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Abstract

The retinal impulse signal is the basic carrier of visual information. It records the distribution of light on the retina. However,
its direct conversion to a scene image is difficult due to the nonlinear characteristics of its distribution. Therefore, the
use of artificial neural network to reconstruct the scene from retinal spikes has become an important research area. This
paper proposes the architecture of a neural network based on vector quantization, where the feature vectors of spike trains
are extracted, compressed, and stored using a feature extraction and compression network. During the decoding process,
the nearest neighbour search method is used to find the nearest feature vector corresponding to each feature vector in the
feature map. Finally, a reconstruction network is used to decode a new feature map composed of matching feature vectors
to obtain a visual scene. This paper also verifies the impact of vector quantization on the characteristics of pulse signals
by comparing experiments and visualizing the characteristics before and after vector quantization. The network delivers
promising performance when evaluated on different datasets, demonstrating that this research is of great significance for

improving relevant applications in the fields of retinal image processing and artificial intelligence.
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Introduction

Retinal ganglion cells (RGCs) play a crucial role in transmit-
ting visual information from the retina to the central nervous
system [1]. Located near the inner surface of the retina, these
cells receive visual inputs from photoreceptors and propa-
gate the signals to the brain through intermediate neurons,
such as bipolar cells and retinal longitudinally free cells [2].
The resulting spike trains, representing the neural activity
patterns generated by visual stimuli, are of great interest in
the field of retinal spike decoding [3]. The ability to accu-
rately reconstruct visual scenes from retinal spike trains has
significant implications for understanding visual perception
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and developing medical interventions for visual impairments
[4].

Despite recent advances in retinal imaging techniques [5],
conventional spike decoding techniques remain inadequate
for accurately reconstructing visual scenes from retinal data.
While they can detect and analyze spike activity in the retina
[6], decoding the complex relationship between retinal spikes
and visual stimuli remains a challenging task. Moreover, The
challenge is compounded by the specificity and informa-
tion selectivity of RGCs, which have complex coding rules
that are selectively computed only for specific stimulus fea-
tures [7]. The highly nonlinear processing rules precisely
shape retinal narratives and require more sophisticated and
advanced techniques to unlock their attributes.

Artificial neural networks (ANNs) [8] such as convo-
lutional neural network (CNN), recurrent neural network
(RNN), spiking neural network (SNN), and machine learn-
ing models are inspired by the structure and function of
the biological brain [9] to provide a potential solution to
this problem. The machine learning models are well suited
to decode retinal spike trains due to their ability to learn
the complex relationship between the input signal and the
target output. Additionally, vector quantization (VQ) [10]
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is an established technique for compressing data. VQ pro-
vides an efficient way to represent scalar datasets as vectors,
which can then be quantized in the vector space, resulting
in data compression without significant loss of information.
Based on this idea, our paper presents a novel neural network
framework called the vector quantization fully connected
convolutional decoding network (VQ-FCDnet), designed for
decoding retinal spike trains. This model achieves outstand-
ing efficacy and superior quality in reconstructing natural
visual scenes from spikes of retinal ganglion cells (RGCs)
that have been recorded in the retina.

Our proposed framework comprises three major steps.
First, during the encoding process, the visual scene is repre-
sented as spike trains using either retinal cells or simulation
software. Second, the spike trains are converted into feature
maps using a fully connected network [11], followed by con-
volutional operations that further extract and compress the
features. Finally, during the decoding process (i.e., spikes to
image), the nearest neighbour search method is employed to
find the closest embedding vector in the feature maps corre-
sponding to common embedding codebooks, and thus derive
a new feature map. The feature map is then decoded using
convolutional neural networks [12] and transposed convolu-
tional neural networks [13] to reconstruct the visual scene.

The main contributions of this paper are as follows:

e We propose a new neural network model for decoding
retinal spikes trains. The network has a simple struc-
ture and directly reconstructs visual scenes from retinal
spike trains. It achieves higher scores than other network
architectures in evaluation indicators like peak signal to
noise ratio (PSNR), structural similarity index (SSIM)
and mean square error (MSE).

e The proposed structure of the network based on vector
quantization aggregates similar features of spike trains
and distributes dissimilar features to reconstruct visual
scenes, providing a better scheme for recreating visual
scenes from spike trains.

e In the proposed network, the retinal spike trains are
not directly decoded, but the most similar features are
found in the trained embedded codebook with all the
features for decoding, which increases the stability and
anti-interference of the network.

The paper is organized as follows. “Related work™ reviews
the related work. “Proposed method” describes the detailed
process of using VQ-FCDnet decoding and the loss function
for training the network. “Experimental results and compar-
ative analysis” presents the evaluation criteria, experimental
configurations, data sets, and results, as well as a compari-
son with the first step method for reconstructing visual scenes
from RGCs spike trains. “Future scope” suggests future work
and “Conclusion” concludes the paper.
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Related work

In general, an ideal visual neuron decoder [ 14] should be able
to reconstruct stimuli from neural responses to clearly restore
the visual scene. However, the reconstruction of visual scenes
from visual neuron spike trains is a complex and difficult
task. Neurons generate noise when processing visual infor-
mation [15], so each spike in a spike train contains noise.
These noises make accurate reconstruction of visual infor-
mation more difficult [16]. During the transmission of the
spike trains, some of the spikes in the spike trains may be
lost due to the complex connection between neurons. The
lost spikes may contain critical information, which can also
interfere with the reconstruction of visual information.

