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Abstract
In recent times, pathogen genome sequencing has become increasingly used to investigate infectious disease out-
breaks. When genomic data is sampled densely enough amongst infected individuals, it can help resolve who infected 
whom. However, transmission analysis cannot rely solely on a phylogeny of the genomes but must account for the 
within-host evolution of the pathogen, which blurs the relationship between phylogenetic and transmission trees. 
When only a single genome is sampled for each host, the uncertainty about who infected whom can be quite 
high. Consequently, transmission analysis based on multiple genomes of the same pathogen per host has a clear po-
tential for delivering more precise results, even though it is more laborious to achieve. Here, we present a new meth-
odology that can use any number of genomes sampled from a set of individuals to reconstruct their transmission 
network. Furthermore, we remove the need for the assumption of a complete transmission bottleneck. We use simu-
lated data to show that our method becomes more accurate as more genomes per host are provided, and that it can 
infer key infectious disease parameters such as the size of the transmission bottleneck, within-host growth rate, basic 
reproduction number, and sampling fraction. We demonstrate the usefulness of our method in applications to real 
datasets from an outbreak of Pseudomonas aeruginosa amongst cystic fibrosis patients and a nosocomial outbreak of 
Klebsiella pneumoniae.

Key words: genomic epidemiology, transmission analysis, infectious disease outbreak, within-host diversity and 
evolution.
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Introduction
Pathogen genomic data has transformed our understand-
ing of the epidemiology of infectious diseases, whether 
they are caused by viruses (Grenfell et al. 2004; Pybus 
and Rambaut 2009) or bacteria (Didelot et al. 2012; 
Gardy and Loman 2018). Most applications concern 
large-scale pathogen populations, for example to estimate 
their demographic history (Pybus et al. 2001; Ho and 
Shapiro 2011) or the way that their ancestry relates to fea-
tures of geography (Lemey et al. 2009; De Maio et al. 2015), 
epidemiology (Volz et al. 2013; Rasmussen et al. 2014), or 
host population (Mather et al. 2013; Dearlove et al. 
2016). Genomic data can however also be useful to per-
form much finer inference, down to the level of transmis-
sion analysis which attempts to reconstruct who infected 
whom within an outbreak (Cottam et al. 2008; Jombart 
et al. 2011). Phylogenetic methods have a long successful 
history and can reconstruct the genealogy of a set of gen-
omes given their sequences (Yang and Rannala 2012; Kapli 

et al. 2020). However, a phylogenetic tree is not identical to 
a transmission tree (Pybus and Rambaut 2009; Jombart 
et al. 2011; Romero-Severson et al. 2014). In particular, 
the nodes in a phylogenetic tree do not correspond to 
transmission events, but rather to lineages diverging dur-
ing the evolutionary process that takes places within a 
host (Didelot et al. 2016). Several methods have therefore 
been developed over the past few years specifically aimed 
at the reconstruction of a transmission tree (Duault et al. 
2022). Examples include SeqTrack (Jombart et al. 2011), 
outbreaker (Jombart et al. 2014), beastlier (Hall et al. 
2015), bitrugs (Worby et al. 2016), SCOTTI (De Maio 
et al. 2016), phybreak (Klinkenberg et al. 2017), out-
breaker2 (Campbell et al. 2018), and TiTUS (Sashittal 
and El-Kebir 2020).

Here, we focus on one such method for transmission 
analysis called TransPhylo, which is based on coloring 
the branches of a dated phylogeny to reveal the transmis-
sion tree (Didelot et al. 2014). There are many software 
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tools that can be used to construct such a dated phyl-
ogeny, for example BEAST (Suchard et al. 2018), BEAST2 
(Bouckaert et al. 2019), BactDating (Didelot et al. 2018), 
treedater (Volz and Frost 2017), and TreeTime 
(Sagulenko et al. 2018). An advantage of the TransPhylo 
coloring approach is that it separates the initial phylogen-
etic reconstruction from its epidemiological interpret-
ation, which improves computational efficiency and 
therefore scalability (Didelot and Parkhill 2022). 
Furthermore, the original TransPhylo model (Didelot 
et al. 2014) has been extended to deal with both partially 
sampled and ongoing outbreaks (Didelot et al. 2017). 
Consequently, TransPhylo is a flexible and versatile soft-
ware to perform transmission analysis using pathogen gen-
omic data (Didelot et al. 2021).

Following infection, many pathogens evolve within 
hosts on a time scale that is relevant to transmission ana-
lysis (Lieberman et al. 2011; Bryant et al. 2013; Biek et al. 
2015; Grote and Earl 2022). Consequently, when informa-
tion is available about the within-host pathogen diversity, 
this can help clarify who infected whom (Didelot et al. 
2016; Leitner 2019). This information can come in 2 forms: 
either heterogeneities in the genomic sequencing of a sin-
gle clinical sample, or genomic sequencing of multiple sep-
arate clinical samples. Genetic heterogeneities within a 
sample are relatively easy to survey, and a few methods 
have been developed recently with the specific aim of ex-
ploiting this type of data to help infer transmission (De 
Maio et al. 2018; Wymant et al. 2018; Torres Ortiz et al. 
2023). However, this approach is based on the analysis of 
short sequencing reads individually which can be difficult 
and error-prone; additionally the clinical sample may not 
represent the full within-host diversity of the pathogen 
when it was collected, and it does not contain any informa-
tion about evolution or changes of diversity over time in 
the within-host pathogen population. The alternative ap-
proach of sequencing several clinical samples can provide a 
more thorough and reliable overview of the within-host di-
versity and evolution, especially if the samples are taken 
from multiple body sites and/or at different points in 
time. Examples of such studies have been carried on infec-
tion with Staphylococcus aureus (Young et al. 2012), 
Helicobacter pylori (Didelot et al. 2013), or Streptococcus 
pneumoniae (Tonkin-Hill et al. 2022). Existing methods 
that can incorporate such data include beastlier (Hall 
et al. 2015), bitrugs (Worby et al. 2016), SCOTTI (De 
Maio et al. 2016), phyloscanner (Hall et al. 2019), and 
TiTUS (Sashittal and El-Kebir 2020).

