

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/182775

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/182775
mailto:wrap@warwick.ac.uk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Bayesian Optimisation for Constrained Problems

JUAN UNGREDDA,Mathematics for Real-World Systems, University of Warwick, UK
JUERGEN BRANKE,Warwick Business School, University of Warwick, UK

Many real-world optimisation problems such as hyperparameter tuning in machine learning or simulation-based optimisation
can be formulated as expensive-to-evaluate black-box functions. A popular approach to tackle such problems is Bayesian
optimisation, which builds a response surface model based on the data collected so far, and uses the mean and uncertainty
predicted by the model to decide what information to collect next. In this paper, we propose a generalisation of the well-known
Knowledge Gradient acquisition function that allows it to handle constraints. We empirically compare the new algorithm
with four other state-of-the-art constrained Bayesian optimisation algorithms and demonstrate its superior performance. We
also prove theoretical convergence in the infinite budget limit.

Additional Key Words and Phrases: Simulation Optimisation, Gaussian Processes, Bayesian Optimisation, Constraints

ACM Reference Format:
Juan Ungredda and Juergen Branke. 2021. Bayesian Optimisation for Constrained Problems. ACM Trans. Model. Comput.
Simul. 1, 1 (January 2021), 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Expensive black-box optimisation problems are common in many areas, including
• simulation optimisation, where a solution is evaluated by a discrete-event simulation [Amaran et al. 2016],
• hyperparameter tuning, where an evaluation involves training a machine learning model [Hernández-
Lobato et al. 2016],
• the optimisation of the control policy of a robot under performance and safety constraints [Berkenkamp
et al. 2016], or
• engineering design optimisation [Forrester et al. 2008].

For such applications, Bayesian optimisation (BO) has shown to be a powerful and efficient tool. After collecting
some initial data, BO constructs a surrogate model, usually a Gaussian process (GP). Then it iteratively uses an
acquisition function to decide what data would be most valuable to collect next, explicitly balancing exploration
(collecting more information about yet unexplored areas) and exploitation (evaluating solutions that are predicted
to be good). After sampling the next solution, the Gaussian process model is updated with the new information
and the process is repeated until the available budget of evaluations has been consumed.

While many different BO algorithms have been proposed in the literature [Frazier 2018], handling constraints
in BO is much less explored. The standard approach is to build separate surrogate models for the constraints,
and then simply multiplying the value of an acquisition function for unconstrained problems with a solution’s
probability of being feasible (e.g., Chen et al. [2021]; Schonlau et al. [1998]). However this doesn’t fully capture
the value of the information gained about the constraints from sampling a solution.

Authors’ addresses: Juan Ungredda, j.ungredda@warwick.ac.uk, Mathematics for Real-World Systems, University of Warwick, Coventry, UK,
CV4 7AL; Juergen Branke, juergen.branke@wbs.ac.uk, Warwick Business School, University of Warwick, Coventry, UK, CV4 7AL.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/1-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

2 • Ungredda and Branke

In this paper, we propose a generalisation of the well-known Knowledge Gradient (KG) acquisition function
that fully takes into account the value of constraint information when deciding which solution to sample next.
In particular, we make the following contributions.
(1) We develop a generalisation of the Knowledge Gradient acquisition function, called constrained Knowledge

Gradient (cKG), capable of handling constraints. Different from most other acquisition functions proposed
in the literature, it fully takes into account the value for constraint information when deciding where to
sample next.

(2) We show how cKG can be efficiently computed.
(3) We prove for discrete spaces that in the limit cKG converges to the optimal solution.
(4) We apply our proposed approach to a variety of test problems with and without noise in the objective and

the constraints, and show that cKG outperforms other available BO approaches for constrained problems.
We start with an overview of related work in Section 2, followed by a formal definition of the problem in

Section 3. Section 4 explains the statistical models, presents the suggested sampling procedure, explains how
it can be computed efficiently, and outlines some theoretical properties. Section 5 discusses the case of a risk
averse decision maker when the algorithm needs to return the best sampled solution. We report on numerical
experiments in Section 6. Finally, the paper concludes with a summary and some suggestions for future work.

2 LITERATURE REVIEW
Bayesian optimisation (BO) has gained wide popularity, especially for problems involving expensive black-box
functions, for a comprehensive introduction see Frazier [2018] and Shahriari et al. [2016]. Although most work
has focused on unconstrained problems, some extensions to constrained optimisation problems exist.
Many of the approaches are based on the famous Expected Improvement (EI) acquisition function [Jones

et al. 1998]. Schonlau et al. [1998] and Gardner et al. [2014] extended EI to constrained EI (cEI) by computing
the expected improvement of a point 𝑥 over the best feasible point and multiplying it by its probability of
being feasible. Bagheri et al. [2017] proposed a modified combination of probability of feasibility with EI that
makes it easier to find solutions on the feasibility boundary. Other methods rely on relaxing the constraints
instead of modifying the infill criteria, Gramacy et al. [2016] proposed an augmented Lagrangian approach that
includes constraints as penalties in the objective function. Picheny et al. [2016] refined the previous approach
by introducing slack variables and achieve better performance on equality constraints. Kleijnen et al. [2021]
considered using the "Karush-Kuhn-Tucker" conditions to determine optimality and feasibility of a design vector.
Lam and Willcox [2017] proposed a lookahead approach for the value of feasibility information, selecting

the next evaluation in order to maximise the long-term feasible increase of the objective function. This was
formulated using dynamic programming where each simulated step gives a reward following cEI. Recently, Zhang
et al. [2021] improved over Lam and Willcox [2017] by considering the likelihood ratio method to better estimate
the gradients of the acquisition function. This allows for a faster computation and enables both sequential and
batch settings. Letham et al. [2017] extended Expected Improvement to noisy observations (NEI) and noisy
constraints by iterating the expectation over possible posterior distributions. For noise-free observations, their
approach reduces to the original cEI.

The Knowledge Gradient (KG) policy [Scott et al. 2011] is an acquisition function that aims at maximising the
new predicted optimal performance after one new sample, and it can be equally applied to deterministic as well
as noisy objective functions. Compared to some other acquisition functions, Picheny et al. [2013] showed that
KG is empirically superior, especially for larger levels of noise. Chen et al. [2021] recently proposed an extension
of KG to constraints by multiplying the KG value of any new sampling location by its probability of feasibility.
While these approaches allow to consider noise in the observations and constraints, they only use the current
feasibility information and ignore the value of additional constraint information from sampling another solution.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

Bayesian Optimisation for Constrained Problems • 3

Other acquisition functions have also been extended to tackle constraints. Hernández-Lobato et al. [2016]
extended Predictive Entropy Search [Hernandez-Lobato et al. 2014] to constraints. This acquisition criterion
involves computing the expected entropy reduction of the global solution to the constrained optimisation
problem. Eriksson and Poloczek [2021] proposed SCBO, which extends Thompson sampling (TS) for constrained
optimisation and also proposed a trust region to limit the search to locations close to the global optimum. Picheny
[2014] proposed an optimisation strategy where the benefit of a new sample is measured by the reduction of the
expected volume of the excursion set which provides a measure of uncertainty on the minimiser location where
constraints can be incorporated in the formulation by a solution’s probability of being feasible. However this can
only be computed approximately using numerical integration. Candelieri [2019] proposed a two-stage approach
where the feasible region is estimated during the first stage by a support-vector classifier, then the second stage
uses the estimated boundaries and maximises the objective function value using the Upper Confidence Bound
(UCB) as acquisition function.

The new cKG acquisition function is derived by reconsidering the assumption made in most constrained
acquisition functions where the Bayesian optimisation algorithm returns only a previously evaluated design as a
final solution. This can be considered as a sensible assumption if the decision maker is highly risk-averse and
evaluations are noise-free, but if the decision-maker is willing to tolerate some risk then we may report a design
that has uncertainty attached to it. Moreover, if evaluations have noise then the final recommended solution is
necessarily uncertain. Therefore, we replace this assumption by allowing the algorithm to return any solution,
even if it has not been previously evaluated.
Furthermore, most approaches build the constrained acquisition function by multiplying the value of an

acquisition function for unconstrained problems with a solution’s probability of being feasible. While this ensures
that the acquisition function tends to sample designs with high probability of being feasible, it ignores the
potential benefit of sampling infeasible solutions to recommend better future solutions. cKG takes this benefit into
account by considering the possibility that as a result of the new sample, the predicted GP mean and constraints
at other regions may change, therefore changing the predicted optimum location. This better captures the value
of the information gained about the constraints from sampling a solution.

Table 1 summarises the characteristics of the approaches discussed in the paper, with one important criterion
being the number of lookahead steps in the constraints the acquisition function performs to quantify the value of
a sampling decision. “Zero-Step" refers to methods that only consider the estimated probability of feasibility of
the current candidate design vector, e.g. cEI directly penalises the EI by multiplying it with the current estimate of
the solution candidate’s probability of feasibility, thus any design vector in infeasible regions is directly penalised.
As a result, these methods avoid sampling design vectors outside feasible regions and may have difficulties to
reach solutions close to the feasibility boundary. Moreover, they ignore the value of infeasible design vectors
may have in reducing model uncertainty and allowing feasible design vectors to be found in future iterations.
“One-Step" methods improve upon “Zero-Step" methods by considering the impact of the candidate design vector
for the performance in the next iteration. PESC and cKG are the only two approaches that quantify the gain
from a sampling decision in the “One-Step" category and that can also handle noisy settings. Lastly, “Multi-Step"
methods assess the impact of a sampling decision more than one-step ahead. These methods are computationally
more expensive, however they tend to outperform their myopic counterparts. Notice that Table 1 shows the
current lack of research for “Multi-Step" algorithms that can effectively deal with noisy settings.

3 PROBLEM DEFINITION
We want to find the optimiser 𝑥∗ of a black-box function 𝑓 : X→ R with constraints 𝑐𝑘 : X→ R, i.e.,

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

4 • Ungredda and Branke

Table 1. Summary of the approaches discussed in the paper. We consider three levels for the numbers of lookahead steps on
the constraints. “Zero-Step" refers to methods that only estimate the feasibility of the candidate design vector, “One-Step"
refers to methods that estimate the impact of a candidate design vector in the next iteration of the algorithm, and “Multi-Step"
is used for methods that assess the impact in further iterations. Additionally, we report for each method the underlying
acquisition function approach, e.g. cEI is based on the EI acquisition function. We consider Expected Improvement (EI), Upper
Confidence Bound (UCB), Knowledge Gradient (KG), Excursion Volume (EV), and Entropy Search (ES) based methods. The
top part of the table contains approaches that can only deal with deterministic objective functions and constraints, while the
methods in the lower part are able to handle also noisy objective functions and constraints.

