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A key challenge in agent-based mobility simulations is the synthesis of individual

agent socioeconomic profiles. Such profiles include locations of agent activities,

which dictate the quality of the simulated travel patterns. These locations are typi-

cally represented in origin-destination matrices that are sampled using coarse travel

surveys. This is because fine-grained trip profiles are scarce and fragmented due to

privacy and cost reasons. The discrepancy between data and sampling resolutions

renders agent traits nonidentifiable due to the combinatorial space of data-consistent

individual attributes. This problem is pertinent to any agent-based inference setting

where the latent state is discrete. Existing approaches have used continuous relaxa-

tions of the underlying location assignments and subsequent ad hoc discretisation

thereof. We propose a framework to efficiently navigate this space offering improved

reconstruction and coverage as well as linear-time sampling of the ground truth

origin-destination table. This allows us to avoid factorially growing rejection rates

and poor summary statistic consistency inherent in discrete choice modelling. We

achieve this by introducing joint sampling schemes for the continuous intensity and

discrete table of agent trips, as well as Markov bases that can efficiently traverse this

combinatorial space subject to summary statistic constraints. Our framework's bene-

fits are demonstrated in multiple controlled experiments and a large-scale application

to agent work trip reconstruction in Cambridge, UK.

K E YWORD S

combinatorial explosion, Markov bases, origin-destination matrix, population synthesis, spatial
interaction models

1 | INTRODUCTION

Agent-based models (ABMs) are becoming increasingly popular policy-making tools in areas such as epidemic and transportation modelling

(Bonabeau, 2002). The emergent structure arising from ABM simulations relies on the quality of the underlying agent population's demographic

and socioeconomic attributes. In transportation ABMs, such as MATSim (Axhausen & Zürich, 2016), simulated travel patterns are predominantly

governed by the location where agent activities take place (e.g. working and shopping). The trips between activities are summarised in origin-

destination matrices (ODMs), which are often either partially or not available a priori. Therefore, population synthesis is performed to create artifi-

cial agents whose attributes (e.g. workplace location) have the same summary statistics as those described by population averages (e.g. regional

job availability). Location choice synthesis translates to reconstructing integer-valued ODMs whose margins are summary statistics. To this end,
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coarse/aggregate agent activity surveys by geographical region and activity type are mainly leveraged (Fournier et al., 2021). This is because fine-

grained individual/disaggregate profiles are scarce and fragmented due to privacy and/or data acquisition cost reasons. Therefore, a discrepancy

arises between the spatial resolutions of the data and latent states. Inferring individual agent trips subject to population summary statistics neces-

sitates the exploration of a combinatorial choice space. The size of this space induces identifiability issues since a unique set of agent location

choices consistent with the data cannot be recovered.

A downsampling approach of sampling individual choices is computationally infeasible for any real-world application. Assuming that there are

M agents with L available location choices, then computing the likelihood of the aggregate data given individual model parameters requires sum-

ming over LM possible location configurations, many of which are inconsistent with the data. Computational and identifiability issues can be allevi-

ated by appropriately constraining the discrete latent space. The problem of exploring a constrained combinatorial agent state space is pertinent

to any agent-based inference setting where the latent state is discrete.

Although discrete choice models (Train, 2009) are popular candidates for disaggregating agent location choices, they cannot encode aggre-

gate statistic constraints. Therefore, they either accrue errors when reconstructing ODMs or lead to factorially growing rejection rates (DeSalvo &

Zhao, 2016) when forced to adhere to discrete constraints in a rejection-type scheme. A suite of greedy optimisation algorithms such as iterative

proportional fitting (Bishop et al., 2007) and combinatorial optimisation (Voas & Williamson, 2000) was employed to assimilate summary statistic

constraints in continuous and discrete spaces, respectively. These methods suffer from poor convergence to local optima, yielding solutions

heavily dependent on good initialisations. Moreover, operating in a continuous probability/intensity space requires an additional sampling step to

discretise the ODM, such as stochastic rounding (Croci et al., 2022). This is an ad hoc treatment of the problem and produces errors. The

unidentifiable nature of disaggregating agent choices from aggregate data calls for uncertainty quantification in order to give practitioners

the ability to interrogate and rank the sampled ODMs according to their probability.

Probabilistic methods have overcome some of the aforementioned limitations (Farooq et al., 2013; Sun & Axhausen, 2016) but remain

approximate since they operate in the continuous intensity/probability space. In the case of location choice synthesis, ODMs are equivalent to

two-way contingency tables of two categorical variables (e.g. origin residential population and destination workforce population), and the joint

distribution of the two variables is explored using Gibbs sampling. Table marginal probabilities are elicited by normalising the discrete summary

statistics. This approximation incurs information loss and may cause marginal class imbalances in high-dimensional tables (Fournier et al., 2021),

meaning a growing divergence between ground truth and sampled marginal distributions. In addition, partially available data cannot be accommo-

dated in a principled manner, and unreasonable conditional independence assumptions are imposed.

