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ADP-Based Optimal Control for Discrete-Time 
Systems with Safe Constraints and Disturbances 

 
Jun Ye, Hongyang Dong, Yougang Bian, Member, IEEE, Hongmao Qin, and Xiaowei Zhao* 

Abstract—In this paper, a novel adaptive dynamic 
programming (ADP)-based optimal control method is developed 
for discrete-time systems subject to constraints and disturbances. 
Particularly, a safe policy iteration scheme is designed to handle 
state and input constraints, including both hard and soft 
constraints, by converting the original policy improvement 
strategy into a constrained optimization problem with a 
prescribed state cost function. After that, an actor-critic-
disturbance framework is introduced to address the constrained 
optimal control problem. The robust safety against disturbances is 
treated as a two-player zero-sum game, where the actor and 
disturbance neural networks are used to approximate the optimal 
control input and the disturbance policy, respectively. The 
convergence property of the proposed algorithm is analyzed, and 
the multi-step version of the proposed ADP scheme is derived 
based on this property. Simulation results are demonstrated and 
discussed to validate the effectiveness and performance of the 
proposed method. 

Note to Practitioners—Addressing constraints in optimal 
control problems is essential for guaranteeing the safe operation 
of controlled systems. However, conventional ADP algorithms 
struggle to simultaneously manage state and control input 
constraints during the search for the optimal solution. In real-
world applications, another critical and common issue is the 
presence of external disturbances, where disturbances that cause 
the control object to deviate from the safe region must be 
constrained while seeking an optimal control policy. Bearing these 
factors in mind, this study presents a novel ADP scheme for solving 
optimal control problems of discrete-time systems, taking into 
account state and control constraints as well as the impact of 
disturbances. Moreover, the convergence analysis of the proposed 
SADP scheme is provided, offering a powerful theoretical 
foundation for guaranteeing the safety and feasibility of the 
controlled system during operation. 

Index Terms—Adaptive dynamic programming, discrete-time 
systems, optimal control, constrained control, zero-sum game. 

I. INTRODUCTION 
ITH the ever-accelerated updating of computation 
and control technology, various traditional 
intelligent control methods, such as sliding mode 

control [1], model predictive control (MPC) [2], [3], linear 

quadratic regulator control [4] and so on, are achieved 
significant development recently. As an important branch of 
advanced control theory, optimal control also has been thriving 
in recent years. This kind of control method focuses on 
obtaining an optimal admissible control policy so that the pre-
defined performance index function can reach maximum or 
minimum value with the prerequisite of stabilizing controlled 
systems. In real applications, optimal control methods have 
received widespread attention in various fields, such as 
intelligent manufacturing, smart grid [5], [6], self-driving cars 
[7], [8], waverider vehicles (WVs) [9], [10], hypersonic flight 
vehicles (HFVs) [11], [12], and so on. As a typical optimal 
control strategy, dynamic programming (DP) has solid 
theoretical foundations. The core idea of DP is decoupling a 
complicated problem into some subproblems. Nevertheless, DP 
is not suitable for dealing with high-dimensional systems due 
to the underlying Curse of Dimensionality issue. To mitigate 
this issue, Werbos [13] proposed various adaptive dynamic 
programming (ADP) schemes that can obtain optimal solution 
using approximated technology, projected forward in time. 
Today, ADP, as an intelligent control technology that combines 
optimal control theory and reinforcement learning (RL), has 
been widely applied to solve a diverse range of complex 
nonlinear optimization and decision-making problems [14]–
[17]. 

Ensuring the safety in control under dynamic environments 
is crucial for real-world applications. However, there are still 
noticeable shortcomings when applying ADP methods to cases 
that necessitate consideration of constraints and therefore 
ensure control safety. In fact, nonlinear MPC (NMPC) is a 
closed-loop optimal control scheme based on nonlinear models, 
which serves as a powerful tool for addressing nonlinear 
optimal problems under constraints. For instance, Shen [18] 
proposed an innovative distributed NMPC method for AUV 
tracking by effectively decomposing the original optimization 
problems into smaller-sized subproblems and solving them in a 
distributed fashion. Since MPC is a technique for solving 
optimization problems online, it inherently involves a 
significant computational burden, which becomes increasingly 
pronounced as system complexity increases. In contrast, ADP 
schemes offer a notable advantage in terms of computational 
efficiency [19]. This is because applying iterative control inputs 
derived from either online or offline ADP techniques to control 
systems involves only simple arithmetic operations. 
Consequently, developing a safe and efficient scheme based on 
the ADP technique is both essential and urgent. 

Both input and state constraints are important in guaranteeing 
control safety. Input constraints typically pertain to the 
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operational limitations of actuators, while state constraints 
often relate to user-defined safe regions during the control 
phase [20]. In the context of ADP techniques, addressing 
control input constraints can be achieved by modifying the 
utility function's form or by utilizing a specific saturation 
function at the output of the actor neural network. For instance, 
a novel non-quadratic performance function is introduced in 
[21]–[23] to accommodate various input constraints, and the 
convergence of these iterative ADP algorithms is also analyzed. 
In [24], a novel goal representation adaptive critic design 
(ACD) is proposed in the event-triggered context for uncertain 
discrete-time systems with input saturation, saving unnecessary 
resource consumption while guaranteeing control performance. 
Handling state constraints within ADP methods is more 
challenging than addressing control input constraints, primarily 
due to the use of policy gradient algorithms. Neglecting state 
constraints during the design process can lead to suboptimal 
performance and reduced safety in practical applications, 
potentially resulting in unforeseen consequences. To overcome 
this issue, some researchers [25]–[27] have employed methods 
that incorporate additional terms into the cost function, striking 
a balance between safety and optimality. 

However, these methods cannot strictly guarantee that 
systems consistently comply with safety constraints, as there is 
an inherent trade-off between optimality and safety [28]. 
Recently, constrained policy optimization (CPO) [29] has been 
introduced, building upon trust region policy optimization [30]. 
With this new technique, Duan [31] proposed a constrained 
generalized policy iteration (CGPI) scheme to tackle optimal 
control problems with state constraints by constructing a trust 
region optimization problem within the policy improvement 
(PIM) framework. Nevertheless, this scheme may encounter 
situations where no feasible policy can satisfy various 
constraints while keeping the cost function bounded. 

By considering actual scenarios, some safety constraints are 
often not very strict and can be slightly violated, i.e., treated as 
soft constraints. However, certain safety constraints, such as 
collision distance restrictions and control limits, must be 
maintained within the safety margin [26]. Based on this 
understanding, this study develops a practical ADP scheme to 
address both soft and hard constraints in accordance with real-
world requirements, achieving a balance between safety and 
control performance. 

Moreover, in reality, complex environments are often 
dynamic and time-varying, introducing random external 
disturbances into the dynamic system. As a result, it becomes 
difficult to establish an accurate mathematical model, leading 
to a mismatch between the dynamic model and the controller. 
This mismatch can have a detrimental impact on control 
performance [32]. To address external disturbances, Che [33] 
developed a novel ADP framework to estimate rudder faults 
and ocean current disturbance by introducing neural network 
estimators and integrating both rudder faults and external 
disturbances within the utility function. Duan [34] presented a 
model-free scheme that introduced a bounded 𝐿𝐿2 -gain 
architecture to learn the optimal solution of the designed 

Hamilton-Jacobi-Isaac equation for a vehicle system in the 
presence of unknown disturbances. Carlucho [35] proposed an 
adaptive control framework based on an actor-critic goal-
oriented deep RL structure for vehicle systems, with the 
feasibility of this framework demonstrated through real 
experiments. Drawing inspiration from these works, we 
develop an effective actor-critic-disturbance ADP framework 
in this work to mitigate the negative effects caused by imprecise 
model information while considering input and state 
constraints. 

In this paper, a novel ADP scheme is proposed for solving 
optimal control problems of discrete-time systems with state 
and control constraints under the influence of disturbances. The 
main contribution of this paper can be summarized as follow:  
1) Based on the practical characteristics of hard and soft 

constraints, an innovative safe ADP (SADP) scheme with 
a policy iteration (PI) method is proposed. This approach 
considers both state and control input constraints during the 
search for the optimal control policy. In comparison to 
common techniques that embed barrier functions into the 
cost function [25]–[27], the proposed algorithm ensures 
excellent balance between optimality and safety. 
Furthermore, when compared to the multi-state constraint 
form [31], the proposed scheme significantly reduces 
computational burden by employing only a single 
inequality to represent aggregated state constraints. 

2) The optimal control problem subject to disturbances is 
formulated as a two-player zero-sum game problem. In 
contrast to prevailing methods that solely treat disturbances 
as an additional policy interacting with the optimal control 
policy in this type of non-cooperative game problems [36]–
[39], the state and input constraints are persistently 
incorporated throughout the game process. This ensures 
that scenarios leading to the control object deviating from 
the safe region are effectively constrained during the search 
for the optimal control policy under the influence of 
disturbances. The convergence property of SADP subject 
to disturbances is analyzed. Furthermore, the feasibility of 
the multi-step SADP scheme is also illustrated. 

3) The proposed algorithm possesses wide flexibility and 
applicability to various variants. Its adaptability to operate 
both with and without accurate model information 
highlights its robustness in addressing various real-world 
scenarios. By strategically leveraging model information to 
derive the future state of the control object, the algorithm 
achieves enhanced control performance and safety. 
Furthermore, when faced with unavailable or inaccurate 
model information, the algorithm can adopt data-driven 
techniques, liberating it from reliance on the model and 
enabling seamless adaptation to real-world conditions. 
This multifaceted approach enhances the algorithm's 
versatility and effectiveness in tackling different control 
challenges. 

The rest of the paper is organized as follows. In Section Ⅱ, 
the optimal control problem is described, and safe constraint 
forms are formulated based on practical requirements. In 
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Section Ⅲ, the iteration steps of SADP algorithm are derived, 
and the convergence property is analyzed. In Section Ⅳ, the 
implementation details are developed. In Section Ⅴ, simulation 
studies and analyses are given to demonstrate the effectiveness 
of the proposed scheme. Finally, in Section VI, conclusions are 
drawn, and future work is outlined. 

