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Abstract: In this paper we identify the causes of numerical non-reproducibility in the unstructured
mesh computational motif, a class of algorithms commonly used for the solution of PDEs. We
introduce a number of parallel and distributed algorithms to address nondeterminism in the order
of floating-point computations, in particular, a new graph coloring scheme that produces identical
coloring results regardless of how many parts the graph is partitioned to. We implement these in
the OP2 domain specific language (DSL) and show how it can be automatically deployed to any
application that uses OP2 without user intervention. We contrast differences in results without
reproducibility and then demonstrate how bitwise reproducibility can be gained using our methods
on a variety of applications including a production CFD application used at Rolls-Royce. We evaluate
the performance and overheads of enforcing bitwise reproducibility on a cluster of CPUs and GPUs.

Keywords: floating-point; bitwise reproducibility; unstructured-mesh computation; DSL; CPU; GPU; MPI

1. Introduction

Floating-point number representation and calculations form the backbone of sci-
ence and engineering computations. They allow one to represent and approximate the
continuous ranges of quantities/values on discrete systems such as digital computers.
However, any floating-point representation, including the IEEE floating-point standard,
by its very nature has finite precision and suffers from truncation errors, which makes
operations on them non-associative [1]. This is particularly obvious when representing
numbers that fall in large dynamical ranges. For example, the expression (a + b) + c
has a different answer than a + (b + c) when, for example, a = 1020, b = −1020 and
c = 1 with a 64 bit representation; (1020 + −1020) + 1 = 0 + 1 = 1 in the former case
and 1020 + (−1020 + 1) = 1020 + −1020 = 0 in the latter. The issue is compounded in
parallel systems, where the associativity is applied in a non-deterministic manner. Thus,
the exact truncation events and the order in which they are performed lead to slightly
different results. Over long executions, the errors accumulate, potentially leading to larger
inconsistencies between results from multiple runs.

Execution of parallel applications and the results produced by their floating-point
number computations lead us to the notion of numerical reproducibility. In the strictest
sense, this means obtaining bitwise identical results from multiple runs of the same code
that consume the same inputs. A less stringent requirement would be to accept results
with errors less than machine precision, leading to the need for a tolerance range for
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results. However, strict bitwise reproducibility could be essential for some applications,
with many codes [2–7] implementing algorithms and techniques to enforce the required
accuracy. Bitwise reproducibility is also useful for validating ported codes between different
architectures. For example, by turning off fused multiply-add (FMA) operations and other
optimizations, we can compare the output of a new GPU implementation to a previously
trusted (validated) CPU implementation. If both produce the same result, then there is a
high probability that we have managed to create the new version without introducing new
errors. For relative debugging we already have examples of automatic test environments [8],
with bitwise reproducibility, we can avoid the problem of choosing the margin of error.

Numerical reproducibility stands as a vital concern in the landscape of parallel com-
puting, where the attainment of bitwise identical results across multiple executions is
a sought-after goal. This emphasis on reproducibility becomes especially significant in
computational domains like computational fluid dynamics (CFD), where the reliability and
accuracy of conclusions drawn from simulation results are of paramount importance. In
practice, the application of various algorithms and techniques in codes addressing chal-
lenges such as the wind vulnerability of structures [9] and modeling nonlinear aeroelastic
forces [10] underscores the broader need for ensuring that the conclusions derived from
these simulations are not only insightful but also reproducible.

Bitwise reproducibility, however, often comes at a performance cost. Time spent
on carrying out order-preserving techniques to obtain identical results adds additional
overhead, compounding total time-to-solution. As such, careful trade-offs should be
considered depending on the application domain and the validation and performance
requirements. Much of the current literature focuses on providing one-off solutions to this
problem for specific applications. Many of them rely on Kahan’s compensated solution
method [11], where after adding up the high-order parts of two elements, the low-order
error is stored and is accumulated with the low-order part of the next summation. Many
apply this method specifically in their own applications [3,4,7]. Another widely used
method is introduced by Demmel et al. [12] where a variable number of bins are created
for different magnitudes and then are used to accumulate the given magnitude part of
the operands. We can see some examples of the usage of Demmel’s method in [3,13].
Other application-specific methods also exist, for example, sorted particle potentials in [6]
and the use of integer conversions as in [14]. Most of these solutions require altering the
code manually, often using a different number representation, making code maintenance
difficult and expensive. This is especially problematic for large codebases. Additionally,
most of these solutions address a single target architecture, making it even more laborious
and costly when aiming to develop and maintain a performance-portable application.

The underlying goal of this paper is to explore the challenges in achieving reproducibil-
ity, specifically bitwise reproducibility for the domain of unstructured mesh computations,
one of the seven dwarfs [15] in HPC. The distinctive feature of unstructured mesh compu-
tations is the existence of data-driven indirections (such as mapping from edges to vertices)
and computations that indirectly increment/read-write data, which causes data to race in a
parallel environment. Although we are not aware of a systematic approach for unstruc-
tured meshes, we can see a number of similar works for other domains. The reproBLAS
project [16] covers many use cases in the field of dense linear algebra with reproducible
execution. Apostal et al. [17] created a code scanner, which can automatically recognize
certain reductions where reproducibility might cause problems. In this paper, on top of
providing a general solution applicable to a wide range of unstructured-mesh applications,
we showcase how reproducibility can be implemented within the OP2 domain specific lan-
guage (DSL). This paper is an extension of early work demonstrating the temporary array
method on two simple benchmarks [18]. Our results enable us to deliver reproducibility
automatically to a number of existing applications, written using OP2, including a full-scale
industrial computational fluid dynamics (CFD) code, executing on both CPU and GPU
cluster systems. Specifically, we make the following contributions:
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1. We identify key sources of non-determinism in unstructured mesh computations and
propose three techniques for addressing them for this domain: (1) use of temporary
arrays for indirect increments, (2) coloring for indirect increments and read-writes,
and (3) reproducible reductions.