The work of Carvalho (2014) endeavoured to address these two problems by adopting a Bayesian paradigm that operates directly on the dis-

crete table space. However, neither the most efficient proposal mechanism nor the available intensity structure was exploited. Instead, a

Metropolis–Hastings (MH) scheme for sampling contingency tables was employed that proposes jumps of size at most one in Oð# origins � # des-

tinations Þ, causing poor mixing in high-dimensional tables. Furthermore, the author argued for a hierarchical construction that jointly learns the

constrained discrete ODM and the underlying intensity function. In doing so, they attempted to leverage a family of log-nonlinear intensity

models known as spatial interaction models (SIMs) (Wilson, 1971). SIMs incorporate summary statistic constraints directly in the continuous inten-

sity space. Despite this effort, a log-linearity assumption was imposed on the SIM to simplify parameter inference. Also, the known dynamics of

competition between destination locations (Dearden & Wilson, 2015) were ignored, effectively stripping SIMs of all their embedded structure.

Moreover, additional data were required to calibrate the intensity function, such as seed matrices, which are seldom available, as opposed to regu-

larly observed data on the economic utility of travelling to destination locations. The works of Ellam et al. (2018) and Gaskin et al. (2023) alleviated

this problem by constructing a physics-driven log-nonlinear SIM intensity prior. However, both approaches operated strictly in the continuous

intensity space and could not explore the discrete table space where population synthesis is performed.

1.1 | Contributions

Our paper focuses on reconstructing origin-destination agent trip matrices summarising residence-to-workplace location choices. We offer an

upsampling Bayesian approach that jointly samples from the discrete table ( ) and continuous intensity ( ) spaces for agent location choice syn-

thesis. Our framework seamlessly assimilates any type of aggregate summary statistic as a constraint, which in turn regularises the space of admis-

sible disaggregate/individual agent choices. We demonstrate an improved reconstruction and coverage of a partially observed origin-destination

matrix summarising agent trips from residential to workplace locations in Cambridge, UK.

Contrary to the previous work, we perform a Gibbs step and sample tables in Oð# destinationsÞ leveraging the Markov basis (MB) machinery

in Diaconis and Sturmfels (1998) to design a Markov Chain Monte Carlo (MCMC) scheme with proposals that allow arbitrarily large jumps in table

space without any accept/reject step. Hence, we bypass the problem of marginal distribution imbalances by respecting the exact margin frequen-

cies rather than marginal distributions. We employ SIMs to understand the behavioural mechanism of aggregate location choice in continuous

intensity space and relax previously adopted log-linearity assumptions on the intensity model. In the same fashion as Ellam et al. (2018) and

Gaskin et al. (2023), we account for the stochastic dynamics of competition between destinations governing agent location choices and enforce

an interpretable structure in the SIM intensity prior. A summary of our framework's capabilities relative to the previous works is depicted in Table 1.
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2 | PROBLEM SETUP

Consider M agents that travel from I origins to J destinations to work. Let the expected number of trips (intensity) of agents between origin i and

destination j be denoted by Λij. The residential population in each origin (row sums) is equal to

Λiþ ¼
XJ
j¼1

Λij, i¼1,…, I, ð1Þ

while the working population at each destination (column sums) is

Λþj ¼
XI

i¼1

Λij, j¼1,…,J: ð2Þ

We assume that the total origin and destination demand are both conserved:

M¼Λþþ ¼
XI

i¼1

Λiþ ¼
XJ
j¼1

Λþj: ð3Þ

This construction defines a totally constrained SIM. The demand for destination zones depends on the destination's attractiveness denoted

by w :¼ðw1,…,wJÞ�ℝJ
>0. Let the log-attraction be x :¼ logðwÞ. Between two destinations of similar attractiveness, agents are assumed to prefer

nearby zones. Therefore, a cost matrix C¼ðci,jÞI,Ji,j¼1 is introduced to reflect travel impedance. These two assumptions are justified by economic

arguments Pooler (1994). The maximum entropy distribution of agent trips subject to the total number of agents being conserved is derived by

maximising

EðΛÞ¼
XI

i¼1

XJ
j¼1

�ΛijlogðΛijÞþζ
XI,J
i, j

Λij�M

 !
þα

XJ
j¼1

xjΛij�β
XI,J
i, j

cijΛij, ð4Þ

which yields a closed-form expression for the trip intensity:

Λij ¼
Λþþ expðαxj�βcijÞPI,J
k,m expðαxm�βckmÞ

, ð5Þ

where α,β control the two competing forces of attractiveness and deterrence. A higher α relative to β characterises a preference over destinations

with higher job availability, while the contrary indicates a predilection for closer workplaces. The destination attractiveness w is governed by the

Harris-Wilson (Harris & Wilson, 1978) system of J coupled ordinary differential equations (ODEs):

TABLE 1 Comparison of our method's capabilities against previous works.