II. PROBLEM FORMULATION 

A. Optimal Control Problem 
Consider the discrete-time nonlinear system with 

disturbances: 
 𝑥𝑥𝑡𝑡+1 = 𝑓𝑓(𝑥𝑥𝑡𝑡) + 𝑔𝑔(𝑥𝑥𝑡𝑡)𝑢𝑢𝑡𝑡 + 𝑤𝑤(𝑥𝑥𝑡𝑡)𝜔𝜔𝑡𝑡 , 𝑡𝑡 = 0,1,2, … (1) 
where 𝑥𝑥𝑡𝑡 ∈ ℝ𝑚𝑚 denotes the state variable, 𝑢𝑢𝑡𝑡 ∈ ℝ𝑛𝑛 denotes the 
control input, and 𝜔𝜔𝑡𝑡 ∈ ℝ𝑛𝑛 denotes the disturbance term, with 
𝑛𝑛 and 𝑚𝑚 represent the dimensions of state and control spaces, 
respectively. The functions 𝑓𝑓(∙), 𝑔𝑔(∙) and 𝑤𝑤(∙) are considered 
to be Lipschitz continuous on a compact set Ω that includes the 
origin point. It can be assumed that system (1) is stabilizable, 
i.e., there exists a set of effective control policies that can 
asymptotically stabilize the system in (1) on Ω . As for the 
disturbance policy 𝜔𝜔𝑡𝑡, its amplitude is assumed to be within a 
bound 𝜔𝜔𝑚𝑚 , i.e., ‖𝜔𝜔𝑡𝑡‖ ≤ 𝜔𝜔𝑚𝑚  and 𝜔𝜔𝑡𝑡 ∈ Ψ𝜔𝜔 , where Ψ𝜔𝜔  is a set 
that contains all disturbance policies. 

For the optimal control problem, the cost function can be 
constructed as  

 𝕍𝕍(𝑥𝑥𝑡𝑡) = �𝛾𝛾𝑙𝑙−𝑡𝑡𝑈𝑈(𝑥𝑥𝑙𝑙 ,𝑢𝑢𝑙𝑙 ,𝜔𝜔𝑙𝑙)
∞

𝑙𝑙=𝑡𝑡

, (2) 

where 0 < 𝛾𝛾 ≤ 1 denotes the discount factor, 𝑥𝑥𝑙𝑙  represents the 
state vector beginning at a specific state 𝑥𝑥𝑡𝑡 , and 𝑢𝑢𝑙𝑙  and 𝜔𝜔𝑙𝑙 
represent the corresponding control policy and disturbance 
policy, respectively. 

In (2), the utility function can be expressed as 
 𝑈𝑈(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) = 𝑥𝑥𝑡𝑡𝑇𝑇𝑄𝑄𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑇𝑇𝑅𝑅𝑢𝑢𝑡𝑡 − 𝛽𝛽𝜔𝜔𝑡𝑡

𝑇𝑇𝜔𝜔𝑡𝑡 , (3) 
where 𝑄𝑄 and 𝑅𝑅 are positive-definite weighting matrices for the 
state and input, respectively, and 𝛽𝛽  is a positive constant 
denoting the user-determined resistant degree with respect to 
the disturbance. 

Based on (2) and Bellman’s optimality principle, the optimal 
cost function can be expressed as  
 𝕍𝕍∗(𝑥𝑥𝑡𝑡) = min

𝑢𝑢𝑡𝑡
max
𝜔𝜔𝑡𝑡

�𝑈𝑈(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) + 𝛾𝛾𝕍𝕍∗(𝑥𝑥𝑡𝑡+1)�. (4) 
Then, the control object is to search an optimal control policy:  

 𝑢𝑢𝑡𝑡∗ = arg min
𝑢𝑢𝑡𝑡
�𝑈𝑈(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) + 𝛾𝛾𝕍𝕍∗(𝑥𝑥𝑡𝑡+1)�. (5) 

Such an optimal control problem considering disturbances can 
be regarded as a two-player zero-sum game, in which the worst-
case disturbance can be given as  

 𝜔𝜔𝑡𝑡
∗ = arg max

𝜔𝜔𝑡𝑡
�𝑈𝑈(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) + 𝛾𝛾𝕍𝕍∗(𝑥𝑥𝑡𝑡+1)�, (6) 

B. Safe Constraints Handling 
For discrete-time general optimal control problems, [40], 

[41] present that the optimal control policy can be achieved by 
implementing ADP techniques. Further, in order to deal with 
optimal control problems subject to disturbances, [36]–[39] 
shows that (4)-(6) can be solved based on the actor-critic-

disturbance architecture. However, in actual fact, most systems 
are safety-critical in practical applications, such as vehicle 
systems [42], spacecraft [43], and robot [44], but all the ADP 
schemes above cannot guarantee safety during the search for 
the optimal solution.  

Particularly, to achieve an excellent balance between 
optimality and control performance, control inputs are 
constrained by using a smooth and saturated function based on 
practical requirements. This means that the constrained control 
input is set boundedly, i.e., Ψ𝑢𝑢 = {𝑢𝑢|�𝑢𝑢𝑝𝑝� ≤ 𝑢𝑢�𝑝𝑝, 𝑝𝑝 = 1,2, … ,𝑛𝑛}, 
where 𝑢𝑢�𝑝𝑝 is the bound for the 𝑝𝑝-th control input. 

Remark 1: Although differentiating the performance 
function accumulated by non-quadratic utility with respect to 
the control input can effectively confine the control input within 
the safe region [25]–[27], this approach is only compatible with 
incorporating state penalty terms into the performance function 
to guarantee safety. However, the penalty degree is empirically 
self-defined, leading to a lack of solid theoretical foundation 
and design standards for balancing safety abilities and control 
performance [25], [28]. As a result, the incorporating method is 
not an excellent choice to deal with state and control input 
constraints while guaranteeing optimality. 

After finalizing the handling of control input constraints, the 
specific way of coping with state constraints should be 
determined further. Motivated by [45], [46], the control barrier 
function (CBF) can be employed to handle state constraints. 
First, a safe set 𝒞𝒞𝑠𝑠 is defined as 

 𝒞𝒞𝑠𝑠 = {𝑥𝑥 ∈ ℝ𝑚𝑚|ℎ(𝑥𝑥) ≤ 0}, (7) 
 𝜕𝜕𝒞𝒞𝑠𝑠 = {𝑥𝑥 ∈ ℝ𝑚𝑚|ℎ(𝑥𝑥) = 0}, (8) 
 𝐼𝐼𝐼𝐼𝐼𝐼(𝒞𝒞𝑠𝑠) = {𝑥𝑥 ∈ ℝ𝑚𝑚|ℎ(𝑥𝑥) > 0}, (9) 

where ℎ(∙) is a continuously differentiable function, ℎ(∙) ≤ 0 
represents the safe region of constrained states. Then, the unsafe 
set 𝐼𝐼𝐼𝐼𝐼𝐼(𝒞𝒞𝑠𝑠) can be defined as the complementary set of 𝒞𝒞𝑠𝑠. In 
this study, the purpose is to design an optimal control policy to 
guarantee that a sequence of state {𝑥𝑥|𝑥𝑥1𝑢𝑢, 𝑥𝑥2𝑢𝑢, 𝑥𝑥3𝑢𝑢 … }  will not 
enter 𝐼𝐼𝐼𝐼𝐼𝐼(𝒞𝒞𝑠𝑠) even under the influence of disturbances. 

CBFs have the potential to effectively restrict states within 
the safe region [45]. Motivated by [47], a generalized CBF is 
adopted in this study 

 ℎ(𝑥𝑥𝑐𝑐,𝑡𝑡+1) ≤ (1 − 𝛾𝛾𝑐𝑐)ℎ(𝑥𝑥𝑐𝑐,𝑡𝑡), (10) 
where 𝑥𝑥𝑐𝑐,𝑡𝑡  represents the constrained state at time 𝑡𝑡 , and 
ℎ�𝑥𝑥𝑐𝑐,𝑡𝑡� ≤ 0 . 0 < 𝛾𝛾𝑐𝑐 ≤ 1  represents the conservativeness 
coefficient.  

Moreover, based on (10), a safe cost function 𝐽𝐽𝑐𝑐(𝑥𝑥𝑐𝑐,𝑡𝑡) with 
the generalized CBF is introduced as follows 

 

𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� = � ℎ�𝑥𝑥𝑐𝑐,𝑙𝑙�

𝑡𝑡+𝑁𝑁𝑐𝑐−1

𝑙𝑙=𝑡𝑡

 

≤ � (1 − 𝛾𝛾𝑐𝑐)𝑙𝑙−𝑡𝑡ℎ�𝑥𝑥𝑐𝑐,𝑡𝑡�
𝑡𝑡+𝑁𝑁𝑐𝑐−1

𝑙𝑙=𝑡𝑡

≤ 0. 

(11) 

where 𝑁𝑁𝑐𝑐 denotes the predicted step for the constrained state. 
The implementation of the conservativeness coefficient also 
ensures that immediate constraints are more crucial than 
guaranteeing constraints in future steps. 

Remark 2: It is worth noting that the safe control region 
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𝒰𝒰𝑥𝑥 ∈ Ψ𝑢𝑢  is a set related to the control input. For each state 
variable 𝑥𝑥, there exists a corresponding safe set 𝒰𝒰𝑥𝑥  ensuring 
that the system can reach the safe region. 

Remark 3: In reality, a single-step constraint on states may 
not achieve an excellent trade-off between control performance 
and safety. For instance, in the control process of autonomous 
vehicles, if safety constraints are considered for only one step 
(i.e., the desired trajectory and boundary information are not 
taken into account in future steps), there is a high probability 
that the system will enter an unsafe region for those states that 
need to be constrained and are already close to the safety 
boundary. This is because it may not be possible to determine 
the appropriate control input to be implemented on the vehicle 
system in the next step. In other words, 𝒰𝒰𝑥𝑥 may be an empty 
set. Moreover, even if an admissible control policy is 
achievable after solving, it may still lead to unsafe effects in 
future steps. Drawing from human-driving behaviors, the 
feasible driving region is evaluated over a certain distance, 
meaning that the current driving behavior is indeed influenced 
by future states. If the vehicle cannot safely pass through the 
feasible region, drivers will take action, such as braking ahead 
of time. That’s why we consider future steps in Eq. (11). 

Based on Eq. (11), to obtain a far-sighted effect, the safe state 
constraint is given as  

 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� ≤ 0, (12) 

Compared with the state function defined in [31], which 
requires [𝑁𝑁𝑐𝑐 ×  (the number of constraints)] inequations to 
describe a similar constrained optimal control problem as in this 
paper, we just need an aggregated inequation, e.g. Eq. (12), to 
describe the constraint handling requirements. This aggregated 
expression can also significantly improve the solving efficiency 
and effectiveness. 

Moreover, for the existing safe-certified ADP method with 
CBF [26], [48], the admissible control space based on CBF 
should be added as the extra constraint into the optimal control 
problem, and this kind of constraint is associated with model 
information closely. Both of these factors will bring extra 
computation burden in the process of solving the specific 
optimization problem. Meanwhile, the Bellman equation used 
for solving the optimal control problem should be relaxed by 
introducing an iterative slack variable in this method, which 
will also bring the challenge of balancing optimality and safety, 
and further exacerbate the computational burden. Therefore, 
based on these analyses above, the constraint about admissible 
control space derived from designed CBF is not applied. In this 
study, the CBF is applied for designing the safe cost function. 
Based on the safe cost function, the specific method of handling 
state constraints will be presented in Section IV-B. 

