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Abstract

In this thesis, we study convexity corrections in the context of pricing exotic European
products whose payoff is a function of some forward swap rate, with Constant Matu-
rity Swaps (CMS) being a relevant example we will focus on. To do so, we proceed
in two stages: firstly, we develop and implement a Markov-functional model at a sin-
gle time (single-time MFM) that is calibrated to an appropriate set of market-implied
distribution of the swap rates in their own swaption measures. Knowledge about these
marginal distributions can be recovered from actively-traded swaption prices. We want
to incorporate this information into the pricing model and study the problem, specifi-
cally allowing for long payment dates. We use this model to analyse the properties of
the (joint) distribution of the forward swap rates that matter when pricing a CMS. The
single-time MFM is however too computationally expensive to be used as a practical
pricing model, but it provides a flexible framework through which convexity corrections
can be studied. Using the insights obtained from the single-time MFM, we move on
to the second stage of the thesis: the development of a fast, efficient pricing model,
which we label as the ‘MF-Lite model’ that is viable in practice, and takes into account
the market features of the joint distributions of the swap rates that matter most when
pricing convexity-related products. We develop the model first in a one-factor context,
starting the setup under the swaption measure. We observe that the model is numer-
ically close to the one-factor single-time MFM. We then reconfigure the approach to
allow for a second factor. We propose a two factor MF-Lite model set up in the forward
measure.

ix
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CHAPTER 1

Introduction

Recent statistics (“Bank for International Settlements” (2022)) indicate that in the
global over-the-counter derivatives market, with a notional amount of 632 billion USD
traded, interest rate contracts accounted for nearly 80% of the trades, with a significant
contribution coming from swaps. Interest-rate markets undoubtedly form a large and
important part of the global financial industry. Interest rate swaps are actively traded
in the market, with prices quoted by market participants. More complex derivatives,
tailor-made to suit the needs of clients are equally traded, but not on the market. This
category of derivatives is referred to as exotic derivatives. There is no publicly avail-
able information about the prices of these products, so they need to be priced in-house.
The pricing of exotic derivatives has attracted significant attention, from academics
and practitioners alike and remains to this day, a challenging and complex problem in
finance. They lack liquidity, hence trading them relies on quoting a price based on a
pricing model. In this thesis, we aim to set up a pricing model for such products. We
focus mainly on European products whose pricing require some form of convexity cor-
rection. We explain both concepts below. We provide in the preliminaries section at the
end of this chapter some basic probability tools and an overview of interest-rate terms
that we use in the discussion below and throughout the thesis. Readers unfamiliar with
the topic can read through the preliminaries before carrying on.

Consider a product with a payoff F (y1T , . . . , y
n
T ), set at time T and paid at time S ≥ T ,

with (y1T , . . . , y
n
T ) being a set of underlying forward rates (could be LIBOR or swap

rates for example). This is a very general description of the payoff of European-type

1
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products, the characteristic feature of which is that we can observe the market at a
single time T in order to determine the payments. In practice, n is often taken to be 1
or 2. In order to price this payoff today, we take an expectation of F (y1T , . . . , y

n
T ). The

problem arises when we have the expectation with respect to a measure under which
the forward rates y1, . . . , yn are not martingales, hence some adjustments (convexity
corrections) have to be made. We shall discuss some market products that fall into this
category shortly. We now define convexity corrections.

1.1 Convexity Corrections

The need for convexity corrections arises when taking an expectation of an interest rate
with respect to a measure under which it is not a martingale. Pelsser (2000) defined
convexity correction as the adjustment that has to be made when certain interest rates
are paid at the ‘wrong’ time (or in the ‘wrong’ currency) and can be thought of as the
side-effect of a change of numéraire.

Suppose we are given a forward interest rate which is set at time T, denoted by yT (it
could be LIBOR or a swap rate). Suppose we have a contract whereby the payoff is
given by F (yT ) and is paid at some future time S > T . The value at time T of this
contract will be:

VT = F (yT )DTS ,

where DTS denotes the value at T of a pure discount bond paying unity at S. Let
us consider the simplest form of payoff function, where F is just the identity function.
If we take yT to be a forward swap rate, we will be valuing a single payment of a
Constant Maturity Swap (CMS), an exotic European-type derivative that will be the
main derivative we study in this thesis. We will elaborate further on CMS in the next
section. In accordance to Theorem 1.5.1, which we review in the later Section 1.5, the
value at time zero of this payoff is given by:

V0 = N0EN

[
yTDTS

NT

]
,

for a given numéraire pair (N,N).

Remark 1: For any swap rate or LIBOR, there is a natural numéraire N̂ and corre-
sponding equivalent martingale measure (EMM) N̂ under which the forward rate is a
martingale. We refer ahead to definition 1.5.2 where we introduced the swaption mea-
sure as the martingale measure for forward swap rates.

A first naive approach in valuing the payoff is to work in the EMM corresponding to
D.S as numéraire and disregard the fact that the forward rate is not a martingale under
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this measure, and to have:
V naive
0 = y0D0S .

The error is then given by:

V0 − V naive
0 = N̂0EN̂

[
yTDTS

N̂T

]
− y0D0S

= N̂0EN̂

[
yTDTS

N̂T

]
− N̂0EN̂[yT ]EN̂

[
DTS

N̂T

]
= N̂0covN̂

(
yT ,

DTS

N̂T

)
.

Consider a one-factor model. In this case, one can write DTS

N̂T
as a function of yT . The

error from using the naive approach arises because the term DTS

N̂T
depends on yT . Note

that DTS

N̂T
as a function of yT may in fact be convex, concave, or neither, so the error

may be positive or negative.

Suppose we now specialise to the case where yT = LT := LT [T, S], a LIBOR (see
equation (1.3)). We define α := S − T . In this case, the natural numéraire N̂ is the
bond maturing at S. When we take the payment date S = T , we obtain a LIBOR-in-
arrears payment and the convexity correction in this case is:

V0 − V naive
0 = D0SEN̂

[
LT

DTT

DTS

]
−D0SEN̂[LT ]EN̂

[
DTT

DTS

]
= D0SEN̂[LT (1 + αLT )]−D0SEN̂[LT ]EN̂[1 + αLT ]

= αD0S

(
EN̂[L

2
T ]− (EN̂[LT ]

)2)
.

In this case, L2
T is convex in LT , and by Jensen’s inequality, the error is positive. This

gives rise to the term ‘convexity correction’.

1.2 Market Products

Past experience has taught the banking industry of the need to address the issue of
convexity corrections appropriately and motivates the approach taken in this thesis. We
mention three products here: the LIBOR-in arrears swap, the Constant Maturity Swap,
and the TARN. We have already encountered the first two in the section above.

The LIBOR-in-arrears swap (LIA swap) is an instrument which has a payoff based on
LIBOR as described above. As late as mid-1990’s, these swaps were priced using the
naive valuation, so not building in the optionality at all. Banks started to become aware
of industry players exploiting the mispricing and seizing the arbitrage opportunities it
created. This marked the beginning of the banking industry taking the problem of
convexity corrections seriously.
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A second product that drew the attention of the City in the late 1990s/early 2000s
was the Constant Maturity Swaps (CMS). CMS derivatives are popular financial in-
struments that enable investors to take a long term view on the level (or change in
case of CMS Spread derivatives) of the swap yield curve and hedge their exposure. A
CMS is an interest rate swap where the interest in one leg is reset periodically with
reference to a market swap rate, usually with a long-term maturity that could go up
to 30 years. For the other leg of the swap, payments are either a short-term rate
such as a 6-month LIBOR paid semi-annually, or a fixed rate. The standard swaptions
traded between professional counterparties in the European markets are cash-settled
swaptions. The payoff of a physically-settled swaption based on a forward swap rate
yT is of the form PT (yT − K)+ (where yT is as defined in equation (1.6) and PT is
the associated PVBP(present value of a basis point). For a cash-settled swaption, it
is of the form h(yT )(yT −K)+, where the term h(yT ) is a function solely of the swap
rate yT chosen to mimic the more complicated term PT (specifically, we have that

h(yT ) :=
∑n

i=1
α

(1+αyT )i
= 1

yT

(
1 − 1

(1+αyT )n

)
, where n is the number of payments in

the reference swap yT and α is its accrual factor). When the payment date of a CMS
cashflow is the start date of the reference swap, S = T , the liquid prices of cash-settled
swaptions completely determine the market distribution of the swap rate yT under the
forward measure corresponding to taking the pure discount bond maturing at time T
as numéraire. As a result, the CMS payment can be perfectly statically replicated with
a portfolio of cash-settled swaptions. In the early 2000s, trades started to be placed on
CMS swaps which exploited the fact that most pricing models for them in use at the
time did not incorporate the correct market distribution for yT (i.e, the correct skew in
the volatility smile).

The third and last product we draw the reader’s attention to here is the TARN (Targeted
Accrual Redemption Note). In this trade, an investor hands over the notional amount.
In return, she receives coupons. If the total amount received in coupons ever reaches a
pre-specified maximum amount, say A, then the trade terminates; the current coupon
is paid in part, to bring the total amount received in coupons up to the maximum level
A, the notional amount is returned to the investor and the trade terminates. This is the
early termination case. On the other hand, if the note reaches its full maturity before
the maximum amount A is attained, all the coupons will have been paid in full and
the notional amount is returned at the natural trade end date. In some versions of the
TARN (relevant to us), in this natural maturity case, the final coupon is increased so
that the coupon payments total A. One can see that in this case, the first coupon for
example, is set early on in the trade and paid to the investor, but then the same coupon
amount is reclaimed at a much later date. This repayment long after the coupon first
set creates a large convexity effect. The TARN is a complex exotic product. It is clearly
path-dependent and has embedded convexity, as analysed in this thesis. The relative
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importance of the path-dependence versus the convexity depends on the maximum
amount A - when A is large, the convexity dominates. In practice, both parts are
important. A typical TARN might be as follows:

* Maturity: 15 years.

* ith coupon amount paid at Si, i = 1, . . . , 15, is max(y10Si−1
−y2Si−1

−K, 0)+c, where
c is a positive constant, S0 = 0, Si = 1 + Si−1.

* TARN: if total coupon amount hits A before maturity, then the notional is re-
turned, the current coupon is partially paid (to bring the total coupon payment
to A), and the trade terminates. If A is not hit, then the trade continues until ma-
turity, with notional returned in 15 years. The final coupon payment is increased
so total of all coupons is A.

These are complicated to value and path dependent. To see that there is convexity,
consider when A is large. In this case all coupons will most likely be paid in full.
Furthermore, at maturity, A will be paid and all earlier coupons will be returned. So in
the example, the investor will receive max(y10Si−1

− y2Si−1
−K, 0) + c at Si but also pay

max(y10Si−1
− y2Si−1

−K, 0) + c at 15 years.

The above discussion illustrates the need for a good understanding of convexity correc-
tions in the commercial setting. This is a hard problem to solve in practice for several
reasons.

(i) Any modelling approach must take into account, in an appropriate way, the market
knowledge of the implied (joint) distributions of various swap rates. For example there
is good market knowledge of the marginal distribution of the individual swap rates in
their own swaption measure.
(ii) Any pricing model of practical use needs to have a fast implementation.
(iii) In the case of a long payment date the convexity correction will be large. Fur-
thermore in this case a one factor model (as often used by practitioners for convexity
calculations) will be inadequate. This has not been investigated in the literature nor
yet addressed by practitioners.

As we shall see in the next section in some parts of the literature there is a focus on
employing a full term-structure model for convexity corrections either to implement the
full model directly or for the purposes of introducing some approximations to the model
at a single time slice. This approach is inherently restrictive and limited in terms of
what it can deliver on each of the points outlined above.
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1.3 Literature

We look at some approaches that have been employed in the literature to tackle con-
vexity corrections. The methodologies used can be broadly divided into two categories.
In the first category are the models that have been developed in a full-term structure
setting. In the second category are the approaches that take a more local view and aim
to set up a model at a single time, incorporating features of the market relevant to pric-
ing the European-type exotic product under consideration. We review the approaches
involving a full-term structure model first.

A common modelling framework used in the interest rate markets in general is a short
rate model. This class of models is parameterised in terms of the short rate, denoted
by r and specified via an SDE:

drt = µ(rt, t)dt+ σ(rt, t)dWt,

where W is a Brownian motion in the risk neutral measure and the functions µ and σ are
chosen to capture some particular behaviour (like mean-reversion). Short rate models
are highly tractable, arbitrage-free and can be more easily implemented than other
classes of term-structure models. The main drawback however lies in their calibration
aspects. We shall discuss this issue in more depth when we review Murgoci and Gaspar
(2016) in Chapter 2. Owing to their ease of implementation and tractability, short rate
models remain quite a popular modelling choice for practitioners. In order to address the
calibration shortfalls, new techniques are being proposed to calibrate short rate models
to swaption prices (for e.g Russo and Torri (2019) & references therein). Di Francesco
and Kamm (2022) use the Gram-Charlier Expansion to approximate the density of
the reference swap rate under the forward measure F using Hermite polynomials. The
technique depends on specifying the bond moments of order m, which they define as
EF[(DTS.)

m|Ft] and they use a short rate model approach (they express the short rate
dynamics as a difference of two CIR1 dynamics plus a deterministic function whose role
is to ensure a perfect fit to the initial term-structure/yield curve) to model the pure
discount bonds. The model parameters can then be chosen to calibrate the model to
swaption prices. However, as the authors themselves point out, work in this area is at an
early stage and the method developed relies on several simplifying assumptions such as
constant parameters and the Brownian framework that ‘does not perfectly describe the
real world’. The approach proposed by the authors also carries a high computational
cost. We note that the goal for the authors is to calibrate the short rate model of
choice to both the market term structure and the swaption surface, adapting it to price
Bermudan swaptions. They employ their method to price a CMS as well, but due to

1Cox-Ingersoll-Ross model where the short rate r is modelled as follows: drt = a(θ−rt)dt+σ
√
rtdWt,

for a, θ and σ ∈ R
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the computational complexity of the model, they only report results for maturities up
to 15 years, highlighting the observation that the use of a full-term structure model
to price products with naturally long maturities, as is the case for a CMS, is difficult,
especially when one tries to capture all the marginal distributions of the swap rates in
their own swaption measures.

In order to overcome the calibration problems of short rate models, Market models were
developed. Work in this area was pioneered by Miltersen, Sandmann, and Sondermann
(1997) and Brace, Gatarek, and Musiela (1997). The defining feature of market models
is that they are parameterised in terms of standard market rates such as LIBORs and
swap rates, allowing efficient calibration to relevant market prices. In a LIBOR Market
Model (LMM), the aim is to develop a full term structure model via the specification of
an SDE for each forward LIBOR. The model dimension would then be the same as the
number of LIBORs or swap rates being modelled, giving rise to high dimensionality, even
if driven by a single Brownian motion, making the model computationally expensive
and inefficient in such cases.

Wu and Chen (2010) opt for the LMM framework and approximate the swap rate by
a log-normally distributed variable under the forward measure for pricing a CMS. The
argument advanced by the authors is that a swap rate is roughly a weighted average of
LIBORs, and LIBORs within the LMM framework are log-normally distributed under
their associated forward measures. However, a sum of log-normal distributions has
an unknown distribution but can still be realistically approximated by a log-normal
distribution, an idea reinforced by Brigo and Mercurio (2006).

Henrard (2007) studied the pricing of a CMS payment within a one-factor separable2

Gaussian HJM (Heath-Jarrow-Morton) and a one-factor separable LMM framework,
choosing as numéraire the pure discount bond maturing at the start date T of the ref-
erence swap, with associated forward measure F. Within the Gaussian HJM model,
volatility is assumed to be deterministic and instantaneous forward rates normally dis-
tributed under their associated forward measure. Pure discount bonds are approximated
as a function of a common normally distributed random variable which intuitively is
the stochastic integral of the volatility along the underlying Brownian motion. Swap
rates are then recovered using a Taylor expansion. A similar technique is applied within
the one factor Gaussian LMM framework, where LIBORs are assumed to be normally
distributed under their associated forward measures. Using the LMM framework is
computationally expensive owing to the high-dimensional feature of market models and
is restrictive in terms of modeling assumptions such as the choice of distribution of the
forward swap rate (we are essentially locked into a normal assumption and the approach
offers limited flexibility in moving away from such an assumption).

2We shall revisit the concept of separability in Chapter 2
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When it comes to convexity corrections, practitioners need a solution that can be ef-
ficiently used in practice. One of the first methods available to them was an ad hoc
approach proposed by Hull (1997). Hull used a second order Taylor expansion of the
PVBP as a function of the reference swap rate around its initial value, and the mar-
tingale property, to obtain an expression for the expectation of the reference swap rate
under the forward measure. Lognormal assumptions on the swap rate under the forward
measure led to a formula easy to apply in practice. Benhamou (2000) analysed Hull’s
approach further. Hull’s work marked the beginning of a literature which took a local
approach to the problem and was aimed at practitioners.

We observe that the term-structure models described above, when employed for convex-
ity corrections, are set up under an appropriate forward measure. As we have discussed,
every forward swap rate has a natural associated (swaption) measure with respect to
which it is a martingale. The practitioner literature tends to work in swaption mea-
sure.

Working in the swaption measure, Hunt and Kennedy (2000) proposed a terminal swap
rate modelling approach that approximates the ratio of pure discount bonds over the
PVBP as a function of the reference swap rate at a fixed time as a function of the
reference swap rate. This approach provides an arbitrage-free model at a fixed time
which can be used for convexity corrections and can incorporate directly the market
implied distribution of the reference swap rate. Because of its ability to incorporate
market smiles, this approach continues to be popular in the industry today. However it
is not easy to see how to extend the method to include another factor.

This terminal swap rate model was later discussed in Chapter 16 of Andersen and Piter-
barg (2010b) who point out that it can be considered as the one dimensional conditional
expectation of a multifactor model. Cedervall and Piterbarg (2012) use this insight to
develop an arbitrage-free approach for convexity corrections in the forward measure un-
der normal and log-normal assumptions. This approach enables the inclusion of swap
rate correlations but loses that ability to capture the implied market distributions ac-
curately.

The terminal swap rate models were a precursor to Markov-functional models which
were developed by Hunt, Kennedy, and Pelsser (2000) in the term structure setting and
widely used because of their ability to calibrate to liquid market instruments. Bermin
and Williams (2017) combine the local approach of modelling at a fixed time and the
technique of a Markov-functional sweep to modify the distribution given to the swap
rate by a term structure model of choice to price cash settled swaptions.

We return to discuss further the references above that take a local approach to convexity
corrections in Chapter 3. We mention here the work by Chen, Oosterlee, and Van
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Weeren (2010). This paper deals with the payment time being that of the first fixed
coupon of the reference swap rate. They use a two-factor SABR model to characterise
the distributions of rates at a fixed time. They note that the valuation of a standard
CMS payment involves taking an expectation involving two rates: the reference swap
rate and a LIBOR. At the reset date T , the pure discount bond maturing at the payment
date of the CMS payment can be expressed as a function of a LIBOR. They assume
that the PVBP can be approximated as a function of the reference swap rate. In their
approach, they consider the correlation between the reference swap rate and the LIBOR.
It is unclear how to extend the method beyond a single short payment date. In this
thesis, we build upon the observation that correlation might matter for long payment
dates and we will focus on correlation between relevant swap rates.

Finally we note that some recent papers are concerned with extending existing methods
to multi-curves or LIBOR replacement. These are important effects that can be incor-
porated but do not fundamentally affect issues covered in this thesis. We omit them for
clarity. The models developed here provide a basis which can be built upon to include
these extra features.

The literature on approaches to convexity corrections, is still evolving to cope with the
ever-changing nature of the markets. This prompts us to ask the question at this point:
What really matters when it comes to the pricing and hedging of derivatives that require
convexity corrections? How have practitioners’ approaches so far coped and how can
they be improved?

1.4 Objective and Structure

The first part of this thesis is dedicated to addressing point (iii) raised in Section
1.2. In particular, in Chapter 2, we introduce a single-time Markov-functional model
(single-time MFM) set up under the forward measure F, associated with taking D.T

as numéraire to investigate what matters most when pricing a CMS and some related
options. Note that since the valuation of each payment of a CMS can be carried out
independently, we will focus on a single payment of a CMS in the numerical analysis.
Using a Markov-functional approach, as we will see in the chapter, provides us with a
flexible framework to specify the ‘target real world model’ and explore the properties
that matter when pricing a CMS. The development of the model at a fixed time enables
us to have control over the marginal distributions of the swap rates we wish to capture.
Incorporating a second factor extends the model flexibility by enabling us to model
the joint distribution of the swap rates at a single time without undue compromises
enforced by the martingale dynamics of full term-structure models. However, the single-
time MFM is too computationally expensive to be attractive in practice. It nonetheless
provides a rich framework through which convexity corrections can be studied, which we
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set out to do in Chapter 3. We use the single-time MFM to study the market properties
that have a significant impact on convexity corrections. We firstly determine the market-
implied marginal distributions of the swap rates in their own swaption measures that
have a significant effect. This analysis is carried out in the one-factor context. We then
introduce a second factor to analyse which aspects of the joint distribution of the swap
rates matter. For this investigation, we assume that the swap rates are log-normal in
their own natural measures and that the joint distribution of the model driver is bivariate
Gaussian under the forward measure F. Under these assumptions, the parameter that
summarises the joint distribution is the correlation. We hence investigate the correlation
effect on convexity corrections. We point out that the numerical analysis in this chapter
is carried out under realistic but fairly stressed market conditions. The idea is that if
the single-time MFM is able to identify the aspects of the joint distributions of the swap
rates that matter in pricing a CMS, any model developed that captures this information
will fare well under relaxed market conditions. Given that the single-time MFM fails to
satisfy point (ii) discussed in Section 1.2, we use the insights obtained from Chapter 3 to
formulate an appropriate practical approach, which we refer to as the ‘MF-Lite model’
that takes into consideration the properties that matter most when pricing swap-based
convexity-related products, hence satisfying points (i) and (ii). In Chapter 4, we propose
a computationally fast and efficient one-factor MF-Lite model, set up at a fixed time in
the swaption measure. We then propose in Chapter 5 a practical two-factor Markov-
functional model developed at a fixed/local time. For this approach, unlike the model
developed in Chapter 4, we start off the modelling process in the forward measure. We
shall explain later in this chapter the challenges of setting the two-factor approach in the
swaption measure. We end Chapter 5 by proposing a simplified two-factor methodology
in the swaption measure that still has some practical interest.

1.5 Preliminaries

1.5.1 No-arbitrage pricing framework

In this section, we provide a general, but concise overview of the no-arbitrage pricing
framework, that will be used throughout this thesis. The no-arbitrage pricing frame-
work, introduced by Harrison and Kreps (1979) is one that has been robustly discussed
and explained in the literature (and extended by Schachermayer (1994), Delbaen and
Schachermayer (1994) and others). We refer the interested reader to Andersen and
Piterbarg (2010a) and Filipovic (2009), amongst others for a detailed discussion, and
its application to interest rate modelling. Whilst we do not explore the basics of stochas-
tic calculus here, we refer the reader to Karatzas and Shreve (1991) or Revuz and Yor
(2013). For this thesis, we follow closely the framework as established in Hunt and
Kennedy (2004).
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An economy, which we shall denote by E , is characterised by two components: a (finite)
number of assets with a model for the evolution of their prices (A(i))ni=1, and a set of
strategies (ϕ(i))ni=1 (we will require that the strategies satisfy certain conditions which
we will get to shortly) in the economy. We start off with a filtered probability space
(Ω,F , {Ft}0≤t,Q), where the filtrations {Ft} satisfy the usual conditions i.e (i) F0

contains all Q-null sets of the complete space (Ω,F ,Q) and Ft is right-continuous Ft =

∩s>tFs. The asset price processes are modelled as continuous semimartingales on the
filtered probability space. We introduce the notion of asset filtration, which we denote
by {FA

t }. We skip the mathematical detail, but we provide an intuitive explanation.
The asset filtration can be interpreted as all the information that is available to us by
observing the evolution of asset prices over time. We will assume Ft = FA

t , ∀t ≥ 0.

We can interpret ϕ(i)t as the number of units we hold for asset i with price process A(i)
t at

time t. We impose that decisions about holdings of the asset is made an instant before
subsequent trading occurs, i.e ϕ is {FA

t }-predictable. Another restriction is that we do
not allow money to be injected or removed from a trading portfolio (this is known as
the self-financing property; we assume that all strategies are self-financing). The notion
of no-arbitrage is central to derivatives pricing. An arbitrage is a self-financing trading
strategy that either (a) starts with a negative wealth and ends with non-negative wealth
with probability one or (b) starts with non-positive wealth and ends with non-negative
profit with probability one or strictly positive wealth with strictly positive probability.
If there exists no such strategy, the economy is said to be arbitrage-free. A third
condition that we impose on the strategies that we allow within the economy is that of
admissibility. It is a technical requirement, one we shall not get into, which is imposed
to remove troublesome strategies from the economy.

We introduce some probabilistic tools required for the discussion that follows. We define
the concept of a numéraire.

Definition 1.5.1. Let measure N be defined on (Ω,F , {Ft}0≤t<∞). The measure N is
an equivalent martingale measure (EMM) if N ∼ Q and there exists an almost surely
strictly positive generalized price process, referred to as the numéraire N , such that the
numéraire-rebased asset price process, AN := A

N , is an {{Ft},N}-martingale. The pair
(N,N) is referred to as a numéraire pair.

Observe that the positivity assumption on the numéraire guarantees that the ratio AN

is well-defined. The economy E is arbitrage-free if there exists at least one EMM N ∼ Q,
associated with a numéraire N such that numéraire-rebased asset price processes are
martingales under N.

Remark 2: The converse is not true in a continuous time setting. We refer to Delbaen
and Schachermayer (1999a) and Delbaen and Schachermayer (1999b) for a detailed
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discussion.

We introduce the concept of completeness. In an arbitrage-free economy, we can price
a derivative (contingent claim) by constructing an admissible strategy that replicates
the derivative’s payoff. The derivative is then said to be attainable. An economy E
is complete if any derivative (contained in a suitable set) is attainable. The theory of
completeness of the economy gives us sufficient and necessary conditions to know that
such a portfolio exists. Let the economy E admit at least one EMM. The economy E is
said to be complete if and only if the EMM is unique.

Theorem 1.5.1. Let E admit a numéraire pair (N, N) and let VT be the value at time
T of an attainable contingent claim. Then, for 0 ≤ t ≤ T < ∞, the time-t value of the
claim, Vt is given by:

Vt = NtEN

[
VT
NT

∣∣∣∣Ft

]
. (1.1)

Existence of a numéraire pair guarantees our economy is arbitrage-free and equation
(1.1) follows from the martingale property of numéraire-rebased price processes.

The measures Q and N can be related to each other, the result of which is given by the
Radon-Nikodỳm Theorem.

Theorem 1.5.2. Let Q and N be probability measures on (Ω,F , {Ft}0≤t<∞), and sup-
pose N ∼ Q with respect to F . Then, ∀t ∈ [0,∞)

ζt :=
dN
dQ

∣∣∣∣
Ft

defines an a.s strictly positive uniformly integrable {Ft}-martingale under Q. The pro-
cess {ζt : t ≥ 0} is referred to as the Radon-Nikodỳm derivative.

Remark 3: Theorem (1.5.2) holds for t = ∞ as well. However, we are restricting
ourselves to a finite time horizon here.

Under the assumption of completeness, the Radon-Nikodỳm derivative is simply the
ratio of numéraires.

Theorem 1.5.3. Assume the economy E is complete. Let 0 ≤ t < ∞. Let Q be the
equivalent martingale measure with respect to the numéraire Q. Let N be the equivalent
martingale measure with respect to the numéraire N . The Radon-Nikodỳm derivative
that allows us to change from the measure Q to N is given by

dQ
dN

∣∣∣∣
Ft

=
Qt

Nt

N0

Q0
. (1.2)
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For the rest of this thesis, we assume that the economy is complete.

1.5.2 Interest rates and standard derivatives

Let S0 < S1 < . . . < Sn < ∞ be an increasing sequence of maturity dates, referred to
as a tenor structure. We adopt the convention that S0 ≡ T , where T is a fixed time
and we define the accrual factor αi := Si − Si−1, for i = 1, . . . , n, as the time elapsed
between Si−1 and Si. We introduce the basic fundamental asset of the economy, which
is the Pure Discount Bond (PDB). A pure discount bond is a financial instrument
which pays the holder one unit of currency at a pre-determined maturity. We denote
by DtT , t ≤ T , the value at time t of the pure discount bond with maturity T (Note
that DTT = 1). Going forward, we will assume we have specified an arbitrage-free and
complete economy consisting of PDBs D.Si , i = 0, . . . , n.

We can define the forward LIBOR (London Inter-Bank Offer Rate) from the pure dis-
count bonds as follows: Denote by Li

t := Lt[Si−1, Si], the forward LIBOR for the period
[Si−1, Si], and we have that

Li
t :=

DtSi−1 −DtSi

αiDtSi

. (1.3)

Remark 4: Throughout this thesis, we will assume a single-curve framework, in that we
can move from the yield curve to the forward curve via the above relationship. However,
this does not necessarily hold, which led to the development of the multi-curve framework,
an interesting discussion of which can be found in Henrard (2014).

We now formally introduce the forward swap rate, which will be the crucial interest
rate we will focusing on in this thesis. We do so by analysing a basic interest rate
instrument, the interest rate swap.

Valuing a Payer’s Swap

In a physically settled vanilla payer’s interest rate swap, a floating short term rate, for
example the LIBOR, is received in exchange for paying a fixed rate K. Suppose for a
given swap starting at time T, cashflows arise at times S1, . . . , Sn. The ith cashflow for
the fixed leg arising at time Si is given by αiK, and that of the floating leg is given by
αiLSi−1 [Si−1, Si]. Hence the value at time t for the ith cashflow of the fixed leg is given
αiDtSiK. The value of the floating portion is αiDtSiL

i
t. Figure 1.1 below illustrates the

payout structure of the interest rate swap.
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Figure 1.1: Payers Interest Rate Swap

Taking into consideration all cashflows, the value of the fixed leg is given by:

Vfix(t) := K

n∑
i=1

αiDtSi .

The value of the floating leg is given by:

Vflt(t) :=

n∑
i=1

αiDtSiL
i
t

= DtT −DtSn . (1.4)

Equation (1.4) follows from the definition of LIBOR.

The net value of the payer’s swap at some time t is then equal to:

V S
t := Vflt(t)− Vfix(t) = DtT −DtSn −K

n∑
i=1

αiDtSi . (1.5)

Definition 1.5.2. The Forward Par Swap Rate, denoted by ynt is the fixed rate K that
values the payer swap to zero at time t.

ynt :=
DtT −DtSn∑n

i=1 αiDtSi

. (1.6)

The denominator term
∑n

i=1 αiDtSi =: Pn
t is referred to as the present value of a basis

point (PVBP). The PVBP, being a strictly positive process and a linear combination
of pure discount bonds, can be chosen as numéraire, and from (1.6), we observe that
the swap rate is of form assets (DtT − DtSn) over numéraire. Associated with Pn as
numéraire, we have the EMM Sn, commonly referred to as the swaption measure, with
respect to which the forward par swap rate is a martingale.

Using (1.6), equation (1.5) can be re-written as:

V S
t = Pn

t (y
n
t −K).
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Valuing physically-settled swaptions and digital swaptions

A swaption is an option on an interest rate swap. These derivatives are actively traded
on the market, and the prices carry information on the probability distribution of the
underlying swap rate under its associated swaption measure. There are two types of
swaptions: payer’s swaption and receiver’s swaption. In the former case, at the pre-
determined exercise date (usually it will coincide with the swap start date T ) of the
option, the holder has the right, but not the obligation to enter a swap whereby he pays
the fixed rate, and receives the market swap rate in exchange. The reverse is true in
the latter case. We proceed with the pricing of a payer’s swaption. Assume the payer’s
swaption is based on the payer’s swap defined above. At time T, the effective payoff to
the option holder is max(Pn

T (y
n
T −K), 0) = Pn

T (y
n
T −K)+. Working under the swaption

measure Sn, by the valuation formula, the value at some given time t of the swaption
is given by

V n
t := Pn

t ESn [(y
n
T −K)+|Ft].

