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Typical Lipschitz images
of rectifiable metric spaces

By David Bate at Coventry and Jakub Takáč at Coventry

Abstract. This article studies typical 1-Lipschitz images of n-rectifiable metric spaces
E into Rm for m � n. For example, if E � Rk , we show that the Jacobian of such a typical 1-
Lipschitz map equals 1 Hn-almost everywhere and, ifm > n, preserves the Hausdorff measure
of E. In general, we provide sufficient conditions, in terms of the tangent norms of E, for
when a typical 1-Lipschitz map preserves the Hausdorff measure of E, up to some constant
multiple. Almost optimal results for strongly n-rectifiable metric spaces are obtained. On the
other hand, for any norm j � j on Rm, we show that, in the space of 1-Lipschitz functions from
.Œ�1; 1�n; j � j1/ to .Rm; j � j/, the Hn-measure of a typical image is not bounded below by
any � > 0.

1. Introduction

Recall that an Hn-measurable subsetE � X of a (complete) metric space is n-rectifiable
if there exist countably many Lipschitz fi WAi � Rn ! X such that

(1.1) Hn
�
E n

[
i2N

fi .Ai /
�
D 0:

Here and throughout this article, Hn denotes the n-dimensional Hausdorff measure onX . Rec-
tifiable subsets of a metric space were studied by Ambrosio [1], Kirchheim [10] and Ambrosio–
Kirchheim [3]. In particular, [3] gives a description of a rectifiable setE � X in terms of weak*
tangent spaces, after isometrically embedding E into a dual space of a separable space such
as `1. Area and coarea formulas are also obtained in terms of the weak* tangent structure.

An Hn-measurable set S � X is called n-purely unrectifiable if it intersects every n-
rectifiable set E in an Hn-null set. The following characterisation of rectifiability in metric
spaces has been obtained by the first named author in [4] in terms of non-linear Lipschitz
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projections on X . We denote by Lip1.X;R
m/ the set of all bounded 1-Lipschitz functions

f WX ! Rm equipped with the supremum distance, a complete metric space. Recall that a typ-
ical element of Lip1.X;R

m/ satisfies some property if the set of the elements satisfying said
property is residual (that is, it contains a countable intersection of open dense sets). Since resid-
ual sets are closed under countable intersections and are dense, they form a suitable notion of
“large” sets.

Theorem ([4]). Let X be a complete metric space.

(i) If S � X is purely n-unrectifiable, Hn.S/ <1 and

lim inf
r!0

Hn.B.x; r/ \ S/

rn
> 0 for Hn-a.e. x 2 S;

then a typical f 2 Lip1.X;R
m/ satisfies Hn.f .S// D 0.

(ii) If E � X is n-rectifiable, Hn.E/ > 0 and m � n, a typical f 2 Lip1.X;R
m/ satisfies

Hn.f .E// > 0.

This should be viewed as an analogue of the Besicovitch–Federer projection theorem
[11, Theorem 18.1].

In this article, we give a finer description of rectifiable subsets of a metric space. Namely,
we answer the question, under what conditions is it possible to ensure that a typical

f 2 Lip1.X;R
m/

satisfies Hn.f .E// � � for some� D �.X;E/ > 0. The answer depends on the local geom-
etry of E and in particular its tangent spaces. To illustrate our results, we first mention that,
when the ambient metric space is Euclidean, the strongest possible result holds.

Theorem 1.1. Suppose E � Rk is n-rectifiable and m � n. Then the set of functions
f 2 Lip1.R

k;Rm/ satisfying Z
E

JEf dHn
D Hn.E/

is residual. Moreover, if m > n, the set of functions f 2 Lip1.R
k;Rm/ satisfying

Hn.f .E// D Hn.E/

is residual.

Here JEf denotes the Jacobian of f with respect to the rectifiable set E (see Def-
inition 2.3). In other words, for a typical f 2 Lip1.R

k;Rm/, the (approximate) tangential
Frechét differential f 0.x/ is a linear isometry for Hn-a.e. x 2 E. Via the area formula (see
Theorem 2.8), the second statement asserts that a typical f does not lose measure by overlap-
ping, provided m > n. This is false in the case m D n; for example, if n D m D 1, then the
measure of the image of any function converging to a constant function must converge to 0.
The result of Theorem 1.1 is new even if one assumes E to be the unit n-dimensional cube
in Rn. In particular, we see that a typical element of Lip1.R

k;Rm/ preserves the measure of
a given n-rectifiable set, whilst destroying the measure of a given purely n-unrectifiable set.
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On the other hand, this result may fail in the strongest possible way whenever the ambient
space is not Euclidean. In what follows, we work with general norms on Rn and these shall be
denoted by j � ja, j � jb and similar, without the letters a, b having any separate meaning. Using
an abuse of notation, we will also denote by j � j2 the Euclidean norm. Recall that a point u in
a convex subset K of a vector space X is an extremal point if, for any v 2 X , uC v 2 K and
u � v 2 K imply v D 0.

Theorem 1.2. Suppose n 2 N and let j � ja be any norm on Rn such that the unit sphere
of j � ja contains a non-extremal point of the unit ball of j � ja. Let X D .Œ�1; 1�n; j � ja/ and, for
m � n, let j � jb be an arbitrary norm on Rm. The set

¹f 2 Lip1.X; .R
m; j � jb// W H

n.f .X// > �º

is residual in Lip1 .X; .R
m; j � jb// if and only if � D 0.

A particular example of j � ja with a non-extremal point in the boundary is the maximum
norm.

In general, for m � n, we provide sufficient conditions on a pair of normed spaces
.Rn; j � ja/ and .Rm; j � jb/ for when it is possible to find a � > 0 such that a typical

f 2 Lip1 ..R
m; j � ja/; .R

m; j � jb//

preserves the measure of any rectifiable E � Rn up to a multiplicative factor of �. Indeed,
in Definition 5.4, we introduce the notion of a �-inflating pair of normed spaces, for � > 0.
Intuitively, this holds whenever any linear map AW .Rn; j � ja/! .Rm; j � jb/ of operator norm
at most 1 and full rank can be inflated in a linear way so that the operator norm of the
resulting inflated map is still at most 1, but the volume (Jacobian) of the inflated map is at
least � and, moreover, the “inflation” in question does not shrink in any direction. This can
be viewed as a geometric condition relating the unit ball of the j � ja ! j � jb operator norm
in Rn�m to level sets of the Jacobian functional. In Theorem 5.10, we show that a typical
f 2 Lip1..R

n; j � ja/; .Rm; j � jb// preserves the Hausdorff measure of a given rectifiable set by
a factor of �, whenever .Rn; j � ja/ and .Rm; j � jb/ are �-inflating.

Theorem 5.10 can be extended to a rectifiable subset E of a metric space as follows by
considering the (equivalence classes of) approximate tangent norms T .E; � / of E (see Defi-
nition 2.4). For a fixed normed space .R; j � jb/, we write N b

infl.�/.n/ for the set of equivalence
classes of norms on Rn for which .Rn; j � ja/ and .Rm; j � jb/ are .vol.j � ja/�/-inflating (see
Definition 7.1 and formula (2.2)).

Theorem 1.3. Suppose that n;m 2N, n�m,X is a complete metric space andE �X
an n-rectifiable subset. Suppose j � jb is a norm on Rm. Let � > 0 and assume that, for Hn-
a.e. x 2 E, one has

T .E; x/ 2 N b
infl.�/.n/:

Then, for each " > 0, there is a set zE � E with Hn.E n zE/ < " and such that the set²
f 2 Lip1. zE; .R

m; j � jb// W

Z
zE

J zEf dHn
� �Hn. zE/

³
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is residual in Lip1. zE; .R
m; j � jb//. Moreover, if m > n, then the set

¹f 2 Lip1. zE; .R
m; j � jb// W H

n.f . zE// � �Hn. zE/º

is residual in Lip1. zE; .R
m; j � jb//.

The simplest example of an n-rectifiable metric space whose Hn-a.e. approximate tan-
gent lies in N b

infl.�/.n/ is obtained simply via choosing any representative j � ja of any equiv-
alence class Œj � ja� 2 N b

infl.�/.n/ (provided the set is non-empty) and letting E be an Hn-
measurable subset of .Rn; j � ja/. In fact, if .Rn; j � ja/, we are able to extend the relevant
functions onto the whole space and may take zE D E; see Theorem 5.10. Since any pair of
Euclidean norms are 1-inflating (see Example 5.7), Theorem 1.1 follows from Theorem 5.10.
In fact, this observation allows us to prove results in the spirit of Theorem 1.1 for strongly
n-rectifiable subsets of a metric space.

A set E � X is strongly n-rectifiable if, for any " > 0, we may find functions fi as in
(1.1) that are .1C "/-bi-Lipschitz (see Definition 2.11). In Lemma 2.12, we will show that
this is equivalent, for n-rectifiable sets E, to the condition that T .E; x/ contains the Euclidean
norm for Hn-a.e. x 2 E. (See also Remark 2.13 for the case that E is not assumed to be n-
rectifiable.) An achievement of recent analysis on metric spaces is that any RCD metric space
satisfies this condition [2, 6, 8, 9, 12]; see Remark 7.9.

Theorem 1.4. Suppose n 2 N and let E be an n-rectifiable subspace of a complete
metric space X . Denote by j � j2 the Euclidean norm on Rn and let k 2 N, k � n and

E� D ¹x 2 E W T .E; x/ D Œj � j2�º:

Then, for any k-rectifiable subsetK of E�, we have the following. To each " > 0, there is a set
zK � K with Hk.K n zK/ < " such that, for everym � k, a typical f 2 Lip1. zK;R

m/ satisfies
J zKf D 1 Hk-a.e. in zK. Moreover, for any m > k, the set

¹f 2 Lip1. zK;R
m/ W Hk.f . zK// D Hk. zK/º

is residual in Lip. zK;Rm/.

Note that, if E is strongly n-rectifiable, Hn.E nE�/ D 0, and so, in the case k D n,
Theorem 1.4 holds for any positive measure subset of E.

Note that our most general results do not apply to the entire rectifiable set E. The prin-
cipal difficulty of obtaining results on the whole of E lies in the lack of a useful Lipschitz
extension result. Recall that, in a general metric space, an L-Lipschitz function into Rm may
be extended to any larger domain, as a .

p
mL/-Lipschitz function, and this constant is sharp

[11, 7.2 Theorem], [7, Section 2.10.44]. Consequently, when m D 1, we do obtain residuality
results for 1-rectifiable metric spaces; see Theorem 7.6.

Within the study of these objects, we naturally arrive at the question whether a typical
function f 2 Lip1.X;R

m/ satisfies f#Hn
jE
� Hn. Here f#Hn

jE
denotes the pushforward of

Hn
jE

, which is the restriction of Hn
X onto E. It is an interesting question whether the set of

these functions is residual in Lip1.X;R
m/. It follows from Theorem 1.1 and the area formula

that, in the Euclidean case, this is true. Unfortunately, in general, we cannot answer this. We are
able to get residuality in the strong space however. That is, we are able to show that a typical
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element of Lipstr
1 .X;R

m/ satisfies f#Hn
E � Hn (Corollary 4.7), for

Lipstr
1 .X;R

m/ D .Lip1.X;R
m/; k � k`1 C Lip. � //:

The paper is structured as follows. Section 2 contains preliminaries needed for the rest of
the text.

In order to prove our residuality statements, we will show that, under various conditions,
a set of the form

(1.2) ¹f 2 Lip1.X;R
m/ W Hn.f .E// > �Hn.E/º

is open and dense.
The openness statements, which hold in any metric space, are contained in Section 3.

Openness of the sets in (1.2) is equivalent to lower semi-continuity of the “area” functional

f 7! Hn.f .E//;

and the theorems are stated in this form. We also prove lower semi-continuity results for the
“area formula” functional

f 7!

Z
E

JEf dHn:

The density statements are harder, and most require additional hypotheses. Section 4
concentrates on the few that actually hold in any metric space. In particular, we show that sets
of functions which essentially do not overlap on a fixed n-rectifiable set E are dense even in
the stronger space Lipstr

1 .X;R
m/ (see Corollary 4.5). Such functions satisfy the stronger area

formula Z
E

JEf dHn
D Hn.f .E//:

The rest of the paper deals with proving or disproving the density of the sets in (1.2). Sec-
tions 5 and 6 give sufficient and necessary conditions, respectively, for the caseE � .Rn; j � ja/
for some norm j � ja on Rn. In Section 5, we show that a �-inflating pair of norms is sufficient
to deduce the density of (1.2); see Theorem 5.10. In particular, this proves Theorem 1.1. On the
other hand, in Section 6, we give necessary conditions, in terms of extremal points of the unit
ball, for (1.2) to be dense; see Theorem 6.5. This section contains the proof of Theorem 1.2.

Finally, Section 7 provides residuality results for n-rectifiable metric spaces with suitable
tangent spaces. It is there that we prove Theorems 1.3 and 1.4 through a combination of theory
developed in preceding sections and a modified version of Kirchheim’s decomposition result.

2. Preliminaries

2.1. Spaces of Lipschitz functions. Let .X;d/D .X;dX / be a metric space. For x 2X
and r > 0, we shall denote by BX .x; r/ D ¹z 2 X W dX .x; z/ � rº the closed ball of radius r
in X . Open balls will be denoted by BıX .x; r/ D ¹z 2 X W d.x; z/ < rº.

Given a set S � X and r � 0, we denote by BX .S; r/ D ¹z 2 X W dist.z; X/ � rº its
r-neighbourhood. For r D 0, this coincides with the topological closure and we shall use the
notation S D BX .S; 0/.

Let .Y; dY / be another metric space. Recall that a function f WX ! Y is called L-
Lipschitz for some L 2 Œ0;1/ if

dY .f .x/; f .y// � LdX .x; y/ for all x; y 2 X:
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The least such L is called the Lipschitz constant of f and is denoted by Lip.f / or, if we need
to be more specific, LipX!Y .f /. A function f WX ! Y is called Lipschitz if Lip.f / <1.
A function f WX ! Y is called bi-Lipschitz if it is Lipschitz, injective and the inverse function
f �1Wf .X/! X is Lipschitz. In this case, if both f and f �1 are L-Lipschitz, we say that f
is L-bi-Lipschitz.

The set of all bounded Lipschitz functions from X to Y will be denoted by Lip.X; Y /.
Given a fixed L 2 Œ0;1/, we denote

LipL.X; Y / D ¹f 2 Lip.X; Y / W Lip.f / � Lº:

Given a set � and a normed space .Y; k � kY /, we denote

k'k1 D k'k`1.�;Y / D sup

2�

k'.
/kY for any 'W� ! Y:

In the case Y is a normed space as above, we consider the sets Lip.X; Y / and LipL.X; Y /
to be equipped with metrics induced by the supremum norm k � k`1.X;Y /. With these metrics,
the space Lip.X; Y / is a normed linear space, which needs not be complete. However, if Y is
complete, then the space LipL.X; Y / is complete for any L 2 Œ0;1/.

Occasionally, it will be useful to consider this space equipped with a stronger norm
denoted by

Lipstr.X; Y / D .Lip.X; Y /; k � k`1.X;Y / C Lip. � //:

The symbol Lipstr
L .X; Y / denotes the space LipL.X; Y / equipped with the metric inherited

from Lipstr.X; Y /. If Y is complete, then both Lipstr.X; Y / and Lipstr
L .X; Y / are complete.

We shall routinely use the following two classical Lipschitz extension results. Firstly,
Kirszbraun’s theorem (see e.g. [7, 2.10.43]) asserts that if H1 and H2 are Hilbert spaces,
S � H1 and f WS ! H2 is L-Lipschitz, then f admits an extension f WH1 ! H2 which
is L-Lipschitz. Secondly, we recall McShane’s extension theorem [11, 7.2 Theorem] assert-
ing that, given any metric space X , S � X and f WS ! R an L-Lipschitz function, there is
an L-Lipschitz extension zf WX ! R. In particular, if f is bounded on its domain and, say,
C D supx2S jf .x/j, then the Lipschitz extension can be also assumed to be bounded by C .
Indeed, the function f0WX ! R given by

f0 D zf �¹j zf j�C º C C�¹ zf >C º � C�¹ zf <�C º

is easily observed to be bounded by C , an extension of f and L-Lipschitz. Also note that,
by extending coordinate-wise, if f WS ! Rm is L-Lipschitz, then there is an

p
mL-Lipschitz

extension f WX ! Rm. If f is bounded on its domain with, say, supx2S jf .x/j2 D C , then the
extension can also be assumed to be bounded by

p
mC , i.e. supx2X jf .x/j2 �

p
mC . Here

j � j2 denotes the Euclidean norm on Rm. Moreover, if f WS ! Rm1 isL-Lipschitz, then there is
an L-Lipschitz extension f WX ! Rm1. Here Rm1 stands for Rm equipped with the maximum
norm. The result remains true after replacing Rm1 with the Banach space

`1.�/ D
�®
'W� ! R W sup


2�

j'.
/j <1
¯
; k � k`1.�;R/

�
for any set � .