2. To use a coloring approach for reproducible execution, we develop a deterministic
coloring algorithm, which depends only on the mesh and is independent of the
partitioning of the mesh (including the number of partitions).

3. The above-developed techniques and algorithms are implemented within the OP2
DSL, in order to automatically generate target-specific parallel code that produces
reproducible results when executed on modern large-scale systems with multi-core
and many-core processor architectures. Leveraging OP2’s source-to-source translation,
we can deliver bitwise reproducibility without changes to the user code.

4. Various unstructured mesh applications, ranging from smaller benchmarks (Airfoil [19],
Aero [20]), a CFD mini-app (MG-CFD [21]) to a large-scale industrial CFD application
(Rolls-Royce Hydra [22]), previously developed with the OP2 DSL are used to evaluate
our proposed algorithms. Numerical results as well as the impact on performance when
executed on CPUs, GPUs, and their scalability on clusters are explored.

To the best of our knowledge, our work is the first to provide a general solution for
bitwise reproducibility on unstructured mesh applications. We show that this solution
achieves good results in terms of accuracy and performance in industrial applications, such
as Rolls-Royce Hydra, demonstrating the practicability of this work for production codes.

The rest of this paper is organized as follows: in Section 2 we discuss related works, in
Section 3 we present background on floating-point number presentations and computa-
tions and introduce the sources of non-reproducibility, with examples from a number of
applications. In this section, we also describe the unstructured mesh application class and
OP2’s abstraction and framework. In Section 4 we describe multiple methods with which
we achieved bitwise reproducibility. In Section 5 we examine the performance of these
techniques, and in Section 6 we draw conclusions. The codes developed for this paper are
available in the Supplementary Materials, which were accessed on 3 January 2024.

2. Related Works

Bitwise reproducibility is a widely researched problem, usually investigated in a
specific application.

Mascagni et al. [2] list the main sources of non-reproducibility in a neuroscience appli-
cation: (i) the introduction of floating-point errors in an inner product; (ii) the introduction
of floating-point errors at each an increasing number of time steps during temporal refine-
ment (ii) and (iii) differences in the output of library mathematical functions at the level
of round-off error. They highlight the importance of numerical reproducibility without
providing a general solution.

Liyang et al. created a special method [6] for molecular dynamics applications in
the LAMPPS Molecular Dynamics Simulator [23]. From each particle, the potentials are
calculated first and then stored temporarily. Then they loop over every particle again, sort
the components for one element, and accumulate them in ascending order. This way, they
were able to eliminate the effect of non-associative accumulation.

Langlois et al. [3] tested multiple techniques for reproducible execution on an indus-
trial free-surface flow application: the 2D simulation of the Malpasset dam break. All
methods passed, but their main purpose is to determine how easy it is to use them. Kahan’s
compensated solution method [11] appeared to be the easiest to apply and provided accu-
rate results for low computing overhead. The integer conversion provided in Tomawac [14]
was also easy to derive and introduced a low overhead. The solution that uses reproducible
sums [12] was efficient, but was applied less easily in their case and introduced a significant
communication overhead.

He et al. [4] experimented on a dynamical weather science application. They tested
several methods, such as Kahan’s [11], or the double-double number technique [24] which
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is an unevaluated sum of two IEEE double precision numbers. They also provide an MPI
operator for reductions.

Taufer et al. [5] were looking into a molecular dynamics application, whereby repro-
ducibility meant that results of the same simulation running on GPU and CPU lead to
the same scientific conclusions; in their case, bitwise reproducibility was not necessary.
They tried double precision arithmetic, which partially corrected the drifting, but was
significantly slower than single precision, comparable to CPU performance. They created a
library of float-float composite type, which is comparable in accuracy to double, but the
performance loss is only 7%, versus a loss of 182% of normal double precision.

Robey et al. also experimented with a dynamical fluid application [7]. They tried to
sort their data first and then sum, but that was too slow. They applied Ozawa’s pair-wise
summation [25], which produced less truncation, but not bitwise reproducibility, although
this method is quick and can run in parallel. The double-double technique used too much
memory, so finally they used Kahan’s [11] and Knuts’s [26] approach due to their simplicity,
low additional cost and their added precision.

Apostal et al. [17] developed a source code scanner to recognize reductions over MPI
in C or C++ codes and automatically modify them to use Kahan’s summation [11] or an
algorithm developed by Demmel and Nguyen [12].

Olsson et al. [27] defined some transformation techniques to describe concurrent
applications written in the SR programming language to achieve reproducibility. They can
transform an arbitrary SR program into two parts: one for recording a sequence of events
and one for replaying those events.

Reproducible Basic Linear Algebra Subprograms [16] (ReproBLAS), intends to provide
users with a set of parallel and sequential linear algebra routines that guarantee bitwise
reproducibility independent of the number of processors, data partitioning, reduction
scheduling, or the sequence in which the sums are computed in general. The BLAS are
commonly used in scientific programs, and the reproducible versions provided in the
ReproBLAS will provide high performance while reducing user effort for debugging,
correctness checking, and understanding the reliability of programs.

Graph coloring is a widely used method in HPC to maximize parallel efficiency, without
facing any race conditions. We can see a detailed example of using coloring techniques in
the work of Zhang et al. [28]. Their paper addresses challenges in parallelizing unstructured
CFD on GPUs, employing graph coloring for data locality optimization and parallelization,
resulting in substantial speed-up with GPU codes outperforming serial CPU versions by 127
times and parallel CPU versions by more than thirty times in the same MPI ranks.