Suppose we set up a Black’s model for the swap rate, (i.e we assume that yn is a log-
normal martingale under Sn with constant volatility σn), we will obtain the following
explicit expression for the price of a swaption:

V n
t = Pn

t (y
n
t Φ(d1)−KΦ(d2)),

where d1 :=
log(ynt )−log(K)

σn
√
T−t

+ 1
2σn

√
T − t and d2 := d1 − σn

√
T − t.

In setting up a pricing model for swap-based products, it is essential that the model is
calibrated to the relevant vanilla instruments i.e to the vanilla swaptions. Equivalent
to calibrating a model to vanilla swaption prices, is calibrating the model to market
prices of digital swaptions. Similar to swaptions, there exists two types of digital swap-
tions: payer’s digital swaption and receiver’s digital swaption. In the former, the holder
receives Pn

T at T if the underlying swap rate is above the strike K at setting date T ,
and in the latter case, the holder receives Pn

T at T if the underlying swap rate is below
the strike K at setting date T . The value at time t of a payer’s digital swaption with
exercise date T is given by

V̄ n
t := Pn

t ESn [1(y
n
T > K)|Ft].

In the Black’s model example given above, we have that V̄ n
t = Pn

t Φ(d2).
Differentiating V n

t with respect to K, we can deduce the relationship between swaption
and digital swaption prices:

V̄ n
t (K) = − d

dK
V n
t (K).



CHAPTER 2

A Markov-functional approach for investigating

convexity corrections

As discussed in the introduction, we are mainly focused on studying the valuation of
European-type products whose payoffs can be viewed as a function of a set of underlying
swap rates with an ‘unnatural’ payment schedule1(Pelsser (2000)). In this chapter, we
set out to develop a Markov-functional model through which we can study the pricing
problem. We motivate the rest of this chapter by providing some high-level insights to
naturally arising questions at this point.

∗ What is a Markov-functional model?
Generally speaking, any model whereby the pure discount bond prices can be expressed
as a function of some process (which is Markovian with respect to some martingale
measure - hence the term Markov) belongs to the class of Markov-functional models
(MFM). By that description, commonly encountered interest-rate models like the short-
rate model or market models are Markov-functional, but they fail to satisfy certain
properties/requirements that would be crucial for the study we are interested in, in this
thesis, which we shall touch upon shortly.

We focus on the modelling framework developed by Hunt and Kennedy (2000). In
Section 2.1, we provide a formal, general formulation of the model. The basic underlying
idea in this case is that we aim to keep the dimensionality of the model low, whilst being
able to effectively calibrate the model to market prices. We will consider a swap version

1This leads to the need for some form of adjustments/convexity corrections
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of the model. The model, as described in Hunt and Kennedy (2000) is developed in a
full term-structure setting. We will show in Section 2.1 how we can adapt the setup to
model the forward swap rates at a given fixed time, hence the name ‘single-time’ MFM.
We could potentially extend the model to earlier times, but this will be an unnecessary
step for the valuation of European-type products which the single-time MFM is designed
to price.

∗ Why a Markov-functional approach?
The aim here is to set up a model that provides a rich and flexible framework through
which convexity corrections can be studied, and provides a benchmark against which
existing approaches can be compared. We want to ensure that the model is properly
calibrated to closely-related liquid instruments and captures the features of the market
which are relevant. A Markov-functional approach can be set up to satisfy the above,
unlike other approaches, and we will discuss this further in Section 2.1.1. We could
have set up a short rate model. We would start off by specifying an SDE for the short
rate, from which we can obtain the PDBs and the forward swap rate at T . There is a
complicated relationship between the short rate and the swap rates, and any variation
introduced in the modelling of the short rate will have a non-transparent effect on the
forward swap rate. We discuss this point at the end of Section 2.1.1.

Given that we can obtain a market-implied distribution for the swap rate in its own
swaption measure from publicly available information on swaption prices, it would make
sense to construct a model that captures this information directly. We could turn instead
to a swap market model. But this approach suffers three particular drawbacks: one is
the high-dimensionality issue which makes the model computationally expensive (hence,
not one that would be particularly attractive for an investigative analysis). Secondly,
it is a full-term structure model, that will be too extensive for the pricing problem we
are interested in. We could introduce some approximations to overcome this, but that
could potentially result in significant arbitrage introduced in the model. Thirdly, it is
not clear how one could introduce a general non-Gaussian copula to model the swap
rate distributions in the approach.

The single-time MFM, on the other hand, gives us considerable flexibility - for instance,
in contrast to the short rate model, the choice of the model driver is disassociated from
the modelling of the forward swap rates, in the sense that we can vary the distribution of
the model driver without distorting the marginal distribution of the swap rates under
their respective swaption measures. It is also low-dimensional, hence addressing the
shortcomings of market models.

∗ What are the modelling assumptions?
We will set up a two-factor single-time MFM. Hence, we assume that there exists a two-
dimensional driver that summarises the state of the economy at time T, whose joint
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distribution under the forward measure F is a modelling choice. We provide in Chapter
3 a justification for the choice of two factors.

We also assume that we know the market prices of a suitable set of payer swaption
prices for different strikes, from which we can determine the market-implied marginal
distributions of the forward swap rates in their own swaption measures.

Finally, we introduce the notion of a prior model that allows for efficient calibration
of the Markov-functional model. Indeed, the ability to efficiently capture the market-
implied distributions lies in the fact that the MFM bypasses the SDE formulation of the
forward rates, but instead calibrates the model by numerically constructing a functional
form for the forward swap rate in terms of the driver. This in turn makes the model
less transparent in its properties. However, this can be overcome if we can formulate a
transparent prior model that would usually be of low-dimension, but admits arbitrage.
The idea is that the prior model gives us a rough approximation of the forward swap
rates we want to model and we introduce a perturbation on the prior (in the form of a
monotonic increasing function - this is the third model assumption) that would remove
the arbitrage and calibrate the model to the desired marginal distributions. In Section
2.2, we discuss in depth the concept of a prior model, and we provide an example of
the prior model setup based on local volatility separable market models. In Chapter
3, we show, in the specific case of Gaussian assumption on the model driver and log-
normal assumptions on the swap rates in their own swaption measures, we can use the
swap market model as the basis for the prior model setup and lean on information from
LIBORs (the context for LIBORs will become clearer in Chapter 3) to inform the choice
of prior model for the single-time MFM.

∗ What can we gain from the single-time MFM?
The single-time MFM gives us a rigorous and flexible mathematical platform through
which convexity corrections can be studied. Indeed, in Chapter 3, we demonstrate
how we can use the model to study convexity corrections through the MF lens. The
model however is too computationally expensive to be attractive and viable in practice.
It nonetheless provides a basis from which we can formulate faster, efficient Markov-
functional based approaches that are numerically close to the single-time MFM. This
will constitute the focus of Chapter 4 and Chapter 5.

2.1 A single-time Markov-functional model (MFM)

We want to set up a two-factor model designed for the accurate pricing of a CMS
for which the payoff depends on a set of swap rates with varying end dates and a
fixed start date. To do so, we use a Markov-functional approach. A characterising
feature of a Markov-functional model that allows for efficient practical implementation
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is the ability to express the pure discount bonds at any given time as a function of
some low-dimensional process. Hunt, Kennedy, and Pelsser (2000) propose the Markov-
functional modelling framework in a full-term structure setting, with the aim to price
multi-temporal derivatives. We provide a formal, yet very general definition of the
Markov-functional model, taken from Kennedy (2010):

Definition 2.1.1. Let T ′ be a finite time horizon, and assume that the underlying
assets of an economy are pure discount bonds with maturities from a non-empty set
T ⊂ (0, T ′]. A model of the economy is said to be Markov-functional if there exists a
numéraire pair (N,N) and an n-dimensional {Ft}t∈[0,T ′]- adapted process x such that

(a) x is a Markov process under N

(b) The pure discount bond prices at time t ≤ T , for all T ∈ T are of form:

DtT = DtT (xt).

We point out that, by standard theory which we have seen in the preliminaries, the
existence of a numéraire pair ensures that the model is arbitrage-free. The Markov
process {xt, t ≥ 0} is referred to as the driving process (or simply driver) of the model.
The number of factors in the model is equal to the dimension of the driving process.
Any interest rate model used in practice, be it a short rate model, or a market model are
Markov-functional. The definition gives us the general properties of the model we aim
to develop, but not the setting up of the model itself. To ensure efficient implementation
of the model, the aim is to keep the dimensionality of the driver low, a property not
possessed by market models, whilst being able to accurately capture the market-implied
distributions of the forward rates. It is the freedom to choose the functional forms of
the model that enables accurate calibration to those distributions. We shall see in the
next section how we choose to calibrate the model and construct the required functional
forms.

As discussed in Hunt, Kennedy, and Pelsser (2000), setting up a Markov-functional
model in a full term structure setting under the terminal measure involves starting
from the last payment date and working recursively backwards to determine functional
forms of pure discount bonds at earlier times. A market rate can be chosen to calibrate
to at each time slice and correlations can be controlled through the specification of the
driving process. However, it is only possible to calibrate to the market distribution of
a single rate for each time slice, an important limitation as we shall see when pricing
a CMS. Indeed, for exotic European derivatives, since payments can be determined
by observing the market at a single pre-determined time, we will apply the Markov-
functional technique in a local setting (i.e, calibrating at a single time). We illustrate in
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the diagram below the general idea underpinning the Markov-functional approach we
take here.

Figure 2.1: Single-time MFM: A simple illustration

For our application, we only need to define the model at a fixed time T (at the start date
of the reference swap rate), so the driving process reduces to an n-dimensional random
variable (Since we are interested in setting up a two-factor model, n = 2. We will later
provide a justification as to why we deem a two-factor model appropriate here). We are
aiming to model a finite number of pure discount bonds at a fixed time, with varying
maturities. At each maturity, denoted by Sj , j ∈ {1, . . . , M̃}, M̃ < ∞, we would want
the model to be able to capture the market implied distribution of the swap rates under
their respective swaption measures. We calibrate the model to the known market prices
via the Markov-functional sweep technique. We unfold the model recursively forward in
maturity, whereby at each maturity Sj the market prices determine the functional form
of the swap rate yjT (illustrated as a green variable in figure 2.1), and this determines the
functional forms of the PVBP and the pure discount bonds (the red variables in figure
2.1). To see this, we point out that we can express the PVBP and the pure discount
bonds in terms of swap rates only. By definition stated in 1.5.2, we have that:

yjT =
DTT −DTSj∑j

k=1 αkDTSk

=
1−DTSj

P j
T

.

Hence,
DTSj = 1− yjTP

j
T . (2.1)

First, it can be observed that

P j
T = P j−1

T + αjDTSj , (2.2)
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with P 0
T ≡ 0. Substituting the expression for DTSj from equation (2.1) in the expression

for P j
T given in equation (2.2), we have

P j
T = P j−1

T + αj(1− yjTP
j
T ) (2.3)

⇒ P j
T =

αj

(1 + αjy
j
T )

+
P j−1
T

(1 + αjy
j
T )

=
αj

1 + αjy
j
T

+
αj−1

(1 + αjy
j
T )(1 + αj−1y

j−1
T )

+
P j−2
T

(1 + αjy
j
T )(1 + αj−1y

j−1
T )

= . . .

=

j∑
k=1

αk

j∏
m=k

1

1 + αmymT
. (2.4)

We can now work out an expression for the pure discount bonds in terms of the swap
rates as follows:

DTSj = 1− yjT

j∑
k=1

αk

j∏
m=k

1

1 + αmymT
. (2.5)

Remark 5: We can see from the equality in (2.3) and the implication following it, at
maturity Sj, assuming we have derived all the required functional forms at time Sj−1,
we only need knowledge of yjT to specify P j

T . Then from equation (2.1), we can work out
the functional form of DTSj , thereby explaining the recursive step forward in maturity,
starting at S1, in unfolding the model. Alternatively, we can work out the functional
forms of pure discount bonds and the PVBP from those of the swap rates at earlier
maturities by using the functional relationships defined above.

So far, we started off with a general description of a Markov-functional model in the
usual full term structure setting, and proposed an approach built upon the properties of
the model, at a local (fixed) time. We have only commented on a very basic description
of the setup of the Markov-functional approach without explaining how to calibrate
the model and thus get hold of the functional forms themselves. The next sections are
dedicated to this particular task.

2.1.1 General model setup and assumptions

We discuss the model setup. We fix some time T. Assume we have a finite tenor
structure T < S1 < S2 < . . . < SM̃ < ∞, with the time elapsed between Sj−1 and
Sj given by αj . We work under the forward measure F, associated with taking D.T as
numéraire. We lay out the modelling assumptions.

A1 Assume there exists a bivariate random variable xT , where xT = (x
(1)
T , x

(2)
T )

which summarises the state of the economy at time T (so xT is taken to be
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the model driver) and pure discount bonds at time T can be written in the form
{(DTSj (xT ))

M̃
j=1 : T < Sj <∞}.

We can specify the joint distribution of xT under F by a chosen copula and associated
marginal distributions for x(1)T and x(2)T . We assume that the marginal density functions
with respect to the Lebesgue measure exist.

At each maturity date Sj , j ∈ {1, . . . , M̃}, we would naturally want the model to be
able to correctly price liquid vanilla instruments most closely related to the product
we are interested in pricing. The calibrating instruments we use are swaptions (we
can equally use digital swaptions, the prices of which can be recovered from swaptions.
In practice, some smart interpolation technique is used to construct a curve for the
remaining strikes in a way that does not allow for arbitrage and digital swaption prices
can be obtained by differentiating the interpolation function with respect to strike). To
this end, we make the following assumption:

A2 Assume we are given a suitable set of payer swaption prices of different strikes K,
on the forward par swap rate {yjT , j ∈ {1, . . . , M̃}}, which pay P j

T (y
j
T −K)+ at

time T . This is equivalent to knowing the prices of digital swaptions with same
underlying and strike. These prices would determine the distribution of yjT under
the associated swaption measure Sj .

The techniques developed in Hunt, Kennedy, and Pelsser (2000) for calibrating a
Markov-functional model relied extensively on the one-dimensionality property of the
driver. Hunt and Kennedy (2000) discussed the extension to multi-dimensional Markov-
functional models. The authors argue that in order to make the functional fitting effi-
cient when moving to a higher dimension, through an informed choice, we can collapse
the dimension of the driver to a one dimensional variable and apply the univariate
techniques for the Markov-functional fitting. Through this, it is possible to generate
a wide range of models that calibrates to the desired marginal and joint distributions.
The choice of the method to collapse the dimension comes from a prior model, which
generally speaking is a rough approximation of the swap rate in terms of the driver xT .
At a given maturity Sj , say we have an approximation for the swap rate yjT , which we
denote by ŷjT (xT ). We assume that the functional dependence of the swap rate on xT

is only via the prior model. The prior model is chosen to capture the joint distribu-
tion of the swap rates, but it may admit significant arbitrage. To overcome this, we
introduce a Markov-functional sweep in the form of a monotonic function that acts as
a small perturbation on the prior model and removes arbitrage. We shall elaborate on
the choice of prior model in Section 2.2.

A3 We assume we can express the swap rate yjT as a monotonic increasing function
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of the prior ŷjT (xT ):
yjT (xT ) := f j(ŷjT (xT )), (2.6)

where ŷjT : R2 → R and f j : R→ R is some monotonic increasing function.

Remark 6: Given the model driver xT and a chosen prior ŷjT , provided that we start
the functional fitting at the first maturity date S1 and we unfold the model forward in
maturity, the functional form f j is uniquely determined by the market-implied marginal
distribution of the swap rate under its associated swaption measure. The functional form
yjT in equation (2.6) is unaltered by a monotonic transformation of the prior ŷjT .

To see this, first assume that we have collapsed the dimension of the driver via the
prior. The functional fitting now relies on the one-dimensionality property of the prior.
Define ỹjT = gj(ŷjT ), where gj : R → R is a deterministic monotonic function. We
use this modified prior and calibrate the model, we would get yjT (xT ) := f̃ j(ỹjT (xT )) =

f̃ j(gj(ŷjT (xT )), for some monotonic function f̃ j : R→ R. For any x ∈ R, we define

F y
j (x) := ESj [1{y

j
T ≤ x}],

where F y
j is known under the swaption measure Sj (in line with assumption A2). We

also define:
F̂ y
j (x) = ESj [1{ŷ

j
T ≤ x}].

Since we are calibrating the model to the given marginal distribution under Sj, we have
chosen f j such that:

ESj [1{f j(ŷ
j
T ) ≤ x}] = ESj [1{ŷ

j
T ≤ (f j)−1(x)}] = F y

j (x)

=⇒ F̂ y
j ((f

j)−1(x)) = F y
j (x).

By the same line of reasoning, for the modified prior, we would obtain:

F̂ y
j ((f̃

j ◦ gj)−1(x)) = F y
j (x).

Equating the LHS, we therefore have that:

F̂ y
j ((f

j)−1(x)) = F̂ y
j ((f̃

j ◦ gj)−1(x))

=⇒ (f j)−1(x) = (f̃ j ◦ gj)−1(x),

by monotonicity of F̂ y
j , or equivalently, we have that f j ≡ f̃ j ◦ gj.

We end this section with two observations: Firstly, the model thus set up allows us to
vary the joint distribution of xT , without inadvertently changing the market-implied
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distribution of the swap rates at time T under their associated swaption measure. Sec-
ondly, viewing things from the Markov-functional perspective, it is clear that given
market swaption prices, the distribution of the driver in a one-factor model has no ef-
fect on the model, and therefore CMS prices. To illustrate the second point further,
consider, for simplicity, a one-factor short-rate model. One would start off by formulat-
ing an SDE for the short rate, from which one can recover the pure discount bond at any
given fixed time T and maturity as a function of the short rate rT . One can thus work
out the functional form for the swap rate from those of the pure discount bonds with
varying maturities. This enables us to find an approximate distribution of the swap
rate under its associated swaption measure. Given the intricate relationship between
the swap rate and the short rate, the choice we make to model the short rate will have
a non-transparent effect on the distribution the model ascribes to the swap rate at time
T . At this point, we have lost control over the choice of distribution of the swap rate
at a fixed time. Murgoci and Gaspar (2016) study closed form convexity corrections
in an affine term structure set up. The numerical study they carry out compares one
factor Vasicek and CIR models for LIBOR-in-Arrears(LIA) and CMS convexity adjust-
ments. The authors observe for example that higher speed of mean reversion lowers
the convexity correction and recommend that if one believes that interest rates exhibit
mean reversion then this should be included in the convexity adjustment alongside the
volatility of the short rate. In fact, it is not the effect of the mean-reversion on the
dynamics of the short-rate that matters, but rather its effect on the joint distribution of
all the swap rates at time T . A higher mean-reversion yields lower swap rate volatilities
for long dated swaps relative to short-dated swaps at any fixed time T .

It is informative to re-examine the findings through the insights available from taking a
Markov-functional approach. We could view the short rate as the driver of a one factor
Markov-functional model. If were to do a Markov-functional sweep on an affine term
structure model as our prior model in order to calibrate the model to the market-implied
distributions of relevant swap rates at time T , the effect of the choice of driver, Vasicek
or CIR, would totally disappear- there is a unique one factor Markov-functional model
that calibrates to these market prices. The comparison between Vasicek and the CIR
models made in Murgoci and Gaspar (2016) is a comparison between two one factor
models with different distributions for the swap rates at time T in their respective
swaption measures. In that sense it is not the properties of the driver that matter but
the resulting distributions it prescribes at time T.

2.1.2 Constructing the functional forms

In Section 2.1, we gave a brief description of the model setup, but we did not discuss
how we choose to calibrate the model to the market information. In this section, we
describe how the assumptions given above can be used to construct a Markov-functional
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model at a single time under the forward measure F, that is calibrated to a given set
of swaption prices, driven by a bivariate random variable, whose joint distribution is
determined by a copula.

We recall we have a finite tenor structure T < S1 < S2 < . . . < SM̃ < ∞. Fix
j ∈ {1, . . . , M̃}. Assume we have derived functional forms of ykT , for k ∈ {1, . . . , j − 1}.
Equivalently, from equation (2.4), we know P k

T , and from equation (2.5), we know DTSk
,

for k ∈ {1, . . . , j − 1}. We now need to construct the functional form of yjT . To do so,
we use the alternative prices defined in Proposition 2.1.1.

Proposition 2.1.1. Given a suitable set of payer swaption prices, with underlying
rate yjT and strike K ∈ R+, denoted by V j

0 (K) and digital swaption prices with same
underlying and strike, denoted by V j

0(K), we define the alternate prices Ṽ j
0 (K):

Ṽ j
0 (K) := αjV

j
0 (K) + (1 + αjK)V

j
0(K).

We can express the decreasing càdlàg function Ṽ j
0 (·) as an expectation with respect to

the swaption measure Sj as follows:

Ṽ j
0 (K) = P j

0ESj [1(y
j
T > K)(1 + αjy

j
T )]. (2.7)

Proof.

Ṽ j
0 (K) := αjV

j
0 (K) + (1 + αjK)V

j
0(K)

= αjP
j
0ESj [(y

j
T −K)+] + (1 + αjK)P j

0ESj [1(y
j
T > K)]

= P j
0ESj [αj(y

j
T −K)1(yjT > K) + (1 + αjK)1(yjT > K)]

= P j
0ESj [(1 + αjy

j
T )1(y

j
T > K)].

Remark 7: Note that Ṽ j
0 (K) is the value at time zero of a portfolio comprising αj units

of a payer’s swaption with strike K and (1+αjK) units of a digital swaption with strike
K.

The alternative prices Ṽ j
0 (·) enable us to construct the functional form f j in a recursive

manner. Indeed, from equation (2.7), by a change of numéraire to F, we get

Ṽ j
0 (K) = P j

0EF

[
dSj

dF

∣∣∣∣
FT

1(yjT > K)(1 + αjy
j
T )

]
= P j

0EF

[
P j
T

DTT
.
D0T

P j
0

1(yjT > K)(1 + αjy
j
T )

]
= D0TEF[1(y

j
T > K)P j

T (1 + αjy
j
T )]. (2.8)
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We do not know the functional form of P j
T yet, but we can omit this term using the

fact that:
P j
T (1 + αjy

j
T ) = P j−1

T + αj . (2.9)

This follows from rearranging equation (2.3). Hence, using the expression from equation
(2.9) in equation (2.8), we have

Ṽ j
0 (K) = D0TEF[1(y

j
T > K)(P j−1

T + αj)]. (2.10)

We recall the role of the prior model in assumption A2: we stated that the prior
model informs the choice to collapse the dimension of the driver to a univariate random
variable.

Let y∗ ∈ R and we define J j
0(y

∗) as

J j
0(y

∗) := D0TEF[1(ŷ
j
T (xT ) > y∗)(P j−1

T + αj)],

where ŷjT : R2 → R. Since P j−1
T is already determined in the previous step, J j

0 is well
defined, and can be computed numerically given the distribution of xT . We observe
that Ṽ j

0 and J j
0 differ only in the indicator function. By the monotonicity assumption

of f j in A2, we can find a unique K∗ ∈ R, such that the set identity holds:

{ŷjT > y∗} = {yjT > K∗}.

For a given y∗, finding that uniqueK∗ such that the above set identity holds is equivalent
to knowing f j(y∗) in the sense that:

f j(y∗) = K∗ := sup{K ≥ 0 : Ṽ j
0 (K) ≥ J j

0(y
∗)}. (2.11)

Following the steps above allows us to construct a functional form for yjT that gives
us the desired marginal distribution under the swaption measure Sj . We subsequently
know the functional forms of P j

T and DTSj .

2.1.3 Specifying the distribution of the driver

We recall that the joint distribution of the components of the driver is a modelling choice.
We can choose the marginal distribution of the components of the driver, and specify
their joint distribution via a copula function. To do so, we need Sklar’s Theorem:

Theorem 2.1.2 (Sklar’s Theorem). Consider a d- dimensional cumulative distribution
function F with marginals F1, . . . , Fd. There exists a copula C, such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),∀xi ∈ R, i = 1, . . . , d, (2.12)
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where Fi(xi) ∼ U(0, 1). If Fi are continuous ∀i = 1, . . . , d, then C is unique. Conversely,
consider a copula C and univariate CDFs F1, . . . , Fd. Then F as defined in (2.12) is a
multivariate CDF with marginals F1, . . . , Fd.

We now consider the case where the prior ŷjT only depends on xT through a linear
combination of the components, β(1)j x

(1)
T + β

(2)
j x

(2)
T . This is sufficient for the cases

examined in this thesis. We can now derive a more explicit form for J j
0 .

Building on Theorem 2.1.2, we transform x
(i)
T as follows: Let

X̂ := F1(x
(1)
T )

Ŷ := F2(x
(2)
T ),

where F1(·) and F2(·) are the marginal distributions of x(1)T and x
(2)
T respectively (we

suppress the time notation T for simplicity). Let P̃ j−1
T (xT ) := P j−1

T (xT )+αj . Assuming
β
(2)
j > 0, we have that

EF[1(ŷ
j
T (xT ) > y∗)P̃ j−1

T (xT )]

= EF[1(β
(1)
j x

(1)
T + β

(2)
j x

(2)
T > y∗)P̃ j−1

T (x
(1)
T , x

(2)
T )]

= EF

[
EF[1(β

(1)
j x

(1)
T + β

(2)
j x

(2)
T > y∗)P̃ j−1

T (x
(1)
T , x

(2)
T )
∣∣X̂]

]
= EF

[
EF

[
1

(
x
(2)
T >

y∗ − β
(1)
j F−1

1 (X̂)

β
(2)
j

)
P̃ j−1
T (F−1

1 (X̂), F−1
2 (Ŷ ))

∣∣X̂]]

= EF

[
EF

[
1

(
Ŷ > F2

(
y∗ − β

(1)
j F−1

1 (X̂)

β
(2)
j

))
P̃ j−1
T (F−1

1 (X̂), F−1
2 (Ŷ ))

∣∣X̂]]. (2.13)

We look at the inner expectation defined by

hj(y∗, X̂) := EF

[
1

(
Ŷ > F2

(
y∗ − β

(1)
j F−1

1 (X̂)

β
(2)
j

))
P̃ j−1
T (F−1

1 (X̂), F−1
2 (Ŷ ))

∣∣X̂].
We further define for x̂ ∈ (0, 1), the function gj : R2 → [0, 1],

gj(y∗, x̂) = F2

(
y∗ − β

(1)
j F−1

1 (x̂)

β
(2)
j

)
.

We can then evaluate

hj(y∗, x̂) =

∫ 1

gj(y∗,x̂)
P̃ j−1
T (F−1

1 (x̂), F−1
2 (ŷ))cŶ |X̂(ŷ|x̂)dŷ,

where cŶ |X̂(.|.) is the chosen conditional copula density. Once we get hold of hj(y∗, x̂),
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plugging it back in equation (2.13), we can evaluate J j
0(y

∗) as follows:

J j
0(y

∗) = D0T

∫ 1

0
hj(y∗, x̂)dx̂

= D0T

∫ 1

0

∫ 1

gj(y∗,x̂)
P̃ j−1
T (F−1

1 (x̂), F−1
2 (ŷ))cŶ ,X̂(ŷ, x̂)dŷdx̂.

(2.14)

Remark 8: The above equation follows from the assumption that the parameter β(2)j is
strictly positive. However, β(2)j ∈ R\{0} and suitable adjustment has to be made, in
particular, reversing the inequality sign if β(2)j < 0, and consequently the order of the
inner integration.

2.2 General prior model setup

A key feature of a Markov-functional model is its ability to separate the driver and the
marginal distributions we want to capture. As touched upon in Section 2.1.1, given the
model driver, and a prior model, the functional forms of the swap rates are uniquely
determined by the swaption prices when the functional fitting starts at the first maturity
date S1. The ability to choose the functional forms allows us to capture the desired
market-implied marginal distributions. The joint distribution of the swap rates is deter-
mined by the choice of prior model. Since the specification of the joint distribution of
xT via a copula and the prior model are both modelling choices, the Markov-functional
approach provides considerable flexibility in specifying the joint distribution. As such,
the model setup described is very general. If we believe that the state of the economy
at a single time can be summarised by a bivariate random variable, all models for which
this holds true can be represented by the Markov-functional approach. We would be
able to set up a prior model to capture any desired joint distribution of the swap rates
and carry out a Markov-functional sweep to calibrate to the market-implied marginal
distributions. The last step depends on the monotonicity assumption we made in A2,
which in essence is not a restrictive assumption. We discuss below a prior model setup
based on a local volatility separable swap market model as a concrete example. While
this choice is broad in itself, we point out that we could have chosen any low-dimensional
model as our base model for the prior model setup.

2.2.1 Example: A prior model setup for local volatility separable mar-
ket models

We now elaborate on the prior model setup. We can make an informed choice by
exploiting the link between Markov-functional models and separable market models.
The separability concept was introduced by Pietersz, Pelsser, and Van Regenmortel
(2004) as a method to approximate high-dimensional LIBOR market models (LMM)
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by a low-dimensional Markov process. Bennett and Kennedy (2005) showed that under
the separability condition, a one-dimensional LMM and a one-factor Markov-functional
model are numerically indistinguishable. The authors believe that similar observations
would hold for swap based market models, and the results would carry over to higher
factor models. This allows us to borrow the structure of an SDE formulation of swap
rates and carry over the intuition to the Markov-functional framework via the prior
model.

We consider a two-factor separable local volatility swap market model. For any given
j ∈ {1, . . . , M̃} , when modelling the swap rate yj , we assume that the volatility function
can be expressed as the product of a bounded, time-dependent deterministic function
denoted by σ̄i,j(t), for i ∈ {1, 2}, and a time-homogeneous (possibly, non-linear) function
of the swap rate, denoted by ϕ(·). Furthermore, by the separability condition, we can
express σ̄i,j(t) as the product:

σ̄i,j(t) = β
(i)
j σ

(i)
t ,

where σ(i)t : [0, T ] → R and β
(i)
j ∈ R. Under a general EMM (N,N), the swap rate yj

satisfies an SDE of form:

dyjt = ϕ(yjt )(β
(1)
j σ

(1)
t dW 1

t + β
(2)
j σ

(2)
t dW 2

t ) + µjtdt, (2.15)

where ϕ : R → R, and for i = {1, 2}, β(i)j ∈ R, σ(i)t is a deterministic function of time
and µjt is determined by the no-arbitrage condition. Andersen and Andreasen (2000)
showed that under certain conditions on the local volatility function ϕ, the SDE admits a
unique non-negative solution, provided yj0 ≥ 0, with the solutions being strictly positive
if yj0 > 0, for j ∈ {1, . . . , M̃}.

Some common choices of local volatility functions include ϕ(x) = x − θ, θ ≥ 0 which
leads to the displaced-diffusion (shifted log-normal) swap market model, and for θ = 0,
we obtain the log-normal swap market model. We also have the Constant Elasticity
of Variance (CEV) local volatility function with ϕ(x) = xγ , γ ∈ (0, 1), discussed in
Andersen and Andreasen (2000).

We aim to set up a prior model for the Markov-functional approach when mirroring a
local volatility swap market model. Note that the marginals given by the local volatility
model should be the same marginals to which we calibrate the Markov-functional model.
By Itô’s lemma, assuming the function h : R → R is twice continuously differentiable,
we have that:

dh(yjt ) =
∂h

∂y
dyjt +

1

2

∂2h

∂y2
d[yj ]t

=
∂h

∂y
(ϕ(yjt )(β

(1)
j σ

(1)
t dW 1

t + β
(2)
j σ

(2)
t dW 2

t ) + cj(t)dt,
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where cj(·) is the finite variation process that groups together the drift and the quadratic
variation component. For our purposes, we can ignore this term since any arbitrage
introduced by taking an approximation for this term will be removed by the Markov-
functional sweep. We note however, in general, if time t is large, significant arbitrage
could be introduced in the drift approximation model, and can be enlarged if we are
considering a full-term structure approach to price a path-dependent product, as high-
lighted in Bennett and Kennedy (2005). However, we are not considering this case
here.