C
Constrained

ODM

This

work (Ellam) (Gaskin) P( )

{ ++} Totally ✓ ✓ ✓ -

{ �þ} Singly ✓ ✓ ✓ -

{ ++, ++} Totally ✓ � � Multinomial ( ++, ++)

{ �þ , �þ} or { �þ , ++} Singly ✓ � � Product Multinomial ( )

{ �þ , þ� , ++} Doubly ✓ � � Fisher's non-central hypergeometric ( )

{ } Doubly and cell ✓ � � Constrained Fisher's non-central hypergeometric

( )

Note: Agent choices are described by a discrete table ( ) or a continuous intensity ( ). Subscripts define summary statistics: the row and column sums/

margins are indexed by (�,þÞ,ðþ, �Þ, respectively. The cell universe X �X0 contains table/intensity indices of an I� J matrix.

Abbreviation: ODM, origin-destination matrix.
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dwj

dt
¼ ϵwj Λþj� κwjþδ

� �
, wð0Þ¼w0, ð6Þ

where κ >0 is the number of agents competing for one job, δ>0 is the smallest number of jobs a destination can have and ΛþjðtÞ�κwjðtÞ is the
net job capacity in destination j. A positive net job capacity translates to a higher economic activity (more travellers than jobs) and a boost in local

employment, and vice versa. In equilibrium, the J stationary points of the above ODE can be computed using

κwj�δ¼
Λþþwα

jP I,J
k,mw

α
k expð�βckmÞ

XI

i¼1

expð�βcijÞ: ð7Þ

The value of κ can be elicited by summing the above equation over destinations, which yields

κ¼ δJþΛþþPJ
j¼1wj

, ð8Þ

while δ corresponds to the case when no agent travels to destination j0 (Λþj0 ¼0), that is,

δ¼ κmin
j
fwjg: ð9Þ

A stochastic perturbation of 6 incorporates uncertainty in the competition dynamics emerging from the randomness of agents' choice mecha-

nisms. This gives rise to the Harris-Wilson stochastic differential equation (SDE) for the time evolution of log destination attraction x

dx¼�ϵ�1rVðxÞdtþ
ffiffiffiffiffiffiffiffiffiffi
2γ�1

p
dBt, xð0Þ¼ x0, ð10Þ

where the potential function VðxÞ in the drift term is equal to

ϵ�1VðxÞ¼�α�1
XI

i¼1

Oilog
XJ
j¼1

expðαxj�βcijÞ
 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
utility potential

þκ
XJ
j¼1

expðxjÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
cost potential

� δ
XJ
j¼1

xj|fflfflffl{zfflfflffl}
additional potential

, ð11Þ

and θ¼ðα,βÞ is the free parameter vector. The steady-state distribution of 10 is shown in Ellam et al. (2018) to be the Boltzmann–Gibbs measure

pðxjθÞ¼ 1
ZðθÞ exp �γVθðxÞð Þ ð12Þ

ZðθÞ :¼
ð
ℝJ

exp �γVθðxÞð Þdx: ð13Þ

The observed data y are assumed to be noisy perturbations of x, where the error between the two satisfies logðeÞ�N ð0,σ2d IÞ, that is

logðyÞ¼ xþ logðeÞ: ð14Þ

We introduce a data augmentation step to perform inference at the higher resolution origin-destination table space of agent trips as depicted

in Figure 1. Assume that the I� J discrete contingency table T summarising the number of agents living in location i and working in location j is

Poisson distributed as follows:

Tij �Poisson Λijðx,θÞ
� �

, ð15Þ

where the Tij 's are conditionally independent given the Λij 's. The contingency table inherits constraint 3. These hard-coded constraints can be

viewed as noise-free data on the discrete table space. We abbreviate the vector of row sums, column sums and the scalar total of T by T�þ, Tþ�

4 of 17 ZACHOS ET AL.

 20491573, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.656 by T

est, W
iley O

nline L
ibrary on [18/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and Tþþ, respectively. Note that T uniquely determines the rest of the aforementioned random variables and Tþþ ¼Λþþ. Moreover, the distribu-

tion of x in 12 coupled with a prior on θ jointly induces a prior over the intensity function Λ.

Performing inference in a discrete higher-resolution table space circumvents challenges associated with enforcing summary statistic con-

straints in the continuous intensity space. First, the doubly constrained intensity (see Table 1) admits solutions retrieved only through an iterative

procedure that converges to poor local optima without any quantification of uncertainty, since the physical model in (10) becomes redundant.

Second, maximising (4) subject to individual cell constraints induces discontinuities in the Λ space prohibiting SIM parameter calibration. To avoid

dealing with discontinuities, a fully observable table is required, which is seldom available and defeats the purpose of ODM reconstruction. Alter-

natively, more parameters can be introduced, which entails identifiability problems as the number of free parameters becomes OðIþ JÞ instead of

OðJÞ. Moreover, augmenting CΛ to match CT strengthens the dependence between TjΛ,C and yjx,C. As a result, constraints are implicitly weighted

(hard CΛ and soft CT constraints), which inflicts identifiability issues in Λ.