There are traditional and neural network-based methods
for reconstructing visual scenes with retinal neuron decoders.
Studies related to traditional methods are as follows. Pil-
low et al. [17] proposed a model consisting of a linearly
filtered stimulus-driven leaky integrated-fire pulse genera-
tor, post-pulse currents, and Gaussian noise currents. This
model can be used to derive an explicit maximum likeli-
hood decoding rule [ 18] for neural spike training and primate
RGC light responses with stimulus selectivity. Ariadna et
al. [19] combined multi-electrode array (MEA) and a soft-
ware capable of characterizing and grouping spikes based
on principal component analysis (PCA) [20]. They also used
different clustering algorithms to localize the response of
moving stripes crossing the visual field in eight orthogonal
directions. The receptive field of each cell was used to recon-
struct the complex visual stimuli. However, the reconstructed
scenes are very blurred, and only greyscale images can be
reconstructed.

Related studies on visual scene reconstruction using neu-
ral networks for retinal pulse signals are as follows. Kim et al.
[21] combined alow-pass linear decoder and a high-pass non-
linear decoder to obtain preliminary reconstruction results,
which were then fed into a neural network to reconstruct
visual scenes. The modified approach could only reconstruct
simple visual scenes such as bicycle tyres, cylinders, and
simple black-and-white textures. Zhang et al. [22] designed
a SID model including a spike-to-image converter and an
image-to-image autoencoder to implement an end-to-end
decoder from neural spikes to images to reconstruct visual
scenes directly from spike signals. By combining a fully con-
nected network (FCN), a capsule network (CapsNet) [23],
Li et al. [24] designed a structural similarity index metric
based on SSIM and L1 loss function for retinal spike train
decoder. These images are better than those generated by
previous methods but suffer from blurring. Although visual
scene reconstruction has been studied for many years, the
decoding performance of existing methods still needs further
improvement, especially in complex visual scene reconstruc-
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tion. Thus, scene neural decoding is still a challenge that
needs further development and innovation.

VQ is a lossy data compression method based on block
coding rules. Its basic idea is to compress data without los-
ing much information by transforming a number of scalar
datasets into a vector and then performing an overall quan-
tization in vector space. The vector quantization variant
autoencoder (VQVAE) [25] based on the concept of VQ is an
advanced framework for image generation similar to the tra-
ditional autoencoder and variant autoencoder (VAE) [26], but
with the addition of a quantization step that maps continuous
values to discrete codes. This quantization step improves the
ability of the network to compress the data, while the vari-
able component ensures that the generated output remains of
high quality. By using two scales of features for quantiza-
tion, VQVAE-2 [27] models the local and global features of
an image, with bottom-level features used to extract local
information and top-level features used to extract global
information. This enables the generation of larger and clearer
images. Inspired by VQVAE, we also use VQ to quantify the
features extracted from RGC spike trains.

Proposed method

Figure 1 illustrates the comprehensive process of encoding
visual scene stimuli to reconstruct visual scenes. Initially, the
input image is encoded into RGC Spike through an encoder,
such as retinal cells or retinal simulation software (refer to
“Retinal spike dataset” for more information). Subsequently,
the RGC spike undergoes a flatten operation and is then fed
to our novel VQ-FCDnet which produces the decoder image.
In this section, we present an in-depth analysis of the archi-
tecture of our proposed VQ-FCDnet, elucidating the function
of each module, the loss function, and the training method.

Network architecture

The architecture of VQ-FCDnet is mainly composed of three
blocks (as shown in Fig. 1): feature extraction and com-
pression network (FECN); vector quantization layer; and
reconstruction network (REN).

FECN module

The FECN module, as shown in Fig. 2, performs extraction
and compression of feature maps from the spike signals. It
consists of fully connected feature extraction block (FEB)
and convolutional feature extraction and compression block
(CECB). FEB performs shallow extraction of spike signals
through four fully connected layers, and its structure is shown
in Fig. 3. The size of the one-dimensional features generated
by these four fully connected layers is 8192, 4096, 8192, and

16,384. We employ the LeakyReLU activation function in
the first three layers to enhance the nonlinearity of the fea-
ture extraction process. This function allows the network to
capture more complex relationships between the input spike
signals and the extracted features, thereby improving the rep-
resentational power of the network.

If the size of the input spike signal after the flatten oper-
ation is 10,000, the output expression for FEB at layer i is
expressed as

, , N _
Op = w([(;]) <W[l]01[VIEB] + b[l]) . M

where 01[;;115,] represents the output of layer i — 1 of the
FEB. 1//([‘;]) is LeakyReLU activation function of the i-th layer,

where « is the negative slope of LeakyReLU. Wl and pl’}
are, respectively, the weight matrix and bias vector of the i-th
layer full connection.

