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Social media has become increasingly important in shaping public
vaccination views, especially since the COVID-19 outbreak. This
paper uses bow-tie structure to analyse a temporal dataset of
directed online social networks that represent the information
exchange among anti-vaccination, pro-vaccination and neutral
Facebook pages. Bow-tie structure decomposes a network into
seven components, with two components, strongly connected
component (SCC) and out-periphery component (OUT),
emphasized in this paper: SCC is the largest strongly connected
component, acting as an ‘information magnifier’, and OUT
contains all nodes with a directed path from a node in SCC,
acting as an ‘information creator’. We consistently observe
statistically significant bow-tie structures with different
dominant components for each vaccination group over time. In
particular, the anti-vaccination group has a large OUT, and the
pro-vaccination group has a large SCC. We further investigate
changes in opinions over time, as measured by fan count
variations, using agent-based simulations and machine learning
models. Across both methods, accounting for bow-tie
decomposition better reflects information flow differences
among vaccination groups and improves our opinion dynamics
prediction results. The modelling frameworks we consider can
be applied to any multi-stance temporal network and could
form a basis for exploring opinion dynamics using bow-tie
structure in a wide range of applications.
1. Introduction
Vaccination campaigns have drawn long-standing public attention
[1,2], particularly since the outbreak of the COVID-19 pandemic
[3–6]. Given the significant impact of online social media
platforms as sources of information, a number of studies have
emphasized their effect on vaccination views in public opinion
[7–12]. Recent studies have highlighted the significance of the
information ‘creator–receiver’ dynamics in online vaccination
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Figure 1. Bow-tie structures in online social networks. The arrows highlight that in this paper, an edge from node A to B in online
social networks (solid arrow) represents an interaction from page A to B (e.g. page A recommends page B to its members), while
the direction of information flow (dashed arrow) goes in the opposite direction (e.g. content about page B is presented or ‘flows’ to
page A). (a) Primitive bow-tie structure. This panel illustrates a bow-tie structure that divides a toy example network into three
components: SCC, IN and OUT. This decomposition establishes pairwise relations between these components, assigning distinct roles
to each in terms of information flow: IN, ‘listeners’; SCC, ‘magnifiers’; OUT, ‘creators’. (b) Extended bow-tie structure. This panel
expands on the bow-tie structure in panel a by introducing additional components: TUBES, INTENDRILS, OUTTENDRILS and
OTHERS. In this structure, IN not only ‘listens’ to SCC but also to INTENDRILS and TUBES, while OUT not only ‘creates’
information that is delivered to SCC but also to TUBES and OUTTENDRILS. (c) Recursive bow-tie structure. This panel displays an
example of a recursive bow-tie structure, where the entire graph is partitioned into subgraphs, and bow-tie decomposition is
applied to each of them. Note that edges across partitioned subgraphs are disregarded in this case.
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campaigns: some researchers have found that vaccination opponents tend to produce a higher volume of
information than vaccination supporters [12–15]; several studies have observed that most (mis)information
is created by a minority of users (which should not be assumed to be representative of a majority) and that
information roles tend to remain relatively stable over time [15,16].

Building on these previous studies, this paper explores online behavioural differences among
vaccination groups, namely vaccination supporters, opponents and neutrals. Instead of simply
dividing online users into two categories (i.e. ‘creators’ and ‘receivers’) based on the volume of
messages they create or receive, this paper explores a more nuanced division of roles each user might
play in online information flow using a network structure called ‘bow-tie structure’. It was recently
explored in the context of online debates [17], and we introduce it next.
1.1. Bow-tie structure
Bow-tie structure was introduced by Broder et al. [18] in 2000 as a type of network structure that encodes
the connectivity of the World Wide Web (WWW), with nodes representing pages and edges representing
hyperlinks. The primitive form of bow-tie structure divides a directed network into four components: the
largest strongly connected component (SCC), the in-periphery component (IN) which includes all nodes
with a directed path to a node in SCC, the out-periphery component (OUT) which comprises all nodes
with a directed path from a node in SCC and the other sets (OTHERS) for all remaining nodes. The first
three components of bow-tie structure (figure 1a) are shaped like a bow-tie, with SCC acting as the knot
and IN and OUT components as the fans. Bow-tie structure was later refined by Yang et al. [19] through
the introduction of TUBES, INTENDRILS and OUTTENDRILS, as shown in figure 1b. Yang et al. also
proved that any directed graph can be decomposed into a bow-tie structure.
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Online social media can be viewed through a similar lens to that of the WWW, where pages are run
by social media users and directed interactions exist between pages, such as thumbs-up, reposts and
following [20]. In this paper, we define an edge from node A to B in an online social network as an
interaction from page A to page B (e.g. page A recommends page B). Such an interaction is often
triggered by page B presenting some content of interest to page A.

In the light of this, bow-tie structure can provide useful insight into interpreting the various ‘role’ of
pages in online information flow [17,21,22]. Pages in SCC are usually active in two-way interactions (e.g.
sharing strong communicative interests), and thus may be regarded as information ‘magnifiers’. OUT
pages are often passively interacted with by SCC, INTENDRILS and TUBES pages but seldom engage
in directed interactions with these pages. This suggests a high tendency of OUT pages to present their
content to the public, behaving as information ‘creators’. IN pages generally act in the opposite way,
serving as information ‘listeners’ to pages in SCC, OUTTENDRILS and TUBES. OTHERS usually
contains pages with sparse interactions with most pages in other bow-tie components, either
proactively or passively. For finer-scale analysis of such information flow, recursive bow-tie structures
have been explored by considering bow-tie structures of subgraphs, in contrast to the entire network
[17,23] (see an illustration in figure 1c). Subgraphs are often extracted through the application of
computational methods [17,23], such as community detection where ‘densely connected’ users are
grouped together [23]. Manual examination may also be employed to ensure users sharing specific
discussion topics are appropriately grouped [17].

