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Latent Vector Optimization-Based Generative Image
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Abstract—In consumer electronic applications, to transmit se-
cret images securely, it is required to explore the advanced covert
communication technology, i.e., Generative Image Steganogra-
phy (GIS). However, the existing GIS schemes suffer from the
issues of poor stego-image quality and limited hiding capacity.
Consequently, these GIS schemes cannot meet the require-
ments of consumer electronic applications, in which massive
secret information needs to be transmitted securely. To address
the above issues, we propose a Latent Vector Optimization
(LVO)-based GIS scheme, in which the information hiding is
implemented by the flow-based generative model during the
image generation. Specifically, the LVO algorithm is introduced
to compute the hiding probability of each element of latent
vector according to its impact on the quality of the stego-
image generated from the latent vector. Then, it hides more
information in elements with higher hiding probability. The
extensive experiments demonstrate that, compared to current
GIS schemes, the proposed LVO-based GIS scheme generates
higher-quality images, while maintaining hiding capacity (up
to 5.0 bpp) and accurate information extraction (almost 100%
accuracy rate).

Index Terms—Generative model, Generative Steganography,
AI-Generated Content, Consumer Electronics
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I. INTRODUCTION

IN recent years, there has been a significant advancement
in consumer electronic systems. These systems integrate a

large number of Internet of Things IoT devices, such as smart
sensors in consumer electronic products, and industrial equip-
ments [1], [2], [3], [4]. These devices possess the capability
of producing massive amounts of data, and a large proportion
of those produced data is personal identity information and
privacy data [5]. To transmit those secret data securely, it
is required to explore the advanced covert communication
technologies. To this end, image steganography has been
extensively studied as an effective covert communication
technology. To this end, image steganography has been
extensively studied as an effective covert communication
technology in consumer electronic applications. Fig. 1 shows
the example of how the steganographic approach is used for
covert communication in consumer electronic environment.
Specifically, if the sender needs to send a secret message to
the receiver, he can use the smartphone or tablet to encode
and send the secret message to the cloud server; The cloud
server learns a steganographic neural network by the use of its
powerful computation ability to implement the steganography
to generate the stego-image; Finally, the cloud server sends
the generated stego-image to the receiver’s smartphone or
tablet, so that the receiver can extract and recover the secret
message from the stego-image.

Traditional image steganography [6] generally makes sub-
tle modifications to an existing natural image to embed secret
information. However, these minor alterations could cause
the hidden secret information to be successfully detected
by steganalyzers [7], [8], [9]. In response to this challenge,
generative image steganography (GIS) [10], [11], [12] has
emerged as a promising covert communication technology.
Without any modification, it directly generates a new image as
the stego-image driven by any given secret data. However, the
existing GIS schemes suffer from several issues. First, these
GIS schemes produce lower-quality stego-images, causing the
stego-images easily to be detected by human eyes. Second,
a single stego-image typically carries only a small amount
of secret information, which makes the GIS less practical in
consumer electronic systems. Thus, it is urgent to enhance
both image quality and hiding capacity for the practical
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consumer electronic applications.
To address the above issues, we introduce the Latent

Vector Optimization (LVO)-based GIS scheme. Many GIS ap-
proaches [13], [14], [15], [16], [17] have been proposed based
on the Generative Adversarial Networks (GAN) [18]. How-
ever, these approaches generally have small hiding capacity
due to the limited size of the latent vector. To achieve high-
capacity information hiding, some generative steganographic
approaches [19] have been proposed based on the flow-based
generative model. That is because the input latent vectors
in flow-based generative models are with high dimension,
resulting in high hiding capacity. Moreover, since the flow-
based generative model is invertible between the input latent
vector and the output stego-image, the extraction rate of flow-
based approaches can reach up to almost 100%. Hence, our
proposed LVO-based GIS scheme is designed based on the
flow-based generative model (Glow Model).

The proposed LVO scheme can achieve high-quality image
generation with a large data hiding capacity, thus meeting
the requirements of consumer electronic applications. Specif-
ically, the LVO algorithm is introduced to compute the hiding
probability of each element of latent vector according to its
impact on the quality of the stego-image generated from the
latent vector. Then, it hides more information in elements
with higher hiding probability.