Choosing the function h such that it satisfies:

h(x) =

∫
1

ϕ(x)
dx,

we obtain:
dh(yjt ) = β

(1)
j σ

(1)
t dW 1

t + β
(2)
j σ

(2)
t dW 2

t + cj(t)dt.

We note that if ϕ(x) is chosen to be strictly positive, then, by definition h will be a
monotonic increasing function. For a given time t, we therefore have that:

h(yjt ) = β
(1)
j

∫ t

0
σ(1)s dW 1

s + β
(2)
j

∫ t

0
σ(2)s dW 2

s +

∫ t

0
cj(s)ds.

If we apply the common technique of freezing the drift term to its initial value, denoting
the constant by c̃j(0), and we express the components of the driver of the full term-
structure Markov-functional model as x(1)t :=

∫ t
0 σ1(s)dW

1
s and x

(2)
t :=

∫ t
0 σ2(s)dW

2
s ,

we obtain:
h(yjt ) ≈ β

(1)
j x

(1)
t + β

(2)
j x

(2)
t + c̃j(0),

or equivalently, we have:

yjt ≈ h−1(β
(1)
j x

(1)
t + β

(2)
j x

(2)
t + c̃j(0)). (2.16)

By monotonicity of h, we know the inverse function exists. Fixing the time t = T , we
observe that we can mirror the local volatility separable market model in the Markov-
functional approach and this is achieved by taking a linear combination. We can thus
define

ŷjT (xT ) := β
(1)
j x

(1)
T + β

(2)
j x

(2)
T .

Alternatively, we could have taken the prior model to be the RHS expression of equation
(2.16), whereby we fix the time t = T and take a monotonic transformation of the linear
combination of the components of the driver. This follows from the fact that the func-
tional fitting is unique, as discussed in assumption A2. It does not matter whether the
functional fitting is done to ŷjT or a monotonic transformation of ŷjT ; they would result
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in the same functional forms, calibrated to the same set of marginal distributions.

We take as a motivating example, a modified version of a swap market model with the
local volatility function given by:

ϕ(yjt ) = (yjt )
γ ,

where γ is a positive constant. This is the CEV model introduced by Cox and Ross
(1976). We note that γ = 0 corresponds to the Bachelier model, giving us Gaussian
marginals on the swap rates, and γ = 1, corresponds to the swap market model, with log-
normal marginals. Allowing for general value of γ enables us to incorporate a volatility
skew in the model (hence assuming fatter tails in the marginal distributions of the
forward rates relative to the Gaussian assumption). Choosing h(x) := x1−γ , we have
that:

yjT ≈
[
(1− γ)

(
β
(1)
j

∫ T

0
σ1(t)dW

1
t + β

(2)
j

∫ T

0
σ2(t)dW

2
t

)
+ c̃j(0)

] 1
1−γ

=

[
β
(1)
j x

(1)
T + β

(2)
j x

(2)
T + c̃j(0)

] 1
1−γ

,

where x(i)T := (1− γ)
∫ T
0 σi(t)dW

i
t , for i = 1, 2. We obtain a prior model expressed as a

function of a linear combination of the components of the driver.

The Markov-functional approach described in this chapter is general enough to represent
a large set of interest rate models for which the state of the world can be summarised
by a two-dimensional driver. In the above example, we have shown how the Markov-
functional model could be set up if we assume that the distribution of the swap rates
exhibit volatility skews. Even if we were to consider stochastic volatilities, with the
underlying prior model being a SABR-type model, the Markov-functional approach
proposed here would still be applicable. In a one-factor SABR-type swap market model,
(y, σ) is Markovian. However, we recall we are setting the model up at a fixed time.
By assumption A3, if we are given a set of suitable swaption prices obtained from
SABR marginals, we can perform a Markov-functional sweep and capture the swap rate
marginals. We would only need to set up a prior model for the swap rates to model
their joint distribution. In that sense, the contribution of the volatility disappears - this
has already been taken into account when calibrating the model. On the other hand,
the setup would be more involved for applications where one needs a full term-structure
model. In this case, we refer to the interested reader to Kennedy, Mitra, and Pham
(2012) Kaisajuntti and Kennedy (2014), and Guo (2016) for the development of a full
term-structure stochastic Markov-functional model.



CHAPTER 3

What matters when pricing a CMS and CMS Option: A

numerical investigation

In this chapter, we explore numerically via the single-time MFM developed in Chapter
2 the properties that matter most when pricing convexity-related exotic products. We
will focus mainly on the pricing of a CMS (and related options), but we point out that
the model could be used to price and study other swap-based products (even extending
beyond single-rate products to include for example spread options). We expand briefly
on what we mean by the properties we want to investigate. Observe firstly that if we
want to price a CMS payment with underlying forward swap rate yNT and payment
made at SM , we would set up a single-time MFM up to SM̃ , M̃ = max{N,M}. The
model will be calibrated to the full set of market-implied marginal distributions of the
swap rates yiT , i = 1, . . . , M̃ . The first question therefore is which of these market-
implied distributions matter most when pricing a CMS. We study this question using
the single-time MFM in the one-factor context. We explain the choice of a one-factor
model for the basis of this investigation in Section 3.1. In Section 3.2, we provide some
numerical results that allow us to determine the impact that each forward swap rate has
on convexity corrections, and how the behaviour changes as the shape of the volatility
smile changes. We consider three shapes: flat, skew and smile. We observe that at
maturities that are of primary importance to practitioners (M = 0, 1 or M ≫ N), the
marginal distribution of the reference swap rate and the marginal distribution of the
swap rate whose end date coincide with the payment date (payment swap rate) have
the greatest impact on convexity corrections. We equally observe that as the payment
date gets further away from the reference swap rate maturity, the effect of the payment

32
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swap rate outweighs the effect of all the other rates. Finally, we see that the other
forward swap rates have a non-negligible effect on convexity corrections as well, but we
point out that the investigation is carried out under fairly stressed market conditions.
Nonetheless, the observation that the payment swap rate becomes a significant variable
in the valuation remains a salient feature that will persist even under normal market
conditions when M > N .

Having established the above, we are now interested in the effect of the joint distribution
of the reference and payment swap rates on convexity corrections. We study this prob-
lem using a two-factor (2F) single-time MFM. For the numerical analysis, we assume
the model driver is bivariate Gaussian (under the forward measure), and the swap rates
are log-normally distributed in their own swaption measures. Their joint dependence
can thus be summarised in terms of the correlation. In Section 3.3.1, we show how to
set up the prior model for the 2F single-time MFM based on the assumptions stated
above. These assumptions enable us to borrow the structure and information from
market models, and mirror the intuition and understanding in the single-time MFM. In
Sections 3.3.3 and 3.3.4, we set out to study the effect that the correlation has on con-
vexity corrections. We observe that the correlation between the reference swap rate and
the payment swap rate does have a significant effect (especially for long payment dates)
on convexity corrections when pricing a CMS and a CMS caplet. Note that if we are
working with a copula other than Gaussian, properties of the joint distributions other
than correlation might matter, but we do not consider this case in the thesis.

3.1 Establishing the context for a numerical investigation

We use the single time MFM developed in the previous chapter as a platform to study
convexity corrections. The numerical analysis carried out in this chapter focuses mainly
on the single payment of a Constant Maturity Swap (CMS). We start off by analysing
a single payment of the exotic leg of a CMS. Let yNT be a given forward swap rate with
start date T ≡ S0 and S1 < S2 < . . . < SN be the sequence of the reset dates of the
corresponding swap. A payment of the CMS is for the amount yNT and is made at some
fixed time SM ≥ T . We therefore refer to yNT as the reference swap rate. The value of
the payoff at time T is given by:

V CMS
T = yNT DTSM

.

It follows, by Theorem 1.5.1, that the value at time zero is given by:

V CMS
0 = N0EN

[
yNT

DTSM

NT

]
, (3.1)
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for some numéraire pair (N,N). Using D.SM
as numéraire with associated forward

measure NM , we have that:

V CMS
0 = D0SM

ENM [yNT ].

However, the process yN is not a martingale under NM , but is so under its associated
swaption measure SN . This gives rise to the need to adjust the forward swap rate to
account for the unnatural payment schedule. This adjustment, as we have discussed
before is referred to as the convexity correction and is defined as follows:

CN,M := ENM [yNT ]− ESN [y
N
T ]

= ENM [yNT ]− yN0 , (3.2)

where the second equality follows as a consequence of the martingale property of yN

under SN .

It would be natural to consider the valuation of the CMS payment with respect to
the swaption measure. From a suitable set of swaption prices over a range of strikes,
which we can obtain from the market, at a given fixed time T , one can recover the
implied marginal distribution of yNT under SN . Viewed from the swaption measure, the
valuation of the payoff requires the knowledge of the joint law of yNT and DTSM

PN
T

, which
has to be modelled. We shall discuss shortly the approach commonly taken in this case.
In this chapter, we choose to work with the pure discount bond maturing at time T as
numéraire, with associated forward measure F and we therefore have:

V CMS
0 = D0TEF[y

N
T DTSM

].

Following equation (3.2), by a change of measure to F, the convexity correction is given
by:

CN,M =
D0T

D0SM

EF[y
N
T DTSM

]− yN0 . (3.3)

We observe that for the pricing of the CMS payoff, we would need to consider the joint
distribution of the reference swap rate and the pure discount bond maturing at the
payment date under the forward measure F. As we have seen in the earlier chapter,
DTSM

is itself a function of a set of swap rates (y1T , y
2
T , . . . , y

M
T ). We recall:

DTSM
(y1T , y

2
T , . . . , y

M
T ) := 1− yMT

M∑
k=1

αk

M∏
l=k

1

1 + αly
l
T

.

Hence, in principle, in order to price a CMS, one would need to find an appropriate
model for the joint distribution of the swap rates y1T , . . . , y

M
T and the reference swap
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rate yNT , which turns out to be a non-trivial task. A natural question at this stage
is to determine what properties of the joint distribution have a significant impact on
the valuation problem; in other words, what is important to get right? In the current
practical literature, emphasis is placed mainly on getting the marginal distribution of
the reference swap rate under its associated swaption measure accurately modelled.
This is a reasonable approach in the particular context where the payment date lies
within the length of the reference swap rate maturity. Any model setup in this case has
to satisfy a consistency condition specified below, that puts a fairly strong restriction
on the model. We consider the valuation at a set of payment dates coinciding with
the payment dates of the reference swap rate. Taking a weighted sum of the expected
payoffs, we have that:

N∑
i=1

αiEF[y
N
T DTSi ] = EF[y

N
T P

N
T ]

=
1−D0SN

D0T
.

By definition of convexity correction given in equation (3.3), it follows that:

N∑
i=1

αiD0Si(CN,i + yN0 ) = D0T

N∑
i=1

αiEF[y
N
T DTSi ]

= 1−D0SN

=⇒
N∑
i=1

αiD0SiCN,i + yN0 P
N
0 = 1−D0SN

=⇒
N∑
i=1

αiD0SiCN,i = 0. (3.4)

We observe that if we knew the convexity correction at the setting time T (which
we do in the European markets as it can be derived from market prices of cash-settled
swaptions), the convexity correction at the reference swap maturity, and we assume that
the convexity corrections behave roughly linearly with respect to the payment dates, we
could estimate the convexity correction at the intermediate times Si, i ∈ {1, . . . , N−1}.
We do not know the convexity correction CN,N but the consistency condition would
give us a weighted average and this gives us some control for when the payment date is
earlier than the reference swap rate maturity.

However, recent products, typically of spread type have pushed the payment dates
beyond the reference swap rate maturity, a setup not currently explored or discussed
in the literature, except incidentally in Cedervall and Piterbarg (2012) who consider
the possibility in their numerical analysis, but do not expand on the idea, nor explore
the context in depth. When the payment date goes beyond the length of the reference
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swap rate, we lose control over convexity corrections given by the consistency condition.
Viewed from the forward measure, we would want the model to take into account the
decorrelation between the pure discount bond DTSM

and the reference swap rate yNT .
We would intuitively expect the correlation to be large and negative at first, but to
increase as the payment date increases beyond the swap rate maturity. So in this case,
it is not only the level of rates that matter, but we would also want to capture the slope,
hence motivating the need for a two-factor model.

In light of the above, in this chapter, we set out to study what matters most in the
pricing problem. The general question we want to address via the single-time MFM is:
What matters when it comes to effectively pricing a CMS? We break down the general
question into two specific questions that can be numerically investigated:

(a) When pricing a CMS, which marginal distributions of the swap rates under their
respective swaption measures have a significant impact?
We study the first question using a 1F single-time MFM. There is a unique one-
factor model that would calibrate to the whole set of marginal distributions of the
swap rates under their respective swaption measures. As we shall demonstrate
in the numerical sections that follow, we observe from the single-time one-factor
MFM that, as the payment date is taken further away from the reference swap
rate maturity, the marginal distribution of payment swap rate, together with that
of the reference swap rate, have a significant impact on convexity corrections,
while the other rates have comparatively much weaker effect.

We note that we could equally have used the two-factor version of the model to
study this question. We chose not to do so, firstly because a two-factor model
would be cumbersome in the specific context we are in; it would be harder to
dissociate the marginal distribution effect of the swap rates from their joint de-
pendence. Secondly, we do not expect the conclusions we draw, particularly with
regard to those rates which have little impact, to alter in a two-factor setting. Nei-
ther the payoff yNT DTSM

nor its distribution under the forward measure F have
a strong dependence on rates other than yN and yM . (Note that for any n, the
Radon-Nikodỳm derivative dSn

dF
∣∣
FT

= Pn
T depends predominantly on ynT , but not

on other rates ymT , m ̸= n. Thus the rates that we observe to be insignificant for
the accurate pricing of a CMS in a one-factor model, will remain so in a two-factor
context.

(b) Which aspects of the joint distribution of the swap rates matter when valuing
convexity corrections? We investigate this using a 2F single-time MFM. A first
element that plays a significant role in establishing the joint dependence between
the swap rates is the PVBP. We recall briefly the model setup discussed in Sec-
tion 2.1.1 and illustrated in Figure 2.1 of chapter 2. At any fixed maturity Sj ,
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the calibration step involves the PVBP P j−1
T which is constructed using market

information of all the swap rates from previous maturities. Hence, the unfold-
ing of the model forward in maturity results in the PVBP being a complicated
function of the swap rates, and this information is reflected in the construction
of the functional form of yjT . We shall explore in more detail in Chapter 5, the
importance of modelling the PVBP under the forward measure appropriately, as
this variable fixes up a lot of structure in the joint dependence between the swap
rates, a point we will come to later in this section when discussing the approach
taken by Cedervall and Piterbarg (2012). A second element determining the joint
distribution between the swap rates under the forward measure F is the copula.
The Markov-functional modelling approach allows us to choose a copula func-
tion governing the joint distribution of the components of the driver. Once we
choose the copula, along with the market-implied marginal distributions of the
swap rates, we have specified a joint distribution for the swap rates under the
forward measure. The modelling approach further enables us to vary the copula
without losing the ability to calibrate the model. So, a sub-question here is: What
is the effect of the joint distribution of the driver on the valuation problem? We
expect that the copula would not have a significant effect in the case of a CMS,
but would be significant in a CMS spread option. To motivate this argument,
we point out that the CMS is a single-rate product, but as we will learn from
the investigation in the one-factor case, we need to factor in the market-implied
marginal distribution of the payment swap rate, on top of that of the reference
swap rate for the appropriate valuation of the expected payoff. Assume we start
off by evaluating the expected payoff in a two-factor setting using a Gaussian
copula on the driver. If we were to change the copula, but keeping the correlation
between the swap rates the same, we would expect the two model results to not be
significantly different from each other. On the other hand, spread-based products,
whose payoff are a function of more than one swap rate, might be more sensitive
to the choice of copula.

The rest of this section is devoted to an in-depth analysis of some current approaches for
valuation of a CMS. The approaches we discuss here are relevant and important from a
practitioner’s point of view. The models we shall explore are set up with the view that
we are interested in modelling swap rates at a single time, and they are calibrated to
the relevant market information. As such, we are not focused on a full term-structure
setting, as we have seen in some approaches discussed in the Introduction and Chapter
2. Term-structure models have limited flexibility and control over the model at a single
time, a key drawback when pricing European derivatives.

We begin with the Terminal Swap Rate (TSR) models commonly used in practice. This
modelling approach was developed by Hunt and Kennedy (2000) and is typically used
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to model and price European interest rate derivatives. The idea behind the approach is
that any pure discount bond of a given maturity S, observed at a fixed time T and the
numéraire NT (often defined as a function of pure discount bonds) can be reasonably
approximated as a function of a single variable most closely related to the product we
are interested in pricing. In the case of a CMS, the natural choice is the reference swap
rate. A TSR model therefore makes the assumption:

DTS = DTS(y
N
T ), S ≥ T,

NT = NT (y
N
T ),

where DTS(·) and NT (·) is a collection of exogenous, pre-determined functions of the
reference swap rate. For instance, we could assume that DTS rebased by the numéraire
PN is linear in yNT , giving us the linear swap rate model :

DTS

PN
T

(yNT ) := A+BSy
N
T ,

where A,BS ∈ R. Other classes of terminal swap rate models include the exponential
swap rate model, whereby the pure discount bonds are modelled as decaying exponential
functions and the geometric swap rate model. In a full term-structure setting, the
relationship between the pure discount bond and the swap rate will be induced by the
model itself. Since the functional forms in a terminal swap rate model are determined
exogenously, some conditions have to be placed on the functional forms to ensure the
model is consistent, arbitrage-free and realistic. We refer the interested reader to Hunt
and Kennedy (2000) for a detailed overview.

Going back to the valuation problem, from equation (3.1), if we work under the swaption
measure corresponding to taking PN as numéraire, we have that:

V CMS
0 = PN

0 ESN

[
yNT

DTSM

PN
T

]
.

By the Tower property of expectations, Andersen and Piterbarg (2010b) observe that
the valuation can be expressed as follows:

V CMS
0 = PN

0 ESN

[
yNT

DTSM

PN
T

]
= PN

0 ESN

[
ESN

[
yNT

DTSM

PN
T

∣∣∣∣yNT ]]
= PN

0 ESN [y
N
T αM,N (yNT )],

where
αM,N (yNT ) := ESN

[
DTSM

PN
T

∣∣∣∣yNT ]
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is referred to as the annuity mapping function.

Once we get hold of the annuity mapping function, which could be approximated using
a TSR model, the valuation problem boils down to an expectation of some function of
the underlying swap rate under its associated swaption measure (They use the replica-
tion argument to evaluate the expectation, by breaking down the payoff function into
a weighted sums of standard European swaptions). Hence, the authors believe that the
market-implied marginal distribution of the reference swap rate is the key information
they aim to get right in their approach to price a CMS. They also make a connection be-
tween the model parameters and the mean-reversion parameter of a full-term structure
model (Gaussian one-factor model), pointing to the belief that the model evolution at
earlier times influences the choices at a single fixed time. This misses the point that for
European derivatives, we aim to appropriately model the underlying rates at a single
fixed time, and our beliefs on model dynamics at earlier times do not affect the choices
we make at the fixed time.

Building on the above, Cedervall and Piterbarg (2012) extend the approach to account
for the fact that the payoff of a CMS depends not only on the reference swap rate; the
authors argue that for accurate pricing and risk management, it is the joint distribution
of the reference swap rate, the associated PVBP and the discount bond maturing at
the payment date that matters. To account for this, they introduce a different approx-
imation for the annuity function as follows:

αM̃,N (yNT ) := f(Y1,N , Y2,N , . . . , YM̃,N ),

where
Yj,N (x) := EF[y

j
T |y

N
T = x], (3.5)

for j ∈ {1, . . . , M̃}, M̃ = max{N,M}, and f : RM̃ → R is some deterministic function.
It is this representation of the annuity function that allows them to incorporate cor-
relation and volatilities of all the swap rates into the payoff function. However, as we
can immediately observe from equation (3.5), evaluating the annuity function requires
knowledge of the joint distribution of the swap rates under the forward measure. The
authors provide an approximation that is derived from the joint Gaussian distribution
assumption on the (log of) swap rates: They assume that the swap rates are Nor-
mal under their respective swaption measures, but can be reasonably approximated as
jointly shifted log-normal variables under F with some drift terms that are fixed using
no-arbitrage conditions. The volatility of the swap rates under F is approximated using
the market-implied volatility known only under the swaption measure. The swap rate
approximations under the forward measure are used as building blocks for the PVBP,
the variable that enables them to move the valuation problem back to the swaption
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measure. As we shall explore later on in Chapter 5, considerable care has to be taken
when we set a model up with respect to a measure under which we have no information
about the marginal distribution of the swap rates. The authors do not consider how
sensitive their models are to a change in the parameters used to approximate the swap
rates under the forward measure, that would have a direct impact on the PVBP. Fur-
thermore, the assumptions rely heavily on Gaussian assumptions and do not provide
flexibility for varying the model choices without significantly altering the model struc-
ture. While the authors argue that their approach accounts for the correlation between
all the swap rates, the authors single out the correlation between the reference swap
rate and the payment swap rate when considering the CMS convexity corrections for
which the payment date is taken far away from the reference swap rate maturity, but
they do not elaborate on this choice. In that sense, they recognise the influence of the
payment swap rate on the valuation of a CMS. However, they do not have control over
the marginal distribution of the payment swap rate in their approach. They are mainly
focused on setting up a single-time model aimed at modelling the reference swap rate
directly, with the goal of pricing single rate derivatives.

In a more recent paper, Bermin and Williams (2017) explored the use of a Markov-
functional technique to price cash-settled swaptions and CMS. More precisely, the au-
thors set up a full-term structure model of choice (the authors opt for a Quadratic
Gaussian Model (QGM)) and perform a Markov-functional sweep on the functional
form of the reference swap rate, in order to match the model-induced distribution to
the market-implied distribution at a given fixed time T . The authors take the view
that the market-implied marginal distribution of the reference swap rate is relevant and
significant to the accurate pricing of a CMS. In so doing, they perturb the model by
modifying the functional form of the reference swap rate but they keep the functional
forms of the PVBP and pure discount bonds the same. In light of the known functional
relationship between the swap rate and pure discount bonds, it is straightforward to
argue that the technique has inadvertently introduced arbitrage in the model. The only
criteria mentioned in the paper is that the model must be arbitrage free in the sense
that the fixed and floating leg of a swap are priced correctly. A second potential issue
relates to the choice of the base (full term-structure) model. The QGM is chosen as it
highlights relevant modeling aspects whilst still being tractable. How the choice of the
starting model ultimately affects CMS pricing is however not approached.

The literature studied above allows us to appreciate the complexity of the valuation
problem of a CMS, or any CMS-related derivatives, and points out the modelling as-
pects that one might need to consider in order to correctly price these derivatives.
Considerable effort goes into capturing the market-implied distribution of the reference
swap rate, a reasonable approach when the payment date varies within the length of
the reference swap rate maturity. In this chapter, we explore the impact of relaxing
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this payment date assumption and determine the features of the joint distribution of
the swap rates that matter when pricing a CMS (and related products).

3.2 Numerical Investigation: The one-factor case

As we have discussed in the previous section, we use a one factor single-time MFM to
investigate the impact of the market-implied marginal distributions of the swap rates on
convexity corrections arising from pricing a single payment of a CMS. We choose to work
under the forward measure F corresponding to taking D.T as numéraire. The questions
we are interested in are, (i) whether all market-implied marginal distributions of the
swap rates contribute equally to the convexity corrections and (ii) will the behaviour
change if the shape of the volatility smile changes. In the next section, we lay out the
single-time one factor MFM setup.

3.2.1 Single-time one-factor MFM setup and initial conditions

We use the same tenor structure setup as in Section 2.1.1. We assume that the setting
date T is 20 years from now, and the maximum payment time SM̃ is 30 years from T.
The accrual factor, αi = 1, for i ∈ {1, . . . , M̃}. In order to study the payment time
effect on convexity corrections arising from the pricing of a CMS based on the forward
rate yNT (the valuation of which is given in equation (3.3)), we allow the payment date
SM , for M ∈ {0, . . . , M̃}, to vary within the given tenor up to SM̃ and we define yMT
as the payment swap rate - i.e the forward swap rate with maturity coinciding with
the payment date. We consider two cases, one where we take SN = 2 years from T

and SN = 10 years from T . The initial conditions are given in table 1 in Appendix A.
We assume that the model driver is a standard Gaussian random variable under the
forward measure. As discussed before, we could have made any other choice for the
driver since once we calibrate the model, the effect of the driver would disappear, owing
to the uniqueness property of the one-factor MFM. We chose a Gaussian variable for
ease of numerical implementation.

3.2.2 Log-normal market-implied distributions

We begin the investigation with the assumption that the swap rates are log-normally
distributed under their respective swaption measures, with yi0 = 0.07, for all i (we can
ignore the subscript for ease of notation) and log-normal volatilities σi, i ∈ {1, . . . , M̃}
as given in Table 1 in Appendix A. We shall explore in detail how we choose to set these
values up when we discuss the two-factor version of the model. We first compute and
plot the convexity corrections as a function of payment date below.
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Figure 3.1: Convexity Corrections against payment date under log-normal market-implied
distributions

M̃ = 30, D0T = 1.0, y0 = 0.07, σ2 = 0.149, σ10 = 0.143

In order to investigate the marginal distributions that have a significant impact in
determining the value of convexity corrections, the vega profile is computed as detailed
below.

We first fix the reference swap rate maturity SN . For i ∈ {1, . . . , 30}, the ith log-normal
volatility is increased by 1 basis point (bp) (i.e a percentage point increase of 0.01%) and
the convexity correction at a given payment date SM , for M ∈ {0, . . . , M̃}, denoted by
(CN,M )i+ is computed. Similarly, the ith log-normal volatility is decreased by 1 bp and
the convexity correction (CN,M )i− is computed. The ith vega associated with payment
date SM , denoted by vM,i is calculated as follows:

vM,i =
(CN,M )i+ − (CN,M )i−

10−4 x 2
.

Remark 9: The vega also depends on the reference swap rate maturity SN , but we have
suppressed the dependence on SN for ease of notation.

Figures 3.2 and 3.3 below illustrate the vega profile. On the x-axis is the payment date
and on the y-axis are the vega values v(.,.) for a fixed reference swap rate maturity. At
any given payment date, each coordinate represents the ith vega corresponding to the
log-normal volatility of yiT for i ∈ {1, . . . , 30}.
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Figure 3.2: Plot illustrating the vega profile
N = 2, M̃ = 30, D0T = 1.0, y0 = 0.07, σ2 = 0.149

Figure 3.3: Plot illustrating the vega profile
N = 10, M̃ = 30, D0T = 1.0, y0 = 0.07, σ10 = 0.143

We note the following:

The N th vega, vM,N (the vega associated with the log-normal volatility of the
reference swap rate; illustrated as crosses in the plots) starts off positive and
decreases to some negative value as SM increases.

The vega vM,M , for M ∈ {1, . . . , 30}, is always negative and decreases faster than
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vM,N to some negative value bigger in magnitude than v30,N .

We equally observe that the vega at the payment date coinciding with the reference
swap rate maturity registers a much bigger effect. This is so because in this case,
since yMT ≡ yNT , the change in log-normal volatility of the reference swap rate
is complemented by the log-normal volatility effect from the pure discount bond
DTSN

(itself being a function of yNT ).

Finally, for large payment dates, the vega associated with the ith volatility for
i ∈ {1, . . . M̃}\{N,M} is comparable to that of the N th vega. We should point
out however that the vega is computed under fairly stressed market conditions.
Nonetheless, we still expect vM,N and vM,M to be significant under stable market
conditions.

We particularly focus on small payment dates (M = 0, 1) and M = 30. We note
that when M = 0 or 1, the effect from the reference swap rate dominates all the
other effects. When M = 30, the vega associated with the payment swap rate far
outweighs that associated with the reference swap rate. This shows that in the log-
normal case, together with the marginal distribution of the reference swap rate, the
marginal distribution of the payment swap rate in its own swaption measure, has a
significant effect on the valuation of a CMS and its associated convexity correction.
Whether this observation would hold if we relax the log-normal assumption on the
marginals can be investigated if we move away from a flat implied volatility to a skew,
generated by assuming that the density function of yiT , for i ∈ {1, . . . , M̃} is given by
a mixture of normal and log-normal distributions, which we shall study in the next
section.

3.2.3 Skew effect on convexity corrections

We move away from log-normal assumptions on the market-implied marginal distribu-
tions of the swap rates and allow for a skew in the shape of the implied volatility curve.
We do so by assuming that for i ∈ {1, .., M̃}, the marginal distribution of yiT under its
associated swaption measure Si is given by a mixture of normal and log-normal distri-
butions.
Let X1 ∼ N (yi0, η

2
i ) and denote the density function of X1 as f1

log(X2) ∼ N (log yi0 − 1
2σ

2
i T, σ

2
i T ), with density function given by f2.

The density function of yiT , denoted by f iy is then given by:

f iy(x) = (1− γi)f1(x) + γif2(x), 0 ≤ γi ≤ 1. (3.6)

The parameter σi is the log-normal volatility and the parameter ηi is determined by
matching ATM swaption prices under the Gaussian assumption to that of the log-normal
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case, the computation of which is given in the appendix B.

We assume for all i, the weight parameter is constant, so γi = γ. We illustrate the
implied volatility curve for yNT , N = 2, 10 below and understand the impact that γ has
on the shape of the implied volatility curve:

Figure 3.4: Implied volatility given γ
Left - σ2 = 0.149; Right - σ10 = 0.143

For any given γ ∈ [0, 1), we denote the implied volatility as σγimp, the log-normal
volatility as σLN and the ATM strike as KATM . We observe the following from Figure
3.4,

For K ≤ KATM ,

For any fixed γ ∈ [0, 1), σγimp > σLN

For any fixed K, γ1 > γ2 =⇒ σγ1imp < σγ2imp

For K > KATM ,

For any fixed γ ∈ [0, 1), σγimp < σLN

For any fixed K, γ1 > γ2 =⇒ σγ1imp > σγ2imp

We now explore the skew effect on convexity corrections. We consider 3 values : γ =

0.1, 0.5, and 0.9. We only include the plots when γ = 0.5 here. The results for the two
other cases can be found in the appendix B.1. We also provide some further detail to
explain the behaviour of the skew effect.

For a given i ∈ {1, . . . , 30}, the parameter γ is increased (decreased) by 1 bp and the
convexity correction, denoted by (CN,M )γ

i+((CN,M )γ
i−) is computed. The change in
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convexity correction with respect to a change in γi, denoted by ΓM,i is calculated as
follows:

ΓM,i :=
(CN,M )γ

i+ − (CN,M )γ
i−

10−4 × 2
.

The plots below illustrate the effect of γ on convexity corrections. Similar patterns can
be observed for both reference swap rate maturities considered, whereby the changes
in the marginals of the reference swap rate and that of the payment swap rate via the
weight γ are more pronounced than the rest.

Figure 3.5: Skew effect
γ = 0.5, N = 2, M̃ = 30, y0 = 0.07, D0T = 1.0
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Figure 3.6: Skew effect
γ = 0.5, N = 10, M̃ = 30, y0 = 0.07, D0T = 1.0

The payment dates that we are most interested in and that are of practical importance,
are M ∈ {0, 1} (M small) and M = 30. In both Figures 3.5 and 3.6, we observe
that for M ∈ {0, 1}, ΓM,N registers the biggest effect, dominating all the other skew
effects. When M = 30, we note that the skew effect from the payment swap rate, ΓM,M

registers the biggest effect, outweighing that of the reference swap rate, which itself is
more significant than ΓM,i, for i ∈ {1, . . . , M̃ − 1}\{N}.

In line with the effects plotted in Figures 3.5 and 3.6 we can argue that if γN is increased,
keeping all other weights constant, the convexity correction would decrease in magnitude
as the payment date increases. On the other hand, if γM is increased, keeping all other
weights constant, the convexity corrections would increase in magnitude as payment
time increases. We provide a quantitative argument to emphasize the point. We focus
on the case N = 10 and M = 30. If we assume that the convexity correction behaves
linearly as a function of γ (this is only a rough approximation, but we do not expect
it to be too far off since Γ30,30 is approximately the same value for all three cases of γ
values considered when N = 10), we would have that:

C10,30(γ) = γ
dC10,30
dγ

+ c

= γΓ30,30 + c.