If X is a topological space andH � X , we callH residual ifH contains an intersection
of countably many dense open sets. Baire’s theorem asserts that if X is a complete metric
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space, then all of its residual subsets are dense in X . This means that the family of residual
subsets of X is closed under countable intersections, supersets and contains only dense sets.
Therefore, it is a suitable notion of “large” sets. We say that a typical element of X satisfies
some property (P) if the set of its elements satisfying property (P) is residual in X .

Recall that if Y is a Banach space and X is a metric space, the spaces LipL.X; Y /,
Lipstr

L .X; Y / and Lipstr.X; Y / are all complete, so residual subsets of these spaces are dense.
It should be also stated that if H � LipL.X; Y / is residual in Lipstr

L .X; Y /, then it must
be dense in LipL.X; Y /. However, it might not need to be residual in LipL.X; Y /. In particular,
the family of sets which are residual in Lipstr

L .X; Y / forms a “reasonable” notion of large sets in
LipL.X; Y / as the family is again closed under countable intersection, supersets and contains
only dense sets.

As a nice illustrative example, it can be easily checked that

¹f 2 LipL.X; Y / W Lip.f / D Lº

is residual in LipL.X; Y /.

2.2. Norms on finite-dimensional spaces. Given n 2 N a norm on Rn will generally
be denoted by symbols such as j � ja, j � jb , etc. Note that the letters a, b on their own do not
have any meaning. Using abuse of notation, we will also denote by j � j2 the Euclidean norm
and by j � j1 the supremum norm. If the particular space (dimension) needs to be specified, we
write j � jRna instead.

The ball of a norm j � ja of radius r > 0 centred at x is denoted by Ba.x; r/. We write
Ba D Ba.0; 1/. In particular, the unit Euclidean ball will be denoted by B2 or BRn2

if the
dimension is relevant.

The symbol k � k is reserved for operator norms and norms on infinite-dimensional spaces.
If n;m 2 N, we denote by L.Rn;Rm/ D Rn�m the space of linear operators from Rn to Rm.
If j � ja, j � jb are norms on Rn and Rm, we denote by k � ka!b or k � kRna!Rm

b
the operator norm

induced by j � ja and j � jb , i.e.

kAka!b D sup
x2Ba

jA.x/jb for A 2 Rn�m:

The symbol Ba!b or, if more clarity is needed, the symbol BRna!Rm
b

will be used to denote
the unit ball of k � ka!b in the space of linear operators L.Rna;R

m
b
/.

Recall the following sufficient condition for a function to be Lipschitz in convex subsets
of normed spaces.

Lemma 2.1. Assume that j � ja and j � jb are norms on Rn and Rm respectively. If
f 2 Lip.Rn;Rm/ and there is some L 2 Œ0;1/ such that, for Hn-a.e. x, the Frechét dif-
ferential f 0.x/ 2 L.Rn;Rm/ exists and satisfies kf 0.x/ka!b � L, then f 2 LipL.R

n
a;R

m
b
/.

Proof. Let x; y 2 Rn and letH � Rn be the unique hyperplane for which the Euclidean
distance to x equals the Euclidean distance to y. Let " > 0 and denote by �" the set of Lipschitz
curves 
 W Œ0; 1�! Rn such that Hn

a .
.Œ0; 1�// � jx � yja C " and there exists some z 2 H
such that 
jŒ0; 1

2
� is the affine curve connecting x to z and 
jŒ 1

2
;1� is the affine curve connecting

z to y.
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Since
R 1
0 j

0.t/ja dt D Hn

a .
.Œ0; 1�//, any curve 
 2 �" satisfiesZ 1

0

j
 0.t/ja dt � jx � yja C ":

Moreover, by Fubini’s theorem, there exists some curve 
 2 �" such that f 0.
.t// exists for
H1-a.e. t 2 Œ0; 1�. Using the fundamental theorem of calculus, Jensen’s inequality, the estimate
on the operator norm and the above inequality, we may calculate

jf .x/ � f .y/jb D

ˇ̌̌̌Z 1

0

f 0.
.t//.
 0.t// dt
ˇ̌̌̌
b

�

Z 1

0

jf 0.
.t//.
 0.t//jb dt

�

Z 1

0

kf 0.
.t//ka!bj

0.t/ja dt � L

Z 1

0

j
 0.t/ja dt � L.jx � aja C "/:

By sending "! 0, we obtain jf .x/ � f .y/jb � Ljx � yja. Since x and y were arbitrary, f
is L-Lipschitz.

If j � ja is a norm on Rn and W WRn ! Rn is an invertible linear map, we denote by
j � jW.a/ the norm on Rn given by jxjW.a/ D jW �1xja. Observe that, with this notation, one
has W.Ba/ D BW.a/.

Finally, for a fixed n 2 N, we define an equivalence relation � on the set of all norms
on Rn. This relation is given by j � ja1 � j � ja2 if and only if there is an invertible linear map
AWRn ! Rn such that A.Ba1/ D Ba2 . Classes of equivalence will be denoted in the standard
way by

Œj � ja� D ¹j � ja0 W j � ja0 � j � jaº:

Note that j � ja1 � j � ja2 if and only if Rna1 is isometrically isomorphic to Rna2 .

Definition 2.2. Let X be a vector space and K � X a convex set. A point u 2 K is
called an extremal point of K if, for any v 2 X , uC v 2 K and u � v 2 K implies v D 0.

Suppose X is equipped with a norm j � j. Then the unit ball B D ¹x 2 X W jxj � 1º is a
convex set. If X is a finite-dimensional Banach space, then B has an extremal point. If x is an
extremal point of B , then x 2 𝜕B .

Suppose now that X is a Banach space and x 2 𝜕B . It follows from the Hahn–Banach
theorem, that there exists a supporting hyperplane of B containing x, i.e. by definition, there
is x� 2 X� such that x�.x/ D 1 and B � ¹y 2 X W x�.y/ � 1º. We say that x is strongly
extremal if there exists x� 2 X� such that, for y 2 B , x�.y/ D 1 if and only if y D x, and
B � ¹y 2 X W x�.y/ � 1º.

If X is finite-dimensional, then there always exists a strongly extremal point x 2 𝜕B .
Indeed, as 𝜕B is compact, find x 2 𝜕B which maximises the Euclidean distance from 0. Then
consider the tangent (affine) hyperplane T to the Euclidean ball of the corresponding radius
at x. This is a supporting hyperplane of B and y 2 B \ T if and only if y D x. Whence x is
strongly extremal. It is easily verified that a strongly extremal point is also an extremal point.

Suppose n 2 N andK � Rn is a convex set. An affine hyperplane T � Rn (i.e. an affine
subspace of dimension dimT D dimX � 1) is called an affine tangent to K at x if T is a sup-
porting hyperplane of K and x 2 T (this is just a change of name in the finite-dimensional
case).
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Suppose n;m 2 N, n � m. We define the functional volWRn�m ! Œ0;1/ by

volA D
p

detATA:

Recall that, for n-dimensional Hausdorff measure (see Section 2.3 below), one has

(2.1) Hn.A.E// D vol.A/Hn.E/ for any E � Rn; Hn-measurable set:

We extend this definition to norms. For a norm j � ja on Rn, we let

(2.2) volj � ja D
2n

Hn.Ba/
:

Recalling the fact that one always has Hn
a .Ba/ D 2

n together with Haar’s theorem, it follows
that

Hn
a .E/ D vol.j � ja/Hn.E/ for any E � Rn; Hn-measurable set:

2.3. Rectifiable metric spaces. Suppose X is a metric space. For each s 2 .0;1/,
ı > 0 and E � X , we define the quantity

H s
ı .E/ D inf

°X
i2N

.diamEi /
s
W E �

[
i2N

Ei ; diamEi � ı
±
:

The s-dimensional Hausdorff measure of E is the quantity

H s.E/ D sup
ı>0

H s
ı .E/:

This constitutes an outer measure, which can be restricted to a Borel measure. If the underlying
metric space needs to be specified, we use notation such as H s

X and similar.
Note that ifX is complete andE � X is Hn-measurable with � -finite Hn-measure, then

Hn
jE

is inner regular by compact sets. Indeed, it is not necessary to assume separability of X
as the closure of E is separable and complete.

If X D Rn and j � ja is a norm on Rn, then for k � n, we shall use the conventions

Hk
D Hk

j � j2
and Hk

a D Hk
j � ja
:

Note that, in the above situation, one always has Hn
a .Ba/ D 2

n (see [10, Lemma 6 (i)]).

Definition 2.3. Let X be a complete metric space. An Hn-measurable set E � X is n-
rectifiable is there exists a countable number of sets Fi � Rn and Lipschitz maps fi WFi ! X

such that
Hn

�
E n

[
i

fi .Fi /
�
D 0:

If one has S � X such that Hn.S \E/ for any n-rectifiable set E � X , then S is called
n-purely unrectifiable.

Given a metric space X and its subset E, we say that x 2 X is an Hn-density point of E
if

lim
r!0

1

.2r/n
Hn.E \ B.x; r// D 1:

If E if n-rectifiable, then its Hn-a.e. point is a density point of E (see [10, Theorem 9]).
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Suppose F � Rn and f WF ! Rm for some m; n 2 N. Given u 2 F an Hn-density
point of F , we say that a linear map f 0.u/WRn ! Rm is the (approximate) Frechét differential
of f at u if

lim
v2F;v!u

f .u/ � f .v/ � f 0.u/.u � v/

ju � vj2
D 0:

It is a consequence of the Rademacher’s differentiation theorem [7, Section 3.1.6] combined
with Kirszbraun’s extension theorem [7, Section 2.10.43] that, at Hn-a.e. u 2 F , the Frechét
differential of f exists uniquely.

Suppose j � ja is a norm on Rn and j � jb is a norm on Rm. It follows from the definition
that if f WFa ! Rm

b
is L-Lipschitz for some L 2 Œ0;1/, then

kf 0.u/ka!b � L

for every u 2 F for which f 0.u/ exists.
Now let X be a metric space and f WF ! X . A semi-norm s. � / on Rn is called a metric

differential of f at u 2 Rn if one has

lim
v2F;v!u

d.f .v/; f .u// � s.v � u/

jv � uj2
D 0:

It is the classical result of Kirchheim [10, Theorem 2] that if f is Lipschitz, then for Hn-
a.e. u 2 Rn, the metric differential s of f at u exists uniquely. In that case, we shall denote
jf 0j.u/ D s. Note that if X is a Euclidean space of dimension m, we denote by f 0.u/ the
classical (approximate) Frechét differential of f at x 2 F . In this case, according to the con-
ventions above, for any w 2 Rn, one has jf 0.u/.w/jRm2 D jf

0j.u/.w/, provided the left-hand
side is defined.

Definition 2.4 ([10], Definition 10). Let n 2 N, let E be a metric space and let x 2 E.
A norm j � ja on Rn is called an approximate tangent norm to E at x if there is a set zE � E
such that x is an Hn-density point of zE and, to each r > 0, there is a set Fr � Rn and a map
Ir W .Fr ; j � ja/! zE \ B.x; r/, which is a bi-Lipschitz bijection satisfying

lim
r!0

max¹Lip.Ir/;Lip.I�1r /º D 1:

From [10, Theorem 9], it immediately follows that if X is a complete metric space and
E is an n-rectifiable subset with Hn.E/ <1, then E admits an approximate tangent norm at
Hn-a.e. point of E. Moreover, the approximate tangent norm is unique, up to linear isometry,
at Hn-a.e. point ofE. Finally, it also follows from the proof of [10, Theorem 9] that if F � Rn,
f WF ! E and u 2 F is such that jf 0j.u/ is a norm, then jf 0j.u/ is a tangent norm to E at
f .u/ and it is unique up to linear isometry. We write T .E; x/ D Œj � ja�, provided j � ja is an
approximate tangent norm to E at x 2 E, which is unique up to a linear isometry. Note that
T .E; x/ is defined for Hn-a.e. x 2 E.

Remark 2.5. By [3, Proposition 5.8], tangent norms agree with the tangent spaces of
Ambrosio and Kirchheim.

A notion of a tangent metric measure space was recently introduced in [5] that is applica-
ble to our setting. One easily verifies that, for n-rectifiable E � X and Hn-a.e. x 2 E, j � ja is
an approximate tangent norm to E at x if and only if .Rn; j � ja; 0/ is a tangent metric measure
space of .E; x/ in the sense of [5].
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We will need to use [10, Lemma 4], which we restate here in an equivalent form for the
reader’s convenience.

Lemma 2.6 (Kirchheim). Let X be a metric space and E � X an n-rectifiable set.
Then, for any � > 0, there exists a countable number of compact sets Fi � Rn,Ei � E, norms
j � jai on Rn and .1C �/-bi-Lipschitz maps Ii W .Fi ; j � jai /! Ei such that

Hn
�
E n

[
i

Ei

�
D 0:

What follows is a refined version of the lemma above.

Lemma 2.7. LetX be a metric space, let F �Rn be Hn-measurable with Hn.F / <1

and f WF ! X Lipschitz. For each " > 0, there is a compact set K � f .F / with

Hn.f .F / nK/ < ";

possessing the following property. For each � > 0, there is a finite collection of sets Gi � K,
i D 1; : : : ; i0, such that the Gi are pairwise disjoint open subsets of K and

(i) K D
Si0
iD1Gi ,

(ii) to each i , there is some xi 2 K, Fi � Rn and j � j 2 T .K; xi / such that Gi is .1C �/-bi-
Lipschitz to .Fi ; j � j/.

Proof. First fix � > 0. For any " > 0, the existence of a K � f .F / satisfying

Hn.f .F / nK/ < ";

(i) for compact Gi and (ii) for arbitrary norms j � j on Rn is precisely given by [10, Lemma 4]
and using the inner regularity of Hn on Rn. It is evident from the proof of [10, Lemma 4] that
one may in fact take each j � j 2 T .K; xi /.

To obtain relatively open Gi , for each j 2 N, we apply the established statement for
"j D 2

�j " and �j D 1=j to obtain ij many pairwise disjoint compact sets Gji . Setting

K D
\
j2N

ij[
iD0

G
j
i

completes the proof, once we show that each Gji \K is relatively open. To see that, note that,
for each j 2 N,

Sij
iD1G

j
i is a union of disjoint compact sets Gji . Therefore, each Gji is also

open in
Sij
iD1G

j
i . Since K �

Sij
iD1G

j
i , we have that K \Gji is relatively open in K as Gji

is relatively open in
Sij
iD1G

j
i .

SupposeX is a complete metric space andE � X is n-rectifiable. Let x 2 E and suppose
there are sets zE � E, zF � Rn and a bi-Lipschitz map I W zF ! zE such that x is a density point
of zE. Suppose the metric differential jI 0j.I�1.x// exists and is a norm. Suppose f WX ! Rm

is a Lipschitz map such that .f ı I /0.I�1.x// exists. Then we define the Jacobian of f at x
with respect to E as

(2.3) JEf .x/ D
vol.f ı I /0.I�1.x///

vol.jI 0j.I�1.x///
:
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This notion is independent of the particular choice of I and zE and is easily shown to agree with
the Jacobian of Ambrosio and Kirchheim, defined via isometric embeddings into separable dual
spaces, Hn-a.e. in E (see [3, (8.4)]). In particular, we obtain the following metric version of
the area formula.