3 | DISCRETE TABLE INFERENCE

Let the set of table indices (cells) be X ¼fði, jÞ :1 ≤ i≤ I,1≤ j ≤ Jg such that TðxÞ¼ Tij is the table value of cell x¼ði, jÞ�X . For any subset X k ⊆X let

Sk :X k !ℕIþJ be a bijective function that maps every cell x�X k to the ðIþ JÞ-dimensional binary vector with the i-th and ðIþ jÞ-th entries equal to

one and the rest being zero. Define Sk : T !ℕIþJ to be the summary statistic operator applying a uniquely defined Skð�Þ to a table T� T over cells

X0
k ⊆X such that SkðT0Þ ¼

P
x � XT

0ðxÞSkðxÞ. The ordered collection1 of summary statistic operators S1ðT0Þ,…,SKðT0Þ
� �

is abbreviated by SðT0Þ.
Define a collection of discrete summary statistics CT ¼ s1,…,sKf g expressed as constraints on table space, where each sk is a realisation of Sk . We

leverage the same convention to define continuous constraints CΛ in the intensity space. The union of table and intensity constraints is

summarised by C. We sometimes refer to CT by C to avoid notation clutter. In Table 1, the singly constrained ODM model corresponds to a given

C as opposed to singly constrained tables and intensities that map to CT and CΛ, respectively. Equivalently, constrained models are defined by

combinations of constrained tables and intensities.

Definition 1. Consider an ordered2 collection of constraints CT and table summary statistics operators S with associated functions

S. A table T0 is CT-admissible if and only if its summary statistics satisfy all the constraints in CT , that is, SkðT0Þ ¼ sk � CT 8 k¼1,…,K.

We denote the function space of all CT-admissible contingency tables (ODMs) of dimension dimðTÞ¼ I� J by T CT ¼fT� T :SðTÞ¼ CTg and

drop the dependence on T for notational convenience. This space contains all agent location choices consistent with the aggregate summary sta-

tistics CT . The set T Ck contains all tables that when applied Sk over cells X k satisfy the k-th constraint of CT . In the rest of the paper we set CΛ ¼
Λþþf g unless otherwise stated. Our goal is to sample from PðT,x,θjC,yÞ3, where

P T, x,θ|{z}
Λ

jC,y

0
@

1
A/PðTjx,θ,CÞpðyjxÞpðxjθ,CÞpðθÞ ð16Þ

We achieve this by devising a MH-within-Gibbs scheme to sample from PðTjx,θ,CÞ, pðxjθ,T,yÞ and pðθjx,T,yÞ. The conditional samplers for x

and θ have acceptance ratios similar to those in Ellam et al. (2018) and equal to

F IGURE 1 Plate diagram of our modelling framework. Rectangular and circular nodes are deterministic and random variables, respectively.
Shaded nodes correspond to conditioned quantities.
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pðx0 ,m0jx,m,θ,T,C,yÞ¼ min 1,
PðTjx0 ,θ,CÞpðyjx0Þexp �Hθðx0Þð Þ
PðTjx,θ,CÞpðyjxÞexp �HθðxÞð Þ

� 	
, ð17Þ

pðθ0jθ,x,m,T,C,yÞ¼ min 1,
PðTjx,θ0 ,CÞexp �γVθ0 ðxÞð ÞZðθÞpðθ0Þ
PðTjx,θ,CÞexp �γVθðxÞð ÞZðθ0ÞpðθÞ

� 	
, ð18Þ

where Hθðx0Þ ¼�γVθðx0Þ�1=2jm0j2 is the Hamiltonian of state x0 with associated momentum m0. Although a singly constrained intensity can be

leveraged here, enforcing hard constraints through CΛ and potentially different soft constraints through PðTjx,θ,CÞ would cause identifiability

issues in x. We aim to provide a general construction for joint table and intensity inference and employ singly constrained SIMs only when

CT ¼fT�þg. In the following exposition, we show that the type of summary statistic data available determines whether the constrained table distri-

bution PðTjx,θ,CÞ can be sampled directly or indirectly through MCMC.

3.1 | Tractable constrained table sampling

In this section, we offer closed-form contingency table sampling. Without loss of generality, assume that only one of the two table margins is

known, namely, Tþ� (singly constrained table). Then, any subset CT of the universe of summary statistic constraints Tþþ,Tþ�, TX l jX l ⊆X , l�ℕ
� �� �

yields a closed-form posterior table marginal as shown in Table 1. By the construction in (15), the case for CT ¼; is equivalent to unconstrained

table sampling conditioned on an intensity model, which in our case is a SIM. Cell constraints CT ¼ TX l
jX l ⊆X , l�ℕ

� �
can be seamlessly incorpo-

rated in an unconstrained table without violating the posterior's tractability. Furthermore, leveraging that T uniquely determines both Tþþ and Tþ�

and applying Bayes' rule, it follows that the models with CT ¼fTþþg and CT ¼fTþ�g yield Multinomial and product Multinomial distributions,

respectively (See full derivations in supporting information). Equivalently,

PðTjΛ,TþþÞ¼
YI,J
i, j

Tþþ!

Tij!

Λij

Λþþ

� 	Tij
 !

, ð19Þ

and

PðTjΛ,T�þÞ¼
YI,J
i, j

Tiþ!

Tij!

Λij

Λiþ

� 	Tij
 !