3. Background
3.1. Floating-Point Representation

The IEEE-754 [29] standard specifies the format for representing floating-point num-
bers, as well as rounding modes and arithmetic operations such as addition ⊕, subtraction
⊖, multiplication ⊗, division ⊘ and square root sqrt. Floating-point numbers are writ-
ten as x · 2E, where the mantissa x ∈ [1, 2) is a number of m binary digits (bits) and E,
Emin ≤ E ≤ Emax, is an integer called the exponent. The format specifies m, Emin and Emax.
Representable numbers are those that can be expressed in this notation. If the solution of an
operation is not representable with one setup, then the result is rounded to a representable
number. The round-to-nearest, round-towards-zero, round-towards-positive-infinity, and
round-towards-negative-infinity rounding modes are selectable by modifying the internal
state of the floating-point unit (FPU). Every rounding mode has a rounding function f l(x)
that converts a real number x into a representable number. Every arithmetic operation is
defined as the rounding of an abstract arithmetic operation’s exact outcome. For example,
f l(a + b) will become the result of the sum of two integers a and b. All intermediate
values are rounded in computations that involve more than one operation. As a result, the
operators ⊕ and ⊖ are not associative. When a = 1020, b = −1020, and c = 1 with a 64-bit
representation, the expression (a + b) + c yields 1 while a + (b + c) produces 0. We have to
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note here that the differently accumulated roundoff error in most cases should not change
the validity of an application [30]. Changing the execution order of an algorithm may still
produce valid results, independently of being reproducible.

We can observe this effect in Figure 1, using a more realistic finite element method
example with a conjugate-gradient solver, with calculations in double precision (Aero [20]—
detailed in Section 3.8). On this histogram, we counted the number of different values of the
end results in relative differences for several magnitudes between running the application
using eight processes and 16 processes. From the 6.5M elements, there were only 3599,
which had a bitwise identical result, the rest had a difference between 10−12 and 10−4, and
most of them were around the magnitude of 10−8.
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Figure 1. Histogram, showing the relative differences in a conjugate-gradient solver (Aero) between
runs with eight processes and 16. The result converges to a numerically stable state, but on average
there is a 4.05× 10−7 difference.

3.2. Reproducibility

Reproducibility is often understood as experimental reproducibility. This is also a
widely researched topic [31–35], but our aim is to obtain bitwise identical results of an
application run with the same input parameters regardless of the level of parallelism, be
it the number of threads or processes executed simultaneously. Non-reproducibility is
not caused by the roundoff error but by the non-determinism of accumulative roundoff
error. Due to the non-associativity of floating-point addition, accumulative roundoff
errors depend on the order of evaluation, which is almost always relaxed in parallel and
distributed environments. In a distributed MPI environment, there are multiple possible
sources of non-associativity: number of MPI nodes, MPI reduction tree shape, number
of cores per node, and data ordering. The histogram in Figure 1, which runs the Aero
benchmark of the OP2 library, shows the relative differences ( (a−b)

a | a > b) of a non-
reproducible application run with different numbers of MPI processes. In general, some
of the causes might be efficiently addressed, such as the reduction tree shape, which can
be defined by network interface cards [36], but changing the number of processes can
cause issues that are not as easily addressed. A general solution might be to fix the order
of evaluation but that is, in many cases, incompatible with parallelization, and running
sequentially is prohibitively costly. Another solution is to eliminate rounding errors. We
can use exact arithmetics [37], but that will substantially increase the memory usage and
the cost of the computations, as well as the amount of communication when applied to
more complicated operations such as matrix multiplication. Higher precision can be used,
but it will be reproducible only with higher probability [38].

3.3. Reproducible Reductions

One of the most common sources of non-reproducibility comes from reductions, where
we add up the elements of an array into a single result. When carrying this out with a
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parallel execution, the rounding errors can accumulate rapidly. There are multiple solutions
for this problem [12,16,39], but the underlying observation is common to all approaches;
adding up numbers with similar magnitudes is going to be exact. Demmel et al. [12] use
pre-roundings to a well-calculated magnitude with an extra sweep through the array, add
the values together, and then apply the same method on the remainders of the roundings.
Arteaga et al. [39] extended their work by calculating the magnitudes without the additional
sweep. The ReproBLAS library [16] creates bins for the magnitudes in advance and uses
them in parallel for the summations. In our project, we use ReproBLAS, due to its user-
friendly implementations; though the necessary reductions can be calculated by using other
techniques as well.

3.4. ReproBLAS

Reproducible Basic Linear Algebra Subprograms [16] (ReproBLAS), intends to provide
users with a set of parallel and sequential linear algebra routines that guarantee bitwise
reproducibility independent of the number of processors, data partitioning, reduction
scheduling, or the sequence in which the sums are computed in general. It assumes that
floating-point values are binary and conform to IEEE Floating-Point Standard 754-2008,
floating-point operations are conducted in ROUND-TO-NEAREST mode (ties may be bro-
ken at will) and that underflow happens gradually. Summing n floating-point values with
their default settings costs around 9n floating-point operations (arithmetic, comparison and
absolute value). The new “augmented addition” and “maximum magnitude” instructions
in their proposed IEEE Floating-Point Standard 754-2019 [40] can theoretically reduce this
count to 5n. On a single Intel Sandy Bridge core, for example, the ReproBLAS slowdown
compared to a performance-optimized non-reproducible dot product is 4× [41]. Here, the
output is reproducible regardless of how the input vector is permuted. For the summing
of 1,000,000 double-precision floating-point (FP64) values, the slowdown on a large-scale
system with more than 512 Intel “Ivy Bridge” CPUs (the Edison machine at NERSC) is less
than 1.2×. The result is also reproducible regardless of how the input vector is partitioned
across nodes or how the local input vector is stored within a node.