The proposed LVO-based GIS scheme can realize the
transmission of sufficient secret information by generating
only a limited number of stego-images. This significantly
reduces the computational burden on local devices, making
it suitable for applications of consumer electronics. Figure.1
illustrates how the proposed generative image steganography
is applied in consumer electronic applications.

Fig. 1. The application of the steganographic approach in consumer
electronic environment.

In this paper, we propose a novel GIS scheme based
on LVO scheme for consumer electronic applications. This
scheme has the ability of generating high-quality stego-
images with large hiding capacity. The main contributions
are summarized as follows.

• It is found that different dimensions of the latent vector
in the flow-based model has different impacts on the
stego-image quality differently. Thus, we introduce the
concept of latent vector hiding probability, and compute

the hiding probability for each element in the vector
based on its expected impact on the stego-image quality.

• The proposed Latent Vector Optimization scheme (LVO)
is implemented according to the hiding probability of
elements of latent vectors. It can further improve the
stego-image quality under a certain hiding payload.

• The experimental results confirm that the proposed LVO-
based GIS scheme significantly improves stego-image
quality. Additionally, the proposed GIS scheme shows
high hiding capacity, i.e., up to 5.0 bpp, maintaining
100% accurate information extraction.

The rest of this paper is organized as follows. Section
II introduces the related works. Section III describes the
proposed GIS scheme. Experiment results and analysis are
introduced in Section IV, and conclusion is drawn in Section
V.

II. RELATED WORK

In this section, our focus lies on two mainstream generative
image steganography schemes, which are based on GAN and
based on FLOW, respectively, along with some secret image
sharing methods.

A. GAN-based Generative Image Steganography

Due to the rapid development of GANs, many approaches
for generative image steganography are based on GANs.
In those approaches, the secret message is usually encoded
as the entangled features such as latent noise vector [20],
[21], [22], style vector [23], and abstract-structure vector
[24]. Then the GAN can use the entangled features to
generate the corresponding stego-image in a non-distribution
preserving manner. Based on GAN, Hu et al. [25] proposed
the steganography without embedding (SWE) approach, in
which the secret information is encoded as a latent noise
vector, and the deep convolutional GAN(DCGAN) [26] uses
this latent noise vector to generate stego-images for carrier
classification. GAN networks are the foundation of numerous
image processing and picture generating techniques, all of
which perform well. Liu et al. [27] proposed Sketch2Photo, it
has great image quality and may be used to transform a draft
image to a real image using GAN while preserving global
information. Xu et al. [28] proposed a approach to remove
specular highlights from a single grayscale image based on
GAN, this method can effectively handle the highlights that
are damaging the image. Singh et al. [29] proposed a GAN-
based encryption method to secure digital images, it can
possess a high level of security and save sufficient storage
space for any practical application.

The latent noise vector used in GAN model is similar to
the latent vector of flow-based model. The difference is that
the former is generally smaller in size, limiting the hiding
capacity, while the latter is larger in size, which is beneficial
to the hiding capacity. Thus, most GAN-based approaches try
to utilize other feature representations to improve generative
steganography performance.
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Liu et al. [24] proposed a GIS method based on Image
Disentanglement Autoencoder for Steganography (IDEAS),
in which the secret information is mapped into a latent noise
vector and then is converted into a structural feature of the
image; Then, the structural feature and the image texture
feature obtained by random sampling are used as the input to
the generator to generate the stego-image. Since the structural
features of the image are more stable, IDEAS improves
the accuracy of secret information extraction. In addition,
by adding texture features obtained by random sampling,
IDEAS can generate a variety of stego-images when hiding
specific secret information. Thus, it can avoid the problem of
generating only a single stego-image for the specific secret
message, thus improving the security of steganography.

However, the secret message extraction rate of GAN-based
approachs is hard to reach up 100% because GAN only fits
a unidirectional mapping of the latent noise vector to the
stego-image.

B. Flow-based Generative Image Steganography

The flow-based GIS schemes have the advantage of high
extraction accuracy, due to the flow-based model’s ability of
achieving reversible mapping between the input latent vector
and the output stego-image.