: ð20Þ

We obtain N independent samples Tð1:NÞ from (15), (19) (20) in closed-form. Samples from the Poisson and product multinomial distributions

can be drawn in parallel. We note that the space complexity of table sampling is OðIJÞ while the time complexity for (15), (19) (20) is OðIJÞ, Oð1Þ
and OðIÞ, respectively. Moreover, coupling either constraint Tþþ or T�þ with cell constraints leaves the target distribution unchanged but shrinks

its support. Hence, the available table margin is updated by subtracting the value of fixed cell constraints from margin statistics and performing

inference on the free cells. We present the joint intensity and table sampling algorithm for tractably constrained tables in Algorithm 1.

6 of 17 ZACHOS ET AL.
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3.2 | Intractable constrained table sampling

In this section, we introduce an MCMC scheme for sampling tables subject to any subset of the power set P T�þ,Tþ� , TX l
jX l ⊆X , l�ℕ

� �� �� �
excluding those subsets contained in the constraint universe of the previous section. By conditioning on both table margins and leveraging the

conditional distributions of T�þjTþþ,Λ and TþþjΛ, the induced conditional distribution becomes Fisher's noncentral multivariate hypergeometric

(Agresti, 2002):

PðTjΛ,T:þ,T�þÞ/
Q I

i¼1Tiþ!
QJ

j¼1Tþj!

Tþþ!
Q I,J

i,j¼1Tij!

YI,J
i, j¼1

ΛijΛþþ
ΛiþΛþj

� 	Tij

, ð21Þ

where ωij ¼ ΛijΛþþ
ΛiþΛþj

is called the odds ratio and encodes the strength of dependence between row i and column j. Complete independence is

achieved if and only if ωij ¼1. Our choice of intensity model encodes this dependence in the travel cost matrix C. Origin-destination independence

is achieved if and only if the travel cost's effect on destination choice is irrelevant (β¼0). Moreover, the normalising constant of (21) is a partition

function defined over the support of all tables satisfying the conditioned margins and can't be efficiently computed by direct enumeration. In

Appendix A, we prove an extension of Chu–Vandermonde's convolution theorem for multinomial coefficients (Belbachir, 2014) that facilitates

computation of the normalising constant in Oð1Þ. In particular, we show that the following identity holds:

Tþþ
Tþ1…TþJ

� 	YJ
i, j

ω
Tþj

ij ¼
X

S Tð Þ¼CT

YI,J
i, j

Tþj

T1j…TIj

� 	
ω
Tij

ij , ð22Þ

where Tþj
T1j…TIj


 �
¼ Tþj !

T1j !…TIj !
is the multinomial coefficient. Shrinking the T C space using elements of the constraint universe above requires a MB

MCMC sampling scheme (Diaconis & Sturmfels, 1998) due to the intractability of the induced table posterior.

3.2.1 | MB MCMC

We construct a CT-admissible table for initialising MB MCMC using a suite of greedy deterministic algorithms, such as iterative proportional fitting

(Bishop et al., 2007). We concoct a proposal mechanism on T C as follows.

Definition 2. A null-admissible table T is a CT-admissible table with CT ⊆ fTþ� ,T�þg and 8 s� CT it follows that s¼0.

Definition 3. A MB is a set of table moves f1,…,fL :X !ℤ that satisfy the following conditions:

1. fl is a null-admissible table for 1≤ l≤ L and

2. for any two CT-admissible T,T0 there are fl1 ,…,flA with ηl �ℕ such that T0 ¼Tþ
PA

m¼1ηlflm and Tþ
Pa

m¼1ηlflm ≥0 for 1≤ a≤A.

Condition (i) guarantees that all proposed moves do not modify the summary statistics in CT , while condition (ii) ensures that there exists a

path between any two tables such that any table member of the path is CT-admissible. The collection of constraints CT generates a MB M. When

I� J tables satisfy both row and column margins, M consists of functions f1,…,fL such that 8 x¼ði1, j1Þ,x0 ¼ ði2, j2Þ�X with i1 ≠ i2, j1 ≠ j2,

flðxÞ¼
η if x¼ði1, j1Þ or x¼ði1, j2Þ
�η if x¼ði2, j2Þ or x¼ði2, j1Þ
0 otherwise

8><
>: ð23Þ

The case for coupling individual cell constraints with table margins requires a minor modification. Let X0 ⊆X and C0T be the individual cell

admissibility criteria. Then, M is updated to exclude all basis functions fl with flðxÞ≠0 8 x�X0. Moreover, CT is revised so that 8 s� CT , s0 � C0T , s
is updated to s�s0 at every x�X0. In other words, the constrained cell values are deducted from the rest of the summary statistic constraints in

CT . A MB Markov chain (MBMC) can now be constructed.