Theorem 2.8 ([3, Theorem 8.2]). For any metric space X , n-rectifiable E � X and
Lipschitz f WE ! Rm,

(2.4)
Z
E

JEf dHn
D

Z
f .E/

#f �1.u/ dHn.u/:

We remark also that this notion agrees with the classical notion of a Jacobian of a function
Hn-a.e. In particular, if E � Rn, one has JEf .x/ D volf 0.x/ if the right-hand side is well
defined. Notice that the “charts” I above can be obtained from the definition of a tangent
norm to E at a given point x, provided a tangent exists. If the tangent is also unique up to
isomorphism, JEf .x/ depends only on f and T .E; x/.

With this definition of the metric Jacobian, we are able to easily obtain the following
decomposition lemma.

Lemma 2.9. Suppose X is a complete metric space and E an n-rectifiable subset. If
m � n and f WE ! Rm is Lipschitz, then there exists a countable number of pairwise disjoint
compact sets

Ei � ¹x 2 E W JE .x/ > 0º

such that
Hn

�
¹x 2 E W JE .x/ > 0º n

[
i

Ei

�
D 0

and f is injective on each Ei . In particular, the formula

(2.5)
X
i

Hn.f .Ei // D

Z
E

JEf dHn

holds.

Proof. The first part of the assertion follows from the combination of Lemma 2.6, the
definition of JEf and the Euclidean result [7, 3.2.2. Lemma]. The “in particular” part then
follows immediately from the area formula (2.4).

We shall often work with the introduced notions on subsets of E; therefore, we require
the following statement.

Lemma 2.10. Let X be a complete metric space and E an n-rectifiable subset with
Hn.E/ <1. Suppose zE � E is any Hn-measurable set. Then

T .E; x/ D T . zE; x/ and JEf .x/ D J zEf .x/

for Hn-a.e. x 2 zE and every f 2 Lip.E;Rm/.
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Proof. By [5, Lemma 2.3], for Hn-a.e. x 2 zE, we have the density estimate

lim sup
r!0C

Hn.B.x; r/ \ .E n zE//

.2r/n
D 0:

From this, the statement about tangents follows easily. The statement about the Jacobians then
follows from the statement about tangents (together with uniqueness of tangents Hn-a.e.).

Finally, we turn our attention to strongly n-rectifiable metric spaces.

Definition 2.11. Let X be a complete metric space. An Hn-measurable set E � X is
strongly n-rectifiable if, for any " > 0, there exist a countable number of sets Fi � Rn and
.1C "/-bi-Lipschitz maps fi W .Fi ; j � j2/! E such that

(2.6) Hn
�
E n

[
i

fi .Fi /
�
D 0:

More generally, given a norm j � ja on Rn, an Hn-measurable set E � X is strongly
j � ja-rectifiable if, for any " > 0, there exist a countable number of sets Fi � Rn and .1C "/-
bi-Lipschitz maps fi W .Fi ; j � ja/! X such that (2.6) holds.

Lemma 2.12. Let X be a complete metric space, let E � X be n-rectifiable and j � ja
a norm on Rn. Then E is strongly j � ja-rectifiable if and only if, for Hn-a.e. x 2 E,

T .E; x/ D Œj � ja�:

Proof. First suppose that E is strongly j � ja-rectifiable. Fix " > 0 and, for F � Rn, let
f W .F; j � ja/! E be .1C "/-bi-Lipschitz. Then, for Hn-a.e. u 2 F , T .E; f .u// D Œjf 0j.u/�.
However, since f is .1C "/-bi-Lipschitz,

jvja

1C "
� jf 0j.u/.v/ � .1C "/jvja

for all v 2 Rn. As for any " > 0, and Hn-a.e. x 2 E, we may find f , F and u as above
with x D f .u/, we have j � ja 2 T .E; x/, and so, by uniqueness, T .E; x/ D Œj � ja� for Hn-
a.e. x 2 E.

Conversely, ifE is n-rectifiable and T .E; x/ D Œj � ja� for Hn-a.e x 2 E, then Lemma 2.7
implies that E is strongly j � ja-rectifiable.

Remark 2.13. A much stronger result is obtained from [5]. Indeed, suppose thatE � X
satisfies Hn.E/ <1 and has positive lower n-dimensional Hausdorff density at Hn-a.e.
point. Then E is strongly j � ja-rectifiable whenever, at Hn-a.e. x 2 E, E has a unique “weak
Gromov–Hausdorff tangent” that equals .Rn; j � ja/. In fact, it suffices that, for Hn-a.e. x 2 E,
all such tangents are Kx-bi-Lipschitz images of Rn and that at least one tangent at x equals
.Rn; j � ja/.

Conversely, if E is strongly j � ja-rectifiable, then the weak Gromov–Hausdorff tangents
uniquely equal .Rn; j � ja/ Hn-a.e. since they agree with T .E; � /.
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3. Lower semi-continuity of some area related functionals

The goal of this section is to study the openness part of the residuality result, i.e. to
study lower semi-continuity of the “area” functional given by f 7! Hn.f .E// and the “area
formula” functional given by

f 7!

Z
E

JEf dHn

in the relevant settings. This follows, to some degree, the approach from [4]. Mainly, we use
a modified version of [4, Lemma 7.3].

We structure the section into two subsections. In the first, we study the local behaviour
of both of the aforementioned functionals; in the second, we study global behaviour of the area
functional and use lower semi-continuity thereof to obtain lower semi-continuity of the area
formula functional.

For the entirety of this section, we let m; n 2 N with n � m and denote by B.x; r/ the
Euclidean ball in Rn centred at x of diameter r . We equip the spaces Rn, Rm with the Euclidean
norms.

3.1. Local behaviour of area and area formula. Firstly, we shall need a result for con-
tinuous functions based on Brouwer’s fixed point theorem. The following lemma is a modified
version of [4, Lemma 7.3], and its proof follows from [4, Lemma 7.3].

Lemma 3.1. Let " > 0 and let F WB.0; "/! B.0; "/ be a continuous function. Let
� 2 . 1

2n
; 1/ and suppose

jF.y/ � yj < ".1 � n
p
�/ for all y 2 𝜕B.0; "/:

Then F.B.0; "// � B.0; n
p
�"/.

Theorem 3.2 (Local lower semi-continuity of area). Suppose � � Rn is an open set,
f W�! Rm a continuous function, x 2 � and assume f 0.x/ exists. Let � 2 .0; 1/. Then there
are ı > 0 and r0 > 0 such that, for all r � r0 and any continuous function gWB.x; r/! Rm

with kg � f k1 � ır , it holds that

(3.1) Hn.g.B.x; r/// � � volf 0.x/Hn.B.x; r//:

Proof. As Hausdorff measures are invariant under translations, we may assume x D 0
and f .0/ D 0. Let us denote v D volf 0.x/. If v D 0, the statement is trivial, so we can
assume v > 0, which is equivalent to stating that A D f 0.x/ is of full rank. Thus, the map
AWRn ! Y D A.Rn/ is a linear invertible map. As f .0/ D 0, we have, by the definition of
a Frechét derivative,

(3.2) lim
y!0

jf .y/ � A.y/j

jyj
D 0:

Let us denote by P WRm ! Y the orthogonal projection onto Y . Observe the following
properties of P :

(P1) P ı A D A,

(P2) P is 1-Lipschitz,

(P3) for any u 2 Rm and w 2 Y , it holds that jPu � wj � ju � wj.
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Let kA�1k be the operator norm of A�1WY ! Rn. By virtue of (3.2), there is an r0 such that,
for all r � r0, it holds that

jf .y/ � A.y/j �
1

kA�1k

1

2
.1 � n

p
�/r for all y 2 B.0; r/:

This, by (P3) and by applying A�1 to the left-hand side yields

(3.3) jA�1Pf .y/ � yj �
1

2
.1 � n

p
�/r for all y 2 B.0; r/:

Let ı D 1
kA�1k

1
2
.1 � n

p
�/. By property (P2) above, if a function gWB.0; r/! Rm satisfies

kg � f k1 � ır;

then
jPg.y/ � Pf .y/j � ır for all y 2 B.0; r/:

Therefore, for such y, we have

jA�1Pg.y/ � A�1Pf .y/j � kA�1kır D
1

2
.1 � n

p
�/r;

which in combination with (3.3) gives

(3.4) jA�1Pg.y/ � yj � .1 � n
p
�/r for all y 2 B.0; r/:

To use Lemma 3.1, we require A�1Pg.B.0; r// to be a subset of B.0; r/. To this end, let

� WB.0; .1C n
p
�/r/! B.0; r/

be the radial projection onto B.0; r/. More precisely, for an element y 2 B.0; .1C n
p
�/r/, we

let �.y/ be the unique u 2 B.0; r/ minimising the distance ju � yj. We observe that � has
properties analogous to those of P , namely

(S1) � is an identity on B.0; r/,

(S2) � is 1-Lipschitz,

(S3) for any y 2 B.0; r/ and z 2 B.0; .1C n
p
�/r/, it holds that j�.z/ � yj � jz � yj.

From estimate (3.4), we infer thatA�1Pg.B.0; r// � B.0; .1C n
p
�/r/, and so we may define

G D � ı A�1 ı P ı g. By property (S3) and inequality (3.4), we obtain

jG.y/ � yj � .1 � n
p
�/r for all y 2 B.0; r/:

Finally, if g is continuous, then so is G, and hence Lemma 3.1 gives

G.B.0; r// � B.0; n
p
�r/:

Applying Hn to both sides, we obtain

Hn.�A�1Pg.B.0; r/// � �Hn.B.0; r//:

From (S2), the last equation implies

Hn.A�1Pg.B.0; r/// � �Hn.B.0; r//:

From (2.1) and from the fact that volA�1 D 1
v

, the last equation implies

Hn.Pg.B.0; r/// � �vHn.B.0; r//:

Finally, by (P2), we obtain (3.1).
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Corollary 3.3. Let � � Rn be an open set and let f W�! Rm be a Lipschitz map.
Assume x 2 � is a density point of volf 0 with volf 0.x/ > 0 and let � 2 .0; 1/. Then there is
r0 > 0 and ı > 0 such that, for every r � r0, if g 2 C.B.x; r/;Rm/ satisfies kg � f k1 � ır ,
then

Hn.g.B.x; r/// � �Hn.f .B.x; r///:

Proof. From Theorem 3.2, we can find r0 > 0, ı > 0 such that, for g 2 C.B.x; r/;Rm/
with kg � f k1 � ır , it holds that

(3.5) Hn.g.B.x; r/// �
p
� volf 0.x/Hn.B.x; r//:

From the fact that x is a density point of volf 0, it follows that we may possibly decrease r0 > 0
so that, for r < r0, we also have

(3.6) volf 0.x/Hn.B.x; r// �
p
�

Z
B.x;r/

volf 0 dHn:

By the area formula, we obtain

(3.7)
Z
B.x;r/

volf 0 dHn
� Hn.f .B.x; r///:

Combining (3.5), (3.6) and (3.7) yields the result.

3.2. Global lower semi-continuity of area in rectifiable metric spaces. We shall con-
tinue our previous conventions and assume n � m are natural numbers and B.x; r/ denotes the
Euclidean ball in Rn. We consider the spaces Rn and Rm to be equipped with the Euclidean
norms, unless stated otherwise.

Lemma 3.4. LetE � Rn be a compact set and let f WE ! Rm be a Lipschitz injection.
Let L 2 Œ0;1/. Then, for every � 2 .0; 1/, there exists ı > 0 such that if g 2 LipL.E;R

m/

satisfies kg � f k1 � ı, then

Hn.g.E// � �Hn.f .E//:

Proof. If Hn.f .E// D 0, the statement obviously holds, and so we may assume that
Hn.f .E// > 0. Firstly, let L0 denote the Lipschitz constant of f . Let C0 D

p
m.LC 2L0/.

Find " > 0 such that

(3.8)
p
�Hn.f .E// �

p
�"L0 � " � �H

n.f .E//:

Using the McShane extension theorem, we find an extension of f , denoted again by f , such
that f is

p
mL0-Lipschitz.

Let S � E be the set of density points of E and volf 0. Then, by the Lebesgue differen-
tiation theorem, we have

(3.9) Hn.E n S/ D 0:

Let x 2 S . Then, by Corollary 3.3, there is some 1 � rx > 0 and ıx > 0 such that, for all
r � rx and h 2 C.B.x; r/;Rm/ with kh � f k`1.B.x;r// � ıxr , it holds that

(3.10) Hn.h.B.x; r/// �
p
�Hn.f .B.x; r///:
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Observe that, since B.S; 1/ is bounded, there exists some � > 0 such that, for any countable
sequence of disjoint balls Bi with radii ri satisfying Bi � B.S; 1/ for each i , we have

(3.11)
X
i

rni � �:

As x is a density point of E, we have

lim
r!0C

Hn.B.x; r/ nE/

rn
D 0;

and so we may possibly reduce our rx > 0 so that we also get, for r � rx ,

(3.12) Hn.h.B.x; r/ nE// �
"

�
rn for any h 2 LipC0.R

n;Rm/:

Now the family of balls B D ¹B.x; r/ W x 2 S; r � rxº forms a Vitali cover of S . Hence, using
the Vitali covering theorem and recalling (3.9), there is a countable disjoint family of balls Bi
in B such that

Hn
�
E n

[
i

Bi

�
D 0:

Using continuity of Hn, there is some i0 2 N such that even

(3.13) Hn
�
E n

i0[
iD1

Bi

�
� ":

On denoting Bi D B.xi ; ri / and letting ıi D ıxi , i 2 ¹1; : : : ; i0º, and using (3.10) and (3.12),
we obtain, for each i 2 ¹1; : : : ; i0º,

(3.14) Hn.h.Bi // �
p
�Hn.f .Bi // for h 2 C.Bi ;Rm/ with kh� f k`1.Bi / � ıiri

and

(3.15) Hn.h.Bi nE// �
"

�
rni for h 2 LipC0.R

n;Rm/:

By (3.15), we now have

Hn.h.Bi / \ h.E// D Hn.h.Bi n .Bi nE/// � Hn.h.Bi / n h..Bi nE///

D Hn.h.Bi // �Hn.h.Bi nE// � Hn.h.Bi // �
"

�
rni

(3.16)

for i 2 ¹1; : : : ; i0º provided h 2 LipC0.R
n;Rm/.

Since f .Bi \E/ are pairwise disjoint compact sets (as f is a continuous injection on
the compact set E), there is some � > 0 such that

dist.f .Bi \E/; f .Bj \E// � � for all i; j 2 ¹1; : : : ; i0º with i ¤ j:

Observe that if h 2 C.Rn;Rm/ satisfies kh � f k`1.Rn/ �
�
4

, then

dist.h.Bi \E/; h.Bj \E// �
�

2
for all i; j 2 ¹1; : : : ; i0º with i ¤ j:
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In particular, h.Bi \E/ are pairwise disjoint. Let

ı D min
°�
4
; min
iD1:::i0

ıiri

±
:

Now suppose that g 2 LipC0.R
n;Rm/ satisfies kg � f k`1.Rn/ � ı; then we have

Hn.g.E// � Hn

�
g

�
E \

i0[
iD1

Bi

��
D

i0X
iD1

Hn.g.Bi \E//

(3.16)
�

i0X
iD1

Hn.g.Bi // �
"

�

i0X
iD1

rni

(3.14), (3.11)
�
p
�

i0X
iD1

Hn.f .Bi // � " D
p
�Hn

�
f

� i0[
iD1

Bi

��
� "

�
p
�Hn.f .E// �

p
�Hn

�
f

�
E n

i0[
iD1

Bi

��
� "

(3.13)
�
p
�Hn.f .E// �

p
�"L0 � "

(3.8)
� �Hn.f .E//;

where in the unlabelled equalities, we use disjoint additivity of measure, and in the last unla-
belled inequality, we use the inclusion

f .E/ � f

� i0[
iD1

Bi

�
[ f

�
E n

i0[
iD1

Bi

�
:

Now let g 2 LipL.E;R
m/ satisfy

kg � f k`1.E/ �
1
p
m
ı:

Take d D g � fjE and, using McShane’s extension theorem, find an extension thereof onto the
entire Rn such that d 2 Lippm.LCL0/.R

n;Rm/ and kdk`1.Rn;Rm/ � ı. Then zg D d C f is
an extension of g such that zg 2 LipC0.R

n;Rm/ and

kzg � f k`1.Rn/ � ı:

Whence Hn.g.E// D Hn.zg.E// � �Hn.f .E// by the above calculation.