To investigate bow-tie structure in online vaccination campaigns, we study a real-world temporal
dataset about an online vaccination campaign, which is publicly available and was previously
analysed in 2020 by Johnson et al. [13]. It describes two snapshots of online recommendations
between Facebook pages in February and October 2019 (before the COVID-19 outbreak), with each
page manually checked and assigned a vaccination stance of ‘anti’, ‘pro’ or ‘neutral’.1 The dataset was
originally analysed based on page-level interactions, the number of members who subscribe to each
page (i.e. the ‘fan size’), narratives (e.g. safety concerns and conspiracy theories) and geography.
Information on geography and narratives was not made public by the authors and is currently not
available. Data on vaccination stance, time stamps and fan size allow us to investigate the following
important questions about bow-tie structures: (i) explanatory power, i.e. whether the stance on
vaccination is associated with a different bow-tie structure, and how to explain any existing
differences; (ii) temporal stability, i.e. whether bow-tie structures remain stable through time; (iii)
predictability, i.e. whether bow-tie structures can help predict fan size variations, serving as a
reflection of the dynamic nature of online vaccination views.2
1.2. Contribution
This paper uses bow-tie decomposition to analyse and predict online vaccination views. We build on
Mattei et al.’s contribution [17], which identifies different recursive bow-tie structures in online social
networks, and apply this idea to the online vaccination views dataset from Johnson et al. [13,14]. To our
knowledge, there is very limited prior research applying bow-tie structure to investigate and predict the
spread of opinion dynamics in social media networks. Additionally, while Johnson et al. [13] provide an
opinion dynamics prediction model on the same dataset that relies solely on page fan counts and
disregards network structures, our study incorporates bow-tie structure into the modelling framework.

The contribution of this paper is twofold: firstly, we find that online vaccination groups (i.e. pages
holding anti-vaccination, pro-vaccination and neutral viewpoints) exhibit different bow-tie structures,
which we interpret in the light of information flow roles. Secondly, using agent-based epidemic
simulations and machine learning models, we explore how these structures reflect information flow
differences among vaccination groups and their potential to predict online vaccination view dynamics
as quantified by fan size page variation. The modelling frameworks we use are general and could
form a basis for exploring opinion dynamics using bow-tie structure in a wide range of applications.
1Further details on stance annotation can be found in [13,14]. Here, neutral pages ‘focus around vaccines or another topic (e.g. a school
parent association that has become linked to the vaccine debate but for which the stance is still undecided)’, as introduced by Johnson
et al. [13].
2Follow-up research [14] provides an extended version of this dataset with an additional two snapshots—November 2019 and
December 2020 (during the initial stage of the COVID-19 pandemic)—although without time-stamped fan size data. This limits our
bow-tie analysis. Therefore, we focus only on the original dataset in [13] in our main paper and present some results of the
extended dataset in the electronic supplementary material.



b

(a)(b)

(c) (d)

node number

A
B

Feb: edge number

anti- neutral

anti-

anti-

neutral

neutral

pro-

pro-

A
B

Feb–Oct: edge number increase

anti-

anti-

neutral

neutral

pro-

pro-

317

6.2%

3.9 million

885

0.9%

73.4 million

124

1.9%

6.8 millionFeb: fan size

1015

688

16

647

1728

348

37

401

283

42.4%

50.4%

81.3%

23.3%

57.0%

30.2%

18.9%

41.9%

40.6%

A
B

Feb: avg edge weight × 107

anti-

anti-

neutral pro-

pro-

A
B

Feb–Oct: avg edge weight increase

anti-

anti-

neutral

neutral

pro-

pro-

79.9

86.9

6.9

1354.6

860.3

1310.1

30.6

neutral 349.1

400.2

30.6%

53.5%

8080.9%

–9.9%

55.7%

61.7%

631.4%

90.7%

22.2%

Feb–Oct: fan
size increase

pro-

Figure 2. Online recommendation networks about vaccination views. (a) February network. This is a snapshot of the largest weakly
connected subgraph in February 2019, reproduced from Johnson et al. [13]. It includes over 94% of nodes and 99% of edges from
the entire network. Each node represents a page. Its node colour depicts page polarity: red for anti, green for neutral, and blue for
pro. Its node size is proportional to its page fan size. The node layout follows ForceAtlas2 in Gephi. The edge colour follows the
colour of its source node (where the edge starts from). (b) Node-level data. It describes the total number of nodes and the total fan
size for each vaccination group. By observation, the neutral vaccination group dominates with the largest number of pages and fans.
The pro-vaccination group has fewer pages but a stronger fan base than the anti-vaccination group, mainly due to three pages with
over a million fans. The anti-vaccination group has no pages with over a million fans in February and October but experienced the
largest percentage increase in fans from February to October. (c,d) Edge-level data. It describes the edge number (panel c) and the
average edge weight (panel d ) within and across vaccination groups. Every edge is directed from A to B (i.e. A recommends B).
It can be observed that the direction and weight of recommendations are important. Despite that, there are a larger number of
edges within vaccination groups than across vaccination groups (except for pro- pages), and the highest edge weights flow from
anti- to neutral and pro- to neutral groups (possibly due to the neutral group’s high activity in interacting with both groups).
Additionally, the anti- and pro-vaccination groups had minor interaction in February but interestingly experienced drastic
increases in both edge number and average weight from February to October.
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1.3. Paper structure
This paper is organized as follows. In §2, we describe the online recommendation dataset about vaccination
views. Section 3 outlines the methodology of bow-tie decomposition in this paper. In §4, we present our
findings by first detecting and interpreting bow-tie structures in this dataset, and secondly using this
structure in agent-based and machine learning models to predict dynamics in online vaccination views.
Finally, §5 summarizes our main results and discusses directions of future work.
2. Data description
The dataset from Johnson et al. [13] consists of two snapshots of online competition between different
vaccination views in February and October 2019, involving nearly 100 million users on Facebook
across countries, continents and languages. It can be represented by two directed networks
corresponding to February and October. The February network is illustrated in figure 2a. The number
of nodes is the same in February and October, given by 1326 in total (see further data in figure 2b).
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The number of edges in February is 5163, and in October is 7484 (see further data in figure 2c). The
original data was in .pdf form, we pre-process it and make it easily accessible in a variety of analysis-
ready formats on GitHub: https://github.com/YuetingH/BT_Vaccination_Views.

Details are explained below:

— Node. Each node represents a public Facebook page that discusses vaccination topics. It is attributed
with fan size, that is, the number of members who subscribe to the Facebook page, along with the
other attribute polarity including anti-vaccination, pro-vaccination and neutral. Here, neutral pages
‘focus around vaccines or another topic (e.g. a school parent association that has become linked to
the vaccine debate but for which the stance is still undecided)’, as introduced by Johnson et al.
[13]. Whereas its polarity remains the same for February and October snapshots, its fan size can
either increase or decrease.