Number of Lookahead Steps on the Constraints

Underlying Zero-Step One-Step Multi-Step
Gardner et al. [2014]
(cEI)

Lam and Willcox [2017]

Kleijnen et al. [2021] Zhang et al. [2021]

EI
Gramacy et al. [2016]

Deterministic
Objective and
Constraints

Picheny et al. [2016]

UCB
Candelieri [2019]

EV
Picheny [2014]

EI
Letham et al. [2017]
(NEI)

Noisy
Objective or
Constraints

ES
Hernández-Lobato et al.
[2016] (PESC)

KG
Chen et al. [2021] (pKG) cKG (this paper)

TS
Eriksson and Poloczek
[2021] (SCBO)

𝑥∗ = argmax
𝑥∈X

𝑓 (𝑥) (1)

s.t. 𝑐𝑘 (𝑥) ≤ 0 , 𝑘 = 1, . . . , 𝐾 . (2)

The objective function 𝑓 takes as arguments a design vector 𝑥 ∈ X ⊂ R𝑑 and returns a single observation possi-
bly corrupted by noise 𝑦 = 𝑓 (𝑥) + 𝜖 , where 𝜖 ∼ 𝑁 (0, 𝜎2𝜖), and a vector of constraint values c = [𝑐1 (𝑥), . . . , 𝑐𝐾 (𝑥)],
also possibly corrupted by noise, i.e., c = [𝑐1 (𝑥) + 𝜖1, . . . , 𝑐𝑘 (𝑥) + 𝜖𝑘 , . . . , 𝑐𝐾 (𝑥) + 𝜖𝐾] where 𝜖𝑘 ∼ 𝑁 (0, 𝜎2𝜖𝑘). We
denote by 𝑥∗ the optimiser of the non-noisy function under the non-noisy constraints {𝑐𝑘 }𝐾1 and 𝑥∗ is the true
best solution that is possible to attain. Furthermore, we assume that 𝑓 and c may be approximated by a Gaussian
process process model (see Section 4.1).

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Bayesian Optimisation for Constrained Problems • 5

M= 0.0 M = -2.2

2 0 2 4 6

2

0

f(
x
)

M

2 0 2 4 6

2

0

f(
x
)

M

(a) (b)

Fig. 1. objective function with a penalty value𝑀 = 0 (a) and𝑀 = −2.2 (b). Solutions 1 ≤ 𝑥 ≤ 4 are infeasible.

There is a total budget of 𝐵 samples that can be spent. After consuming the budget, a recommended design, 𝑥𝑟 ,
is returned to the user and its quality is determined by the difference in objective function to the best solution 𝑥∗
given that 𝑥𝑟 is feasible, i.e. 𝑥 ∈ 𝐹 = {𝑥 |𝑐𝑘 (𝑥) ≤ 0 ∀𝑘 ∈ [1 . . . 𝐾]}. If 𝑥𝑟 is not feasible then there is a penalty𝑀
for not having returned a feasible solution. Therefore, the performance may be measured as an Opportunity Cost
(OC) to be minimised,

𝑂𝐶 (𝑥𝑟) =
{
𝑓 (𝑥∗) − 𝑓 (𝑥𝑟) if 𝑥𝑟 ∈ 𝐹
𝑓 (𝑥∗) −𝑀 otherwise.

(3)

The value of the penalty for infeasibility,𝑀 , is problem and user dependent, and should in practice be set by an
expert. The importance of this parameter is illustrated by Figure 1 shows the objective function with the penalty
value𝑀 for unfeasible design vectors . Figure 1 (a) shows the objective function with a penalty𝑀 = 0. In this
case, the penalty value set by the DM is higher than the objective function value in some feasible regions, and
therefore, we may find that an unfeasible design vector may be preferable to a feasible design vector . In the case
when the DM selects a design vector with an adequate penalty𝑀 = −2.2 (Figure 1(b)), any feasible design vector
would present a favorable value compared to an unfeasible design vector .

As we show in Appendix 6.4, in the absence of such domain knowledge,𝑀 may be set to the minimum GP
estimate of the objective function in the design space. Without loss of generality and to simplify later equations,
we assume without loss of generality a penalty 𝑀 = 0 in the remainder of this paper. Any other case may be
transformed into the case𝑀 = 0 by subtracting𝑀 from the objective function. A derivation of cKG with general
penalty𝑀 may be found in Appendix E. To test the proposed approach in Section 6 with𝑀 = 0, we compare on
strictly positive test functions.

4 THE CKG ALGORITHM
We propose the Constrained Knowledge Gradient (cKG) algorithm which collects additional data taking into
account constraints and potential noise in the objective function or constraints. In Section 4.1 we describe the
statistical models for inferring the objective function and constraints. Section 4.2 explains the Knowledge Gradient
for unconstrained problems proposed by Scott et al. [2011]. Then, Section 4.3 and 4.4 derive the cKG acquisition
function and discuss its efficient implementation. Lastly, we summarise the overall cKG algorithm and discuss
some of its properties in Sections 4.5 and 4.6, respectively.

4.1 Statistical Model
Let us denote all 𝑛 design vectors sampled so far as 𝑋 = {𝑥𝑖 }𝑛𝑖=1, the training data from the collection of objective
function observations, 𝒟𝑓 = {(𝑥,𝑦)}𝑛𝑖=1, and constraints, 𝒟𝑐 = {(𝑥, c)}𝑛𝑖=1. We model the objective function
observations as a Gaussian process (GP) which is fully specified by a mean function 𝜇𝑛𝑦 (𝑥) = E[𝑦 (𝑥) |𝒟𝑓] and its
covariance Cov [𝑦 (𝑥), 𝑦 (𝑥 ′) |𝒟𝑓],

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

6 • Ungredda and Branke

E[𝑦 (𝑥) |𝒟𝑓] = 𝜇𝑛𝑦 (𝑥)
= 𝜇0𝑦 (𝑥) − 𝑘0𝑦 (𝑥, 𝑋) (𝑘0𝑦 (𝑋,𝑋) + 𝐼𝜎2𝜖)−1 (𝑌 − 𝜇0𝑦 (𝑋))

(4)

Cov [𝑦 (𝑥), 𝑦 (𝑥 ′) |𝒟𝑓] = 𝑘𝑛𝑦 (𝑥, 𝑥 ′)
= 𝑘0𝑦 (𝑥, 𝑥 ′) − 𝑘0𝑦 (𝑥, 𝑋) (𝑘0𝑦 (𝑋,𝑋) + 𝐼𝜎2𝜖)−1𝑘0𝑦 (𝑋, 𝑥 ′)) .

(5)

Although we assume homoscedastic noise, it is also possible to perform inference assuming that the variance
changes with the domain, 𝜎2𝜖 = 𝑟 (𝑥), by modeling the log of the variance with a second Gaussian process
[Kersting et al. 2007]. Similarly, each constraint is modelled as an independent GP over the training data 𝒟𝑐

defined by a constraint mean function 𝜇𝑛
𝑘
(𝑥) = E[𝑐𝑘 (𝑥) |𝒟𝑐] and covariance Cov [𝑐𝑘 (𝑥), 𝑐𝑘 (𝑥 ′) |𝒟𝑐]. The prior

mean is typically set to zero and the kernel allows the user to encode known properties such as smoothness
and periodicity. We use the popular squared exponential kernel that assumes 𝑓 and c are smooth functions,
i.e., nearby 𝑥 have similar outputs while widely separated points have unrelated outputs. Further details and
alternative kernel functions can be found in Rasmussen and Williams [2006].
Although assuming independence works well for many constrained optimisation problems and has been

widely used in the literature [Bagheri et al. 2017; Gardner et al. 2014; Letham et al. 2017], multi-output GP models
may also be considered to model the correlation between the constraint functions and the objective [Álvarez
et al. 2012]. Overall, the multi-output GP may provide a lower probability of feasibility estimation error than the
independent model and may improve the sample efficiency of the Bayesian optimisation algorithm [Berkenkamp
et al. 2021; Pelamatti et al. 2022].

4.2 Knowledge Gradient for Unconstrained problems (KG)
Scott et al. [2011] proposed the knowledge gradient with correlated beliefs (KG) acquisition function. This
acquisition function compares the old highest value of the model posterior mean with the new highest value
given the decision to take the next sample at design vector 𝑥𝑛+1. The design vector sampled is then the one that
maximises

KG(𝑥) = E[max
𝑥 ′′∈X

{
𝜇𝑛+1𝑦 (𝑥 ′′)

}
−max
𝑥 ′∈X

{
𝜇𝑛𝑦 (𝑥 ′)

}
|𝑥𝑛+1 = 𝑥] . (6)

Different approaches have been developed to solve Eqn. 6. Scott et al. [2011] propose discretising the design
space and solving a series of linear problems. However, increasing the number of dimensions requires more
discretisation points and thus renders this approach computationally expensive. A more recent approach involves
Monte-Carlo sampling of the observed value at design vector 𝑥𝑛+1, and solving an inner optimisation problem for
each sample to identify the best posterior mean [Wu and Frazier 2017]. Using Monte-Carlo samples improves
the scalability of the algorithm in terms of number of dimensions, but the inner optimisation still leads to
high computational complexity. Pearce et al. [2020] propose a hybrid between between both approaches that
consists of obtaining high value points from the predictive posterior GP mean that would serve as a discretisation.
Combining both approaches allows to leverage the scalability of the Monte-Carlo based acquisition function and
the computational performance of discretising the design space.

4.3 Knowledge Gradient for Constrained Problems (cKG)
At the end of the algorithm we must recommend a final design vector, 𝑥𝑟 . Assuming a risk-neutral user, the utility
of a design vector is the expected objective performance, 𝜇𝐵𝑦 (𝑥), if feasible, and zero (𝑀) if infeasible. Therefore,
if the constraints and objective are independent, a recommended solution 𝑥𝑟 may be obtained by

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Bayesian Optimisation for Constrained Problems • 7

𝑥𝑟 = argmax
𝑥∈X

𝜇𝐵𝑦 (𝑥)P[c𝐵 (𝑥) ≤ 0], (7)

where P[c𝐵 (𝑥) ≤ 0] is the probability of feasibility of a design 𝑥 . For each constraint 𝑘 , P[𝑐𝐵
𝑘
(𝑥) ≤ 0|𝒟𝑐] can

be evaluated by a univariate Gaussian cumulative distribution (Φ) as

P[𝑐𝐵
𝑘
(𝑥) ≤ 0|𝒟𝑐] = Φ

(−𝜇𝐵
𝑘
(𝑥)√︃

𝑘𝐵
𝑘
(𝑥, 𝑥)

)
.

Therefore, when design vectors have a low value of 𝜇𝐵
𝑘
(𝑥), the probability of feasibility tends closer to one.

On the other hand, if 𝜇𝐵
𝑘
(𝑥) is high, the probability of feasibility tends closer to zero. Notably, the boundary of

feasibility may be found when 𝜇𝐵
𝑘
(𝑥) is equal to zero. Following Gardner et al. [2014], we assume independent

constraints, such that the overall probability of feasibility can be computed as

PF(𝑥) = P[c(𝑥) ≤ 0|𝒟𝑐] =
𝐾∏
𝑘=1
P[𝑐𝑘 (𝑥) ≤ 0|𝒟𝑐] .