Subsequently, the control object becomes to get a 
constrained optimal control policy, such that 

𝑢𝑢𝑡𝑡∗ = arg min
𝑢𝑢𝑡𝑡
�𝑈𝑈(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) + 𝛾𝛾𝕍𝕍∗(𝑥𝑥𝑡𝑡+1)� 

 s.t. 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� ≤ 0. (13) 

Conventional ADP schemes are inapplicable for such a 
complex constrained optimal control problem, not to mention 
the DP method. To address this issue, a safe ADP (SADP) 

scheme based on the CBF and the trust region concept is 
proposed. Key details are presented in the following section. 

III. SAFE ADAPTIVE DYNAMIC PROGRAMMING 

A. Derivation of PI Safe Adaptive Dynamic Programming 
To ensure a more stable implementation of SADP in practical 

applications, the PI method is adopted in this study. This choice 
is made because the control policy is consistently admissible 
during the learning process of PI compared to the value iteration 
method [40], [41], [49]. To further analyze the iterative 
properties of the proposed scheme, an action-disturbance-
dependent function is introduced as follows: 

 𝑉𝑉(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) = 𝑈𝑈(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) + � 𝛾𝛾𝑙𝑙−𝑡𝑡𝑈𝑈(𝑥𝑥𝑙𝑙 ,𝑢𝑢𝑙𝑙 ,𝜔𝜔𝑙𝑙)
∞

𝑙𝑙=𝑡𝑡+1

 

= 𝑈𝑈(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑥𝑥𝑡𝑡+1). 
(14) 

It is noted that 𝑉𝑉(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) is related to the state, the control 
policy, and the disturbance. Moreover, one can see that, in (14), 
the behavior policy is same with the evaluation policy. 
Therefore, Eq. (14) actually indicates an on-policy control 
scheme. Then, according to (4) and (14), the optimal cost 
function 𝑉𝑉∗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) can be expressed as  

 

𝑉𝑉∗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) = min
𝑢𝑢𝑡𝑡

max
𝜔𝜔𝑡𝑡

�𝑈𝑈(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) + 𝛾𝛾𝕍𝕍∗(𝑥𝑥𝑡𝑡+1)� 

= min
𝑢𝑢𝑡𝑡

max
𝜔𝜔𝑡𝑡

�𝑈𝑈(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡)

+ 𝛾𝛾𝑉𝑉∗(𝑥𝑥𝑡𝑡+1,𝑢𝑢𝑡𝑡+1,𝜔𝜔𝑡𝑡+1)�. 

(15) 

For zero-sum game problems, according to (5), (6), and (15), 
the optimal control policy and worst-case disturbance solved by 
the on-policy method are given by (16) and (17), respectively. 

 
𝑢𝑢𝑡𝑡∗ = arg min

𝑢𝑢𝑡𝑡
�𝑉𝑉∗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡)� 

s.t. 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� ≤ 0. 

(16) 

 𝜔𝜔𝑡𝑡
∗ = arg max

𝜔𝜔𝑡𝑡
�𝑉𝑉∗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡)�. (17) 

To obtain 𝑢𝑢𝑡𝑡∗ , the cost function, control policy, and 
disturbance policy are updated by iterations. The iteration rule 
can be presented with policy evaluation (PEV) inner loops and 
PI outer loops. For clarity, the inner loop iteration is represented 
by 𝑗𝑗, and the outer loop is represented by 𝑖𝑖. Both 𝑖𝑖 and 𝑗𝑗 start 
from zero and continue to infinity. 

Given an arbitrary initial admissible control policy 𝑢𝑢0,𝑡𝑡 ∈ 𝒰𝒰𝑥𝑥 
and a disturbance 𝜔𝜔0,𝑡𝑡 ∈ Ψ𝜔𝜔 , the iterative cost function 
𝑉𝑉0(𝑥𝑥𝑡𝑡 ,𝑢𝑢0,𝑡𝑡 ,𝜔𝜔0,𝑡𝑡) can be achieved as  

 
𝑉𝑉0�𝑥𝑥𝑡𝑡 ,𝑢𝑢0,𝑡𝑡 ,𝜔𝜔0,𝑡𝑡� = 𝑈𝑈�𝑥𝑥𝑡𝑡 ,𝑢𝑢0,𝑡𝑡,𝜔𝜔0,𝑡𝑡�

+ 𝛾𝛾𝑉𝑉0�𝑥𝑥𝑡𝑡+1,𝑢𝑢0,𝑡𝑡+1,𝜔𝜔0,𝑡𝑡+1�. 
(18) 

It should be emphasized that 𝑉𝑉0�𝑥𝑥𝑡𝑡 ,𝑢𝑢0,𝑡𝑡 ,𝜔𝜔0,𝑡𝑡� =
𝑉𝑉0,∞�𝑥𝑥𝑡𝑡 ,𝑢𝑢0,𝑡𝑡 ,𝜔𝜔0,𝑡𝑡� as 𝑗𝑗 → ∞. Then, the control policy 𝑢𝑢1,𝑡𝑡 and 
disturbance policy 𝜔𝜔1,𝑡𝑡 can be derived as 

 
𝑢𝑢1,𝑡𝑡 = arg min

𝑢𝑢𝑡𝑡
�𝑉𝑉0�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔0,𝑡𝑡�� 

s.t. 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� ≤ 0. 

(19) 

 𝜔𝜔1,𝑡𝑡 = 𝜔𝜔0,𝑡𝑡 + 𝛼𝛼𝜔𝜔∇𝜔𝜔𝑉𝑉0�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡 ,𝜔𝜔0,𝑡𝑡�|𝜔𝜔=𝜔𝜔0. (20) 
Subsequently, for 𝑖𝑖 = 1,2,3, …, the iterative cost function can 

be derived as  
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𝑉𝑉𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�

= 𝑈𝑈�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�
+ 𝛾𝛾𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡+1,𝑢𝑢𝑖𝑖,𝑡𝑡+1,𝜔𝜔𝑖𝑖,𝑡𝑡+1�. 

(21) 

Moreover, the iterative control and disturbance policies can be 
denoted as 

 
𝑢𝑢𝑖𝑖+1,𝑡𝑡 = arg min

𝑢𝑢𝑡𝑡
�𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�� 

s.t. 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� ≤ 0. 

(22) 

 𝜔𝜔𝑖𝑖+1(𝑥𝑥𝑡𝑡) = 𝜔𝜔𝑖𝑖(𝑥𝑥𝑡𝑡) + 𝛼𝛼𝜔𝜔∇𝜔𝜔𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖+1,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�|𝜔𝜔=𝜔𝜔𝑖𝑖. (23) 
For conventional ADP schemes, neural networks (NNs) are 

typically introduced for updating control policies with gradient 
descent methods. However, this kind of methods cannot handle 
optimal control problems with state constraints since 
conventional PIM is employed only to optimize unconstrained 
scenarios. Here we develop a novel safe ADP (SADP) scheme 
to address the constrained optimization problem described in 
(19) and (22). However, solving (19) and (22) with analytical 
solutions directly is almost impossible because of the strong 
nonlinear properties of the objective function and constraints, 
especially under high-dimensional state & action spaces. To 
address this challenging problem, we employ the linearization 
technique. Specifically, the cost function and state constraints 
are linearized based on the previous control policy. Given this 
logic, the objective function can be approximated as 

 

𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� = 𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡
+ �∇𝑢𝑢𝑡𝑡𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡�

𝑇𝑇
�𝑢𝑢𝑡𝑡

− 𝑢𝑢𝑖𝑖,𝑡𝑡� + 𝑅𝑅1𝑣𝑣(𝑢𝑢𝑡𝑡). 

(24) 

In fact, 𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� can be regarded as a function w.r.t 𝑢𝑢𝑡𝑡, 
where 𝑢𝑢𝑡𝑡 is an independent variable. The first term on the right-
hand side of (24) represents a specific value of the performance 
function at 𝑢𝑢𝑖𝑖,𝑡𝑡. Furthermore, �∇𝑢𝑢𝑡𝑡𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡� in the 
second term denotes the specific derivation information of the 
𝑖𝑖 -th performance function at 𝑢𝑢𝑖𝑖,𝑡𝑡 . Additionally, 𝑢𝑢𝑡𝑡  in �𝑢𝑢𝑡𝑡 −
𝑢𝑢𝑖𝑖,𝑡𝑡� corresponds to 𝑢𝑢𝑡𝑡 in the left-hand side of (24), which is a 
control policy that needs to be solved. 

Moreover, the constrained cost function is approximated by 

 

𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� = 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡

𝑁𝑁𝑐𝑐�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡
+ �∇𝑢𝑢𝑡𝑡𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡

𝑁𝑁𝑐𝑐�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡�
𝑇𝑇
�𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑖𝑖,𝑡𝑡�

+ 𝑅𝑅1𝑐𝑐(𝑢𝑢𝑡𝑡) 

(25) 

Here 𝑅𝑅1𝑣𝑣(𝑢𝑢𝑡𝑡) and 𝑅𝑅1𝑐𝑐(𝑢𝑢𝑡𝑡) represent residual errors. 
Remark 4: It is worth noting that 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡

𝑁𝑁𝑐𝑐� is related to the 
current control policy 𝑢𝑢𝑖𝑖,𝑡𝑡  instead of only relating the future 
state. This is because predicted state constraints are derived 
from initial state 𝑥𝑥𝑡𝑡  with current control policy 𝑢𝑢𝑖𝑖,𝑡𝑡 . In other 
words, if the executed control policy is changed, the 
approximate result will be different. 

To ensure that the approximation scheme is feasible, the 
extent of the control policy update should be limited within a 
small range. In order to reasonably measure the update extent 
of the control policy, 𝐷𝐷(𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡) is introduced to represent the 
distance between the new and old control policies, which can 
be defined as follows:  

 𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡� ≜ 𝔼𝔼𝑥𝑥𝑡𝑡~𝜗𝜗𝑥𝑥 ��𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑖𝑖,𝑡𝑡�2
2�. (26) 

where 𝔼𝔼𝑥𝑥𝑡𝑡~𝜗𝜗𝑥𝑥 represents the expectation with regard to the state 
distribution 𝜗𝜗𝑥𝑥 on Ω. 

Then, we also define a limited range for 𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡�as 𝛿𝛿 . 
Therefore, we can get a new constraint: 

 𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡� ≤ 𝛿𝛿. (27) 
𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡� can be approximated by a linearized way: 

 

𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡� = 𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡  

+�∇𝑢𝑢𝑡𝑡𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡�
𝑇𝑇
�𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑖𝑖,𝑡𝑡� 

+
1
2
�𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑖𝑖,𝑡𝑡�

𝑇𝑇�∇𝑢𝑢𝑡𝑡
2 𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡��𝑢𝑢𝑡𝑡

− 𝑢𝑢𝑖𝑖,𝑡𝑡� + 𝑅𝑅1𝐷𝐷(𝑢𝑢𝑡𝑡). 

