4-cube with its “top” and “bottom” facets (which are 3-cubes)
embedded in the hyperplanes R

3 × {±1} respectively. We flex the skeleton as follows: deform
the top facet as shown in Figure 8, and the bottom facet so as to keep the framework
centrally symmetric, while keeping both inside their respective hyperplanes. The edge struts
inside the facets become longer, and the edge struts between the facets have previously been
of minimal length between the hyperplanes, can therefore also only increase in length. The
lengths of the central cables stay the same.

As a consequence, the centrally symmetric tensegrity frameworks too are not necessarily infinitesi-
mally rigid.

5.4 Schlegel diagrams
Yet another interpretation of the frameworks discussed in Section 5.3 is as skeleta of special Schlegel
diagrams, namely, of pyramids whose base facet is the polytope P. It is then natural to ask whether a
general Schlegel diagram is rigid as well (this was brought up by Raman Sanyal).

The question of rigidity for Schlegel diagrams is already interesting in dimension two, that is, for
Schlegel diagrams of 3-polytopes. The edge-graphs of many 3-polytopes are too sparse to be generically
rigid in R

2, and so one might expect that most of their Schlegel diagrams are flexible. Indeed, flexible
Schlegel diagrams exist (see Figure 11, left).

Surprisingly, however, this seems to be the exception rather than the rule. For example, we believe
that Schlegel diagrams of (2n + 1)-gonal prisms are always rigid (see Figure 11, right). Since Schlegel
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Fig. 12. The skeleton of Schlegel diagram of a triangular prism with cables on the outside and struts on the inside
is not rigid. Twisting the inner triangle increases the lengths of struts and fixes all other lengths.

Fig. 13. Folding the Schlegel diagram of the 3-cube along a diagonal preserves all edge lengths.

diagrams are very special realizations (they are projections of convex objects), the generic ones among
them might very well be rigid. This is not clear so far.

Question 5.4. Is a generic Schlegel diagram rigid?

Above we considered Schlegel diagrams as bar-joint frameworks. If we consider them as tensegrity
frameworks then it is easy to find generically flexible examples (see Figure 12). Schlegel diagrams are
also not necessarily globally rigid (see Figure 13).

5.5 Stoker’s conjecture
Stoker’s conjecture asks whether the dihedral angles of a polytope determine its face angles, and
thereby its overall shape to some degree. Recall that dihedral angles are the angle at which facets meet in
faces of codimension two, whereas face angles are the dihedral angles of the facets. Stoker’s conjecture
was asked in 1968 [26], and a proof was claimed recently by Wang and Xie [29]:

Theorem 5.5 (Wang-Xie, 2022). Let P1 and P2 be two combinatorially equivalent polytopes such
that corresponding dihedral angles are equal. Then all corresponding face angles are equal
as well.

Our results allow us to formulate a semantically similar statement. The following is a direct
consequence of Corollary 4.10 when expressed for the polar dual polytope:

Corollary 5.6. Let P1 and P2 be two combinatorially equivalent polytopes such that
corresponding dihedral angles and facet-origin distances are equal. Then P1 � P2.

While the assumptions in Corollary 5.6 are unlike stronger compared to Stoker’s conjecture (we
require facet-origin distances), we also obtain isometry instead of just identical face angles. While
related, we are not aware that either of Theorem 5.5 or Corollary 5.6 follows from the other one easily.

5.6 Pure edge length constraints
Many polytopes cannot be reconstructed up to isometry from their edge-graph and edge lengths alone
(recall Figure 1). However, for all we know the following is open:

Question 5.7. Is the combinatorial type of a polytope uniquely determined by its edge-graph
and edge lengths?

This alone would already prove Conjecture 1.1 (by Corollary 4.10). It would also imply a positive
answer to the following:
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Fig. 14. The cuboctahedron can be written as the Minkowski sum of two simplices, and twisting these simplices
leads to a flex of the cuboctahedron that preserves edge lengths.

Fig. 15. A cuboid sliced at an angle in an appropriate way has only five edge directions and has an edge length
preserving affine flex. The flex deforms the bottom face into a rhombus and keeps the vertical edges vertical.