We aim for an acquisition function that quantifies the value of the objective function and constraint information
we would gain from a given sampling decision. Note that obtaining feasibility information does not immediately
translate to better expected objective performance but rather more accurate feasibility information where more
updated information may change our current beliefs about where 𝑥𝑟 is located. Therefore, to quantify the benefit
of a design vector, we first find the design that would be recommended after having sampled data 𝒟𝑐 and 𝒟𝑓 as,

𝑥𝑛𝑟 = argmax
𝑥∈X

𝜇𝑛𝑦 (𝑥)PF𝑛 (𝑥). (8)

A sensible compromise between the current step 𝑛 and the one-step lookahead estimated performance is
offered by augmenting the training data by the sampling decision 𝑥𝑛+1 with its respective constraint and objective
observations as 𝒟𝑐 ∪ {𝑥𝑛+1, c𝑛+1} and 𝒟𝑓 ∪ {𝑥𝑛+1, 𝑦𝑛+1}. The difference in performance between the current
recommended design and the new best performance can be used as an acquisition function for a design 𝑥 , where
Eqn. 9 is positive for all the design space. Futhermore, given that 𝜇𝑛𝑦 (𝑥𝑛𝑟) = E𝑦𝑛+1 [𝜇𝑛+1𝑦 (𝑥𝑛𝑟)] and the independence
between objective function and constraints, we obtain

cKG(𝑥) = E[max
𝑥 ′∈X

{
𝜇𝑛+1𝑦 (𝑥 ′)PF𝑛+1 (𝑥 ′)

}
− 𝜇𝑛𝑦 (𝑥𝑛𝑟)PF𝑛+1 (𝑥𝑛𝑟) |𝑥𝑛+1 = 𝑥] . (9)

This acquisition function quantifies the benefit of a design vector and takes into account the change in
the current performance value when more feasibility information is available. Also, when constraints are not
considered, the formulation reduces to standard KG [Scott et al. 2011].
Note that penalising the posterior mean by the probability of feasibility as in Eqn. 8 acknowledges that it is

risky to eventually recommend solutions that are exactly at the constraint boundary, where the probability of
feasibility is 0.5 for a single constraint. This is sensible, as such a solution would not be preferable to a decision
maker unless it promises a much higher quality 𝜇𝑦 . On the contrary, sampling an infeasible solution (or a solution
on the boundary) during the optimization may be very beneficial if this provides valuable information about the
objective function or the exact location of the constraint boundary, which is taken into account in the acquisition
function Eqn. 9.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

8 • Ungredda and Branke

(a) (b)

Fig. 2. (a) Given a sample 𝑥𝑛+1 = 𝑥 (white dots), the current GP mean (dotted grey) changes according to 𝑍𝑦 . This produces
a different realisation and a new maximum (red dots) for 𝜇𝑛+1𝑦 (𝑥∗𝑖). (b) shows the surface of the maximum posterior over the
discrete set for 𝑍𝑦 .

4.4 Efficient Acquisition Function Computation
Obtaining a closed-form expression for cKG is not possible but as we show below, it can still be computed
efficiently. We first convert 𝜇𝑛+1𝑦 (𝑥) to quantities that can be computed in the current step 𝑛 through the
reparametrisation trick [Scott et al. 2011] as 𝜇𝑛+1𝑦 (𝑥) = 𝜇𝑛𝑦 (𝑥) + 𝜎𝑦 (𝑥, 𝑥𝑛+1)𝑍𝑦 where 𝑍𝑦 ∼ 𝑁 (0, 1). The de-
terministic function �̃�𝑛 (𝑥, 𝑥𝑛+1) represents the standard deviation of 𝜇𝑛+1𝑦 (𝑥) parametrised by 𝑥𝑛+1 and given by

�̃�𝑛𝑦 (𝑥, 𝑥𝑛+1) =
𝑘𝑛𝑦 (𝑥,𝑥𝑛+1)√

𝑘𝑛𝑦 (𝑥𝑛+1,𝑥𝑛+1)+𝜎2
𝜖

.

For unconstrained problems, Pearce et al. [2020] proposed an efficient computation for the KG acquisition
function (Eqn. 6). It first obtains a suitable small set of points 𝑋𝑑 = {𝑥∗1 , . . . , 𝑥∗𝑛𝑧 } identifying the maxima of the
posterior GP mean, 𝜇𝑛+1𝑦 (𝑥), for different 𝑍𝑦 quantiles (Figure 2 a). Those discrete design vectors are used as a
discretisation where 𝜇𝑛+1𝑦 (𝑥∗𝑖) is linear on 𝑍𝑦 (Figure 2 b). Then, KG can be computed in closed-form and solved
analytically. This approach is both computationally efficient and scalable with the number of design vector
dimensions, thus we adapt this method to our constrained problem.
Similar to the unconstrained KG, we may apply the reparametrisation trick to the posterior means and

variances of the constraints, i.e, 𝜇𝑛+1
𝑘
(𝑥) = 𝜇𝑛

𝑘
(𝑥) + 𝜎𝑘 (𝑥, 𝑥𝑛+1)𝑍𝑘 and 𝑘𝑛+1𝑘

(𝑥, 𝑥) = 𝑘𝑛
𝑘
(𝑥, 𝑥) − 𝜎𝑘 2 (𝑥, 𝑥𝑛+1), where

𝑍𝑘 ∼ 𝑁 (0, 1) for 𝑘 = 1, . . . , 𝐾 . Now, the probability of feasibility is also parametrised by 𝑥𝑛+1 and all the
stochasticity is determined by Z𝑐 = [𝑍1, . . . , 𝑍𝐾]. By plugging these parametrisations into Eqn. 9, we change our
initial problem to variables that can be estimated in the current step where the stochasticity is given by standard
normally distributed random variables for both constraints and the objective,

cKG(𝑥) = E
[Inner Optimisation 𝑛 + 1︷ ︸︸ ︷
max
𝑥 ′∈X

{[
𝜇𝑛𝑦 (𝑥 ′) + �̃�𝑦 (𝑥 ′, 𝑥𝑛+1)𝑍𝑦

]
PF𝑛+1 (𝑥 ′;𝑥𝑛+1,Z𝑐)

}
− 𝜇𝑛𝑦 (𝑥𝑟)PF𝑛+1 (𝑥𝑛𝑟 ;𝑥𝑛+1,Z𝑐) |𝑥𝑛+1 = 𝑥

]
, (10)

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

Bayesian Optimisation for Constrained Problems • 9

(a) (b) (c)

Fig. 3. (a) Given Zc = 0, current penalised GP mean (dotted grey) and maximum (green dot) where changing 𝑍𝑦 produces
a different realisation and a new maximum (red dots). (b) Given 𝑍𝑦 = 0, different values of Z𝑐 produces a new maximum
according to the probability of feasibility. (c) shows the surface of the maximum posterior over the discrete set for all
combinations of Z𝑐 and 𝑍𝑦 .

where PF𝑛+1 (𝑥 ′;𝑥𝑛+1,Z𝑐) denotes the probability of solution 𝑥 ′ being feasible given that solution 𝑥𝑛+1 is evaluated
next and we observe Z𝑐 .
To solve the above expectation we first find 𝑥𝑛𝑟 according to Eqn. 8 using a continuous numerical optimiser.

Then, we generate a discretisation 𝑋𝑑 given a design 𝑥𝑛+1. This is done using 𝑛𝑦 values from 𝑍𝑦 and 𝑛𝑐 values
from Zc where the inner optimisation problems in Eqn. 10 are solved by a continuous numerical optimiser for
all 𝑛𝑧 = 𝑛𝑐 ∗ 𝑛𝑦 values. Each solution found by the optimiser, 𝑥∗𝑗 , represents a peak location, and together they
determine a discretisation 𝑋𝑑 . Figure 3 visualises this process where each 𝑥∗𝑗 location is generated by numerically
identifying the "peaks" (red dots) by using different quantiles for 𝑍𝑦 and 𝑍𝑐 .

Furthermore, conditioned on Z𝑐 , the expectation in Eqn. 10 can be seen as marginalising the standard KG over
the constraint uncertainty,

cKG(𝑥) = E𝑍𝑐

[
E𝑍𝑦

[Inner Optimisation 𝑛 + 1︷ ︸︸ ︷
max
𝑥 ′∈X

{[
𝜇𝑛𝑦 (𝑥 ′) + �̃�𝑦 (𝑥 ′, 𝑥𝑛+1)𝑍𝑦

]
PF𝑛+1 (𝑥 ′;𝑥𝑛+1,Z𝑐)

}
− 𝜇𝑛𝑦 (𝑥𝑟)PF𝑛+1 (𝑥𝑛𝑟 ;𝑥𝑛+1,Z𝑐) |𝑥𝑛+1 = 𝑥,Z𝑐

]]
, (11)

where 𝜇𝑛𝑦 (𝑥) and 𝜎𝑦 (𝑥, 𝑥𝑛+1) are penalised by the (deterministic) function PF𝑛+1 (𝑥 ;𝑥𝑛+1,Z𝑐). The inner expec-
tation can be solved in closed-form over the discrete set 𝑋𝑑 using the discrete KG algorithm (KG𝑑) proposed by
Scott et al. [2011] and described in Appendix F. The outer expectation may be computed by a Monte-Carlo ap-
proximation. This approximation depends on solving and taking the average over 𝑛𝑐 different KG𝑑 computations,

cKG(𝑥) = 1
𝑛𝑐

𝑛𝑐∑︁
𝑚=1

KG𝑑 (𝑥𝑛+1 = 𝑥 ;Z𝑚𝑐). (12)

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

10 • Ungredda and Branke

(a) (c) (e)

(b) (d) (f)

Fig. 4. (a) objective function and constraint where constraint values less than zero are feasible. (b) Feasible and infeasible
regions with its corresponding values. (c) Initial design allocation where a model is built using a GP for the objective function
penalised by the probability of feasibility using a GP for the constraints. (d) and (f) show the next sample decision (red dot)
according to cKG using the fitted models. (e) shows the samples taken during the entire optimisation run (white dots) with
the recommended design (orange dot) coinciding with the true best design vector (green dot).

Fig. 3 shows the influence of a sample 𝑥𝑛+1 (white dots) on computing the expectation at 𝑛 + 1 in Eqn. 11.
More specifically, if we fix Z𝑐 , Fig. 3 (a) shows how the current GP mean (dotted grey) and maximum (green dot)
could change according to 𝑍𝑦 where each different realisation presents a new maximum (red dots). However,
if we fix 𝑍𝑦 , Fig. 3 (b) shows how the maximum of the GP mean may change according to the probability of
feasibility. Fig. 3 (c) shows the surface of the maximum locations for all combinations of Z𝑐 and 𝑍𝑦 where, for
each generated 𝑍𝑐 , there is an epigraph as in Fig. 2.

4.5 Overall Algorithm
Fig. 4 visualises some of the steps of cKG. Fig. 4 (a) shows an objective function (blue) and a constraint (purple)
with negative constraint values representing feasible solutions. The aim is to find the best feasible solution at
𝑥∗ = 6.25, see also Fig. 4 (b). Then, GPs are built based on initial samples, and (c) shows the posterior penalised
GP mean (dotted line, posterior 𝑦 times probability of feasibility). Then, the next design vector is obtained
by maximising cKG (Fig. 4 (d)). Finally, after the budget of 𝐵 samples has been allocated sequentially, a final
recommendation 𝑥𝑟 is selected according to Eqn. 8 where 𝑥𝑟 (orange dot) ends up being very close to the true best
𝑥∗ (green dot). Notice that cKG aims at improving the maximal posterior mean, not the quality at the sampled
solution, and thus often tends to sample the neighborhood of 𝑥∗ instead of the actual best design vector location.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

Bayesian Optimisation for Constrained Problems • 11

cKG is outlined in Algorithm 2. On Line 0, the algorithm begins by fitting a Gaussian process model to the
initial training data 𝒟𝑓 and 𝒟𝑐 obtained using a Latin hypercube (LHS) ‘space-filling’ experimental design. After
initialisation, the algorithm continues in an optimisation loop until the budget 𝐵 has been consumed. In each
iteration, we sample a new design vector 𝑥𝑛+1 according to cKG, as defined in Algorithm 1 (Line 2). The design
vector 𝑥 that maximises cKG determines the samples (𝑥,𝑦)𝑛+1 and (𝑥, c)𝑛+1. The point is added to the training
data 𝒟𝑓 and 𝒟𝑐 and each Gaussian process model is updated (Line 5). Finally, cKG recommends a design vector
according to Eqn. 8 (Line 7). More implementation details may be found in Appendix F.