(28) 

Based on all these analyses, our PIM process can be 
expressed as  

min 
𝑢𝑢𝑡𝑡

�∇𝑢𝑢𝑡𝑡𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡�
𝑇𝑇
�𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑖𝑖,𝑡𝑡� 

s.t. 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡 + �∇𝑢𝑢𝑡𝑡𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡

𝑁𝑁𝑐𝑐�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡�
𝑇𝑇
�𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑖𝑖,𝑡𝑡� ≤ 0 

1
2
�𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑖𝑖,𝑡𝑡�

𝑇𝑇�∇𝑢𝑢𝑡𝑡
2 𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡��𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑖𝑖,𝑡𝑡� < 𝛿𝛿. 

  (29) 

B. Convergence Analysis of PI-based SADP 
In this subsection, the convergence property of our PI-based 

SADP is provided by showing that the cost function 𝑉𝑉𝑖𝑖,𝑗𝑗, the 
control policy 𝑢𝑢𝑖𝑖, and the disturbance policy 𝜔𝜔𝑖𝑖 can converge 
to the optimal value as iterations 𝑖𝑖, 𝑗𝑗 → ∞. 

Lemma 1: For any fixed control policy 𝑢𝑢𝑖𝑖,𝑡𝑡 and disturbance 
policy 𝜔𝜔𝑖𝑖,𝑡𝑡, 𝑖𝑖 = 0,1, …, with the iterative cost function given in 
(21). Then, for ∀𝑥𝑥𝑡𝑡 ∈ ℝ𝑚𝑚 , the iterative cost function 
𝑉𝑉𝑖𝑖,𝑗𝑗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡)  will converge to 𝑉𝑉𝑖𝑖,∞�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� =
𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� as 𝑗𝑗 → ∞. 

Proof: The convergence process of policy evaluation (PEV) 
can be analyzed in two steps. 

Step 1: For 𝑗𝑗 = 0,1,2, …,  the iterative cost function 
𝑉𝑉𝑖𝑖,𝑗𝑗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡) should satisfy  

 𝑉𝑉𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� ≤ 𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�,∀𝑗𝑗 ≥ 0. (30) 
First, for 𝑖𝑖 = 1, 𝑗𝑗 = 0, and ∀𝑥𝑥𝑡𝑡 ∈ ℝ𝑚𝑚,  

 

𝑉𝑉1,0�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡 ,𝜔𝜔1,𝑡𝑡� 
          = 𝑈𝑈�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡 ,𝜔𝜔1,𝑡𝑡� + 𝛾𝛾𝑉𝑉0�𝑥𝑥𝑡𝑡+1,𝑢𝑢1,𝑡𝑡+1,𝜔𝜔1,𝑡𝑡+1� 

≤ 𝑈𝑈�𝑥𝑥𝑡𝑡 ,𝑢𝑢0,𝑡𝑡 ,𝜔𝜔0,𝑡𝑡� + 𝛾𝛾𝑉𝑉0�𝑥𝑥𝑡𝑡+1,𝑢𝑢0,𝑡𝑡+1,𝜔𝜔0,𝑡𝑡+1� 
= 𝑉𝑉0�𝑥𝑥𝑡𝑡 ,𝑢𝑢0,𝑡𝑡+1,𝜔𝜔0,𝑡𝑡+1�. 

(31) 

For 𝑗𝑗 = 1,  

 

𝑉𝑉1,1�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡 ,𝜔𝜔1,𝑡𝑡� 
          = 𝑈𝑈�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡,𝜔𝜔1,𝑡𝑡� + 𝛾𝛾𝑉𝑉1,0�𝑥𝑥𝑡𝑡+1,𝑢𝑢1,𝑡𝑡+1,𝜔𝜔1,𝑡𝑡+1� 

≤ 𝑈𝑈�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡 ,𝜔𝜔1,𝑡𝑡� + 𝛾𝛾𝑉𝑉0�𝑥𝑥𝑡𝑡+1,𝑢𝑢1,𝑡𝑡+1,𝜔𝜔1,𝑡𝑡+1� 
= 𝑉𝑉1,0�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡+1,𝜔𝜔1,𝑡𝑡+1�. 

(32) 

Then, for 𝑗𝑗 = 2,3, …,  

 
𝑉𝑉1,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡 ,𝜔𝜔1,𝑡𝑡� 
      ≤ 𝑈𝑈�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡 ,𝜔𝜔1,𝑡𝑡� + 𝛾𝛾𝑉𝑉1,𝑗𝑗−1�𝑥𝑥𝑡𝑡+1,𝑢𝑢1,𝑡𝑡+1,𝜔𝜔1,𝑡𝑡+1� 

= 𝑉𝑉1,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢1,𝑡𝑡+1,𝜔𝜔1,𝑡𝑡+1�. 
(33) 

Similarly, for 𝑖𝑖 = 2,3, …, we can obtain 𝑉𝑉𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� ≤



6 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� .  

Step 2: According to the monotonically nonincreasing 
property 𝑉𝑉𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� ≤ 𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� , we can 
conclude that the cost function 𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� is bounded for 
∀𝑖𝑖, 𝑗𝑗. Then, the norm value related to the cost function can be 
defined as  

 

�𝑉𝑉𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� − 𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡��∞
= max

𝑋𝑋𝑡𝑡∈Ω
�𝑉𝑉𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�

− 𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡��. 

(34) 

For 𝑗𝑗 = 0 , the norm value can be denoted as Δ0 =
 �𝑉𝑉𝑖𝑖,1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� − 𝑉𝑉𝑖𝑖,0�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡��. Then, we can get  

 

�𝑉𝑉𝑖𝑖,2�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� − 𝑉𝑉𝑖𝑖,1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡��
= 𝛾𝛾𝑁𝑁�𝑉𝑉𝑖𝑖,1�𝑥𝑥𝑡𝑡+𝑁𝑁 ,𝑢𝑢𝑖𝑖,𝑡𝑡+𝑁𝑁 ,𝜔𝜔𝑖𝑖,𝑡𝑡+𝑁𝑁�
− 𝑉𝑉𝑖𝑖,0�𝑥𝑥𝑡𝑡+𝑁𝑁 ,𝑢𝑢𝑖𝑖,𝑡𝑡+𝑁𝑁 ,𝜔𝜔𝑖𝑖,𝑡𝑡+𝑁𝑁�� 

                                 ≤ 𝛾𝛾𝑁𝑁Δ0. 

(35) 

So, as 𝑗𝑗 → ∞, one has 

 

�𝑉𝑉𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� − 𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡��
= 𝛾𝛾𝑁𝑁�𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡+𝑁𝑁 ,𝑢𝑢𝑖𝑖,𝑡𝑡+𝑁𝑁 ,𝜔𝜔𝑖𝑖,𝑡𝑡+𝑁𝑁�
− 𝑉𝑉𝑖𝑖,𝑗𝑗−1�𝑥𝑥𝑡𝑡+𝑁𝑁 ,𝑢𝑢𝑖𝑖,𝑡𝑡+𝑁𝑁 ,𝜔𝜔𝑖𝑖,𝑡𝑡+𝑁𝑁�� 

                                 ≤ 𝛾𝛾𝑗𝑗𝑗𝑗Δ0. 

(36) 

We can find that as 𝑗𝑗 → ∞ , �𝑉𝑉𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� −
𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡��  will be equivalent to 0. Therefore, the 
iterative cost function 𝑉𝑉𝑖𝑖,𝑗𝑗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡)  will converge to 
𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� as 𝑗𝑗 → ∞.                                                                          

Theorem 1: Assume that the constrained optimal control 
problem in (29) is solvable, and 𝑉𝑉𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�, 𝑢𝑢𝑖𝑖,𝑡𝑡, and 𝜔𝜔𝑖𝑖,𝑡𝑡 
are given as in (18)-(23), with 𝑢𝑢𝑖𝑖,𝑡𝑡 ∈ 𝒰𝒰𝑥𝑥 . Then the iterative 
policy sequence 𝑢𝑢𝑖𝑖,𝑡𝑡  and 𝜔𝜔𝑖𝑖,𝑡𝑡  will converge to optimal values 
𝑢𝑢𝑡𝑡∗ and 𝜔𝜔𝑡𝑡

∗ for 𝑖𝑖 = 0,1,2, …. 
Proof: First, according to (21), we have  

 
𝑉𝑉𝑖𝑖+1,0�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖+1,𝑡𝑡 ,𝜔𝜔𝑖𝑖+1,𝑡𝑡�

= 𝑈𝑈�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖+1,𝑡𝑡 ,𝜔𝜔𝑖𝑖+1,𝑡𝑡�
+ 𝛾𝛾𝑉𝑉𝑖𝑖,∞�𝑥𝑥𝑡𝑡+1,𝑢𝑢𝑖𝑖+1,𝑡𝑡+1,𝜔𝜔𝑖𝑖+1,𝑡𝑡+1�. 

(37) 

Then, one has 

 

𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� 

 = �𝛾𝛾𝑙𝑙𝑈𝑈�𝑥𝑥𝑡𝑡+𝑙𝑙 ,𝑢𝑢𝑖𝑖,𝑡𝑡+𝑙𝑙 ,𝜔𝜔𝑖𝑖,𝑡𝑡+𝑙𝑙�
𝑁𝑁−1

𝑙𝑙=0
+ 𝛾𝛾𝑁𝑁𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡+𝑁𝑁 ,𝑢𝑢𝑖𝑖,𝑡𝑡+𝑁𝑁,𝜔𝜔𝑖𝑖,𝑡𝑡+𝑁𝑁� 

≥ � 𝛾𝛾𝑙𝑙𝑈𝑈�𝑥𝑥𝑡𝑡+𝑙𝑙 ,𝑢𝑢𝑖𝑖+1,𝑡𝑡+𝑙𝑙 ,𝜔𝜔𝑖𝑖+1,𝑡𝑡+𝑙𝑙�
𝑁𝑁−1

𝑙𝑙=0
+ 𝛾𝛾𝑁𝑁𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡+𝑁𝑁 ,𝑢𝑢𝑖𝑖,𝑡𝑡+𝑁𝑁,𝜔𝜔𝑖𝑖,𝑡𝑡+𝑁𝑁� 

≥ � 𝛾𝛾𝑙𝑙𝑈𝑈�𝑥𝑥𝑡𝑡+𝑙𝑙 ,𝑢𝑢𝑖𝑖+1,𝑡𝑡+𝑙𝑙 ,𝜔𝜔𝑖𝑖+1,𝑡𝑡+𝑙𝑙�
2𝑁𝑁−1

𝑙𝑙=0
+ 𝛾𝛾2𝑁𝑁𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡+2𝑁𝑁 ,𝑢𝑢𝑖𝑖(𝑥𝑥𝑡𝑡+2𝑁𝑁),𝜔𝜔𝑖𝑖(𝑥𝑥𝑡𝑡+2𝑁𝑁)� 

⋮ 

≥�𝛾𝛾𝑙𝑙𝑈𝑈�𝑥𝑥𝑡𝑡+𝑙𝑙 ,𝑢𝑢𝑖𝑖+𝑙𝑙,𝑡𝑡+𝑙𝑙 ,𝜔𝜔𝑖𝑖+1,𝑡𝑡+𝑙𝑙�
∞

𝑙𝑙=0

 

= 𝑉𝑉𝑖𝑖+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖+1,𝑡𝑡 ,𝜔𝜔𝑖𝑖+1,𝑡𝑡�. 