In principle, integrating multiple genomes into a joint 
model of phylogenetic and transmission trees, such as 
TransPhylo, is possible by having as many leaves in the 
phylogenetic tree as there are samples (Didelot et al. 
2016; Leitner 2019). However, this poses a significant num-
ber of theoretical challenges to overcome, which is why 
TransPhylo was not previously able to use more than 1 
genome per host (Didelot et al. 2017; Xu et al. 2020). 
Furthermore, TransPhylo previously assumed a complete 
transmission bottleneck to simplify the relationship 

between transmission and phylogenetic trees (Didelot 
et al. 2014), but this assumption has been disproved in 
some pathogens. Here, we present a solution to these is-
sues, which leads us to formulate an extended version of 
the TransPhylo model, inference methodology, and soft-
ware, so that any number of genomes per host can be 
used as input of a transmission analysis that does not as-
sume a complete transmission bottleneck.

New Approaches
We extend the latest TransPhylo framework (Didelot et al. 
2017) to perform inference of infectious disease transmis-
sion through a relaxed bottleneck using multiple genomes 
per host, which may be sampled contemporaneously or 
longitudinally, or in any combination of both. The model 
in TransPhylo has 3 basic ingredients which we detail be-
low, before explaining the changes needed to deal with 
multiple samples per host. Firstly, a coalescent model 
with constant population size and temporally offset leaves 
(Drummond et al. 2002) to represent the within-host evo-
lution. Secondly, a branching process transmission model 
in which individuals are sampled either once or not at 
all, so that unsampled individuals can be accounted for 
in the transmission chains between sampled individuals. 
Thirdly, a complete transmission bottleneck meaning 
that only a single lineage is ever transmitted between 
hosts. In other words, the within-host coalescent process 
is bounded so that the most recent common ancestor 
within a host occurs after the date of infection (Carson 
et al. 2022).

The full bottleneck assumption can be problematic in 
settings where hosts are repeatedly sampled, as the result-
ing phylogenetic trees may have no compatible transmis-
sion trees (Romero-Severson et al. 2014, 2016). Therefore, 
we remove this complete bottleneck assumption, so that 
the phylogenetic trees are much more likely to have com-
patible transmission trees. Removing this assumption was 
needed to allow for multiple samples per host, but it is also 
important to note that a number of studies have found 
that the transmission bottleneck is only partial for many 
pathogens including HIV (Boeras et al. 2011), foot-and- 
mouth disease virus (Cortey et al. 2019), influenza 
(Ghafari et al. 2020), and S. aureus (Hall et al. 2019). 
Relaxing the transmission bottleneck assumption there-
fore leads to a more generally applicable model, in which 
it is possible to additionally estimate the scale of the trans-
mission bottleneck.

We also relax the assumption of a constant within-host 
population size by allowing linear growth, following previ-
ous work on HIV (Romero-Severson et al. 2014, 2016; 
Leitner 2019). This linear growth model is a generalization 
of the constant population size model which can be ob-
tained if the linear growth rate parameter is set to zero. 
It is also a generalization of a linear growth with complete 
transmission bottleneck model (Klinkenberg et al. 2017) 
since this can be obtained if the linear intersect is zero 
at the date of infection. The linear growth model therefore 
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has several advantages, on top of being simple and statis-
tically tractable, but other options such as an exponential 
or logistic growth model could also be used as will be dis-
cussed later.

Finally, in the transmission model, we add the possibility 
that hosts are sampled multiple times, while also retaining 
the possibility that some hosts are sampled only once or 
not at all. We make the specific choice that the transmission 
model up to the first sample for each host is exactly the same 
as previously formulated (Didelot et al. 2017). The times of 
any further sampling depend only on the first observation 
times, and not the infection times. Since the infection times 
and secondary observation times are conditionally inde-
pendent given the primary observation times, we can infer 
the infection times without the need to formally define 
this aspect of the model. In the Methods section, we present 
a full mathematical description of this new extended model 
and show how Bayesian inference can be performed using a 
Markov chain Monte Carlo (MCMC) scheme with reversible 
jumps (Green 1995) to accommodate the nonconstant di-
mension of the parameter space.

Results
Exemplary Analysis of a Single Simulation
We simulate an outbreak with 100 observed hosts, each 
with 5 observations. The observation cutoff time T is deter-
mined by the simulation in order to return the correct num-
ber of observed hosts. The generation time and primary 
observation time are both Gamma distributed (see 
Epidemiological Model section) with shape and scale para-
meters equal to 2 and 1, respectively. Secondary observa-
tions are placed at intervals of 0.25 years following the 
primary observation. For the transmission model, the off-
spring distribution is negative binomial with mean equal 
to the basic reproduction number R = 2, and the sampling 
proportion is π = 0.8. The within-host pathogen population 
size is κ + λτ at time τ after infection, with κ = 0.1 and 
λ = 0.2. The resulting simulation contains 124 hosts, 4 of 
which are infected with 2 lineages at the time of infection, 
1 with 3 lineages, and the remaining 119 with a single lineage.

We investigate the ability of our methodology to re-
cover the model parameters used in the simulation, and 
to recover transmission links between individuals. We 
also investigate what benefits are obtained by including 
multiple observations per host. To this end, we construct 

additional phylogenetic trees by pruning the last observation 
for each host. Through repetition, we obtain phylogenetic 
trees with 4, 3, 2, and 1 observations per host under the 
same transmission network. By comparing inference out-
comes from these 5 trees we can establish the extent to 
which estimates are improved through the inclusion of sec-
ondary observations.

We perform 12,000 MCMC iterations for each phylo-
genetic tree, using the first 2,000 as a burn-in. The prior dis-
tribution for π is uniform between 0 and 1, and the prior 
distributions for R, κ, and λ are exponential with mean 
1. The posterior means and 95% credible intervals are 
shown in Table 1. These results demonstrate that we are 
able to recover the model parameters used in the simula-
tion, even with no secondary observations. Comparing 
posterior estimates across the different trees indicates 
that our estimates of the transmission model parameters 
R and π are not considerably improved by the number 
of secondary observations. This makes sense, as most of 
the relevant information for these parameters is contained 
in the primary observation. However, the credible intervals 
for the coalescent model parameters κ and λ narrow as 
more secondary observations are added. Secondary obser-
vations provide considerable information about the 
within-host genomic diversity of infected hosts, leading 
to more precise estimates.