Algorithm 1: cKG computation.
Input: Sample 𝑥𝑛+1, size of Monte-Carlo discretisations 𝑛𝑐 and 𝑛𝑦
0. Initialise discretisation 𝑋 0

𝑑
= {} and set 𝑛𝑧 = 𝑛𝑐𝑛𝑦

1. Compute 𝑥𝑛𝑟 = argmax𝑥∈X 𝜇𝑛𝑦 (𝑥)PF𝑛 (𝑥)
2. for j in [1, . . . , 𝑛𝑧] :
3. Generate 𝑍 𝑗𝑦, 𝑍

𝑗

1 , . . . , 𝑍
𝑗

𝐾
∼ 𝑁 (0, 1)

4. Compute 𝑥∗𝑗 = max𝑥∈𝑋𝑑

{[
𝜇𝑛𝑦 (𝑥) + 𝜎𝑦 (𝑥, 𝑥𝑛+1)𝑍

𝑗
𝑦

]
PF𝑛+1 (𝑥 ;𝑥𝑛+1,Z𝑗𝑐)

}
5. Update discretisation 𝑋 𝑗

𝑑
= 𝑋

𝑗−1
𝑑
∪ {𝑥∗𝑗 }

6. for m in [1, . . . , 𝑛𝑐] :
7. Compute KG𝑑 (𝑥𝑛+1 = 𝑥 ;Z𝑚𝑐) using 𝑋𝑑
8. Compute Monte-Carlo estimation 1

𝑛𝑐

∑𝑛𝑐
𝑚=1 KG𝑑 (𝑥𝑛+1;Z𝑚𝑐)

9. Return: cKG(𝑥𝑛+1)

Algorithm 2: cKG Overall Algorithm. The algorithm starts with an initialization phase to collect prelimi-
nary data, then, proceeds to a sequential phase.
Input: black-box function 𝑓 : 𝑋 → R, constraints 𝑐𝑘 : 𝑋 → R, size of Monte-Carlo 𝑛𝑐 and 𝑛𝑦
0. Collect initial simulation data, 𝒟𝑓 ,𝒟𝑐 , and fit an independent Gaussian process for each constraint and
the black-box function.

1.While 𝑏 < B do:
2. Compute 𝑥𝑛+1 = argmax𝑥∈𝑋 cKG(𝑥, 𝑛𝑧, 𝑀).
3. Update𝒟𝑓 , with sample {(𝑥,𝑦)𝑛+1}
4. Update𝒟𝑐 , with sample {(𝑥, c)𝑛+1}
5. Fit a Gaussian process to𝒟𝑓 and𝒟𝑐

6. Update budget consumed, 𝑏 ← 𝑏 + 1
7. Return: Recommend solution, 𝑥𝑟 = argmax𝑥∈X{𝜇𝐵𝑦 (𝑥)PF𝐵 (𝑥)}

4.6 Properties of cKG
In the Appendix we prove consistency of cKG for an (arbitrary) discrete design space and noise in the objective
function or constraints. However, we outline the main findings here. The proof builds on previous work on
consistency for unconstrained problems (see Pearce et al. [2019]; Scott et al. [2011], and Poloczek et al. [2017]).

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

12 • Ungredda and Branke

Theorem 1 shows that cKG infinitely samples all design vectors. This ensures that the algorithm learns the
true value for all design vectors.

Theorem 1. Let 𝑋 be a finite set and 𝐵 the budget to be sequentially allocated by cKG. Let 𝑁 (𝑥, 𝐵) be the
number of samples allocated to point 𝑥 within budget 𝐵. Then for all 𝑥 ∈ 𝑋 we have that lim𝐵→∞ 𝑁 (𝑥, 𝐵) = ∞.
Proof: see Appendix G.

Finally, if the cKG value for all design vectors reaches zero and there exists a feasible region, then we know the
location of the global optimiser. This is derived from Theorem 1 which guarantees that all design vectors are
infinitely sampled, and therefore we obtain the true best underlying design vector .

Corollary 1 . Let’s consider that the set of feasible design vectors 𝐹 = {𝑥 |𝑐𝑘 (𝑥) ≤ 0 for 1 ≤ 𝑘 ≤ 𝐾} is not
empty. If cKG(𝑥) = 0 for all 𝑥 ∈ 𝑋 then argmax𝑥∈𝑋 𝜇∞𝑦 (𝑥)PF∞ (𝑥) = argmax𝑥∈𝑋 𝑓 (𝑥)I𝑥∈𝐹 .
Proof: see Appendix G.

5 RISK-AVERSE DECISION MAKER
If the decision maker is risk averse, they would not accept a solution that has not been evaluated and identified
as feasible. In such cases, the solution returned by the algorithm should be the best sampled solution,

𝑥𝑟 = argmax
𝑥∈𝑋𝑛

𝜇𝐵𝑦 (𝑥)PF𝐵 (𝑥).

However, KG is aiming to identify the maximum of the posterior GP mean and has not necessarily sampled
this solution. Thus, for such problems, analogous to Pearce and Branke [2018], we suggest still using the cKG
acquisition function for the first 𝐵 − 1 iterations, but use an acquisition function that aims to sample at the best
location in the final step, namely NEI.
NEI is an extension cEI proposed by Letham et al. [2017] that is capable of accommodating a noisy objective

function and noisy constraints. In particular, without observation noise, NEI is identical to cEI. This method
consists of generating different realisations of the GP at the observed points to provide different estimations
of the best sampled performance. Then cEI is computed for each different realisation for a design vector. If we
denote the objective and constraint values at observed design vector locations as f̃𝑛 = [𝑓 𝑛 (𝑥1), . . . , 𝑓 𝑛 (𝑥𝑛)] and
c̃𝑛 = [c𝑛 (𝑥1), . . . , c𝑛 (𝑥𝑛)] then this criteria can be expressed as

NEI(𝑥) =
∫
f𝑛,c𝑛

cEI(𝑥 |f̃𝑛, c̃𝑛)𝑝 (f̃𝑛 |𝒟𝑓)𝑝 (c̃𝑛 |𝒟𝑐)df̃𝑛dc̃𝑛,

where cEI(𝑥 |f̃𝑛, c̃𝑛) is cEI such that the sampled best performance is recomputed for each realisation according
to f̃𝑛, c̃𝑛 . Letham et al. [2017] propose to compute the expectation using quasi Monte-Carlo integration.

6 EXPERIMENTS
We compare cKG against a variety of well-known acquisition functions that can deal with constraints, namely:
constrained Expected Improvement (cEI) by Gardner et al. [2014], expected improvement to noisy observations
(NEI) by Letham et al. [2017], Predictive Entropy Search with constraints (PESC) by Hernández-Lobato et al.
[2016], Thompson sampling for constrained optimisation (TS) by Eriksson and Poloczek [2021] and a recently
proposed constrained KG algorithm [Chen et al. 2021] which we call penalised KG (pKG) to distinguish it from
our proposed formulation (further details on the benchmark algorithms can be found in Appendix C).

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

Bayesian Optimisation for Constrained Problems • 13

We used implementations of cEI and NEI available in BoTorch [Balandat et al. 2020]. For PESC, only the
Spearmint optimisation package provided an available implementation of the algorithm that included constraints.
The remaining algorithms have been re-implemented from scratch and can be accessed through github1.

For all test problems, we fit an independent Gaussian process for each constraint 𝑐𝑘 and the black-box objective
function 𝑦 with an initial design of size 10 for the synthetic test functions and 20 for the MNIST experiment, both
chosen by Latin Hypercube Sampling. All Gaussian processes use an RBF kernel with hyperparameters tuned by
maximum likelihood, including the noise 𝜎2𝜖 in case of noisy problems.

6.1 Synthetic Tests
We test the algorithms on three different constrained synthetic problems: Mistery function, Test function 2, and
New Branin from Sasena [2002]. Each function was tested with and without a noise level for the objective value
and constraints. All test results were averaged over 30 replications. Further details of each function can be found
in Appendix A.

Fig. 5 shows the results of these experiments. Fig. 5 (first row) depicts a contour plot of each objective function
over its feasible area. The location of the optimum is highlighted by a green cross. Mistery and New Branin both
have a single non-linear constraint whereas the infeasible area in Test function 2 is the result of a combination of
3 different constraints. Fig. 5 (second row) shows the convergence of the opportunity cost over the number of
iterations, for the case without noise. As can be seen, cKG outperforms all benchmark approaches on the Branin
and Mistery function, with cEI second best. On Test Function 2, pKG converges to the same quality as cKG, with
the other methods performing much worse. A closer investigation revealed that cEI tends to concentrate design
vectors in highly feasible regions, whereas cKG and pKG seem to benefit from sampling also in regions with
lower feasibility. Overall, cKG is the only method that consistently yields superior performance across all three
test problems. Fig. 5 (third row) shows the performance when the objective value observations are corrupted
by noise. Since cEI was designed for deterministic problems, it was replaced by the more general NEI for the
noisy problems. Not surprisingly, in all cases the performance of the different considered approaches deteriorated
compared to the deterministic setting. The difference between cKG and the other methods is even more apparent,
with no method coming close to cKG’s performance on any of the benchmarks. Fig. 5 (fourth row) represents
results with noise in the objective function values and in the constraint values. This is a more challenging task,
since design vectors close to the feasibility boundary are more difficult to estimate. This issue is even magnified
when several constraints are considered (Test Function 2). Similar to the other experiments, cKG converges
consistently better than other methods considered. This shows that cKG is superior to all other tested methods,
and particularly capable of handling noisy constrained optimisation problems.
Unlike NEI and cEI, which only consider the posterior at the point sampled, cKG considers the posterior

objective and constraints over the full domain. Similarly, although pKG considers the full objective domain by
using KG, pKG does not consider the possibility that the new sample may change the constraints, therefore
changing the predicted optimum location. This tends to discourage exploration outside the feasible regions, and
may lead to slower convergence. On the other hand, cKG takes advantage of looking further ahead than the
compared acquisition functions and fully quantifies the impact of a new sampling decision to both, the objective
and constraint landscape. Therefore, cKG would place a positive value to design vectors that cause the maximum
of the penalised posterior mean to change, even if that design vector is infeasible. This can be considered as an
advantage since infeasible design vectors may be useful for reducing model uncertainty which allows a better
estimation of future feasible design vectors and therefore, better recommendations.