(38) 

Thus, the iterative cost function 𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�  is 
monotonically non-increasing. 

According to Lemma 1, PEV can ultimately lead to a 
convergent cost value 𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� = 𝑉𝑉𝑖𝑖,∞�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�  
with specific policies 𝑢𝑢𝑖𝑖,𝑡𝑡  and 𝜔𝜔𝑖𝑖,𝑡𝑡  under iteration index 𝑖𝑖  as 
𝑗𝑗 → ∞, i.e., the accurately cost function with 𝑢𝑢𝑖𝑖,𝑡𝑡 and 𝜔𝜔𝑖𝑖,𝑡𝑡 can 
be achieved based on (21) as 𝑗𝑗 → ∞. Then, based on the PIM 
process given in (29), a minimized iterative cost function with 
an admissible control policy and a worst disturbance policy is 
aimed to be achieved. At the same time, according to (38), the 
iterative cost function 𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�  is monotonically non-
increasing. Moreover, for ∀𝑥𝑥𝑡𝑡 ∈ ℝ𝑚𝑚 , 𝑉𝑉∗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡∗ ,𝜔𝜔𝑡𝑡

∗)  is 
bounded because 𝑢𝑢𝑡𝑡∗ must be an admissible control policy. On 
the basis of [41], [50], [51], 𝑉𝑉𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� will converge to a 
bounded 𝑉𝑉∞�𝑥𝑥𝑡𝑡 ,𝑢𝑢∞,𝑡𝑡 ,𝜔𝜔∞,𝑡𝑡�  as 𝑖𝑖 → ∞ . Therefore, we can 
conclude that 𝑉𝑉∞�𝑥𝑥𝑡𝑡 ,𝑢𝑢∞,𝑡𝑡 ,𝜔𝜔∞,𝑡𝑡� = 𝑉𝑉∗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡∗ ,𝜔𝜔𝑡𝑡

∗)  with 𝑢𝑢𝑖𝑖,𝑡𝑡 →
𝑢𝑢𝑡𝑡∗ and 𝜔𝜔𝑖𝑖,𝑡𝑡 → 𝜔𝜔𝑡𝑡

∗.                                                                       
Remark 5: In this study, to obtain the constrained cost 

function (11), the state variables should be forwarded for 𝑁𝑁𝑐𝑐 
steps with the model information. Therefore, the optimal cost 
function can also be rewritten as 

 

𝑉𝑉∗(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) = min
𝑢𝑢𝑡𝑡

max
𝜔𝜔𝑡𝑡

� � 𝛾𝛾𝑙𝑙−𝑡𝑡𝑈𝑈(𝑥𝑥𝑙𝑙 ,𝑢𝑢𝑙𝑙 ,𝜔𝜔𝑙𝑙)

𝑡𝑡+𝑁𝑁𝑝𝑝−1

𝑙𝑙=𝑡𝑡

+ 𝛾𝛾𝑁𝑁𝑝𝑝𝑉𝑉∗ �𝑥𝑥𝑁𝑁𝑝𝑝+𝑡𝑡 ,𝑢𝑢𝑁𝑁𝑝𝑝+𝑡𝑡 ,𝜔𝜔𝑁𝑁𝑝𝑝+𝑡𝑡  ��. 

(39) 

where 𝑁𝑁𝑝𝑝 denotes the predicted step for the cost function. Then, 
the iterative rule of the cost function (21) can be rewritten as  

 

𝑉𝑉𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�

= � 𝛾𝛾𝑙𝑙−𝑡𝑡𝑈𝑈�𝑥𝑥𝑙𝑙 ,𝑢𝑢𝑖𝑖,𝑙𝑙 ,𝜔𝜔𝑖𝑖,𝑙𝑙�

𝑡𝑡+𝑁𝑁𝑝𝑝−1

𝑙𝑙=𝑡𝑡

+ 𝛾𝛾𝑁𝑁𝑝𝑝𝑉𝑉𝑖𝑖,𝑗𝑗 �𝑥𝑥𝑁𝑁𝑝𝑝+𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑁𝑁𝑝𝑝+𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑁𝑁𝑝𝑝+𝑡𝑡  �. 

(40) 

In fact, because of the implementation of the on-policy 
framework, i.e., the behavior policy is same with the evaluation 
policy, Eq. (40) is also appropriate for Theorem 1, and the 
implementation of multi-step method is capable of improving 
the accuracy and speed of evaluating the cost function. 

Remark 6: Regarding the stability of closed-loop control 
system, it can be analyzed through the lens of optimality. A 
controller resulting from a typical adaptive critic technique 
assures stability since it is essentially an optimal controller. 
Optimal control guarantees stability with the nonexistence of 
conjugate points, ensuring that the control objective moves 
towards the only equilibrium point based on the optimal 
solution [52]. Furthermore, according to the boundedness of 
initial admissible control law and the monotonicity of iterative 
performance function, it can be deduced that the optimal 
performance function remains finite. This critical property 
implies that the optimal control law can effectively stabilize the 
system, as an infinite performance function indicates an 
inability to achieve stability. 
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IV. NN IMPLEMENTATION OF SADP 
In this study, the NN technique is introduced to approximate 

the cost function 𝑉𝑉�(𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑡𝑡 ,𝜔𝜔�𝑡𝑡), the control policy 𝑢𝑢�𝑡𝑡 , and the 
disturbance policy 𝜔𝜔�𝑡𝑡 with any specific state 𝑥𝑥𝑡𝑡. The details are 
introduced in the following subsections. 

A. Implementation of the Critic Network 
A three-layer feed-forward NN is constructed to approximate 

the cost function 𝑉𝑉�(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) that is denoted by 
 𝑉𝑉�𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡� = 𝑊𝑊�𝑖𝑖,𝑗𝑗𝑐𝑐

𝑇𝑇𝜎𝜎𝑐𝑐 �𝑌𝑌𝐶𝐶𝑇𝑇�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡��. (41) 
where 𝑊𝑊�𝑖𝑖,𝑗𝑗𝑐𝑐 ∈ ℝ(𝑚𝑚+2𝑛𝑛)×𝓀𝓀𝑐𝑐 represents the weight matrix between 
the hidden and output layers with the inner loop 𝑗𝑗 and the outer 
loop 𝑖𝑖, and 𝓀𝓀𝑐𝑐  denotes the number of neurons on the hidden 
layer. 𝑌𝑌𝑐𝑐 represents the weight matrix between the hidden and 
input layers. To approximate the cost function 𝑉𝑉�(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡) 
more accurately, a nonlinear activation function 𝜎𝜎𝑐𝑐(∙)  is 
implemented for hidden layer, with an upper bounded 𝜎𝜎𝑐𝑐𝑐𝑐, i.e., 
�𝜎𝜎𝑐𝑐 �𝑌𝑌𝐶𝐶𝑇𝑇�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡��� ≤ 𝜎𝜎𝑐𝑐𝑐𝑐. 

In PEV, the accurate cost function should ultimately be 
obtained by eliminating the evaluation error using the 
backpropagation mechanism. The evaluation error can be 
denoted by 

 𝐸𝐸𝑖𝑖,𝑗𝑗𝑐𝑐 =
1
2
�𝑒𝑒𝑖𝑖,𝑗𝑗𝑐𝑐 �

2, (42) 

where  

 

𝑒𝑒𝑖𝑖,𝑗𝑗𝑐𝑐 = 𝑉𝑉�𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡�

− � � 𝛾𝛾𝑙𝑙−𝑡𝑡𝑈𝑈�𝑥𝑥𝑙𝑙 ,𝑢𝑢�𝑖𝑖,𝑙𝑙 ,𝜔𝜔�𝑖𝑖,𝑙𝑙�

𝑡𝑡+𝑁𝑁𝑝𝑝−1

𝑙𝑙=𝑡𝑡

+ 𝛾𝛾𝑁𝑁𝑝𝑝𝑉𝑉�𝑖𝑖,𝑗𝑗−1 �𝑥𝑥𝑁𝑁𝑝𝑝+𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑁𝑁𝑝𝑝+𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑁𝑁𝑝𝑝+𝑡𝑡  �� , 

(43) 

and 

𝑉𝑉�𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑜𝑜 = � 𝛾𝛾𝑙𝑙−𝑡𝑡𝑈𝑈�𝑥𝑥𝑙𝑙 ,𝑢𝑢�𝑖𝑖,𝑙𝑙 ,𝜔𝜔�𝑖𝑖,𝑙𝑙�

𝑡𝑡+𝑁𝑁𝑝𝑝−1

𝑙𝑙=𝑡𝑡

+ 𝛾𝛾𝑁𝑁𝑝𝑝𝑉𝑉�𝑖𝑖,𝑗𝑗−1 �𝑥𝑥𝑁𝑁𝑝𝑝+𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑁𝑁𝑝𝑝+𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑁𝑁𝑝𝑝+𝑡𝑡  �. 

(44) 

 
It is worth noting that 𝑢𝑢�𝑖𝑖,𝑡𝑡+1  and 𝜔𝜔�𝑖𝑖,𝑡𝑡+1  represent the control 
policy and disturbance policies corresponding to 𝑥𝑥𝑡𝑡+1  at the 
outer loop number 𝑖𝑖. 

By applying the backpropagating technique, the update rule 
of the weight matrix 𝑊𝑊�𝑖𝑖,𝑗𝑗𝑐𝑐  can be denoted as 

 

𝑊𝑊�𝑖𝑖,𝑗𝑗+1𝑐𝑐 = 𝑊𝑊�𝑖𝑖,𝑗𝑗𝑐𝑐 + ∆𝑊𝑊�𝑖𝑖,𝑗𝑗𝑐𝑐  

= 𝑊𝑊� 𝑖𝑖,𝑗𝑗
𝑐𝑐 − 𝛼𝛼𝑐𝑐

𝜕𝜕𝐸𝐸𝑖𝑖,𝑗𝑗𝑐𝑐

𝜕𝜕𝑒𝑒𝑖𝑖,𝑗𝑗𝑐𝑐
𝜕𝜕𝑒𝑒𝑖𝑖,𝑗𝑗𝑐𝑐

𝜕𝜕𝑉𝑉�𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡�
𝜕𝜕𝑉𝑉�𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡�

𝜕𝜕𝑊𝑊�𝑖𝑖,𝑗𝑗𝑐𝑐
 

= 𝑊𝑊� 𝑖𝑖,𝑗𝑗
𝑐𝑐 − 𝛼𝛼𝑐𝑐𝑒𝑒𝑖𝑖,𝑗𝑗𝑐𝑐 𝜎𝜎𝑐𝑐 �𝑌𝑌𝐶𝐶𝑇𝑇�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡�� 

(45) 

where 0 < 𝛼𝛼𝑐𝑐 ≤ 1  represents the learning rate of the critic 
network. 