Zhou et al. [19] proposed the secret-to-image reversible
transformation (S2IRT) scheme based on Glow [30] model to
achieve efficient generative image steganography. In hiding
stage, to increase the hiding capacity, the sender encodes
the secret message into a high-dimensional vector using a
location encoding algorithm, thus forming a high-dimensional
latent vector based on the obtained position index; Then the
latent vector is mapped to the stego-image by the Glow
model. In extraction stage, the receiver can transform the
pre-processed stego-image into a latent vector by the inverse
transformation of the Glow model, and decode the latent
vector to obtain the secret message. Due to the lossless of
coding and the reversible mapping between latent and image
space by the Glow model, the S2IRT scheme can extract
the secret information accurately while greatly increasing the
hiding capacity.

TABLE I
A BRIEF COMPARISON OF THE TWO MAINSTREAM GENERATIVE

METHODS.

Base Hiding capacity Image quality Extraction accuracy
GAN small Higher < 100%
Flow large High ≈ 100%

However, the flow-based GIS schemes have the following
drawbacks. The information hiding is implemented without
consideration of the impact of different latent vector elements,
resulting in inferior hiding performance and insufficient im-
age diversity.

C. Secret Image Sharing approaches

Currently, there are many secret image sharing (SIS) meth-
ods for consumer electronic applications. The existing SIS

methods are based on traditional image steganography.
Li et al. [31] proposed a SIS method based on Shamir’s

polynomials, allowing seamless image sharing over the cloud.
However, this method is originally designed for gray-level
image, and its hiding capacity is relatively small. Huang et
al. [32] proposed an encrypted domain SMIS (Enc-SMIS)
scheme with secure outsourcing computation for protecting
and managing medical images in IoT environment and it
can reduce computational burden on cloud servers through
fully homomorphic encryption and grouping. However, to
ensure the security of image shares, this scheme still requires
lots of computation resources to support the encryption and
decryption operations.

Zhou et al. [33] proposed a Blockchain-based Secure and
Efficient Secret Image Sharing (BC-SESIS) scheme with
outsourcing computation in wireless networks. In the BC-
SESIS scheme, the shadow images are encrypted and stored
in the blockchain to prevent them from being tampered and
corrupted. This scheme allows secure communication and
effective protection of secret image data in wireless networks.
However, since the image sharing and recovery are imple-
mented in the encryption domain, the computation complexity
is relatively high, which makes this scheme less appealing in
practice. Xiong et al. [34] proposed the SISA scheme, which
is an authenticated secret image sharing method ensuring
reliability in sharing and preventing data loss. Based on the
extended RSIS, this scheme segments the secret image into a
series of stego-images distributed across multiple edge servers
within the IoT, thus enhancing security. This SISA scheme is
more practical and efficient, and shows higher performance
in practical applications.

Wu et al. [35] proposed a novel multigroup SIS method
based on compressed sensing and chaos theory models.
This approach enables simultaneous achievement of SIS and
image data compression. With image compression and chaos
theories, the security of data transmission is significantly
enhanced. Zhou et al. [36] proposed a SIS scheme based on
encrypted pixels. This scheme optimizes shadow images and
improves the performance of SIS. Li et al. [37] proposed pub-
lic key authenticated encryption with ciphertext update and
keyword search(PAUKS scheme) to enable electronic medical
data to be encrypted and retrieved without decryption. Thus,
it achieve secure data sharing and storage.

III. OUR METHODOLOGY

The flow chart of our approach is illustrated in Figure.2.
Specifically, the computed hiding probability of latent vector
elements and a randomly chosen natural image are utilized
for the latent vector optimization, and then the appropriate
dimensions in the vector z obtained by random sampling are
modified to hide the secret message m, and the modified
vector is input into the Glow model, resulting in a high quality
stego-image.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2024.3354824

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Warwick. Downloaded on February 05,2024 at 13:50:12 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Flowchart of flow-based generative image steganographic approaches, which consists of three parts: (a) generate a random image, (b) general flow-based
approach to generate a stego-image, and (c) our approach to generate a stego-image.