1The code for this paper is available at https://github.com/xxx/xxx (will be published after acceptance)

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

14 • Ungredda and Branke

Although PESC is also a formulation that considers noise in the objective function and constraints by design, it
showed comparatively low performance in all the experiments. Hernández-Lobato et al. [2016] showed state-of-
the-art results in their comparison against cEI. However, Letham et al. [2017] and Eriksson and Poloczek [2021]
observed that PESC mostly performs poorly under different noise scenarios.
Fig. 6 further highlights the robustness of cKG to noise. For each acquisition function, we compute the gap

between the OC of the final recommended solution in case of a noisy objective function, or noisy objective
function and noisy constraints, to the deterministic case. As expected, noise impacts the algorithm’s ability to
find the optimum, i.e., the computed gaps are positive, except for pKG on the Mistery function (but this has very
large error bars). The detriment is larger if noise is applied to objective function as well as constraints rather than
only the objective function. Generally, cKG has the smallest gaps, meaning it suffers the least from the addition
of noise.

6.2 Tuning a Fast Fully Connected Neural Network
For this experiment we aim to tune the hyperparameters of a fully connected neural network subject to a limit on
the prediction time of 1 ms (the constraint). The design space consists of 9 dimensions comprising the optimiser
parameters and the number of neurons on each level, details of the neural network architecture may be found in
Appendix B. Note that this is a mixed integer search space, as the number of nodes on a layer is discrete, and can
range from 8 to 4096. Following others for similar problems [Hernández-Lobato et al. 2016; Letham et al. 2017;
Pearce et al. 2020], we treated the discrete variables as continuous variables and rounded to the nearest integer
before evaluation, for all acquisition functions tested. The prediction time is computed as the average time of
3000 predictions for samples of 250 images. The network is trained on the MNIST digit classification task using
tensorflow and the objective to be minimised is the classification error rate on a test set. This value is stochastic,
as it depends e.g. on the random split of the data into test and training set. At the end, the recommended design
is evaluated 20 times to compute a "ground-truth" validation error. All results were averaged over 20 replications
(BO runs) and generated using a 20-core Intel(R) Xeon(R) Gold 6230 processor.

Fig. 7 shows that cKG yields the highest validation accuracy compared to the other considered benchmark
methods. TS and pKG also perform well, which is consistent with the synthetic experiments.

6.3 Experiments with a Risk-Averse Decision Maker
As explained in Section 5, for a risk-averse decision maker, the algorithm should return the best sampled solution.
Figure 8 compares the OC performance of the solution with the best penalised posterior GP mean (Eqn. 8) and the
best sampled solution, for different acquisition functions on Test Function 2 with deterministic objective function
and constraints. In this example, for all acquisition functions the OC resulting from the best GP recommended
solution is smaller (better), but the difference is particularly large for those acquisition functions based on KG
(cKG and pKG). This is not surprising since as explained above, KG specifically aims to optimise the best GP
recommended location.

Thompson sampling also presents a considerable gap. This is largely because the optimisation of the acquisition
function, as it was conceived in Eriksson and Poloczek [2021], is performed by discretising the design space and
returning the best design vector instead of fine-optimising. Therefore, the sampled solutions tend to be worse
than the best fine-tuned GP recommended design.

Figure 9 demonstrates the benefit of executing a final NEI/cEI step before recommending a solution. Compared
to Figure 8, making a last step using NEI/cEI significantly decreases the gap in cKG between the sampled and the
GP recommended performance (black). Therefore, even if cKG samples design vectors in the neighborhood of 𝑥∗,
a final NEI/cEI sample ensures good sampled performance.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

Bayesian Optimisation for Constrained Problems • 15

Branin Mistery Test Function 2

𝜎𝜖 = 0 , 𝜎𝑐1 = 0 𝜎𝜖 = 0 , 𝜎𝑐1 = 0 𝜎𝜖 = 0 , 𝜎c = [0, 0, 0]

𝜎𝜖 = 1 , 𝜎𝑐1 = 0 𝜎𝜖 = 1 , 𝜎𝑐1 = 0 𝜎𝜖 = 1 , 𝜎c = [0, 0, 0]

𝜎𝜖 = 1 , 𝜎𝑐1 = 0.1 𝜎𝜖 = 1 , 𝜎𝑐1 = 0.1 𝜎𝜖 = 1 , 𝜎c = [0.1, 0.1, 0.1]

Fig. 5. (first row) shows contour plots of the synthetic test functions and their feasible and infeasible regions. For the
remaining rows, we show the mean and 95% CI for the OC over iterations for deterministic experiments (second row), noise
only in the objective function (third row), and noise in both the objective function and constraints (fourth row).

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

16 • Ungredda and Branke

PESC cKG TS nEI pKG
0

2

4

6

8

10

12

14

16

GA
P

Branin
noisy f and c
noisy f

PESC cKG TS nEI pKG

0.2

0.1

0.0

0.1

0.2

0.3

0.4

GA
P

Mistery
noisy f and c
noisy f

PESC cKG TS nEI pKG
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

GA
P

Test Function 2
noisy f and c
noisy f

Fig. 6. Difference of OC, or gap, between the noisy experiments and the OC without noise for each algorithm. In all cases,
cKG presents a robust performance when noise is added.

(a) (b)

Fig. 7. (a) Mean and 95% CI for the "ground-truth" validation accuracy over iterations. (b) Mean and 95% CI for the "ground-
truth score" after 50 iterations.

6.4 Penalty Parameter M
In Section 3, we introduced a penalty𝑀 that represents the value that the decision maker assigns to an infeasible
recommended design. In principle, its value should be low enough so that we prefer finding a feasible design
over infeasible designs. If no domain knowledge is available and the value of𝑀 may be difficult to asses, it can
simply be set to the worst predicted posterior GP mean. More technical details may be found in Appendix E.

Figure 10 shows the impact of the penalty𝑀 on the final solution recommended by cKG in the example of Test
Function 2. Each subfigure shows the final recommendations for 30 replications, for different settings of𝑀 , from
an extremely low value (-1.000.000), to different values of the underlying function (minimum, maximum, and
mean), and when automatically setting𝑀 to the lowest GP mean prediction (adaptive).
When𝑀 is set to -1.000.000, any unfeasible design is heavily penalised, reflecting the situation in which the

decision maker is averse to any potentially unfeasible recommendation. As a result, cKG tends to avoid risky
solutions that are close to the boundary of feasibility and prefers regions with a high probability of being feasible
(not at the extreme end of the feasible space, or even at the broader end of the lower feasible region). A very
low𝑀 may also prevent the algorithm from crossing unfeasible areas to find new feasible regions. On the other
hand, Figure 10 (𝑀 = 𝑚𝑎𝑥 𝑓) shows that when 𝑀 is at least as high as the true optimal value, any unfeasible
design is considered as good as the optimal solution, and cKG tends to recommend only unfeasible designs. Lastly,

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

Bayesian Optimisation for Constrained Problems • 17

Fig. 8. Sampled and GP recommended solution performance mean and 95% CI for the OC over iterations on Test Function 2
without observation noise for the objective function and the constraints

Figure 10 (adaptive) shows that automatically setting𝑀 to the lowest model prediction ensures that cKG will
always prefer feasible solutions over unfeasible ones and is reliably able to identify the true optimum.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

18 • Ungredda and Branke

Fig. 9. Comparison between cKG and cKG taking a cEI last step before recommending a solution. (First Column) Best
sampled and GP recommended solution performance mean and 95% CI for the OC. (Second Column): Sampled and GP
recommended solution performance mean and 95% CI for the OC at the end of the budget. Objective noise level: 𝜎2𝜖 = 0.

Fig. 10. Final recommended design of 30 replications using the deterministic Test Function 2 with different values of 𝑀 :
𝑀 = −1.000.000 (top left), minimum 𝑓 value (top middle), mean 𝑓 value (top right), maximum 𝑓 (bottom left), and using the
lowest model prediction (adaptive, bottom middle)
ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

Bayesian Optimisation for Constrained Problems • 19

7 CONCLUSION
For the problem of constrained Bayesian optimisation, we proposed a generalisation of the well-known Knowledge
Gradient acquisition function, constrained Knowledge Gradient (cKG), that is capable of handling constraints and
noise. We show that cKG can be efficiently computed by adapting an approach proposed in [Pearce et al. 2020]
which is a hybrid between discretisation and Monte-Carlo approximation that allows to leverage the benefits of
fast computations of the discrete design space and the scalability of continuous Monte-Carlo sampling. We prove
that the algorithm will find the true optimum in the limit. Finally, we empirically demonstrate the effectiveness of
the proposed approach on several test problems. cKG consistently and significantly outperformed all benchmark
algorithms on all test problems, with a particularly large improvement under noisy problem settings.

Despite the excellent results, the study opens some interesting avenues for future work. We assume the noise
in the quality measure to be homoscedastic. Perhaps ideas from Stochastic Kriging can be used to relax this.
Furthermore, in real problems, objective and constraints may be correlated where multi-output GP models may
be considered to model correlation. This may lead to a better feasibility representation and performance of the
algorithm. As the standard KG, we only look ahead one step with sequential evaluations. cKG may be further
extended to multi-step look ahead or batched evaluations by using a "one-shot" formulation. Finally, we assume
that an evaluation of a solution returns simultaneously its quality as well as its constraint value. In practice,
it may be possible to evaluate quality and feasibility independently, or infeasible solutions may not return an
objective value at all.

ACKNOWLEDGEMENTS
Removed for double blind review

REFERENCES
Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. 2012. Kernels for Vector-Valued Functions: A Review. Found. Trends Mach.

Learn. 4, 3 (mar 2012), 195–266. https://doi.org/10.1561/2200000036
Satyajith Amaran, Nikolaos V. Sahinidis, Bikram Sharda, and Scott J. Bury. 2016. Simulation optimization: a review of algorithms and

applications. Annals of Operations Research 240, 1 (2016), 351–380.
Samineh Bagheri, Wolfgang Konen, Richard Allmendinger, Juergen Branke, Kalyanmoy Deb, Jonathan Fieldsend, Domenico Quagliarella, and

Karthik Sindhya. 2017. Constraint Handing in Efficient Global Optimization. In Genetic and Evolutionary Computation Conference. ACM,
673–680.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy. 2020.
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In Advances in Neural Information Processing Systems 33.
http://arxiv.org/abs/1910.06403

Felix Berkenkamp, Andreas Krause, and Angela P. Schoellig. 2016. Bayesian Optimization with Safety Constraints: Safe and Automatic
Parameter Tuning in Robotics. ArXiv abs/1602.04450 (2016).

Felix Berkenkamp, Andreas Krause, and Angela P. Schoellig. 2021. Bayesian optimization with safety constraints: Safe and automatic
parameter tuning in robotics - machine learning. https://link.springer.com/article/10.1007/s10994-021-06019-1

Antonio Candelieri. 2019. Sequential model based optimization of partially defined functions under unknown constraints. Journal of Global
Optimization (2019), 1–23.

Wenjie Chen, Shengcai Liu, and Ke Tang. 2021. A New Knowledge Gradient-based Method for Constrained Bayesian Optimization.
arXiv:2101.08743 [cs.LG]

Erhan Cinlar. 2011. Probability and Stochastics. Vol. Graduate Texts in Mathematics 261. Springer.
David Eriksson and Matthias Poloczek. 2021. Scalable Constrained Bayesian Optimization. In Proceedings of The 24th International Conference

on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 130), Arindam Banerjee and Kenji Fukumizu (Eds.).
PMLR, 730–738. https://proceedings.mlr.press/v130/eriksson21a.html

Alexander I. J. Forrester, Andras Sobester, and Andy J. Keane. 2008. Engineering Design via Surrogate Modelling.
Peter I. Frazier. 2018. A Tutorial on Bayesian Optimization. arXiv:1807.02811 [stat.ML]
Jacob Gardner, Matt Kusner, Eddie Xu, Kilian Weinberger, and John Cunningham. 2014. Bayesian Optimization with Inequality Constraints.