3.5. The Unstructured Mesh Computational Motif

Computations defined on unstructured meshes form an important basis for many
engineering calculations commonly used in PDE discretizations, such as finite elements
of finite volumes. An unstructured mesh is characterized by a number of sets (vertices,
edges, cells, etc.) with explicit connectivity information between them (e.g., edges to vertices).
Computations are commonly expressed as a parallel loop over a set, with computations
accessing data either directly on the iteration set or through an indirection. For example,
a common operation in computational fluid dynamics is to compute fluxes across faces
(edges), and then increment/decrement state variables defined on connected cells. The key
motif here is the edge-centered computations indirectly incrementing cell data, which then
gives rise to non-determinism when the order of execution of the edges is relaxed for the
sake of parallelism. Another common pattern is the global reduction, often conducted in
a non-deterministic order, where the result is then used in subsequent computations. For
example, in the conjugate gradient algorithm, the results of dot products are used as weights
in the next step.

The distributed and parallel execution of unstructured mesh algorithms is a well-
established field [42–45]. For distributed memory execution, the mesh is partitioned using
one of many established libraries, such as PT-Scotch or ParMetis [46,47]. It is important to
note here that an unstructured mesh is a hypergraph, consisting of multiple “vertex” types,
whereas most partitioners only partition a simple graph, and the rest of the hypergraph is
usually partitioned in a greedy way through connections to the simple graph. This is then
related to how computations are executed, an “owner-compute” approach is commonly
utilized, where all computations associated with a given element are performed on the
process that owns that element. So, for instance, in the earlier example, the process that
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owns a given cell will execute all the edges that increment that cell, even if some of
those edges are not owned by it. This requires communicating all the data needed to
execute those edges as well. This often leads to redundant computations around partition
boundaries. Depending on the exact implementation the deterministic order of execution
for elements is often relaxed at this point to allow shared memory parallelization and
powerful optimizations such as overlapping computations and communications.

To enable shared-memory parallel execution of unstructured mesh computations, one
needs to address the issue of race conditions when indirectly incrementing/updating data.
Virtually all execution schemes used in the literature rely on the associativity of these
operations, for example, by using atomic updates, a staging of increments in an auxiliary
array and their separate sum, or a coloring scheme [48,49]. We are not aware of related
works that explicitly aim to maintain an ordering of operations whilst enabling shared
memory parallel execution.

3.6. OP2

The OP2 library provides a programming abstraction for describing unstructured
meshes and computations on them, relying on the access-execute paradigm to separate
the description of computations from the actual parallel implementation. OP2 defines sets,
mappings between sets, and data on sets. Computations are then described as parallel
loops over a given set, accessing data either on the iteration set or through at most one level
of indirection. The type of access is also explicitly declared (read, write, increment). Based
on such a description of computations, OP2 can automatically parallelize computations
in both distributed and shared memory systems, such as multi-core CPUs and GPUs [45].
Thanks to the separation of per-element computations from how the execution of elements
is scheduled and how data are moved, OP2 can take full control of how the computation
is carried out on a processor. In the work presented in this paper, we utilize this to
apply a variety of approaches that allow for the deterministic ordering of indirect accesses
(increments and updates), guaranteeing the bitwise reproducibility of the results.

3.7. Automatic Code Generation for Reproducible Execution

Altering an already existing nonreproducible code to be reproducible might be tedious
and laborious. Fortunately, in some ways, this process can be automated.

OP2 has an already established workflow to generate platform-specific optimized appli-
cations [50], Figure 2 summarizes the main mechanisms. If an application is implemented
using OP2’s API, then a source-to-source translator can generate platform-specific application
files, which later can be compiled and linked with the backend libraries of OP2. In our current
work, we modified three stages of the workflow. We added API calls to the application
description, so the user can choose which reproducible strategy should be applied. In order
to use these strategies, the source-to-source translator had to be updated to generate such
application files that use the reproducible backend libraries with MPI or CUDA.

Figure 2. Flow diagram of the mechanism of OP2. The bold, red frames represent the updated steps
of OP2’s workflow from our work.
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3.8. Test Applications

The following applications are implemented in OP2 to evaluate and assess the efficacy
and performance of our proposed algorithms.

Airfoil [19] is a representative CFD code, written using OP2’s C/C++ API. It is a non-
linear 2D inviscid airfoil code that uses an unstructured grid. Airfoil uses a finite volume
method to solve the steady-flow 2D Euler equations using scalar numerical dissipation.
Airfoil is available as part of the OP2 framework.

Aero [20] is a 2D non-linear steady potential flow simulation of air moving around
an airfoil, developed based on standard finite element methods. It uses a quadrilateral
grid similar to that used by the Airfoil application but uses a Newton iteration to solve the
non-linear equations defined by a finite element approximation. Each Newton iteration
requires the solution of a linear system of equations. The assembly algorithm is based on
quadrilateral elements and uses transformations from the reference square to calculate
the derivatives of the first-order basis functions. Dirichlet-type boundary conditions are
applied on the far-field, and the symmetric sparse linear system is solved with the standard
conjugate-gradient (CG) algorithm. Aero is also available as part of the OP2 framework.