It follow that C10,30(0) = c and C10,30(1) = Γ30,30 + c. Going back to Figure 3.1, in
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the log-normal case, the convexity correction at payment date S30 when N = 10 is
about −0.034. The analysis above tells us that a slight deviation from the log-normal
distribution assumption on the payment swap rate will change the convexity correction
by roughly 1.4%, which is very significant. Given that a change in the market-implied
distribution of the payment swap rate via γ outweighs that of the reference swap rate as
the payment date is pushed away from the reference swap rate maturity, a model that
fails to account for the marginal distribution of the payment swap rate would lead to
a consistent overestimation of its convexity corrections. We can push this experiment
further to understand in more depth the implied volatility effect by moving from a skew
to a smile. We impose a smile free from static-arbitrage on the distributions of the swap
rates under their respective swaption measure using the method proposed by Gatheral
and Jacquier (2014).

3.2.4 Smile effect on convexity corrections

For a fixed setting date T, in line with the definition of implied volatility given by
Gatheral and Jacquier (2014), for i ∈ {1, . . . , M̃}, we define the following:

- strike, denoted by K = yi0 exp(K̂), for K̂ ∈ R

- σiBS(K̂, T ) is the implied volatility of yiT for a given K̂ ∈ R and

- The ‘total implied variance’ is denoted by ωi(K̂, T ) and is defined by (σiBS(K̂, T ))
2T

Remark 10:

(a) The ‘total implied variance’ ωi(K̂, T ) refers to the variance of the log of the swap
rate yiT , if we were to assume yiT is log-normally distributed under its associated
swaption measure Si

(b) Borrowing the terms from Gatheral and Jacquier (2014), the map (K̂, t) → ωi(K̂, t),
for t > 0, is referred to as the volatility surface. Since we are only interested in
fitting a smile at a given fixed time T, we only focus on the map K̂ → ωi(K̂),
representing a slice of the volatility surface. So we drop the dependence on T in
the notation. We also fit the same smile to all the forward swap rates, hence we
suppress the index i for ease of notation.

The Surface Stochastic Volatility Inspired (SSVI) is a class of parameterised volatility
surfaces that allows one to fit a smile that can be arbitrage-free by imposing some
conditions on the parameters. Using the SSVI parameterisation, we define the total
implied variance as follows:

ω(K̂) :=
θ

2

[
1 + ρϕ(θ)K̂ +

√
(ϕ(θ)K̂ + ρ)2 + (1− ρ2)

]
, (3.7)
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where θ is defined as the ATM implied total variance i.e θ = ω(0) and ϕ(θ) : R+ → R+

is some deterministic function of θ.

In order to investigate the impact of the smile on convexity corrections, we want to
gain control over the left and right wings of the curve separately and study the effect of
each on convexity corrections to determine which side brings a greater contribution to
convexity corrections. To do so, we use the mapping to the SVI-JW parameterisation,
argued to be more intuitive to traders than the SSVI parameterisation. The SVI-JW
parameterisation is attributed to Tim Klassen by Gatheral and discussed in Gatheral
and Jacquier (2014). The mapping to SVI-JW parameters are as follows:

νT = θ
T Gives the ATM variance

ψ(T ) = 1
2ρ

√
θϕ(θ) Gives the ATM skew

LT = 1
2

√
θϕ(θ)(1− ρ) Gives the slope of the left wing of smile

RT = 1
2

√
θϕ(θ)(1 + ρ) Gives the slope of right wing of smile

ν̃T = θ
T (1− ρ2) Gives the minimum implied variance

Remark 11: The parameters νT and ν̃T have an explicit dependence on expiry. We can
drop the dependence on T for the other parameters.

Note that there is no one-to-one correspondence between the SVI-JW parameterisation
and that of the SSVI. The relationship between the parameters would depend on the
properties we want to capture. Since we are interested in gaining control over the left
and right wings of the smile, we choose to work with the following correspondence:

θ = νT .T

ϕ(θ) =
L+R√
νT .T

ρ =
R−L
R+ L

1− ρ2 =
ν̃T
νT

Plugging the expression on the RHS for each parameter back in the total implied vari-
ance given in (3.7), we obtain the same smile as the SSVI, but parameterised differently.
We can now investigate the effect of the slope of the smile for smaller strikes by control-
ling L and that of larger strikes through R. In order to get a realistic smile curve, we
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make the following choices of parameters: θ = 0.2 (This sets the ATM implied volatility
to 0.1), L = 0.502 and R = 0.512.

Before investigating the effect of the smile on convexity corrections, we look at how the
parameters R and L control the smile curve.

Figure 3.7: Effect of parameters R and L on smile
y0 = 0.07, ATM implied volatility = 0.1

We investigate the right-wing effect on convexity corrections. We define:

δR(M, i) :=
(CN,M )R

i+ − (CN,M )R
i−

10−4 x 2
,

where (CN,M )R
i+ is the convexity correction at payment date SM when the smile curve

of the swap rate yiT , for a given i ∈ {1, . . . , M̃} is modified via the parameter R, which
is increased by 0.01%, and (CN,M )R

i− is the analogous result, but now we decrease R
by 0.01%.
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Figure 3.8: Right-wing effect on convexity corrections
N = 2, M̃ = 30, y0 = 0.07, ATM implied volatility = 0.1, L = 0.502, R = 0.512

Figure 3.9: Right-wing effect on convexity corrections
N = 10, M̃ = 30, y0 = 0.07, ATM implied volatility = 0.1, L = 0.502,R = 0.512

Figures 3.8 and Figures 3.9 illustrate the change in convexity correction with respect
to a change in the right wing of the smile curve. We observe that as the payment
date is pushed further away from the reference swap rate maturity, the effect associated
with the smile curve of the payments swap rate grows larger and outweighs the effect
of all the other swap rates. In Figure 3.7, we can see the effect on the smile for a
change in the parameter R of 0.1. For M = 30, from Figure 3.9, we see that the
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approximate derivative of convexity correction with respect to R is −0.1, which implies
that a change of 0.1 in R moves the convexity correction by roughly 0.01, i.e 1%. The
effect for a corresponding change in the parameter L is a factor of ten less (see Figure
3.11), although the pattern of the smile of the payment swap rate having the most
significant effect as the payment date gets further away remains.

We can conclude from the effect plots, that again, in either case, it is the smile associated
with the payment swap rate that has biggest impact on convexity corrections, but the
effect is only (potentially) significant for a shift in the right wing of the smile.

Figure 3.10: Left wing effect on convexity corrections
N = 2, M̃ = 30, D0T = 1, y0 = 0.07, ATM implied volatility = 0.1, L = 0.502,R = 0.512
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Figure 3.11: Left wing effect on convexity corrections
N = 10, M̃ = 30, D0T = 1, y0 = 0.07, ATM implied volatility = 0.1, L = 0.502,R = 0.512

We end this analysis with the observation that the investigation was carried out for an
ATM implied volatility of 0.1. Working with the smile given by a higher ATM vol of 0.15
illustrates a potential modelling issue which has been pointed out by Pelsser (2000). We
elaborate on this: Set N = 2. We fit a smile to the swap rate y2T given by the following
parameters: θ = 0.45 (giving us an ATM implied volatility of 0.15), R = 0.512 and
L = 0.502. Using the single time MFM, we look at y2T (X), for X ∈ N (0, 1) under F.
In particular, we plot log(y2T (x)) against x ∈ R.

Figure 3.12: Left: Functional form of log(y2T )(x)
Right: Integrand function y2T (x)ϕ(x)

N = 2, D0T = 1, y0 = 0.07, ATM implied volatility = 0.15, L = 0.502,R = 0.512
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The straight line in the left plot is used to illustrate by how much we are deviating from
the log-normal distribution.

Suppose we are evaluating the convexity correction at time T, i.e M = 0. We have
that:

C2,0 = EF[y
2
T ]− y20,

where
EF[y

2
T ] =

∫ ∞

−∞
y2T (x)ϕ(x)dx.

From Figure 3.12, we observe that a significant contribution to the integrand and hence
the convexity correction is coming from values of x greater than two standard deviations
away from the mean. Put differently, the smile is putting too much weight on unrealistic
values of the swap rate. In practice, one would not model the tail of the distribution
in such a way that either (or both) wings is making a big contribution to the convexity
corrections.

3.3 A two-factor single-time Markov-functional model

The numerical investigation in the one-factor case revealed the significance of the
market-implied marginal distributions of the reference swap rate and the payment swap
rate when pricing a single payment of a CMS. We now aim to answer the second question
raised in Section 3.1, namely, what aspects of the joint distribution of the swap rates
might one want to take into account? As explained then, there are three components
of the model determining the joint dependence of the swap rates: the market-implied
marginal distributions, the modelling of the PVBP, and the copula. In the analysis that
follows, we assume that the swap rates are log-normally distributed under their respec-
tive swaption measures. In the single-time MFM, by unfolding the model forward in
maturity, we feed in the market information of the swap rates in the construction of the
PVBP using the functional relationship between the PVBP and the swap rates as we
saw in equation (2.4). Finally, we assume that the driver is jointly Gaussian under the
forward measure F (hence fitting a Gaussian copula to the components of the driver).
We point out that the single-time MFM can be adapted to take into account other
choices of marginal distributions on the swap rates, as we have discussed in Chapter 2.
The log-normal assumption on the swap rates, together with the Gaussian copula fitted
on the components of the model driver allows us to borrow information from already
well-established results of market models when constructing the prior model, and carry
over the intuition and understanding to the less transparent Markov-functional model.
We would expect the same qualitative behaviour if we were to consider different market-
implied distributions. We do not expect the copula to have a significant effect in the
CMS case, so we stick with a Gaussian copula for ease of numerical implementation. In
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Section 2.2, we discussed how to set up a general prior model for the single-time MFM.
In the next section, we shall discuss the prior model setup under the specific log-normal
assumption. We then provide and discuss the numerical results in Section 3.3.2.

3.3.1 The prior model setup

The common approach used when setting up a Markov-functional model driven by a
multi-dimensional driver (in this case, we are taking a two-dimensional driver) is to
set up a prior model that expresses the forward rate as a function of its components.
The role of the prior model is two-fold: firstly, we want to retain the univariate and
monotonicity properties of a one-factor model that allows for efficient functional fitting,
and secondly, that the covariance structure is realistic and desirable. We define the
prior model as follows:

log(ŷjT ) := β
(1)
j x

(1)
T + β

(2)
j x

(2)
T , (3.8)

where β(i)j ∈ R, for i ∈ {1, 2}, j ∈ {1, . . . , M̃} and under the forward measure F,

(
x
(1)
T

x
(2)
T

)
∼ N

((
0

0

)
,

(
λ1 0

0 λ2

))
.

Remark 12: We pointed out in remark 6 in Chapter 2, that we could take a monotonic
transformation of the prior model, without affecting the calibration of the model. Here,
we are taking a log-transform to linearise the prior model in terms of the components
of the driver.

Once we have chosen the parameters β(i)j , under the assumptions we have made on
the driver and the marginal distributions of the swap rates being log-normal under
their respective swaption measures, the separable swap market model (the benchmark
model from which we have formulated the prior model) and the single-time MFM are
numerically close to each other, a result following Bennett and Kennedy (2005), as
discussed in Chapter 2. However, the prior model admits significant arbitrage, which
is removed by performing a Markov-functional sweep that acts as a perturbation on
the prior model. Given the close numerical relationship to the separable swap market
model, we expect the Markov-functional sweep not to have to modify the functional
form significantly in order to remove arbitrage. This slight adjustment needed implies
that it would be reasonable to approximate the correlation between the log of any two
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given swap rates under the forward measure as follows:

corr(log(yjT ), log(y
m
T )) ≈

EF[(β
(1)
j x

(1)
T + β

(2)
j x

(2)
T )(β

(1)
m x

(1)
T + β

(2)
m x

(2)
T )]√

var(log yjT )var(log ymT )

=
β
(1)
j β

(1)
m λ1 + β

(2)
j β

(2)
m λ2√

(β
(1)
j )2λ1 + (β

(2)
j )2λ2

√
(β

(1)
m )2λ1 + (β

(2)
m )2λ2

, (3.9)

for j,m ∈ {1, . . . , M̃}.

We now want to assign a structural meaning to the β(i) vectors, for i ∈ {1, 2}. For this
purpose, we borrow the information from a LIBOR Market model. Extensive research
has been carried out in the LMM framework and there are robust methodologies devel-
oped for the calibration of models and capturing suitable aspects of market information
relevant to pricing specific products. Our aim here is to borrow the existing knowledge
about the covariance of the log of the LIBORs from a LMM and reflect it in the prior
model setup.

As our starting point, we use the relationship between the swap rate and a set of forward
LIBORs. For a given maturity Sj , j ∈ {1, . . . , M̃}, we have that:

yjT :=
1−DTSj∑j
l=1 αlDTSl

=
1−DTS1 +DTS1 −DTS2 +DTS2 − . . .−DTSj∑j

l=1 αlDTSl

=
α1DTS1L

1
T + α2DTS2L

2
T + . . .+ αjDTSjL

j
T∑j

l=1 αlDTSl

follows from : Lk
T :=

DTSk−1
−DTSk

αkDTSk

=

j∑
k=1

(
αkDTSk∑j
l=1(αlDTSl

)

)
Lk
T =:

j∑
k=1

ωj
k(T )L

k
T . (3.10)

We apply a one-order Taylor expansion to yjT about (L1
0, L

2
0, . . . , L

j
0) and we obtain:

yjT ≈ yj0 +

j∑
k=1

(( j∑
p=1

Lp
0

(
∂ωj

p(T )

∂Lk
T

)
T=0

(Lk
T − Lk

0)

)
+ ωj

k(0)(L
k
T − Lk

0)

)

= yj0 +

j∑
k=1

([
ωj
k(0) +

j∑
p=1

Lp
0

(
∂ωj

p(T )

∂Lk
T

)
T=0

]
(Lk

T − Lk
0)

)

= yj0 +

j∑
k=1

ω̃j
k(0)(L

k
T − Lk

0), (3.11)
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where

ω̃j
k(0) = ωj

k(0) +

j∑
p=1

Lp
0

(
∂ωj

p(T )

∂Lk
T

)
T=0

.

We observe that a consequence of the Taylor expansion is that the weight ωj
k(·) and its

partial derivative with respect to the LIBORs are evaluated at their time-zero values.
Rebonato (1998) was one of the first to explicitly point out that swap rates could
be expressed as a weighted sum of LIBORs. The weights are themselves dependent
on the LIBORs, so we do not have a proper weighted average. However, empirical
studies have shown that the variability of the weights is small enough compared to
that of the LIBORs that the weights and their partial derivatives can be approximated
by their known time-zero values. This technique has been extensively applied in the
literature, see for example, Rebonato (2002), Brigo and Mercurio (2006) and Andersen
and Piterbarg (2010b).

Considering a first-order Taylor expansion of log(yjT ) about log(yj0), we have:

log(yjT ) ≈ log(yj0) +
1

yj0
(yjT − yj0) + . . .

Similarly, applying the above technique to log(Lk
T ) about log(Lk

0), we have:

log(Lk
T ) ≈ log(Lk

0) +
1

Lk
0

(Lk
T − Lk

0) + . . . (3.12)

Rearranging the two expressions above, and plugging back into equation (3.11), we
get:

log(yjT ) ≈ log(yj0) +

j∑
k=1

ω̃j
k(0)

yj0
Lk
0(log(L

k
T )− log(Lk

0))

= log(yj0) +

j∑
k=1

ξjk(0)(log(L
k
T )− log(Lk

0)), (3.13)

where

ξjk(0) :=
ω̃j
k(0)L

k
0

yj0
.

Remark 13: The exact form of the weight ξjk(0) is given in Appendix B.2.
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We observe from equation (3.13), that we have expressed the log of the swap rate as a
weighted sum of the log of the LIBORS. At this point, we are able to incorporate infor-
mation from a LMM within the prior model setup that will determine the correlation
structure between the log of the swap rates.

The instantaneous correlation matrix of a LMM can be obtained from market data. A
suitable parameterisation for the instantaneous volatility function which reflects market
features such as the ‘Rebonato hump’ (Rebonato (2005)) can also be chosen and the
final calibrated LMM used to provide the covariance matrix Q for the log of the LIBORs
at time T under the forward measure F. We refer to Q as the integrated covariance
matrix.

A Principal Component Analysis (PCA) approach, first applied for the calibration of
LMMs by Pedersen (1998), has been extensively used in the literature. An interpretation
of the principal components of the instantaneous covariance matrix of the log of the
LIBORs have been derived and studies have shown they can be described in terms of
the level of rates, slope and curvature, with the first two components making up more
than 90% of the variability [Choy, Dun, and Schlögl (2003), Rebonato (2005), Brigo and
Mercurio (2006) and Lord and Pelsser (2007)]. It is not possible to use market data to
study the integrated covariance matrix Q. However using the theory of Total Positivity,
Lord and Pelsser (2007) make the case that for correlation matrices we would expect to
see for the log of the LIBORs at time T , we will still have the interpretation of level,
slope and curvature for the first three principal components. We define:

X̂T := D−1(log(L1
T ), log(L

2
T ), . . . , log(L

M̃
T ))⊤,

where the diagonal matrix D := diag
(√

var(log(L1
T )),

√
var(log(L2

T )), . . . ,

√
var(log(LM̃

T ))

)
.

Denote by Q̂, the positive-definite, symmetric, M̃ × M̃ covariance matrix of X̂T . Note
that this is also a correlation matrix. The matrix Q̂ can be therefore be decomposed in
terms of its eigenvectors and eigenvalues as follows:

Q̂ = ÂΛÂ⊤

where the columns of orthonormal matrix Â correspond to the eigenvectors of Q̂ and Λ

is the diagonal matrix of the corresponding eigenvalues (λi)
M̃
i=1 arranged in descending

order.
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The principal component transform of X̂T is then given by

ŶT := Â⊤(X̂T − EF[X̂T ]), (3.14)

where EF[X̂T ] denotes the M̃ -dimensional column vector with entries given by EF

[
log(Li

T )
dii

]
,

where dii is the ith diagonal entry of D, for i ∈ {1, . . . , M̃}. We can observe from (3.14),
that

EF[ŶT ] = 0

covF[ŶT ] = Â⊤Q̂Â = Â⊤ÂΛÂ⊤Â.

Rearranging equation (3.14), we obtain

X̂T = EF[X̂T ] + ÂŶT .

Equivalently, setting XT = (log(L1
T ), . . . , log(L

M̃
T ))⊤, we have

XT = EF[XT ] +DÂŶT . (3.15)

Remark 14: The formal solution at a given time T to the general SDE of the LIBOR
Li, for i ∈ {1, . . . , M̃}, given by the LMM is formulated as follows:

Li
T = Li

0 exp

(∫ T

0
µi(s)ds+ f.v +

d∑
k=1

∫ T

0
σki (s)dW

k
s

)
,

where d ∈ N represents the number of factors used to model the LIBOR, σki : [0, T ] → R

is the volatility function (assumed to be deterministic; we can further make the separa-
bility assumption on the volatility function as discussed in Section 2.2.1, the ‘f.v’ term is
the finite variation term, a by-product of Itô’s formula, and µi(·) is the drift term that is
set using the no-arbitrage condition, and is a function of the instantaneous volatilities,
the correlation between them and the forward LIBOR rates, making it a stochastic term.
In this section we are not after the evaluation of the drift term. We can use the common
technique of freezing the LIBORs appearing in the drift term to their time-zero value,
reducing the drift to a simple deterministic function µ0i (·), without significant loss of
accuracy. From this we can work out that

µ̂iT =:
(
EF[XT ]

)
i
≈ log(Li

0) +

∫ T

0
µ0i (s)ds+ f.v.
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Going back to equation (3.15), based on the idea that the first two principal compo-
nents capture most of the variability, we can ignore the other principal components and
express:



log(L1
T )

log(L2
T )

.

.

.

log(LM̃
T )


≈



µ̂1T + a11Y1 + a12Y2

µ̂2T + a21Y1 + a22Y2

.

.

.

µ̂M̃T + aM̃1Y1 + aM̃2Y2


, (3.16)

where aij := diiâij for i ∈ {1, . . . ,M}, j ∈ {1, 2}, and Y1 and Y2 are independent,
normally distributed random variables with Yk ∼ N (0, λk) for k = 1, 2.

We could choose the first component of the driver x(1)T to capture the level of rates,
and x

(2)
T is set to capture the slope. We set the variance of x(i)T to be λi. Note that

we will still get the level and slope interpretation, in the sense that the terms dii are
positive and will preserve any sign change in the shape of the eigenvectors (âij)

M̃
i=1,

j ∈ {1, 2}.

We now want to understand how this structure would carry over to the swap rates.
From equation (3.13), we can now work out that:

log(yjT ) ≈ log(yj0) +

j∑
k=1

ξjk(0)(ak1x
(1)
T + ak2x

(2)
T + µ̂kT )

= log(yj0) + β
(1)
j x

(1)
T + β

(2)
j x

(2)
T + C, (3.17)

where

β
(1)
j =

j∑
k=1

ξjk(0)ak1 β
(2)
j =

j∑
k=1

ξjk(0)ak2, (3.18)

and C is some constant (we recall that the Markov functional sweep will remove the
arbitrage introduced by the drift approximation technique). We observe that we have
constructed a prior model for the swap rates as a linear combination of the components
of the model driver with a designated definition for the weight parameters β(i), as
desired.

The prior model setup allows us to control the model correlation (recall we have an
approximate analytical formula given in equation (3.9)), an important modelling aspect
that enables us to carry out the numerical investigation in the later sections. We
have shown here how we chose to set up a two-factor single-time Markov-functional
approach for the pricing of a CMS. The log-normal assumption on the distribution
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of the swap rates under their respective swaption measures, together with the driver
chosen to be Gaussian, enabled us to lean on the construction of a separable swap
market model to derive a prior model for the single-time MFM. The correlation structure
between the log of the swap rates was justified through widely accepted information
about the covariance matrix of the log of the LIBORs integrated within the prior model
setup. Even though the PCA technique is usually used in the context of instantaneous
volatilities and correlation, the broad conclusions carry over to the terminal correlation
matrix, justified through Lord and Pelsser (2007).

3.3.2 Numerical Investigation: The two-factor case

Initial conditions

For the numerical analysis, we use the same tenor structure as discussed in the one-
factor case, and the same initial conditions as given in Table 1 in Appendix A. For a
given j ∈ {1, . . . , M̃}, for all k ∈ {1, . . . , j}, we assume Lk

0 = 0.07. Setting T = 0 in
equation (3.10), we have that:

yj0 =

j∑
k=1

ωj
k(0)L

k
0.

We can take the constant LIBOR term out of the summation, and observe that∑j
k=1 ω

j
k(0) = 1; hence yj0 = 0.07. We assume that each swap rate yjT is log-normally

distributed under its associated swaption measure Sj . We use the relationship between
the log of the swap rates and the log of the LIBORs, as given in equation (3.13) to
determine the log-normal volatility of the swap rates. For this task, we first need
to make some assumptions on the LIBORs: we take the caplet implied volatility to
be constant and equal to 0.15. We assume the correlation between Li

T and Lj
T , for

(i, j) ∈ {1, . . . , M̃}2 , is given by exp(−0.03|i − j|). The decaying exponential coupled
with a humped shape is a common parameterisation with some desirable features applied
in practice to model LIBOR correlations, and has been discussed in Rebonato (1998)
and Brigo and Mercurio (2006). From equation (3.13) we can work out the volatility of
the swap rates from the fact that:

var(log(yjT )) := σ2jT ≈ 0.152T

( j∑
k=1

(
ξjk(0)

)2

+2

j∑
k=1

j∑
p>k

ξjk(0)ξ
j
p(0) exp(−0.03|k− p|)

)
.

(3.19)
From equation (3.19), we can recover the log-normal volatility of the swap rates under
their associated swaption measures, the values of which are given in Appendix A.

Remark 15: The values obtained for the log-normal volatility are the ones used in the
one-factor case as well.
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In this study, we are interested in determining the impact of correlation on convexity
corrections. We therefore want to get a handle on the correlation structure. Looking
closely at the approximate expression given in equation (3.9), we can control the corre-
lation structure via the parameter λ2. One however needs to be careful when varying
λ2. In particular, we observe that, from the approximate equation obtained for the log
of the LIBORs via the PCA in equation (3.16), the correlation between the log of the
LIBORs given by: for j, k ∈ {1, . . . , M̃},

corr(log(Lj
T ), log(L

k
T )) ≈

aj1ak1λ1 + aj2ak2λ2√
a2j1λ1 + a2j2λ2

√
a2k1λ1 + a2k2λ2

, (3.20)

which depends on λ1 and λ2. In line with constructing a realistic model, we would want
the model to ascribe non-negative correlation to the log of the LIBORs. This therefore
gives us an upper bound on λ2. WLOG, taking λ1 = 1, we have that:

corr(log(Lj
T ), log(L

k
T )) > 0 =⇒ ak1aj1 + aj2ak2λ2 > 0.

An upper limit on λ2 is then given by:

λ2 < −minj{aj1}maxk{ak1}
minj{aj2}maxk{ak2}

.

Remark 16: Note that in order to derive an expression for the variance of the log of the
swap rates, we chose a specific parameterisation for the correlation between the log of
the LIBORs, which is different from equation (3.20), obtained via the PCA approach.

Choice of eigenvectors

We chose to set the β(i) parameters, for i ∈ {1, 2} by linking them to the PCA decom-
position of the covariance matrix of the log of the LIBORs as given in equation (3.18).
This requires us to specify the eigenvectors (aki)

M̃
k=1, i ∈ {1, 2}. which are set up as

follows:
ak1 =

1√
M̃

ak2 = a+ b exp(λk),

(3.21)

for a, b ∈ R chosen such that we obtain an orthonormal set of eigenvectors, and λ ∈ R
is a free parameter that controls the shape of the second eigenvector. Recall that we are
assuming that the first component of the model driver is capturing the level of rates,
hence the first eigenvector is chosen to be flat, and the second component x(2)T is set to
capture the slope, so we choose the second eigenvector to exhibit one sign change. We
illustrate below the eigenvectors; we consider two values for λ: 0.1 and 0.3.
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Figure 3.13: Choice of eigenvectors
when λ = 0.1, a = −0.225, b = 0.677
when λ = 0.3, a = −0.098, b = 0.762

3.3.3 The correlation effect when pricing a CMS

We fix a correlation, which we denote by ρ, and we find a value for λ2 such that for a
given reference swap rate maturity and a given payment date, the correlation between
the log of the reference swap rate and the log of the payment swap rate is equal to ρ.
We plot the convexity correction against payment date for each fixed ρ.

Figure 3.14: Convexity corrections against payment date for fixed correlation
corr(log(yNT ), log(yMT )) = ρ

N = 2, M̃ = 30, y0 = 0.07D0T = 1.0, λ1 = 1
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Figure 3.15: Convexity corrections against payment date for fixed correlation
corr(log(yNT ), log(yMT )) = ρ

N = 10, M̃ = 30, y0 = 0.07, D0T = 1.0, λ1 = 1

In Figures 3.14 and 3.15, we first note that for each ρ, there is a minimum payment index
preceding which we have no results. This happens because for the choices we have made
(on the eigenvectors and the initial conditions), there exists no λ2 that would equate
corr(log(yNT ), log(yMT )) to ρ. But we focus our attention on large M, i.e payment dates
far from the reference swap rate maturity. From Figure 3.14, we observe that when
λ = 0.3, the convexity correction almost halves in value as correlation decreases from 1
to 0.7. Similarly, from figure 3.15, we can see that the convexity correction is sensitive
to correlation. A decrease in correlation by a factor of 0.05 from 1 (so the correlation
is still quite high and close to 1) results in a decrease of roughly 0.4% in convexity
correction when M = 30. In the next part, we employ a different method to measure
the significance of correlation in the pricing problem.

To do so, for a given payment date SM and a reference swap rate maturity SN we fix the
correlation in the same way as we did above, and we compute the convexity correction.
We then turn to a 1F single-time MFM and we aim to find an implied volatility, denoted
by σ̂M , that will yield the same convexity correction. If the difference between the initial
log-normal volatility σM and σ̂M is significant, this would indicate that the correlation
does have an effect on convexity correction and should not be overlooked. (Were it
small, a small uncertainty as to the correct volatility input into a one-factor model
would have the same effect.) For M ∈ {1, . . . , M̃}, we define:

∆M = σ̂M − σM . (3.22)
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We focus on the case when N = 2 and λ = 0.3.

Figure 3.16: CMS: Significance of correlation
N = 2, M̃ = 30, y0 = 0.07, D0T = 1.0, λ1 = 1

Firstly, from Figure 3.16, we observe that the difference is always negative, implying
that for any payment date SM , σ̂M < σM . This is an expected result given that, from
Figure 3.14, we know that the convexity correction decreases in magnitude as correla-
tion decreases (i.e, there is an inverse relationship between correlation and convexity
corrections). Combined with the fact that the vega is always negative (both vegas as-
sociated with the reference swap rate and the payment swap rate), in order to achieve
a lower convexity correction in the one-factor model, the volatility has to decrease to
reflect the correlation effect in a one-factor model. We observe that the volatility has
to be modified by nearly 2% to reflect the correlation effect.

Another feature of the result is that the size of the difference decreases as the payment
date increases. This might seem counter-intuitive at first, but is again an expected effect
if we take into account the vega. We know from Figure 3.2, that as the payment date
increases, the vegas (associated with both the reference swap rate and the payment
swap rate) get bigger in magnitude. In other words, for larger payment dates, the
convexity correction is more sensitive to the volatility, in the sense that a small change
in the volatility will result in a bigger change in the convexity correction. However,
while the size of the difference reported in Figure 3.16 might decrease as we increase
the payment date, we would still argue that the correlation has a significant effect on
convexity corrections.
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We now consider a convex payoff (a CMS caplet) and we carry out the same analysis
as above. The goal is to determine whether the correlation effect we have observed in
the CMS case will carry over to a different payoff.

3.3.4 The correlation effect when pricing a CMS caplet

We work under the same assumptions as laid out in the previous section. For a given
strike K, the time-zero value of the payoff of a caplet with reference swap rate yNT , and
paid at time SM is given by:

V cap
0 = αD0TEF[(y

N
T −K)+DTSM

].

In the numerical analysis below, we focus on the valuation of a single payment of the
CMS caplet and we define the convexity correction to be:

CN,M =
D0T

D0SM

EF[(y
N
T −K)+DTSM

]− ESN [(y
N
T −K)+]. (3.23)

Remark 17: In the numerical analysis, when computing the convexity correction, we fix
the strike K at 0.07(7%) ≡ yN0 .

Figure 3.17: CMS Caplet: Convexity correction against payment date for fixed correlation
corr(log(yNT ), log(yMT )) = ρ

N = 2, M̃ = 30, y0 = 0.07, D0T = 1.0, λ1 = 1

We again observe a similar pattern as in the CMS case, whereby for large M , the
correlation has a significant impact on convexity correction.
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Figure 3.18: CMS Caplet: Significance of correlation
N = 2, M̃ = 30, y0 = 0.07, D0T = 1.0, λ1 = 1

As we have done above, in Figure 3.18, we look at the change in volatility used in a one-
factor model to account for the correlation effect, and we again see that the volatility
would have to modified by almost 1.7% for reflect the correlation effect on convexity
corrections.



CHAPTER 4

A Markov-functional Approach to convexity

corrections: The one-factor MF-Lite model

We propose in this chapter a computationally efficient Markov-functional approach at
a single time for pricing European-type swap-based derivatives whose payoffs are of
form F (ynT ), where F : R → R is a deterministic function and ynT is the underlying
forward swap rate. We use the insight from the single-time MFM numerical analysis
to guide the modelling approach. In particular, recall in section 3.2 of Chapter 3, we
set out to identify the forward swap rates that matter most in the pricing of a CMS
payment. We did so under three assumptions on the shape of the volatility curve:
flat (assuming log-normal marginals on the swap rates in their respective swaption
measures), skew and smile. In all three cases, at the payment dates SM that are of
practical interest (i.e M = 0, 1 or M far away from the reference swap rate maturity),
we observed that the marginal distributions of the reference swap rate and payment
swap rate have a significant impact on convexity corrections. We also found that the
other swap rates have a non-negligible impact, but we point out firstly that the numerical
analysis was carried out under fairly stressed market conditions, and secondly, the effect
of the payment swap rate outweighs that of the other swap rates as M gets large. This
points us to believe that if we want to price a single cashflow of a CMS for instance, one
could set up a model such that the swap rates at the relevant maturities are modelled
appropriately, and the information from the other swap rates could be incorporated in
the modelling choices we make in an efficient way. We use this insight as our starting
point.