Remarks. (i) For consistency, a red, blue, or green node will always represent the page in the anti-,
pro-vaccination and neutral group when it comes to analysing this dataset. (ii) It is allowed for a page
to have no fans (this is the case for a total of 4 pages in February and 10 pages in October).

— Edge. A directed edge from node A to B means page A recommends B to all its members at the page
level, as opposed to a page member simply mentioning another page. The number of times a page is
recommended and the exact timestamp of the recommendation is not recorded in the dataset. Rather,
an edge from A to B is present in a given monthly snapshot if page B was recommended to all
members of A at some point earlier or within the month. In that sense, the network represents the
cumulative recommendations over time, with edges in February also appearing in October, but
not the other way around. Note that, despite the cumulative nature of the edges, the differences
between the two snapshots are evident and visually shown in [13] figure 2a.

Remarks. Both ‘two-way recommendation’ and ‘self-recommendation’ are allowed. Two-way
recommendation means two pages recommend each other (involving 8.5% of all recommendations
in February and 10.2% in October). Self-recommendation, where a page recommends itself to all
of its fans (e.g. to increase engagement), is rare in our dataset (less than 0.2% in both February
and October).

During preprocessing, we define an edge weight to quantify the significance of each recommendation
(figure 2d ). It is obtained by the product of both ends’ fan size. This edge weight choice builds on the
intuition that more fans may be recruited if pages on both ends have larger fan sizes. On the one
hand, being recommended to another page with a larger fan size will probably attract more fans. On
the other hand, a recommended page with a larger fan size is potentially more influential to other
pages; thus, more fans may be recruited accordingly. This weight choice is also mentioned as a
‘product kernel’ by Johnson et al. in their prediction model [13], which was previously shown to be
useful in Palla et al. [24]. Although bow-tie structure disregards edge weight, community detection
involved in recursive bow-tie structure can incorporate this factor, so as to produce a better partition
of the network. See details in §3.2.

3. Methodology
We focus on a particular network type throughout this paper, aligned with our dataset: directed
weighted networks with self-loops and without multi-edges. Some preliminary graph definitions are
listed below.

— A network G = (V, A) consists of a set of nodes V and a weighted adjacency matrix A = (Au,v)u,v∈V.
Au,v =w > 0 if there is an edge from node u to v with weight w and Au,v = 0 otherwise.

— A path from u∈V to v∈V is defined as a succession of nodes (n0, n1,…, nk), where k is a non-negative
integer, n0 = u, nk = v, and for any i = 1,…, k, ni∈V are distinct satisfying Ani�1,ni . 0. As a special case,
every node u∈V is considered to have a path (n0 = u) to itself.

— Let u, v∈V be nodes and T⊆ V be a subset of nodes. A node v is said to be reachable from u if a path
exists from u to v. As an extension, u is said to be reachable from T if there exists at least a w∈ T such
that u is reachable from w. T is said to be reachable from u if there exists at least a w∈ T such that w is
reachable from u.

— A subgraph G0 = (V0, A0) of a graph G = (V, A) is a graph such that V0⊆ V and A0 satisfies A0
u,v =Au,v for

any u, v∈V0.
— A strongly connected component of a graph G is a subgraph of G where there exists a path from every

node to every other node.

https://github.com/YuetingH/BT_Vaccination_Views
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— A hard partition of a graph G is a division of the set of nodes V into k non-overlapping sets Ci, i = 1, 2,
…, k, such that

Sk
i¼1 Ci ¼ V and Ci > Cj ¼ ; for any i≠ j. One can also consider soft partitions, where

sets can overlap, but this is beyond the scope of this paper. We refer to a ‘hard partition’ as a
‘partition’ throughout the paper.

3.1. Bow-tie structure
In this paper, we adopt the bow-tie structure definition and detection algorithm presented by Yang et al.
[19], also used in Mattei et al. [17].

Definition. Assume S is the largest strongly connected component of G. Bow-tie structure of G
consists of the following sets of nodes:

SCC ¼ S, IN ¼ fv [ ðV � SÞ j S is reachable from vg,3 OUT ¼ fv [ ðV � SÞ j v is reachable from Sg
TUBES ¼ fv [ ðV � S� IN�OUTÞ j v is reachable from IN and OUT is reachable from vg
INTENDRILS ¼ fv [ ðV � SÞ j v is reachable from IN and OUT is not reachable from vg
OUTTENDRILS ¼ fv [ ðV � SÞ j v is not reachable from IN and OUT is reachable from vg
OTHERS ¼ V � S� IN�OUT� TUBES� INTENDRILS�OUTTENDRILS

Yang et al. [19] also proved that the sets of bow-tie components above are mutually disjoint and
thus form a partition of the nodes. In other words, any directed graph can be decomposed into a
bow-tie structure.

Algorithm. The detection of the largest strongly connected component is a well-established process in
the field of graph theory, with early works from [25,26]. The algorithm for obtaining the remaining bow-
tie components is outlined by Yang et al. [19]. The entire algorithm for detecting bow-tie structure has
been implemented in code on GitHub, and we employ the same code for our analysis.

3.2. Recursive bow-tie structure
Background. Bow-tie structure of an entire network is largely dependent on the generation of its edges,
which, however, often exhibit some amount of randomness in online social networks [14,27]. For
instance, users may randomly interact with recommended strangers [27,28]. Social bots, creating fake
accounts and spreading spam, also contribute to this randomness [28,29]. This has motivated
researchers to move beyond the potential randomness of edges and delve deeper into the analysis of
bow-tie structure on a finer scale, also referred to as ‘recursive bow-tie structure’.

Recursive bow-tie structure has been explored by considering partitioned subgraphs or different
choices of SCC. The first considers bow-tie decomposition on partitioned subgraphs while ignoring
inter-subgraph edges. This approach is grounded on the empirical observation that online social
networks usually exhibit community structures, where nodes within a set are densely connected and
inter-set connections are relatively sparse [23,28,30]. These communities are often composed of users
who share common communicative goals, referred to as ‘discursive communities’ by Mattei et al. [17].
For instance, in their research, bow-tie decomposition is applied to communities including left/right
politicians and official accounts of governments and media (e.g. newspapers, TV channels and
journalists) examined through metadata. Another example from Fujita et al. [23] employs a
computational technique to perform bow-tie analysis on densely connected communities. Bow-tie role
assignments produced by this type of recursive bow-tie structure are interpretable, as they reflect the
local roles of nodes within each subgraph. The second type of recursive bow-tie structure considers
other strongly connected components rather than the largest one [19,31,32]. This second method,
while theoretically feasible, is often less interpretable as it may assign multiple roles to the same nodes.