Note that we only require g 2 LipL.R
n;Rm/ instead of simply g 2 Lip.Rn;Rm/, or

even g 2 C.Rn;Rm/, to obtain estimate (3.12). Therefore, in some cases, the assumption is
superfluous. For example, if E D Rn or, more generally, if � � Rn is open and E D � or
E D �.

Remark 3.5. Let � � Rn be open and bounded and let f W�! Rm be a Lipschitz
injection. Then, for every � 2 .0; 1/, there exists ı > 0 such that if g 2 C.�;Rm/ satisfies
kg � f k`1.�/ � ı, then Hn.g.�// � �Hn.f .�//.

We follow up with a version of Lemma 3.4 for metric spaces which are bi-Lipschitz
images of Euclidean sets.
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Lemma 3.6. LetK be a compact metric space for which there is a set F � Rn and a bi-
Lipschitz bijection I WF ! K. Assume f WK ! Rm is bi-Lipschitz and let L 2 Œ0;1/. Then,
for every � 2 .0; 1/, there exists ı > 0 such that if g 2 LipL.K;R

m/ satisfies kg � f k1 � ı,
then Hn.g.K// � �Hn.f .K//.

Proof. Firstly, we observe that, for any g 2 LipL.K;R
m/, we have

g ı I 2 LipCL.F;R
m/;

where C is the Lipschitz constant of I . Let ' D f ı I WF ! Rm. As f and I are bi-Lipschitz,
so is '; hence Lemma 3.4 gives a zı > 0 such that if  2 LipCL.F;R

m/ satisfies

k' �  k`1.F / � zı;

then

(3.17) Hn. .F // � �Hn.'.F //:

Let ı D
zı
C

. Assume g 2 LipL.K;R
m/ satisfies kf � gk`1.K/ � ı. Denote  D g ı I . Then

 2 LipCL.F;R
m/ and k' �  k`1.F / � zı, so (3.17) holds. From this, we have

Hn.g.K// D Hn. ı I�1.K// D Hn. .F // � �Hn.'.F //

D �Hn.f ı I�1.F // D �Hn.f .K//:

We shall fix a complete metric spaceX and an n-rectifiable subsetE. Define a functional

AE .g/ D Hn.g.E//

for any gWX ! Rm. For L 2 Œ0;1/, denote ƒL D .LipL.X;R
m/; k � k1/.

Theorem 3.7. For any L 2 Œ0;1/, the functional AE is lower semi-continuous onƒL.

Proof. Firstly, we shall assume Hn.E/ <1. We show that, for C > 0, the set

(3.18) ¹f 2 ƒL W H
n.f .E// > C º

is open. To that end, let f be from the set.
We split the proof into two parts. Firstly, we carefully decompose the space f .E/.

Using Lemma 2.6, we find a countable number of Borel sets Fi � Rn and Ei � E such that
Hn.E n

S
i Ei / D 0 and each Fi is bi-Lipschitz to Ei . Let M1 D f .E1/ and, for i > 1, let

Mi D f .Ei / n .f .E1/ [ � � � [ f .Ei�1//:

Then we have
Hn

�
f .E/ n

[
i

Mi

�
D Hn

�
E n

[
i

Ei

�
D 0:

Let now " > 0 and � 2 .0; 1/ be such that

(3.19) �Hn.f .E// � �" > C:
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By continuity of measure, we find i0 2 N such that

(3.20) Hn

�
f .E/ n

i0[
iD1

Mi

�
< ":

Let zKi D f �1.Mi /. As theMi are disjoint, so are the zKi . Since f is Lipschitz and Hn is
inner regular on each zKi , estimate (3.20) allows us to find, for each i 2 ¹1; : : : ; i0º, a compact
subset Ki � zKi such that

(3.21) Hn

� i0[
iD1

f .Ki /

�
> Hn.f .E// � ":

Note that we do not require the Ki to cover much of E; indeed, if f is highly non-injective,
then the Ki necessarily cover very little of E as the f .Ki / are disjoint.

In the second part, we use the decomposition above and solve the problem on each Ki
separately via Lemma 3.6. To this end, note that, since the f .Ki / are disjoint compact sets,
there is a � > 0 such that, for every i; j 2 ¹1; : : : ; i0º with i ¤ j , we have

dist.f .Ki /; f .Kj // > �:

Observe that if g 2 ƒL with kg � f k1 �
�
4

, then

dist.g.Ki /; g.Kj // >
�

2
I

in particular the sets g.Ki / are disjoint. By Lemma 3.6, for each i 2 ¹1; : : : ; i0º, there is
a ıi > 0 such that if g 2 ƒL satisfies kg � f k`1 � ıi , then

(3.22) Hn.g.Ki // � �H
n.f .Ki //:

Let now ı D min¹�
4
;miniD1:::i0¹ıiºº and suppose g 2 ƒL satisfies kg � f k`1 � ı. Then, by

disjointness of g.Ki /, we get

Hn.g.E// � Hn

�
g

� i0[
iD1

Ki

��
D

i0X
iD1

Hn.g.Ki //
(3.22)
� �

i0X
iD1

Hn.f .Ki //

� �Hn

� i0[
iD1

f .Ki /

�
(3.21)
> �Hn.f .E// � �"

(3.19)
> C:

We have shown that, to each f in the set in (3.18), there is a ı such that the ı-ball around
f in ƒL is in the set. Hence the set is open and we are done.

The general case, i.e. Hn.E/ D1, can be reduced to the finite case in the following
way. Let f 2 ƒL.E/ be such that

Hn.f .E// > C:

Then, as E is n-rectifiable, its Hn-measure is � -finite, whence there is some Hn-measurable
set K � E with Hn.K/ <1 and such that

Hn.f .K// > C:

Now we simply use lower semi-continuity of AK on .LipL.K;R
m/; k � k1/.
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Theorem 3.8. The functional

f 7!

Z
E

JEf dHn

is lower semi-continuous on ƒL for every L 2 Œ0;1/.

Proof. Suppose C 2 Œ0;1/ and f 2 ƒL is such thatZ
E

JEf dHn > C:

Find the sets Ei from Lemma 2.9 so that, by (2.5), we haveX
i

Hn.f .Ei // D

Z
E

JEf dHn > C:

Now there is some i0 2 N such that

i0X
iD1

Hn.f .Ei // > C:

By Theorem 3.7, to each i D 1; : : : ; i0, there is some ıi > 0 so that if g 2 ƒL satisfies

kf � gk`1.Ei / � ıi for all i 2 ¹1; : : : ; i0º;

then
i0X
iD1

Hn.g.Ei // > C:

Let ı D mini ıi . Then if g 2 ƒL is such that kf � gk1 � ı, we have, by Lemma 2.10 together
with the fact that Ei are disjoint and the area formula (2.4),Z

E

JEg dHn
�

i0X
iD1

Z
Ei

JEig dHn
�

i0X
iD1

Hn.g.Ei // > C:

4. General density statements

The purpose of this section is introduce some of the density results, in the spaces

Lipstr
L .X;R

m/ and LipL.X;R
m/

for a general complete metric space X .
The adopted approach is the natural one arising from use of Lemma 2.7. We construct

a Lipschitz function on some pieces of the n-rectifiable space E and then extend it onto X .
However, this is highly non-trivial, as usually it is necessary to do this with no increase (or, in
some sense, arbitrarily small increase) in the Lipschitz constant.

This is the purpose of the following lemma. The proof follows, almost to the word, the
proof of [4, Lemma 4.6].
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Lemma 4.1 (Lipschitz extension lemma). Let X be a metric space and .Y; k � k/ a
normed linear space. Further, letL 2 Œ0;1/,N 2 N and let Si � X , i D 1; : : : ; N . Let ı > 0
and assume �i 2 .0; 1�, i D 1; : : : ; N , are such that the sets B.Si ; �i / are disjoint. Assume
that f WX ! Y is an L-Lipschitz function and let gi WB.Si ; �i /! Y be L-Lipschitz functions
such that kgi � f k`1.B.Si ;�i // � ı�i for each i D 1; : : : ; N . Then there exists gWX ! Y an
.LC 4ı/-Lipschitz map such that g D gi on each Si , kg � f k`1.X/ < ı and g D f outsideS
i B.Si ; �i /.

Proof. On each B.Si ; �i /, we may write gi D f CEi , where kEik`1 < ı�i . Define
�i WX ! R by

�i .x/ D
max¹1

2
�i � dist.x; Si /; 0º

1
2
�i

:

Then �i have disjoint supports contained in B.Si ; 12�i /. Hence, it is valid to define gWX ! Y

by

g D f C

NX
iD1

�iEi :

From this definition and the fact that each �i � 1, all of the stated properties of g, except for
the Lipschitz constant, immediately follow.

It remains to show that, for any x; y 2 X , we have

(4.1) kg.x/ � g.y/k � Ld.x; y/C 2ıd.x; y/:

If there is an i D 1; : : : ; N such that �i .x/; �i .y/ > 0, then one can show (4.1) mutatis mutan-
dis as in [4, Lemma 4.6]. If there are i ¤ j such that �i .x/ > 0 and �j .y/ > 0, then one can
show

(4.2)
1

2
�i � dist.x; Si / � d.x; y/ and

1

2
�j � dist.y; Sj / � d.x; y/:

From these inequalities, we obtain

kg.y/ � g.x/k D kf .y/ � f .x/C �i .x/Ei .x/ � �j .y/Ej .y/k

� Ld.x; y/C j�i .x/jkEi .x/k C j�j .y/jkEj .y/k

� Ld.x; y/C ı�i

1
2
�i � dist.x; Si /

1
2
�i

C ı�j

1
2
�j � dist.x; Sj /

1
2
�j

� Ld.x; y/C 4ıd.x; y/:

What remains to show is the case when �i .x/ > 0 holds but �j .y/ D 0 for all j D 1; : : : ; N
(which implies the first half of (4.2)). In this case, we similarly have

kg.y/ � g.x/k D kf .y/ � f .x/C �i .x/Ei .x/k

� Ld.x; y/C j�i .x/jkEi .x/k

� Ld.x; y/C ı�i

1
2
�i � dist.x; Si //

1
2
�i

� Ld.x; y/C 2ıd.x; y/:
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The following simple observation is the main idea behind how to avoid losing measure
(of f .E/) by overlapping.

Lemma 4.2. Letm;n 2N and let S �Rm be an Hn-measurable set with Hn.S/ <1.
Let M be any set of n-dimensional affine subspaces of Rm. Then the set

¹T 2M W Hn.T \ S/ > 0º

is countable.

Proof. Suppose the statement fails. Then there exists some " > 0 such that the set

¹T 2M W Hn.T \ S/ > "º

is infinite (even uncountable). Therefore, we may find a countable family Ti , i 2 N, of distinct
elements of the aforementioned infinite set. As Hn.Ti \ Tj / D 0 whenever j ¤ i and as S is
Hn-measurable and so is every Ti , we have

Hn.S/ � Hn
�
S \

[
i2N

Ti

�
D

X
i2N

Hn.S \ Ti / �
X
i2N

" D1;

a contradiction.

The idea of the following sequence of statements is to show that a Lipschitz function
may be approximated in the strong distance k � k1 C Lip. � / by Lipschitz functions g which
simultaneously have very little overlap and “almost” satisfy g#Hn

jE
� Hn. This is firstly done

assuming E is a normed set.
Within the proof of these results, we will repeatedly make use of the following fact.

If f WX ! Y is an L-Lipschitz function on a compact metric space, then the functions �f ,
for 0 < � < 1, approximate f in the strong distance and have Lipschitz constant strictly less
than L. This gives us a small amount of space in which to construct a modification of �f
without leaving the space Lipstr

L .X; Y / and whilst also approximating f .

Lemma 4.3. Let E � Rn be a compact set and let S � Rm be Hn-measurable with
Hn.S/ <1. Let j � ja and j � jb be norms on Rn and Rm respectively. Let C > 0, L 2 Œ0;1/
and let f WEa ! Rm

b
be an L-Lipschitz function. Then, for every " > 0, there is a function

gWE ! Rm and Hn-measurable sets F � E, N � Rm such that

(i) g is Lipschitz as a map gWEa ! Rm
b

, with Lipschitz constant Lip.g/ < L,

(ii) kg � f k1 < ",

(iii) LipEa!Rm
b
.g � f / < ",

(iv) Hn
a .E n F / <

1
L
C ,

(v) Hn.N / D 0 and ¹u 2 Rm W #g�1.u/ > 1º � g.E n F / [N ,

(vi) the set F admits a decomposition F D
Si0
iD1 Fi for some i0 2 N such that, for each

i D 1; : : : ; i0, Fi is Hn-measurable and gjFi is a restriction of an affine map with posi-
tive volume,

(vii) Hn.g.F / \ S/ D 0.
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Proof. First, as B.E; 1/ is bounded, we can find � <1 so that, for any countable
disjoint system of ballsBi D B.xi ; ri / � B.E; 1/, we have

P
i r
n
i � �. Let � 2 .0; 1/ be such

that

(4.3) �.1 � �n/ <
1

2

1

L
C:

We may assume that L0 D Lip.f / < L. Let ı 2 .0; "=
p
m/ be such that L0 C 3ı < L.

We use Lusin’s theorem to find an Hn-measurable set zE � E with

(4.4) Hn.E n zE/ <
1

2

1

L
C

such that x 7! f 0.x/ is uniformly continuous on zE. This implies that x 7! volf 0.x/ is also
uniformly continuous, and it also allows us to obtain uniform approximations with derivatives
in the following way. To each ı > 0, there is r0 > 0 such that, for every r � r0 and every
x 2 zE a density point of zE, we have

jf .y/ � f .z/ � f 0.x/.y � z/jb <
1

2
ı.1 � �/jy � zja for all y; z 2 B.x; r/ \ zE:

Moreover, the operator norm kf 0.x/ka!b is no larger than L0.
Let now x and r be as above and consider the function d WB.x; r/ \ zE ! Rm given by

d.y/ D f .y/ � f .x/ � f 0.x/.y � x/ for B.x; r/ \ zE:

Then, for y; z 2 B.x; r/ \ zE ! Rm, we may estimate

jd.y/ � d.z/jb � jf .y/ � f .x/C f
0.x/.y � x/ � f .z/C f .x/ � f 0.x/.z � x/jb

� jf .y/ � f .z/ � f 0.x/.y � z/j <
1

2
ı.1 � �/jy � zja;

which means that d is .1
2
ı.1 � �//-Lipschitz on the relevant domain. Hence, there is an open

neighbourhood zUx of f 0.x/ in L.Rna;R
m
b
/, the space of linear operators between Rna and Rm

b
,

such that, for each A 2 zUx , it holds that

kAka!b < L0 C ı;

jf .y/ � f .x/ � A.y � x/jb < ı.1 � �/r for all y 2 B.x; r/ \E

and
LipB.x;r/\ zE .y 7! f .y/ � f .x/C A.y � x// < ı.1 � �/:

Observe also that Ux D ¹A 2 zUx W volA > 0º is open and not empty. Using Vitali’s covering
theorem, we find a countable number of disjoint ballsBi D B.xi ; ri / and open, non-empty sets
Ui 2 L.Rna;R

m
b
/ such that

jf .y/ � f .xi / � A.y � xi /jb � ı.1 � �/ri(4.5)

for all y 2 Bi \E and A 2 Ui ;

LipBi\ zE .y 7! f .y/ � f .xi /C A.y � xi // < ı.1 � �/(4.6)
for any A 2 Ui ;

Hn
�
zE n

[
i

Bi

�
D 0;
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and volA > 0 for any A 2 Ui . Observe that now

Hn
�
zE n

[
�Bi

�
� �.1 � �n/:

Whence, by (4.3) and (4.4), there is an index i0 2 N such that

(4.7) Hn

�
E n

i0[
iD1

�Bi

�
<
1

L
C:

Suppose now that d W
Si0
iD1 �Bi \

zE ! Rm satisfies, for each i D 1; : : : ; i0,

(4.8) d.y/ D f .y/ � f .xi /C Ai .y � xi / for some Ai 2 Ui and all y 2 �Bi \ zEi :