68
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We start the development of the modelling approach in the simpler one-factor case.
We choose a maturity Sn and model ynT and Pn

T under the swaption measure Sn. We
proceed as follows: we postulate a functional form for the swap rate ynT in terms of a
one-dimensional driver, whose distribution under Sn is yet to be determined. The known
market-implied distribution of the swap rate under Sn and the postulated functional
form then determine the distribution of the driver under Sn.

Next we choose the functional form of Pn
T in terms of the driver. This constitutes a

modelling choice. At this stage, we have also fixed the functional form of DTSn since
DTSn = 1 − ynTP

n
T . Consequently, we know Pn−1

T as well since Pn−1
T = Pn

T − αnDTSn .
This has implications on the distribution of the model driver under Sn−1.

Note we have considerable freedom in the choice of the functional form of Pn
T but we

are constrained by the martingale requirement of D.T
Pn under Sn. Note also that Pn

is the variable that allows us to change measure from Sn to the forward measure F.
This modelling of ynT and Pn

T directly contrasts with the single-time MFM discussed in
Chapter 2 where we must model y1T , then y2T , then y3T etc until we reach ynT .

The idea described is illustrated in figure 4.1 below, whereby the modelling choices are
given in green, and the functional forms that follow from these choices are illustrated
in red. We refer to this setup as the partial model. We develop and discuss the partial
model setup in Section 4.1.

Figure 4.1: Partial model setup

The partial model described above specifies a model for ynT (and DTSn) under the
forward measure F. Similarly, we can set up a second partial model at Sm to specify a
model for DTSm under F. Therefore, combining the two, we are able to price the CMS
payment ynT paid at Sm.

As we shall discuss in detail later, if we follow this approach, which we refer to as the
exact fit for all payment dates Sm, the resulting CMS prices will not satisfy the consis-
tency condition (3.4). This is not a problem for m > n where there is no consistency
condition to satisfy. To resolve the issue for m < n, we propose the alternate fit model.
We elaborate on this in Section 4.2.2.

We have briefly discussed above how we could set the model up for a single maturity,
and we mentioned the possibilities of doing the partial setup for two maturities. A
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careful reader will notice that in doing so, we end up with two model drivers. We
make use of the Inversion Principle, which we will state in Section 4.1, to show that
under a common measure - in this case, the forward measure - there exists a functional
relationship between the two drivers, which bring us back to a one-factor setting. We
discuss this in Section 4.2.

In Section 4.2.1, we show how we can extend the partial model setup to a complete,
arbitrage-free model. Note that the method proposed follows very closely the construc-
tion of the single-time MFM and ends up being computationally intensive, hence not
one that will be attractive in practice. But it shows that the partial model setup can be
extended to a complete model. We also note that in this section, we have specified the
model at a fixed time T . This is enough for the exotic products of European type that
the model is designed to price. In principle, we could extend the model over the full
term structure and consider the setup at any time t < T using the martingale property
of numéraire rebased assets to do so.

The model developed in this chapter is referred to as the one-factor swaption measure
calibrated MF-Lite model, which we can abbreviate to 1F smcMFL model. We con-
clude this chapter with some numerical results comparing the performance of the 1F
smcMFL model to the single-time MFM, and we investigate how sensitive the model is
to the choices of functional forms that we make. We observe that the model proposed
is numerically very close to the single-time MFM. There is an oscillating, zig-zag type
behaviour appearing in the alternate fit setup, indicating that where we have no flexi-
bility to calibrate the model to market information, the model’s approximation for the
swap rate distribution gets slightly worse (especially for payment dates well after the
reference swap end date). We provide a detailed explanation in Chapter 5 as to why
this oscillating behaviour occurs. But this clearly is not an issue, since for payment
dates beyond the length of the reference swap rate, we can fall back onto the exact
fit approach that yields results close to that of the single-time MFM, as desired. We
nonetheless provide in Section 4.3.5 a numerical refinement to the alternate fit model
that shrinks the zig-zags and brings the model closer to the single-time MFM.

Before moving on we make one final observation. Any one-dimensional term-structure
model could be built using the approach described here. If, for each Sn, we fit ynT
to its distribution as determined by the given term-structure model and if we choose
the functional form Pn

T to be that given by the term-structure model (which would
not be possible in practice as this would typically be a highly complex unknown func-
tional form), then the resultant MF-Lite model is precisely the term-structure model.
This is obvious but highlights the fact that any undesirable feature of a given MF-Lite
model (such as the extreme zig-zag behaviour in the alternate fit) is the result of a
poor modelling choice, not a weakness of the framework. Had we instead chosen the
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functional form consistent with a term-structure model, the undesirable feature would
not be present.

4.1 Model setup for a single maturity

In the discussion above, we outlined at the high level how the 1F smcMFL model could
be set up for any given maturity which we denoted by Sn.

We assume there exists some univariate random variable, denoted by ηn, summarising
the state of the economy at time T . We could think of ηn as capturing the level of rates.
Realistically, we would want the swap rates to be monotonic increasing in ηn, and pure
discount bonds to be a decreasing function of the driver.

If we know the prices of swaptions for a set of strikes, we can work out the implied
marginal distribution of ynT under its associated swaption measure Sn. We want to
appropriately model this distribution. In order to achieve this, we make use of the
Inversion Principle, also known as the Inverse Transform method (Devroye (1986)) as
a means to express ynT as a function of a standard normal random variable.

Theorem 4.1.1. Let (Ω,F ,P) be a given probability space. Let F be a continuous
probability distribution function on R with F−1 defined by:

F−1(u) := inf{x : F (x) = u : 0 < u < 1}.

If U is uniform [0,1] random variable, F−1(U) has distribution function F. Also, if X
has distribution function F , F (X) is uniformly distributed on [0,1].

If Xn ∼ N (0, 1) under Sn, then following the second statement of the Theorem, we have
that

Φ(Xn) ∼ U [0, 1].

Using the first part of the Theorem, if ynT has a known marginal distribution, denoted
by F y

n under Sn, then
Xn := Φ−1

(
F y
n (y

n
T )
)

has a N (0, 1) distribution under Sn. Thus,

ynT = (F y
n )

−1(Φ(Xn)). (4.1)

We denote gn := (F y
n )−1 ◦ Φ.

As a first step in setting up the model, we postulate a functional form for ynT in terms
of ηn, i.e,

ynT := fn(ηn),
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whereby we assume fn(·) is monotonic increasing.

From these two assumptions, we can work out the distribution of ηn under Sn.

ynT = fn(ηn)

=⇒ ηn = f−1
n (ynT )

= f−1
n (gn(Xn)) =: qn(Xn). (4.2)

By assumption of fn being monotonic increasing, we know f−1
n (·) exists, and we express

ηn as a function qn : R→ R, where qn = f−1
n ◦gn, of a standard normal random variable.

So, we have effectively determined the distribution of ηn under Sn.

The second step consists of postulating a prior functional form for Pn
T which we denote

by P̂n
T in terms of the driver ηn. To find Pn

T , we will need to modify this prior in order
to ensure D.T

Pn is a martingale under Sn. In order to specify P̂n
T , we recall from equation

(2.4) in Chapter 2 that we can express the PVBP Pn
T as a function of a set of forward

swap rates. So, we can come up with a set of priors for the swap rates, which we denote
by {ŷiT ; i ∈ {1, ..., n}} and use these to construct P̂n

T . We note that these prior swap
rates are only used to set up the PVBP and are not used elsewhere in the final model.
We have that:

ŷiT (ηn) := f̂i(ηn), (4.3)

whereby f̂i : R → R is chosen to reflect our belief about the marginal distributions of
these swap rates in their own swaption measures. We shall provide a concrete choice
for the functional form of the prior swap rates in 4.3.1 when we set up the 1F smcMFL
model under the (shifted) log-normal assumption. We can then express:

P̂n
T (ηn) :=

n∑
k=1

αk

( n∏
i=k

1

1 + αif̂i(ηn)

)
. (4.4)

We assume that
Pn
T (ηn) := anP̂

n
T (ηn),

for an ∈ R. The parameter an is chosen such that the martingale property1 holds. In
1Note that we are using this term loosely here; we could look at the expectation in equation (4.5)

as the conditional expectation with respect to F0. We are only concerned with the model behaviour at
a fixed time T. We could view this no-arbitrage condition as a consequence of the martingale property,
which we henceforth shorten to the martingale property without ambiguity.
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particular,

D0T

Pn
0

= ESn

[
DTT

Pn
T

]
(4.5)

= ESn

[
1

anP̂n
T (ηn)

]
=⇒ an =

Pn
0

D0T
ESn

[
1

P̂n
T (ηn)

]
. (4.6)

Given the distribution of ηn under Sn in equation (4.2), we can compute an:

an =
Pn
0

D0T

∫ ∞

−∞

1

P̂n
T (qn(x))

ϕ(x)dx,

where ϕ(.) is the standard normal density.

Remark 18: Note that under reasonable modelling choices, we expect the parameter an to
be roughly equal to 1. We could, for instance, choose to express ynT and Pn

T as a function
of ηn as given by a short rate model, in which case we could take ηn ≡ rT . We can make
similar choices at each maturity in the tenor. If we now assume that the market implied
distribution of each swap rate matches exactly what would be given by a short rate model,
we can construct an arbitrage-free model that will be able to capture the market-implied
distributions. The model, by construction, will be a short rate model calibrated to the full
set of implied distributions, and the model driver will have the same distribution as the
short rate from which we are choosing the implied distributions. Alternatively, instead
of starting at Sn, we could use a Markov-functional approach whereby we start off by
choosing the functional form y1T by matching to the relevant implied distribution and
unfolding the model by fixing only the swap rate functional form at each given maturity
in the tenor, as described in Chapter 2. Owing to the fact that there is a unique arbitrage-
free one-factor model that calibrates to the whole set of implied distributions, the short
rate model will exactly match the Markov-functional model. In this particular case, the
parameter a. corresponding to each maturity will be exactly unity. For any other choice
of market implied distributions whilst keeping the choice of functional forms given by a
short rate model, ηn will have a distribution different from that of the short-rate driver,
and the parameter an will have to be chosen appropriately to satisfy the martingale
property.

From the modelling choices made above, we are able to recover the functional form of



4.1. MODEL SETUP FOR A SINGLE MATURITY 74

DTSn . By definition of ynT , we have:

ynT :=
1−DTSn

Pn
T

=⇒ DTSn = 1− ynTP
n
T

= 1− anfn(ηn)P̂
n
T (ηn).

So far, we have been working under the swaption measure Sn, whereby we have fixed
the distribution of ηn. We now carry over the model setup to the the forward measure
F and by a change of measure, we work out the distribution of ηn. Define Fηn(x) :=

EF

[
1(ηn ≤ x)

]
. For a given x∗ in R, we have that:

Fηn(x
∗) := EF

[
1(ηn ≤ x∗)

]
=

Pn
0

D0T
ESn

[
1(ηn ≤ x∗)

DTT

Pn
T

]
=

Pn
0

D0T
ESn

[
1(ηn ≤ x∗)

1

anP̂n
T (ηn)

]
. (4.7)

We point out at this stage that the distribution of the driver under the forward measure
is determined by the choice of the PVBP functional form. We shall investigate numer-
ically in later sections, the sensitivity of our approach to the choice of functional form
for the PVBP.

Using the fact that ηn = qn(Xn), Xn ∼ N (0, 1) under Sn, we have

Fηn(x
∗) =

Pn
0

anD0T
ESn

[
1(qn(Xn) ≤ x∗)

1

P̂n
T (qn(Xn))

]
=

Pn
0

anD0T
ESn

[
1(Xn ≤ q−1

n (x∗))
1

P̂n
T (qn(Xn))

]

=
Pn
0

anD0T

∫ q−1
n (x∗)

−∞

1

P̂n
T (qn(x))

ϕ(x)dx.

By choosing to model ynT and Pn
T , we have equally fixed the functional form of Pn−1

T ,
since

Pn−1
T = Pn

T − αnDTSn . (4.8)

Remark 19: We make the following observation: we started with choosing the functional
forms of ynT and Pn

T at the maturity date Sn. We assumed we know the marginal dis-
tribution of ynT under Sn and we moved over to the forward measure F, where we are
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able to derive the distribution of ηn. Moving to the previous maturity, we already know
the functional form of Pn−1

T , so we can derive the distribution of ηn under the swaption
measure Sn−1 using the fact that for x ∈ R,

ESn−1

[
1(ηn < x)

]
=

D0T

Pn−1
0

EF

[
1(ηn < x)Pn−1

T

]
.

Given we know the marginal distribution of ηn under F, we can compute the expectation
on the RHS, and we are therefore able to derive the distribution of ηn under Sn−1.

If we take Sn = S2 for example, and we make some modelling choices at that maturity,
it fixes up the functional form for P 1

T , and equivalently, we fix the functional form for
y1T . This follows from the fact that P 1

T = (1 + α1y
1
T )

−1. So the modelling choices at
S2, fixes all the functional forms at S1 as well as the distribution of ηn under S1. In
this case, we have fixed the distribution of y1T under S1 (and this distribution might be
different from the market-implied distribution of y1T ).

The partial model as defined is set up to be arbitrage-free. We can easily prove that
this is the case by showing that the martingale property under the forward measure
holds. In particular, we would want the following relationships to hold:

EF[P
j
T ] =

P j
0

D0T
, for j = n− 1, n (4.9)

EF[P
n
T y

n
T ] =

yn0P
n
0

D0T
. (4.10)

For j = n, equation (4.9) trivially holds by a change of measure to Sn. Note that in
the model, we equally fix the functional form for Pn−1

T . We show that the martingale
property holds for this variable as well.

EF[P
n−1
T ] =

Pn
0

D0T
ESn

[
Pn−1
T

Pn
T

]
=

Pn
0

D0T
ESn

[
anP̂

n
T (ηn)(1 + αnfn(ηn))− αn

anP̂n
T (ηn)

]
=

Pn
0

D0T
ESn

[
1 + αnfn(ηn)−

αn

anP̂n
T (ηn)

]
=

Pn
0

D0T
ESn [1 + αngn(Xn)]− αn

Pn
0

D0T
ESn

[
1

anP̂n
T (ηn)

]
=

Pn
0

D0T
(1 + αny

n
0 )− αn. (4.11)

Given that gn(Xn) is the market-implied distribution of ynT under Sn, it immediately fol-
lows that ESn [gn(Xn)] = yn0 . The last term in the expression follows from the definition
of the parameter an given in equation (4.6).
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Equation (4.11) can be further simplified as follows:

EF[P
n−1
T ] =

Pn
0

D0T

(
1 + αn

D0T −D0Sn

pn0

)
− αn

=
Pn
0 + αnD0T − αnD0Sn − αnD0T

D0T

=
Pn−1
0

D0T
,

and we have our desired result.

To show that equation (4.10) holds in our model, we have:

EF[P
n
T y

n
T ] =

Pn
0

D0T
ESn

[
Pn
T y

n
T

DTT

Pn
T

]
=

Pn
0

D0T
ESn [y

n
T ]

=
Pn
0

D0T
ESn [fn(ηn)]

=
Pn
0

D0T
ESn [gn(Xn)]

=
Pn
0 y

n
0

D0T
.

4.2 Model setup for two maturities

So far, we have shown how we could set up the model for a single maturity date. How-
ever, when pricing a CMS, two maturities are of particular importance: the reference
swap rate maturity and the payment date. Ideally, we would want to be able to use
the partial model setup described above for the two maturities of interest. To gener-
alise the discussion, we denote these two times as Sn and Sm. If we apply the setup
above to these two maturities, we would end up with two drivers ηn and ηm with known
distributions under F. There exists however a functional relationship between the two
drivers. This enables us to unify the two partial models under the forward measure F
using the Inversion Principle given in Theorem 4.1.1.

For k = n,m, we know the distribution of ηk under F which we denoted by Fηk . With
this information, we can construct the model under F. Let Y ∼ N (0, 1) under F and
define for k = n,m:

ηk := hk(Y ), (4.12)

where hk := F−1
ηk

◦ Φ. The variable ηk thus defined has the required distribution Fηk

under F. We can now establish a functional relationship between ηn and ηm as fol-
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lows:

ηm = hm(Y )

= hm(h−1
n (ηn))

= hm((F−1
ηn ◦ Φ)−1(ηn))

= F−1
ηm (Φ(Φ−1(Fηn(ηn))))

= F−1
ηm (Fηn(ηn)).

Building on remark 19, since the modelling choices at one given maturity fixes the
functional form for the PVBP at the previous maturity, it is important to consider the
model when the maturities are one step away from each other. When m = n + 1, we
start off by setting up the partial model at Sm, i.e, we postulate a functional form for
yn+1
T and Pn+1

T as a function of the driver which we simply denote here by η. This
will force upon us a functional form for Pn

T (hence, Pn
T is no longer a modelling choice)

and the distribution of η under Sn+1 and F. As we have discussed before, through the
knowledge of the functional form of Pn

T and the distribution of η under F, we equally
know the distribution of η under Sn. The question therefore is how do we capture the
implied distribution of the swap rate ynT under Sn.

One way to tackle this is through the use of the Inversion Theorem 4.1.1 to find a
functional form for ynT that would give us the distribution of the swap rate under the
swaption measure Sn we want to capture. We know the distribution of η under Sn,
which we denote by F̄ηn . We also know our target distribution for ynT under Sn, which
we denoted by F y

n and which we can express as a function of a standard normal random
variable, Xn ∼ N (0, 1). By Theorem 4.1.1, we have that:

η = F̄−1
ηn (Φ(Xn))

ynT = (F y
n )

−1(Φ(Xn))

We can thus express ynT as a function of η as follows:

ynT = (F y
n )

−1(F̄ηn(η)). (4.13)

By property of probability distributions, we know (F y
n )−1 is non-decreasing, so we can

set fn := (F y
n )−1◦F̄ηn . This particular choice of functional form for the swap rate at time

Sn ensure the model captures the market implied distribution of ynT under Sn. Equation
(4.13) is not an obvious choice of functional form and it requires some computational
effort.
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4.2.1 Extending to a complete arbitrage-free model

We have shown above that the partial model is arbitrage-free for a given maturity. For
practical purposes, this is usually enough. We still want to check that the partial model
can be extended to a complete arbitrage-free model. Below, we describe one way we
could extend the model over the whole tenor structure. The extension of the partial
model follows a similar reasoning as the single-time MFM setting discussed in Chapter
2. WLOG, we assume n2 > n1. We do the partial model setup for maturities Sn1 and
Sn2 . Starting at Sn2 , we unfold the model backwards stepping one maturity down, and
calibrating the model to the known market-implied distribution of the swap rate at each
maturity until we reach Sn1+2. Since we have already chosen the functional forms at
Sn1 , we set the functional form of the swap rate yn1+1

T so that the functional relationship
between the swap rate and the PVBP (we refer ahead to equation (4.14)) is satisfied.
We provide below a simple illustration of the extended model. We repeat the same steps
until we reach the maturity date S2. The model choice for the swap rate at S2, together
with the PVBP P 2

T determined by the model choices at S3, fully determines the model
at S1. We extended the model in such a way that at most maturities, we are able to
calibrate the model to the market-implied distribution of the swap rates. The extended
model is theoretically sound, but one that may not be attractive in practice. In the next
section, we shall discuss how we could set up the partial models such as the resulting
model is arbitrage free. We lose some flexibility over the calibrating aspect of the
model, but the numerical analysis that follows indicate that under judicious modelling
choices, we could set up the 1F smcMFL model to closely reproduce the single-time
MFM results.

Figure 4.2: A complete arbitrage-free model

We explain the complete model construction below:

(1) Starting at time Sn2 , we make modelling choices for yn2
T and Pn2

T . We showed
above that this fixes the functional form for Pn2−1

T . Working down from Sn2−1 to
time Sn1+2, at each time step, we choose a functional form for yjT , and we make
the following choice:

fj(η) := (F y
j )

−1(F̄ηj (η)),
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for j ∈ {n1 + 2, . . . , n2 − 1}, where F y
j is the known implied distribution function

of yjT under Sj and F̄ηj (·) is the distribution of η under Sj , fixed from the previous
time step, as can be easily deduced from the discussion in remark 19.

(2) With the choice of functional form for yn1+2
T made and Pn1+2

T fixed from previous
time step, we have fixed the functional form of Pn1+1

T . At time Sn1 , we have
already made the modelling choices for Pn1

T and yn1
T . We therefore have to set up

the functional form of yn1+1
T in order to be consistent with the PVBP choices at

time Sn1 and Sn1+1. The consistent choice would be:

Pn1+1
T + αn1+1y

n1+1
T Pn1+1

T = Pn1
T + αn1+1

=⇒ yn1+1
T =

Pn1
T + αn1+1 − Pn1+1

T

αn1+1P
n1+1
T

. (4.14)

Remark 20: Note that by making the above choice, we lose monotonicity of the
functional form for yn1+1

T and the distribution of yn1+1
T is fixed under Sn1+1, and

has not been matched to the implied distribution. But with appropriate choices of
functional forms, we expect the approximate model distribution for the swap rate
to be relatively close to the market implied distribution.

(3) Working from the modelling choices at Sn1 , down to maturity S2, similar to the
above, we are free to make choices for the functional forms of yjT , j ∈ {2, . . . , n1−
1}, and we can use similar choice as in step (1) above. By the time we reach S1,
P 1
T is fixed from the choices at S2 and the functional form of y1T automatically

follows since:

P 1
T =

α1

1 + α1y1T
.

(4) At each time step j for j ∈ {1, . . . , n2}, we can recover the functional form for the
pure discount bond using the fact that:

DTSj = 1− yjTP
j
T .

and we fixed the functional form of the PVBP at the previous time step using:

P j−1
T = P j

T − αjDTSj , for j > 2. (4.15)

The model, thus extended, will be arbitrage-free, which is verified below, and is also
consistent by construction.

At times Sni , for i ∈ {1, 2}, we have shown that the model is arbitrage-free. We
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have equally proved that at time Sni−1, the required martingale property holds. For
j ∈ {1, . . . , n2 − 2}\{n1 − 1, n1}, we use a backward inductive argument to prove the
martingale property holds.

Assume the martingale property holds at time Sj+1, for some j ∈ {1, . . . , n2−2}\{n1−
1, n1}. We want to prove it equally holds at Sj :

EF[P
j
T ] =

P j+1
0

D0T
ESj+1

[
P j
T

P j+1
T

]

=
P j+1
0

D0T
ESj+1

[
P j+1
T − αj+1DTSj+1

P j+1
T

]
=
P j+1
0

D0T
ESj+1

[
1−

αj+1(1− yj+1
T P j+1

T )

P j+1
T

]
=
P j+1
0

D0T

(
1− αj+1ESj+1

[
1

P j+1
T

]
+ αj+1ESj+1 [y

j+1
T ]

)
. (4.16)

Given we have chosen to model yj+1
T such that its functional form fj+1(·) captures the

market implied distribution, it follows that

ESj+1 [y
j+1
T ] = ESj+1 [fj+1(η)] = yj+1

0 .

Remark 21: Note that even if we made a different choice for yjT at S1 and SN+1, for the
martingale property to hold at these two time steps, we need y2T and yN+2

T respectively
to satisfy the above equations and this follows from the choice of functional forms.

We can easily see that:

ESj+1

[
1

P j+1
T

]
= ESj+1

[
DTT

P j+1
T

]
=

D0T

P j+1
0

.

Equation (4.16) then simplifies to:

EF[P
j
T ] =

P j+1
0 − αj+1D0T + αj+1(D0T −D0Sj+1)

D0T
(4.17)

=
P j
0

D0T
. (4.18)
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In particular, using the result in equation (4.18) from above, we have:

EF[DTSj ] =
1

αj
EN[P

j
T − P j−1

T ] =
1

αj

[
P j
0 − P j−1

0

D0T

]
=
D0Sj

D0T
.

For maturities where we have free choice for the functional forms of yjT , and we chose
them to match the implied distribution under their respective swap rates, equation
(4.10) will hold in the extended model, and this can be shown by following similar steps
as we did in the partial model, but instead we apply a change of measure from F to
Sj .

We look at the case j ∈ {1, n1 + 1} in particular to check if it satisfies the martingale
property.

EN[y
1
TP

1
T ] =

P 1
0

D0T
ES1 [y

1
T ]

=
P 1
0

D0T

(
ES1

[
1

P 1
T

]
− 1

α1

)
=

P 1
0

D0T

(
D0T

P 1
0

− 1

α1

)
=

P 1
0

D0T

(
D0T −D0S1

α1D0S1

)
=
P 1
0 y

1
0

D0T

For j = n1+1, we use the fact that both Pn1
T and Pn1+1

T satisfy the martingale property
to show that equation (4.10) holds for that particular choice of yn1+1

T .

EF[y
n1+1
T Pn1+1

T ] = EF

[
Pn1
T + αn1+1 − Pn1+1

T

αn1+1P
n1+1
T

Pn1+1
T

]
= EF

[
Pn1
T + αn1+1 − Pn1+1

T

αn1+1

]
=

1

αn1+1
EF[P

n1
T ] + 1− 1

αn1+1
EF[P

n1+1
T ]

=
Pn1
0 + αn1+1D0T − Pn1+1

0

αn1+1D0T

=
(1 + αn1+1y

n1+1
0 )Pn1+1

0 − Pn1+1
0

αn1+1D0T

=
yn1+1
0 Pn1+1

0

D0T
.



4.2. MODEL SETUP FOR TWO MATURITIES 82

Note that the second to last equality holds by the fact that:

D0Sn1+1 = D0T − yn1+1
0 Pn1+1

0 ,

Pn1+1
0 = Pn1

0 + αn1+1D0Sn1+1 .

Plugging the first expression into the second one and rearranging will yield the required
identity. Note that the extended model satisfies the consistency condition (3.4).

4.2.2 The Alternate Fit and the Exact Fit

If we were to compute the price of a CMS payoff at different payment dates, we could
use the 1F smcMFL approach to set up different partial models keeping the modelling
choices at the reference swap rate maturity the same, but making different modelling
choices at each of the payment dates. No model will price all the vanilla instruments
in line with the market. Indeed, a model can lose explanatory value if its sole aim is
to fit to many vanilla instruments. The approach of using different partial models is
therefore in line with market practice.

However, in pricing a CMS, it is desirable not only to price the closely related vanilla
instruments i.e. swaptions correctly but also to correctly price the fixed leg of the
reference swap. If this does not hold for the modelling approach used, then the prices
produced will lead to an arbitrage opportunity.

To see this, let the reference index be N, and let the payment dates be S1, S2, . . . , SN .
For each i = 1, . . . , N , let V i

0 denote the value assigned at time-zero to the payoff
yNT DTSi at time T by the ith partial model and let V FIX

0 denote the value assigned to
the fixed leg of the swap. Note that value V FIX

0 can be obtained in a model-independent
way from the reference swaption prices. Now if V FIX

0 >
∑N

i=1 αiV
i
0 for example, we

could buy the N individual CMS cashflows and sell the fixed leg of a forward starting
swap, length N , starting at T to create an arbitrage. If we have V FIX

0 =
∑N

i=1 αiV
i
0 ,

then we shall say that the set of partial models is consistent.

To achieve consistency, we could start off by making our modelling choices at time SN .
As we have seen above, this would fix the functional form of PN−1

T . We jump two
maturities before to SN−2 and we can make our modelling choices for yN−2

T and PN−2
T .

We first observe that the functional relationship

DTSN−1
=
PN−1
T − PN−2

T

αN−1
.

gives us a functional form for DTSN−1
consistent with the choices made at maturities

SN and SN−2. We can fix the functional form of yN−1
T to ensure the model is consistent

(but in practice, we never need to determine this explicitly). We do so by defining yN−1
T
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as:

yN−1
T :=

PN−2
T + αN−1 − PN−1

T

αN−1P
N−1
T

.

So, starting from SN , we make modelling choices at each alternate time SN−2, SN−4,
. . . , to S2, if N is even or S1 if N is odd. We fix up the functional form of the swap
rates at the times Sj ,(j ∈ {N − 3, N − 5, . . .}) where we do not have the flexibility to
make free choices, using the relationship:

(1 + αjy
j
T )P

j
T = P j−1

T + αj . (4.19)

We shall refer to the framework designed to meet the consistency condition as described
above as the alternate fit model. Observe that we have specified a single arbitrage-free
model which models all the pure discount bonds DTSi , i = 1, . . . , N . We could extend
the model out to some payment date SM when M > N by fitting SN+2 and so on until
N + 2i ≥ M . To use the model to value a CMS payoff at SM , we only need to fit the
model at two times, SN and SM , if |M −N | is even, or at three times, SN , SM−1 and
SM+1 if |M−N | is odd. This contrasts with the single-time MFM developed in Chapter
2 where to model DTSi , we have to formulate the model from maturity S1.

When the payment date exceeds the reference swap rate maturity, we no longer need the
consistency condition to hold. We are free to do the partial model setup at any maturity,
a setup we refer to as the exact fit approach. Note that this approach is arbitrage-free
for any particular payment date. We shall observe however in the numerical analysis
that the convexity corrections obtained from the exact fit setup are very close to that of
the single-time MFM. From the alternate fit setup, at payment dates whereby we have
no control over the model choices, we are forced to work with the distribution ascribed
by the model, giving us prices that differ from that of the exact fit approach (and the
single-time MFM). We shall show in Section 4.3.5 how we can refine the alternate fit
approach to bring the model closer to the single-time MFM. In practice however, the
exact fit approach will be sufficient.

4.3 Numerical Results

4.3.1 Model choices and functional forms

We use the same tenor structure setup as described in Section 3.2.1 of Chapter 3, and
the initial conditions as given in table 1 in Appendix A.

For the numerical analysis that follows, we consider two possibilities for the market-
implied marginal distributions of the swap rates under their respective swaption mea-
sures: log-normal and shifted log-normal. For the assumptions made, we now define
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explicit choices for the functional forms when setting the partial model up (i.e the model
at a single maturity).

For a given maturity Sn, n ∈ {1, . . . , M̃}, we postulate the following functional form
for the swap rate in terms of the model driver ηn:

fn(ηn) := θn + γn exp(δnηn), (4.20)

where

θn ≥ 0 is the shift parameter

γn = exp(log(yn0 − θn)− 1
2 σ̂

2
nT )

δn = σ̂n
√
T

Remark 22: Under the log-normal assumption, we take θn = 0 and σ̂n is the log-normal
volatility as given in Appendix A. Under the shifted log-normal assumption, we take σ̂n
to be the implied volatility that yields the same ATM swaption prices under log-normal
distribution. We tabulate the values used for the implied volatilities in this case in table
2 in Appendix C.

We recall that we chose to fix the distribution of ηn such that the model is calibrated
to the market-implied distribution of the swap rate in its own measure. We can easily
deduce from the given choice of functional form for ynT that ηn is standard Gaussian
under Sn in either case.

The second choice involves postulating a functional form for P̂n
T and we provided a

general form in equation (4.4). We therefore need to specify ŷiT , for i ∈ {1, . . . , n}.
We assumed the market-implied marginal distribution of the set of forward swap rates
are either log-normal or shifted log-normal in their own swaption measures. Under Sn,
the distribution of the swap rates ŷiT , i ∈ {1, . . . , n − 1} will no longer be (shifted)
log-normal, but it can be reasonably argued that it will still be close. That said, we
choose to express ŷiT as follows:

ŷiT (ηn) := θi + (ŷi0 − θi) exp(σ̂i
√
Tηn − 1

2
σ̂2i T ), (4.21)

where ŷi0 is the (possibly convexity-adjusted) forward swap rate.
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A crude approximation for ŷi0 is given in appendix C and we state the result below:

ŷi0 ≈ θi + (yi0 − θi) exp

(
σ̂i

[(
D0Sn

Pn
0

n∑
l=1

αl

1 + αly
n
0

− 1

)
σ̂n(y

n
0 − θn)

yn0
−

(
D0Si

P i
0

i∑
l=1

αl

1 + αly
i
0

− 1

)
σ̂i(y

i
0 − θi)

yi0

]
T

)
. (4.22)

We observe from equation (4.22), that for i = n, ŷn0 collapses to yn0 and the choice
of functional form for ŷnT matches the choice of functional form for ynT made above in
equation (4.20). The functional form for Pn

T is thus given by:

Pn
T (ηn) := an

n∑
k=1

αk

( n∏
i=k

1

1 + αiŷiT (ηn)

)
,

where an ∈ R is appropriately chosen.