Algorithm. This paper focuses solely on the first approach (see its implementation in algorithm 1),
which considers bow-tie structures of partitioned discursive communities as described by Mattei et al.
[17]. Associated with our online vaccination view dataset, we interpret the discursive communities
in two ways: (1) vaccination groups (anti-, pro-, neutral) and (2) densely connected communities
detected by computational techniques, where the number or size of communities is not fixed. As a
result, two kinds of decomposition will be implemented for each network snapshot, enabling intra
(i.e. approach (1)) and inter (i.e. approach (2)) vaccination groups’ bow-tie analysis over time.
3For any sets A and B, we define A− B as a set such that for any i∈A − B, i∈A and i � B.

https://github.com/alan-turing-institute/directedCorePeripheryPaper/blob/master/bowtie_detect.py
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Note that while subgraphs of vaccination groups can be easily extracted based on the metadata from
Johnson et al. [13], community detection typically requires the use of computational heuristics, with
multiple choices available [33–37]. For the purposes of this paper, we use a widely used community
detection method known as Infomap. This approach leverages Shannon Entropy and random walks
with edge weights for community detection [35]. It introduces some stochasticity to the identified
partition, but our analysis indicates that it has a minor influence on our results. Infomap may also
detect small communities with fewer than five nodes, but these are less meaningful in our context. To
address this, we label nodes in such communities as ‘UNASSIGNED’. We provide further details in
the electronic supplementary material to explain why we choose Infomap over modularity
maximization [33] (another popular community detection method) for our specific problem, and
examine the stochasticity of Infomap in our dataset.

Algorithm 1. Recursive bow-tie detection.

Input: graph G, partition C = {C1,…, Ck}
Output: SCCr, INr, OUTr, TUBESr, INTENDRILSr, OUTTENDRILSr, OTHERSr

1: For i = 1,…, k, construct a subgraph Gi = (Ci, Ai) of the graph G.
2: For each subgraph Gi, acquire its bow-tie structure SCCi, INi, OUTi, TUBESi, INTENDRILSi,

OUTTENDRILSi, OTHERSi.
3: Obtain SCCr ¼ Sk

i¼1 SCCi. Repeat this step to obtain other bow-tie components INr, OUTr, TUBESr,
INTENDRILSr, OUTTENDRILSr, OTHERSr.
4. Results
Our study focuses on two aspects: the detection of bow-tie structures in recommendation-based online social
networks, and the analysis of these structures to enhance the prediction of opinion dynamics (modelled as
page fan size over time). Sections 4.1 and 4.2 will discuss these two aspects, respectively. Section 4.1
explores whether the stance on vaccination is associated with different bow-tie structures, examines the
stability of such structures over time, and assesses how one can interpret these observations. Section 4.2
uses and compares two approaches to predict page fan count variation: (i) supervised machine learning
and (ii) mechanistic simulation via agent-based epidemic models on information cascade.

As mentioned in §3.2, we consider bow-tie structures of ‘discursive communities’ in the February–
October 2019 network snapshots following Mattei et al. [17], where bow-tie structure is identified in
subgraphs of the network (figure 1c). We characterize discursive communities in two ways that can yield
complementary insights: (i) their view, in our case pro-, anti- and neutral-vaccination groups; (ii) their
placement in densely connected sets within the network, as defined by community structure, which
we detect using the commonly used flow-based method Infomap [35]. In this sense, two kinds
of bow-tie decomposition are implemented for each network snapshot, enabling intra and inter
vaccination groups bow-tie analysis. Each page is assigned a dual bow-tie role (different or not, such
as SCC–SCC, SCC–OUT) at each timestamp. For clarity in our explanations, we refer to the first coarse-
graining of discursive communities (i.e. when subgraphs are vaccination groups) as ‘within-group
bow-tie structure’, and a page’s assigned role as its ‘within-group bow-tie role’. On the other hand, we
term the second coarse-graining of discursive communities (i.e. when subgraphs are communities
identified with Infomap) as ‘across-group bow-tie structure’, and a page’s assigned role as its
‘across-group bow-tie role’.
4.1. Bow-tie structure detection in the recommendation networks
Our results in figure 3 indicate that bow-tie structures associated with the pro-vaccination group
consistently exhibit a large SCC in either way of bow-tie decomposition and at both February and
October timestamps, whereas those associated with the anti-vaccination group have a comparatively
large OUT component. By contrast, the neutral group demonstrates inconsistent results, with large
OTHERS in within-group bow-tie decomposition, but a dissimilar pattern in across-group bow-tie
decomposition with comparatively large main bow-tie components (i.e. SCC, OUT and IN).
Furthermore, anti-vaccination and pro-vaccination pages display a higher temporal stability in their
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Figure 3. Within-group and across-group bow-tie structures in the February and October 2019 online recommendation-based
networks. The figure displays within-group bow-tie structures in the upper part and across-group bow-tie structures in the
lower part for networks at both timestamps. Each part includes an explanatory diagram of the decomposition scheme, where
the February network is divided into subgraphs, and the bow-tie structure within each subgraph is revealed using an
organized layout of node and arrow, maintaining consistency with figure 1b. Nodes are colour-coded by vaccination group and
proportionally sized based on fan size, consistent with figure 2a. Note that the across-group diagram shows the largest five
communities, labelled as Ci, ranked by node counts, with larger communities having smaller indices, which collectively
represent 49.4% of all pages. While all five largest communities are primarily composed of neutral pages, communities C1 and
C2 stand out with nearly half of their pages anti- and pro-vaccination, respectively. Three Sankey diagrams in each part
illustrate the bow-tie structures for pages with different vaccination views. Each diagram has two columns representing bow-tie
roles for February and October, with the flow indicating role variations.4 The stability, indicated beneath each diagram,
quantifies the percentage of pages that maintain the same bow-tie roles at both timestamps. Overall, these results indicate
that the pro-vaccination group exhibits a large SCC in bow-tie decomposition for both choice of discursive communities, while
the anti-vaccination group is comparatively dominated by OUT component. Moreover, these structures are stable over time. In
contrast, the neutral group yields inconsistent bow-tie structures and exhibits less temporal stability.
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bow-tie structures than neutral pages when transitioning from February to October, with anti-vaccination
pages being slightly more stable than pro-vaccination pages.