Then, by (4.6), d is .ı.1 � �//-Lipschitz on each �Bi \ zE. If i ¤ j and

y 2 �Bi \ zE; z 2 �Bj \ zE;

then

jd.y/ � d.z/jb � jd.y/ � d.xi /jb C jd.xi / � d.xj /jb C jd.xj / � d.z/jb
(4.5)
� ı.1 � �/ri C ı.1 � �/rj :

On the other hand,
jy � zja � .1 � �/ri C .1 � �/rj

as Bi \ Bj D ;. This means that d is ı-Lipschitz on the set
Si0
iD1 �Bi \

zE

We construct gi inductively on the sets Bi for i D 1; : : : ; i0. Let S0 D S . By Lemma 4.2,
there is some A1 2 U1 such that Hn.Œf .x1/C A1.Rn/� \ S0/ D 0. Define

g1.y/ D f .x1/C A1.y � x1/ for y 2 B1:

Assume we have defined gi for i D 1; : : : ; k � 1, k � i0. Let Sk D
Sk�1
iD1 g.Bi / [ S0. As

Hn.Sk/ <1, using Lemma 4.2, there is an Ak 2 Uk such that

Hn.Œf .xk/C Ak.R
n/� \ Sk/ D 0:

Let
gk.y/ D f .xk/C Ak.y � xk/ for y 2 Bk :

Thus, we have constructed .L0 C ı/-Lipschitz functions gi WBi ! Rm satisfying

kgi � f k`1.Bi\E/ � ı.1 � �/ri :

Now we let
d D f � gi on Bi \ zE; i D 1; : : : ; i0:

By construction, d satisfies (4.8). Whence, by our choice of ı, d admits an extension (denoted
again by d ) onto entire Rn such that Lip.d/ < " and kdk1 < ". Indeed, here we have just
used McShane extension together with the estimate ı < 1p

m
". We let g D f � d on E. This

implies immediately that (i), (ii) and (iii) are satisfied.
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We let Fi D �Bi \E and

N D

i0[
iD1

Si \ g.Fi /:

Then, by construction, Hn.N / D 0. Let F D
Si0
iD1 Fi . From the construction, (vi) and (vii)

follow immediately and (iv) holds due to (4.7).
Finally, to show (v), suppose u 2 Rm has two preimages under g, neither of which

lies in E n F , i.e. there are some x; y 2 F such that g.x/ D g.y/ D u. Then there are some
i; j 2 ¹1; : : : ; i0º such that x 2 Fi , y 2 Fj and, without loss of generality, j � i . As g is by
construction injective on each Fi , we have j < i . Therefore, by definition of Si , necessarily,
g.y/ 2 Si . On the other hand, x 2 Fi implies g.x/ 2 g.Fi /. Altogether, u 2 Si \ g.Fi /, and
so u 2 N .

Now we may use Lemma 2.6 to push the results from normed sets into general metric
spaces.

Theorem 4.4. Let X be a complete metric space and let E � X be an n-rectifiable
subset with Hn.E/ <1, let L 2 Œ0;1/ and let j � jb be a norm on Rm. Suppose f WX ! Rm

b

is an L-Lipschitz function. Then, to each " > 0 and C > 0, there is a function gWX ! Rm and
Hn-measurable sets F � E, N � Rm such that

(i) gWX ! Rm
b

is Lipschitz with constant Lip.g/ < L,

(ii) kg � f k1 < ",

(iii) Lip.g � f / < "

(iv) Hn.E n F / < 1
L
C ,

(v) Hn.N / D 0 and ¹u 2 g.E/ W #g�1.u/ > 1º � g.E n F / [N ,

(vi) JEg > 0 Hn-a.e. on F .

Proof. We may assume that Lip.f / D L0 < L. Let 0 < � <1. Let Ci > 0, i 2 N, be
a sequence for which

(4.9)
1

2L
C C .1C �/L

X
i

Ci <
1

L
C:

By Lemma 2.6, we find compact sets Ei � E, Ki � Rn, norms j � jai on Rn and .1C �/-bi-
Lipschitz bijections Ii W .Ki ; j � jai /! Ei such that

Hn
�
E n

[
i

Ei

�
D 0:

Find i0 2 N such that

(4.10) Hn

�
E n

i0[
iD1

Ei

�
<

1

2L
C:
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As Ei are compact, there is some � > 0 such that

B.Ei ; �/ \ B.Ej ; �/ D ;

provided i; j 2 ¹1; : : : ; i0º, i ¤ j . Let now 0 � C 0i � 1, i D 1; : : : ; i0, be such that

(4.11)
i0X
iD1

p
m"C 0i max

°
.1C �/;

1

�

±
� ı:

For each i D 1; : : : ; i0, we let zfi D f ı Ii W .Ki ; j � jai /! Rm
b

, a ..1C �/L0/-Lipschitz func-
tion. Denoting S1 D ;, we use Lemma 4.3 to find

zg1W .K1; j � ja1/! Rmb ;

a .1C �/L0-Lipschitz function, and sets zF1 � K1, N1 � Rm such that

(i)1 kzg1 � zf1k`1.K1/ < "C
0
1 ,

(ii)1 Lip.K1;j � ja1 /!Rm
b
.zg1 � zf1/ < "C

0
1 ,

(iii)1 Hn
a1
.K1 n zF1/ <

1
L
C1,

(iv)1 Hn.N1/ D 0,

(v)1 ¹u 2 zg1.K1/ W #zg�11 .u/ > 1º � zg1.K1 n zF1/ [N1,

(vi)1 vol zg01 > 0 Hn-a.e. on zF1,

(vii)1 Hn.S1 \ zg1. zF1// D 0.

Suppose now that zgi have been constructed for i D 1; : : : ; k � 1, where k 2 ¹1; : : : ; i0º. We
set

Sk D

k�1[
iD1

zgi .Ki /:

Using Lemma 4.3 once again, we find zgk W .Kk; j � jak /! Rm
b

, a .1C �/L0-Lipschitz function,
and sets zFk � Kk , Nk � Rm such that

(i)k kzgk � zfkk`1.Kk/ < "C
0
k

,

(ii)k Lip.Kk ;j � jak /!Rm
b
.zgk � zfk/ < "C

0
k

,

(iii)k Hn
ak
.Kk n zFk/ <

1
L
Ck ,

(iv)k Hn.Nk/ D 0,

(v)k ¹u 2 zgk.Kk/ W #zg�1k .u/ > 1º � zgk.Kk n zFk/ [Nk ,

(vi)k vol zg0
k
> 0 Hn-a.e. on zFk ,

(vii)k Hn.Sk \ zgk. zFk// D 0.

For each i D 1; : : : ; i0, we let Fi D I�1i . zFi / and gi D zgi ı I�1i . Moreover, we define

di .x/ D

´
gi .x/ � f .x/ if x 2 Ei ;

0 if x 2 X n B.Ei ; �/:

Using the fact that B.Ei ; �/ are pairwise disjoint together with properties (i)k and (ii)k , we
observe that kdik1 � "C 0i and Lip.di / � max¹.1C �/"C 0i ;

1
�
"C 0i º on the relevant domains.

Using McShane extension, we extend each di onto the entire X , denoting the extensions again
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by di , thereby obtaining functions satisfying

(a)i kdik`1.X/ < "C 0i ,

(b)i LipX!Rm
b
di �

p
m"C 01 max¹.1C �; 1

�
/º,

(c)i di D 0 on Ej for each j ¤ i .

We let d D
Pi0
iD1 di and g D f � d . As the function Lip. � / is sub-additive on Lip.X;Rm

b
/,

using (b)i and (4.11), we have

Lip.d/ �
i0X
iD1

p
m"C 0i max

°
.1C �/;

1

�

±
� ı;

which, as ı < ", implies (iii) and, as L0 C ı < L, implies (i). Similarly, since C 0i � 1, we also
obtain (ii).

By (c)i , g D gi on each Ei . Therefore, using the fact that Ii are .1C �/-bi-Lipschitz
together with properties (i)k–(vii)k , we observe the properties

(1) Hn.Ei n Fi / � .1C �/H
n.Ki n zFi / � .1C �/

1
L
Ci ,

(2) Ni � Fi with Hn.Ni / D 0 and it holds that

¹u 2 gi .Ei / W #g�1.u/ > 1º � gi ..Ei n Fi / [Ni /;

(3) JEg > 0 Hn-a.e. on each Fi .

Let F D
Si0
iD1 Fi . Now (vi) holds by (3). Moreover, we may estimate

Hn.E n F / D Hn

� i0[
iD1

Ei n Fi

�
CHn

�
E n

i0[
iD1

Ei

�
;

where, by property (1) and estimate (4.10), the last expression is estimated from above by

.1C �/
1

L

i0X
iD1

Ci C
1

2L
C:

Whence (iv) follows from the choice of Ci (4.9).
It remains to find N and show (v). To that end, we simply let

N D

� i0[
iD1

Ni

�
[

i0[
iD1

Si \ g.Fi /:

As g.Fi / D zgi . zFi /, using (vii)k , we see that Hn.N / D 0. To show (v), suppose u 2 g.E/
and g�1.u/ \ .E n F / D ; and assume u has two distinct preimages under g. It suffices to
show that u 2 N . There are x; y 2 F such that g.x/ D g.y/ D u. By definition of F , we may
assume that there are i; j 2 ¹1; : : : ; i0º, j � i such that x 2 Fi , y 2 Fj . Firstly, assume that
j D i . Then #zg�1i .u/ > 1, and so u 2 zgi .Ki n zFi / \Ni . However,

u … zgi .Ki n zFi / D gi .Ei n Fi /

as g�1.u/ \ .E n F / D ;. Therefore, it is necessary that u 2 Ni � N . Secondly, assume that
j < i . Then g.y/ 2 Si by the definition of Si and g.x/ 2 g.Fi / simply because x 2 Fi .
Therefore, u 2 Si \ g.Fi / � N . Either way, u 2 N , and we are done.
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Corollary 4.5. Let n < m, let X be a complete metric space and let E � X be an
n-rectifiable subset. Let L 2 Œ0;1/. Then the set²

f 2 Lipstr
L .X;R

m/ W

Z
E

JEf dHn
D Hn.f .E//

³
is residual in Lipstr

L .X;R
m/.

Proof. Firstly, we may write E D
S1
iD1Ei , where Ei form an increasing sequence of

Hn-measurable sets with Hn.Ei / <1. Now if a function f 2 Lipstr
L .X;R

m/ satisfiesZ
Ei

JEif dHn
D Hn.f .Ei //

on each Ei , then it obviously also satisfies the assertion. As a countable intersection of residual
sets is residual, we may assume, without loss of generality, that Hn.E/ <1. By the area
formula (2.4), it suffices to show that the sets²

f 2 Lipstr
L .X;R

m/ W

Z
E

JEf dHn
�Hn.f .E// <

1

i

³
are open and dense in Lipstr

L .X;R
m/ for every i 2 N. Density follows immediately from Theo-

rem 4.4 by taking C sufficiently small (depending on i ). For openness, it is sufficient to observe
that the functional

(4.12) f 7!

Z
E

JEf dHn
�Hn.f .E//

is upper semi-continuous on Lipstr
L .X;R

m/. The functional

f 7!

Z
E

JEf dHn

is easily seen to be continuous on Lipstr
L .X;R

m/. Moreover, the functional f 7! Hn.f .E//

is lower semi-continuous on LipL.X;R
m/, and therefore it is also lower semi-continuous

on Lipstr
L .X;R

m/. Therefore, the functional f 7! �Hn.f .E// is upper semi-continuous on
Lipstr

L .X;R
m/. Altogether, we have shown that the functional in (4.12) is a sum of upper

semi-continuous functionals and as such it is upper semi-continuous.

The proof of the following corollary is now trivial upon recalling Baire’s theorem and the
preceding corollary, together with the fact that sets which are dense in Lipstr

L .X;R
m/ are also

dense in LipL.X;R
m/.

Corollary 4.6. Let n < m, let X be a complete metric space and let E � X be an
n-rectifiable subset. Let L 2 Œ0;1/. Then the set²

f 2 LipL.X;R
m/ W

Z
E

JEf dHn
D Hn.f .E//

³
is dense in LipL.X;R

m/.
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Corollary 4.7. Let n � m, let X be a complete metric space and let E � X be an n-
rectifiable subset. Let L 2 Œ0;1/. Then the set of the L-Lipschitz functions f WX ! E such
that

(4.13) f#Hn
jE � Hn

Rm

is residual in Lipstr
L .X;R

m/.

Proof. As in the proof of Corollary 4.5, we may assume Hn.E/ <1. Recalling the
area formula (2.4), it is easily seen that, for a Lipschitz function f WX ! Rm, one has (4.13) if
and only if JEf > 0 Hn-a.e. in E. We can write

¹f 2 Lipstr
L .X;R

m/ W JEf > 0 Hn-a.e. on Eº

D

\
i2N

°
f 2 Lipstr

L .X;R
m/ W Hn.¹x 2 E W JEf .x/ D 0º/ <

1

i

±
:

(4.14)

It is therefore enough to show that the sets on the right-hand side of (4.14) are open and dense.
Density follows immediately from Theorem 4.4 by choosing C > 0 sufficiently small (we use
particularly properties (iv) and (vi) therein).

Openness follows by a rearrangement argument. Assume 'k 2 L1.E/ D L1.E;Hn
jE
/

is a sequence which converges in L1.E/ to some function ' 2 L1.E/. Then their non-
increasing rearrangements satisfy '�

k
! '� in L1.Œ0;Hn.E/�;L1/. Here the non-increasing

rearrangement is defined as

'�.t/ D inf¹� � 0 W Hn.¹x 2 E W '.x/ > �º/ � tº for t 2 Œ0;Hn.E/�:

Suppose further that Hn.¹x 2 E W 'k.x/ D 0º/ �
1
i
. Then

'�k .t/ D 0 for all t 2
�
Hn.E/ �

1

i
;Hn.E/

i
:

Then we also have '�.t/ D 0 for all t 2 .Hn.E/ � 1
i
;Hn.E/�. We apply this to Jacobians of

the relevant functions to show that the complements of the sets on the right-hand side of (4.14)
are closed. To that end, let i 2 N be fixed and let fk; f 2 Lipstr

L .X;R
m/ be such that fk ! f

in Lipstr
L .X;R

m/ and

Hn.¹x 2 E W JEfk.x/ D 0º/ �
1

i
for all k 2 N:

By our assumption on convergence of fk , we have JEfk ! JEf in L1.E/. Therefore, by
the argument above, .JEf /�.t/ D 0 for all t 2 .Hn.E/ � 1

i
;Hn.E/�. By the definition of the

non-increasing rearrangement, this implies

Hn.¹x 2 E W JEf .x/ D 0º/ �
1

i
:

Therefore, the set °
f 2 Lipstr

L .X;R
m/ W Hn.¹x 2 E W JEf .x/ D 0º/ �

1

i

±
is closed, and we are done.
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5. Residuality of functions with images of large measure

The purpose of this section is to provide residuality results in the positive direction.
Firstly, using the tools developed in previous Sections 3 and 4, we provide a useful charac-
terisation of the residuality of the sets

¹f 2 Lip1.X;R
m
b / W H

n.f .E// � �º D
\
i2N

°
f 2 Lip1.X;R

m
b / W H

n.f .E// > � �
1

i

±
:

This is the subject of the first subsection.
In the second subsection, we use this characterisation to prove the relevant residuality

results assuming X is a normed set and E its subset. This only works under particular assump-
tions on the norm (and also the norm j � jb in the target space). We do not discuss sharpness of
these conditions.

Finally, in the third subsection, we concentrate on the particular instance of Euclidean
norms. In this case, we are able not only to get the best possible � D Hn.E/ but also to push
these results into the setting of n-rectifiable subsets of Rk (as opposed to mere subsets of Rn).
It is there that we prove our first main result Theorem 1.1.

5.1. Characterisations of residuality.

Lemma 5.1. Let n � m, let X be a complete metric space and E � X an n-rectifiable
set. Let j � jb be a norm on Rm. The functionals

f 7! Hn
j � j2
.f .E// and f 7!

Z
E

JEf dHn

are lower semi-continuous on LipL.X;R
m
b
/ for any L 2 Œ0;1/.

Proof. This follows from Theorems 3.7 and 3.8 respectively.