In the next section, we implement the model firstly under the assumption that the
swap rates are log-normal distributed under their respective swaption measures. We
also carry out a sensitivity test to see how the model fares if we omit the adjustment
ŷi0, and use yi0 instead, for i = {1, . . . , n} when constructing the PVBP. We repeat the
analysis with the shifted log-normal assumption.

4.3.2 Log-normal market-implied distributions

Following the steps outlined above, we set the models up under the assumption that
the swap rates are log-normally distributed under their respective swaption measures
(i.e. θj = 0, for j ∈ {1, . . . , M̃}). We compare the convexity corrections obtained from
two model setups to the results from the single-time MFM and we observe how they
perform as a function of the payment date. We carry out the analysis for N = 2 and
N = 10.

Figure 4.3: Convexity Corrections against payment date under log-normal assumptions
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From Figure 4.3, we can observe that by doing the partial model setup at both the
reference maturity and the payment date (i.e the exact fit), the results match closely
to those from the single-time MFM. In that approach, we capture both market-implied
marginal distribution of the swap rates that we have shown to be most significant for
the pricing of the CMS. However, as we have discussed before, this model does not
satisfy the consistency condition. On the other hand, for the alternate fit approach, we
have a consistent, arbitrage-free model, but we can observe that at every odd payment
date, we do not capture the distribution of the payment swap rate under its associated
swaption measure, but rather, in order to achieve consistency, we set up the functional
form for the swap rate based on modelling choices made one maturity step before and
after. The distribution of the payment swap rate ascribed by the model differs from
the log-normal assumption. This translates to the convexity corrections given by the
alternate fit model differing relatively significantly, as the payment date increases, from
the other models (exact fit and single-time MFM). In Chapter 5, we revisit the zig-
zag behaviour we observe in the alternate fit approach and provide an explanation for
its occurrence. In Section 4.3.5, we propose a method of refining the results from the
alternate fit model to achieve a closer match to the single-time MFM. We observe that
using the convexity-adjusted parameters improves the results slightly - we can see that
the size of the oscillations decreases for large payment dates.

Remark 23: Note that the oscillations of the alternate fit model in the convexity cor-
rection increase with the payment date index M . The corresponding oscillations of the
convexity-adjusted value of a CMS payment would be much less (because the value is ob-
tained from the convexity adjusted forward by multiplying by the discount factor D0SM

- which decreases with M).

4.3.3 Shifted log-normal market-implied distributions

We repeat the previous analysis but this time we assume that the market implied
distribution of the swap rates are shifted log-normally distributed under their respective
swaption measures. We assume that the shift parameter is −0.05, unless otherwise
specified. Note that we choose the volatility parameter in the shifted log-normal case
such that the prices of ATM swaptions match those obtained under the assumption of
log-normal distribution. We assume that the prior swap rates we use to construct the
functional form P̂

.

T have shifted log-normal forms.
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Figure 4.4: Convexity Corrections against payment date under shifted log-normal assumption;
N = 2
Left: using convexity-adjusted parameters as given in equation (4.22)
Right: using original parameters yk0 in prior swap rates specification for the PVBP

Figure 4.5: Convexity Corrections against payment date under shifted log-normal assumption;
N = 10
Left: using convexity-adjusted parameters as given in equation (4.22)
Right: using original parameters yk0 in prior swap rates specification for the PVBP

We can observe that both the alternate fit model and the exact fit model perform
remarkably well up to payment date S16 in both cases. As the payment date then
increases, we can see that the exact fit model gives results close to those obtained from
the single-time MFM, while the discrepancy in alternate fit model at odd payment dates
increases. It should be stressed however than when SM > SN , we can focus on the exact
fit approach as we do not need the consistency conditions to hold.

4.3.4 Sensitivity of model to choice of functional forms

In the previous sections, we have set up functional forms for the prior swap rates ŷlT
that match closely what we believe their market implied distributions are. In particular,



4.3. NUMERICAL RESULTS 88

recall we constructed the functional form P̂n
T , for n ∈ {1, . . . , M̃}, as follows:

P̂n
T :=

n∑
k=1

αk

( n∏
l=k

1

1 + αlŷ
l
T

)
.

We chose to define ŷlT based on our assumption for the market implied distributions.

In order to determine how sensitive the models are to the choice of functional forms,
we now choose functional forms for the prior swap rates such that they are modelled
differently from their actual market-implied distributions. In the numerical analysis,
we assume that the market implied distributions of swap rates under their respective
swaption measures are shifted log-normal, but we define ŷlT using the log-normal form.
We henceforth refer to this setting as the SLN-LN case. Note that we are using same
model input as in the previous section.

Figure 4.6: Convexity Corrections against payment date: Sensitivity of model to choice of
functional forms

In Figure 4.6, we observe firstly that there is minimal difference between the results
obtained using the convexity-adjusted parameters ŷl0 and those obtained using the un-
adjusted yl0, for l ∈ {1, . . . , n}, in the specification of the prior swap rates for the PVBP
Pn
T . Secondly, as the payment date increases, we notice a divergence between the exact

fit model and the single-time MFM. This points us to believe that the PVBP plays a
crucial role in the pricing problem, a point we will come to again when discussing the
two-factor model setup. This analysis serves as a preliminary indication of the impor-
tance of modelling the PVBP appropriately. This idea is further reinforced when we
look at the performance of the alternate fit model. Compared to the previous cases (Fig-
ures 4.3 - 4.5), we observe that even at early payment dates, the discrepancy between
the convexity corrections at even and odd payment dates vary significantly, resulting in



4.3. NUMERICAL RESULTS 89

a zig-zag behaviour. As mentioned before, we shall explore a method later on to refine
the alternate fit approach, and we will discuss in depth the cause of such behaviour in
the next chapter.

We end this section with the observation that in the SLN-LN case, we modelled the prior
swap rates differently from their actual market-implied distributions. In particular, for
a given maturity Sn, the choice of functional forms for ŷlT (used in setting up the PVBP
and ynT (the swap rate we aim to model appropriately) do not coincide. We discuss below
a possible adjustment that could be made in order to account for this mismatch.

We note that a limitation of making such choices is that the functional forms used for
ŷlT do not allow for negative rates (by the assumption of shifted log-normal distribution
for the swap rates, there is a possibility of negative rates if we choose to set the shift
parameter to be negative). So in the numerical analysis that follows, we use a positive
shift parameter in order to observe how sensitive the models are to a mismatch of
distribution in the choice of functional forms.

We want to reflect the knowledge of the market-implied distribution of ynT in the con-
struction of the PVBP. To take this into account, we introduce a dummy variable η̂ and
we fix its distribution under Sn as follows:

η̂ := (ŷnT )
−1(gn(X)),

where X ∼ N (0, 1) under Sn,

ŷnT (x) = yn0 exp(σn
√
Tx− σ2nT ),

and
gn(X) = θn + (yn0 − θn) exp(σ̂n

√
TX − 1

2
σ̂2nT ).

We note that for ŷnT , we use the log-normal volatility given in Appendix A, and for the
specification of gn, we use the implied volatility as given in Appendix C.

Remark 24: In setting up the functional form for P̂n
T , we set the functional forms for

the prior swap rates as follows:

• For x ∈ R, {ŷ1T (x), . . . , ŷnT (x)} are chosen to be of log-normal form

• Define x̂ := (ŷnT )
−1(gn(x))

• Define a set of modified functional forms for the prior swap rates ŷn:iT (x), i ∈
{1, . . . , n}, where ŷn:iT (x) := ŷiT (x̂) = ŷiT

(
(ŷnT )

−1(gn(x))
)
. Then ŷn:nT has the right

market implied distribution under Sn. We use these modified functional forms for
the swap rates to construct P̂n

T , hence the PVBP Pn
T .
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For the numerical results below, we assume the shift parameter takes value 0.02. We
look at how convexity corrections behave as a function of payment time and how the
models compare.

Figure 4.7: Convexity Corrections against payment date: SLN-LN analysis using refined func-
tional forms

We observe from Figure 4.7, that the refinement introduced when specifying the PVBP
has reduced the oscillatory behaviour of the alternate fit model significantly compared
to the analogous results in Figure 4.6. We further observe that the convexity corrections
from the exact fit approach are now closer to that of the single-time MFM. Similar to
Figure 4.6, we observe that using the convexity-adjusted values ŷl0 does not have much
of an impact on the model results. There is a slight deterioration in the alternate fit
results at odd payment dates very far from the reference swap rate maturity, but as
we have argued before, for these payment dates, we can use the exact fit approach
instead.

4.3.5 Refining the alternate fit setup of the 1F smcMFL Model

The numerical analysis of the alternate fit setup of the MF-Lite model revealed a ‘zig-
zag’ behaviour - at even payment dates where we can calibrate the model to the desired
marginal distribution (we choose the reference swap rate maturity to be even), the con-
vexity correction is close to that of the single-time MFM; at alternate (odd) payment
dates, whereby the functional forms are fixed, the convexity correction is either too
high or too low compared to that of the single-time MFM. We provide below a method
to refine the alternate fit setup. Using numerically observed information on the swap
rates from the single-time MFM under the forward measure F, we fine-tune the param-
eters used in setting up the PVBP and update the functional form in the 1F smcMFL
approach to closely reproduce the single-time MFM results. The refined alternate fit
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setup described here is only meant to demonstrate that we can construct an arbitrage-
free consistent MF-Lite approach that can achieve a close match to an arbitrage-free
model.

For the numerical results in this section, we focus on the assumption that the swap
rates are log-normally distributed under their respective swaption measures, but the
approach should carry over to a broader range of marginal distributions. In Chapter
5, we revisit the zig-zag behaviour in more depth and provide an explanation as to
why we observe this in the alternate fit setup. In the next section, we discuss how we
can use numerically observed information on the swap rates under the forward measure
to alter the PVBP in the 1F smcMFL approach to reproduce the single-time MFM
results. We stress that in practice, firstly the consistency condition is only relevant
when the payment date is less than or equal to the maturity date of the reference swap.
As we have seen in the numerical results above, the prices from the alternate fit setup
are very close to those of the exact fit, that in practice, we could use the exact setup
instead.

Refining the volatilities

We have assumed that the swap rates are log-normally distributed under their associated
swaption measures. Consider the single-time MFM under F. While the swap rates
will no longer be log-normal, we will still assume them to be roughly so. We can
express:

log(yiT ) ≈ ΣiY + Ci, (4.23)

where Y ∼ N (0, 1) under F, for i ∈ {1, . . . , M̃}. We define, for given i, j ∈ {1, . . . , M̃}:

rj,i :=
var(log(yjT ))
var(log(yiT ))

=
Σ2
jvar(Y )

Σ2
i var(Y )

=
Σ2
j

Σ2
i

. (4.24)

Note that if we change to a different measure, the distribution of Y will change but the
functional forms (4.23) will not. In particular, the ratio rj,i is measure-independent.
Fix n ∈ {1, . . . , M̃}. Under the swaption measure Sn, ynT is exactly log-normal with
volatility σn. For the current alternate fit setup, we have used the log-normal volatilities
for the prior swap rates ŷiT for i < n in forming the PVBP Pn

T . Instead, we now adjust
the volatilities so that the ratio (4.24) holds. For i ∈ {1, . . . , n}, we define:

σn:i := σn
√
rn,i. (4.25)
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Note that we can get hold of the ratios numerically from the single-time MFM. Going
back to the 1F smcMFL model, we now have:

ynT (η) := yn0 exp(σn
√
Tη − 1

2
σ2nT ),

P̂n
T (η) :=

n∑
k=1

αk

n∏
i=k

(1 + αi(ȳ
n:i
T (η))−1,

where
ȳn:iT (η) := yi0 exp(σn:i

√
Tη − 1

2
σ2n:iT ).

We now look at the convexity correction against payment time, using the refined PVBP
functional form.

Figure 4.8: Convexity correction against payment date: Refining the volatilities of the prior
swap rates

We observe a slight improvement in the alternate fit setup, but the ‘zig-zag’ behaviour
is still present. We provide in the next section a further modification to the functional
form of the PVBP in order to refine the model results.
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Refining the initial value of the swap rates

In the previous section, for a fixed n ∈ {1, . . . , M̃} we refined the volatilities of the (prior)
swap rates {ŷiT : i ∈ {1, . . . , n − 1}}. There has been an improvement in the results
obtained from the alternate fit setup, but we can still further refine the parameters yi0
to bring the model closer to the single-time MFM.

We know that:

ynT = yn0 exp(σn
√
Tη − 1

2
σ2nT ) =: exp(σn

√
Tη + bn)

= exp(σn:n
√
TY + b̂n),

where η ∼ N (0, 1) under Sn, Y ∼ N (0, 1) under F (roughly). Note that the b̂n ∈ R can
be (numerically) worked out from the single-time MFM.

From the above, we can find an expression for the variable Y in terms of η:

Y =
σn
σn:n

η +
bn − b̂n

σn:n
√
T
. (4.26)

For i < n, we also have that:

ȳn:iT (Y ) = yi0 exp(σn:i
√
TY − 1

2
σ2n:iT ) =: exp(σn:i

√
TY + b̂i). (4.27)

Substituting the expression for Y from (4.26) in equation (4.27) yields

ȳn:iT = exp(σn:i
√
TY + b̂i)

= exp

(
σn:i

√
T

[
σn
σn:n

η +
bn − b̂n

σn:n
√
T

]
+ b̂i

)
= exp

(
σn
σn:i
σn:n

√
Tη + (bn − b̂n)

σn:i
σn:n

+ b̂i

)
=: exp(σ̄n:i

√
Tη + b̄i),

where
σ̄n:i = σn

σn:i
σn:n

,

b̄i = (bn − b̂n)
σ̂i
σ̂n

+ b̂i.

We have expressed ȳn:iT in terms of a standard normal random variable under Sn with
updated parameters. We use these functional forms to define the PVBP.
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Figure 4.9: Convexity correction against payment date: using refined priors for the PVBP

As we noted earlier, the purpose of the above analysis is to demonstrate that a more
careful choice of PVBP improves the oscillatory behaviour we observe in the alternate
fit model, addressing the undesirable feature of the setup.



CHAPTER 5

A Markov-functional approach to convexity

corrections: The Two-factor MF-Lite model

In Chapter 3, we used the single-time MFM developed in the earlier chapter to inves-
tigate the impact of the (joint) distribution of the swap rates on convexity corrections
when pricing a CMS payment (or related options). We observed that, as the payment
date gets further away from the reference swap rate maturity, the marginal distribution
of the payment swap rate has a material effect on convexity corrections, in addition
to the distribution of the reference swap rate. In Chapter 4, we set out to construct
a practical one-factor MF-Lite approach to the pricing problem, that would take into
account this observation. Going back to the numerical analysis of Chapter 3, under log-
normal assumptions on the swap rates in their own swaption measures, and imposing
a Gaussian copula on the model drivers, we investigated the impact of the correlation
between the log of the swap rates on convexity corrections, pointing us to believe that
a two-factor model would be appropriate for the pricing of a CMS (in particular when
the payment date is far from the reference swap rate maturity). To this end, the goal
of this chapter is to incorporate a second factor in the MF-Lite approach.

We would naturally want to extend the approach developed in Chapter 4 to the two-
factor case. We recall then we started off by postulating functional forms for the swap
rate and the PVBP in terms of some (one-dimensional) model driver under the swaption
measure. We then carried the model over to the forward measure. We could repeat this
procedure for a different maturity. We then unified the two partial model setups by
observing that under the common forward measure F, under the one-factor assumption,
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there exists a functional relationship between the two drivers. For the two-factor setup,
we could potentially take a similar approach. However, it proved to be difficult to set up
a simple, yet efficient two-factor model that is structurally similar to the 2F single-time
MFM when starting the modelling setup under the swaption measure. We discuss this
point further in the later Section 5.3.

Instead, for the development of the two-factor MF-Lite approach, we start the mod-
elling process under the forward measure. In Section 5.1, we show how we construct
a two-factor forward measure calibrated MF-lite model, which we shall abbreviate to
2F fmcMFL model. The danger with this approach is that we have no direct market
data that would inform the choices we make under the forward measure. To elaborate,
recall we construct a functional form for the PVBP by choosing a set of priors for the
forward swap rates. Assume the swap rates are log-normally distributed with respect
to their own swaption measures, with some known log-normal volatilities. Under the
forward measure, the distribution will not be log-normal, but we could still make the
naive choice of log-normal functionals with the given volatility (known only under the
swaption measure) for the swap rates under F. This idea is reflected in the choices that
Cedervall and Piterbarg (2012) make when setting their model up under the forward
measure, but they do not examine the consequences of such choices on their model
performance. However, as we shall see in Section 5.1.1, an analysis of the fmcMFL
model in its simpler one-factor setup reveals that the model fails to accurately repli-
cate the single-time MFM results. The PVBP plays an important role in bridging the
model between the forward measure and the swaption measure, and that variable should
be modelled appropriately. In Section 5.2, we propose a refinement on the functional
form of the PVBP (hence a 2F refined fmcMFL model) that will bring the 2F MF-Lite
approach closer to the 2F single-time MFM.

In Section 5.3, we propose a simplistic/naive 2F MF-Lite model set up under the swap-
tion measure. As we have touched upon above, setting up a two-factor MF-Lite ap-
proach in the swaption measure, whilst retaining the structure of the single-time MFM
is particularly challenging. The approach we propose in Section 5.3 strips away much
of the model complexity of the single-time MFM. The downside is that the choices of
functional forms are suboptimal, which could result in the model being numerically far
from the single-time MFM. The numerical results under Gaussian assumptions however
show that if the model is properly calibrated, it can still closely replicate the single-time
MFM. The model does not satisfy the consistency conditions we discussed in Section
4.2.2 of Chapter 4, but this is not an issue if the payment date is after the reference
swap rate expiry.
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5.1 A two-factor forward measure calibrated MF-Lite model

In this section, we consider a 2F MF-Lite model set up under the forward measure F,
which for brevity we refer to as the 2F fmcMFL model. The approach provides a two-
factor computationally fast model, but for which prices are not close to the single-time
MFM. It is used to highlight the potential issues that can arise when one is not careful
enough in the modelling choices when setting the model up with respect to a measure
under which we have no market data to inform the distributional assumptions we make
on the forward swap rates and therefore the PVBP. We shall explore this point in more
depth in the numerical analysis in Section 5.1.1 by observing the performance of the 1F
fmcMFL model under the assumption that the swap rates are log-normally distributed
under their respective swaption measures. Note that we go back to the simpler one-
factor setup of the model for this analysis. Our goal is to examine how the proposed
approach fares in a simplified context. We propose a refinement to the functional form
of the PVBP in Section 5.2 to account for this model deficiency.

We describe the 2F fmcMFL model setup for a single maturity which we denote by
Sn. As for the 1F smcMFL model developed in Chapter 4, we set up partial models by
specifying the functional forms for the swap rates and the PVBPs at two maturities,
and we unify the partial setups under the common measure F. Here we are starting the
modelling process in the forward measure so these functional forms will already be in
terms of a common two-dimensional driver which we denote by (x

(1)
T , x

(2)
T ). Although

we are describing the model for a given maturity, the same steps can be followed for a
second maturity.

Our first task is to set up a model for the PVBP Pn
T . In contrast to the swaption

MF-Lite model of Chapter 4, we need the PVBP before we are able to carry out the
calibration step to match the distribution of the swap rate ynT to its market-implied
distribution under Sn. Assume under the forward measure F, associated with taking
D.T as numéraire, (

x
(1)
T

x
(2)
T

)
∼ N

((
0

0

)
,

(
λ1 0

0 λ2

))
. (5.1)

We note the similarity in the choice of driver between the 2F fmcMFL model and the
2F single-time MFM. We aim to bring the two models as close as possible, so we borrow
the structure of the single-time MFM to inform the choices we make in the 2F fmcMFL
model. For i ∈ {1, . . . , n} and for β(1)i , β(2)i ∈ R, we define:

ziT :=
β
(1)
i x

(1)
T + β

(2)
i x

(2)
T√

(β
(1)
i )2λ1 + (β

(2)
i )2λ2

. (5.2)
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We postulate a prior model for the swap rates, which we denote by ŷiT , in terms of ziT .
We define:

ŷiT := f̂i(z
i
T ). (5.3)

The function f̂i : R→ R is a known deterministic function that reflects our belief about
the marginal distribution of the ith swap rate in its own swaption measure if ziT were
N (0, 1) in that measure. For example, if swaption prices based on yiT were given by
Black’s formula with implied volatility σi, then we would postulate:

f̂i(z
i
T ) := yi0 exp(σi

√
TziT − 1

2
σ2i T ).

Using the standard functional relationship as we have done in Section 4.1 of Chapter 4,
we can construct a prior model for the PVBP P̂n

T as follows:

P̂n
T (x

(1)
T , x

(2)
T ) = P̂n

T (z
1
T , z

2
T , ..., z

n
T )

:=
n∑

k=1

αk

( n∏
i=k

1

1 + αif̂i(ziT )

)
. (5.4)

We need to ensure that the no-arbitrage condition holds under F. In particular, since
Pn is a martingale under F, we would want the equality:

EF[P
n
T ] =

Pn
0

D0T

to hold. Hence, we adjust the prior by defining Pn
T := anP̂

n
T , where:

an :=
Pn
0

D0TEF[P̂
n
T (x

(1)
T , x

(2)
T )]

. (5.5)

The constant term an ∈ R fixes up the no-arbitrage condition.

It remains at this stage to construct a functional form for the swap rate. We do so by
calibrating the model to the known marginal distribution of the swap rate ynT under its
associated swaption measure using the Markov functional sweep technique. We assume
we can model the swap rate ynT as a monotonic increasing function fn of znT . Below, we
show how we recover fn from swaption/digital swaption prices.

For a given strikeK ∈ R, denote the market price of a payer’s swaption by V n
0 (K).

Within the model, this is given by:

V n
0 (K) = D0TEF[P

n
T (y

n
T −K)+]

= D0TEF[P
n
T (y

n
T −K)1{ynT > K}].
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Differentiating with respect to K, we obtain:

Dn
0 (K) := −(V n

0 (K))′

= D0TEF[P
n
T 1{ynT > K}]

= D0TEF[P
n
T 1{fn(znT ) > K}]. (5.6)

We define and calculate for a given z∗ ∈ R :

J̃n
0 (z

∗) := D0TEF[P
n
T 1{znT > z∗}].

We observe that we can get hold of the function J̃n
0 using the model assumptions

on the drivers and the postulated functional form of the PVBP. By the monotonicity
assumption of fn, we can find a unique K∗ ∈ R, such that the set identity holds:

{znT > z∗} = {ynT > K∗}.

Given z∗, we compute:

J̃n
0 (z

∗) = D0TEF[P
n
T 1{znT > z∗}]

= D0TEF[P
n
T 1{fn(znT ) > fn(z

∗)}]. (5.7)

For a given z∗, comparing equation (5.6) to equation (5.7), we note that finding that
unique K∗ such that the above set identity holds is equivalent to knowing fn(z∗) - so
we know the function fn numerically.

We have now calibrated the model to the known marginal distribution of ynT under the
swaption measure Sn. We note that we have used the functional form postulated for
the PVBP Pn

T in the calibration step and we also have a functional form for the swap
rate ynT . This completes the model specification, and as we have seen before, we can
derive the functional form of the pure discount bond DTSn :

DTSn(x
(1)
T , x

(2)
T ) = 1− ynT (x

(1)
T , x

(2)
T )Pn

T (x
(1)
T , x

(2)
T )

= 1− anfn(z
n
T )P̂

n
T (x

(1)
T , x

(2)
T ).

We recall from Section 4.1 of Chapter 4, that making two model decisions for a given
maturity in the tenor (recall we choose the functional form of ynT and Pn

T ) limits our
flexibility to make free choices one maturity earlier. Note that the same issue will
arise here. When doing the partial model setup to another maturity, we proposed the
alternate fit model, discussed in Section 4.2.2, that takes into account the consistency
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conditions that the model has to satisfy for no-arbitrage. For maturities beyond the
reference swap rate maturity, we proposed the exact fit approach. We can use the same
methodology in the two-factor case.

Remark 25 (Comparison of the 1F smcMFL model and the 1F fmcMFL model): If we

take β(2)i = 0, then ziT =
x
(1)
T√
λ1

=: x for all i and the 2F fmcMFL model collapses to
a one-factor model. The functional form for the PVBP in both the swaption and the
forward MF-Lite models is the same, but in the forward model, it is a function of x,
which has a N (0, 1) distribution under F, and in the swaption model, it is a function of
the driver ηn, whereby ηn = hn(x̃), where x̃ ∼ N (0, 1) under F. As we shall see in the
next section, the function hn will not be the identity function and this leads to problems
with the approach outlined above.

5.1.1 Numerical investigation of a 1F fmcMFL model versus a 1F
smcMFL model

We assume that the forward swap rates are log-normally distributed under their respec-
tive swaption measures. We are using the same tenor structure setup, initial conditions
and model input as laid out in Section 3.2.1 and related appendix A. The analysis in
this section is carried out using the less complex one-factor model setup, taking β(1)i = 1

and β
(2)
i = 0, for i ∈ {1, ..., M̃}. We take λ1 = 1 and λ2 = 0. We use the 1F smcMFL

model, developed in Chapter 4 as a benchmark model to which we compare the 1F fm-
cMFL model. We shall henceforth refer to the former simply as the benchmark model.
The choices we make for the partial model setup for a given maturity Sn of the 1F
fmcMFL model is as follows (Note that based on the above parameter choices, we have
a one-dimensional driver, which we simply denote by xT ∼ N (0, 1) under F):

ynT (xT ) := yn0 exp(σn
√
TxT − 1

2
σ2nT )

Pn
T (xT ) := an

n∑
k=1

αk

( n∏
j=k

(1 + αj ŷ
j
T (xT ))

−1

)
, an ∈ R

where ŷjT (xT ) = yj0 exp(σj
√
TxT − 1

2σ
2
jT ).

We look at the convexity correction when pricing single payment of the CMS as a
function of payment date.
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Figure 5.1: Convexity Correction against Payment Date; Left: N = 2, Right: N = 10

Looking at Figure 5.1, we observe that the exact fit setup of the 1F fmcMFL model
consistently underestimates the convexity corrections (the results are too low compared
to that obtained from the 1F single-time MFM). On the other hand, for the alternate fit
setup, we observe a striking jaggedness. There are two components: one is the convexity
correction whereby we have control over the model choices, i.e at even payment dates,
hence the results coincide with the exact fit setup, and is therefore too low; at odd
payment maturities, whereby we have no control over the model choices, we observe that
the convexity correction is too high relative to the single-time MFM. In the next Section,
we investigate this particular behaviour. We note that the (much less pronounced) zig-
zag behaviour also appeared in the numerical results in the 1F smcMFL model. We
showed how we could refine the model to decrease the size of the oscillations by tuning
in the parameters used in setting up the PVBP. We will discuss below how to modify
the PVBP to address the more extreme behaviour we observe here.

Remark 26: We refer back to remark 23 and we note that the observation pointed out
on the oscillatory behaviour for the alternate fit model still applies here, but it does not
fully explain the wild oscillations. We shall investigate this below.

Investigating the 1F fmcMFL model

We recall in the benchmark model developed in Section 4.1, we started off by postulating
functional forms for the swap rate ynT (ηn) and the PVBP Pn

T (ηn) under log-normal
assumption as follows:

ynT (ηn) = yn0 exp(σn
√
Tηn − 1

2
σ2nT ),
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Pn
T (ηn) = an

n∑
k=1

αk

( n∏
j=k

1

1 + αj ŷ
j
T (ηn)

)
, where (5.8a)

ŷjT (ηn) = yj0 exp(σj
√
Tηn − 1

2
σ2jT ). (5.8b)

The modelling choice we make under the assumption that the swap rate ynT is log-
normally distributed in its own swaption measure results in the driver ηn being standard
Gaussian under Sn. We then carry the model over to the forward measure. We determine
the distribution of ηn under F as follows; for x ∈ R:

Fηn(x) := EF[1(ηn ≤ x)] =
Pn
0

D0T
ESn

[
1(ηn ≤ x)

1

Pn
T

]
.

It can be checked via a qq plot that the distribution of ηn stays roughly normal under F
but its variance increases. Further, the variance of ηn under F increases with n.

As we know the distribution of ηn under the forward measure F, we can express ηn as a
function of a standard Normal random variable as we have previously seen in equation
(4.12). We therefore have that:

ynT (Y ) := yn0 exp
(
σn

√
Thn(Y )− 1

2
σ2nT

)
= yn0 exp

(
σn

√
TF−1

ηn (Φ(Y ))− 1

2
σ2nT

)
.

Observe that is the same functional form as ŷnT used in the construction of the PVBP.

For the 1F fmcMFL model, the PVBP is given by (5.8a) with two differences; (i) ŷjT
is given by (5.8b) with ηn replaced by xT ∼ N (0, 1) under F and (ii) the constant
an is consequently different to ensure the martingale property for Pn

T under F holds.
Figure 5.2 below compares the functional form ŷnT (x) for the swaption version and
forward version of the model. Note that we plot the log-transform of the functional
forms. It shows that the function hn(·) is not the identity function (If it was, the two
functional forms would have coincided). Instead, we observe that the log-transform of
the functional form for ŷnT from the benchmark model has a steeper slope than the one
from the 1F fmcMFL model, indicating an increase in the variance of ηn as we move to
the forward measure. This measure-change effect is not reflected in the construction of
the PVBP. This results in the variance of the PVBP being too small when the model is
set up under the forward measure. As noted above, in this log-normal scenario, in the
1F fmcMFL model, we started off by constructing the PVBP P̂n

T , by postulating a set of
priors {ŷjT : j ∈ {1, ..., n}} using the same set of parameters as in the benchmark model.
Figure 5.2 indicates that when forming the 1F fmcMFL model, one should adjust the
parameters yj0 and σj for j = 1, ..., n to reflect the distributions of the swap rates in the
forward measure when forming the PVBP before the calibration step is done.
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The wild oscillations of the MF-Lite model when set up under the forward measure that
we observe in Figure 5.1 can be explained by focusing on the effect on the PVBP of the
increased variance of ηn when moving to the forward measure.

Figure 5.2: Functional form of log(ynT ) for n = {1, 10, 20, 30}: Benchmark model v 1F fmcMFL
model

Remark 27 (Explaining the zig-zag effect of the alternate fit model): We can do an
explicit calculation to demonstrate the effect of lower variance by considering the extreme
case when some of the PVBPs are deterministic (i.e variance zero).

Example: consider the following unrealistic alternate fit model. Let m and n be even.
We will assume the PVBPs Pn

T , Pm
T and Pm−2

T are deterministic. We will now consider
a payment of the reference swap rate ynT paid at either Sm or Sm−1.

Suppose payment is made at Sm. We have:

ynTDTSm = ynT − ynT y
m
T P

m
T .

In the case where the PVBPs Pn
T and Pm

T are deterministic, the swaption measures Sn,
Sm and the forward measure F coincide. In this case, under the assumption that the
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marginal distributions of the swap rates are log-normal

EF[y
n
TDTSm ] = EF[y

n
T ]− EF[y

n
T y

m
T P

m
T ]

= yn0 − yn0 y
m
0 exp(σnσmT )P

m
0

= yn0 − yn0 y
m
0 P

m
0 − yn0 y

m
0 P

m
0 (exp(σnσmT )− 1)

= yn0D0Sm − yn0 (1−D0Sm)(exp(σnσmT )− 1).