We offer some interpretations of the detected bow-tie structures. The large OUT component of the anti-
vaccination group suggests a strong commitment to generating information. The pro-vaccination group’s
large SCC component underscores its strong information dissemination capability. Neutral pages have
limited interactions with the ‘mainstream’ (i.e. SCC, OUT, IN components) and are assigned the
‘OTHERS’ role in the within-group bow-tie structure. By contrast, their interactions with anti- and pro-
4In the across-group bow-tie structure, pages within communities containing fewer than five nodes were labelled ‘UNASSIGNED’, as
bow-tie structure of small communities may not be meaningful in our context. See details in §3.2.
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vaccination pages are more likely to focus on vaccination topics, resulting in strong across-group bow-tie
structures with relatively large SCC, OUT and IN components. Finally, in this dataset, pages in marginal
components (i.e. OTHERS, INTENDRILS, OUTTENDRILS and TUBES) tend to transition towards main
components (i.e. SCC, OUT and IN) over time. This shift may reflect increased integration into
mainstream discussions, either through referencing SCC pages or being referenced by them.

Interestingly, while these observations are obtained using a different methodology (bow-tie
structure), several are consistent with those discussed in Johnson et al. [13] using node metadata. For
example, the authors in [13] mention that anti-vaccination groups generate a diverse range of
narratives that blend topics such as ‘safety concerns’ and ‘conspiracy theories’. Furthermore, the pro-
vaccination pages in the dataset are more centralized geographically than the anti-vaccination pages,
which can facilitate reciprocal recommendations and amplify information dissemination. Neutral
pages among themselves touch on a variety of topics (e.g. parenting and pets pages [13,14]) rather
than mostly vaccination topics, which may help explain why they belong to ‘OTHER’ when discursive
communities are associated with vaccination stances.

We end this section with observations on the robustness of our results. Firstly, we find that the detected
bow-tie structures are statistically significant through comparisons with appropriately generated random
graphs. More details can be found in the electronic supplementary material. Secondly, the follow-up
dataset with two additional snapshots (i.e. November 2019 and December 2020) yields recursive bow-tie
analysis results that are generally consistent with our findings in the dataset presented previously. Again,
see more details in the electronic supplementary material. Thirdly, we observe that the temporal stability
of across-group bow-tie decomposition is overall lower than that of within-group decomposition. This is
not surprising, in the sense that the higher and varying number of detected communities compared with
the constant small number of vaccination groups may favour more variation between snapshots.

4.2. Experiments with detected bow-tie structure on opinion dynamics prediction
Next, we examine whether one can use the February 2019 recommendation network to help predict fan
count disparities for each individual page between February and October 2019, as a way to gain insight
into opinion dynamics during this period. These predictions are implemented using supervised machine
learning models and agent-based susceptible–infected–recovered (SIR) models, with a specific emphasis
on exploring whether bow-tie structure can improve these predictions.

It is important to note that, a priori, one might expect recommendations to be more strongly correlated
with fan size increase, than with fan size decrease. In other words, pages that receive recommendations
are potentially likely to witness an increase in their fan counts over a short time frame, while those not
recommended may not necessarily experience a decline. We come back to this point when discussing
our results.

Furthermore, we establish two assumptions below to centralize our research focus and enhance the
interpretability of our results. (i) We exclusively perform predictions on anti- and pro-vaccination pages,
excluding neutral pages (while not ignoring the interactions of anti- and pro-pages with neutral pages).
This choice is motivated by the fact that vaccination topics may not constitute the primary focus of
neutral pages, such as those centred around parenting and pets [13,14], and their fan count
fluctuations may have a limited connection to recommendation networks concerning vaccination
views. (ii) Instead of covering all bow-tie components, we narrow our analysis to three key bow-tie
components: SCC, OUT and IN, while grouping the remaining components as ‘NA’. This decision is
made based on the following reasons. Components SCC, OUT and IN offer clearer insights for
interpreting the roles of bow-tie components in information propagation. For instance, IN pages
‘listen’ to SCC, INTENDRILS and TUBES pages (main listeners), while OUTTENDRILS pages ‘listen’
to OUT pages only (marginal listeners). In addition, our empirical observations above show that the
page count in SCC and OUT components effectively distinguishes between anti-vaccination and
pro-vaccination pages, whereas other components lack such clarity.

4.2.1. Supervised machine learning

We begin by extracting categorical and numeric features of the anti- and pro-vaccination pages, including
those related to bow-tie structure, from the February 2019 recommendation network snapshot, which
potentially contribute to variations in page fan counts compared with October 2019 (table 1).

To investigate whether our supervised ML models are more feasible in predicting fan count
fluctuations for expanding anti- and pro- pages (i.e. with an increased fan count) over non-expanding
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ones (i.e. with an unchanged or decreased fan count), we first use all features in table 1 in logistic
regression (LR) to predict page status as either expansion or non-expansion. Furthermore, with the
same goal in mind, we employ two supervised machine learning models: support vector regression (SVR)
and random forest regression (RFR) to investigate the precise fan count variations within three categories
of pages: all anti- and pro- pages, anti- and pro- pages that experienced expansion between February and
October 2019, and anti- and pro- pages that remained non-expanded. Results are indicated in table 2. Our
findings show that logistic regression moderately distinguishes between page expansion and non-
expansion (accuracy: 0.655), with a stronger capability to identify expanding pages over non-expanding
ones (sensitivity: 0.839; specificity: 0.153). This aligns with our initial expectation that recommendations
can correlate more with fan size increase than decrease. Additionally, these results are supported by the
notable performance improvements of SVR and RFR when specifying predictions exclusively for
expanding pages, compared with predictions for non-expanding pages. For example, the R2 values of
SVR and RFR on expanding pages are 0.11 and 0.17, which are much higher than those for non-
expanding pages, −0.05 and −0.18, and those for all anti- and pro- pages, −0.02 and −0.02.