ZACHOS ET AL. 7 of 17
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Proposition 1 Adapted from Diaconis and Sturmfels (1998). Let μ be a probability measure on T C . Given a MB M that satisfies 3,

generate a Markov chain in T C by sampling l uniformly at random from f1,…,Lg. Consider the Markov basis Metropolis–Hastings

(MB-MH) and Gibbs (MB-Gibbs) proposals:

1. MB-MH: Let η� f�1,1g and choose η from this set with probability 1
2 independent of l. If the chain is at T� T C it will move to

T0 ¼Tþηfl with probability

min
μðTþηflÞ

μðTÞ ,1

� 


provided T0 ≥0. In all other cases, the chain stays at T.

2. MB-Gibbs: Let η�ℤ. If the chain is at T� T C , determine the set of η such that Tþηfl ≥0. Choose

PðηÞ/
Y

x � fx � X :flðxÞ≠ 0g

1
μ nðxÞþηflðxÞð Þ

and move to T0 ¼Tþηfl ≥0.

In both cases, an aperiodic, reversible, connected Markov chain in T C is constructed with stationary distribution proportional to

μðTÞ.

The proof of Proposition 1 is provided in Diaconis and Sturmfels (1998). Theoretical guarantees of MB MCMC convergence on T C show that

the MB-MH scheme in 1 mixes slowly and is not scalable to high-dimensional I� J tables for large Tþþ. Instead, a Gibbs sampler can be con-

structed as detailed in the same proposition (MB-Gibbs).

In doubly constrained tables, η is distributed according to Fisher's noncentral hypergeometric distribution for 2�2 tables. The derivation of

this result is provided in the supporting information. The overhead of generating M for any constrained table is at most OðI2J2Þ in both time and

space. This overhead can be easily overcome by amortising the construction of M prior to sampling. The sampling procedure for a constrained

model with an intractable table marginal distribution and underlying SIM intensity model is summarised in Algorithm 2. The time complexity of

proposing a move in T C is Oð1Þ and Oðmax maxðsÞ j s� Cf gÞ for MB-MH and MB-Gibbs, respectively. The corresponding space complexities are

both OðIJÞ.

The curse of dimensionality prohibits the use of any standard convergence diagnosis techniques, such as the Gelman and Rubin criterion

(Gelman & Rubin, 1992). Therefore, we employ the l1 norm to empirically assess the convergence of sample summary statistics and establish con-

vergence in probability. Furthermore, we assume the underlying intensity function is known a priori, which acts as a ground truth. In the case of

Fisher's noncentral hypergeometric distribution, exact moments are not available (McCullagh & Nelder, 2019). These are approximated by the

moments of a product Multinomial kernel derived in the Supporting information.
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4 | EXPERIMENTAL RESULTS AND DISCUSSION

We showcase table sampling convergence results based on a fixed synthetic intensity across different numbers of origins I, destinations J and

agents M¼ Tþþ. Figure 2 depicts empirical convergence rates based on a total of 103 chains each run for 103 steps. Sparse tables ( ) induce

multimodal distributions in T C and mix slowly compared with their dense counterparts ( ). Convergence is decelerated more by a larger num-

ber of agents rather than higher table dimensionality. The number of agents grows as fast as the diameter of the chain's state space and bounds

the number of MCMC steps required to reach the stationary distribution. This observation agrees with the theoretical bounds obtained in

Diaconis and Sturmfels (1998), although the latter bounds are derived based on a uniform measure over T C explored using MB-MH. Despite this

discrepancy, theoretical results provide an upper bound for our case of direct sampling, as evidenced by Figure 3. Direct sampling from the closed-

form table posterior achieves the fastest convergence, and we use it to benchmark against MB MCMC. Any doubly constrained table can be explored

using either MB-MH ( ) or MB-Gibbs ( ). Encoding additional constraints in T to contract the posterior entails the overhead of using MCMC,

introducing a trade-off between convergence rate and distribution contraction in the presence of more summary statistic constraints CT .

F IGURE 3 l1 error norm of E½Tjy,CT � for a 33�33 table with 5000 agents in the singly ( , , ) and doubly ( , ) constrained
tables. Markov basis (MB)-Gibbs has a substantially faster convergence rate than MB-Metropolis–Hastings (MH) and mixes reasonably slower
compared to direct sampling. Ground truth averages gðΛÞ are approximate for doubly constrained tables ( , ).

F IGURE 2 l1 error norm of E½Tjy,T�þ� across table sizes dimðTÞ and number of agents Tþþ using Algorithm 1. Convergence is slower for
sparse tables ( ) that induce multimodal distributions. As Tþþ grows ( , ) convergence is decelerated by a factor inversely proportional
to the table size, which agrees with the theoretical bounds established in Diaconis and Sturmfels (1998).
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Furthermore, we present a large-scale application of discrete ODM reconstruction to Cambridge commuting patterns from residence to

workplace locations, using the ODM models in Table 1. The precise experimental setup mimics that of (Ellam et al., 2018) and is provided in the

supporting information. In light of new summary statistics CT (e.g. , , ), the table posterior contracts and its high mass region concentrates

around the ground truth table ( ), as shown in Figure 4. The fact that the low-noise table samples ( , , , ) are nearby their high-noise counter-

parts ( , , , ) indicates a more dominant effect of the table likelihood on the posterior relative to that of the intensity SDE prior, which enforces

the confidence in our reconstructed ODM. The intensity samples of Gaskin et al. (2023) ( , , ) have the highest variance among the sampled

intensities due to the random initialisations of the Neural ODE solver in Gaskin et al. (2023). Despite this, the intensity distributions in Ellam et al.