In order to evaluate our ability to reconstruct transmis-
sion links, we look at transmissions between observed 
hosts. Out of the 100 observed hosts, 67 are infected by an-
other sampled individual. From our estimated transmis-
sion trees, we consider both directional transmission 
links, where we must correctly establish the infector and 
infected host, and bidirectional transmission links, where 
a transmission link is established but the roles of infector 
and infected may swap. We define 0.5 as the posterior 
probability threshold for a transmission being identified, 
and define the sensitivity as the proportion of correctly 
identified transmission links (true positive rate). For the 
phylogenetic tree with 1 observation per host, we 
obtain a sensitivity of 0.51 for bidirectional transmission 
links, and 0.28 for directional transmission links 
(supplementary fig. S1, Supplementary Material online). 
For the phylogenetic tree with 5 observations per host, 
the sensitivity increases to 0.64 for bidirectional transmis-
sion links and 0.55 for directional transmission links (Fig. 1). 
The specificity (true negative rate) is greater than 0.996 in 
all cases. The full distributions of posterior probability 

Table 1. Posterior estimates of the simulation study given as the posterior mean and 95% credible interval

Observations per host

1 2 3 4 5

π 0.85 [0.62, 0.99] 0.83 [0.62, 0.99] 0.85 [0.65, 0.99] 0.83 [0.63, 0.99] 0.84 [0.64, 0.99]
R 2.32 [1.84, 2.83] 2.32 [1.84, 2.86] 2.27 [1.78, 2.80] 2.25 [1.78, 2.77] 2.25 [1.79, 2.78]
κ 0.18 [0.01, 0.38] 0.15 [0.05, 0.29] 0.10 [0.03, 0.19] 0.10 [0.03, 0.17] 0.11 [0.05, 0.17]
λ 0.19 [0.01, 0.58] 0.18 [0.04, 0.30] 0.23 [0.14, 0.33] 0.20 [0.14, 0.27] 0.21 [0.15, 0.27]

The model parameter is given in the left column, and the remaining columns indicate the number of observations per observed host. The values used in the simulation are 
π = 0.8, R = 2, κ = 0.1, and λ = 0.2.
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estimates in each setting are shown in Fig. 2. Increasing the 
number of secondary observations allows us to better re-
construct transmission links, and crucially, to better distin-
guish the direction of transmission.

The within-host population model plays a key role in 
our ability to establish transmission links. If the transmis-
sion of multiple lineages is more common, the posterior 
probabilities of transmission links will tend to be lower. 
For example, repeating the simulation process above 
with a full bottleneck (fixing κ = 0) results in a bidirection-
al (directional) sensitivity of 0.57 (0.43) with 1 observation 
per host, and 0.75 (0.63) with 5 observations per host, all 
higher than in the previous results with a partial bottle-
neck. On the other hand, increasing to κ = 0.4 leads to a 
bidirectional (directional) sensitivity of 0.34 (0.25) with 1 
observation per host, and 0.54 (0.39) with 5 observations 
per host, all lower than the example with κ = 0.1.

When only a single genome per host is used, we are able 
to run the original TransPhylo algorithm (Didelot et al. 
2017) for comparison. The estimate of π is 0.93 with cred-
ible interval [0.76, 1.00], and the estimate of R is 2.38 with 
credible interval [1.88, 2.95], which are similar to the esti-
mates obtained previously with 1 observation per host 
(Table 1). The probabilities for who infected whom 
are shown in supplementary fig. S2, Supplementary 

Material online. The bidirectional (directional) sensitivity 
is 0.61 (0.37), as illustrated in supplementary fig. S3, 
Supplementary Material online. Since a small value of κ = 
0.1 is used in the simulation, the strict bottleneck assump-
tion in TransPhylo is advantageous here, whereas using a 
relaxed bottleneck leads to additional uncertainty on 
who infected whom. TransPhylo would perform compara-
tively less well if the true bottleneck was more relaxed.

Benchmarking Using Multiple Simulations
We now repeat this process, again using a simulated data-
set with 100 hosts and 5 observations per host; but per-
forming the inference on simulations generated from a 
range of key parameters (π, R, λ, and κ), totalling 43 data-
sets. As previously, both the generation time distribution 
and primary observation time distribution follow a 
Gamma distribution with shape parameter 2 and scale par-
ameter 1, and secondary observations occur 0.25 years la-
ter than the previous sample.

For the MCMC chains, we obtain 12,000 samples, and dis-
card the first 2,000 as a burn-in. Figure 3 shows the posterior 
parameter estimates. The vertical lines show central 95%

credible intervals for each parameter, and the posterior 
mean is shown with a solid circle. The horizontal and diagonal 
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Fig. 1. Difference in posterior probability estimates of transmission between a dataset with 1 observation per host and a dataset with 5 observa-
tions per host. The underlying transmission network remains the same; it is defined by the black squares, which show the true transmissions in 
the simulated dataset. The gray squares show the reverse relationship, switching the true infector and infected hosts. Black squares containing 
red demonstrate higher posterior probabilities being assigned to the true transmission links as a result of including more observations. Elsewhere, 
blue indicates lower posterior probabilities being assigned to incorrect transmission links.
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lines indicate the true parameter values used to generate the 
data. These results demonstrate strong performance of the 
algorithm across very different simulation settings.

The linear growth assumption of the within-host popula-
tion size model is unlikely to resemble a real-world population, 
and so we also test for robustness to the misspecification of 
the within-host population model. We repeat the inference, 
but fix the within-host population growth rate λ at either 
half or double the true value. The posterior estimates are 
shown in supplementary fig. S4, Supplementary Material on-
line. Most notably, the misspecification biases our estimates of 
the initial pathogen population size κ. There is a strong nega-
tive correlation between λ and κ, so that when λ is set lower 
(higher) κ is overestimated (underestimated). There are smal-
ler changes in the transmission model parameters, with a low-
er λ resulting in higher estimates of π and lower estimates of r, 

but the true values for these parameters usually remain within 
the 95% credible intervals. These results suggest that estimates 
of the transmission model parameters are reasonably robust 
to the misspecification of the within-host population model. 
However, caution is warranted when interpreting the esti-
mates of the within-host model parameters. We can reason-
ably conclude, for instance, that different estimates of the 
initial population size κ may be obtained under different 
growth models.