To evaluate the significance of each feature in our predictions above, we employ the correlation
coefficient (CC) to measure linear dependencies between numeric features and fan count variations,
again across three page categories (i.e. all anti- and pro- pages, expanding anti- and pro- pages, and
non-expanding anti- and pro- pages). We also apply mutual information (MI) to capture nonlinear
dependencies among all numeric and categorical features and fan count variations within these three
page categories. Moreover, we employ sequential forward floating selection (SFFS) [43], a widely used
feature selection method, to identify the optimal feature subset yielding the best performance in SVR
and RFR models, exclusively for expanding anti- and pro- pages only. This decision is based on the
better interpretability and performance of predictions for expanding pages, as previously confirmed.
The results are presented in table 3. Our findings indicate that among categorical features, bow-tie
relevant features (i.e. W− BTi and A− BTi) exhibit relatively strong performance, with A− BTi

outperforming W − BTi. For example, the MI of A− BTi regarding expanding anti- and pro- pages is
notably higher than other categorical features. Also, SFFS reveals that both W− BTi and A− BTi

significantly surpass polarity pi and Infomap community ci in the SVR model, although this
advantage diminishes somewhat in the RFR model. Results about numeric features help explain the
interpretability of our models. Of all numeric features, fi (i.e. the page fan count in February 2019)
exhibits the highest significance across all three page categories, as examined through CC, MI and
SFFS. This observation, coupled with the opposite sign of its CC within expanding and non-
expanding pages (0.485 versus −0.372), may indicate the ‘snowball effect’ [44], where the fan count of
each page tends to either increasingly grow or decreasingly drop over time (i.e. pages with larger
initial fan counts generally experience more substantial changes). Additionally, the higher significance
of kini compared with kouti is reasonable, with the former representing the strength of recommendations
directed to each page and the latter indicating recommendations made by each page.

Overall, supervised machine learning predictions of page fan count changes from February to
October, based on the February online recommendation network, are generally more feasible and
interpretable for expanding pages. Features related to bow-tie structure demonstrate potential in
helping to predict the fan count variations of expanding pages.

4.2.2. Agent-based susceptible–infected–recovered model

In our online recommendation-based networks, a recommendation from page A to page B is often
triggered when page B shares content that captivates the interest of members of page A. This positive
exchange of information may lead to page B acquiring new fans from page A. Motivated by this, we
use an SIR model to simulate information cascades from each page and compare their information
influence with fan count variations.

The SIR model, initially developed for simulating disease spread [45], has been used for modelling
information diffusion in social networks [46–49]. In a network-based SIR model, each node can be in
any of three states: susceptible (unaware of the circulating information), infectious (aware through
creation or reception and willing to spread further), or recovered (aware but no longer transmitting, e.g.
due to information obsolescence). Susceptible nodes can transition to an infectious state through contact
with infected neighbours, the probability of which is proportional to the transmission rate β. Infectious
nodes can transition to a recovered state spontaneously, with a probability of γ. A SIR epidemic process
is usually initialized with one randomly selected node i being infected and terminated when no
infectious nodes remain, simulating the propagation of a singular piece of information [46].
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Table 3. Results about supervised machine learning (feature comparison). Owing to the stochastic nature of both mutual
information (MI) and sequential forward floating selection (SFFS), we conduct 50 runs for both methods on expanding anti- and
pro- pages and present the average MI value for each feature and the selected feature frequencies, respectively. Furthermore, the
SFFS model identifies the optimal feature subset comprising 10 features to ensure that at least one categorical feature is selected
in each run (i.e. for categorical feature comparison).

all anti- and pro-
pages

expanding anti- and
pro- pages

non-expanding anti-
and pro- pages

SFFS—using
expanding
anti- and
pro- pages
times chosen

CC Avg. MI CC Avg. MI CC Avg. MI SVR RFR

categorical pi — 0.0011 — 0. — 0.0714 9 48

ci — 0.0403 — 0.0002 — 0.1872 1 28

W − BTi — 0.0131 — 0.0001 — 0.0788 34 21

A− BTi — 0.0345 — 0.0424 — 0.0179 36 36

numeric fi 0.379 0.3331 0.485 0.4277 −0.372 0.2884 50 50

k ini 0.406 0.1013 0.416 0.1501 −0.036 0.0770 50 41

kouti 0.254 0.0199 0.263 0.0360 −0.267 0.0012 50 42

k � PSini −0.039 0.0458 −0.107 0.0636 0.237 0.0033 40 29

k � PSouti −0.078 0.0008 −0.137 0. 0.145 0.0432 49 50

k � CSini 0.091 0.0088 0.053 0.0037 0.275 0.0117 49 39

k � CSouti 0.052 0.0228 0.044 0.0170 0.074 0.0052 39 37

PageRanki 0.252 0.0958 0.258 0.1203 −0.032 0.5394 50 40

Betweennessi 0.142 0.0170 0.127 0.0170 0.032 0.0008 43 38
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In our dataset, we run the agent-based SIR model on the February 2019 recommendation-based
network. Consider to this end a total of N pieces of information generated during the period from
February to October (for comparison with the October 2019 snapshot). For each individual piece of
information n∈ {1, 2,…, N}, the initial page that generates it, denoted as I0n, is selected randomly from
a pool of anti- and pro- pages, following the probability distribution Pinitializer:5 The set of pages that
are impacted by information piece n (i.e. in a recovered state at the end of the SIR dynamics about
information n) is represented as In. The influence of information piece n is defined as the aggregate
fan counts of the pages impacted by it, represented by

P
j[In fj. Subsequently, the influence of a page i

is defined as the accumulated influence of all information pieces originating from page i, represented
by

PN
n¼1 1I0n¼ið

P
j[In fjÞ. In order to account for how such information spread relates to the bow-tie

components, we further divide the influence of each information piece into two categories: within-
group and across-group. The former accounts for the influence of information piece n initialized from
a pro- or an anti- page to pages with the same vaccination stance, and the latter accounts for the
influence of information piece n from a pro- or an anti- page to neutral pages. Note that we disregard
the influence of information piece n from a pro- page to an anti- page (or the other way around), as
we assume users who follow pro- (anti-) pages may hardly accept information from anti- (pro-) pages
and consequently follow them.6 We define the influence measures as follows:

Info W � Influn ¼
X
j[In

1 pI0n
¼pj fj, pI0n [ fr, bg
5Note that we prevent the initialization of information from neutral pages, as their information pieces are not our primary focus, in line
with our previously mentioned assumption. That is, Pinitializer

i :¼ PðI0n ¼ iÞ ¼ 0, if pi ¼ g. As indicated in table 1, pi∈ {r, b, g} denotes
the polarity of page i for anti-, pro-, neutral, respectively.
6This assumption is also supported by the dataset, as evidenced by the sparse direct recommendations between anti- pages and pro-
pages indicated in figure 2c, and the Infomap community detection result in figure 3.
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Figure 4. Distinctions among the influence of information pieces initialized from different bow-tie components. Each bow-tie
component generates 1000 information pieces, with each page inside a component holding an equal probability of being the
initial source for a single information piece, and the SIR epidemic process for each information piece is set at β = 0.5 and
γ = 0.3. The violin plots depict the distribution of information within-group (across-group) influence, based on initialization
from different within-group (across-group) bow-tie components. We observe that the hierarchy of influence, both within-group
and across-group, adheres to the following ranking: SCC > OUT > IN. This aligns with the roles of these components (i.e. SCC,
‘magnifiers’; OUT, ‘creators’; IN, ‘listeners’) formed by the bow-tie decomposition. Additionally, a large quantity of information
pieces remain confined within-group and have limited dissemination across-group, mirroring the real-world dynamics.
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and

Info A� Influn ¼
X
j[In

1 pj¼gfj, pI0n [ fr, bg:

Subsequently, the within-group and across-group influence of a pro- or an anti- page i are defined below,

Page W � Influi ¼
XN
n¼1

1I0n¼i

X
j[In

1 pi¼pj fj

0
@

1
A, I0n � Pinitializer

and

Page A� Influi ¼
XN
n¼1

1I0n¼i

X
j[In

1 pj¼gfj

0
@

1
A, I0n � Pinitializer:

Such within-group and across-group influences establish connections with within-group and across-
group bow-tie components, respectively. This enables our following analysis, where we explore the
potential influence distinctions among various bow-tie components, both within-group and across-
group, and investigate whether these distinctions can aid in extracting pages’ roles in terms of
information flow (i.e. SCC, ‘magnifiers’; OUT, ‘creators’; IN, ‘listeners’) and predicting variations in
fan counts for each page.

We first examine disparities in the influence of information pieces (i.e. Info W− Influn and Info A−
Influn) originating from different bow-tie components. Our results in figure 4 show that the hierarchy
of influence, both for within-group and across-group, adheres to the following ranking: SCC >OUT >
IN. This aligns with the roles of these components (i.e. SCC, ‘magnifiers’; OUT, ‘creators’; IN,
‘listeners’). Also, a substantial quantity of information pieces remain confined within-group and have
limited dissemination across-group, mirroring the real-world dynamics.

Secondly, we explore the disparities among the influence of pages (i.e. Page W− Influi and Page A−
Influi) in different bow-tie components, to investigate whether pages in certain bow-tie components tend
to generate more information pieces that contribute to their fan count variations, by adjusting Pinitializer.
We use CC as the metric to measure the association between page influence and fan count variations, as
Pinitializer varies.7 Our results are shown in figure 5. As we can observe, both within-group and across-
7In figure 5, each heatmap adjusts page generation probabilities Pinitializer based on x- and y-axes values and associated bow-tie
components (BTX and BTY). For each pixel (x, y) in the heatmap, we generate N information pieces, with each page i having a
probability Pinitializer

i :¼ PðI0n ¼ iÞ/mi, scaled to sum up to 1, where mi = x, y if i∈ BTX, BTY and mi = 1 otherwise. In this sense, the
x- and y-axes intuitively represent the information generation probabilities for pages in the respective bow-tie components, divided
by the information generation probabilities for pages in other components that are not involved in either axis. Finally, the colour in
each heatmap pixel represents the CC between the page influence and the page fan count fluctuations in the specified situation.
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Figure 5. Distinctions among the influence of pages in different bow-tie components when varying their probability of generating
information pieces. Each heatmap pixel represents the CC between the page influence and the page fan count fluctuations during
the specified SIR epidemic process. We generate N = 3000 pieces of information for each pixel with β = 0.5 and γ = 0.3 (aligning
with figure 4), and customize the probability of generating information Pinitializer for pages in different bow-tie components.
Specifically, in each heatmap, the x- and y-axes represent the information generation probabilities for pages in the respective
bow-tie components, divided by the information generation probabilities for pages in other components that are not involved
in either axis. Our results indicate that both within-group and across-group page influence appear more correlated with fan
count variations of expanding pages, in contrast to non-expanding pages. The higher CCs of across-group page influence than
within-group potentially suggest that the increase in fan counts for anti- and pro- pages may be more strongly influenced by
their interactions with neutral pages instead of similar-minded ones. In the light of these two points, the upper-left red corner
in the W-BT:OUT and W-BT:SCC heatmap illustrates that within-group OUT pages (‘creators’) are likely to produce more
information pieces that recruit fans of pages sharing the same vaccination stance, compared with SCC pages. This result is also
supported by other within-group heatmaps. Conversely, across-group SCC pages (‘magnifiers’) tend to generate more
information pieces that possibly recruit neutral pages’ fans compared with OUT pages. Both across-group and within-group IN
pages (‘listeners’) exhibit a limited trend in generating information pieces contributing to fan size variations, though
surprisingly having a good performance when x = 10 in the heatmap related to W-BT:SCC and W-BT:IN. Moreover, the CCs of
within-group and across-group page influence can maintain relatively high values compared with other numeric features in
table 3. This demonstrates their high potential in aiding the prediction of fan count increases for anti- and pro- pages.
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group page influence appear more correlated with fan count variations of expanding pages, in contrast to
non-expanding pages, aligned with our expectation (i.e. recommendations correlate more with fan size
increase than decrease) and our ML results above. The higher CCs of across-group page influence
than within-group potentially suggest that the increase in fan counts for anti- and pro- pages may be
more strongly influenced by their interactions with neutral pages instead of similar-minded ones. This
again aligns with our previous results in ML models (i.e. W− BTi versus A− BTi). In the light of these
two points, the skewed CC heatmaps in our results illustrate that within-group OUT pages are likely
to produce more information pieces that recruit fans of pages sharing the same vaccination stance,
compared with SCC pages. Conversely, across-group SCC pages tend to generate more information
pieces that possibly recruit neutral pages’ fans compared with OUT pages. This finding helps explain
a possible scenario, where OUT pages (‘creators’) often generate ‘innovative’ content that captures the
interest of like-minded users (within-group), potentially inspiring content in SCC pages, while SCC
pages (‘magnifiers’) amplify certain ‘mature’ content across-group, targeting neutral pages. Both
across-group and within-group IN pages (‘listeners’) exhibit a limited trend in generating information
pieces contributing to fan size variations, though surprisingly having a good performance when x = 10
in the heatmap related to W-BT:SCC and W-BT:IN. Notably, compared with the CCs between
fan count variations of expanding anti- and pro- pages and other numeric features in table 3
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(e.g. February fan count fi: 0.485; PageRanki: 0.258), the ones of our within-group page influence can
maintain around 0.25, and across-group page influence around 0.5, demonstrating high potential in
helping predict fan count increase for anti- and pro- pages.