31st International Conference on Machine Learning, ICML 2014 3.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

https://doi.org/10.1561/2200000036
http://arxiv.org/abs/1910.06403
https://link.springer.com/article/10.1007/s10994-021-06019-1
https://arxiv.org/abs/2101.08743
https://proceedings.mlr.press/v130/eriksson21a.html
https://arxiv.org/abs/1807.02811

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

20 • Ungredda and Branke

Robert B. Gramacy, Genetha A. Gray, Sébastien Le Digabel, Herbert K. H. Lee, Pritam Ranjan, Garth Wells, and Stefan M. Wild. 2016. Modeling
an Augmented Lagrangian for Blackbox Constrained Optimization. Technometrics 58, 1 (2016), 1–11. https://doi.org/10.1080/00401706.
2015.1014065 arXiv:https://doi.org/10.1080/00401706.2015.1014065

José Miguel Hernández-Lobato, Michael A. Gelbart, Ryan P. Adams, Matthew W. Hoffman, and Zoubin Ghahramani. 2016. A General
Framework for Constrained Bayesian Optimization Using Information-Based Search. J. Mach. Learn. Res. 17, 1 (Jan. 2016), 5549–5601.

Jose Miguel Hernandez-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. 2014. Predictive Entropy Search for Efficient Global
Optimization of Black-Box Functions. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume
1 (Montreal, Canada) (NIPS’14). MIT Press, Cambridge, MA, USA, 918–926.

Donald R. Jones, Matthias Schonlau, and William J. Welch. 1998. Efficient Global Optimization of Expensive Black-Box Functions. Journal of
Global Optimization 13 (Jan 1998), 455–492. https://doi.org/10.1023/A:1008306431147

Kristian Kersting, Christian Plagemann, Patrick Pfaff, and Wolfram Burgard. 2007. Most Likely Heteroscedastic Gaussian Process Regression.
In Proceedings of the 24th International Conference on Machine Learning (Corvalis, Oregon, USA) (ICML ’07). Association for Computing
Machinery, New York, NY, USA, 393–400. https://doi.org/10.1145/1273496.1273546

Jack P. C. Kleijnen, Inneke Van Nieuwenhuyse, and Wim van Beers. 2021. Constrained optimization in simulation: efficient global optimization
and Karush-Kuhn-Tucker conditions. CentER Discussion Paper Series No. 2021-031 (08 2021). https://doi.org/10.2139/ssrn.3958881

Remi R. Lam and Karen E. Willcox. 2017. Lookahead Bayesian Optimization with Inequality Constraints. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA,
1888–1898.

Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. 2017. Constrained Bayesian Optimization with Noisy Experiments.
Bayesian Analysis 14 (06 2017). https://doi.org/10.1214/18-BA1110

Michael Pearce and Juergen Branke. 2018. Continuous multi-task bayesian optimisation with correlation. European Journal of Operational
Research 270, 3 (2018), 1074–1085.

Michael Pearce, Janis Klaise, and Matthew Groves. 2020. Practical Bayesian Optimization of Objectives with Conditioning Variables.
arXiv:2002.09996 [stat.ML]

Michael Pearce, Matthias Poloczek, and Juergen Branke. 2019. Bayesian Simulation Optimization with Common Random Numbers. In
Proceedings of the Winter Simulation Conference (National Harbor, Maryland) (WSC ’19). IEEE Press, 3492–3503.

Julien Pelamatti, Rodolphe Le Riche, Céline Helbert, and Christophette Blanchet-Scalliet. 2022. Coupling and selecting constraints in Bayesian
optimization under uncertainties. https://doi.org/10.48550/ARXIV.2204.00527

Victor Picheny. 2014. A stepwise uncertainty reduction approach to constrained global optimization. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 33), Samuel Kaski and Jukka
Corander (Eds.). PMLR, Reykjavik, Iceland, 787–795. http://proceedings.mlr.press/v33/picheny14.html

Victor Picheny, Robert B Gramacy, Stefan Wild, and Sebastien Le Digabel. 2016. Bayesian optimization under mixed constraints with a
slack-variable augmented Lagrangian. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 1435–1443. http://papers.nips.cc/paper/6439-bayesian-optimization-under-mixed-
constraints-with-a-slack-variable-augmented-lagrangian.pdf

Victor Picheny, Tobias Wagner, and David Ginsbourger. 2013. A benchmark of kriging-based infill criteria for noisy optimization. Structural
and Multidisciplinary Optimization 48 (09 2013). https://doi.org/10.1007/s00158-013-0919-4

Matthias Poloczek, Jialei Wang, and Peter Frazier. 2017. Multi-Information Source Optimization. In Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc.
https://proceedings.neurips.cc/paper/2017/file/df1f1d20ee86704251795841e6a9405a-Paper.pdf

Carl E. Rasmussen and Christopher K. I. Williams. 2006. Gaussian Processes for Machine Learning. MIT Press.
Michael Sasena. 2002. Flexibility and Efficiency Enhancements For Constrained Global Design Optimization with Kriging Approximations. Ph. D.

Dissertation.
Matthias Schonlau, William Welch, and Donald Jones. 1998. Global versus local search in constrained optimization of computer models. Vol. 34.

11–25. https://doi.org/10.1214/lnms/1215456182
Warren Scott, Peter Frazier, and Warren Powell. 2011. The Correlated Knowledge Gradient for Simulation Optimization of Continuous

Parameters using Gaussian Process Regression. SIAM Journal on Optimization 21, 3 (2011), 996–1026. https://doi.org/10.1137/100801275
arXiv:https://doi.org/10.1137/100801275

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. 2016. Taking the Human Out of the Loop: A Review of
Bayesian Optimization. Proc. IEEE 104, 1 (2016), 148–175.

Jian Wu and Peter I. Frazier. 2017. Discretization-free Knowledge Gradient Methods for Bayesian Optimization. arXiv:1707.06541 [stat.ML]
Yunxiang Zhang, Xiangyu Zhang, and Peter Frazier. 2021. Constrained Two-step Look-Ahead Bayesian Optimization. In Advances in Neural

Information Processing Systems 34 pre-proceedings.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

https://doi.org/10.1080/00401706.2015.1014065
https://doi.org/10.1080/00401706.2015.1014065
https://arxiv.org/abs/https://doi.org/10.1080/00401706.2015.1014065
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1145/1273496.1273546
https://doi.org/10.2139/ssrn.3958881
https://doi.org/10.1214/18-BA1110
https://arxiv.org/abs/2002.09996
https://doi.org/10.48550/ARXIV.2204.00527
http://proceedings.mlr.press/v33/picheny14.html
http://papers.nips.cc/paper/6439-bayesian-optimization-under-mixed-constraints-with-a-slack-variable-augmented-lagrangian.pdf
http://papers.nips.cc/paper/6439-bayesian-optimization-under-mixed-constraints-with-a-slack-variable-augmented-lagrangian.pdf
https://doi.org/10.1007/s00158-013-0919-4
https://proceedings.neurips.cc/paper/2017/file/df1f1d20ee86704251795841e6a9405a-Paper.pdf
https://doi.org/10.1214/lnms/1215456182
https://doi.org/10.1137/100801275
https://arxiv.org/abs/https://doi.org/10.1137/100801275
https://arxiv.org/abs/1707.06541

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

Bayesian Optimisation for Constrained Problems • 21

A SYNTHETIC TEST FUNCTIONS
The following subsections describe the synthetic test functions used for the empirical comparison [Sasena 2002].

A.1 Mystery Function

min 𝑓 (𝑥) = 2 + 0.01(𝑥2 − 𝑥21)2 + (1 − 𝑥1)2 + 2 ∗ (2 − 𝑥2)2 + 7sin(0.5𝑥1)sin(0.7𝑥1𝑥2)
subject to

− sin(𝑥1 − 𝑥2 −
𝜋

8
) ≤ 0

𝑥𝑖 ∈ [0, 5],∀𝑖 = 1, 2

A.2 New Branin Function

min 𝑓 (𝑥) = −(𝑥1 − 10)2 − (𝑥2 − 15)2

subject to(
𝑥2 −

5.1
4𝜋2𝑥

2
1 +

5
𝜋
𝑥1 − 6

)2
+ 10

(
1 − 1

8𝜋

)
cos(𝑥1) + 5 ≤ 0

𝑥1 ∈ [−5, 10]
𝑥2 ∈ [0, 15]

A.3 Test Function 2

min 𝑓 (𝑥) = −(𝑥1 − 1)2 − (𝑥2 − 0.5)2

subject to[
(𝑥1 − 3)2 + (𝑥2 + 2)2

]
𝑒𝑥

7
2 − 12 ≤ 0

10𝑥1 + 𝑥2 − 7 ≤ 0

(𝑥1 − 0.5)2 + (𝑥2 − 0.5)2 − 0.2 ≤ 0
𝑥𝑖 ∈ [0, 1]∀𝑖 = 1, 2

B MNIST HYPERPARAMETER EXPERIMENT
Design Space:
• learning_rate ∈ [0.0001, 0.01], log scaled.
• beta_1 ∈ [0.7, 0.99], log scale.
• beta_2 ∈ [0.9, 0.99], log scale.
• dropout_rate_1 ∈ [0, 0.8], linear scale.
• dropout_rate_2 ∈ [0, 0.8], linear scale.
• dropout_rate_3 ∈ [0, 0.8], linear scale.
• n_neurons_1 ∈ [3, 12], no scaling.
• n_neurons_2 ∈ [3, 12], no scaling.
• n_neurons_3 ∈ [3, 12], no scaling.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

22 • Ungredda and Branke

Neural Network Architecture:

model = Sequential()

model = Dense(units = int(power(2,n_neurons_1)), input_shape=(784,))
model = Dropout(dropout_rate_1)
model = activation('relu')

model = Dense(units = int(power(2, n_neurons_2)))
model = Dropout(dropout_rate_2)
model = activation('relu')

model = Dense(units = int(power(2, n_neurons_3)))
model = Dropout(dropout_rate_3)
model = activation('relu')

model = Dense(units = 10)
model = activation('softmax')

Optimiser and Compilation:
adam = Adam(learning_rate=learning_rate,

beta_1=beta_1,
beta_2=beta_2)

model.compile(loss='categorical_crossentropy',
optimizer=adam,
metrics=['accuracy'])