MG-CFD is a 3D unstructured multigrid, finite-volume computational fluid dynamics
(CFD) mini-app for solving an inviscid flow problem. It performs a three-dimensional
finite-volume discretization of the Euler equations for inviscid, compressible flow across
an unstructured grid by extending the CFD solver in the Rodinia benchmark suite [51,52].
It accumulates fluxes by performing a sweep across edges, which is implemented as a
loop over all edges. Multigrid support is achieved by supplementing the Euler solver’s
architecture in the work of Corrigan et al. [51] with crude operators that transport the
simulation’s state between multigrid levels. MG-CFD was originally created as a CPU-
only implementation[53], but it has since been implemented with OP2 as well. It can be
downloaded as open-source software [21].

Hydra [54] is a full-scale industrial CFD application for the design of turbomachine
components of aircraft engines at Rolls-Royce. Hydra is a complex and configurable
application that can perform various simulations on highly detailed unstructured meshes.
Its development originally started 23 years ago [55], and it is still actively developed and
optimized to this day. The simulations implemented in Hydra are typically applied to
large meshes, which can contain tens to hundreds of millions of edges and can run from
a few minutes to weeks. It consists of several components that simulate various aspects
of the design, including the steady and unsteady flows that occur in the engine around
adjacent rows of rotating and stationary blades, the operation of compressors, turbines and
exhaust, and the simulation of behavior such as ingestion of ground vortices. The guiding
equations to be solved are the Reynolds-Averaged Navier–Stokes (RANS) equations, which
are second-order PDEs. By default, Hydra uses a 5-step Runge–Kutta method for the
time-marching, which is accelerated by multigrid and block-Jacobi preconditioning [55,56].
Our work uses the Hydra setup with several configurations: an unsteady simulation of
two blades of DLR’s Rig250 mesh and a steady simulation of NASA’s Rotor37 mesh with
different turbulence models: the Spalart–Allmaras wall function model, which is a one-
equation model that solves a modeled transport equation for the kinematic eddy turbulent
viscosity and a k-ω, which is a two-equation model that is used as an approximation for
the Reynolds-averaged Navier–Stokes equations (RANS equations). Again, we highlight
the effect of nonreproducibility on a few examples with Hydra. In Figure 3 we can observe
how the relative difference accumulates when increasing the number of time-steps from
10 to 100 while using the same unsteady numerical method on the same mesh. For a full
revolution of two blade rows, 2000 time-steps are needed, where one time-step contains
10 iterations. In Figure 4 we show that different turbulence models are impacted differently
by the relaxation of the execution order, run for 100 iterations with a steady simulation
on the NASA Rotor37 benchmark. The k-ω is more susceptible to rounding error than
the Spalart–Allmaras. The variable ω is used to avoid singularity near the wall, but it
also becomes more sensitive to precision than the Spalart variable. This has a knock-on
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effect on the whole boundary layer, and hence the flow field. All four histograms present
the magnitude of differences between two runs with the same setup, just running with
different numbers of MPI processes.
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Figure 3. Histograms, generated by using Hydra. The relative difference increases with more
timesteps on an unsteady numerical solver. (a) Rig250 mesh with 20M nodes, 10 timesteps, Spalart–
Allmaras model; (b) Rig250 mesh with 20M nodes, 100 timesteps, Spalart–Allmaras model.
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Figure 4. Histograms, generated by using Hydra. The two models are not directly comparable,
but they illustrate how the relative difference depends on the numerical properties of the applied
model. (a) Rot37 mesh with 700k nodes, 100 iterations, k-ω model; (b) Rot37 mesh with 8M nodes,
100 iterations, Spalart–Allmaras model.

4. Theory and Calculation

In this section we describe our techniques to solve the two main problems which cause
non-reproducibility, local element-wise reductions and global reductions. Most of our
methods focus on the local reductions. For global reductions we utilize ReproBLAS. Most
of our examples in this section use an edges→cells mapping, but all of these algorithms are
implemented generally using the dimension of the specific mapping.

To solve the issue of ordering in local (element-wise) reductions, we provide two
separate approaches: (1) a method storing increments temporarily and applying them
later in a fixed order and (2) different reproducible coloring techniques, which later can be
used as colored execution, maintaining deterministic ordering. For all of these techniques,
we must provide a common deterministic seed that will always be the same, even with
different numbers of MPI processes. That common seed is the global ID of all elements in
the whole mesh. If there are multiple MPI processes, then the global IDs of each element
must be communicated between the processes. If an element is owned by the given process,
then its global ID can be looked up from an internal data array of OP2. If an element is
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not owned, then its global ID must be imported from the MPI process that owns it. All
of our techniques use two main parts: (1) the OP2 backend must calculate the execution
order and (2) the generated code must execute the computations in this order. We apply
the reproducible execution methods only on kernels where the order of summation does
matter. These are loops with global reductions, indirect incrementing operations (OP_INC),
or operations with an indirect read and write access pattern (OP_RW).

4.1. Temporary Array Method

A temporary array-based technique can be used to ensure reproducibility for in-
crementing operations. Consider using an edge→cells mapping and an incrementing
operation. Here, we would iterate through all the edges, calculate values, and add them
to a variable defined on a neighboring cell. To achieve reproducibility, we modify this
structure by storing the calculated increments in a temporary array defined on the edges,
and after all the increments are calculated, we iterate through all the cells and apply these
increments in a fixed order defined by the global_IDs of the edges. In Figure 5 we can
see an example of this method, where edge2’s global_ID is the smallest, so the value from
edge2 is applied first on the cell, then edge0, etc.

Figure 5. Example execution order of edges around a cell. Due to local id renumbering, the global ids
must be used for a reproducible execution order.