A. Glow Model

The proposed LVO-based GIS scheme relies on flow-
based generative models. Specifically, the hiding of secret
information is implemented based on the input latent vector
of the flow-based generative model. Flow-based generative
models such as RealNVP [38] and Glow [30] are able to
produce realistic natural images, which can learn a bijective-
mapping between latent vector space with simple distribution
and natural image pixel space with complex distribution.

In this paper, we focus on Glow [30] model to implement
latent vector optimization scheme. The bijective-mapping in
Glow model is described as follows:

Let z be the variable of latent space following the simple
distribution pZ(z), i.e., spherical multivariate Gaussian distri-
bution, and x the variable of image space following a complex
distribution pX(x), i.e., natural image data space. To achieve
the bijective-mapping, the training process of Glow model is
to learn an invertible mapping function f . The function and
its inverse function can be represented by

z = fθ(x) (1)

x = gθ(z) = f−1
θ (z) (2)

Where, the latent vector z, after undergoing the inverse
function of f , can be transformed into an image x. We denote
the inverse function of f as function g. The dimension of z
is equal to that of x, and the components zd are assumed to
be independent.

Glow model relies on the Jacobian determinant, and ac-
cording to the Jacobian determinant,the relationship between
the distributions pX(x) and pZ(z) can be represented by

pX(x) = pZ(z)

∣∣∣∣det ∂z∂x
∣∣∣∣ = pZ(fθ(x))

∣∣∣∣det∂fθ(x)∂x

∣∣∣∣ (3)

With Equation.1 and Equation.2, we can generate a real-
istic image x by randomly sampling the standard Gaussian
distribution as the latent space vector z, or convert a natural
image x into a latent space vector z that follows the standard
Gaussian distribution.

B. Latent Vector Hiding Secret Probability
According to the transformation of Glow model, each

dimension of the latent vector is theoretically independent
and has some impact on the final generated image. However,
in practice, due to the constraints of training set and training
scale, the network weight parameters of the Glow model are
difficult to be fully trained, causing different latent space
vectors to have different degrees of impact on the quality
of the final generated image.

By studying the latent vectors more thoroughly, we can
achieve GIS by utilizing the latent vectors more efficiently.
Specifically, we can measure the degree of impact of latent
vectors in different dimensions on the final generated stego
image quality, and thus calculate the distortion expectation
caused by modifying latent vectors in different dimensions,
and thus we define the hiding probability of latent vectors in
each dimension.

In this paper, we use the following method to compute
the expectation of distortion caused by adjusting the latent
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vectors of different dimensions. Using the inverse conver-
sion function g−1() of the Glow model, we convert the
real natural image data xnatural ∈ R into the latent vec-
tor znatural = g−1 (xnatural), and then adjust each element
value of the latent vector znatural to measure the difference
of image distortion caused by the change of each element of
the latent vector with the original image, so as to evaluate the
degree of influence of each element on the image generation
quality. Each element znatural(i) of the latent vector znatural
is adjusted n times, and the value of expectation Ez (i) of the
image quality change for each element of the latent vector
znatural(i) is calculated according to the difference in image
distortion before and after the adjustment as follows:

Ez (i) =
1

n∆z

a∑
∆z=−a

[Diff (g (z′natural) , xnatural)] (4)

where,

z′natural (j) =

{
znatural (i) + ∆z, j = i

znatural (i) , j ̸= i
, for 1 ≤ i ≤ K,

(5)
Where, the function Diff() is used to determine the dis-

tortion difference between the modified reconstructed image
g (z′natural) and the original image xnatural, according to
the experimental results, since the Peak signal-to-noise ratio
(PSNR) can reflect the more obvious difference between
different elements of the hidden space vector, we use the
commonly used PSNR criterion to calculate the difference
between the two images. The magnitude of znatural(i) that
can be adjusted is denoted as ∆z ∈ [−a,+a], with ∆z taking
n∆z

values at medium intervals in the range [−a,+a].
Under the assumption that the distortion expectations of

the elements of each dimension are independent of each
other, the distortion expectation matrix Ez has K dimensions
and can be indicated as Ez = [Ez (1) , Ez (2) , · · · , Ez (K)].
This distortion expectation matrix Ez is applied to all input
latent vectors z of this flow model and thus only requires
to be calculated once. We can calculate the hiding secret
probability matrix Pz = [Pz (1) ,Pz (2) , · · · ,Pz (K)] based
on the distortion expectation matrix E , where the hiding secret
probability Pz(i) of each element znatural(i) of the latent
vector znatural is given as follows:

Pz (i) =
eEz(i)∑K
k eEz(k)

, for 1 ≤ i ≤ K (6)

Where, the Equation.6 represents the hiding secret proba-
bility Pz (i) of each dimension in the K-dimensional latent
vector z.

In the latent vector z, those dimensions with smaller dis-
tortion expectation have higher hiding secret probability and
tend to hide more secret information, while those dimensions
with larger distortion expectation have lower hiding secret
probability and are used to improve the image quality.

C. Latent Vector Optimization Scheme for Generative Image
Steganography

After calculating the hiding secret probability of input
latent vector of the Glow model, at this stage we start to opti-
mize the latent vector to improve the quality of the generated
stego-images effectively and achieve predictable generative
image steganography with high hiding capacity and accurate
information extraction simultaneously. In contrast to hiding
secret information globally in the latent vector, our scheme
will only hide it locally in the latent vector.

We leverage natural images to enhance image quality for
three key reasons: (1) Natural images exhibit superior quality,
serving as the ultimate visual benchmark for any generated
image. Directly employing natural images can effectively
enhance the quality of generated stego-images. (2) The Glow
model’s reversible characterization enables the utilization of
natural images. While the Glow model generates images
similar to its training dataset, its principle allows any non-
training set natural image to be converted into a standard
Gaussian-distributed latent vector of the same dimension.
This vector can then reconstruct the original image. Hence,
flow-based generative image steganography methods leverage
natural images. For instance, our approach enables a Glow
model trained on facial data to produce the stego-images,
whereas typical generative image steganography is confined
to the images from the training dataset. (3) Generative image
steganography typically yields unpredictable stego- images
corresponding to different secret messages. As a result, hiding
some messages may lead to poor-quality stego- images.
The proposed GIS scheme ensures predictable, high-quality
generative image steganography across all secret messages.

In Hiding Phase, pseudocode Algorithm 1 demonstrates
algorithm for the hiding phase. The proposed LVO-based GIS
is specified as follows:

Step (1). First, K elements are randomly sampled from the
standard Gaussian distribution to construct a K-dimensional
latent vector z for generating stego-images. The elements
of z in the ith dimension are denoted as zi, z =
[z1, z2, zi, · · · , zK ]. At this point, the latent vector z can be
transformed by the Glow model transformation function g()
to generate an image x = g (z).

Step (2). Select an arbitrary natural image, and use the
inverse transform function g−1() of this Glow model(Eq.
4) to calculate once the expectation value Ez of the im-
age quality change for each element of the latent vec-
tor z input to this Glow model. The K-dimensional dis-
tortion expectation matrix Ez can be indicated as Ez =
[Ez (1) , Ez (2) , · · · , Ez (K)]. According to Eq. 6, we
can calculate the hiding secret probability matrix Pz =
[Pz (1) ,Pz (2) , · · · ,Pz (K)] based on the distortion expec-
tation matrix Ez . The matrix Pz also requires only single
calculation. Meanwhile, this image can be converted to the
latent vector znatural by the inverse transform function g−1(),
which will be used for the next latent vector optimization.

Step (3). Given a secret message m with length M , we first
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Algorithm 1 LVO scheme’s algorithm for the hiding phase.
Require: zi(i = 1, 2, ,K) and Pz

Ensure: M
7 < K

Ensure: Sort Pz from largest to smallest
1: for i = 1 to K do
2: Assigning the 11th decimal of zi to be 0. ▷

Initializing the flag bit.
3: end for
4: for i = 1 to M

7 do
5: for q = 4 to 10 do
6: Modify the qth decimal place of zi to the mi.
7: end for
8: Assigning the 11th decimal of zi to be 1. ▷