The convexity adjustment to the forward is then

Cn,m = −yn0
1−D0Sm

D0Sm

(exp(σnσmT )− 1).

So for m > 0, m even, this gives a negative convexity correction.

Now let the payment date be Sm−1 and take the accrual factor to be 1. We have:

DTSm−1 = Pm−1
T − Pm−2

T

= Pm
T −DTSm − Pm−2

T

= (Pm
T − Pm−2

T )− (1− ymT P
m
T )

ynTDTSm−1 = ynT (P
m
T − Pm−2

T )− ynT (1− ymT P
m
T ).

EF[y
n
TDTSm−1 ] = EF[y

n
T (P

m
T − Pm−2

T )]− EF[y
n
T (1− ymT P

m
T )]

= yn0 (P
m
0 − Pm−2

0 )− (yn0 − yn0 y
m
0 exp(σnσmT )P

m
0 )

= yn0 (P
m
0 − Pm−2

0 )− (yn0 − yn0 y
m
0 P

m
0 ) + yn0 y

m
0 P

m
0 exp(σnσmT )− 1)

= yn0D0Sm−1 + yn0 (1−D0Sm)(exp(σnσmT )− 1).

So for an odd payment date, this gives a positive convexity correction given by:

Cn,m−1 = yn0
(1−D0Sm)

D0Sm−1

(exp(σnσmT )− 1).

Observe that the total value of the convexity correction at m − 1 and m (appropriately
discounted) add up to zero.

The reason for this is that the convexity correction for the payoff ynTP
m−2
T and ynTP

m
T

for even n and m will both be zero as in this case the swaptions measures Sn , Sm, Sm−2

and the forward measure F all agree. This demonstrates the source of the oscillatory
behaviour.
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5.2 A refined two-factor forward measure calibrated MF-

Lite model

As done before, we set the 2F refined fmcMFL model up under the forward measure for
a given maturity denoted by Sn. We begin by forming the PVBP Pn

T . Let (x(1)T , x
(2)
T ) be

a bivariate random variable summarising the state of the economy at time T . We make
the same assumption on the model driver as in equation (5.1) and we construct a set
of variables (ziT : i ∈ {1, ..., n}) as in equation (5.2). We have learnt from the analysis
of the one-factor models in the last section that when forming the priors of the swap
rates, the assumption that ziT are normal in the forward measure leads to problems. We
rectify this by refining the choice of priors used to set up the PVBP.

In the 2F fmcMFL model we have discussed in the previous section, we recall that under
the forward measure, we postulated priors for the swap rates as defined in equation (5.3).
To correct for the mismatch highlighted in the last numerical analysis, we propose to
transform the variable ziT , i ∈ {1, ..., n}, in an informed way, and express the prior swap
rates in terms of the transformed variable.

We introduce some deterministic function hn : R → R, the derivation of which is
explained in Section 5.2.1. Note that we emphasise the subscript on the function,
pointing out that we construct it using information known only under the swaption
measure Sn, and we transform the set of variables {ziT : i ∈ {1, ..., n}} using the single
function. We then postulate a set of prior swap rates as follows:

ŷn:iT (ziT ) := f̂i(hn(z
i
T )), (5.9)

where f̂i : R→ R is a known deterministic function, chosen in a way to reflect our prior
belief on the marginal distribution of the swap rates.

Remark 28: Recall in the 1F smcMFL model, developed in Chapter 4, when setting the
model up at Sn, the priors for setting up the PVBP were ŷiT = f̂i(ηn). The intuition
here is to aim to find a function hn so that the random variable hn(ziT ) has the same
distribution as ηn under the forward measure. Note that ziT is N (0, 1) under F for all
i, so the function hn does not depend on i. Then each of the priors ŷn:iT will have the
same distribution under F as those in the swaption version of the model.

In the swaption version of the model, we suppressed the dependence on the index n of
the priors as the dependence was clear through the dependence on ηn.

We can now postulate a prior form P̂n
T (x

(1)
T , x

(2)
T ) as we did before in equation (5.4), but

using the refined priors defined in equation (5.9).
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We have now shown how to model the PVBP for a single maturity. Suppose we do the
partial model setup for another maturity which we denote by Sm. If we follow similar
steps as above and define the prior forms as:

ŷm:i
T (ziT ) := f̂i(hm(ziT )).

We are able to construct a prior form for the PVBP P̂m
T . We note at this stage that

we have chosen different priors to construct the PVBP terms. It may seem natural to
make a unified choice for the priors under the forward measure. For instance, WLOG,
assume m < n; we could set:

hi =

hm, for i ≤ m

n−i
n−mhm + i−m

n−mhn, for m < i < n

and use the above to form a single set of priors. However, we only have information
about the distribution of the swap rates in their respective swaption measures and we
use this to inform our choices for hn and hm. We are aiming for the correct behaviour
on average for the PVBPs and it is not clear a hybrid choice would improve the model
setup.

Using the fact that Pn is a martingale under F, we adjust the postulated functional
form for the PVBP by defining Pn

T := anP̂
n
T and we set an as given in equation (5.5)

with the expectation evaluated using the refined functional form for P̂n
T .

We have seen above how we model the PVBP Pn
T under the forward measure. It still

remains to decide how to construct the functional form for the swap rate ynT so that the
model is calibrated to its known marginal distribution under its associated swaption
measure. To do so, we perform a Markov-functional sweep to fit the model to swaption
prices. Expressing ynT as some monotonic increasing function, fn of znT , we can recover
fn following the same calibration steps as we did for the 2F fmcMFL model. We can
follow the same steps at maturity Sm and this completes the model.

5.2.1 Forward swap rate priors construction

As touched upon above, we lean on market information available to us under the swap-
tion measure in order to construct the function hn. We recall the role of the function
hn is to modify the set of variables ziT , for i ∈ {1, . . . , n} so that the PVBP takes into
account the measure-change effect (from swaption measure to forward measure) on the
distribution of the driver. We outline below how we construct such a function. The
procedure for hm is similar. We note that in order to find the function hn, we set
up a prior model starting in the swaption measure as detailed below. The purpose of
this prior model is purely to find the function hn and plays no further role in the final
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model.

Under the swaption measure Sn, let(
x̃
(1)
T

x̃
(2)
T

)
∼ N

((
0

0

)
,

(
λ1 0

0 λ2

)
.

)

Define

z̃iT :=
β
(1)
i x̃

(1)
T + β

(2)
i x̃

(2)
T√

(β
(1)
i )2λ1 + (β

(2)
i )2λ2

.

we define the prior forms:
ỹn:iT (z̃iT ) := f̂i(qn(z̃

i
T )),

where qn is chosen such that the distribution of ỹn:nT matches the implied market dis-
tribution under Sn given by swaption prices on the nth swap rate ynT .

We can form a prior P̃n
T using ỹn:iT , for i ∈ {1, ..., n} as we have done before and we find

a constant term ãn such that

ESn

[
1

ãnP̃n
T

]
=
D0T

Pn
0

.

We can now move on to the construction of the function hn. To do so, we focus on the
1-dimensional variable z̃nT . Our aim is to find hn with:

ηn := qn(z̃
n
T ) = hn(Y ),

where Y ∼ N (0, 1) under F.

Observe that ηn is a function of x̃(1)T and x̃(2)T . We can find the distribution of ηn under
the forward measure F:

Fηn(x) := EF

[
1(ηn ≤ x)

]
=

Pn
0

D0T
ESn

[
1(qn(z̃

n
T ) ≤ x)

1

ãnP̃n
T (x̃

(1)
T , x̃

(2)
T )

]
.

The function hn can be recovered once we know the distribution of ηn under F. This is
the function we use in constructing the prior forms for the final MF-Lite model in the
forward measure.

Remark 29: We make the observation that if we take β(2)i = 0, hence going back to a one-
factor model, the PVBP would be a function of a single variable x(1)T , and the postulated
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prior model for the PVBP would be the same as that obtained if we were to set the model
up in the swaption measure and move to the forward measure by performing a measure
change. We recall in remark 25 we made the observation that the variables with respect
to which we formulate the functional form of the PVBP have different distributions
under F. The refinement proposed above rectifies this mismatch in distribution.

5.2.2 Numerical results

We use the same tenor structure as we have described in Section 3.2.1. We assume that
the swap rates are log-normally distributed under their respective swaption measures
with log-normal volatilities as given in Table 1 in Appendix A. We want to be able
to compare the 2F refined fmcMFL model to the 2F single-time MFM. We therefore
set the model parameters up in line with the choices we have made in Section 3.3.2 of
Chapter 3, and the model intitial conditions as given in Appendix A.

We recall that based on the prior model setup in Section 3.3.1, under log-normal as-
sumption, we derived an approximate formula for the correlation between the log of the
swap rates, which we restate here:

corr(log(yjT ), log(y
m
T )) ≈

EF[(β
(1)
j x

(1)
T + β

(2)
j x

(2)
T )(β

(1)
m x

(1)
T + β

(2)
m x

(2)
T )]√

var(log yjT )var(log ymT )

=
β
(1)
j β

(1)
m λ1 + β

(2)
j β

(2)
m λ2√

(β
(1)
j )2λ1 + (β

(2)
j )2λ2

√
(β

(1)
m )2λ1 + (β

(2)
m )2λ2

,

for j,m ∈ {1, . . . , M̃}.

For the numerical analysis below, we make the following choices: we set λ1 = 1 and
we vary the correlation structure via λ2; we note that there is an upper-bound on λ2

as explained in Section 3.3.2. We recall that we choose to set the β(i) parameters, for
i ∈ {1, 2} by linking them to the PCA decomposition of the covariance matrix of the
log of the LIBORs, as we have seen in equation (3.18). This requires us to specify the
eigenvectors (aki)M̃k=1, i ∈ {1, 2}, and for this numerical analysis, we use the same choice
as in equation (3.21). We recall that the parameter λ controls the shape of the second
eigenvector. We take λ = 0.1, 0.3. The correlation values used in the numerical analysis
are given in Appendix D.

We now look at the convexity correction as a function of payment date and compare the
results from the 2F refined fmcMFL model to that of the 2F single-time MFM.
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Figure 5.3: N = 2, M̃ = 30, D0T = 1.0, y0 = 0.07, σ2 ≈ 0.15;
LHS: λ = 0.1, λ2 = 0.02
RHS: λ = 0.1, λ2 = 0.38
Convexity correction against payment date

Figure 5.4: N = 2, M̃ = 30, D0T = 1.0, y0 = 0.07, σ2 ≈ 0.15;
LHS: λ = 0.3, λ2 = 0.02
RHS: λ = 0.3, λ2 = 0.5
Convexity correction against payment date

We repeat the same analysis as above with N = 10.
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Figure 5.5: N = 10, M̃ = 30, D0T = 1.0, y0 = 0.07, σ2 ≈ 0.15;
LHS: λ = 0.1, λ2 = 0.02
RHS: λ = 0.1, λ2 = 0.38
Convexity correction against payment date

Figure 5.6: N = 10, M̃ = 30, D0T = 1.0, y0 = 0.07, σ2 ≈ 0.15;
LHS: λ = 0.3, λ2 = 0.02
RHS: λ = 0.3, λ2 = 0.5
Convexity correction against payment date

We observe from the figures above that the results from the exact fit model setup is
close to the results from the 2F single-time MFM. The variation/oscillations in convexity
corrections from the alternate fit setup is much lower in the 2F refined fmcMFL model
compared to the 2F fmcMFL model developed in Section 5.1, thanks to the careful
modelling of the PVBP. We note however that as the payment date increases beyond
the reference swap rate end date, we do not need the consistency condition to hold,



5.3. A TWO-FACTOR NAIVE MF-LITE APPROACH IN THE SWAPTION MEASURE 111

so we can use the exact fit setup, which in the refined model, is relatively close to
the results from the single-time MFM, as desired. Comparing the results for fixed N

and λ, but varying λ2 (i.e we decrease the correlation), we observe that the convexity
correction is close across the models for payment dates within the reference index, but
as the payment date increases beyond, we observe that the correlation does have an
effect.

We have proposed a two-factor Markov-functional approach to pricing constant maturity
swaps. The model is calibrated to the known marginal distributions of the reference
swap rate and the payment swap rate while taking into account the correlation between
the two rates. The results obtained from the model is comparable to the 2F single-
time MFM approach. In setting up the model, careful choices have been made when
setting up the prior forms so that the two-factor MF-Lite approach mirrors closely the
model structure of the single-time MFM. In the next section, we discuss a much simpler
two-factor setup in the swaption measure. The model still performs well when the
correlation is high, but as the correlation decreases, the model fails to capture its effect
on convexity corrections. We would argue that the setup is still worth discussing due to
its simplicity and efficiency. We name this model the 2F naive smcMFL model.

5.3 A two-factor naive MF-Lite approach in the swaption

measure

In contrast to the previous 2F MF-Lite models introduced, we explore in this section
a simple two-factor approach to pricing a CMS, whereby we start off by making model
choices under the swaption measure. It would seem natural to do so since we have market
information about the swap rates under the swaption measure. However, setting up the
model as such, whilst keeping the fundamental model structure of the 2F single-time
MFM is challenging. We discuss this point below.

At a given maturity, say Sn, starting under the swaption measure Sn, assume we
have a 2-dimensional driver xT := (x

(1)
T , x

(2)
T ). We construct a set of variables z :=

(z1T , z
2
T , ..., z

n
T ) by taking linear combinations of the two components of the driver using

the same weights as in the single-time MFM. We assume we can express ynT as a mono-
tonic increasing function of znT - we are only considering a particular linear combination
- the functional form will be chosen such that the model is calibrated to the known
market-implied marginal distribution of ynT . Notice the contrast with the 1F smcMFL
model. In the latter, we proposed a functional form for the swap rate in terms of the
one-dimensional driver ηn. We then chose the distribution of ηn such that the model is
calibrated to the appropriate market-implied distribution for the swap rate. Here, since
we have a 2-dimensional driver, we cannot determine the joint distribution of xT solely
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by calibrating the model. Some choice has to be made for the joint distribution of x(1)T

and x
(2)
T ; we note that this will inform the marginal distribution of ziT , for i = 1, ..., n.

Hence, the only flexibility left is to choose a suitable functional form for ynT . We then
postulate a functional form for Pn

T as some function of z using the standard functional
relationship as we have previously seen in equation (5.4) (Note that this would require
us to formulate priors for the earlier swap rates). Having made these choices under
Sn, we can now carry the model over to the forward measure F in a similar fashion
as we did for the one-factor case - by a change of measure to F, we can compute the
joint distribution of x(1)T and x(2)T under the forward measure. We stress the importance
of appropriately modelling the PVBP here, for this variable is crucial in carrying the
model over from Sn to the forward measure. Now suppose we were to follow the same
procedure for the other maturity of interest, denoted by Sm. We would have to start
with a two-dimensional driver x̂T := (x̂

(1)
T , x̂

(2)
T ) under Sm, and carry the partial model

setup over to the forward measure. It still remains to decide how to unify the two sepa-
rate parts of the model, more precisely, the two 2-dimensional drivers xT and x̂T under
the forward measure. The inversion principle will not work here. The model setup, as
described ends up becoming too complicated to be viable in practice.

The approach proposed here, which we shall refer to as the 2F naive smcMFL model
is a simplified, yet practical version and an extension to the 1F smcMFL model. We
discuss below the model construction.

5.3.1 Model setup for a single maturity

The 2F naive smcMFL model setup for a single maturity follows vertabim the construc-
tion we have seen in Section 4.1 of Chapter 4. At a given maturity Sn, starting off under
the swaption measure Sn, we assume there exists a random variable, denoted by ηn, and
we can postulate a functional form, which is assumed to be monotonic increasing, for
the swap rate ynT in terms of ηn:

ynT (ηn) := fn(ηn),

for fn : R → R. We further assume that we know the distribution of ynT under Sn,
(which can be derived from swaption prices). We can choose the distribution of ηn
under Sn such that the model is calibrated to the known marginal distribution of ynT .
We next postulate a functional form for the PVBP Pn

T as follows:

Pn
T (ηn) := anP̂

n
T (ηn),

where an ∈ R is chosen such that the no-arbitrage equation D0T = Pn
0 ESn [1/P

n
T ] holds.

Moving over to the forward measure, choosing the functional form for the PVBP Pn
T
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determines the distribution of ηn under F, which we denote by Fηn . The knowledge of
the distribution function of ηn allows us to construct a functional form for ηn in terms
of a standard Normal random variable under F. More precisely, as we have seen in
Chapter 4, if we define Y := Φ−1

(
Fηn(ηn)

)
, then Y ∼ N (0, 1) under F. Rearranging,

we get
ηn(Y ) := (Fηn)

−1(Φ(Y )).

We recall that from the two model choices (the functional forms of ynT and Pn
T in terms

of ηn), we can recover the functional forms of DTSn and Pn−1
T since:

DTSn = 1− ynTP
n
T ,

Pn−1
T = Pn

T − αnDTSn .

We can therefore specify a new set of functional forms from the postulated ones as
follows:

ynT (ηn(Y )) =: hyn(Y )

Pn
T (ηn(Y )) =: hPn (Y ) (5.10)

DTSn(ηn(Y )) =: hDn (Y )

If we were to set up the model to price a single payment of a CMS based on the
forward swap rate ynT and payment made at time Sm, the valuation of which is given
by D0TEF[y

n
TDTSm ], we would have to set up the partial models for the two different

maturities Sn and Sm. The question therefore arises as to how do we knit the two
parts together? Unlike the one-factor case, there is no straightforward method to do so
(Indeed, in the one-factor setup, when we do the partial models at two maturities, we
end up with two model drivers and there exists a unique functional relationship between
them under F. We lose that uniqueness in the two-factor case). We discuss in the next
section a modelling choice we can make to bring the two partial models together.

5.3.2 The exact fit approach revisited

We recall in Section 4.2 of Chapter 4, we proposed an alternate fit approach as a con-
sistent model that takes into account the functional relationships between the variables
we are modelling. We lost some flexibility in calibrating the model, but the numerical
analysis showed that we still end up with a model close to the 2F single-time MFM.
In this naive approach, coming up with the functional forms is done under a one-factor
assumption. We could potentially adapt the alternate fit model in this case; in order
to set up a consistent model, at any given maturity Sm that lies within an odd time
step from the reference swap rate maturity Sn, i.e |m− n| is odd, we would have to do
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the single-maturity setup at three different maturities (Sn, Sm−1 and Sm+1). The pure
discount bond at maturity Sm, and consequently, the swap rate functional forms are
expressed as functions of two variables ηm−1 and ηm+1, in order to satisfy the functional
relationships that exist between the variables as we have seen in Section 4.2. Note that,
at this point, we have lost the ability to calibrate the model to a desired correlation
between the swap rates ynT and ymT . We would achieve a consistent model, but one that
is not well-behaved at alternate maturities, so we do not include an analysis here.

We focus rather on the exact fit approach. We describe the model construction in two
steps:

Step 1 For each maturity Si in the tenor structure, from the setup described in Section
5.3.1, we can get hold of the functional forms yiT (ηi) and P i

T (ηi), with the distri-
bution of ηi known under F. We have equally shown in equation (5.10) that we
can construct a new set of functional forms for the variables in terms of a standard
Gaussian random variable under F.

Step 2 Now consider two maturities Sn and Sm, where n corresponds to the reference
index and m corresponds to the payment index. The second step consists of
specifying the joint distribution of ynT and DTSm . Note we may have n = m. Let
Y1 and Y2 have a joint Gaussian distribution, unit variance, mean zero, correlation
denoted by ρ̂. Take ynT = hyn(Y1) and DTSm = hDm(Y2).

Remark 30: Observe that from the way the model is set up, when n = m, we can choose
the correlation ρ̂ as desired; we are not forced to assign ρ̂ = 1.

Secondly, we made a specific assumption for the joint distribution of (Y1, Y2). Note
that it is a specialised case of using a Gaussian copula. More generally, we could have
specified the joint dependence between Y1 and Y2 using any copula function.

5.3.3 Numerical results: Log-normal market-implied distributions

The term structure setup, initial conditions and model inputs used are the same as
described in Section 5.2.2. We assume that the swap rates are log-normally distributed
in their own swaption measures.

We first consider convexity correction as a function of payment date, taking N = 2

and we allow the payment date SM to vary between the setting date up to a maximum
payment date SM̃ . We discussed previously in Section 5.2.2 the choices made to get hold
of the correlation between the log of the reference swap rate and the payment swap rate
with respect to the forward measure F using the single-time MFM under log-normal
assumptions. In order to be able to compare the 2F smcMFL model to the single-time
MFM, we will use the same correlation between the log of the swap rates as input in the
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model. We assumed that, for a fixed reference index N and payment index M , we can
express yNT as a function of Y1 and yMT as a function of Y2, where Y1 and Y2 are jointly
Gaussian with correlation ρ̂. For the given log-normal distribution assumption on the
swap rates, for a given index N and payment index M , ρ̂ can be chosen to match the
correlation between log(yNT ) and log(yMT ) obtained from the single-time MFM. (since
the log of the swap rates are linear functions of Y1 and Y2). See Appendix D for the
correlation parameters between the log of the swap rates used in specifying the model.
Note that in the plots below, we specify the correlation between log(yNT ) and log(y30T ),
which we denote by ρN,30. This indicates a lower bound on the correlation parameters
used to generate the results (all the other correlations will be higher than ρN,30).

Figure 5.7: N = 2, T = 20, D0T = 1.0, y0 = 0.07;
Convexity correction against payment date with correlation between the log of the swap rates as
given in Appendix D

Figure 5.8: N = 2, M̃ = 30, D0T = 1.0, y0 = 0.07;
Convexity correction against payment date with correlation between the log of the swap rates as
given in Appendix D
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We repeat the same analysis as above with N = 10.

Figure 5.9: N = 10, M̃ = 30, D0T = 1.0, y0 = 0.07;
Convexity correction against payment date with correlation between the log of the swap rates as
given in Appendix D

Figure 5.10: N = 10, M̃ = 30, D0T = 1.0, y0 = 0.07;
Convexity correction against payment date with correlation between the log of the swap rates as
given in Appendix D

We observe from the above figures that when the correlation is high (high enough that
the model is almost indistinguishable from the one-factor setup), the two models are
close to each other, as we would expect. But we can see that (de)correlation is certainly
having an impact. The functional forms specified in this 2F naive smcMFL approach
are suboptimal and this is why calibration to the correlation of the log of the reference
and payment swap rates does not work well. Getting the correlation between the log
of the reference swap rate and the log of the payment PDB correct in the calibration
step largely overcomes the deficiencies in the choice of functional forms and gives a
remarkably good match to the convexity corrections of the single time MFM, as we shall
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see in the next section. From a practical point of view this model could be considered
for use in pricing a CMS.

5.3.4 Correlation between log(yNT ) and log(DTSM
)

As we have argued above, using the correlation between the log of the swap rates as
input in the naive approach developed here is not enough to make up for the lack of
structure in the model due to the simplistic choices we have made on the functional
forms. Considering step 2 of the exact fit approach in Section 5.3.2, we can argue that
if we take the correlation between the log of the swap rate and the log of the pure
discount bond instead as input in the MF-Lite approach, we would get a closer match
to the single-time MFM. In order to investigate this, we first go back to the single-time
MFM setup to find an approximate formula for the correlation between log(yNT ) and
log(DTSM

).

Using the results from Section 2.2 of Chapter 2, for j ∈ {1, ..., M̃}, we set up the prior
model for the swap rates in the log-normal context as follows:

log(yjT ) = log(yj0) + β
(1)
j x

(1)
T + β

(2)
j x

(1)
T + C,

for some constant C.

We begin by finding an expression for the pure discount bond DTSM
, for M ∈ {1, ..., M̃}

in terms of LIBORs.

DTSM
=

DTSM

DTSM−1

.
DTSM−1

DTSM−2

. ... .
DTS1

DTT
.DTT =

M∏
k=1

(1 + αkL
k
T )

−1.

Taking the log transformation of both sides, we have that:

log(DTSM
) = −

M∑
k=1

log(1 + αkL
k
T ).

Apply a first order Taylor Expansion to log(1 + αkL
k
T ) about Lk

0 to obtain:

log(1 + αkL
k
T ) ≈ log(1 + αkL

k
0) +

αk

1 + αkL
k
0

(Lk
T − Lk

0) + ... (5.11)

We can find an expression for (Lk
T − Lk

0) in terms of the log of the LIBORS using
equation (3.12) and we have that:

Lk
0(log(L

k
T )− log(Lk

0)) ≈ Lk
T − Lk

0.
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Plugging the above expression back into equation (5.11), and substituting the approxi-
mate expression for log(1 + αkL

k
T ) into the expression for log(DTSM

), we have:

log(DTSM
) ≈ −

M∑
k=1

(
log(1 + αkL

k
0) +

αkL
k
0

1 + αkL
k
0

(log(Lk
T )− log(Lk

0))

)

= log(D0SM
)−

M∑
k=1

αkL
k
0

1 + αkL
k
0

(log(Lk
T )− log(Lk

0)). (5.12)

From the 2-factor separable LMM, we recall we model log(Lk
T ) as follows:

log(Lk
T ) = log(Lk

0) + ak1x
(1)
T + ak2x

(2)
T + C̃,

where C̃ is some constant term - note that the MF sweep will remove the arbitrage
introduced by the drift approximation. Going back to equation (5.12), we can express
log(DTSM

) as:

log(DTSM
) ≈ log(D0SM

)−
M∑
k=1

αkL
k
0

1 + αkL
k
0

(ak1x
(1)
T + ak2x

(2)
T ).

Define

ζ
(1)
M := −

M∑
k=1

αkL
k
0

1 + αkL
k
0

ak1 ζ
(2)
M := −

M∑
k=1

αkL
k
0

1 + αkL
k
0

ak2

We have:
log(DTSM

) ≈ log(D0SM
) + ζ

(1)
M x

(1)
T + ζ

(2)
M x

(2)
T .

We can now find an approximate formula for the correlation between log(yNT ) and
log(DTSM

):

corr(log(yNT ), log(DTSM
)) ≈

β
(1)
N ζ

(1)
M λ1 + β

(2)
N ζ

(2)
M λ2√

(β
(1)
N )2λ1 + (β

(2)
N )2λ2

√
(ζ

(1)
M )2λ1 + (ζ

(2)
M )2λ2

,

where we have assumed (
x
(1)
T

x
(2)
T

)
∼ N

((
0

0

)
,

(
λ1 0

0 λ2

))
,

under the forward measure F and λi corresponds to the eigenvalue obtained from the
decomposition of the correlation matrix. We now look at convexity corrections against
payment date. As opposed to before, in the 2F naive smcMFL model, we use the
correlation between log(yNT ) and log(DTSM

) obtained from the 2F single-time MFM, as
tabulated in Appendix D.1, as input for the parameter ρ̂ for a given reference index N
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and payment index M . Similar to the previous section, in the figures below, we report
the correlation between log(yNT ) and log(DTS30), giving us an indication of the lowest
correlation parameter used in the model. (To avoid notational ambiguity, we still denote
the correlation between log(yNT ) and log(DTS30) as ρN,30)

Figure 5.11: N = 2, M̃ = 30, D0T = 1.0, y0 = 0.07
Convexity correction against payment date; using correlation between the log(yNT ) and
log(DTSM

) as input in 2F naive smcMFL model

Figure 5.12: N = 2, M̃ = 30, D0T = 1.0, y0 = 0.07
Convexity correction against payment date; using correlation between the log(yNT ) and
log(DTSM

) as input in 2F naive smcMFL model
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Figure 5.13: N = 10, M̃ = 30, D0T = 1.0, y0 = 0.07
Convexity correction against payment date; using correlation between the log(yNT ) and
log(DTSM

) as input in 2F naive smcMFL model

Figure 5.14: N = 10, M̃ = 30, D0T = 1.0, y0 = 0.07
Convexity correction against payment date; using correlation between the log(yNT ) and
log(DTSM

) as input in 2F naive smcMFL model

There is an improvement in the convexity correction results, with the swaption 2F
MF-lite model giving convexity corrections closer to the results from the 2F single-
time MFM, hence achieving the goal of constructing a practical, computationally-fast
model that can be used to price CMS. This 2F naive approach further highlights the
importance of modelling the PVBP and the swap rate in an appropriate way, especially
when the modelling is done under a measure with respect to which we have no direct
market information available, hence justifying the methodical approach taken in the 2F
fmcMFL approaches discussed in the previous sections.
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Appendix

A Initial conditions and model input

j yj0 σj D0Sj P j
0

1 0.07 0.15 0.934579439 0.934579439

2 0.07 0.148889 0.873438728 1.808018168

3 0.07 0.148035 0.816297877 2.624316044

4 0.07 0.147253 0.762895212 3.387211256

5 0.07 0.146505 0.712986179 4.100197436

6 0.07 0.14578 0.666342224 4.76653966

7 0.07 0.145073 0.622749742 5.389289402

8 0.07 0.144382 0.582009105 5.971298506

9 0.07 0.143705 0.543933743 6.515232249

10 0.07 0.143043 0.508349292 7.023581541

11 0.07 0.142394 0.475092796 7.498674337

12 0.07 0.141759 0.444011959 7.942686297

13 0.07 0.141138 0.414964448 8.357650744

14 0.07 0.140531 0.387817241 8.745467985

15 0.07 0.139938 0.36244602 9.107914005

16 0.07 0.139359 0.338734598 9.446648603

17 0.07 0.138794 0.31657439 9.763222993

18 0.07 0.138244 0.295863916 10.05908691

19 0.07 0.137709 0.276508333 10.33559524

20 0.07 0.137188 0.258419003 10.59401425

21 0.07 0.136681 0.241513087 10.83552733

22 0.07 0.136189 0.225713165 11.0612405

23 0.07 0.135712 0.210946883 11.27218738

24 0.07 0.135249 0.19714662 11.469334

25 0.07 0.1348 0.184249178 11.65358318

26 0.07 0.134366 0.172195493 11.82577867

27 0.07 0.133946 0.160930367 11.98670904

28 0.07 0.13354 0.150402212 12.13711125

29 0.07 0.133148 0.140562815 12.27767407

30 0.07 0.13277 0.131367117 12.40904118

Table 1: Initial Condition and log-normal volatility
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B Parameterising the marginal distributions under Normal-

Log Normal assumption

In order to choose the parameters for the mixed distribution, we compute the price of
an ATM swaption under the lognormal assumption with chosen volatility, σi. We can
find the closed form formula for the calibrating prices we feed into the model under
the assumption that yiT ∼ N (yi0, η

2
i ). For each given i, we then choose an ηi value

that matches the ATM swaption value under the Gaussian assumption to that of the
lognormal case. Under the Gaussian assumption, it follows that:

(V i
0 (K))N := P i

0ESi [(y
i
T −K)+] = P i

0

(
ESi [y

i
T1(y

i
T > K)]−KESi [1(y

i
T > K)]

)
= P i

0

(∫ ∞

k

1√
2πηi

y exp

(
− 1

2η2i
(y − yi0)

2

)
dy −K

[
1− Φ

(
K − yi0
ηi

)])
.

Denoting by K∗ the expression K−yi0
ηi

, and applying a change of variables from y to

z :=
y−yi0
ηi

in the integral term, we have that:

(V i
0 (K))N = P i

0

(∫ ∞

k∗

1√
2π

(ηiz + yi0) exp

(
− 1

2
z2
)
dz −K(1− Φ(K∗))

)
= P i

0

(
ηi√
2π

exp

(
− 1

2
(K∗)2

)
+ (yi0 −K)[(1− Φ(K∗))]

)
. (B.1)

We find the ηi parameter value by equating the ATM swaption value obtained under
log-normal assumption to the one obtained under Gaussian distribution assumption.
Assuming K = yi0, under the Gaussian assumption, following equation (B.1), the ATM
swaption value is given by:

(V i
0 (y

i
0))

N = P i
0

ηi√
2π
. (B.2)

Under the log-normality assumption, with swaption implied volatility given by σi, the
ATM swaption value is given by:

(V i
0 (y

i
0))

LN = P i
0y

i
0

(
2Φ

[
1

2
σi
√
T

]
− 1

)
. (B.3)

Equating (B.2) and (B.3), it follows that

ηi =
√
2πyi0

(
2Φ

[
1

2
σi
√
T

]
− 1

)
.