Theorem 5.2. Let n � m, let X be a complete metric space and let E � X be an n-
rectifiable subset. Let j � jb be a norm on Rm and suppose thatL 2 Œ0;1/ and C > 0. Consider
the following statements.

(i) The set A�C D ¹f 2 LipL.X;R
m
b
/ W Hn.f .E// � C º is residual in LipL.X;R

m
b
/.

(ii) The sets A> zC D ¹f 2 LipL.X;R
m
b
/ W Hn.f .E// > zC º are dense in LipL.X;R

m
b
/ for

all zC < C .

(iii) The set V�C D ¹f 2 LipL.X;R
m
b
/ W
R
E JEf dHn � C º is residual in LipL.X;R

m
b
/.

(iv) The sets V> zC D ¹f 2 LipL.X;R
m
b
/ W
R
E JEf dHn > zC º are dense in LipL.X;R

m
b
/

for all zC < C .

If n < m, then all of the statements are mutually equivalent. If n D m, then (i) and (ii) are false
and (iii) and (iv) are equivalent.

Proof. If n D m, (i) and (ii) are false as, in fact, any sequence fk WX ! Rm
b

with
fk ! 0 uniformly satisfies Hn.fk.E//! 0. If n < m, then equivalence of (i) and (ii) follows
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from Lemma 5.1 as we can write

A�C D
\
i2N

A>.C� 1
i
/:

Similarly, equivalence of (iii) and (iv) (for any n � m) is also obtained from Lemma 5.1.
Now let n < m. The fact that (ii) implies (iv) is obviously true due to the area formula

(2.4). It remains to show that (iv) implies (ii). To that end, fix zC < C and f 2 LipL.X;R
m
b
/.

From (iv), we can find, for each " > 0, some g 2 LipL.X;R
m
b
/ with kg � f k1 < " satisfyingZ

E

JEg dHn > zC :

As the functional g 7!
R
E volJEg dHn is lower semi-continuous, there is some ı > 0 such

that, for any h 2 LipL.X;R
m
b
/ satisfying kg � hk1 < ı, we still have

(5.1)
Z
E

JEh dHn > zC :

From Corollary 4.6, we see that the set of functions h satisfying the improved area formula

(5.2)
Z
E

JEh dHn
D Hn.h.E//

is dense in LipL.X;R
m/. Thus, there exists some h 2 LipL.X;R

m
b
/ satisfying kg � hk1 < ı

and (5.2). By (5.1), such h satisfies

Hn.h.E// D

Z
E

JEh dHn > zC :

As ı > 0 may be reduced to an arbitrarily small number, we have shown that A zC is dense,
which is (ii).

5.2. Positive results in normed sets. Recalling Lemma 2.7, it would seem that a good
starting point to tackling n-rectifiable metric spaces is the study of metric spaces which are
merely subsets of Rn equipped with a distance induced by a particular norm j � ja. The object
of this section is to provide a sufficient condition (on j � ja) so that there exists some � > 0 so
that the set

¹f 2 Lip.Ea;Rm/ W Hn.f .E// > �Hn.E/º

is residual in Lip.Ea;Rm/ for all m > n and all E � Rn bounded Hn-measurable sets.
We shall work in a slightly more general setting and allow a general norm (which we

denote exclusively by j � jb) on the target space Rm as well.
It should be noted that, right now, both on the domain and on the target side, we are

working either with the whole Euclidean space or a subset thereof. We do equip it with a dif-
ferent metric (norm), but the metric is always equivalent to the Euclidean one. This implies that
the induced Hausdorff measures (of any dimension) are always equivalent. However, available
area formulas are far more conveniently used if the Hausdorff measures considered on either
side are induced by the Euclidean distance. This is, up to a constant, without loss of generality.
In other words, up to a constant, whenever we write Hn, one may replace it with Hn

a (on the
domain) or Hn

b
(on the target).
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There is, however, a small caveat to what is said above. If we want to prove an estimate
holding for an entire family of norms, then constants matter. This is just a small technical
detail; however, to avoid confusion, we will state some of our results in a “duplicate” form.
One dealing with Euclidean Hausdorff measure and one dealing with the Hausdorff measure
induced by the particular norm.

Let us fix some notation for the entirety of this section. We shall assume that n;m 2 N
satisfy n � m, and that j � ja and j � jb are norms on Rn and Rm respectively.

Observation 5.3. Let AWR! Rm be a linear map. Let u 2 Rm, and if A ¤ 0, assume
also that u D �A.1/ for some � 2 R with j�j � 1. Then, for every " > 0, there exists a Lipschitz
curve 
 WR! A.R/ such that

(i) k
 � Ak1 < ",

(ii) 
 0 exists everywhere in R up to a discrete set of points,

(iii) if x 2 R is such that 
 0.x/ exists, then 
 0.x/ D ˙u.

Proof. If A D 0 or � D 1, the proof is obvious. Assume � > 1 and A ¤ 0. There is
a partition of R into intervals Œai ; bi �, i 2 Z, with ai D bi�1 such that, on each Œai ; bi �, we can
define 
 to be an affine curve with 
 0 D ˙u (sign depends on parity of i ), 
.bi / D 
.aiC1/
for each i and such that k
 � Ak`1.Œai ;bi �/ is comparable to jbi � ai j. Here we needed to use
the assumption that � > 1 as otherwise A would “run away” from 
 .

For any � > 0, the partition can be made such that jai � bi j � � for all i 2 Z, while
still having some ı > 0 such that jbi � ai j � ı for all i 2 Z. The derivative 
 0 then exists
everywhere except the endpoints of the intervals, which form a discrete set of points. By making
the partition fine enough, that is, taking � > 0 small enough and recalling that jbi � ai j is
comparable to k
 � Ak`1.Œai ;bi �/, we can make it so that (i) holds.

Given a linear space Y of dimension n and a map I WY ! Y which is diagonalisable,
i.e. there are eigenvectors .u1; : : : ; un/ of I , which form a basis of Y , we say that zI is a sign
permutation of I if there are j.i/ 2 ¹0; 1º, i D 1; : : : ; n, such that

zI .ui / D .�1/
j.i/I.ui /:

We denote by sp I the set of all sign permutations of I . Observe that the set sp I is independent
of the particular choice of eigenvector basis .u1; : : : ; un/ and indeed sp I only depends on I
(and Y ). We shall further adopt the name non-shrinking to refer to diagonalisable linear maps,
whose eigenvalues have absolute values greater than or equal to 1.

The following definition is a useful way of describing the possibility of approximating
a linear map with a piecewise affine map, which has large volume almost everywhere.

Definition 5.4. Let A 2 Ba!b be of full rank and let � > 0. We say that A admits
a �-inflation if there exists a diagonalisable map I WA.Rn/! A.Rn/ satisfying the following
properties. The absolute value of every eigenvalue of A is no smaller than 1 (i.e. I is non-
shrinking), and for every zI 2 sp I , we have

(i) k zI ı Aka!b � 1.

(ii) vol. zI ı A/ � �.
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Remark 5.5. In the case that j � jb is Euclidean (and hence invariant under linear reflec-
tions), it is enough to verify kI ı Aka!b � 1 and one does not need to consider sign permuta-
tions of I .

Definition 5.6. The pair of norms j � ja on Rn and j � jb on Rm is said to form a �-
inflating pair for a � > 0 if, for every linear mapA 2 Ba!b of full rank,A admits a �-inflation.
We also write that .j � ja; j � jb/ forms a �-inflating pair.

Some geometric intuition for the preceding definitions is in order. If A admits a �-
inflation, this means that the convex set A.Ba/ � A.Rn/ (having a non-empty interior in
A.Rn/) can be inflated in such a way that A.Ba/ � Bb \ A.Rn/ and that the n-dimensional
(Euclidean) Hausdorff measure of A.Ba/ is sufficiently large (this depends on the norms
and �). Moreover, this inflation must be achieved using a map, which admits a diagonal form
with respect to some basis of A.Rn/ and this map may not shrink in any direction. It is useful
to note that this basis corresponds via A�1WA.Rn/! Rn with a basis in Rn.

The requirement that the inflation be diagonal will become clear once we prove the prin-
cipal result. The reason we require that I does not shrink in any direction (a condition on
its eigenvalues) is so that we can use Observation 5.3 (this corresponds to the condition on �
therein).

Example 5.7. Let j � ja D j � j2 and j � jb D j � j2. Then every linear map A 2 B2!2 of
full rank admits a 1-inflation. Indeed, any such map A is of the form A D S ıD ıR, where
R 2 O.n/, S 2 O.m/ and D is diagonal with diagonal values less than or equal to one in
magnitude. Moreover, as A is of full rank, the diagonal values of D are non-zero, and so D
admits the inverseD�1WD.Rn/! Rn. Let EWRn ! Rm be the diagonal matrix with only 1’s
on the diagonal and let A D S ıE ıR. It is an easy exercise to now show that A D IA for

(5.3) I D S ıE ıD�1 ı S�1WA.Rn/! A.Rn/:

From (5.3), as E ıD�1 is diagonal, I is diagonalisable, and both properties (i) and (ii) from
the definition of 1-inflation are satisfied.

Proposition 5.8. Let AWRn ! Rm be an affine map of the form A D Alin C u, where
Alin is a linear map and u 2 Rm. Assume that Alin is of full rank, L0 D kAlinka!b � 1 and
Alin admits a �-inflation for some � > 0. Let E � Rn be a bounded Hn-measurable set. Then,
for every " > 0, there is g 2 LipL0.Ea;R

m
b
/ such that

(i) kg � Ak1 < " and

(ii) volg0 � L0� Hn-a.e. in E.

Proof. By a standard scaling argument, we may assumeL0 D 1. We may assume, with-
out loss of generality, thatA is linear. We first construct gWRn ! Rm and then restrict toE. By
our assumption on A, there is a diagonalisable map I WA.Rn/! A.Rn/ whose eigenvectors
.u1; : : : ; un/ D .A.x1/; : : : ; A.xn// form a basis of A.Rn/ and which satisfies the properties
from Definition 5.4. Note that .x1; : : : ; xn/ form a basis of Rn.
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Fix i 2 ¹1; : : : ; nº. Recalling Observation 5.3, there is a Lipschitz curve 
i WR! span¹uiº
such that j
i .t/ � A.txi /j < " for all t 2 R, and

(5.4) 
 0i .t/ D ˙I.A.xi // for all t 2 R up to a discrete set:

Denote by t WRn ! Rn the coordinate function with respect to the basis .x1; : : : ; xn/, i.e. we
have x D

Pn
iD1 ti .x/xi for each x 2 Rn. We now simply let

g.x/ D

nX
iD1


i .ti .x// for x 2 Rn:

As each 
i is Lipschitz, g is also Lipschitz. Fix an i 2 ¹1; : : : ; nº. Given an arbitrary x 2 Rn

such that 
 0i .ti .x// exists, since t is a linear map, we have t 0.x/ D t . Therefore, using (5.4), we
have, for any j̨ 2 R, j D 1; : : : ; n,

.
i ı ti /
0.x/.˛1x1 C � � � C ˛nxn/ D 


0
i .ti .x//.t

0
i .x//.˛1x1 C � � � C ˛nxn/

D 
 0i .ti .x//.˛i / D ˙˛iI.A.xi //:

Therefore, by definition of g, we have

g0.x/.˛1x1 C � � � C ˛nxn/ D

nX
jD1

˙ j̨ I.A.xj //:

This means that, for every x 2 Rn, up to a set of Hn-measure 0, g0.x/ D zIA for some
zI 2 sp I . Therefore, by (i) in Definition 5.4, g is a Lipschitz function on the entire Rn satisfy-
ing kg0.x/ka!b � 1 for every such x 2 Rn. This, by Lemma 2.1, implies that g is 1-Lipschitz
between Rna and Rm

b
. The restriction gjE therefore satisfies gjE 2 Lip1.Ea;R

m
b
/ and (i). By

property (ii) in Definition 5.4, using once again the fact that g0.x/ D zIA for Hn-a.e. x 2 E, (ii)
is satisfied as well.

Proposition 5.9. Let E � Rn be a bounded Hn-measurable set and let E � D � Rk .
Let f WD ! Rm and suppose f 2 Lip1.Da;R

m
b
/. Assume that .j � ja; j � jb/ forms a �-inflating

pair for some � > 0. Then, to each " > 0 and � 2 .0; 1/, there exists gWD ! Rm such that

(i) g 2 Lip1.Da;R
m
b
/,

(ii) kg � f k1 < ",

(iii)
R
E volg0 dHn � ��Hn.E/.

Proof. If Hn.E/ D 0, the statement obviously holds, so we may assume Hn.E/ > 0.
We may assume, without loss of generality, that the Lipschitz constant of f is strictly less
than 1. We therefore have L0 D max¹Lipa!b.f /;

1C�
2
º < 1. Find C > 0 such that

(5.5) �L0H
n.E/ � �L02C � ��Hn.E/:

Find� > 0 such that, for any sequence Bi D Ba.xi ; ri / � Ba.E; 1/, xi 2 E, of disjoint balls,
we have

P
i r
n
i � �. Let � 2 .0; 1/ be such that

(5.6) �.1 � �n/ < C:
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Find ı 2 .0; 1
2
"/ such that L0 C 4ı < 1. Then, for any x 2 E a density point of E such

that f 0.x/ exists, we find rx 2 .0; 1� such that

jf .y/ � f .x/ � f 0.x/.y � x/jb � ı.1 � �/jy � xja for all y 2 Ba.x; rx/ \D:

In a standard way, using Vitali covering and continuity of measure, we thereby obtain a finite
sequence of disjoint balls Bi D Ba.xi ; ri / \D, xi 2 E, i D 1; : : : ; i0, in Da such that

Hn

�
E n

i0[
iD1

Bi

�
< C;

and for each i 2 ¹1; : : : ; i0º, we have an affine map Ai WRn ! Rm with

jf .y/ � Ai .y/jb < ı.1 � �/ri for all y 2 Bi :

As f is L0-Lipschitz, we may also assume that the linear part of each Ai lies in L0Ba!b .
From the density of maps of full rank in Ba!b , we may assume that each Ai is of full rank.
Recalling Proposition 5.8, we find gi WBi ! Rn such that gi 2 LipL0..Bi /a;R

m
b
/ and

volg0 � L0� Hn-a.e. in Bi ; and kgi � Aik`1.Bi / � ı.1 � �/ri :

Using the extension Lemma 4.1 (for X D D), there is a function gWD ! Rm such that

(a) Lipa!b.g/ � L0 C 4ı,

(b) g D gi on �Bi for each i 2 ¹1; : : : ; nº,

(c) kg � f kl1.D/ � 2ı.1 � �/ � ".

By our choice of ı, we have g 2 Lip1.Da;R
m
b
/, which is (i), and from (c), we get (ii). It

remains to show (iii).
Firstly, by (5.6), we have

Hn

�
E n

i0[
iD1

�Bi

�
� Hn

�
E n

i0[
iD1

Bi

�
CHn

� i0[
iD1

Bi n �Bi

�
� C C�.1 � �n/ < 2C:

Moreover, by (b), volg0 � L0� in each Bi , and using also (5.5), it follows thatZ
E

volg0 dHn
�

i0X
iD1

Z
�Bi\E

volg0 dHn
� �L0

i0X
iD1

Hn.�Bi \E/

� �L0

�
Hn.E/ �Hn.E n

i0[
iD1

�Bi /

�
� �L0H

n.E/ � �L02C � ��Hn.E/:

We are now ready to prove the main result of this section.

Theorem 5.10. Suppose n � m and let j � ja be a norm on Rn and j � jb a norm on Rm.
Let E � Rn be bounded and Hn-measurable and let E � D � Rn. Let � > 0 and assume
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.j � ja; j � jb/ forms a �-inflating pair. The set²
f 2 Lip.Da;Rmb / W

Z
E

volf 0 dHn
� �Hn.E/

³
is residual in Lip.Da;Rmb /. Suppose n < m. Then the set

¹f 2 Lip.Da;Rmb / W H
n.f .E// � �Hn.E/º

is residual in Lip.Da;Rmb /.

Proof. Firstly, we realise that, by Haar’s theorem, Hn is a constant multiple of Hn
a .

Therefore, we may use the general result of Theorem 5.2, and it suffices to show that²
f 2 Lip.Da;Rmb / W

Z
E

volf 0 dHn > z�Hn.E/

³
is dense for every z� < � provided n � m. This follows from Proposition 5.9.