Question 5.8. Is a polytope uniquely determined up to isometry by its 2-skeleton (i.e., the
face-lattice cut off at, but including dimension two) and the shape of each 2-face?

Note that this is a particular strengthening of Cauchy’s rigidity theorem, which requires the face-
lattice to be prescribed in its entirety, rather than on some lower levels only.

Let us now fix the combinatorial type. We are aware of three types of polytopes that are not
determined (up to isometry) by their face-lattice and edge lengths:

(i) n-gons with n ≥ 4.
(ii) Minkowski sums: if P = Q + R and Q and R are generically oriented w.r.t. each other, then a slight

reorientation of the summands changes the shape of P but keeps its edge lengths (see Figure 14).
(iii) polytopes having all edge directions on a “conic at infinity”: this implies an affine flex (see [5]).

This is most easily implemented for zonotopes (recall Figure 5), but happens for other polytopes
as well, such as 3-polytopes with up to five edge directions (see Figure 15).

We are not aware of other examples of polytopes that flex in this way and so we wonder whether
this is already a full characterization.

Question 5.9. If a polytope is not determined up to isometry by its combinatorial type and edge
lengths, is it necessarily a polygon, a non-trivial Minkowski sum or has all its edge directions
on a conic at infinity? Is this true at least up to dimension three?

In how far a 3-polytope is determined by local metric data at its edges was reportedly discussed in
an Oberwolfach question session (as communicated by Ivan Izmestiev on MathOverflow [33]), where
the following more general question was asked:

Question 5.10. Given a simplicial 3-polytope and at each edge we prescribe either the length or
the dihedral angle, in how far does this determine the polytope?
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Fig. 16. The square based pyramid (left) is flexible as a framework (since then the bottom face needs not stay
flat). Likewise, the framework of the square based frustum with this particular choice of origin (right) flexes. It is,
however, (locally) rigid as a polytope.

Having length constraints at every edge determines a simplicial polytope already up to isometry via
Cauchy’s rigidity theorem (Theorem B.1). The angles-only version is exactly the 3-dimensional Stoker’s
conjecture (Section 5.5). We are not aware that this question has been addressed in the literature beyond
these two extreme cases.

Note also that Question 5.10 is stated for simplicial 3-polytopes, but actually includes general 3-
polytopes via a trick: if P is not simplicial, triangulate every 2-face, and at each new edge created in
this way prescribe a dihedral angle of 180◦ to prevent the faces from folding at it.

5.7 Injectivity of the Wachspress map φ

In Lemma 4.9 we proved that the Wachspress map φ : P → Q (cf. Definition 4.2) between combinato-
rially equivalent polytopes is surjective. In contrast, the injectivity of the Wachspress map has been
established only in dimension two by Floater and Kosinka [10] and is conjectured for all d ≥ 3.

Conjecture 5.11. The Wachspress map φ : P → Q is injective.

If true, the Wachspress map would provide an interesting and somewhat canonical homeomorphism
(in fact, a rational map, see [31]) between any two combinatorially equivalent polytopes.

5.8 What if 0 �∈ int(Q)?
If 0 �∈ Q then Figure ?? show that our conjectures fail. We do, however, not know whether in the “unique
reconstruction” case the number of solutions would be finite.

Question 5.12. Given edge-graph, edge lengths and vertex-origin distances, are there only
finitely many polytopes with these parameters?

This is in contrast to when we replace Q with a graph embedding q : V(GP) → R
e, which can have a

continuum of realizations (see Figure 16).
In Section 4.4 we showed that reconstruction from the face-lattice, edge lengths and vertex-origin

distances is possible even if the origin lies only in the inside of a facet of P, but that it can fail if it lies
in a face of codimension three. We do not know what happens for a face of codimension two.

Question 5.13. Is a polytope uniquely determined by its face-lattice, edge lengths and
vertex-origin distances if the origin is allowed to lie in the inside of faces of codimension 0, 1
and 2?