Application to Pseudomonas aeruginosa 
Transmission Between Cystic Fibrosis Patients
We reanalyzed previously published genomic data from 
Danish cystic fibrosis (CF) patients infected with 
P. aeruginosa (Marvig et al. 2013). This dataset included 
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42 genomes from 14 patients, sampled over almost 40 years 
between 1972 and 2008, after exclusion of hypermutator 
and recombinant isolates (Marvig et al. 2013). Previous 
studies explored within-host evolutionary dynamics 

(Yang et al. 2011), variations in gene content (Rau et al. 
2012) and comparative adaptation in CF human hosts 
(Marvig et al. 2013). The hosts are designated CFXXX as 
in these previous studies. We use as our starting point 
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the dated phylogeny previously computed (Marvig et al. 
2013) using BEAST (Suchard et al. 2018) and shown in 
supplementary fig. S5, Supplementary Material online. It 
was previously noted (Yang et al. 2011) that one of the indi-
viduals (CF66) had been infected twice in the 1970s and the 
1990s, and so we modeled this as 2 separate hosts (labeled 
CF66a and CF66b). Infection with P. aeruginosa can be stable 
over long periods of time in CF patients (Rossi et al. 2021) 
and indeed some of the patients had been sampled, and 
found positive, over a period of more than 20 years 
(Marvig et al. 2013). We therefore set the generation time 
distribution to be Gamma with shape 2 and scale 5, resulting 
in a mean of 10 years, standard deviation of 7 years, and 95% 
range of 1.2 to 27.9 years. The last samples were from 2008 
and the exact end of the sampling period was unclear 
from previous publications but we set it to the end of 2009.

We performed 4 separate runs of 100,000 iterations, which 
took approximately 3 h on a standard laptop computer. For 
each of the 4 parameters π, R, κ and λ we checked that the 
effective sample size in each run was over 1,000 and the 
multivariate Gelman-Rubin statistic comparing runs was 
less than 1.1 (Brooks and Gelman 1998). Figure 4a shows 
the dated tree, colored by host according to the MCMC 
iteration with the highest posterior probability. Changes in 
colors along the branches of the tree correspond to transmis-
sion events and are highlighted with red stars. Note that 
there are 2 simultaneous stars leading to the 2 genomes 
from patient CF180. These both correspond to infection 
from CF173, with the 2 lineages being transmitted through 
the relaxed transmission bottleneck. Figure 4a is useful to il-
lustrate the coloring process which relates the phylogenetic 
tree to the transmission tree. However, this only represents a 
single transmission configuration explored by the MCMC, 
and other iterations of the MCMC would look different, 
maybe with some of the same transmission events and 
others being different. It is therefore important to consider 
the probability of the transmission events. Figure 4b shows 
the matrix of probabilities of infection from each host to an-
other, computed as the frequency of each transmission event 
across all MCMC iterations.

Supplementary figure S6, Supplementary Material online 
shows the trace and density of the parameters estimated 
in a single MCMC run. The sampling proportion was 
estimated to be π = 0.65, with a wide 95% credible interval 
[0.30 to 0.96]. The reproduction number was 
R = 1.20 [0.58 to 1.99]; as the credible interval includes 1, 
it is not clear if the outbreak has the potential to cause a self- 
sustained epidemic. The within-host linear growth rate was 
λ = 0.56 [0.16 to 1.09] per year, which is lower than 
the prior exponential with mean 1. On the other hand, 
the within-host starting population size was κ = 
2.16 [0.41 to 5.05] which is higher than the prior exponen-
tial with mean 1. This suggest that the bottleneck was not 
complete, and indeed attempting to fit the model with κ = 
0 is impossible as it leads to a likelihood of zero. This is caused 
by the 2 samples from CF180 and the 10 samples from CF173 
being “inconsistent” as previously designated for samples 
from 2 hosts that cannot be explained by transmission of a 

single lineage (Romero-Severson et al. 2014, 2016). The indi-
vidual CF173 was found to have infected at least 3 other 
hosts (CF30, CF224, and CF243) with probability higher 
than 50% (Fig. 4b). These transmission events and their dir-
ectionality are made clear by the paraphyletic relationship 
of the 10 samples from CF173 as shown in Fig. 4a (Leitner 
2019). In contrast, the 15 samples from CF333 formed a single 
monophyletic clade (Fig. 4a) so that they are unlikely to have 
infected many others except maybe CF248 (Fig. 4b).

Application to a Nosocomial Outbreak of 
Klebsiella pneumoniae
An outbreak of carbapenem-resistant K. pneumoniae 
expressing the blaOXA−232 gene was identified over the 
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Fig. 4. Transmission analysis of P. aeruginosa. a) Dated phylogeny 
colored by host according to the iteration with highest posterior 
probability. b) Matrix of transmission probabilities from each host 
(row) to any other (column).
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course of 40 weeks at a single healthcare institution in 
California (Yang et al. 2017). A total of 17 infected patients 
were identified, from which 32 isolates were taken be-
tween 2014 October 12 and 2015 July 17. Case finding 
was performed using all samples in the 2014 and 2015 cal-
endar years (Yang et al. 2017) and so we set the date for 
the end of the sampling period to the end of 2015. 
Whole-genome sequencing was applied to these K. pneu-
moniae isolates and a dated phylogeny was computed pre-
viously (Yang et al. 2017) using BEAST (Suchard et al. 2018) 
which is shown in supplementary fig. S7, Supplementary 
Material online. The hosts are labeled either PtXXX if 
they were symptomatic or CPtXXX if they were colonized, 
as in the previous study (Yang et al. 2017). We set the gen-
eration time distribution to be exponential with mean 0.5 
year, following a previous study of another K. pneumoniae 
hospital outbreak (van Dorp et al. 2019). This diffuse distri-
bution is well suited to capture transmission via hospital 
equipment contamination as was previously suggested 
(Yang et al. 2017). We used the same number of MCMC 
runs, length of runs, and convergence diagnostics as in 
the previous application.

Supplementary figure S8, Supplementary Material on-
line shows the trace and density of the parameters esti-
mated in a single MCMC run. The sampling proportion 
was estimated to be high, with π = 0.88 [0.60 to 0.99], 
suggesting that there were only few missing transmission 
links between the 17 sampled patients. The basic repro-
duction number was R = 0.97 [0.37 to 1.74], with the 
credible interval including the value of 1 needed for an 
outbreak to spread beyond a few cases. The within-host 
linear growth rate was λ = 0.49 [0.03 to 1.28] per year 
and the within-host population size at time of infection 
was κ = 0.066 [0.009 to 0.158]. This is lower that the 
prior exponential with mean 1 and suggests that the trans-
mission bottleneck was almost complete during this small 
outbreak. However, the transmission bottleneck was not 
absolutely complete, as indicated by the fact that fitting 
our model with κ = 0 would result in a likelihood equal 
to zero. This is because the 6 samples from Pt6 and the 
2 samples from Pt9 are inconsistent, as can be seen in 
the dated phylogeny on supplementary fig. S7, 
Supplementary Material online.