By virtue of Haar’s theorem, we can obtain the relevant result with “correct” Hausdorff
measure on the domain side.

Corollary 5.11. Suppose n � m, let j � ja be a norm on Rn and let j � jb be a norm
on Rm. Let E � Rn be bounded and Hn-measurable and let E � D � Rn. Let � > 0 and
assume .j � ja; j � jb/ forms a .vol.j � ja/�/-inflating pair. The set²

f 2 Lip1.Da;R
m
b / W

Z
E

volf 0 dHn
� �Hn

a .E/

³
is residual in Lip1.Da;R

m
b
/. Suppose n < m. Then the set

¹f 2 Lip1.Da;R
m
b / W H

n.f .E// � �Hn
a .E/º

is residual in Lip1.Da;R
m
b
/.

Proof. As Hn
a is a Haar measure on Rn and Hn

a .Ba/ D 2
n, we have Hn

a D volj � jaHn

by Haar’s theorem. The rest follows from Theorem 5.10.

Recalling Example 5.7, we immediately obtain the following Euclidean result.

Corollary 5.12. Suppose m � n. Let E � Rn be bounded and Hn-measurable and let
E � D � Rn. The set²

f 2 Lip1.D;R
m/ W

Z
E

volf 0 dHn
D Hn.E/

³
is residual in Lip1.D;R

m/. Suppose n < m. Then the set

¹f 2 Lip1.D;R
m/ W Hn.f .E// D Hn.E/º

is residual in Lip1.D;R
m/.
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5.3. Strongest possible results in Euclidean spaces. While the results of the last sub-
section were “local” in the sense that they required the n-rectifiable set to be in fact a normed
piece of Rn, in the following, we push some of the results to general Euclidean n-rectifiable
sets, obtaining a proof of Theorem 1.1.

Theorem 5.13. Let n � k, n � m and suppose E � Rk is n-rectifiable and satisfying
Hn.E/ <1. Let E � D � Rk . Let f 2 Lip1.D;R

m/. Then, for every " > 0 and � 2 .0; 1/,
there is a g 2 Lip1.D;R

m/ such that

(i) kg � f k1 � ",

(ii)
R
E JEg dHn > �Hn.E/.

Proof. If Hn.E/ D 0, the statement obviously holds, so we may assume Hn.E/ > 0.
Without loss of generality, L0 D Lip.f / < 1. Find � > 0 such that .1C �/2L0 < 1. Find
�0 2 .0; 1/ and C > 0 such that

(5.7)
1

.1C �/2
�0.H

n.E/ � C/ > �Hn.E/:

Using [7, Lemma 3.2.2] (which is the Euclidean version of Lemma 2.6), we find countably
many Ei � E Borel and disjoint, Fi � Rn and .1C �/-bi-Lipschitz maps Ii WFi ! Ei such
that

Hn
�
E n

[
i

Ei

�
D 0:

Using continuity and inner regularity of Hn, there is some i0 2 N such that

(5.8) Hn

�
E n

i0[
iD1

Ei

�
< C;

and we may assume that Ei are compact. There is some r 2 .0; 1
3
"/ such that, for every

i; j 2 ¹1; : : : ; i0º with i ¤ j , we have

(5.9) dist.Ei ; Ej / � r:

Let "0 2 .0; 13"/ be such that

(5.10)
"0

r
C L0 < 1:

Fix i D 1; : : : ; i0 and let

'i D f ı Ii WFi ! Rm:

Then 'i is L0.1C �/-Lipschitz. Whence, by Corollary 5.12 (we are using only density), there
is  i WFi ! Rm such that

(a)  i 2 LipL0.1C�/.Fi ;R
m/,

(b) k i � 'ik`1.Fi / � "0,

(c)
R
Fi

vol 0i dHn � �0H
n.Fi /.
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Let gi WEi ! Rm be given by gi D  i ı I�1i . Define S D
Si0
iD1Ei and let gWS ! Rm

be given by
g.x/ D gi .x/ for x 2 Ei ; i D 1; : : : ; i0:

By (a), (b), (5.9) and (5.10), g is 1-Lipschitz. By (b), we have

(5.11) kg � f k`1.S/ � "0;

and by (c), (5.8) and (5.7), we have

(5.12)
Z
S

JEg dHn
�

1

.1C �/2
�0H

n.S/ �
1

.1C �/2
�0.H

n.E/ � C/ > �Hn.E/:

It remains to extend g. To that end, let

c.x/ D

´
g.x/ if x 2 S;

f .x/ if x 2 D n B.S; r/:

From (5.10) and (5.11), it follows that c is 1-Lipschitz. Using Kirszbraun’s extension theorem,
we find a 1-Lipschitz extension of c onto D. This extension also extends g on S and we will
denote it by g. By (5.12), we have (i), and so it remains to show (ii).

Let x 2 B.S; r/ n S and find y 2 S with jx � yj D r . Then

jg.x/ � f .x/j � jg.x/ � g.y/j C jg.y/ � f .y/j C jf .y/ � f .x/j

� jx � yj C "0 C jx � yj � r C "0 C r < ":

This shows that (ii) holds, and we are done.

Theorem 5.14 (Restatement of Theorem 1.1). Let n � k, n � m and suppose E � Rk

is n-rectifiable. Let E � D � Rk . Then the set²
f 2 Lip1.D;R

m/ W

Z
E

JEf dHn
D Hn.E/

³
is residual in Lip1.D;R

m/. Moreover, if n < m, then the set

¹f 2 Lip1.D;R
m/ W Hn.f .E// D Hn.E/º

is residual in Lip1.D;R
m/.

Proof. We may reduce to the case Hn.E/ <1 in the standard way as Hn
jE

is � -finite.
Recalling Theorem 5.2, it suffices to show that the set²

f 2 Lip1.Da;R
m/ W

Z
E

JEf dHn > �Hn.E/

³
is dense for every � 2 .0; 1/. This follows from Theorem 5.13.

The result of Theorem 5.14 is, as many other residuality results, strange in the sense
that constructing any specific examples of Lipschitz maps that satisfy the required properties
is highly non-trivial. Even considering E D S1, the unit circle embedded in R2, it is not clear
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at all how to construct a 1-Lipschitz map into R having the tangential Jacobian equal to ˙1
H1-a.e. If we were allowed to have Lip.f / D 1C ", this would be easy (one may, for example,
consider a parametrisation of E of speed 1 and locally invert it on small intervals), but there is
no natural way of sending "! 0. If, in this case, we consider maps into R2, it is once again
difficult to construct any f WR2 ! R2 which is 1-Lipschitz and satisfies H1.f .E// D H1.E/

which is not a linear isometry.

6. Negative results in normed sets

While in the Euclidean space very strong results hold, this fails in more general spaces.
In fact, it is enough to consider different (finite-dimensional) normed spaces for some of the
results to fail completely. The purpose of this section is to provide conditions on norms j � ja
and j � jb so that sets of the form

¹f 2 Lip.�a;Rmb / W H
n.f .�// � �º

are not dense in Lip.�a;Rmb /. Here the most general instance of � is a bounded open set –
further generality is possible but not of much interest to us. The sets being open makes several
technical steps significantly easier.

Recall the definition of a strongly extremal point from Definition 2.2. We begin with
a simple observation about strongly extremal points. Recall that a linear map P WRn ! Rn is
called a linear projection if P ı P D P .

Proposition 6.1. Suppose j � ja is a norm on Rn. If u 2 𝜕Ba is strongly extremal, then it
is extremal. Moreover, for u 2 𝜕Ba, the following statements are equivalent:

(i) u is a strongly extremal point of Ba,

(ii) there exists a linear projection P WRn ! span¹uº such that P�1.u/ \ Ba D ¹uº,

(iii) there exists a linear projection P WRn ! span¹uº such that if un 2 Ba is a sequence with
P.un/! u, then un ! u.

Proof. If (i) holds, then there is an affine tangent T to Ba at u with T \ Ba D ¹uº.
Taking P WRn ! spanu to be the linear map satisfying P�1.u/ D T , we see that both (ii)
and (iii) hold. On the other hand, if (ii) or (iii) hold, we can take T D P�1.u/, and in either
case, we get T \ Ba D ¹uº, which means that (i) holds.

Given u 2 Rm and V D .v2; : : : ; vn/ 2 .Rm/n�1, we use the notation .ujV / for the
linear map from Rn ! Rm satisfying .ujV /.e1/ D u and .ujV /.ej / D vj for j 2 ¹2; : : : ; nº.

Definition 6.2. Suppose n;m 2 N, 2 � n � m. Let j � ja be a norm on Rn and j � jb
a norm on Rm. For any u 2 Rm satisfying k.uj0/ka!b � 1, we define the maximal volume
of u as the quantity mvu D mva!b u 2 Œ0;1/ given by

mvu D sup¹vol.ujV / W V 2 .Rm/n�1; k.ujV /ka!b � 1º:
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The following observation, stating essentially that mv is upper semi-continuous, is an
immediate consequence of the fact that vol is 1

2
-Hölder (it is even Lipschitz, but that does

require a proof) and that k � ka!b is Lipschitz.

Observation 6.3. Suppose n;m 2 N, 2 � n � m. Let j � ja be a norm on Rn and j � jb
a norm on Rm. Let u 2 Rm be such that k.uj0/ka!b � 1. Then, to each ı > 0, there is
" > 0 such that, for every zu 2 Ba.u; "/, the following holds. If V 2 .Rm/n�1 is such that
k.zujV /ka!b � 1, then vol.zujV / � mvuC ı.

We shall also require a particular property of integral averages, which is the subject of the
following lemma. As this holds in an arbitrary finite measure space, we state it in full generality.

Lemma 6.4. Let .R; �/ be a measure space with 0 < �.R/ <1 and let  WR! R be
Hn-measurable. Let K > 0, ı > 0 and N 2 N be given. Then there is " > 0 such that if

(6.1)  � K a.e. in R and K.1 � "/ �
1

�.R/

Z
R

 d�;

then �.¹ � K � ıº/ � �.R/.1 � 1
N
/.

Proof. Denote � D 1
�.R/

�.¹ � K � ıº/. Then, for every " > 0, assuming (6.1) holds,
one has

K.1 � "/ �
1

�.R/

Z
R

 d� D
1

�.R/

�Z
¹ �K�ıº

 d�C
Z
¹ <K�ıº

 d�
�

�
1

�.R/
.�.R/�K C .1 � �/�.R/.K � ı// D �K C .1 � �/.K � ı/:

The above inequality is equivalent to

(6.2)
�K"C ı

ı
� �:

We may find an " > 0 so that the left-hand side of (6.2) is greater than or equal to 1 � 1
N

. This,
however, implies that � � 1 � 1

N
, and the statement follows.

Theorem 6.5. Suppose n;m 2 N, 2 � n � m and denote Q D Œ�1; 1�n. Let j � ja be
a norm on Rn and j � jb a norm on Rm. Let u 2 Rm be a strongly extremal point of Bb such
that k.uj0/ka!b D 1. Then, for any r > 0 and any sequence gi 2 Lip1.Qa;R

m
b
/ such that

gi ! .uj0/, it holds that

lim
i!1

Hn.¹x 2 Q W volg0i .x/ � mvuC rº/ D 0:

Proof. We claim that, for every N 2 N and � > 0, there exists " > 0 such that if

g 2 Lip1.Qa;R
m
b /

satisfies kg � .uj0/k`1.Qa;Rmb / � ", then

(6.3) k
𝜕g
𝜕e1
� ukb � � on a Borel set M of Hn-measure at least 2n �

2n

N
:
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Suppose for a moment that the claim holds true. Let N 2 N; by taking � > 0 small
enough and using Observation 6.3 together with the fact that kgika!b � 1 Hn-a.e., there
exists some iN 2 N (depending only on N ) such that

volg0i � mvuC
r

2
Hn-a.e. in M; for i � iN :

It follows that

Hn.¹x 2 Q W volg0i .x/ � mvuC rº/ � Hn.Q nM/ �
2n

N
for i � iN ;

and so the statement of the theorem follows by sending N !1.
It remains to show the claim. As u is strongly extremal, by Proposition 6.1, we find

a linear projection P WRm ! span¹uº with the following property. Whenever w˛ 2 Bb satisfy
P.w˛/! u as ˛ !1, we have w˛ ! u. Hence, we may find ı > 0 such that, for every
w 2 Bb ,

(6.4) jP.w/ � ujb � ı implies jw � uj � �:

Finally, fixing K D 1, R D Œ�1; 1� and � D L1, find " > 0 from Lemma 6.4.
Fix now t2; : : : ; tn 2 Œ�1; 1� and consider the Lipschitz curve

'.t/ D g.t; t2; : : : ; tn/:

Since k.uj0/ka!b � 1 and u 2 𝜕Bb , we infer that .1; 0; : : : ; 0/T 2 𝜕Ba, which means that
the restriction of j � ja to span¹.1; 0; : : : ; 0/T º is the Euclidean distance. Whence, as ' is 1-
Lipschitz, we have

j'0.t/jb � 1 for a.e. t 2 Œ�1; 1�:

Applying the fundamental theorem of calculus, we obtainZ 1

�1

'0.s/ ds D '.1/ � '.�1/ 2 Bb.2u; 2"/;

i.e. ˇ̌̌̌Z 1

�1

'0.s/ ds � 2u
ˇ̌̌̌
b

� 2"I

hence, recalling that P has operator norm 1,ˇ̌̌̌Z 1

�1

P.'0.s// ds � u
ˇ̌̌̌
b

� 2":

If we now identify span¹uiºwith R by assigning � 2 R to �ui , we may use the reverse triangle
inequality and obtain Z 1

�1

P.'0.s// ds � 2 � 2";

in the sense of the described identification. By the choice of ", we find a Borel set

M.t2; : : : ; tn/ � Œ�1; 1� with H1.M.t2; : : : ; tn// � 2 �
2

N

such that
jP.'0/ � ujb � ı on M.t2; : : : ; tn/:
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By definition, whenever '0 exists, one has '0 D 𝜕g𝜕e1 . Whence the Borel set

M D
°
x 2 Q W

ˇ̌̌
P
� 𝜕g
𝜕e1

.x/
�
� u

ˇ̌̌
b
� ı

±
has the following property. For any choice of t2; : : : ; tn 2 Œ�1; 1�, the one-dimensional projec-
tion of M satisfies

¹x 2M W x2 D t2; : : : ; xn D tnº �M.t2; : : : ; tn/:

Whence Fubini’s theorem gives

Hn.M/ � 2n �
2n

N
:

By the definition of M and the choice of ı (6.4), we haveˇ̌̌ 𝜕g
𝜕e1
� u

ˇ̌̌
b
� � on M;

which is (6.3), as we wanted.

Corollary 6.6. Suppose n;m 2 N, 2 � n � m. Let � � Rn be bounded and open. Let
j � ja be a norm on Rn and j � jb a norm on Rm. Let u 2 Rm be a strongly extremal point of Bb
such that k.uj0/ka!b D 1. Then, for any r > 0 and any sequence gi 2 Lip1.�a;R

m
b
/ such

that gi ! .uj0/, it holds that

lim
i!1

Hn.¹x 2 � W volg0i .x/ � mvuC rº/ D 0:

In particular, if mvu D 0, then the sets²
f 2 Lip1.�a;R

m
b / W

Z
�

volf 0 dHn
� �

³
and

¹f 2 Lip1.�a;R
m
b / W H

n.f .�// � �º

are dense in Lip1.�a;R
m
b
/ if and only if � D 0.

Proof. Any open bounded set� � Rn may be arbitrarily well (with respect to measure)
filled with a finite set of non-overlapping squares; thus the first statement easily follows from
Theorem 6.5. The non-density of the first set then follows immediately from the first statement.
The statement about the non-density of the second set follows from the area formula and the
non-density of the first set.

Example 6.7. Let n;m 2 N, m � n and denote u D .1; 0; : : : ; 0/T 2 Rm. It is an easy
observation that mv1!2 u D 0. Indeed, one may even show that, for V 2 .Rm/n�1, one has
k.ujV /k1!2 � 1 if and only if V D 0. This in particular shows that, for any open bounded
set � � Rm, the set

¹f 2 Lip1.�1;R
m
2 / W H

n.f .�// � �º

is dense in Lip1.�1;R
m
2 / if and only if � D 0.
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In fact, the idea of the example above can be easily used to show a far stronger statement.