B. Implementation of the Actor Network 
The actor network is introduced to obtain the optimal control 

policy. The output of the actor network can be represented by  
 𝑢𝑢�𝑖𝑖,𝑡𝑡 = ζ �𝑊𝑊�𝑖𝑖𝑎𝑎

𝑇𝑇𝜎𝜎𝑎𝑎�𝑌𝑌𝑎𝑎𝑇𝑇(𝑥𝑥𝑡𝑡)� �. (46) 
where 𝑊𝑊�𝑖𝑖𝑎𝑎 ∈ ℝ𝑚𝑚×𝓀𝓀𝑎𝑎 and 𝑌𝑌𝑎𝑎 represent the weight matrix of the 
actor network, and 𝓀𝓀𝑎𝑎 denotes the number of neurons on the 
hidden layer. Similar as before, a nonlinear activation function 
𝜎𝜎𝑎𝑎(∙) is applied for hidden neurons of the actor network, with 
�𝜎𝜎𝑎𝑎�𝑌𝑌𝑎𝑎𝑇𝑇(𝑥𝑥𝑡𝑡)�� ≤ 𝜎𝜎𝑎𝑎𝑎𝑎 , where 𝜎𝜎𝑎𝑎𝑎𝑎  is a positive constant. In 
addition, to guarantee saturated constraints of actuators, the 
nonlinear activation function ζ(∙) is used for the output layer of 
the actor network, with �ζ �𝑊𝑊�𝑖𝑖𝑎𝑎

𝑇𝑇𝜎𝜎𝑎𝑎�𝑌𝑌𝑎𝑎𝑇𝑇(𝑥𝑥𝑡𝑡)� �� ≤ 𝑈𝑈� , where 
𝑈𝑈� = [𝑢𝑢�1,𝑢𝑢�2, … ,𝑢𝑢�𝑛𝑛]𝑇𝑇. 

To obtain the updated policy, the traditional PIM process 
with the gradient descent method is no longer suitable for 
improving the policy advantage under state constraints. For 
simplicity, Eq. (29) can be rewritten as  

 

min 
𝑢𝑢

𝑔𝑔𝑇𝑇Δ𝑊𝑊� 𝑎𝑎 

s.t. 𝑐𝑐 + 𝑏𝑏𝑇𝑇Δ𝑊𝑊� 𝑎𝑎 ≤ 0 
1
2
�Δ𝑊𝑊� 𝑎𝑎�𝑇𝑇𝐻𝐻�Δ𝑊𝑊� 𝑎𝑎� < 𝛿𝛿. 

(47) 

where Δ𝑊𝑊� 𝑎𝑎 = 𝑊𝑊� 𝑎𝑎 −𝑊𝑊�𝑖𝑖𝑎𝑎, and  

 𝑔𝑔 = 𝑊𝑊� 𝑐𝑐𝑇𝑇⨂ �1 − tanh �𝑌𝑌𝐶𝐶𝑇𝑇�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡��
2
�

⋅ 𝑌𝑌𝑐𝑐(𝑚𝑚:𝑚𝑚 + 𝑛𝑛, : ), 
(48) 

 𝑏𝑏 = �∇𝑢𝑢𝑡𝑡𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡�

𝑇𝑇
 (49) 

 𝑐𝑐 = 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡 , (50) 

 𝐻𝐻 = ∇𝑢𝑢𝑡𝑡
2 𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡�|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡 =

𝜕𝜕2𝐷𝐷�𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡�
𝜕𝜕𝑊𝑊�𝑖𝑖 ,𝑝𝑝𝑎𝑎 𝜕𝜕𝑊𝑊�𝑖𝑖,𝑞𝑞𝑎𝑎

|𝑢𝑢𝑡𝑡=𝑢𝑢𝑖𝑖,𝑡𝑡 . (51) 

where both 𝑊𝑊�𝑖𝑖,𝑝𝑝𝑎𝑎  and 𝑊𝑊�𝑖𝑖,𝑞𝑞𝑎𝑎  represent a specific weight element of 
actor network at 𝑖𝑖-th iteration. 𝑝𝑝 and 𝑞𝑞 denote specific positions 
in the weight matrix 𝑊𝑊� 𝑎𝑎. Please note that the Fisher matrix 𝐻𝐻 
is positive-definite, 𝑐𝑐, 𝛿𝛿 ∈ ℝ, and 𝛿𝛿 > 0. 

In (47), the variable that needs to be optimized is Δ𝑊𝑊� 𝑎𝑎. The 
network parameter of the iterative control policy can be 
represented by 

 𝑊𝑊�𝑖𝑖+1𝑎𝑎 = 𝑊𝑊�𝑖𝑖𝑎𝑎 + ∆𝑊𝑊�𝑖𝑖𝑎𝑎. (52) 
We employ the Lagrange multiplier method to solve the 

convex optimization problem in (47), First, the Lagrange 
function can be constructed as  

 
𝐿𝐿�Δ𝑊𝑊� 𝑎𝑎, 𝜆𝜆1, 𝜆𝜆2� = 𝑔𝑔𝑇𝑇Δ𝑊𝑊� 𝑎𝑎 + 𝜆𝜆1�𝑐𝑐 + 𝑏𝑏𝑇𝑇Δ𝑊𝑊� 𝑎𝑎�

+ 𝜆𝜆2 �
1
2
�Δ𝑊𝑊� 𝑎𝑎�𝑇𝑇𝐻𝐻�Δ𝑊𝑊� 𝑎𝑎� − 𝛿𝛿�, 

(53) 

where 𝜆𝜆1 and 𝜆𝜆2 are dual variables. Then, the dual function can 
be constructed as 

 
𝑔𝑔(𝜆𝜆1, 𝜆𝜆2) = inf

𝑥𝑥∈𝐶𝐶𝑠𝑠
�𝑔𝑔𝑇𝑇Δ𝑊𝑊� 𝑎𝑎 + 𝜆𝜆1�𝑐𝑐 + 𝑏𝑏𝑇𝑇Δ𝑊𝑊� 𝑎𝑎�

+ 𝜆𝜆2 �
1
2
�Δ𝑊𝑊� 𝑎𝑎�𝑇𝑇𝐻𝐻�Δ𝑊𝑊� 𝑎𝑎� − 𝛿𝛿��. 

(54) 

Subsequently, the dual problem corresponding original 
optimization problem (47) can be represented as 

 max
𝜆𝜆1≥0,𝜆𝜆2≥0

min
Δ𝑊𝑊� 𝑎𝑎

𝐿𝐿�Δ𝑊𝑊� 𝑎𝑎 , 𝜆𝜆1, 𝜆𝜆2� (55) 
Then, deriving the gradient information of 𝐿𝐿�Δ𝑊𝑊� 𝑎𝑎, 𝜆𝜆1, 𝜆𝜆2� with 
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respect to Δ𝑊𝑊� 𝑎𝑎, it can be expressed as  
 ∇Δ𝑊𝑊� 𝑎𝑎𝐿𝐿�Δ𝑊𝑊� 𝑎𝑎, 𝜆𝜆1, 𝜆𝜆2� = 𝑔𝑔 + 𝑏𝑏𝜆𝜆1 + 𝜆𝜆2𝐻𝐻Δ𝑊𝑊� 𝑎𝑎  (56) 

Let ∇Δ𝑊𝑊� 𝑎𝑎𝐿𝐿�Δ𝑊𝑊� 𝑎𝑎, 𝜆𝜆1, 𝜆𝜆2� = 0, and then Δ𝑊𝑊� 𝑎𝑎 can be derived as 

 Δ𝑊𝑊� 𝑎𝑎 = −
1
𝜆𝜆2
𝐻𝐻−1(𝑔𝑔 + 𝜆𝜆1𝑏𝑏) (57) 

Then, substitute (57) into (55), the dual problem can be 
reconstructed as  

 max
𝜆𝜆1≥0,𝜆𝜆2≥0

−
1

2𝜆𝜆2
(𝓆𝓆 + 𝜆𝜆1𝑇𝑇𝓈𝓈𝜆𝜆1 + 2𝜆𝜆1𝑇𝑇𝓇𝓇) − 𝜆𝜆2 𝛿𝛿 + 𝜆𝜆1𝑇𝑇𝑐𝑐 (58) 

where 𝓆𝓆 = 𝑔𝑔𝑇𝑇𝐻𝐻−1𝑔𝑔 , 𝓇𝓇 = 𝑔𝑔𝑇𝑇𝐻𝐻−1𝑏𝑏 , and 𝓈𝓈 = 𝑏𝑏𝑇𝑇𝐻𝐻−1𝑏𝑏 . 
Subsequently, we have  

 Δ𝑊𝑊� 𝑎𝑎,∗ = −
1
𝜆𝜆2∗
𝐻𝐻−1(𝑔𝑔 + 𝜆𝜆1∗𝑏𝑏) (59) 

where 𝜆𝜆1∗  and 𝜆𝜆2∗  are the optimal analytical solutions of dual 
problem (55). 

Remark 7: Because of the inherent approximation errors 
stemming from linearization, it is possible that the optimal 
solution of (55) cannot yield an entirely suitable update This 
could potentially lead to the generation of a new policy that 
doesn't conform to state constraints. As a consequence, the 
solution of optimization problem (47) in the subsequent 
iterations is infeasible. In essence, the feasible region of (47) 
turns out to be non-existent. In this case, a certain extent 
relaxation should be implemented [29], [31]. 

C. Implementation of the Disturbance Network 
The disturbance network is used to estimate a near-worst 

disturbance policy 𝜔𝜔𝑡𝑡
∗. The iterative disturbance policy 𝜔𝜔�𝑖𝑖,𝑡𝑡 can 

be represented as  

 𝜔𝜔�𝑖𝑖,𝑡𝑡 = 𝑊𝑊�𝑖𝑖𝜔𝜔
𝑇𝑇𝜎𝜎𝜔𝜔�𝑌𝑌𝜔𝜔𝑇𝑇(𝑥𝑥𝑡𝑡)� . (60) 

where 𝑊𝑊�𝑖𝑖𝜔𝜔 ∈ ℝ𝑚𝑚×𝓀𝓀𝜔𝜔  signifies the weight matrix connecting 
the hidden and output layers, specific to the iterative index 𝑖𝑖, 
while 𝓀𝓀𝜔𝜔 denotes the number of neurons on the hidden layer. 
𝑌𝑌𝜔𝜔 represents the weight matrix between the hidden and input 
layers. Similarly, a nonlinear activation function 𝜎𝜎𝜔𝜔(∙)  is 
implemented for the hidden layer, with �𝜎𝜎𝜔𝜔�𝑌𝑌𝜔𝜔𝑇𝑇(𝑥𝑥𝑡𝑡)�� ≤ 𝜎𝜎𝜔𝜔𝜔𝜔, 
where 𝜎𝜎𝜔𝜔𝜔𝜔 is a positive constant. 