Figure 5a shows the dated tree colored by host accord-
ing to the MCMC iteration with highest posterior prob-
ability, while Fig. 5b shows the posterior probabilities of 
infection from any host to any other. For example, a 
high probability of transmission was found from Pt8 to 
Pt10, which is consistent with the fact that these 2 patients 
were staying in neighboring rooms for 2 weeks (Yang et al. 
2017). Strikingly, according to our analysis, patient Pt6 had 
a greater than 50% posterior probability of having infected 
7 other patients (CPt2, CPt4, CPt5, CPt6, Pt5, Pt7, and Pt9). 
There were 6 genomes isolated from Pt6, with dates ran-
ging from 2015 January 7 to 2015 July 17 which is more 
than half of the overall sampling period. The specimen 
types for these isolates were quite diverse: 3 from blood, 
1 rectal, and 2 from bile (Yang et al. 2017), suggesting 

that the patient was infected long enough for the patho-
gen to spread throughout their body. While other patients 
in the study do present a similar number of samples, a 
comparable variety of originating tissues, and a similarly 
long infection duration—for instance patient Pt1, with 7 
genomes from respiratory, abdominal, and blood speci-
men over a period of several months—that does not trans-
late in a similar amount of infection events estimated by 
our method. In fact, the genetic diversity of isolates from 
Pt6 appears to be very high (Fig. 5a), thus backing our 
inference that Pt6 is a superspreading individual 
(Lloyd-Smith et al. 2005). This could not have been de-
tected without the use of multiple genomes.
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Fig. 5. Transmission analysis of K. pneumoniae. a) Dated phylogeny 
colored by host according to the iteration with highest posterior 
probability. b) Matrix of transmission probabilities from each host 
(row) to any other (column).
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Discussion
We have described new methodology for inferring who in-
fected whom from a dated phylogenetic tree in which 
hosts have potentially been sampled multiple times. A 
key change compared to previous work (Didelot et al. 
2014, 2017) is the removal of the full transmission bottle-
neck, meaning that hosts may be infected with multiple 
lineages from the transmission donor. Without this change 
many phylogenetic trees with multiple samples per host 
would not support compatible transmission trees 
(Romero-Severson et al. 2014, 2016; Leitner 2019). 
Indeed the 2 real datasets we analyzed, corresponding to 
outbreaks of P. aeruginosa and K. pneumoniae, could not 
be explained without relaxing the transmission bottleneck. 
Most previous transmission analysis methods could not 
accommodate more than a single genome per host, so 
that leaves would need to be pruned from the phylogen-
etic tree in order to undertake transmission inference 
(Xu et al. 2020), leading to less informative outcomes. 
Under our new methodology, we are able to incorporate 
multiple samples per host, resulting in the stronger identi-
fication of transmission links and their direction, as was 
showed when analyzing simulated datasets.

We build upon previous work (Didelot et al. 2014, 2016) 
that performs transmission analysis by coloring the 
branches of a preestablished dated phylogeny. This allows 
us to model the relationship between transmission tree 
and phylogeny through an explicit within-host evolution-
ary model, to develop an explicit transmission model in 
which sampled and unsampled individuals are featured, 
and to achieve better scalability by separating phylogenet-
ic inference from its epidemiological interpretation. On 
the other hand, relying on a fixed dated tree could be 
problematic as this does not account for the uncertainty 
in the phylogeny or the dates of common ancestors. 
When this uncertainty is captured using a Bayesian phylo-
genetic method (Didelot et al. 2018; Suchard et al. 2018; 
Bouckaert et al. 2019), this effect can be tested by applying 
analysis to multiple samples instead of a single fixed tree 
(Nylander et al. 2008). However, this was found in practice 
to make little difference to the inferred transmission prob-
abilities and parameters (Didelot and Parkhill 2022).

Our method implements a general pathogen popula-
tion growth model rather than using the constant 
bounded coalescent model, in which the population size 
is constant and the most recent common ancestor is forced 
to occur after the infection time (Carson et al. 2022). By re-
moving this restriction, we were able to model transmis-
sion through a relaxed bottleneck. The main restriction 
on the choice of model is that we must be able to calculate 
the likelihood of the phylogenetic tree, which in turn 
means that the coalescence rate must be integrable. 
However, this is not a strong requirement, as many widely 
used models satisfy it—among them the exponential 
growth model, the logistic growth model, or any piecewise 
models with separate growth and decay phases. For the 
work presented here, we used a linear growth model, which 

has been used before in HIV work (Romero-Severson et al. 
2014, 2016; Leitner 2019), but for most other pathogens 
there is little information about which within-host popula-
tion size model is most realistic (Didelot et al. 2016). We de-
monstrated that using phylogenetic trees with multiple 
samples per host improves the estimation of the popula-
tion model parameters. With sufficient samples per host 
it should be possible to determine which within-host 
population size models are more strongly supported by 
the data, for example and comparing the evidence of 
each model (Friel and Wyse 2012).

Our methodology maintains some of the assumptions 
from previous work (Didelot et al. 2017), for example the 
sampling proportion and reproduction number are as-
sumed to remain constant through time. In many settings, 
users would have knowledge about whether and how the 
sampling proportion varied over time, for example by 
looking at the number cases for which genomic sequences 
are available divided by the number of confirmed cases 
(Jelley et al. 2022). This information could be integrated 
relatively easily into an analysis, by having users supply a 
function π(t) instead of the constant π. On the other 
hand, it would often be interesting to infer variations in 
the reproduction number R(t), since this would provide 
an additional genomic-based estimate compared to exist-
ing methods based on incidence data (Wallinga and Teunis 
2004; Cori et al. 2013). A simple approach would be to use 
a stepwise constant function. The dates of these steps may 
be fixed based on real-world policy changes, such as inten-
sifying monitoring in response to an outbreak, or poten-
tially inferred via change point detection (Tartakovsky 
and Moustakides 2010).

In conclusion, we presented a new Bayesian inference 
method for the reconstruction of transmission trees 
from dated phylogenetic trees in which hosts are sampled 
multiple times. This method is implemented in a R pack-
age that extends TransPhylo and is available at https:// 
github.com/DrJCarson/TransPhyloMulti. When applied 
to multiple sampled genomes from several infected indivi-
duals, our method has the potential to improve our under-
standing of both the within-host and between-host 
dynamics of many pathogens causing infectious disease.