Marking that the zi contains information.
9: end for

divide it by length 7, each mi contains 7bit binary numbers
and m = {m1,m2,m3, · · · ,mM

7
). Therefore, a total of M

7
sub-secret messages mi need to be hidden, and for each
dimensional element zi of a K-dimensional latent vector z,
there will be 7bit of information that can be hidden into
one mi for each dimensional element. Iterate through the
K-dimensional hiding secret probability matrix Pz , select
the M

7 dimensional elements zi in the latent vector z for
hiding secret information according to the hiding probability
from the largest to the smallest, and modify the 4th to
10th decimal place of the value of each zi to the 7bit
binary value in mi. Then, for those dimensions zi that are
not selected, the zi in the corresponding position of the
latent vector z is replaced with znatural using the natural
image latent vector znatural in the previous step (2). Finally,
among the elements of all dimensions of the latent vector zi,
the 11th decimal element of those used to hide the secret
information mi is modified to 1 for marking that dimension
as hiding secret information, while the 11th element of zi of
the other dimensions is modified to 0 to indicate that there
is no secret information in that dimension. Meanwhile, the
optimized latent vector z is denoted as zstego. Modifying the
later decimal places of the value of zi has little impact on
the generation of the stego-image, and both znatural and z
follow the standard Gaussian distribution, so the replacement
of element values would not impact the distribution of the
latent vector.

Step (4). After constructing the stego optimal latent vector
zstego, we input it into the Glow model to generate a high-
quality stego-image xstego, which can be used for covert
communication.

In Extracting Phase, the message extraction process of
proposed GIS is specified as follows:

Step (1). At the receiving end, the received image is
reversely mapped to a latent vector z by the Glow model.

Step (2). In dimensional order, we scan each dimensional
element zi in the K-dimensional latent vector z. If the 11th
decimal place of the value of zi is 1, the 7bit binary value of
the 4th to 10th decimal place of that zi is recorded as m

′

i,

and skipped if the value of the 11th decimal place is 0. After
obtaining all the m

′

i, we concatenate these m
′

i to extract the
final secret message m

′
.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To demonstrate the superiority of proposed LVO-based
GIS, we compare it with three state-of-the-art GIS ap-
proaches, namely SWE [25], IDEAS [24] and S2IRT
[19].Among them, SWE and IDEAS are based on GAN,
while S2IRT is based on flow model, and they all utilize the
latent vector for generative image steganography. The Glow
model is trained on three publicly available datasets, face
images from FFHQ [39] and CelebA [40], and landscape
images from COCO [41]. To enrich the dataset, we also
included a larger set of LSUN [42] images, comprising
100,000 images of churches. Among these, in addition to the
100,000 LSUN churches dataset images, there are separate
sets comprising 30,000 high-quality natural images each. For
training convenience, we rescale the size of the images to
256x256 and train the Glow model on the rescaled images.

We evaluate the anti-detectability performance against a
steganalyzer by detection error rate PE , and visual im-
perceptibility using Fréchet inception distance (FID) [43].
Also, we compare information extraction accuracy by LVO
under different hiding payloads with benchmark generative
image steganographic approaches. All the experiments are
conducted on an NVIDIA RTX 3090 GPU platform using
PyTorch with Python interface.

B. Security Evaluation by Steganalysis

We evaluate the anti-detectability performances of those
generative image steganographic approaches on well-known
steganalyzers, including SRM [44] and Xunet [7] to de-
tect whether the secret information is hidden in the stego-
image. To compare with traditional steganography, we in-
clude the well-known traditional steganographic approach S-
UNIWARD [45], and use the following detection error rate
as a quantitative criterion:

PE = min
PFA

1

2
(PFA + PMD) (7)

Where, the probability of false alarm (FA) of the stegan-
alyzer is denoted as PFA, and the probability of missed
detection (MD) of the steganalyzer is denoted as PMD. The
higher anti-detectability to the steganalyzer, the higher the
PE .