A Perron-Frobenius Theory
The following fragment of the Perron-Frobenius theorem is relevant to this article. Recall that a matrix
is irreducible if no simultaneous row-column permutation brings it in a block-diagonal form with more
than one block; or equivalently, if it is not the (weighted) adjacency matrix of a disconnected graph. See
also [11].
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Theorem A.1 (Perron-Frobenius). Let M ∈ R
n ×n be a non-negative irreducible symmetric matrix,

then

(i) the largest eigenvalue θ of M is positive and has multiplicity one.
(ii) there is a θ-eigenvector z ∈ R

n with strictly positive entries.

B Cauchy’s Rigidity Theorem
Cauchy’s famous rigidity theorem was initially formulated in dimension three and is often quoted
briefly as follows:

3-polytopes with isometric faces are themselves isometric.

Generalizations to higher dimensions have been proven by Alexandrov [1] where one assumes isometric
facets to conclude global isometry (see also its proof in [23]). We state a rigorous version that only requires
isometric 2-faces and that can be easily derived from the facet versions using induction by dimension:

Theorem B.1 (Cauchy’s rigidity theorem, version with 2-faces). Given two combinatorially
equivalent polytopes P, Q ⊂ R

d and a face-lattice isomorphism φF(P) → F(Q). If φ extends to
an isometry on every 2-face σ ∈ F2(P), then φ extends to an isometry on all of P, that is, P � Q.

C Some Linear Algebra

Theorem C .1. Given two matrices A ∈ R
d ×n and B ∈ R

d ×m with span B ⊆ span A, there exists a
linear transformation T : Rn → R

m with TA� = B�.

Proof. Set UA := span A and dA := dim UA = rank A. Respectively, set UB := span B ⊂ UA and dB :=
dim UB = rank B. We can assume that the columns of A and B are sorted so that a1, ..., adA ∈ UA form a
basis, and likewise b1, ..., bdB ∈ UB form a basis. Let T̃ : UA → UB be the uniquely determined linear map
that maps T̃ai = bi for i ∈ {1, ..., dB} and T̃ai = 0 for i ∈ {dB + 1, ..., dA}. Then T̃A = B.

The Moore-Penrose pseudo inverse A† ∈ R
n ×d of A satisfies AA† = πUA , where πUA is the orthogonal

projection onto UA. We set T := (A†T̃A)� and verify

TA� = (AT�)� = (AA†T̃A)� = (πUA T̃A)� = (πUA B)� = B�,

where for the last equality we used that all columns of B are already in UA and the projection acts as
identity. �

D A Topological Argument

Lemma D.1. Let K ⊂ R
d be a compact convex set, x ∈ int(K) a point and f : K × [0, 1] → R

d a
homotopy with f (·, 0) = idK. If the restriction f |∂K : ∂K × [0, 1] → R

d yields a homotopy of ∂K in
R

d \ {x}, then x ∈ int f (K, 1).

Proof. Suppose that x �∈ int f (K, 1). Since ∂f is a homotopy in R
d \ {x}, we actually have x �∈ f (K, 1). We

derive a contradiction.
Construct a map g : K → ∂K as follows: for y ∈ K consider the unique ray emanating from x passing

through f (y, 1). Let g(x) be the unique intersection of this ray with ∂K. Likewise, construct the map
h : ∂K × [0, 1] → ∂K: for y ∈ ∂K and t ∈ [0, 1], let h(y, t) be the intersection of ∂K with the unique ray
emanating from x and passing through f (y, t). Note that h(·, 0) = id∂K and h(·, 1) = g|∂K. In other words,
g|∂K is homotopic to the identity on ∂K.

The existence of such a map g : K → ∂K is a well-known impossibility. This can be quickly shown
by considering the following commutative diagram (left) and the diagram induced on the Z-homology
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groups (right):

Since g|∂K is homotopic to the identity, the arrow (g|∂K)∗ is an isomorphism, and so must be the arrows
above it. This is impossible because

Hd−1(∂K) = Z �= 0 = Hd−1(K).

�

E Euler’s homogeneous function theorem

Theorem E.1 (Euler’s homogeneous function theorem). Let f : Rn → R be a homogeneous
function of degree d ≥ 1 i.e., f (tx) = tdf (x) for all t ≥ 0. Then

∑
i

xi
∂f (x)

∂xi
= d · f (x).