(2018) and Gaskin et al. (2023) have insufficient CΛ constraints and a higher divergence from the ground truth table region than table samples.

Our intensity samples are also distant from the ground truth table ( , , , , , , , ) because they are informed strongly by CΛ and weakly by CT
(See Figure 1), where the former set is smaller than the latter.

The ODM validation results summarised in Table 2 affirm that reasoning at the discrete table level accomplishes greater error reductions and

enhanced ground truth coverage. Data fitness and posterior prediction errors are computed using the Sorensen similarity index (SSI), standardised

root mean square error (SRMSE) and Markov basis distance (MBD). Uncertainty quantification is evaluated based on the coverage probability

(CP) of ground truth table cells contained in the 99% highest posterior mass (HPM) region. We elucidate each of these metrics in the supporting

information. The best error-coverage trade-off, lowest SRMSE, MBD and highest SSI are attained in the doubly and 20% cell constrained model

due to it having the richest constraint set C. Our doubly constrained models account for an SRMSE reduction of 16% relative to the singly con-

strained model while sustaining an acceptable ground truth coverage equal to approximately 90%. The apparent increase in the mean intensity

SRMSE across all doubly constrained models potentially alludes to the SIM's lack of expressivity. This may be because CT and y give rise to con-

flicting SIM parameter configurations in the limit of large CT . The MBD decrease in the growth of C indicates that the expected upper bound on

the number of MB moves required to exactly match TD is reduced. In the totally and singly constraint models, our table posterior mean matches

or outperforms the intensity mean of Ellam et al. (2018) and Gaskin et al. (2023) in terms of data fit (SSI) and SRMSE. The highest ground truth cell

coverage probability (94%) is achieved by the most relaxed table, namely, the unconstrained table, but entails a high bias. A lower SRMSE (0.67

instead of 0.85) is attained by the intensity field of the totally constrained model in Gaskin et al. (2023), at the expense of a coverage probability

drop from 94% to 89% and a discretisation error accrued for population synthesis.

Our framework's benefits also extend to SIM parameter estimation. In Figure 5, we show that the log destination attraction prediction R2

increases for larger constraint sets CT from 0.77 to 0.84. This allows us to explain the evolved destination employment by informing the data-

generating process through C instead of increasing the diffusivity of the SDE prior in (12). Therefore, we mitigate the identifiability issues of the

multimodal θ posterior emerging in the high noise regime. The x predictions are further improved in the high noise regime (R2 ¼0:99) compared

to the low noise counterpart (R2 ¼0:84), which favours the hypothesis of a stochastic growth in destination employment. In the high noise regime,

unbiassed estimators of θ are devised based on a more disperse SDE prior on Λ 12. Increased prior diffusivity steers the x posterior marginal

towards a larger region of plausible SDE solutions in the vicinity of y, which improves the quality of x predictions. Additionally, we recover the x

and θ posterior marginals obtained in Ellam et al. (2018) at a fraction of additional computational cost.

In conclusion, performing population synthesis directly on the discrete high-resolution space of agent attributes bears tangible empirical ben-

efits. These include improved reconstruction and coverage of the ground truth ODM, as well as table posterior contraction in the limit of

F IGURE 4 Visualisation of the table (left) and intensity (right) samples projected in 2D using T-distributed stochastic neighbour embedding
(Hinton & Roweis, 2002). Samples are coloured by the constraint sets in Table 2 for low ( ), high ( ) and variable ( ) noise regimes. The ground
truth table ( ) is better covered by the discrete table posterior regardless of C, and the table distribution becomes increasingly concentrated
around the ground truth table in light of more data CT . Intensity samples are weakly informed through CΛ and PðTjx,θ,CÞ and more distant from
the ground truth.
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constraint data CT . If population synthesis is not of interest, SIM parameters can be adequately estimated using competitive approaches such as

Gaskin et al. (2023). Combining such optimisation methods with MB MCMC in a naive Bayes scheme can be promising, as it exploits the advan-

tages of both optimisation and MCMC techniques. Regardless, the apparent shortcomings of SIMs call for a comparative study of various intensity

model classes, such as discrete choice models (Train, 2009). Finally, the multifaceted nature of population synthesis opens up future avenues of

research beyond ODM reconstruction, where more convoluted dependency structures can be exploited.
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APPENDIX A: AN EXTENSION TO CHU VANDERMONDE'S THEOREM FOR MULTINOMIAL COEFFICIENTS

Theorem 1. Let T C be the space of admissible tables satisfying CT ¼fTþ�,T�þg with fixed odds ratios ω�ℝ≥0. Denote the subsets

of CT-admissible tables with CT ¼fTþþg, CT ¼fTþ�g and CT ¼fT�þg by T þþ, T þ� and T �þ, respectively. Then, for any CT-admissible

I� J table T the following statement holds:

Tþþ
Tþ1…TþJ

� 	YJ
j

ω
Tþj

þj ¼
X

T � T þ�

YJ
j

Tþj

T1j…TIj

� 	YI,J
i, j

ω
Tij

ij :

This is an extension of the Chu–Vandermonde theorem for multinomial coefficients (Belbachir, 2014) to polynomials with multino-

mial coefficients.