Materials and Methods
Notation
Let us denote P as the dated phylogenetic tree, T as a 
transmission tree, θP as the coalescent model parameters, 
and θT as the transmission model parameters. We want to 
sample from the posterior distribution

p(θP, θT , T ∣ P) ∝ p(P ∣ T , θP)p(T ∣ θT)p(θT)p(θP), (1) 

where the term p(P ∣ T , θP) is the likelihood of the coales-
cent model conditional on a given transmission tree, the 
term p(T ∣ θT) is the likelihood of the transmission model, 
and the terms p(θP) and p(θT) are prior distributions.
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We parameterize the transmission tree T as follows. 
Let x be a vector of infection times such that element 
xj gives the infection time of host j. Likewise let A be a vec-
tor of infectors, so that if Aj = i then host j was infected by 
host i. We indicate the root host by setting Aj = 0. 
Primary observation times are denoted by vector y, 
with the corresponding host denoted by vector Hy. 
Secondary observation times are denoted by vector z, 
with host Hz.

For the phylogenetic tree P, we need to consider the 
leaf and coalescent times. The leaves correspond to obser-
vations under the transmission tree. We denote the vector 
of leaf times s and corresponding hosts Hs, noting that s = 
(y, z) and that Hs = (Hy, Hz). We indicate the parent node 
of each sample using vector Cs. The coalescent node times 
are denoted by vector u, and their parent nodes Cu. We 
again denote the root node with Cj

u = 0.
Figure 6a demonstrates a transmission tree with
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That is, host 1 infects hosts 2 and 6, host 6 infects host 3, 
and host 3 infects hosts 4 and 5. In addition, we have pri-
mary and secondary observations (not shown), for example
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indicates that hosts 1, 2, and 5 are observed once, hosts 3 
and 4 are observed twice, and host 6 is unobserved.

Figure 6b shows an example phylogenetic tree obtained 
by combining the primary and secondary observations 
from the transmission tree. Here,
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We can represent both the transmission and phylogenetic 
trees as a colored phylogenetic tree, as shown in Fig. 6c. 
Doing so highlights that each coalescent event is now as-
signed to a host.

Epidemiological Model
The epidemiological model is a stochastic branching pro-
cess in which infected individuals transmit to secondary 
cases (offspring). The number of offspring k is sampled 
from the offspring distribution α(k), assumed to be a nega-
tive binomial distribution with parameters (r, p), i.e.

α(k) =
k + r − 1

k

 

pk(1 − p)r. (2) 

The time between the primary and any secondary infec-
tion is sampled from the generation time distribution 
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Fig. 6. a) Example transmission tree with 6 hosts. Points indicate the 
infected times of each host. Filled circles show observed hosts, and 
empty circles show unobserved hosts. b) Example phylogenetic 
tree with 7 leaves from 5 observed hosts. Leaf labels indicate the 
host, followed by the sample number for that host. Each coalescence 
node is given a label. c) Example colored phylogenetic host with 7 
leaves from 5 observed hosts, and 6 hosts overall. The branch color 
indicates the host, and the asterisks indicate transmissions. Here, 
host 3 is infected with 2 lineages.
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γ(τ), which typically follows a Gamma distribution with 
known parameters.

Under a finished outbreak scenario, each host is as-
sumed to be observed with probability π. The time be-
tween the host being infected and first being observed is 
sampled from the observation time distribution σ(τ). As 
with the generation time distribution, this is typically a 
Gamma distribution with known parameters.

In some applications, observations occur over a re-
stricted time interval, or possibly set of time intervals. In 
such applications, the probability of a host being observed 
depends on their infection time. An example, we will look 
at is the ongoing outbreak scenario, in which there is an ob-
servation cutoff time T. In this scenario, a host infected at 
time t is observed with probability

ζ (t) = π ∫T−t
0 σ(τ) dτ.

In other words, we use the same observation distribution 
as the finished outbreak scenario, but treat observations 
later than T as censored.

Finally, hosts may be observed multiple times. We as-
sume that any host can only be infected once, and that 
any subsequent observations relate to the same infected 
period. We define β(b) as the distribution for the number 
of secondary observations b ≥ 0, and ρ(τ1 : b) as the distri-
bution for the times between the secondary observations 
and the primary observation assuming that b ≥ 1. Note 
that it is possible for the time between observations to 
be zero, meaning that multiple observations occur at the 
primary observation time.

Secondary observations are an additional modeling 
component to the previous version of TransPhylo 
(Didelot et al. 2017). However, by assuming that the sec-
ondary observation times depend only on the primary ob-
servation times, we can undertake inference in a similar 
manner without formally specifying these distributions. 
Under our modeling assumptions we can express the like-
lihood of the transmission tree as

p(T ∣ θT) = p(x, y, z, A, Hy, Hz ∣ θT)

= p(z, Hz ∣ y, Hy)p(y, Hy ∣ x, A, θT)p(x, A ∣ θT),

(3) 

where x, A, and θT are parameters we are trying to esti-
mate, and y, z, Hy, and Hz are fixed by the dated phylogen-
etic tree. Within a Metropolis–Hastings algorithm, when 
we propose new values x′ and A′ (giving a new transmis-
sion tree T ′) or θ′T , the term p(z, Hz ∣ y, Hy) will cancel 
in the likelihood ratio, i.e.

p(T ∣ θT)
p(T ′ ∣ θ′T)

=
p(y, Hy ∣ x, A, θT)p(x, A ∣ θT)

p(y, Hy ∣ x′, A′, θ′T)p(x′, A′ ∣ θ′T)
. (4) 

Consequently, p(z, Hz ∣ y, Hy) does not need to be explicit-
ly calculated to determine if proposals are accepted or 

rejected, and practically can be excluded from the trans-
mission tree likelihood altogether.

Host Inclusion and Exclusion
Our goal is to infer a transmission tree from a dated phylo-
genetic tree. This can be visualized as coloring the branches 
of the phylogenetic tree, where each color represents a dis-
tinct host. For a host to appear on the phylogenetic tree 
they must either be observed directly or be an ancestor 
to a different observed host. We refer to such hosts as in-
cluded hosts. In many applications, the number included 
hosts is dwarfed by the number of hosts implied by the 
epidemiological model to not appear on the phylogenetic 
tree (excluded hosts). Examples include when π is small, or 
when r is large in an ongoing outbreak scenario. In the lat-
ter case, a large number of hosts will be infected shortly be-
fore the observation cutoff time, and so will be excluded 
with high probability. For this reason, we instead formalize 
a transmission model for only the included hosts.

Define ω(t) as the exclusion probability of a host in-
fected at time t. Assuming that T is the cutoff time for ob-
servations ω(t) = 1 for t ≥ T. We can then define the 
following recursive relationships.