Proof. Differentiate both sides of f (tx) = tdf (x) w.r.t. t

dtd−1f (x) = ∂

∂t
(tdf (x)) = ∂

∂t
f (tx) =

∑
i

∂f (tx)

∂(txi)

∂(txi)

∂t
=

∑
i

xi
∂f (tx)

∂(txi)

and evaluate at t = 1. �

F An Alternative Proof of Theorem 3.2 Using Semi-Definite
Optimization
The following proof of Theorem 3.2 does not address the equality case.

Proof. Theorem 3.2 can be equivalently phrased as the claim that the following program attains its
optimum if we choose qi to be the skeleton of P:

max ‖q‖α

s.t. ‖qi − qj‖ ≤ ‖pi − pj‖, for all ij ∈ E
q1, ..., qn ∈ R

n

Since ‖q‖2
α = 1

2

∑
i,j αiαj‖qi − qj‖2 = ∑

i αi‖qi‖2 − ‖∑i αiqi‖2, we obtain the following equivalent program:

max
∑

i αi‖qi‖2 =: e(q)

s.t.
∑

i αiqi = 0
‖qi − qj‖ ≤ ‖pi − pj‖, for all ij ∈ E
q1, ..., qn ∈ R

n

This particular program has been studied extensively (see, e.g., [12, 13, 27]). It can be rewritten as a
semi-definite program (which we do not repeat here) with the following dual:

min
∑

ij∈E wij‖pi − pj‖2 =: d(w)

s.t. Lw − diag(α) + μαα� � 0
w ≥ 0, μ free
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where Lw is the Laplace matrix of GP with edge weights w (that is Lij = −wij and Lii = ∑
j �=i wij), diag(α) is

the diagonal matrix with α on its diagonal, and X � 0 asserts that X is a positive semi-definite matrix.
Recall the following property of a dual program: if there are qi ∈ R

n, w ≥ 0 and μ ∈ R so that the
primal and the dual program attain the same objective value, then we know that there is no duality
gap and we found optimal solutions for both programs. We now claim that such a choice can be made
using qi := pi, wij := Mij (where M is the Izmestiev matrix of P), and with a value for μ to be determined
later. We first verify that the objective values agree:

d(M) =
∑
ij∈E

Mij‖pi − pj‖2 = 1
2

∑
i,j

Mij‖pi − pj‖2

=
∑

i

(∑
j

Mij

)
‖pi‖2 −

∑
i,j

Mij〈pi, pj〉

=
∑

i

αi‖pi‖2 − tr( MXP︸︷︷︸
=0

X�
P )

=
∑

i

αi‖pi‖2 = e(p),

where X�
P := (p1, ..., pn) ∈ R

n ×d, MXP = 0 by Theorem 3.3 (iv), as well as
∑

i Mij = αj by Corollary 3.6.
It only remains to verify that there exists μ ∈ R so that LM − diag(α) + μαα� � 0. Set D :=

diag(α−1/2
1 , ..., α−1/2

n ) and observe that the matrices X and DXD have the same signature. It therefore
suffices to verify

0 � D(LM − diag(α) + μαα�)D = DLMD − Id +μ(D−11)(D−11)�.

First we claim that LM −diag(α) = −M. Since both sides agree on the off-diagonal, it suffices to compare
their row sums. And in fact, since LM1 = 0 we have (LM − diag(α))1 = −α = −M1. Hence, DLMD − Id has
the same signature as −M, i.e., a unique negative eigenvalue, and one can check that the corresponding
eigenvector is D−11. We see that the term μ(D−11)(D−11)� just shifts this smallest eigenvalue of DLMD−Id
up or down, while not changing the other eigenvalues, and so we can choose μ large enough to make
this eigenvalue positive. �

The formulation of Theorem 3.2 as a semi-definite program allows for a simultaneous reconstruction
(cf. Corollary 3.8) of both the polytope and its Izmestiev matrix from only the edge-graph, the edge
lengths and the Wachspress coordinates of some interior point. Since semi-definite programs can be
solved in polynomial time, this approach is actually feasible in practice.
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