To achieve this modified execution, a few extra preparations must be conducted in
the backend, which are shown in Algorithm 1. After the global_IDs are shared, the next
step is to create a reversed mapping for every map. The reversed mapping is needed so
we can iterate through the cells and in each iteration we can access the edges connected to
the given cell. This reversed map uses local indices which might be in different order in
different MPI ranks. That is why we need to reorder them by using their previously shared
global indices. Another modification conducted on the reversed map is that it actually
stores indices of a temporary array where the increments from the edges are stored for
a cell. In other words, if the kth element in line n (kth edge connection of cell n) of the
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reversed map is x, then it means that in the temporary increments array at location x the
increment for cell n from edge k can be found.

The main disadvantage of this method is the need for significant additional memory
to store the reversed mapping, and to store the increments. The reversed map uses a Com-
pressed sparse row (CSR) format, which consists of a main array of increment indexes (inte-
gers), with the size of set_from_size ∗ original_map_dimension, and another array in-
dexing the previous array with a size of set_to_size+1. The temporary arrays themselves
can use much more memory: set_from_size ∗ map_dimension ∗ data_element_size.

Algorithm 1 Algorithm of generating incrementing order

exchange global IDs
OP_map_index = number of maps
for m = 0 to OP_map_index do

create reversed mapping for map m
set_to_size = target set’s size of map m
for i = 0 to set_to_size do

sort the reversed connections of i by global IDs
end for

end for

After creating the reversed map with the correct order, we generate a new op_par_loop
implementation code to use this modified method. The main changes can be seen in
Algorithm 2. After the initialization phase, it is imperative to set all elements in a temporary
array to zero to accommodate individual increments. This step is crucial as the user kernel
performs the increments, and proper initialization is required beforehand. Moreover, this
approach ensures that the data remain in the cache, enhancing overall performance. Then
we can call the kernel function for all edges to access the elements defined on the cells. If a
parameter is accessed through an OP_READ or OP_WRITE method, then the execution order
does not matter, so we can use the original method of directly storing the new state in the
data. If the parameter is incremented (OP_INC), then we need to store each increment value
in the tmp_incs array instead of adding it to the actual data. After the iteration on edges
is completed and all increments are calculated, we need to apply those to the actual data
on cells. For that, we start a new cell-based loop on the cells and by using the reversed
mapping with the fixed ordering, for each cell, we can gather and apply the increments.
This method is generally applicable to other types of mappings as well.

Algorithm 2 Algorithm for applying the order of increments

set_ f rom_size = source set’s size of the original map
original_map_dim = the dimension of the original map
set_to_size = target set’s size of the original map
for n = 0 to set_ f rom_size ∗ original_map_dim do

tmp_incs[n]← 0
end for
for n = 0 to set_ f rom_size do

prepare regular access indices for OP_READ and OP_WRITE parameters
call kernel function, using the tmp_incs array for OP_INC parameters

end for
for n = 0 to set_to_size do

for all connection i of n do
apply the temporary increment from connection i on the final location of the data

end for
end for
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4.2. Reproducible Coloring

The temporary arrays method only works for increment-type operations, where incre-
ments can be stored separately. If a kernel not only increments a variable but also reads
and rewrites it (OP_RW), then the kernel call from one edge must be executed, storing its
result in the cell before another edge accessing that cell can be executed. Although OP2
still requires that the computation be associative, we cannot store the increments separately.
This problem needs a solution to be able to really execute the kernel calls in a predefined
fixed order and achieve reproducibility. To solve this issue, we can apply a regular coloring
scheme with the following restriction, we are looking for an equivalence class of colorings
where if the color of one element is smaller than that of another connected element in the
case of one coloring, then it should also be the same in the case of any other coloring.

We have three main approaches to solve this problem. An initial trivial solution is to
choose the global index of the edge as the color. With this, we have as many colors as edges
in any given subgraph, but we do not have multiple edges with the same color. This is
useful for MPI-only parallelization, but not for a shared memory method. The advantage
is that this trivial method can be solved without actually coloring the elements. We can
just use the numbering from the global_ids for ordering sequential execution. This trivial
execution schedule can be considered as a special case of colored execution and in fact
they use the same generated code. Therefore, we refer to it as a coloring method. The
second method is a non-distributed method, we apply a greedy coloring algorithm on
the whole mesh in a single process as a pre-processing step and save the assigned colors
in a file. When we rerun the application on multiple processes, we load and distribute
the saved colors the same way as we distribute the mesh elements between the processes.
With greedy coloring, we can generate a near-optimal number of colors, thus we have a
high degree of parallelism. The drawback of this option is that we have to execute the
pre-processing part in a single process. This carries the restriction that the whole mesh must
be able to fit into the memory on a single node. The third method is a novel distributed
coloring scheme, which does not suffer from this restriction.

Distributed Reproducible Coloring Method

We base our method on an algorithm developed by Osama et al. [57]. This original
non-reproducible parallel method can be seen in Algorithm 3 between lines 7 and 40. We
iterate through each element, calculate a local hash value and then compare it to its (as
yet uncolored) neighbors’ hash values. If the examined hash value is a local minimum
or maximum in its neighborhood in a given iteration, then we can assign it a color. In
our implementation we use Robert Jenkins’ 32 bit integer hash function [58]. This hash
function is a custom, non-cryptographic function that operates on unsigned integers. It
uses a combination of bitwise operations and arithmetic with specific constants to compute
the hash of an input.