The exclusion probability of an offspring from a host in-
fected at time t is

ω̅(t) = ∫∞0 ω(t + τ)γ(τ) dτ. (5) 

The probability that all offspring from an individual in-
fected at time t are excluded is

ϕ(t) =
∞

k=0

α(k)ω̅(t)k. (6) 

The exclusion probability of an individual infected at time 
t is

ω(t) = (1 − ζ (t))ϕ(t)

= (1 − ζ (t))
∞

k=0

α(k) ∫∞0 ω(t + τ)γ(τ) dτ
 k

.
(7) 

That is, the probability of the host being unobserved and 
having no included offspring. In the finished outbreak 
scenario, the recursive relationship is simply

ω∗ = (1 − π)
∞

k=0

α(k)ωk
∗, (8) 

with ω∗ being the exclusion probability for every host. 
Note that these calculations do not depend on the sec-
ondary observation times or their distribution.

Numerical Approximations
The exclusion probabilities are intractable, and so we use 
numerical approximations. For example, consider the 
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ongoing outbreak scenario with observation cutoff time T. 
For t ≥ T, ωt = 1, and so

ω̅(t) = ∫Tt γ(τ − t)ω(τ) dτ + ∫∞T γ(τ − t) dτ. (9) 

The second term can be computed explicitly, and the first 
term can be approximated using the trapezoid method:

∫Tt γ(τ − t)ω(τ) dτ ≈
k

i=0

ciγ((k − i)Δt)ω(ti)Δt, (10) 

where ci = 1 for 0 < i < k and ci = 0.5 otherwise, and 
ti = T − iΔt. Assuming γ(0) = 0:

ω̅(t) ≈ F(t) +
k−1

i=0

ciγ((k − i)Δt)ω(ti)Δt, (11) 

where F(t) = ∫∞T γ(τ − t) dτ.
Using the probability generating function of a negative 

binomial distribution with parameters r and p, we can 
evaluate

ϕ(t) =
p

1 − (1 − p)ω̅(t)

 r

, (12) 

and finally

ω(t) = (1 − ζ (t))ϕ(t). (13) 

Both will be approximate owing to the approximation of 
ω̅(t). All 3 exclusion probabilities are therefore approxi-
mated by iterating backwards through time from T in dis-
crete steps of size Δt.

Transmission Tree Likelihood
We can now define a likelihood for the transmission tree for 
only included individuals. Throughout we will set T as the 
cutoff time for observations. Consider first the root host 
(the first infected individual in our transmission chain) 
with infection time x1, and let I1 = 1 denote that the root 
host is included. The probability that the root host is unob-
served (denoted by S1 = 0) given that they are included is

p(S1 = 0 ∣ I1 = 1, x1) =
p(I1 = 1 ∣ S1 = 0, x1)p(S1 = 0 ∣ x1)

p(I1 = 1 ∣ x1)

=
(1 − ϕ(x1))(1 − ζ (x1))

1 − ω(x1)
,

(14) 

and the probability that the root host is observed (S1 = 1) is

p(S1 = 1 ∣ I1 = 1, x1) =
p(I1 = 1 ∣ S1 = 1, x1)p(S1 = 1 ∣ x1)

p(I1 = 1 ∣ x1)

=
ζ (x1)

1 − ω(x1)
.

(15) 

In the event the root host is observed, we also need to calcu-
late the density of the primary observation time y1,

p(y1 ∣ S1 = 1, x1) =
σ(y1 − x1)

∫T−x1

0 σ(τ) dτ
, x1 < y1 < T. (16) 

Additionally the full transmission tree likelihood incorpo-
rates the density of the secondary observation times. 
However, when it comes to undertaking inference these 
terms will cancel out, and so we skip this step.

Second, we calculate the probability that the root host 
has d1 included offspring. The probability of a host infected 
at time t producing d included offspring is

p(d ∣ t) =
∞

k=d

α(k)p(d ∣ k, t)

=
∞

k=d

α(k)
k
d

 

ω̅(t)k−d(1 − ω̅(t))d.

(17) 

We then need to condition on whether or not the root host 
was sampled. If the root host was not sampled, they must 
produce at least 1 included offspring to be included, and so

p(d1 ∣ I1 = 1, S1 = 0, x1)

=
p(I1 = 1 ∣ d1, S1 = 0, x1)p(d1 ∣ S1 = 0, x1)

p(I1 = 1 ∣ S1 = 0, x1)

=
p(d1 ∣ x1)
1 − ϕ(x1)

, d1 > 0.

(18) 

If the root host was sampled, then it is included for any value 
of d1, and so

p(d1 ∣ I1 = 1, S1 = 1, x1)

=
p(I1 = 1 ∣ d1, S1 = 1, x1)p(d1 ∣ S1 = 1, x1)

p(I1 = 1 ∣ S1 = 1, x1)

= p(d1 ∣ x1), d1 ≥ 0.

(19) 

In the event d1 > 0, we also calculate the density of the trans-
mission times for any included offspring. Denoting H1 as the 
offspring labels, x̅1 = {xj ∣ j ∈ H1} as the set of offspring 
infection times, and I̅1 = 1 that the set of offspring are in-
cluded, the likelihood contribution is

p(x̅1 ∣ I̅1 = 1, x1) = d1!


j∈H1

p(Ij = 1 ∣ xj)p(xj ∣ x1)
p(Ij = 1 ∣ x1)

= d1!


j∈H1

(1 − ω(xj))γ(xj − x1)
1 − ω̅(x1)

.

(20) 

The d1! term arises from the fact that the infection times are 
labeled according to host, and the host labels are arbitrary. 
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If we imagine simulating a transmission tree, the offspring in-
fection times can be generated in any order (of which there 
are d1! possible orderings) to produce the same transmission 
tree.

In summation, the likelihood contribution (sans sec-
ondary observations) for the root host in the unobserved 
case is

L1
T(θT) =

(1 − ϕ(x1))(1 − ζ (x1))
1 − ω(x1)

×
1

1 − ϕ(x1)

∞

k=d1

α(k)
k
d1

 

ω̅(x1)k−d1
(1 − ω̅(x1))d1

× d1!


j∈H1

(1 − ω(xj))γ(xj − x1)
1 − ω̅(x1)

=
(1 − ζ (x1))
1 − ω(x1)

∞

k=d1

α(k)
k
d1

 

ω̅(x1)k−d1
d1!



j∈H1

(1 − ω(xj))γ(xj − x1),

(21) 

and for the observed case is

L1
T(θT) =

ζ (x1)
1 − ω(x1)

σ(y1 − x1)

∫T−x1

0 σ(τ) dτ

×
∞

k=d1

α(k)
k
d1

 

ω̅(x1)k−d1
(1 − ω̅(x1))d1

× d1!


j∈H1

(1 − ω(xj))γ(xj − x1)
1 − ω̅(x1)

=
πσ(y1 − x1)
1 − ω(x1)

∞

k=d1

α(k)
k
d1

 

ω̅(x1)k−d1
d1!



j∈H1

(1 − ω(xj))γ(xj − x1).