C RELATED ALGORITHMS

C.1 Constrained Expected Improvement (cEI)
Schonlau et al. [1998] extends EI to deterministic constrained problems by multiplying it with the probability of
feasibility in the acquisition function:

cEI(𝑥 |𝑓 ∗) = EI(𝑥 |𝑓 ∗)PF𝑛 (𝑥)
where PF𝑛 (𝑥) is the probability of feasibility of 𝑥 and EI(𝑥 |𝑓 ∗) is the expected improvement over the best

feasible sampled observation, 𝑓 ∗, i.e.,

EI(𝑥 |𝑓 ∗) = E[max(𝑦 − 𝑓 ∗, 0)] .
The posterior Gaussian distribution with mean 𝜇𝑛𝑦 (𝑥) and variance 𝑘𝑛𝑦 (𝑥, 𝑥) offers a closed form solution to EI

where the terms only depend on Gaussian densities and cumulative distributions,

EI(𝑥 |𝑓 ∗) = (𝜇𝑛𝑦 (𝑥) − 𝑓 ∗)Φ(𝑧) + 𝑘𝑛𝑦 (𝑥, 𝑥)𝜙 (𝑧), where 𝑧 =
𝜇𝑛𝑦 (𝑥) − 𝑓 ∗

𝑘𝑛𝑦 (𝑥, 𝑥)

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

Bayesian Optimisation for Constrained Problems • 23

C.2 Thompson Sampling with constraints (TS)
Eriksson and Poloczek [2021] extend Thompson sampling to constraints. Let 𝑥1, . . . , 𝑥𝑟 be candidate points. Then
a realization is taken at the candidate points location (𝑓 (𝑥𝑖), 𝑐1 (𝑥𝑖), . . . , 𝑐𝑚 (𝑥𝑖)) for all 𝑥𝑖 with 1 ≤ 𝑖 ≤ 𝑟 from
the respective posterior distributions. Therefore, if 𝐹 = {𝑥𝑖 |𝑐𝑙 (𝑥𝑖) ≤ 0 for 1 ≤ 𝑙 ≤ 𝑚} is not empty, then the
next design vector is selected by argmax𝑥∈𝐹 𝑓 (𝑥). Otherwise a point is selected according to the minimum total
violation

∑𝑚
𝑙=1 max{𝑐𝑙 (𝑥), 0}.

Eriksson and Poloczek [2021] further implements a strategy for high-dimensional design space problems based
on the trust region that confines samples locally and study the effect of different transformations on the objective
and constraints. However, for comparison purposes, we only implement the selection criteria.

C.3 Constrained Predicted Entropy search (PESC)
Hernández-Lobato et al. [2016] seek to maximise the information about the feasible optimal location 𝑥∗ given the
collected data, as,

PESC(𝑥) = H(𝑦 |𝒟𝑓 ,𝒟𝑐) − E𝑥∗ [H[𝑦 |𝒟𝑓 ,𝒟𝑐 , 𝑥, 𝑥
∗]]

The first term on the right-hand side of is computed as the entropy of a product of independent Gaussians.
However, the second term in the right-hand side of has to be approximated. The expectation is approximated by
averaging over samples of 𝑥∗ ∼ p(𝑥∗ |𝒟𝑓 ,𝒟𝑐). To sample 𝑥∗, first, samples from 𝑓 and 𝑐1, . . . , 𝑐𝐾 are drawn from
their GP posteriors. Then, a constrained optimisation problem is solved using the sampled functions to yield a
sample 𝑥∗.

C.4 Penalised Knowledge Gradient (pKG)
Chen et al. [2021] extend KG to constrained problems by penalising any new sample by the probability of
feasibility, i.e.,

pKG(𝑥) = E
[
max
𝑥∈X

{
𝜇𝑛+1𝑦 (𝑥)

}
−max

𝑥∈X

{
𝜇𝑛𝑦 (𝑥)

}
|𝑥𝑛+1 = 𝑥

]
PF𝑛 (𝑥𝑛+1 = 𝑥). (13)

This acquisition function immediately discourages exploration in regions of low probability of feasibility and
the one-step-lookahead is only on the unpenalised objective function. In their work, they extend their formulation
to batches and propose a discretisation-free Monte-Carlo approach based on Wu and Frazier [2017].

D COMPUTATIONAL TIME OF ACQUISITION FUNCTION EVALUATION
Although cKG shows superior performance compared to other methods, it comparatively requires more computa-
tional time to approximate cKG and decide where to sample next. However, for the real-world problems intended,
the time to determine the next sample location is negligible in comparison to the objective function/constraints
evaluation time. Therefore, increased query efficiency is justified over the relatively small optimisation overhead
of the acquisition function. This is the setting where BO is almost always applied.

We show results using the New Branin Function with deterministic evaluations, i.e., without adding noise, and
using a 20-core Intel(R) Xeon(R) Gold 6230 processor. In terms of purely the time to identify the next sample
location by optimising the acquisition function, cKG is the slowest (8 seconds) and TS is the fastest (0.03 seconds).
The other methods require a similar optimisation time (NEI: 3.2 seconds, pKG: 3.24 seconds, and PESC: 3.39
seconds). However, for simulation optimisation problems where a single simulation run takes several minutes to
complete, the time taken by the acquisition function becomes negligible and all that counts is the performance
relative to the number of required evaluations.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

24 • Ungredda and Branke

E FORMULATION WITH PENALTY PARAMETER M
Section. 6.4 shows the effect of the parameter M in cKG. In this section we give additional details on the cKG
computation. If we consider a non-zero penalty (M) for infeasible solutions, we may recommend a solution 𝑥𝑟 at
a given 𝑛 iteration according to

𝑥𝑛𝑟 = argmax
𝑥∈X

{
𝜇𝑛𝑦 (𝑥)PF𝑛 (𝑥) +𝑀 (1 − PF𝑛 (𝑥))

}
, (14)

The second term in the right-hand side represents the penalty incurred by infeasible solutions. When a clearly
infeasible solution is selected, (1 − PF𝑛 (𝑥)) is closer to 1 and the whole penalty term is closer to M. To modify
cKG, we must simply take into account the penalty term as,

cKG(𝑥) = E[max
𝑥 ′∈X

{
𝜇𝑛+1𝑦 (𝑥 ′)PF𝑛+1 (𝑥 ′) +𝑀 (1 − PF𝑛+1 (𝑥 ′))

}
− 𝜇𝑛+1𝑦 (𝑥𝑛𝑟)PF𝑛+1 (𝑥𝑛𝑟) −𝑀 (1 − PF𝑛+1 (𝑥𝑛𝑟)) |𝑥𝑛+1 = 𝑥] . (15)

cKG may be then computed as described in Section. 4.4, where the penalty term is included when each inner
optimisation problem is solved.

F IMPLEMENTATION DETAILS OF CKG
Implementing cKG first requires to generate 𝑍𝑦 and Zc for a candidate sample 𝑥 . This may be done by randomly
generating values from a standard normal distribution, or taking Quasi-Monte samples which providesmore sparse
samples and faster convergence properties [Letham et al. 2017]. However, we choose to adopt the method proposed
by Pearce et al. [2020] where they use different Gaussian quantiles for the objective𝑍𝑦 = {Φ−1 (0.1), . . . ,Φ−1 (0.9)}.
We further extend this method by also generating Gaussian quantiles for each constraint 𝑘 = 1, . . . , 𝐾 and produce
the 𝑛𝑧 samples using the Cartesian product between the z-samples for 𝑦 and 𝑘 = 1, . . . , 𝐾 . Once a set of 𝑛𝑧 samples
has been produced, we may find each sample in 𝑋𝑑 by a L-BFGS optimiser, or any continuous deterministic
optimisation algorithm. Finally, 𝐾𝐺𝑑 in Alg. 1 may be computed using the algorithm described in Alg. 3 by Scott
et al. [2011].

To optimise cKG we first select an initial set of candidates according to a Latin-hypercube design and compute
their values. We then select the best subset according to their cKG value and proceed to fine optimise each selected
candidate design vector. We have noticed that discretisations, 𝑋𝑑 , achieved by this subset of candidates do not
change considerably during the fine optimisation, therefore we fix the discretisation found for each candidate
and then fine optimise. A fixed discretisation allows to use a deterministic and continuous optimiser where
approximate gradients may also be computed.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

Bayesian Optimisation for Constrained Problems • 25

Algorithm 3: Knowledge Gradient by discretisation. This algorithm takes as input a set of linear functions
parameterised by a vector of intercepts 𝜇 and a vector �̃�
Input: 𝜇, �̃� , and best current performance 𝜇∗

0. 𝑂 ← order(�̃�) (get sorting indices of increasing �̃�)
1. 𝜇 ← 𝜇 [𝑂], �̃� ← �̃� [𝑂] (arrange elements)
2. 𝐼 ← [0, 1] (indices of elements in the epigraph)
3. 𝑍 ← [−∞, 𝜇0−𝜇1

�̃�1−�̃�0] (z-scores of intersections on the epigraph)
4. for j in [2, . . . , 𝑛𝑧 − 1] :
5. 𝑗 ← last(𝐼)
6. 𝑧 ← [−∞, 𝜇𝑖−𝜇 𝑗

�̃� 𝑗−�̃�𝑖]

7. if 𝑧 < last(𝑍):
8. Delete last element of 𝐼 and 𝑍 .
9. Return to Line 5.
10. Add i to the end of 𝐼 and 𝑧 to 𝑍
11. 𝑍 ← [𝑍,∞]
12. 𝐴← 𝜙 (𝑍 [1 :]) − 𝜙 (𝑍 [: −1])
13. 𝐵 ← Φ(𝑍 [1 :]) − Φ(𝑍 [: −1])
14. KG← 𝐵𝑇 𝜇 [𝐼] −𝐴𝑇 �̃� [𝐼] − 𝜇∗

15. Return: KG

G THEORETICAL RESULTS FOR FINITE DOMAINS
In this section we further develop the statements in the main paper. In Theorem 1 we show that cKG infinitely
samples all design vectors. This ensures that the algorithm learns the true value for all design vectors. Furthermore,
if the cKG value for all design vectors reaches zero, then we know the location of the global optimiser (Theorem
1). For the following statements, we assume a discrete design space. Note that this space can be arbitrarily dense,
thus it is valid for example if the algorithm is run on a computer with finite precision. Figure 11 compares the
convergence curves of cKG in the continuous domain (cKG) and when the design space is discretised using 500,
500.000, and 5.000.000 design vectors generated by a Latin hypercube (LHS) experimental design. As can be seen,
for all test functions, the convergence of cKG using a discretised design space tends to converge to cKG over
a continuous domain as the discretisation is refined. The results of the following proofs, derived for a discrete
domain, are thus still expected to hold also in the continuous domain.

To prove Theorem 1, we rely on the fact that cKG is a measure of improvement and thus must be non-negative.

Lemma 1. Let 𝑥 ∈ X, then 𝑐𝐾𝐺 (𝑥) ≥ 0

Proof:
If we take the recommended design according to 𝑥𝑛𝑟 = argmax𝑥∈X 𝜇𝑛𝑦 (𝑥)PF𝑛 (𝑥) to compute the proposed

formulation,

cKG(𝑥) = E[max
𝑥 ′∈X

{
𝜇𝑛+1𝑦 (𝑥 ′)PF𝑛+1 (𝑥 ′)

}
− 𝜇𝑛+1𝑦 (𝑥𝑛𝑟)PF𝑛+1 (𝑥𝑛𝑟) |𝑥𝑛+1 = 𝑥],

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

26 • Ungredda and Branke

10 20 30 40 50 60 70 80 90 100
Iterations

10 3

10 2

10 1

100

101

lo
g

 O
C

Mistery

500

50000

5000000

cKG

10 20 30 40 50 60 70 80 90 100
Iterations

10 2

10 1

100

101

102

lo
g

O
C

Branin

500

50000

5000000

cKG

10 20 30 40 50 60 70 80 90 100
Iterations

10 3

10 2

10 1

100

lo
g

 O
C

Test Function 2

500

50000

5000000

cKG

Fig. 11. mean and 95% CI for the OC over the iterations for the deterministic experiments when the design space is
continuous (cKG) and when the design space is discretised using 500, 500000, and 5000000 design vectors generated using a
Latin hypercube (LHS) experimental design.

it is straightforward to observe that the first term in the left-hand-side has a value greater or equal to the
second term given by the inner optimisation operation. □

Then, Lemma 2 shows that for noisy observations, if we infinitely sample a design vector 𝑥 then cKG(x) reaches
a lower bound. In the case of deterministic observations, we only require to sample 𝑥 once so cKG(x) reaches
zero.