The difficulty of applying this algorithm in a distributed graph comes from two sources.
First, in each iteration of the previously described algorithm, we must know if the neighbor
element already received a color, or not. Thus, we need to synchronize the assigned colored
values on the borders of each subgraph (MPI partition). Secondly, it is difficult to figure out
all the neighbors of an element on the border of a subgraph in a standard owner-computed
model. We can see an example of this problem in Figure 6. Solid dots and continuous lines are
the owned elements. In this example, we use an edge→ nodes mapping, thus we import one
layer of halo elements (e.g., edge 7, 8, 9 on Process 0) so we can update the owned nodes from
all attached edges (so far it is a standard owner compute model). However, to calculate the
smallest hash value in a neighborhood, we also need to communicate edges even around the
non-owned nodes (e.g., edge 0, 2, 5, 6 on Process 1). Our extension to distributed execution
can also be applied to other iterative coloring techniques that use only local information (the
algorithm is not sequential) and are deterministic even with different graph partitioning. The
number of colors is not explicitly minimized.
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Algorithm 3 Algorithm for reproducible coloring in a distributed graph

1: create neighbor lists
2: global_done = 0
3: local_done = false
4: if set_size == 0 then
5: local_done = true
6: end if
7: iteration = 0
8: low_color = 0
9: high_color = 1

10: while global_done < number of subgraphs do
11: if not local_done then
12: for all element e in from_set do
13: if e has no color then
14: calculate hash value of e in iteration i
15: is_min = true
16: is_max = true
17: for all neighbors n of e do
18: if n has no color then
19: calculate hash value of n in iteration i
20: if n’s hash < = e’s hash then
21: is_min = false
22: else if n’s hash > = e’s hash then
23: is_max = false
24: end if
25: end if
26: end for
27: if is_min then
28: give low_color as color of e
29: number of noncolored elements − = 1
30: end if
31: if is_max then
32: give high_color as color of e
33: number of noncolored elements − = 1
34: end if
35: end if
36: end for
37: if number of noncolored elements == 0 then
38: local_done = true
39: end if
40: end if
41: exchange halo color values
42: reduce local_done values into global_done
43: low_color += 2
44: high_color += 2
45: iteration += 1
46: end while
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Figure 6. An example of a second ghost layer to determine the edge→edge neighbors on the
partition borders. The numbers on the edges indicate their unique ID.

4.3. Parallel Global Reduction

Global reductions are another source of non-reproducibility in MPI applications. This
operation is commonly conducted by performing a local sum on each process, then calling
MPI_Reduce, however, this assumes associativity. If we use different numbers of MPI
processes, then we would sum different elements and even a different number of elements
locally, which again can produce different results. To solve this issue, we introduced
another temporary storage. If a kernel performs an increment reduction, then we give
a temporary storage point to store the increment for the result of each element. Then,
in each MPI process, we reduce these increments reproducibly by using the ReproBLAS
library. First, we create a local ReproBLAS’s double_binned variable for every MPI process,
then we use binnedBLAS_dbdsum to collect those into the local_sum. After that, we use
reproBLAS’s method to call an MPI_Allreduce with the binnedMPI_DBDBADD operator.
Finally, we convert the result back to a regular double precision variable and return it.

4.4. Reproducible Codegeneration with OP2

Using OP2’s source-to-source translator, a user can easily generate reproducible code
from an app that already has an implementation using OP2. A few flags are responsible
for controlling the mechanisms that allow reproducible code to be generated. In the
translator scripts these are: reproducible—needed for all methods, repr_temp_array—
for using temporary arrays, repr_coloring—for using reproducible coloring method and
trivial_coloring which will produce the trivial coloring version. To enable the greedy
coloring technique, the -op_repro_greedy_coloring command line flag must be used
with the application.

5. Performance Results

We measured our techniques with four test applications, introduced in Section 3.8. All
results are the average of 10 measurements. Table 1 summarizes the details of the different
machine setups we used for our measurements.

Table 1. Details of the different machine setups.

Name CPU GPU #Processes per Node Compiler OS

Cirrus-CPU
Intel Xeon E5-2695
(Broadwell) @
2.1 GHz

n.a. 18 cores, 2 threads per
core per node icc (ICC) 19.0.0.117 Red Hat Enterprise

Linux 8.1 (Ootpa)

Cirrus-GPU 2.5 GHz, Intel Xeon
Gold 6248

NVIDIA Tesla
V100-SXM2-16GN

20 cores, 2 threads per
core, 4 GPUs per node nvc++ 21.9-0 Red Hat Enterprise

Linux 8.1 (Ootpa)

All of our methods provide full reproducibility at the expense of additional compu-
tations, suboptimal scheduling, or redundant memory usage. The overall cost of these
techniques is visualized in Figures 7 and 8 and in Table 2. We compare each run with its
original, non-reproducible version. On CPU systems, slowdowns are between 1 and 3.21
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times. The difference between the greedy and distributed coloring methods comes down to
data reuse and cache line utilization, because of the different number of colors used. The
main reason for that is that the data for neighboring elements are located close in memory,
but when using coloring, adjacent elements will have different colors, leading to poor
utilization. A few examples of the number of colors used are shown in Table 3. While the
greedy scheme leads to near-optimal color counts, the parallel scheme yields much higher
color counts particularly in 3D. The performance of the trivial coloring scheme is close
to the reference, since it uses a similar order of execution to the nonreproducible version,
with the only differences around the borders of MPI partitions. Since with the trivial
scheme we still require sequential execution within a process, we cannot use additional
parallelization techniques, such as CUDA or OpenMP. In contrast, the slowdown on GPUs
is more significant, because they are even more sensitive to data access patterns and cache
locality than CPUs. In particular, with the usage of the temporary arrays, we have to iterate
through the increment data twice, once when populating it and once when gathering the
results, each time with a different access pattern. If we optimize for one stage, then the
other will suffer from the non-coalesced data accesses. This is even true for the coloring
methods. If we reorganize the data in a set according to one map, then later, using another
map to the same set, we again obtain inefficient access patterns.