Table. II lists the values of PE of the different ap-
proaches against the steganalyzers, and it can be seen that
the generative steganography has a high anti-detectability
performances (PE > 0.25). Among them, when the hiding
payloads is 0.1 bpp, the traditional approaches are able to
have a high anti-detectability because they have only minimal
modifications to the cover image, while the generative image
steganography dominates absolutely when the hiding payload
is greater than or equal to 0.5 bpp. Where there are empty
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Fig. 3. Comparison of FID of stego-images generated by flow-based generative image steganographic approaches

TABLE II
THE PE OF IMAGE STEGANOGRAPHIC APPROACHES WITH

DIFFERENT HIDING PAYLOADS

Approaches Hiding payloads(bpp)
0.1 0.5 2.0 4.0 5.0

S-UNIWARD 0.451 0.136 - - -
SWE 0.266 - - - -

SRM [44] IDEAS 0.255 - - - -
S2IRT 0.263 0.273 0.289 0.281 0.280

LVO(Our) 0.271 0.290 2.295 0.280 0.299
S-UNIWARD 0.421 0.120 - - -

SWE 0.269 - - - -

XuNet [7] IDEAS 0.279 - - - -
S2IRT 0.273 0.270 0.288 0.277 0.281

LVO(Our) 0.271 0.281 2.275 0.280 0.299
∗The larger the PE means the better.

cells in the table, it indicates that the corresponding method
does not achieve such a large hiding capacity. In comparison,
the proposed GIS scheme can achieve a large hiding capacity.

The existing mainstream generative image steganography
approaches, whether based on GANs or Flows, perform sim-
ilarly in terms of security. This may be due to the similarity
of the kernel of the process of generating images, where both
of those apporaches map low-dimensional latent vectors into
image space. Therefore, the steganalyzers’ detection process
is not significantly affected by different models. Moreover,
since information does not exist solely in a specific area of
the stego-image and has an impact across the entire image,
the hiding capacity does not have a direct correlation with
security. It can be seen that the anti-detectability of our LVO
is almost independent of the hiding capacity. And it also
shows the hiding capacity of the flow-based approaches is
significantly larger than that of the GAN-based approaches.

We use the most common bits per pixel (bpp) to evaluate
the information hiding ability and hiding capacity of stegano-
graphic approaches, which means the number of secret bits

hidden in per pixel per channel of an image. It is defined as:

bpp =
NBit

W ×H × C
(8)

Where, the total number of hidden secret bits is noted as
NBit, W , H , and C the width, the height, and the number
of channels of the image, respectively.

Since the elements of each dimension of the latent vector z
can be hidden into 7 bit binary numbers, and the dimension of
the latent vector is equal to the total dimension of the stego-
image, the theoretical maximum hiding capacity of LVO is
7 bpp; However, in practice, when the hiding capacity is larger
than 5 bpp, the stego-image quality decreases significantly
because the elements of the latent vector which have high
impact on the image quality are adjusted. The imperceptibility
is decreased and the security of steganography is insufficient.
The details can be found in the following sub-section D.

C. Security Evaluation by Stego-image Quality

Besides the anti-detectability of generative steganographic
approaches to typical steganalysis tools, perceptual impercep-
tibility is very important for the security of steganography.
The common image quality assessment criterion Fréchet In-
ception Distance (FID) [43] can effectively determine image
quality and diversity, and can be used to determine the
perceptual imperceptibility of stego-images. Table.IV lists the
FID scores between real and stego-images of those generative
steganographic approaches.

As shown in Table. IV, LVO-based GIS performs much
better than the other approaches in all datasets, achieving the
lowest FID scores, since LVO optimizes the latent vector.
LVO-based GIS also has a larger hiding payload. Compared
with another flow-based method S2IRT, LVO-based GIS has
made great advance in stego-image quality, greatly improving
the imperceptibility of flow-based generative image steganog-
raphy and the security of generative image steganography.
When the FID score is less than 10, the perceptibility of the
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TABLE III
THE FID RESULTS OF STEGO-IMAGES OF GENERATIVE

STEGANOGRAPHIC APPROACHES

Approaches(bpp) Dataset avg.±std.devFFHQ CelebA COCO LSUN
SWE(0.1) 149.37 136.22 98.37 96.21 131.3±44.5
IDEAS(0.0026) 29.02 27.13 18.08 17.20 20.51±8.9
S2IRT(4.0) 62.59 54.22 89.21 49.99 55.61±32.2
Our
LVO(2.0) 7.89 6.22 9.12 8.25 6.89±3.0
LVO(5.0) 9.91 9.15 12.25 9.65 9.66±3.12

∗The lower the FID score means the better.

stego-image with the natural image is difficult to be detected
visually, therefore, the steganographic image generated by
LVO can have better security. Besides, the higher diversity
of the COCO dataset compared to the face datasets FFHQ
and CelebA results in lower generation performance of some
approaches.