Lemma 2. Let 𝑥 ∈ X and the number of samples taken in 𝑥 is denoted as 𝑁 (𝑥), then 𝑁 (𝑥) = ∞ implies that
𝑐𝐾𝐺 (𝑥) = 0

Proof:
If the observation is deterministic (𝜎2𝜖 = 0) then sampling 𝑥𝑛+1 at any design vector 𝑥 produces 𝜎𝑦 (𝑥, 𝑥 ′) = 0 for

the following iterations (see Lemma 10 in Pearce et al. [2019]). Therefore, cKG becomes zero for those sampled
locations.

When there is noise in the observation (𝜎2𝜖 > 0) or constraints (𝜎2
𝑘
> 0), and given infinitely many observations

at 𝑥 , we have that 𝑘∞𝑦 (𝑥, 𝑥) = 0 and 𝑘∞𝑦 (𝑥, 𝑥 ′) = 0 for all 𝑥 ∈ 𝑋 by the positive definiteness of the kernel (see
Lemma 11 in Pearce et al. [2019]). Then it easily follows that 𝜎𝑦 (𝑥, 𝑥 ′) = 0 and 𝜎𝑘 (𝑥, 𝑥 ′) = 0 for all 𝑥 ′ ∈ 𝑋 and
𝑘 = 1, . . . 𝐾 . Therefore, PF𝑛+1 (𝑥 ;𝑥𝑛+1,Z𝑐) = PF𝑛 (𝑥), and,

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

Bayesian Optimisation for Constrained Problems • 27

cKG(𝑥) = EZ𝑐 [E𝑍𝑦
[max
𝑥 ′∈𝑋

{[
𝜇𝑛𝑦 (𝑥 ′) +

=0︷ ︸︸ ︷
𝜎𝑦 (𝑥, 𝑥 ′) ·𝑍𝑦

]
PF𝑛 (𝑥 ′)

}
− 𝜇𝑛𝑦 (𝑥𝑟)PF𝑛 (𝑥𝑟) |𝑥𝑛+1 = 𝑥,Z𝑐]]

= 0

where the bottom line comes from obtaining the recommended design as 𝑥𝑟 = argmax{𝜇𝑛𝑦 (𝑥)PF𝑛 (𝑥)}. □

Lemma 3. Let 𝑥𝑛+1 ∈ X be a design vector for which 𝑐𝐾𝐺 (𝑥𝑛+1) > 0 then 𝑁 (𝑥𝑛+1) < ∞

Proof:
cKG(𝑥𝑛+1) > 0 implies that 𝜎𝑦 (𝑥, 𝑥𝑛+1) > 0 and PF𝑛+1 (𝑥 ;𝑥𝑛+1,Z𝑐) > 0 for some 𝑥 . By Lemma 3 in Poloczek

et al. [2017], if 𝜎𝑦 (𝑥, 𝑥𝑛+1) > 0 then 𝑘𝑛 (𝑥, 𝑥𝑛+1) is not a constant function of 𝑥 . Therefore, only if 𝑥𝑛+1 is infinitely
sampled, 𝑘𝑛 (𝑥, 𝑥𝑛+1) becomes a constant function and the maximiser value 𝑥∗ is perfectly known. Thus 𝑥𝑛+1 is
not infinitely sampled. □

Theorem 1. Let 𝑋 be a finite set and 𝐵 the budget to be sequentially allocated by cKG. Let 𝑁 (𝑥, 𝐵) be the number of
samples allocated to point 𝑥 within budget 𝐵. Then for all 𝑥 ∈ 𝑋 we have that lim𝐵→∞ 𝑁 (𝑥, 𝐵) = ∞.

Proof:
Lemma 1 and Lemma 3 imply that any point 𝑥 that is infinitely sampled will reach a lower bound. Since

cKG recommends samples according to argmax, any design vector 𝑥 that has been infinitely sampled will not
be visited until all other design vectors 𝑥 ′ ∈ 𝑋 have cKG(𝑥 ′) = 0. Therefore, 𝑁 (𝑥, 𝐵) = ∞ for all points when
𝐵 →∞. □

To prove Corollary 1 we rely on Lemma 4. Complete derivation may be found in Cinlar [2011], in Proposition
2.8, however, the proposition states that any sequence of conditional expectations of an integrable random
variable under an increasing convex function is a uniformly integrable martingale.

Lemma 4. Let 𝑥, 𝑥 ′ ∈ 𝑋 and 𝑛 ∈ N. The limits of the series (𝜇𝑛 (𝑥) and (𝑉 𝑛 (𝑥, 𝑥 ′) (shown below) exist.

𝜇𝑛 (𝑥) = E𝑛 [𝑓 (𝑥)] (16)

𝑉 𝑛 (𝑥, 𝑥 ′) = E𝑛 [𝑓 (𝑥) · 𝑓 (𝑥 ′)] (17)
= 𝑘𝑛 (𝑥, 𝑥 ′) + 𝜇𝑛 (𝑥) · 𝜇𝑛 (𝑥 ′) (18)

Denote their limits by 𝜇∞ (𝑥) and 𝑉∞ = (𝑥, 𝑥 ′) respectively.

lim
𝑛→∞

𝜇𝑛 (𝑥) = 𝜇∞ (𝑥) (19)
lim
𝑛→∞

𝑉 𝑛 (𝑥, 𝑥 ′) = 𝑉∞ (𝑥, 𝑥 ′) (20)

If 𝑥 ′ is sampled infinitely often, then lim𝑛→∞𝑉 𝑛 (𝑥, 𝑥 ′) = 𝜇∞ (𝑥) · 𝜇∞ (𝑥 ′) holds almost surely.

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

28 • Ungredda and Branke

Corollary 1. Let’s consider that the set of feasible design vectors 𝐹 = {𝑥 |𝑐𝑘 (𝑥) ≤ 0 for 1 ≤ 𝑘 ≤ 𝐾} is not empty. If
cKG(𝑥) = 0 for all 𝑥 ∈ 𝑋 then argmax𝑥∈𝑋 𝜇∞𝑦 (𝑥)PF∞ (𝑥) = argmax𝑥∈𝑋 𝑓 (𝑥)I𝑥∈𝐹 .

Proof:
By Lemma 4, lim𝑛→∞ �̃�𝑛𝑦 (𝑥, 𝑥 ′) = �̃�∞𝑦 (𝑥, 𝑥 ′) a.s for all 𝑥, 𝑥 ′ ∈ 𝑋 . Also, Theorem 1 implies that all 𝑥 locations will

be visited so each constraint 𝑐𝑘 becomes known and PF∞ (𝑥) converges to one if 𝑐𝑘 (𝑥) ≤ 0 for all 𝑘 = 1, . . . , 𝐾 .
Therefore, if the posterior variance �̃�∞𝑦 (𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑋 then we know the global optimiser. Let’s consider
the case of design vectors such that 𝑥 ∈ 𝑋 = {𝑥 ∈ 𝑋 |�̃�∞ (𝑥, 𝑥) > 0 and 𝑥 ∈ 𝐹 }, then,

�̃�∞𝑦 (𝑥, 𝑥) =
𝑘∞𝑦 (𝑥, 𝑥)√︃
𝑘∞𝑦 (𝑥, 𝑥) + 𝜎2𝜖

> 0

If we assume �̃�∞𝑦 (𝑥1, 𝑥) ≠ �̃�∞𝑦 (𝑥2, 𝑥) for 𝑥1, 𝑥2 ∈ 𝑋 , then 𝑐𝐾𝐺 (𝑥) must be strictly positive since for a value
of 𝑍0 ∈ 𝑍 , 𝜇∞𝑦 (𝑥1) + �̃�∞𝑦 (𝑥1, 𝑥) > 𝜇∞𝑦 (𝑥2) + �̃�∞𝑦 (𝑥2, 𝑥) for {𝑧′ ∈ 𝑍 : 𝑧′ > 𝑍0}, and vice versa. Therefore,
�̃�∞𝑦 (𝑥 ′′′, 𝑥) = �̃�∞𝑦 (𝑥 ′′, 𝑥) must hold for any 𝑥 ′′′, 𝑥 ′′ ∈ 𝑋 in order for 𝑐𝐾𝐺 (𝑥) = 0, which results in,

𝑘∞ (𝑥 ′′′, 𝑥)√︁
𝑘∞ (𝑥, 𝑥) + 𝜎2𝜖

=
𝑘∞ (𝑥 ′′, 𝑥)√︁
𝑘∞ (𝑥, 𝑥) + 𝜎2𝜖

Since 𝜎2𝜖 > 0, 𝑘∞𝑦 (𝑥 ′′′, 𝑥) − 𝑘∞𝑦 (𝑥 ′′, 𝑥) = 0 and �̃�∞𝑦 (𝑥, 𝑥) does not change for all 𝑥 ∈ 𝑋 . It must follow that
�̃�∞𝑦 (𝑥, 𝑥) = 0. Therefore, the optimiser is known argmax𝑥∈𝑋 𝜇∞𝑦 (𝑥)PF∞ (𝑥) = argmax𝑥∈𝑋 𝑓 (𝑥)I𝑥∈𝐹 . □

ACM Trans. Model. Comput. Simul., Vol. 1, No. 1, Article . Publication date: January 2021.

	Abstract
	1 Introduction
	2 Literature Review
	3 Problem Definition
	4 The cKG Algorithm
	4.1 Statistical Model
	4.2 Knowledge Gradient for Unconstrained problems (KG)
	4.3 Knowledge Gradient for Constrained Problems (cKG)
	4.4 Efficient Acquisition Function Computation
	4.5 Overall Algorithm
	4.6 Properties of cKG

	5 Risk-Averse Decision Maker
	6 Experiments
	6.1 Synthetic Tests
	6.2 Tuning a Fast Fully Connected Neural Network
	6.3 Experiments with a Risk-Averse Decision Maker
	6.4 Penalty Parameter M

	7 Conclusion
	References
	A Synthetic Test Functions
	A.1 Mystery Function
	A.2 New Branin Function
	A.3 Test Function 2

	B MNIST Hyperparameter Experiment
	C Related Algorithms
	C.1 Constrained Expected Improvement (cEI)
	C.2 Thompson Sampling with constraints (TS)
	C.3 Constrained Predicted Entropy search (PESC)
	C.4 Penalised Knowledge Gradient (pKG)

	D Computational time of Acquisition Function Evaluation
	E Formulation with Penalty Parameter M
	F Implementation Details of cKG
	G Theoretical Results for Finite Domains