Finally, the results above remain robust across different parameter choices for transmission rate β and
recovery rate γ. See details in the electronic supplementary material.
publishing.org/journal/rsos
R.Soc.Open

Sci.11:231792
5. Conclusion and future work
In this paper, we investigate bow-tie structure of discursive communities (i.e. groups of users sharing
common communicative purposes) in temporal online social networks that describe the
recommendations between anti-vaccination, pro-vaccination and neutral pages, with snapshots taken
in February and October 2019.

By employing dual interpretations of discursive communities (one as vaccination groups and the other
as communities detected by Infomap), we perform bow-tie analyses of recommendation networks within
and across vaccination groups. Our results indicate different bow-tie structures among various vaccination
groups. In both bow-tie analyses, a large number of anti-vaccination pages are assigned OUT bow-tie roles,
while a substantial portion of pro-vaccination pages are assigned SCC bow-tie roles. These bow-tie
structures exhibit statistical significance and demonstrate stability over the considered time frame. By
contrast, the neutral group displays different bow-tie structures across these two analyses and
demonstrates less temporal stability than the pro- and the anti- group.

We then relate these detected bow-tie structure differences to opinion dynamics, investigating their
potential to predict changes in page fan counts from February to October using the February network.
We implement both supervised machine learning models involving a variety of features, and
mechanistic models on information cascades focusing on explainability, with these two approaches
complementing and validating each other’s results. All our models are more adept at predicting page
expansion (i.e. an increase in fan count) over non-expansion (aligning with our expectations), and
bow-tie structure features exhibit promise in enhancing the prediction for expanding pages. Notably,
such promise is indicated both in the performance of our models (e.g. bow-tie features W− BTi and
A− BTi significantly surpass polarity pi and Infomap community ci in our SFFS–SVR machine learning
model), and in the high interpretability of our agent-based models. For example, in our mechanistic
simulation model, within-group OUT bow-tie pages—‘creators’—are shown to produce more
information pieces that possibly recruit fans of pages sharing the same vaccination stance, while
across-group SCC bow-tie pages—‘magnifiers’—tend to generate more information pieces that
possibly recruit neutral pages’ fans.
5.1. Future work
There are a number of interesting directions to explore in future work. Firstly, the large OUT and SCC
bow-tie components detected in the anti- and pro-vaccination groups, suggest distinct advantages
held by the anti- and pro-vaccination groups: the former exhibits a strong commitment to generating
information, while the latter possesses a strong capability for information dissemination. Based on our
findings, which indicate that bow-tie structures can aid in predicting increases in their fan counts at
the page level, it would be interesting to develop a bow-tie-based model for a longer time-scale fan
count prediction of anti- and pro-vaccination pages spanning decades, contrasting it with Johnson
et al.’s model [13], which disregards page recommendations in the dataset.

Secondly, for this bow-tie-based long-term fan count prediction model mentioned above, it would be
interesting to incorporate the temporality of bow-tie structures, in light of the stronger temporal stability
observed in the anti- and pro-vaccination groups compared with the neutral group in our dataset. More
broadly, this framework can be expanded into a generative model that can be used to produce synthetic
networks with different levels of bow-tie role adherence (e.g. SCC, ‘magnifiers’; OUT, ‘creators’; IN,
‘listeners’). These synthetic networks can serve as benchmarks and aids for inferring the structure of
empirical networks of interest. We emphasize that our interest in role structure in information flow is
not uncommon [22,50–52] (e.g. Beguerisse-Díaz et al. [50] capture five different roles in Twitter users,
including ‘listeners’, ‘diversified listeners’, ‘references’, ‘engaged leaders’ and ‘mediators’), therefore
developing such models can be important to understand the behavioural ecology in online social
networks. Reference [53] can be a useful starting point for constructing the modelling framework.
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Thirdly, the approaches considered in this paper are general and can be applied to a range of social
networks. For instance, we can use bow-tie structure to investigate potential distinctions between
misinformation and scientific information dissemination. A recent paper [16] highlights that a
minority of accounts are responsible for the majority of the misinformation circulating on Twitter, a
pattern highly pertinent to our bow-tie structure analysis. Bow-tie structure may also help explain the
phenomenon of infodemic in misinformation circulation, which describes the situation where exposure
to an abundance of information undermines people’s ability to discern disinformation, thus
facilitating its dissemination [17,54]. More broadly, bow-tie structure analysis can yield insights about
the structure and evolution of social networks, which we hope will be a helpful addition to those
designing intervention efforts that aim to mitigate misinformation in social networks.

Fourthly, when examining the relationship between bow-tie structure and page fan count variations,
we perform mechanistic simulations on information cascades. For our purpose, we use the agent-based
SIR model in order to incorporate bow-tie-related factors. There are several other models that one could
use. These include information dissemination models that incorporate additional factors that may be
relevant to our research questions [55–57]. For instance, Ferraz de Arruda et al. [55] introduce a
‘forgetting mechanism’ affecting rumour lifespan and [56] incorporate ‘delays’ in information spreading.

In this paper, we study opinion dynamics through the lens of fan count change. The literature on opinion
dynamics is broad and diverse, with models ranging from independent cascade to threshold models [58,59],
widely studied in the social and computational sciences [60,61]. Usually, opinion diffusion models analyse
the network dynamics at the individual node level, e.g. with agents changing their minds based on the
majority of their influencers. Our approach is different, as we look at nodes with expanding volumes—
our fan sizes—based on the polarity of selected influencers and their own size. This suggests a novel
framework for understanding opinion dynamics, whose study is interesting in its own sake.
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