To obtain an optimal control policy under worst disturbance, 
the policy gradient can be used. Then, the weight update rule of 
the disturbance network can be expressed by 

 

𝑊𝑊�𝑖𝑖+1𝜔𝜔 = 𝑊𝑊�𝑖𝑖𝜔𝜔 + ∆𝑊𝑊�𝑖𝑖𝜔𝜔 

= 𝑊𝑊�𝑖𝑖𝜔𝜔 − 𝛼𝛼𝜔𝜔 �−
𝜕𝜕𝑉𝑉�𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡�

𝜕𝜕𝜔𝜔�𝑖𝑖,𝑡𝑡
𝜕𝜕𝜔𝜔�𝑖𝑖,𝑡𝑡
𝜕𝜕𝑊𝑊�𝑖𝑖𝜔𝜔

� 

= 𝑊𝑊�𝑖𝑖𝜔𝜔 + 𝛼𝛼𝜔𝜔 �𝑊𝑊�𝑖𝑖𝑐𝑐
𝑇𝑇⨂ �1

− 𝜎𝜎𝑐𝑐,𝑖𝑖
2 �𝑌𝑌𝑐𝑐,𝜔𝜔�

𝑇𝑇 �𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡���

∙ 𝜎𝜎𝜔𝜔�𝑌𝑌𝜔𝜔𝑇𝑇(𝑥𝑥𝑡𝑡)�� 

(61) 

Where 𝑌𝑌𝑐𝑐,𝜔𝜔�
𝑇𝑇 �𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡� represents 𝑌𝑌𝑐𝑐,𝑚𝑚+𝑛𝑛:𝑚𝑚+2𝑛𝑛

𝑇𝑇 �𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡�. 
0 < 𝛼𝛼𝜔𝜔 ≤ 1  represents the learning rate of the disturbance 
network. 

D. Implementation of the Constrained Cost Network 
We further introduce a constrained cost network to 

approximate 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� . The approximated cost, denoted by 

𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐�, can be represented as 

 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� = 𝑊𝑊�𝑝𝑝𝑠𝑠

𝑇𝑇𝜎𝜎𝑠𝑠�𝑌𝑌𝑠𝑠𝑇𝑇(𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑡𝑡 ,𝜔𝜔�𝑡𝑡)� . (62) 
where 𝑊𝑊�𝑝𝑝𝑠𝑠 ∈ ℝ(𝑚𝑚+2𝑛𝑛)×𝓀𝓀𝑠𝑠  and 𝑌𝑌𝑠𝑠  represent the weight matrix, 
and 𝓀𝓀𝑠𝑠 denotes the number of neurons on the hidden layer. 𝑝𝑝 
denotes the iteration for estimating the constrained cost 
function. A nonlinear activation function 𝜎𝜎𝑠𝑠(∙) is implemented 
with �𝜎𝜎𝑠𝑠�𝑌𝑌𝑠𝑠𝑇𝑇(𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑡𝑡 ,𝜔𝜔�𝑡𝑡)�� ≤ 𝜎𝜎𝑠𝑠𝑠𝑠 , where 𝜎𝜎𝑠𝑠𝑠𝑠  is a positive 
constant. 

Similarly, the evaluation error can be given as 

Algorithm 1: SADP Algorithm 
Initialization: 
 Initialize an initial admissible control law with 𝑊𝑊� 𝑎𝑎  and 

arbitrary 𝑊𝑊� 𝜔𝜔, 𝑊𝑊� 𝑐𝑐, and 𝑊𝑊� 𝑠𝑠; 
 Given arbitrarily small positive constant Δ𝑉𝑉𝜖𝜖 , 𝜖𝜖𝐽𝐽; 
 Given max iteration 𝑗𝑗𝑁𝑁 and 𝑖𝑖𝑁𝑁; 
 Given the learning rates 𝛼𝛼𝑐𝑐, 𝛼𝛼𝜔𝜔, and 𝛼𝛼𝑠𝑠; 
 Initialize the system dataset 𝒟𝒟𝑀𝑀 in Ω; 
Iteration: 
1: For 𝑖𝑖 = 1 to 𝑖𝑖𝑁𝑁 do 
2:   Choose randomly a set of initial states 𝑥𝑥𝑡𝑡 in Ω. 
3:   Rollout 𝑁𝑁𝑐𝑐 steps from 𝑥𝑥𝑡𝑡 with control policy 𝑢𝑢𝑖𝑖,𝑡𝑡 
4:   Update constrained cost function 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡

𝑁𝑁𝑐𝑐� with (62) 
5:   PEV:  
        Compute 𝑉𝑉�𝑖𝑖,𝑗𝑗,𝑡𝑡

𝑜𝑜  and 𝑒𝑒𝑖𝑖,𝑗𝑗𝑐𝑐  with (44) and (43) 
        Update the cost function 𝑉𝑉�𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢�𝑖𝑖,𝑡𝑡 ,𝜔𝜔�𝑖𝑖,𝑡𝑡� with (45) 
        If �𝑉𝑉�𝑖𝑖,𝑗𝑗+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡� − 𝑉𝑉�𝑖𝑖,𝑗𝑗�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�� < 𝜖𝜖𝐽𝐽 
            break 
6:   PIM: 
        Update control policy 𝑢𝑢𝑖𝑖+1 with (55) 
        Update disturbance policy 𝜔𝜔𝑖𝑖+1 with (58) 
7:   if �𝑉𝑉�𝑖𝑖+1�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖+1,𝑡𝑡 ,𝜔𝜔𝑖𝑖+1,𝑡𝑡� − 𝑉𝑉�𝑖𝑖�𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑖𝑖,𝑡𝑡 ,𝜔𝜔𝑖𝑖,𝑡𝑡�� < Δ𝑉𝑉𝜖𝜖 
          break 
8:   i = i + 1 
9: return 𝑊𝑊� 𝑎𝑎,∗, 𝑊𝑊� 𝑐𝑐,∗and 𝑊𝑊� 𝜔𝜔,∗. 
 

 
Fig. 1. The architecture of the proposed SADP scheme considering 
disturbances. 
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 𝐸𝐸𝑝𝑝𝑠𝑠 =
1
2
�𝑒𝑒𝑝𝑝𝑠𝑠�

2, (63) 

where  

 𝑒𝑒𝑝𝑝𝑠𝑠 = 𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐� − � 𝛾𝛾𝑐𝑐𝑙𝑙−𝑡𝑡ℎ�𝑥𝑥𝑐𝑐,𝑙𝑙�

𝑡𝑡+𝑁𝑁𝑐𝑐−1

𝑙𝑙=𝑡𝑡

. (64) 

Then, the update rule of the weight matrix 𝑊𝑊�𝑝𝑝𝑠𝑠 is set to be 

 

𝑊𝑊�𝑝𝑝𝑠𝑠 = 𝑊𝑊�𝑝𝑝𝑠𝑠 + ∆𝑊𝑊�𝑝𝑝𝑠𝑠 

= 𝑊𝑊�𝑝𝑝𝑠𝑠 − 𝛼𝛼𝑠𝑠
𝜕𝜕𝐸𝐸𝑝𝑝𝑠𝑠

𝜕𝜕𝑒𝑒𝑝𝑝𝑠𝑠
𝜕𝜕𝑒𝑒𝑝𝑝𝑠𝑠

𝜕𝜕𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐�

𝜕𝜕𝐽𝐽𝑐𝑐�𝑥𝑥𝑐𝑐,𝑡𝑡
𝑁𝑁𝑐𝑐�

𝜕𝜕𝑊𝑊�𝑝𝑝𝑠𝑠
 

= 𝑊𝑊� 𝑝𝑝
𝑠𝑠 − 𝛼𝛼𝑠𝑠𝑒𝑒𝑝𝑝𝑠𝑠𝜎𝜎𝑠𝑠�𝑌𝑌𝑠𝑠𝑇𝑇(𝑥𝑥𝑡𝑡)�. 

(65) 

where 0 < 𝛼𝛼𝑠𝑠 ≤ 1  represents the learning rate of the 
constrained cost network. 
 

E. SADP Algorithm 
The proposed SADP scheme can be used to solve the optimal 

control problem of discrete-time systems subject to safe 
constraints and disturbances, as shown in Fig. 1, and the 
pseudocode of the proposed scheme is given in Algorithm 1. 

Remark 8: The data utilization method is critical for 
searching for the optimal control policy. In this study, the 
selection of 𝑁𝑁𝑝𝑝  and 𝑁𝑁𝑐𝑐  should be considered carefully. To 
achieve a satisfactory far-sighted effort, 𝑁𝑁𝑐𝑐 can be chosen as an 
integer that is greater than 1. i.e., 𝑁𝑁𝑐𝑐 > 1. For convenience, 𝑁𝑁𝑝𝑝 
can be chosen to be equivalent to 𝑁𝑁𝑐𝑐. Moreover, if 𝑁𝑁𝑝𝑝 → ∞, the 
Temporal Difference (TD) learning framework will be 
converted into Monte Carlo (MC) method. In fact, zero-bias 
property of the MC scheme can provide better convergence 
during the training process. Meanwhile, to decrease the 
variance, which is evident in MC, the data can be generated 
independently and in parallel with a considerable number of 
different initial states. Additionally, inspired by [30], a data 
buffer 𝒟𝒟𝑀𝑀  is introduced to store data transitions, i.e., 𝒟𝒟𝑀𝑀 =
{(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝜔𝜔𝑡𝑡 ,𝑈𝑈𝑡𝑡 , 𝑥𝑥𝑡𝑡+1), 𝑥𝑥𝑡𝑡 ∈ Ω,𝑢𝑢𝑡𝑡 ∈ 𝒰𝒰𝑥𝑥,𝜔𝜔𝑡𝑡 ∈ Ψ𝜔𝜔} , where the 
number of transitions in dataset is denoted as 𝑀𝑀. 

Remark 9: In Section-Ⅲ-B, the rigorous convergence of the 
proposed SADP is analyzed, which means the proposed scheme 
is feasible to obtain the optimal solution. The application of the 
NN technique in this context provides a specific 
implementation. Although there exists approximation error 
with this method, the over-parameterized NN structure, not 
limited to the structure shown in this paper, can ensure 
sufficient precision in approximating the iterative function. 

Remark 10: Notably, the proposed method can be 
implemented in two different ways depending on the 
availability of accurate model information. In scenarios where 
accurate model information is accessible, the algorithm can 
effectively utilize it to derive the future state of the control 
object, resulting in improved control performance and safety. 
On the other hand, in cases where model information is not 
available or cannot be established accurately, the algorithm 
adopts a data-driven approach, allowing the control object to 
interact with the environment and collect data to learn an 
optimal control law. This data-driven strategy liberates the 

algorithm from depending on an accurate model and facilitates 
adaptability to real-world conditions. In contrast, the 
conventional CBF approach necessitates accurate model 
information to design safe constraints, making it vulnerable to 
suboptimal performance and safety concerns when faced with 
inaccuracies in model knowledge. 