Theorem 6.8 (Restatement of Theorem 1.2). Let n;m 2 N, m � n. Suppose j � ja is
a norm on Rn such that 𝜕Ba contains a non-extremal point of Ba. Suppose further that j � jb is
an arbitrary norm on Rm. Then, for any open bounded set � � Rn, the sets²

f 2 Lip1.�a;R
m
b / W

Z
�

volf 0 dHn
� �

³
and

¹f 2 Lip1.�a;R
m
b / W H

n.f .�// � �º

are dense in Lip1.�a;R
m
b
/ if and only if � D 0.

Proof. Let us denote by e1; : : : ; en the canonical vectors in Rn. By our assumptions,
there is a point x 2 𝜕Ba, which is non-extremal in Ba, and there is a linear invertible map
AWRn ! Rn such that A.x/ D e1 and e1 C span¹e2; : : : ; enº is an affine tangent to A.Ba/.
As AW .Rn; j � ja/! .Rn; j � jA.a// is an isometry, and the statement we are proving is invariant
under isometries, we may assume that x D e1 and e1 C span¹e2; : : : ; enº is an affine tangent
to Ba at x D e1.

As 𝜕Bb is compact, there exists u 2 𝜕Bb maximising the quantity juj2. By taking the
unique supporting hyperplane to the Euclidean ball of radius juj2 at u, one can easily observe
that u is a strongly extremal point of Bb . Therefore, in particular, it is also extremal.

Clearly, k.uj0/ka!b D 1 as .uj0/.Ba/ D ¹tu W t 2 Œ�1; 1�º, and so mvu is well defined.
It is enough to show that mvu D 0 and recall Corollary 6.6.

Suppose that we have V 2 .Rm/n�1 such that vol.ujV / > 0. It suffices to prove that
k.ujV /ka!b > 1. To that end, let l � Ba be any non-degenerate line segment having e1 as
its midpoint. As .ujV / is of full rank, .ujV /l is a non-degenerate line having u as its mid-
point. As u is extremal in Bb , this implies that .ujV /l 6� Bb , which, as l � Ba, implies
k.ujV /ka!b > 1, and we are done.

7. Results in metric spaces

The goal of this final section is to present results in general metric spaces. Of course, the
“generality” here is fairly limited by the fact that, even in case of normed spaces, the relevant
results simply need not be true. Therefore, our positive results concentrate on n-rectifiable
metric spaces whose Hn-a.e. approximate tangents are �-inflating.

Definition 7.1. Given n 2 N, we denote by N .n/ the set of all norms on Rn, and by�,
we understand the equivalence relation on N .n/ given by j � ja1 � j � ja2 if and only if there is
an invertible linear map AWRn ! Rn such that A.Ba1/ D Ba2 . The space N .n/=� is called
the Banach–Mazur compactum. Given � > 0, n � m 2 N and a norm j � jb on Rm, we let

N b
infl.�/.n/ D ¹Œj � ja� 2 N .n/=� W .j � ja; j � jb/ forms a .vol.j � ja/�/-inflating pairº:

Remark 7.2. The notion of forming .vol.j � ja/�/-inflating pair descends to quotient, i.e.
.j � ja; j � jb/ forms a .vol.j � ja/�/-inflating pair if and only if, for every j � ja0 2 Œj � ja�, .j � ja0 ; j � jb/
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forms a .vol.j � ja0/�/-inflating pair. This means that the particular representative chosen when
dealing with the family N b

infl.�/.n/ is irrelevant.

Theorem 7.3. Suppose that n; m 2 N, n � m, X is a complete metric space and
E � X an n-rectifiable subset with Hn.E/ <1. Suppose j � jb is a norm on Rm. Let � > 0
and assume that, for Hn-a.e. � 2 E, one has T .E; �/ 2 N b

infl.�/.n/. Then, for each " > 0,
there is a set zE � E with Hn.E n zE/ < " which, moreover, satisfies the following. For every
zE � X 0 � X , f 2 Lip1.X

0;Rm
b
/, ı > 0 and � 2 .0; 1/, there exists g 2 Lip1. zE;R

m
b
/ with

kg � f k
`1. zE/

� ı and

(7.1)
Z
zE

J zEg dHn
� ��Hn

X .
zE/:

Proof. If Hn.E/ D 0, the statement obviously holds, so we may assume Hn.E/ > 0.
There is some Kb 2 .0;1/ such that, for every 1-Lipschitz function g defined on any Hn-
measurable subset of E, one has JEg � Kb on the set where the left-hand side is well defined.
After discarding a set of measure zero, we may assume that T .E; �/ 2 N b

infl.�/.n/ for every
� 2 E.

Let " > 0. Firstly, by Lemma 2.6, there exists a finite collection of disjoint compact sets
Ei � E, each of which is bi-Lipschitz to some subset of Rn and such that Hn.E n

S
i Ei / < ".

This allows us to use Lemma 2.7 on each Ei separately, thus obtaining for each i a com-
pact set zEi � E such that still Hn.E n

S
i
zEi / < " and, moreover, the property described in

Lemma 2.7 holds on each zEi . That is, for each i and any � > 0, there exists a finite number of
pairwise disjoint open sets Gji � zEi such that

(i) zEi D
S
j G

j
i ,

(ii) for each j , there is some xji 2 zEi , F
j
i � Rn, j � j 2 T . zEi ; x

j
i / such that Gji is .1C �/-

bi-Lipschitz to .F ji ; j � j/.

We let zE D
S
i
zEi .

Now let f 2 Lip1.X;R
m
b
/, ı > 0 and � 2 .0; 1/ be given. We may assume, without loss

of generality, that L0 D Lip.f / < 1. Let � > 0 and "0 > 0 be such that .1C �/2L0 < 1 and

(7.2)
�

1C �
Hn
X .
zE/ �Kb"0 � ��H

n
X .
zE/:

Recall that the sets zEi are pairwise disjoint and compact. Using (i), (ii) and Lemma 2.10,
we may suitably re-index so as to obtain a finite family of non-empty sets Gj � zE, where
j 2 ¹1; : : : ; j0º, such that

(a) each Gj is open in zE,

(b) zE D
Sj0
jD1Gj ,

(c) G zEj , the closure in zE of the Gj , are pairwise disjoint,

(d) for each j 2 ¹1; : : : ; j0º, there is a norm j � jaj such that we have Œj � jaj � 2 N b
infl.�/.n/,

a set Fj � F and a map Ij W .Fj ; j � jaj /! Gj which is a .1C �/-bi-Lipschitz bijection.

For an open non-empty set G � zE and � > 0, we let

G� D ¹� 2 G W dX .�; zE nG/ � �º:
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We shall need two properties of this construction. Firstly, by continuity of measure, it holds
that

(7.3) lim
�!0

Hn.G nG� / D 0:

Secondly, one has B zE .G� ; �/ � G
zE . Here, for convenience, we define B zE .;; �/ D ;. There-

fore, by (c), the sets B zE .G�j ; �/ are disjoint. As there is a finite number of sets Gj , using (7.3)
and (b), there is some � > 0 such that B zE .G�j ; �/ are disjoint and

(7.4) Hn

�
zE n

j0[
jD1

G�j

�
< "0:

Let 0 < ı0 � ı be such that .1C �2/L0 C 4 ı0� � 1.
Fix j 2 ¹1; : : : ; j0º and let zfj WFj ! Rm

b
be given by zfj D f ı Ij . Now

zfj 2 Lip.1C�/L0..Fj ; j � jaj /;R
m
b /;

whence we may use Theorem 5.10 (we require only density) to find

zgj 2 Lip.1C�/L0..Fj ; j � jaj /;R
m
b /

such that k zfj � zgj k`1.Fi / � ı0 andZ
Fj

JFj gj dHn
� � vol.j � jaj /H

n
j � j2
.Fj / D �Hn

aj
.Fj /:

Let gj WGj ! Rm
b

be given by gj D zgj ı I�1j . Then gj 2 Lip.1C�/2L0.Gj ;R
m
b
/ and, by

the area formula, it satisfiesZ
Gj

JGj gj dHn
D

Z
gj .Gj /

#g�1j .u/ dHn.u/ D

Z
zgj .Fj /

#zg�1j .u/ dHn.u/

D

Z
Fj

JFj gj dHn
� �Hn

aj
.Fj / �

�

1C �
Hn
X .Gj /:

(7.5)

Now we may use Lemma 4.1 to find a function gW zE ! Rm
b

such that kg � f k
`1. zE/

� ı

and g D gj on each G�j . Moreover, we may require Lip.g/ � .1C �/2L0 C 4 ı0� � 1. It re-
mains to show that (7.1) holds. Using disjointness of Gj , we may estimateZ

zE

J zEg dHn
�

j0X
jD1

Z
Gj

JGj g dHn
�

j0X
jD1

Z
G�
j

JGj gj dHn

D

j0X
jD1

Z
Gj

JGj gj dHn
�

j0X
jD1

Z
Gj nG

�
j

JGj gj dHn

(7.5)
�

j0X
jD1

�

1C �
Hn
X .Gj / �

�
ess sup
E

JEg
�
Hn

�
zE n

j0[
jD1

G�j

�
(7.4)
>

j0X
jD1

�

1C �
Hn
X .Gj / �Kb"0 �

�

1C �
Hn
X .
zE/ �Kb"0

(7.2)
� ��Hn

X .
zE/:
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Theorem 7.4. Suppose that n;m 2N, n�m,X is a complete metric space andE �X
is an n-rectifiable subset. Suppose j � jb is a norm on Rm. Let � > 0 and assume that, for
Hn-a.e. � 2 E, one has

T .E; �/ 2 N b
infl.�/.n/:

Then, for each " > 0, there is a set zE � E with Hn.E n zE/ < " and such that the set²
f 2 Lip1. zE;R

m
b / W

Z
zE

J zEf dHn
� �Hn. zE/

³
is residual in Lip1. zE;R

m
b
/. Moreover, if m > n, then the set

¹f 2 Lip1. zE;R
m
b / W H

n.f . zE// � �Hn. zE/º

is residual in Lip1. zE;R
m
b
/.

Proof. Once again, we may reduce to the case Hn.E/ <1 as Hn
jE

is � -finite. Due to
Theorem 5.2, it is sufficient to show density of²

f 2 Lip1. zE;R
m
b / W

Z
zE

J zEf dHn > �
�
1 �

1

i

�
Hn. zE/

³
for each i 2 N. However, this is Theorem 7.3.

Recall the definition of strongly n-rectifiable sets, Definition 2.11, and the subsequent
characterisation, Lemma 2.12. For these spaces, we have the following result in the spirit of
Theorem 5.13. In relation to this, note in particular that any 1-rectifiable metric subset of a com-
plete metric space is also strongly 1-rectifiable since N .1/ D Œj � j2�, where j � j2 is the Euclidean
norm (absolute value) on R.

Corollary 7.5. Suppose n 2 N and assume that E is a strongly n-rectifiable metric
space. Then, to each " > 0, there is a set zE � E satisfying Hn.E n zE/ < " such that, for
every m � n, the set ²

f 2 Lip. zE;Rm/ W
Z
zE

J zEf dHn
D Hn. zE/

³
is residual in Lip. zE;Rm/. Moreover, for any m > n, the set

¹f 2 Lip. zE;Rm/ W Hn.f . zE// D Hn. zE/º

is residual in Lip. zE;Rm/. In particular, for any m � n, a typical f 2 Lip. zE;Rm/ satisfies
J zEf D 1 Hn-a.e. in zE.

Proof. Recalling Example 5.7, we see that .Rn2;R
m
2 / form a 1-inflating pair for every

m � n. Therefore, the statement follows from Theorem 7.4.

In the one-dimensional case, if one assumes also the target dimensionm to be equal to 1,
it is possible to use McShane’s extension to obtain the following.
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Theorem 7.6. Suppose X is a complete metric space and E a 1-rectifiable subset with
H1.E/ <1. Then ²

f 2 Lip1.X;R/ W
Z
E

JEf dH1
D H1.E/

³
is residual in Lip1.X;R/. In particular, a typical f 2 Lip1.X;R/ satisfies JEf D 1 H1-a.e.
in E.

Proof. Every 1-rectifiable metric subspace of a complete metric space is strongly 1-
rectifiable. Therefore, Corollary 7.5 together with McShane’s extension implies density of the
set ²

f 2 Lip1.X;R/ W
Z
E

JEf dH1
D H1.E/

³
:

Whence Theorem 5.2 yields the result.

Theorem 7.7. Suppose X is a complete metric space and E is its strongly n-rectifiable
subspace. Denote by E� the set of points of E, where the approximate tangent to E exists and
is Euclidean. Let k 2 N, k � n and suppose K � E� is k-rectifiable in X (or equivalently in
E or E�). Then K is strongly k-Euclidean.

Proof. Suppose x 2 K is such that T .K; x/ exists. We show that

T .K; x/ D Œj � jRk2
�:

Let j � ja 2 T .K; x/. To each � > 0, we find r > 0, Borel sets zK � K, zE � E�, Hr � Rk ,
Fr � Rn and maps Ir W .Hr ; j � ja/! zK \ B.x; r/, Jr W .Fr ; j � j2/! zE \ B.x; r/ such that

(i) x is an Hk-density point of zK,

(ii) x is an Hn-density point of E�,

(iii) both Ir and Jr are .1C �/-bi-Lipschitz.

Moreover, this may be done in such a way that zK � zE. Let now � > 0 be fixed and find the
r > 0 from above. Let � D Jr ı I�1r WHr ! Fr and observe that � is a well defined .1C �/2-
bi-Lipschitz map. There exists a density point y of Hr such that �.y/ is a density point of Fr
and both �0.y/ and .��1/0.�.y// exist. In that case, it is necessary that �0.y/WRk ! Rn is a linear
map and k�0.y/ka!2 � .1C �/2. Moreover, .��1/0.�.y// D 1

�0.y/
, and so

k.�0.y//�1k.�.Rk//!Rka
� .1C �/2:

All in all, �0.y/ is a .1C �/2-bi-Lipschitz linear map from Rka onto a k-dimensional linear
subspace of Rn. By sending � ! 0 and observing that all k-dimensional subspaces of Rn are
linearly isometric to .Rk; j � j2/, we obtain that .Rk; j � ja/ is linearly isometric to .Rk; j � j2/, as
we wanted.

The preceding theorem asserts that if our ambient metric space is strongly n-rectifiable,
then all of its k-rectifiable subsets are strongly k-rectifiable, which, in combination with Corol-
lary 7.5, yields the following corollary.
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Corollary 7.8. Suppose n 2 N and let E be a strongly n-rectifiable subspace of a com-
plete metric space X with. Suppose k 2 N, k � n. Then, for any k-rectifiable subset K of

E� D ¹x 2 E W T .E; x/ exists and is Euclideanº

with Hk.K/ <1, we have the following. To each " > 0, there is a set zK � K satisfying
Hn.K n zK/ < " such that, for every m � k, the set²

f 2 Lip. zK;Rm/ W
Z
zK

J zKf dHk
D Hk. zK/

³
is residual in Lip. zK;Rm/. Moreover, for any m > n, the set

¹f 2 Lip. zK;Rm/ W Hk.f . zK// D Hk. zK/º

is residual in Lip. zK;Rm/. In particular, for any m � k, a typical f 2 Lip. zK;Rm/ satisfies
J zKf D 1 Hk-a.e. in zK.

In case k D n, it suffices to assume K � E instead of K � E� as the exceptional set is
Hk-null.

Remark 7.9. We bring to attention a particular important example of a strongly n-
rectifiable metric space. The so-called RCD spaces (see [2] for relevant definitions) are metric
measure spaces .X; �/ such thatX is strongly n-rectifiable for some n 2 N (this follows by the
combination of [12, Theorem 1.3] and [6, Theorem 0.1]) and �� Hn (see [2, Theorem 8.1]
and also [8,9]). The fact that �� Hn is particularly useful in connection with the “moreover”
part of Corollary 7.8 as one then obtainsZ

zK

J zKf .x/F.x/ dHn.x/ D �. zK/

for a typical 1-Lipschitz f . Here F is the Radon–Nikodým derivative of � with respect to Hn.
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