This choice of ηi will give the same ATM swaption price for any value of γi chosen.
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B.1 Skew effect on convexity corrections

In section 3.2.3, we introduced a skew in the implied volatility curve by assuming that
the the marginal distribution of yiT under its associated swaption measure Si is given
by a mixture of normal and log-normal distributions. The mixture is controlled by the
weight parameter γ. We investigate the skew effect on convexity corrections for three
values of γ : 0.1, 0.5 and 0.9. Only the results for γ = 0.5 was reported in the earlier
sections. We include here the results for γ = 0.1 and γ = 0.9.

Figure 15: Skew effect
γ = 0.1, N = 2, M̃ = 30, y0 = 0.07, D0T = 1.0
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Figure 16: Skew effect
γ = 0.1, N = 10, M̃ = 30, y0 = 0.07, D0T = 1.0

Figure 17: Skew effect
γ = 0.9, N = 2, M̃ = 30, y0 = 0.07, D0T = 1.0
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Figure 18: Skew effect
γ = 0.9, N = 10, M̃ = 30, y0 = 0.07, D0T = 1.0

We highlighted in section 3.2.3 that at small payment dates (M = 0,1), the marginal
distribution of the reference swap rate dominates the valuation since the skew effect
ΓM,N is of bigger magnitude than the rest. On the other hand, when M = 30, the skew
effect associated with the payment swap rate far outweighs the skew effect associated
with the reference swap rate, but |Γ30,N | > |Γ30,i| for i ∈ {1, . . . 29}\{N}. This shows
that as the payment date is taken further away from the reference swap rate maturity,
both the reference swap rate and the payment swap rate are significant to the valuation
of the CMS.

Upon closer observation, we further note the following:

1. The effect ΓM,M (i.e the skew effect associated with the payment swap rate) is
always negative and increases in magnitude as the payment date increases

2. The effect ΓM,N (i.e the skew effect associated with the reference swap rate) starts
off positive, decreases to some negative value, then increases back to some positive
value for large payment dates

3. The skew effect for when the payment date coincides with the reference swap rate
maturity is negative and larger in magnitude than ΓM,N for payment dates in the
neighbourhood of SN

We aim to provide an explanation for the above.
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Numerical observation: The skew effect on the functional forms of the swap
rates

In the single-time MFM, we chose to express the swap rates as a monotonic increasing
function of the driver x taken to be a standard Gaussian random variable. When γ = 0,
we are essentially assuming that the swap rates are normally distributed under their
respective swaption measures. Under the forward measure F, they will have a different
distribution (We point out that the measure change involves the PVBP term, which is
itself a complicated function of the swap rates), but they can roughly be assumed to
be Gaussian. We therefore expect the function form of the swap rate to be (roughly)
linear in x. When γ = 1, i.e, the swap rates are log-normally distributed under their
respective swaption measures, we expect the functional forms to be convex (roughly an
exponential function of the driver x). Hence as γ increases, the functional forms of the
swap rates becomes more convex. We illustrate the functional forms for y2T below. (The
plot for y10T will be similar)

Figure 19: Functional forms of y2T for a given γ
y20 = 0.07, σ2 = 0.149

We recall that the valuation of a single payment of the CMS under the forward measure
F involves an expectation of the product of the reference swap rate and the pure discount
bond with maturity given by the payment date of the CMS. In particular,

V CMS
0 = D0TEF[y

N
T DTSM

] = D0TEF[y
N
T DTSM

(y1T , y
2
T , . . . , y

M
T )]

Assume we are varying the marginal distribution of yNT via γN . When M < N , the
change in the valuation of the CMS will only come from the reference swap rate and
not DTSM

. As we observe from figure 19, an increase in γ causes the functional form
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to become more convex for x > 0. For x < 0, the function values are negative and they
decrease in magnitude as γ increases. The impact of this on the expectation is that
increasing γN pushes up the expected value, explaining the initial positive effect we see
for ΓM,N .

To further understand the trend in the effect, especially for M > N , we first work out
the dependence between the swap rates and the pure discount bond. We recall the
following relationship between DTSM

and the swap rates:

DTSM
:= DTSM

(y1T , . . . , y
M
T ) = 1−

yMT
1 + αMyMT

M−1∑
k=1

αk

M−1∏
l=k

1

1 + αly
l
T

.

If we want to understand how the pure discount bond DTSM
changes as the payment

swap rate yMT varies, we consider the first order derivative of DTSM
with respect to

yMT , keeping all the other variables yiT , for i ∈ {1, 2, . . . ,M − 1} constant. Note that
the forward swap rates are related to each other through the model driver x, and we
assume that they are all monotonically increasing in x. In the one-factor model, we
could choose to express any swap rate in terms of a chosen forward swap rate, in the
sense that:

yiT := f̂ i(yMT ), for i ∈ {1, . . . , M̃},

where f̂ i : R → R is some deterministic function. This is essentially the view we
are taking when computing the derivative of DTSM

with respect to yMT . We omit the
dependence between the swap rates in order to isolate the effect of the the payment
swap rate on DTSM

. The analysis below only gives us a rough idea of the relationship
between the pure discount bond and the forward swap rates.

∂DTSM

∂yMT
= −

(M−1∑
k=1

αk

M−1∏
l=k

1

1 + αly
l
T

)
d

dx

(
yMT (x)

1 + αMyMT (x)

)
× 1

dyMT
dx

= −
(M−1∑

k=1

αk

M−1∏
l=k

1

1 + αly
l
T

)
× 1

(1 + αMyMT (x))2
× 1

dyMT
dx

< 0

It therefore follows that there is an inverse relationship between DTSM
and yMT .

Fix i ∈ {1, . . . ,M−1}. We now view DTSM
as a function of yiT . Keeping all other swap
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rates constant, we have that:

∂DTSM

∂yiT
= −

yMT
1 + αMyMT

× ∂

∂yiT

( i∑
k=1

αk

M−1∏
l=k

1

1 + αly
l
T

+
M−1∑
k=i+1

αk

M−1∏
l=k

1

1 + αly
l
T

)

= −
yMT

1 + αMyMT
×
( i∑

k=1

αk
d

dx

(
1

1 + αiyiT (x)

)
× 1

dyiT
dx

M−1∏
l=k,l ̸=i

1

1 + αly
l
T

)

=
yMT

1 + αMyMT
×
( i∑

k=1

αk
αi

(1 + αiyiT )
2
× 1

dyiT
dx

M−1∏
l=k,l ̸=i

1

1 + αly
l
T

)

=
αiy

M
T

(1 + αMyMT )(1 + αiyiT )
× 1

dyiT
dx

×
( i∑

k=1

αk

M−1∏
l=k

1

1 + αly
l
T

)
> 0

The pure discount bond DTSM
is monotonically increasing in yiT , for i ∈ {1, . . . ,M −

1}.

When M > N , a change in γN will affect both yNT and DTSM
, and we know from the

earlier analysis, that increasing γN causes yNT to push up the expected value. This
positive change is complemented by the pure discount bond DTSM

owing to the direct
relationship between DTSM

and yNT , thereby explaining why for large M , in particular
M = 30, ΓM,N is positive.

That ΓM,M is always negative for M ∈ {1, . . . , M̃}, can be explained by the fact that
the skew effect in this case is from the pure discount bond term and DTSM

is inversely
related to the variable yMT .

B.2 Finding the ‘weight’ terms ξjk(·)

We recall that under the assumption of separability, we set up a prior of the LIBORs
using a PCA approach, and linked the model to the swap rates via a first-order Taylor
approximation. We have the following approximation of the log of the swap rates
expressed in terms of the log of the LIBORs:

ln(yjT ) ≈ ln(yj0) +

j∑
k=1

ω̃j
k(0)

yj0
Lk
0(ln(L

k
T )− ln(Lk

0))

= ln(yj0) +

j∑
k=1

ξjk(0)(ln(L
k
T )− ln(Lk

0)),

where

ξjk(0) :=
ω̃j
k(0)

yj0
Lk
0, (B.4)
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and

ω̃j
k(0) = ωj

k(0) +

j∑
p=1

Lp
0

(
∂ωj

p(T )

∂Lk
T

)
T=0

. (B.5)

We are interested in finding the exact form of ξjk(·).

We begin by finding ∂ωj
p(t)

∂Lk
t

explicitly.

We have that:

ωj
p(t) =

τp
∏p

i=1
1

1+τiLi
t∑j

l=1 τl
∏l

i=1
1

1+τiLi
t

.

Define up(t) := τp
∏p

i=1
1

1+τiLi
t

∂up(t)

∂Lk
t

=
∂

∂Lk
t

(
τp

(1 + τ1L1
t )(1 + τ2L2

t ) . . . (1 + τpL
p
t )

)

=


−τpτk
1+τkL

k
t

∏p
i=1

1
1+τiLi

t
if p ≥ k

0 if p < k

Define v(t) :=
∑j

l=1 τl
∏l

i=1
1

1+τiLi
t

∂v(t)

∂Lk
t

=
∂

∂Lk
t

(
τ1

1 + τ1L1
t

+
τ2

(1 + τ1L1
t )(1 + τ2L2

t )
+ . . .

+
τk

(1 + τ1L1
t )(1 + τ2L2

t )..(1 + τkL
k
t )

+ . . .
τj

(1 + τ1L1
t ) . . . (1 + τjL

j
t )

)

=
−τk.τk
1 + τkL

k
t

k∏
i=1

1

1 + τiLi
t

+ . . .+
−τk.τj
1 + τkL

k
t

j∏
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1

1 + τiLi
t

=
−τk

1 + τkL
k
t

[ j∑
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τl

l∏
i=1

1

1 + τiLi
t

]
.

By the quotient rule, we have that:

∂ωj
p(t)

∂Lk
t

=
v(t)∂u

p(t)

∂Lk
t

− up(t)∂v(t)
∂Lk

t

(v(t))2
.
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If p ≥ k,

∂ωj
p(t)

∂Lk
t
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τpτk
1+τkL
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1
1+τiLi
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1
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1
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.

If p < k,

∂ωj
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1+τiLi
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1+τiLi
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.
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1
1+τiLi
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1
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1
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.

We can therefore observe that

∂ωj
p(t)

∂Lk
t

=
τkω

j
p(t)

1 + τkL
k
t

[∑j
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1
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1
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− 1{p≥k}

]
. (B.6)

Plugging equation (B.6) back into equation (B.5), we have that:

ω̃j
k(t) = ωj
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τk

1 + τkL
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, (B.7)

with the convention that
∑0

i=1 . . . is an empty sum and is equal to 0. This gives us the
exact formula for ξjk(t) by replacing equation (B.7) in equation (B.4).

Given initial conditions on Lj
0, we can easily derive the value at time 0 for ξjk(·), for

k = 1, . . . , j, by setting t = 0 in equation (B.7), and using the fact that

ωj
k(0) =

τk
∏k

i=1
1

1+τiLi
0∑j

l=1 τl
∏l

i=1
1

1+τiLi
0

and yj0 =

j∑
k=1

ωj
k(0)L

k
0.
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C A crude approximation for the initial swap rates under

shifted log-normal assumption

In section 4.3, we assume swap rates are (shifted) log-normally distributed under their
respective swaption measures. To set up the 1F smcMFL model, we first fix a maturity
Sn, and we postulate functional forms for the swap rate ynT and the PVBP Pn

T , in terms
of a one-dimensional model driver. we recall, we model the PVBP as follows:

Pn
T = anP̂

n
T (ηn),

where

P̂n
T (ηn) :=

n∑
k=1

αk

( n∏
j=k

1

1 + αj ŷ
j
T

)
. (C.1)

For j ∈ {1, . . . , n}, we express ŷjT as follows:

ŷjT (ηn) := θj + (ŷj0 − θj) exp(σ̂jηn − 1

2
σ̂2j ),

where ŷj0 is the convexity-adjusted forward swap rate. We now derive an approximation
for ŷj0 below. By a change of measure, we have that:

Pn
0 ESn [y

j
T ] = P j

0ESj

[
yjT
Pn
T

P j
T

]
.

Assuming all swap rates are equal, we can approximate

DtSj =

j∏
k=1

(1 + αky
j
T )

−1.

We obtain:

log(DtSj ) =

j∑
k=1

log(1 + αky
j
t )

−1

dDtSj

DtSj

= −
( j∑

k=1

αk

1 + αky
j
t

)
dyjt + f.v.
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We have that:

yjTP
j
T = 1−DTSj therefore,

yjtdP
j
t + P j

t dy
j
t = −dDtSj + f.v

yjTdP
j
t = −(P j

t dy
j
t + dDtSj ) + f.v

= −
(
P j
t −DtSj

j∑
k=1

αk

1 + αky
j
t

)
dyjt + f.v

dP j
t

P j
t

=

(
DtSj

P j
t

j∑
k=1

αk

1 + αky
j
t

− 1

)
dyjt

yjt
+ f.v.

Assuming dyjt = σ̂j(y
j
t − θj)dWt it follows that:

dP j
t

P j
t

=

(
DtSj

P j
t

j∑
k=1

αk

1 + αky
j
t

− 1

)
σ̂j(y

j
t − θj)

yjt
dWt + f.v

≈
[(

D0Sj

P j
0

j∑
k=1

αk

1 + αky
j
0

− 1

)
σ̂j(y

j
0 − θj)

yj0

]
dWt + f.v.

Similarly,

dPn
t

Pn
t

≈
[(

D0Sn

Pn
0

n∑
k=1

αk

1 + αky
n
0

− 1

)
σ̂n(y

n
0 − θn)

yn0

]
dWt + f.v.

By Ito’s lemma, we have that:

d

(
Pn
t

P j
t

)
=

dPn
t

P j
t

− Pn
t

(P j
t )

2
dP j

t + f.v

=

(
Pn
t

P j
t

)
dPn

t

Pn
t

−
(
Pn
t

P j
t

)
dP j

t

P j
t

+ f.v

=

(
Pn
t

P j
t

)[(
D0Sn

Pn
0

n∑
k=1

αk

1 + αky
n
0

− 1

)
σ̂n(y

n
0 − θn)

yn0
−

(
D0Sj

P j
0

j∑
k=1

αk

1 + αky
j
0

− 1

)
σ̂j(y

j
0 − θj)

yj0

]
+ f.v.
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Finally, we have that:

ŷj0 = Sn[yjT ] =
P j
0

Pn
0

ESj

[
yjT
Pn
T

P j
T

]
= θj + (yj0 − θj) exp

(
σ̂j

[(
D0Sn

Pn
0

n∑
k=1

αk

1 + αky
n
0

− 1

)
σ̂n(y

n
0 − θn)

yn0
−

(
D0Sj

P j
0

j∑
k=1

αk

1 + αky
j
0

− 1

)
σ̂j(y

j
0 − θj)

yj0

]
T

)
.

We observe that for j = n, ŷn0 = θn + (yn0 − θn) = yn0 and the choice of functional form
for ŷnT matches that of ynT , i.e., ŷnT = fn(·). For θj = 0, i.e., the log-normal case, we
have that:

ŷj0 = yj0 exp

(
σj

[
σn

(
D0Sn

Pn
0

n∑
k=1

αk

1 + αky
n
0

− 1

)
− σj

(
D0Sj

P j
0

j∑
k=1

αk

1 + αky
j
0

− 1

)]
T

)
.

We tabulate below the values used for σ̂j when assuming that the swap rates are shifted
log-normal in their own swaption measures.

θ = −0.05

j σ̂j j σ̂j

1 0.0864 16 0.0804

2 0.0858 17 0.0801

3 0.0853 18 0.0798

4 0.0849 19 0.0795

5 0.0845 20 0.0792

6 0.0840 21 0.0789

7 0.0837 22 0.0786

8 0.0833 23 0.0784

9 0.0829 24 0.0781

10 0.0825 25 0.0779

11 0.0821 26 0.0776

12 0.0818 27 0.0774

13 0.0814 28 0.0771

14 0.0811 29 0.0769

15 0.0808 30 0.0767

θ = 0.02

j σ̂j j σ̂j

1 0.2140 16 0.1983

2 0.2124 17 0.1975

3 0.2111 18 0.1967

4 0.2100 19 0.1959

5 0.2088 20 0.1951

6 0.2078 21 0.1944

7 0.2067 22 0.1936

8 0.2057 23 0.1929

9 0.2047 24 0.1923

10 0.2037 25 0.1916

11 0.2028 26 0.1910

12 0.2018 27 0.1904

13 0.2009 28 0.1898

14 0.2000 29 0.1892

15 0.1992 30 0.1886

Table 2: Implied Volatility parameters when assuming shifted log-normal distribution
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D Correlation between the log of the swap rates

In Chapters 3 and 5, we have shown how to set up the correlation between the log of the swap

rates. In the table below, we report the correlation used in the numerical analyses.

N = 2 λ = 0.1 λ = 0.3

M λ = 0.02 λ2 = 0.38 λ2 = 0.02 λ2 = 0.5

1 1.000 0.999 0.998 0.998
2 1.000 1.000 1.000 1.000
3 1.000 0.999 0.999 0.998
4 0.999 0.998 0.996 0.993
5 0.998 0.995 0.991 0.985
6 0.997 0.991 0.987 0.973
7 0.996 0.986 0.982 0.959
8 0.995 0.981 0.978 0.943
9 0.994 0.974 0.974 0.926
10 0.992 0.967 0.970 0.908
11 0.991 0.959 0.967 0.890
12 0.990 0.951 0.964 0.873
13 0.988 0.942 0.961 0.855
14 0.987 0.934 0.959 0.839
15 0.986 0.925 0.957 0.823
16 0.984 0.916 0.955 0.809
17 0.983 0.907 0.953 0.795
18 0.982 0.898 0.951 0.782
19 0.981 0.889 0.950 0.770
20 0.980 0.881 0.949 0.759
21 0.979 0.872 0.947 0.749
22 0.978 0.864 0.946 0.740
23 0.977 0.857 0.945 0.731
24 0.976 0.849 0.944 0.723
25 0.976 0.842 0.944 0.716
26 0.975 0.836 0.943 0.709
27 0.974 0.829 0.942 0.703
28 0.973 0.823 0.942 0.697
29 0.973 0.817 0.941 0.691
30 0.972 0.812 0.940 0.686

Table 3: Corr(log(y2T ), log(y
M
T ))

The parameter λ2 is the variance of the second component of the driver, and is used
to control the correlation structure; The parameter λ controls the shape of the second
eigenvector
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N = 10 λ = 0.1 λ = 0.3

M λ = 0.02 λ2 = 0.38 λ2 = 0.02 λ2 = 0.5

1 0.989 0.958 0.954 0.884
2 0.992 0.967 0.970 0.908
3 0.995 0.975 0.982 0.931
4 0.996 0.982 0.989 0.951
5 0.998 0.988 0.994 0.967
6 0.999 0.992 0.997 0.980
7 0.999 0.996 0.998 0.989
8 1.000 0.998 0.999 0.996
9 1.000 1.000 1.000 0.999
10 1.000 1.000 1.000 1.000
11 1.000 1.000 1.000 0.999
12 1.000 0.998 1.000 0.997
13 1.000 0.997 0.999 0.994
14 0.999 0.994 0.999 0.990
15 0.999 0.991 0.999 0.985
16 0.999 0.988 0.998 0.981
17 0.998 0.984 0.998 0.976
18 0.998 0.980 0.998 0.971
19 0.997 0.976 0.997 0.966
20 0.997 0.972 0.997 0.962
21 0.997 0.968 0.997 0.958
22 0.996 0.964 0.996 0.953
23 0.996 0.960 0.996 0.949
24 0.996 0.956 0.996 0.946
25 0.995 0.952 0.996 0.942
26 0.995 0.948 0.995 0.939
27 0.995 0.944 0.995 0.936
28 0.994 0.941 0.995 0.933
29 0.994 0.937 0.995 0.930
30 0.994 0.934 0.995 0.928

Table 4: Corr(log(y10T ), log(yMT ))
The parameter λ2 is the variance of the second component of the driver, and is used
to control the correlation structure; The parameter λ controls the shape of the second
eigenvector

Note that the results reported here are obtained numerically from the single-time MFM
(instead of using the approximate formula).

D.1 Correlation between log(yNT ) and log(DTSM
)

We tabulate below the correlation between the log of the reference swap rate yNT and the
log of DTSM

for N = 2, 10 and M ∈ {1, . . . , 30}. We use this correlation structure as
input to get the convexity corrections results reported in Figures 5.11- 5.14; the values
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are obtained numerically from the 2F single-time MFM.

N = 2 λ = 0.1 λ = 0.3

M λ = 0.02 λ2 = 0.38 λ2 = 0.02 λ2 = 0.5

1 -0.918 -0.918 -0.917 -0.917
2 -0.928 -0.928 -0.928 -0.928
3 -0.938 -0.937 -0.936 -0.936
4 -0.946 -0.944 -0.941 -0.938
5 -0.953 -0.948 -0.944 -0.935
6 -0.959 -0.950 -0.945 -0.926
7 -0.963 -0.949 -0.945 -0.912
8 -0.967 -0.946 -0.944 -0.893
9 -0.969 -0.940 -0.943 -0.871
10 -0.971 -0.931 -0.941 -0.846
11 -0.971 -0.921 -0.939 -0.819
12 -0.971 -0.908 -0.937 -0.791
13 -0.970 -0.893 -0.934 -0.763
14 -0.968 -0.876 -0.931 -0.736
15 -0.966 -0.858 -0.927 -0.709
16 -0.963 -0.839 -0.923 -0.683
17 -0.959 -0.820 -0.919 -0.658
18 -0.955 -0.799 -0.915 -0.634
19 -0.950 -0.778 -0.911 -0.611
20 -0.945 -0.757 -0.906 -0.590
21 -0.940 -0.736 -0.901 -0.569
22 -0.934 -0.714 -0.895 -0.549
23 -0.928 -0.693 -0.890 -0.531
24 -0.921 -0.672 -0.884 -0.513
25 -0.914 -0.652 -0.878 -0.497
26 -0.907 -0.632 -0.871 -0.481
27 -0.900 -0.612 -0.865 -0.466
28 -0.892 -0.593 -0.858 -0.451
29 -0.885 -0.574 -0.851 -0.438
30 -0.877 -0.556 -0.844 -0.425

Table 5: Corr(log(y2T ), log(DTSM
))

The parameter λ2 is the variance of the second component of the driver, and is used
to control the correlation structure; The parameter λ controls the shape of the second
eigenvector
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N = 10 λ = 0.1 λ = 0.3

M λ = 0.02 λ2 = 0.38 λ2 = 0.02 λ2 = 0.5

1 -0.910 -0.881 -0.878 -0.813
2 -0.923 -0.899 -0.903 -0.845
3 -0.934 -0.916 -0.923 -0.876
4 -0.945 -0.932 -0.939 -0.905
5 -0.954 -0.946 -0.951 -0.929
6 -0.962 -0.957 -0.961 -0.949
7 -0.969 -0.967 -0.968 -0.962
8 -0.975 -0.973 -0.974 -0.971
9 -0.979 -0.978 -0.978 -0.975
10 -0.982 -0.979 -0.981 -0.974
11 -0.985 -0.979 -0.983 -0.969
12 -0.986 -0.975 -0.984 -0.962
13 -0.986 -0.970 -0.984 -0.952
14 -0.986 -0.963 -0.984 -0.941
15 -0.985 -0.954 -0.983 -0.929
16 -0.983 -0.943 -0.981 -0.916
17 -0.980 -0.931 -0.979 -0.902
18 -0.977 -0.918 -0.976 -0.888
19 -0.974 -0.904 -0.972 -0.874
20 -0.969 -0.889 -0.969 -0.860
21 -0.965 -0.873 -0.964 -0.846
22 -0.960 -0.857 -0.960 -0.833
23 -0.954 -0.841 -0.955 -0.819
24 -0.948 -0.825 -0.949 -0.806
25 -0.942 -0.808 -0.943 -0.793
26 -0.935 -0.792 -0.937 -0.780
27 -0.928 -0.775 -0.931 -0.767
28 -0.921 -0.759 -0.924 -0.755
29 -0.914 -0.743 -0.917 -0.743
30 -0.906 -0.727 -0.910 -0.731

Table 6: Corr(log(y10T ), log(DTSM
))

The parameter λ2 is the variance of the second component of the driver, and is used
to control the correlation structure; The parameter λ controls the shape of the second
eigenvector
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E A guide to the numerical implementation of the mod-

els

E.1 A one-dimensional piecewise polynomial fit

The implementation of the models described in this thesis - and in particular, the single-
time MFM, depends primarily on the ability to approximate a smooth-enough function
on a bounded interval. We do so using a linear combination of piecewise polynomial
functions. Let [a, b] be a given interval and a = z1 < z2 < . . . < zn = b be a partition
of [a, b]. A piecewise polynomial function is a set of n − 1 polynomial functions of
a specified order q used to approximate a smooth-enough function. We can define a
piecewise polynomial interpolation functional with respect to the above partition of a
smooth function f on a bounded interval [a, b] as follows:

I(f)(z) :=

n∑
i=1

Pi(z),

where,

Pi(z) :=

q∑
k=0

bi:kz
k1{zi ≤ z < zi+1},

for bi:k ∈ R are the coefficients of the polynomial. The polynomial function Pi is
constructed such that Pi(zi) = f(zi), for i = 1, . . . , n. So we ensure that the resulting
polynomial interpolation functional passes through every given coordinate. We also
observe that the ith q-order polynomial exists only on the ith sub-interval and is zero
everywhere else.

To provide a concrete example of where this algorithm can be applied, we recall from
section 2.1.2 of Chapter 2 that we construct the functional form of the forward swap rate
by calibrating the model to the known market-implied distribution of the swap rate in
its own swaption measure. We know the values of the functional form of the swap rate,
which we denoted by f.(z) for a given z ∈ R in equation (2.11). The question therefore
is how can we interpolate and approximate the function f. given a set of coordinates
(zi, f.(zi)), i ∈ {1, . . . , n}. The algorithm presented here allows us to approximate the
functional form.

The construction of the piecewise polynomial interpolation functional is as follows:
Suppose we are given a set of coordinates (zi, f(zi)), i = 1, . . . , n, where z1 < z2 <

. . . < zn is a partition of a bounded interval and f : R 7→ R is the function we wish to
approximate. We consider each sub-interval [zj , zj+1], for j = 1, . . . , n− 1 to which we
will fit the jth q-order polynomial function. For j satisfying⌊

q − 1

2

⌋
< j <

⌈
m− q + 1

2

⌉
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we choose a set of coordinates
(
zj+k, f(zj+k)

)⌈ q+1
2

⌉
k=−⌊ q−1

2
⌋
, and we fit a q-order polynomial

by solving the Vandermonde system of equations as described in Press, Teukolsky,
Vetterling, and Flannery (1992).

When j does not satisfy the inequality - we observe that this relates to either ends of
the function, i.e the first set of intervals or the last set of intervals; we choose the first
(q + 1) coordinates that we will use to fit a q-order polynomial to the first sub-interval
[z1, z2] and fit the same polynomial to the jth interval for j < ⌊ q−1

2 ⌋. On the other
hand, for j > ⌈m− q+1

2 ⌉, we fit the same polynomial to the jth interval as the one that
we fit over the interval [zn−1, zn] using the last q+1 coordinates. By construction, I(f)
is the piecewise polynomial approximation of degree q of the function f defined on a
bounded interval [a, b] passing through (zi, f(zi)), i = 1, . . . , n.

Figure 20: Piecewise polynomial fit

Figure 20 illustrates how the piecewise polynomial fit (of order 5) algorithm works. For
the first three intervals, the same six coordinates shown in red are used to construct the
polynomial that is fitted to the intervals [0, 0, 1], [0.1, 0.2] and [0.2, 0.3]. For the interval
[0.3, 0.4], the choice of coordinates used to fit the piecewise polynomial is illustrated in
blue.

E.2 A two-dimensional piecewise polynomial fit

We have shown above how we do the piecewise polynomial fit in the one-dimensional
case. In the thesis, we have developed two-factor models. If we use the model to price
the payoff of a CMS or any related product, we will have to evaluate an expectation
of the form E[f(X,Y )], which will involve a two-dimensional integration. We explain
below how we extend the piecewise polynomial functional fit defined in the previous
section to the two-dimensional case and carry out the required integration.

Assume we know the function values for a given set of tuples (xi, yj), i = 1, . . . , n and
j = 1, . . . ,m. We define a two-dimensional piecewise polynomial functional as follows:
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For each fixed xi, we have a set of coordinates
(
xi, f(xi, yj)

)m
j=1

. We can use the one-
dimensional piecewise polynomial fit to define an interpolation functional Iyi (f).

Remark 31: Note firstly, we could have done the same step but fixing yj and defining a
piecewise polynomial functional in terms of the variable x. Secondly, we only define the
piecewise polynomial functional within the interval specified. For any value outside of
the interval the piecewise polynomial functional is assigned a value of zero.

Suppose now we want to evaluate the function at (x, y) for some given x1 < x < xn and
y1 < y < ym. For each xi , i = 1, . . . , n, we evaluate Iyi (f)(y). We therefore have a set of
coordinates (xi, I

y
i (f)(y)), to which we can fit a one-dimensional piecewise polynomial

functional, Ix(f), and we can then evaluate Ix(f)(x).

Similarly, if we want to compute the expectation E[f(X,Y )], by Tower property, we
have that:

E[f(X,Y )] = E
[
E[f(X,Y )|X]

]
≈ E

[
E[Iyi (f)]

]
.

We specify a vector of values (xi)
n
i=1

1, and we observe that the inner expectation in-
volves the one-dimensional integration of the piecewise polynomial interpolation func-
tional Iyi (f). For each xi, we can compute the inner one-dimensional integration, the
value of which we denote by ι(xi). We can then construct a piecewise polynomial func-
tional using

(
xi, ι(xi)

)n
i=1

, and we perform a one-dimensional integration again.

F A note on model performance and efficiency

We include below a brief summary of the computational performance of the two-factor
models; in particular, we compare the two-factor single-time MFM to the two-factor re-
fined forward measure calibrated MF-Lite model (2F refined fmcMFL model). Note that
we only consider the two-factor case since we are more concerned with the computation
efficiency of higher-factor models than one-factor models. We provide a comparison for
the memory usage (heap memory allocation: the models were implemented in C++)
and the duration to compute the price of a single payment of a CMS with reference
index N = 2 and payment index M = 29, using the same parameters and model setup
as discussed in Section 5.2.2. Recall that we assume the swap rates are log-normally
distributed in their own swaption measures and the model driver is jointly Gaussian
under the forward measure F.

1Say X is standard Gaussian, we would take a partition of the interval [-5,5] for instance, we know
that more than 99% of the probability mass will lie within this interval
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Model Memory usage Duration

2F single-time MFM 22.1MB 34 seconds

2F refined fmcMFL model : Exact Fit 6.6 MB 16 seconds

2F refined fmcMFL model : Alternate Fit 7.3MB 22 seconds

Table 7: Performance of the two-factor models to compute D0TEF[y
2
TDTS29 ]

We note that the 2F refined fmcMFL model takes less that half the time of the 2F
single-time MFM, which is expected, by construction. We equally point out that the
exact fit approach using the 2F refined fmcMFL model uses the least memory space,
since to compute any given expectation, we only set the model up for the maturities
we consider. In other words, we only store the functional forms required for these ma-
turities. On the other hand, for the single-time MFM, since we construct the model
by unfolding forward in maturity and the functional forms of the PVBP for any given
maturity is dependent on the functional forms of the preceding swap rates down to S1,
we need to store all the functional forms. The performance for the alternate fit model is
only negligibly worse than the exact fit approach (since we do the single-maturity setup
for three maturities instead of two). We should point out that for this numerical anal-
ysis, we are only considering a joint Gaussian distribution on the model driver. Going
back to the numerical implementation discussed in the section above, when construct-
ing the functional forms, we consider an equally-spaced partition of [−4.8, 6.9] with
intervals of size 0.3 for both components of the driver. For heavier-tailed distributions,
we might need a wider interval and smaller partitions, hence the need to evaluate the
functional forms for a bigger set of values, which would increase the computation time.
Nonetheless, the difference in model performance will stay qualitatively the same. In
other words, we expect the 2F refined fmcMFL model to be faster the 2F single-time
MFM model.
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