Proof. We proceed with an algebraic proof. Let ½x�Jj¼1 ¼1þxþ…þxJ be a polynomial of order J. By writing the left-hand side in

polynomial form and expanding it, we get

P
Tþ� � T þþ

Tþþ
Tþ1…TþJ

� 	YJ
j

ω
Tþj

þj

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LHS

QJ
m
xTþm
m ¼

P
Tþ� � T þþ

Tþþ
Tþ1…TþJ

� 	QJ
j

ωþjxj
� �Tþj

¼
PJ
j
ωþjxj

 !Tþþ

¼
QJ
j

PJ
j
ωþjxj

 !Tþj

¼
QJ
j

P
T � T þj

Tþj

T1j…TIj

� 	QI
i
ðωijxjÞTij

¼
QJ
j

P
T � T þj

Tþj

T1j…TIj

� 	QI
i
ω
Tij

ij

 !
x
Tþj

j

¼
P

Tþ� � T þþ

X
T � T þ�

YJ
j

Tþj

T1j…TIj

� 	YI
i

ω
Tij

ij

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RHS

QJ
j
x
Tþj

j ,

where the exchange of product and sum in the last line is permitted due to the grouping of terms in the sum by column

T�j 8 j¼1,…,J. The second and fourth equalities follow by direct application of the multinomial theorem (Berge, 1971). This com-

pletes the proof. □

The theorem above allows us to compute the normalising constant of Fisher's noncentral hypergeometric distribution in (See Lemma 3 in the

in the supporting information). We note that summing over the support T þ� yields

Q I
iTiþ!

Tþþ!

X
T � T þ�

YI,J
i, j

Tþj!

Tij!
ω
Tij

ij ¼
Q I

iTiþ!

Tþþ!

YJ
j

Tþþ!

Tþj!
ω
Tþj

þj

¼
QI,J
i, j

Tiþ!

Tþj!
ω
Tþj

þj :

Subsequently, the normalised Fisher's noncentral hypergeometric distribution is equal to
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YJ
j

Tþj!Tþj!

Tþþ!Tij!

YI
i

ωij

ωþj

� 	Tij

¼
YJ
j

Tþj
T1j ,…,TIj


 �
Tþþ

Tþ1,…,TþJ


 �YI
i

ωij

ωþj

� 	Tij

, ðA1Þ

which is similar to the kernel of a product multinomial with Tþ� number of trials, ω
ωþ�

event probabilities. We adopt this approximation for comput-

ing ground truth moments in our synthetic doubly constrained model experiments of Figure 3.

APPENDIX B: AUXILIARY RESULTS FOR THE CAMBRIDGE APPLICATION

In this section, we append additional experimental results of the large-scale application to Cambridge commuting patterns. Figure B1 compares

the smallest ODM reconstruction errors from each method in Table 1. The doubly and 20% cell constrained table significantly improves ground

truth coverage of free cells (row 2) over the singly constrained intensity of Ellam et al. (2018) (row 4) even though both use the same cost matrix.

Therefore, augmenting CT shrinks the support of free cells and diminishes their reconstruction error. Compared with the singly constrained inten-

sity of Gaskin et al. (2023), the table posterior mean achieves a reduced SRMSE (0.51 versus 0.61) and does not overestimate the trips to popular

destinations. Such destinations include 7 and 13, which correspond to areas where the city's university premises and hospital are located and are

highly attractive. The neural network's low noise predictions (row 3) are characterised by stronger attraction effects, which translates to over-

estimation of trips to the aforementioned destinations. The higher noise regime has little effect on the neural network's trip prediction error as

opposed to the table posterior's error, which is substantially reduced in the high noise regime. This suggests that continuous intensity is more sus-

ceptible to ODM overfitting than the discrete table. A diffuse SDE smooths the marginal distributions of free table cells without changing their

support and allows for more contributions of the P Tjx,θ,Cð Þ term to the posterior mean.
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F IGURE B1 Ground truth table TD (row 1), TD �E Tjy,fT�þ ,Tþ,�,TX2 ,Λþþg½ � (row 2) and TD�E Λjy,fΛ�þg½ � (rows 3 & 4) using Algorithm 2 (row
2), the low noise Neural network in (Gaskin et al., 2023) (row 3) and the high noise MCMC scheme in (Ellam et al., 2018) (row 4). Each table's
rows resemble the number of trips by destination, and vice versa. Cells with a black boundary correspond to fixed cells while ✓ cells cover the
ground truth in the 99% HPM. The high noise table predictions interpolate missing cell data in the vicinity of fixed cells and produce a more
accurate trip ODM. The error profile similarities across all methods are attributed to the use of the same cost matrix, which captures the spatial
covariance of trips.
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