(22) 

The full likelihood is calculated by recursion, applying the 
same density calculations to each included host, i.e.

p(T ∣ θT) =
N

j=1

L
j
T(θT), (23) 

with N being the total number of included hosts. Note that 
in doing so, with the exception of the root host, the terms 
1 − ω(xj) will cancel in the likelihood.

Methods for simulating transmission trees are provided 
in supplementary text S1, Supplementary Material online.

Coalescent Model
In the original version of TransPhylo  the coalescent model 
used was the bounded coalescent (Carson et al. 2022). This 

model follows the standard coalescent model with hetero-
chronous sampling (Drummond et al. 2002), but condi-
tions all lineages to coalesce before the infection time of 
each host. Here, we need to choose a coalescent model 
that allows for the transmission of multiple lineages be-
tween hosts. With a bottleneck assumption many dated 
phylogenetic trees would not permit the overlaying of a 
transmission tree under our stochastic branching model.

Here, we assume that the within-host pathogen popu-
lation size q(τ) grows linearly:

q(τ) = κ + λτ, (24) 

where τ is the time since the host was infected. Should κ = 
0 all lineages will coalesce by the host’s infection time. We 
could adopt alternative population models, so long as they 
are integrable.

The likelihood of the phylogenetic tree conditional on 
the set of transmissions is calculated by taking the product 
of the likelihood of each subtree for each host. The subtree 
of any host j is formed by taking the parts of the phylogen-
etic tree assigned (colored) by host j. Each subtree is 
rooted at the host’s infection time xj, with the number 
of roots being the number of lineages transmitted to the 
host. Leaves correspond to observations of the host and 
transmissions to the hosts included offspring, noting that 
each transmission may contribute multiple leaves (trans-
mitting multiple lineages).

Let vm
j , m = 1, . . . , Mj be the times leaves are added 

within the subtree of host j, and let un
j , n = 1, . . . , Nj be 

the coalescence times, supposing Nj > 0. Then we define 
the number of extant lineages at time t as

Lj(t) =
Mj

m=1

I(vm
j ≥ t) −

Nj

n=1

I(um
j > t), (25) 

so that if t is the time of a coalescence, Lj(t) is the number 
of lineages that could have coalesced. Denoting τj = t − xj, 
the phylogenetic likelihood contribution from each host is 
then

L
j
P∣T(θP) = exp − ∫∞0

Lj(xj + τj)
2

 
1

q(τj)
dτj

 

×
Nj

n=1

1
q(un

j − xj)
,

(26) 

and the full phylogenetic likelihood conditional on trans-
mission tree T is given by the product

p(P ∣ T , θP) =
N

j=1

L
j
P∣T(θP). (27) 

Let wk
j , k = 0, . . . , K be the ordered set of root, leaf, and 

coalescence times, with w0
j = xj. Let Lk

j be the number 
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of lineages in the interval (wk−1
j , wk

j ). The integral in the 
exponent can then be partitioned accordingly

∫∞0
Lj(xj + τj)

2

 
1

q(τj)
dτj

=
n

k=1

∫
wk

j −xj

wk−1
j −xj

Lk
j

2

 
1

q(τj)
dτj. (28) 

For the linear growth model, these terms are then

∫
tk
j −xj

wk−1
j −xj

Lk
j

2

 
1

q(τj)
dτj =

Lk
j

2

 

λ
(log (κ + λ(wk

j − xj))

− log (κ + λ(wk−1
j − xj))).

(29) 

Phylogenetic tree simulation is described in supplementary 
text S2, Supplementary Material online.

Inference
Inference is undertaken using reversible-jump MCMC 
(Green 1995). We iterate through the following update 
steps: 

1) Update the transmission model parameters accord-
ing to p(θT ∣ T ).

2) Update the coalescent model parameters according 
to p(θP ∣ P, T ).

3) Update the transmission tree according to 
p(T ∣ P, θT , θP).

Steps 1 and 2 are performed using multivariate Gaussian 
random walks, conditional on the current transmission 
and phylogenetic trees. The scale and covariance in each 
case is determined using the accelerated shaping and scal-
ing algorithm of Spencer (2021) with target acceptance 
a = 0.234 and forgetting sequence f(n) = ⌊0.5n⌋.

In Step 3, we randomly select from 3 proposals that up-
date the transmission tree conditional on the current 
model parameters: an add proposal for adding a new trans-
mission to the current transmission tree, a remove pro-
posal for removing a transmission, and a local move 
proposal for moving a transmission within the bounds 
set by its upstream and downstream transmissions. The 
add and remove proposals form a reversible pair that 
change the dimension of the model, whereas the local 
move proposal is its own reverse and maintains the dimen-
sion of the model. Each proposal ensures that the new 
transmission tree is compatible with the phylogenetic 
tree. For instance, observations from a single host cannot 
be split among multiple hosts when adding a transmission. 
Likewise, observations from different hosts cannot be as-
signed to the same host when removing a transmission. 
Full details including the acceptance probabilities for 
each proposal are provided in supplementary text S3, 
Supplementary Material online.

Step 3 makes relatively small changes to the transmis-
sion tree with each update. Additionally, the computation-
al cost is relatively cheap as we only need to evaluate the 
likelihood contributions from the 1 or 2 affected hosts. 
Consequently, it is beneficial to perform Step 3 multiple 
times in each scan, in order to improve the mixing of 
the MCMC. In general, we find that performing O(N) 
Step 3 updates in each scan works well, where N is the 
number of primary observations.

Implementation
We implemented the methods above into a new R package 
called TransPhyloMulti which extends TransPhylo. 
TransPhyloMulti is available at https://github.com/ 
DrJCarson/TransPhyloMulti. This repository also contains 
all the code and data needed to reproduce all results 
shown in this paper. The R package ape was used to store, 
manipulate, and visualize phylogenetic trees (Paradis and 
Schliep 2019).

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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