D. Stego-image Quality / Hiding Capacity Flexibility

Figure. 3 shows the stego-images of two flow-based gen-
erative image steganographic approaches, LVO-based GIS
and S2IRT. The quality of the generated stego-images of
our LVO-based GIS approach differs under different hiding
payloads, but even with a high hiding payload of 5.0 bpp.
The quality of our stego-images is very high, outperforming
the other flow-based approach by a wide margin. The image
quality of S2IRT is not influenced by the hiding payload, but
the quality of some stego-images is particularly poor, and
some the secret information will lead to poorly contained
images, while our LVO can generate the stego-images with
predictable quality.

Fig. 4. The FID of the stego-images generated by several approaches under
different hiding payloads

The line chart in Fig. 4 shows the image quality aver-
age FID scores of the stego-images generated by several
approaches under different hiding payloads. Among them,
the maximum hiding capacity of the GAN-based IDEAS
approach is very small, and its FID is only used as a compar-
ison. It can be seen that when the hiding payloads are very
high (>= 5.5 bpp), the quality of the stego-images generated
by our approach decreases, because the perturbation of the

elements in the latent vector z has a high degree of impact
on the quality of the stego-images. Therefore, the effective
hiding capacity of LVO-based GIS approach is about 5.0 bpp.

E. Extraction Accuracy

The extraction accuracy is an important metric of stegano-
graphic approaches, which determines whether the secret
information can be delivered accurately. Table.IV gives the
extraction accuracy results of the different generative stegano-
graphic approaches and their corresponding hiding capacities.

TABLE IV
THE INFORMATION EXTRACTION ACCURACY OF THOSE

APPROACHES WITH DIFFERENT HIDING PAYLOADS

Approaches Hiding payloads(bpp)
0.1 0.5 2.0 4.0 5.0

SWE 78.51% 71.89% 69.02% - -
IDEAS 96.23% - - - -
S2IRT 100% 100% 100% 99.48% 97.43%

LVO(Our) 100% 100% 100% 100% 100%

It is obvious that he extraction accuracy rates of LVO-
based GIS keep at 100% when the hiding payload ranges from
0.1 bpp to 5.0 bpp. The reason for this remarkable extraction
accuracy is that the flow-based approaches are able to achieve
a perfect reversible mapping between the latent vector and the
stego-image, while the GAN-based approaches have difficulty
in achieving 100% extraction rate. When the hiding payload
exceeds 5.0 bpp, the extraction rate of the LVO method is
slightly less than 100%. Among them, IDEAS and SWE have
a very small hiding capacity, hence, some data cellsare empty
in this table.

Although S2IRT is also a flow-based approach, it does
not optimize the latent vector and uses position encoding
to oper- ate on the latent vector, which causes the position
information of a few dimensional elements to be lost in the
case of high hiding payloads, resulting in the extraction rate
less than 100% under high hiding payloads. In contrast, the
proposed LVO-based GIS optimizes the latent vector without
losing the information of the elements on all dimensions and
can be perfectly reversible to achieve 100% extraction rate
even under high hiding payloads.

V. CONCLUSION

The proposed LVO-based GIS scheme exhibits high stego-
image quality with a large hiding capacity. It effectively over-
comes the issues in the existing GIS schemes for consumer
electronic applications. In the future, we will develop the
proposed GIS to further improve the quality and diversity of
generated stego-images in consumer electronic applications.
For example, we can optimize the flow-based generation
models to realize controllable generation of images with
certain semantic information or explore the other image
generation models (such as diffusion models) to generated
stego-images for GIS.
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