(a) (b)
Figure 7. Slowdown effect of the different methods compared to the non reproducible version.
(a) Using 40 MPI-only processes on the Cirrus machine; (b) Using one MPI+CUDA GPU process on
the Cirrus-GPU machine.
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Figure 8. Slowdown of Hydra measured on an 8M mesh, 20 iterations, using the Cirrus-CPU machine.
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Table 2. Memory usage of the reference run and with using the proposed methods in GB.

App Non Reproducible Temporary Arrays Coloring Method

Airfoil 0.92 1.6 1.3
Aero 2.6 3.4 2.8
MG-CFD 7.5 14.4 9

Table 3. Number of colors with the different methods on the applications main map.

App (Map) Greedy Distributed

Airfoil (pecell1) 4 14
Aero (pcell1) 5 17
MG-CFD (edge→node0) 7 19

The runtime overhead of the preprocessing preparations of the temporary array and
coloring methods against the number of MPI processes are detailed in Figure 9 and using
only one process in Table 4.

(a) (b)
Figure 9. Scaling of preprocessing overhead. (a) reversed map and temporary array creation time for
the temporary array method; (b) reversed map creation and distributed coloring time.

Table 4. Reversed map creation and greedy coloring time.

App Runtime

Airfoil 4.65 s
Aero 1.79 s
MG-CFD 128.88 s

Figure 10 shows how well the test applications scale with the different methods using
one, two, four, and eight nodes on the Cirrus cluster. On the CPU side, all methods have
the same parallel efficiency on each application, except the distributed and greedy coloring
methods on Airfoil, where we can observe superlinear scaling (Figure 10a) since much
of the data used can fit into the cache if they are divided between at least four nodes.
We cannot observe this on the temporary array method, because it uses extra memory to
store increments separately. Apart from the reductions (discussed in detail below), MPI
communications and communication times do not differ between reproducible and non-
reproducible. For non-reproducible execution, the communication overhead (as a fraction
of total runtime) will become higher using multiple nodes. In the case of reproducible
execution, because we spend more time in the colored execution, we spend a smaller
fraction of the total time in communications. Therefore, the relative difference is decreasing
and the slowdown effect with any method compared to the non-reproducible is less when
more nodes are used.
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Figure 10. Strong scaling measurement of the different methods, using 1,2,4,8 nodes; (a) Airfoil, using
36 MPI Intel Xeon CPU processes per node; (b) Airfoil, using four Nvidia V100 GPU processes per
node; (c) Aero, using 36 MPI Intel Xeon CPU processes per node; (d) Aero, using four Nvidia V100
GPU processes per node; (e) Mg-cfd, using 36 MPI Intel Xeon CPU processes per node; (f) Mg-cfd,
using four Nvidia V100 GPU processes per node.

We can observe the strong scaling of a reduction kernel in Figure 11. Since all repro-
ducible methods use the same reduction technique, there is no separate measurement for
them. Again on CPUs, we can see the superlinear effect as the application fits more and more
into the cache. We can also observe that there is an additional cost of the reduction caused by
the reproBlas functions. The most significant factor in the cost of reproducible reduction is
that we must write all the values to be reduced into a separate array and perform a reduction
on it within a process. This leads to extra memory movement compared to the reference
version. This is particularly expensive on GPUs because this array must be copied to the host
to perform the local summation. MPI_reduce is not significantly more expensive.

Using only MPI parallelization, the overhead is quite small (between 1 and 1.12 times).
Using shared memory parallelism, it is a bit greater due to the bad cache locality. In some
extreme cases, we can even lose the speedup gain from GPUs, our reproducible methods
work better on CPU-only systems.
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(a) (b)
Figure 11. Strong scaling measurement of a reduction kernel; (a) Airfoil_update on the Cirrus-CPU
machine; (b) Airfoil_update on the Cirrus-GPU machine.

6. Conclusions

In this paper, we examined the non-reproducibility phenomenon that occurs due
to the non-associative property of the floating-point number representation on applica-
tions defined on unstructured meshes. We compared the differences in results without
reproducibility across a range of applications, including Rolls-Royce’s production applica-
tion, Hydra. Non-reproducibility is a widely studied problem; however, we have not yet
found an effective solution for distributed systems that could also be applied to arbitrarily
partitioned meshes. In this work, we developed a collection of parallel and distributed
algorithms to create a plan and then execute it, guaranteeing the reproducibility of the
results. Of these, we highlight a graph coloring scheme that gives the same colors regardless
of how many parts the graph was partitioned into. We implemented all of our methods in
the OP2 DSL and then we showed how they can be automatically applied without user
intervention to any application that is already using OP2. We demonstrated that on CPU
systems, our methods can achieve bitwise reproducible results with a slowdown between 1
and 3.21 times in various applications, and on GPU systems with a slowdown between 2.31
and 10.7 times due to the modified data access patterns.

While there are alternative methods addressing the issue of reproducible reduction,
their complexity is akin to ours and from the perspective of OP2, the choice of method
is non-critical. This is why we do not draw comparisons on this aspect, as the time
spent on reductions is relatively short. Our work stands out in the development of a
generalized method ensuring reproducible execution, applicable to various applications.
This is in contrast to other solutions that are application-specific. There are several general
methods available. Kahan’s method, although popular, does not guarantee reproducibility,
just higher accuracy. The most straightforward method involves sorting the elements
before adding them. The most general method, perhaps, is the binned method, like in
the ReproBLAS library. However, all these methods are more complex and mainly more
expensive in computing and/or in memory usage. By leveraging the properties of the
unstructured mesh, we can keep the costs low, thus presenting a more efficient solution.

Supplementary Materials: All codes developed for this paper can be found at: https://github.com/
OP-DSL/OP2-Common/tree/feature/mpi_reproducible_increments-rebase.
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