 

V. SIMULATION 
In this section, a simulation example is presented to validate 

the effectiveness and control performance of the proposed 
SADP algorithm. Specifically, the presented example is related 
to the course motion, which is quite common in the AUVs' 
community. It is worth noting that AUVs, as a type of self-
executing unmanned underwater vehicles, have recently 
achieved widespread applications in various fields, such as 
resource exploration, search and rescue, commercial 
applications, pipeline inspection, and so on. They are 
progressively evolving towards more intelligent and digitalized 
directions in deeper and farther environments [53]. 

In typical scenarios, an AUV can be treated as a symmetric 
rigid body, and its operating speed falls within a low range. 
Consequently, the course dynamics system of an AUV can be 
decoupled from the 6 DOF model [54], as shown in Fig. 2. The 
system state variables are the yaw angle 𝜓𝜓 and angular velocity 
𝑟𝑟, i.e., 𝑥𝑥 = [𝜓𝜓, 𝑟𝑟]𝑇𝑇, and the control input variable is denoted as 
𝑢𝑢 = 𝛿𝛿𝑟𝑟 . Therefore, the course dynamics system can be 
expressed as 

 �
𝜓̇𝜓 = 𝑟𝑟

(𝐼𝐼𝑧𝑧𝑧𝑧 − 𝑁𝑁𝑟̇𝑟)𝑟̇𝑟 = 𝑁𝑁𝑟𝑟𝑢𝑢𝑥𝑥𝑟𝑟 + 𝑁𝑁𝛿𝛿𝑢𝑢𝑥𝑥2𝛿𝛿𝑟𝑟 + 𝑁𝑁𝑟𝑟|𝑟𝑟|𝑟𝑟|𝑟𝑟| + 𝑁𝑁𝜔𝜔𝜔𝜔
, (66) 

where 𝑢𝑢𝑥𝑥  represents the forward velocity of the AUV. The 
remaining hydrodynamic parameters are shown in Table 1, 

 
Fig. 2. 6 DOF AUV coordinate systems 
 

Table 1 
HYDRODYNAMIC PARAMETERS OF THE AUV 

Parameters Symbol Value 
rotational inertia about 𝑧𝑧-axis  𝐼𝐼𝑧𝑧𝑧𝑧  11.61 
hydrodynamic added masses  𝑁𝑁𝑟̇𝑟  -53.87 

nonlinear damping force coefficients  𝑁𝑁𝑟𝑟  -13.66 
cross flow resistance coefficients 𝑁𝑁𝑟𝑟|𝑟𝑟| -10.37 

rudder lifting moment coefficients  𝑁𝑁𝛿𝛿  7.103 
Disturbance coefficients 𝑁𝑁𝜔𝜔 4.58 
weight of the AUV (N) 𝑊𝑊 488.84 
velocity of surge (m/s) 𝑢𝑢𝑥𝑥 1.0 

Disturbance  𝜔𝜔 𝑁𝑁(0,0.001) 
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according to the handbook of the ELFIN E200 AUV.  

The Euler and trapezoidal approach is adopted to discretize 
the original continuous-time system (66) with the discrete time 
Δ𝑡𝑡 = 0.2𝑠𝑠 . As a result, the discrete-time course dynamics 
model can be given as  

 
�
𝑥𝑥1(𝑡𝑡+1)
𝑥𝑥2(𝑡𝑡+1)

� = �
0.2𝑥𝑥2𝑡𝑡 + 𝑥𝑥1𝑡𝑡

0.958𝑥𝑥2𝑡𝑡 − 0.0316𝑥𝑥2𝑡𝑡|𝑥𝑥2𝑡𝑡|
�

+ � 0
0.0216� 𝑢𝑢𝑡𝑡 + � 0

0.01� 𝜔𝜔𝑡𝑡 , 
(67) 

where 𝑥𝑥1𝑡𝑡 = 𝜓𝜓 and 𝑥𝑥2𝑡𝑡 = 𝑟𝑟. For the utility function in (3), we 
set 𝑄𝑄 = �0.5 0

0 1.0�, 𝑅𝑅 = 1.0, and 𝛽𝛽 = 0.014. 
In most cases, the state should be limited within a proper 

range. Otherwise, the dynamics model may become inaccurate 
because the hydrodynamic parameters will change dynamically 
under different operating conditions, and the components 
installed in the AUV should also operate within stable working 
conditions. Therefore, to ensure that the AUV operates properly 
and maintains an accurate dynamics model, the state is typically 
bounded by |𝑥𝑥𝑡𝑡| ≤ 0.348 = 20°. Similarly, based on the input 
saturation characteristics of the actuators in AUVs, the control 
input should be constrained within |𝑢𝑢𝑡𝑡| ≤ 0.79 = 45°. 

Three 3-layer neural networks (NNs) are employed to 
approximate the optimal cost function, control input, and 
disturbance policy, with structures of 4-16-1, 2-16-1, and 2-16-
1. The activation functions used in the three NNs vary, 
depending on the specific training objectives and 
characteristics. For the critic NN, the activation functions of the 
hidden layer and output layer are both ReLU functions. As for 
the actor and disturbance NNs, the activation functions of the 
hidden layer and output layer are ReLU and tanh functions, 
respectively. The learning rate 𝛼𝛼𝑐𝑐  and 𝛼𝛼𝜔𝜔  are both set as 
5 × 10−3, and the Adam update criterion is applied to achieve 
their respective approximated objectives. Moreover, to ensure 
the iteration feasibility, the convergence threshold 𝜖𝜖𝐽𝐽  and Δ𝑉𝑉𝜖𝜖 
are both set to 10−6. Additionally, as mentioned in Remark 8, 
data utilization and comprehensiveness are crucial; thus, in this 
study, the data buffer 𝒟𝒟𝑀𝑀  is consists of 105  transitions 
generated by various initial states. 

To verify the control performance and constraint effect, the 
initial state is chosen as 𝑥𝑥0 = [0.3,−0.3]𝑇𝑇 . Subsequently, to 
verify the constraint handling performance of the proposed 
algorithm, the iterative convergence trajectories of each PI step 
generated by SADP and the action-dependent heuristic dynamic 
programming (ADHDP [55]) are compared in Fig. 3. It should 
be noted that the forward steps executed via the dynamics 
model (67) comprise 300 time steps. In Fig. 3 (a), we can find 
that all states and control inputs are within the required state and 
action limits. However, in Fig. 3 (c), the system state clearly 
exceeds the limit, although the control policy remains 
admissible. Fig. 4 displays the behavior of the final disturbance 
policy applied to (67) after iterations. Notably, both the control 
policy and disturbance policy converge to the original point, 
indicating that the saddle point solutions 𝑢𝑢𝑡𝑡∗  and 𝜔𝜔𝑡𝑡

∗  are 
ultimately achieved. Additionally, the optimal cost function is 
displayed in Fig. 5. To validate the approximation accuracy of 
the optimal cost function, the real cost function with optimal 

control and disturbance policies are shown as a red line. 
Through this comparison, it can be concluded that the 
approximated cost function is nearly identical to the optimal 
cost function. Therefore, the effectiveness of the SADP 
algorithm is verified based on the comprehensive analyses 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Simulation results. (a) Iterative states and optimal states under SADP. 
(b) Iterative control inputs and optimal control inputs under SADP. (c) 
Iterative states and optimal states under ADHDP. (d) Iterative control inputs 
and optimal control inputs under ADHDP. 
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presented above.  
The disturbance shown in Fig. 4 ultimately converges to the 

saddle point. However, the disturbance encountered in real-
world systems and environments tends to exhibit a stochastic 
nature. Therefore, in order to validate the robustness and safety 
of the proposed SADP more effectively, a random disturbance 
within the range of (−0.05, 0.05)  is implemented in the 
proposed SADP and the traditional game-based ADHDP. As 
shown in Fig. 6, compared with the final unsafe performance 
obtained by the traditional game-based ADHDP, the system 
state can successfully converge into the safe region by adopting 
the proposed algorithm. This result signifies that the behavior 
of control object deviating from the safe bound due to the 
presence of disturbances is effectively constrained during the 
search for the optimal control policy. 

During the training process, the implementation of model 
information can facilitate the data utilization, thereby 
enhancing the convergence performance; however, this does 
not mean that the model-based version can achieve a faster 
convergence. This is primarily attributed to the process of 
solving partial derivative cross dynamics model with 
backpropagation mechanism is extremely time-consuming. 
Evidently shown in Table 2, the time consumption within each 
PI loop reveals a noteworthy discrepancy, with the model-based 
iteration taking nearly two times longer than the SADP scheme. 
In fact, this divergence would become particularly significant 
as the system complexity increases. 

In the control community, MPC stands as a potent solution 
for grappling with nonlinear optimal problems subject to 
constraints. In Fig. 7, a comparison of the computation time 
across one control loop based on the proposed SADP and MPC 
algorithms is depicted. Notably, the average calculation time 
for the SADP algorithm is 0.6 𝑚𝑚𝑚𝑚, while the MPC controller 
necessitates almost 10.7 𝑚𝑚𝑚𝑚. This striking contrast underscores 
the exceptional computational efficiency of the SADP 
algorithm, which outpaces the MPC algorithm by nearly 17.8 
times. This compelling distinction not only underscores the 
computational prowess of the proposed method but also 
highlights its ability to operate within millisecond-level 
timeframes, thereby offering real-time solutions in practical 
applications. 

Ⅵ. CONCLUSION 
In this study, a novel safe ADP is proposed to solve 

constrained optimal control problems considering disturbances. 
First, the original PIM process is transformed into a constrained 
optimization problem, in which only a single inequation 
representing aggregated state constraints is constructed, 
reducing the computational burden and improving the 
feasibility of the scheme. Apart from addressing state and 
control input constraints from practical perspectives, the 

 
Fig. 4. Convergent behaviors of disturbance policy with SADP 

 
Fig. 5. Convergent behaviors of the optimal cost function with SADP 
 

 
Fig. 6. The convergence behavior of state 𝑥𝑥1 under random disturbances 

 
Fig. 7. Computation times for one control loop of SADP and MPC 
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Table 2 
ITERATION TIME FOR EACH PI OF SADP AND MPC [s] 

Algorithm 1st 2nd 3rd 4th 
SADP  32.69 33.52 37.33 40.92 

Model-based ADHDP 68.46 70.02 73.31 63.78 
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problem caused by disturbances is also considered in 
constrained optimal control problems. To this end, the robust 
safety against disturbances is treated as a two-player zero-sum 
game, where the optimal control policy and worst disturbance 
policy are approximated by two NNs, respectively. 
Furthermore, from a theoretical perspective, the convergence 
properties of the SADP algorithm are analyzed. Finally, 
simulation results demonstrate the excellent safety and control 
performance based on a course motion system of AUVs. 

In the future, we may focus on developing a model-free off-
policy SADP scheme that can be applied to optimal tracking 
control problems considering disturbances. 
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