As the output, OrEgp(16384), of the FEB represents the
output of the first four layers specifically, the fourth layer
does not use the activation function. Hence, %0}3,]2) = 1. This
is mathematically represented as

OFEB(16384) = 01[:1]53 = 1p([g.]z) (WW O?]EB +b[4]) - @

Convolutional feature extraction and compression blocks
use two residual blocks (ResBlock) [28] and a channel atten-
tion module (CAM) to finely extract feature maps of size
(256, 8, 8) from the feature Or g p(16384). The convolutional
layer then compresses this 256 channel feature map into a 128
channel feature map. The structure of this block is shown in
Fig. 4.

Residual block is a jump-connected convolutional neu-
ral network that preserves pre-convolutional features on the
basis of extracted features. It consists of two convolutional
modules and a hop connection, with convolutional core sizes
of 3 x 3 and 1 x 1, respectively. The ResBlock function is
mathematically expressed as

Res(cny(x) = ¢(d(x) © K3x3,1,1,1) © K(1x1,¢,1,0) + X,
3)

where Res (. ;) (x) represents the output of ResBlock, c is the
number of channels in the input and output feature maps, / is
the number of channels that hide the convolution layer, and x
is the input feature maps. ¢ is the activation function ReLU
[29] and © is the convolution. K33 5,1,1) and K(1x1,¢,1,0)
are, respectively, convolution kernels with size 3 x 3 and
1 x 1, depths & and c, stride 1 and 1, padding 1 and O.
CAM [30] is a module that enhances the feature represen-
tation capabilities of each channel by learning the correlation
between channels, thereby improving the network perfor-
mance. First, it compresses the feature map into two vectors
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reshape(Orgp) | |
(256, 8, 8)

Fig.4 Structure of CECB

through global average pooling and global maximum pool-
ing, respectively. A two-layer fully connected network is then
used to perform a nonlinear transformation on the two vec-
tors to obtain two weight vectors. The two weight vectors are
added, and a sigmoid activation function is used to obtain the
weight vectors between different channels of the feature map.
Finally, the weighted feature map is obtained by multiplying
the feature map with the weight vectors. The operation of
CAM is mathematically expressed as

CAM @, (x) = 0((W29 (Wi (x) + b1) + b2)
+ (W2 (W1 B(x) + b1) + b2)) * x, “

where CAM, ) (x) represents the output of CAM, a repre-
sents the number of channels in the input and output feature
maps, and the output of the second fully connected layer.
represents the output of the first fully connected layer, x is
input feature maps, 6 is the activation function sigmod, ¢ is
the activation function ReLU, * is the multiplier, « is average
pooling and g is max pooling. Wi, W, are the weight matri-
ces, and by, by are the bias vectors of the two fully connected
layers. Therefore, if y is a reshape parameter, the process of
CECB is given by

Zo(x) = OCcECB(128,8.8)
= CAM 256,16)(Res(256,64)

(Ress6,64) (Y (OFEB(16384))))) © K(1x1,128,1,0)-
)

Ocecs=Zo(X)
(128, 8, 8)

Through these two blocks, the input spike trains is con-
verted into a feature maps Z,(x).

Vector quantization

Vector quantization is the discrete quantization of input
feature maps into feature maps composed of vectors in a
codebook. First, we define a latent embedding codebook of
dimension [1024 x 128] where 1024 is the number of embed-
dings and 128 is the dimensionality of each latent embedding
vector. Thus, the codebook E = [ey, e, ..., e;] € RK*PD.

Next, we use the feature map Z.(x) (a 128-dimensional
vector of size (8 x 8)) extracted from the FECN. We use the
nearest neighbour search method to find the nearest embed-
ding vector e; in the embedded codebook for the 8 x 8§ = 64
128-dimensional vectors and use its index to express it,
resulting in the index table Z (with a size of (8 x 8) as shown
in Fig. 1).

Finally, we find the 8 x 8 = 64 embedded vectors e¢;
corresponding to the index table Z in the codebook, replace
the 64 vectors of the feature map Z.(x) according to the
position of the index table Z, and obtain the maps Z;(x) to
be reconstructed later. The vector quantization algorithm is
presented as the following pseudo code:

@ Springer



Complex & Intelligent Systems

Algorithm 1 Vector quantization

Require: Feature maps: Z,(x)(128, 8, 8), Embedding Codebook: E (1024, 128)

Ensure: Feature maps: Z, (x)(128, 8, 8)

1: New Z(8,8), Width =8, Height = 8, Book_Length = 1024
2:fori =0 — Width —1do

3: for j=0— Height —1do

4: Zli: jl=argmin||Zs(x)[: i : j1— E[k]|]2,k € [0, 1,2,3, ..., Book_Length — 1]
5:  end for
6: end for

7: New Z,(x)(128, 8, 8)
8: fori =0 — Width —1do
9: for j =0— Height —1do

10: Zg@l:i: jl=E[Z[i: j]]
11:  end for
12: end for

13: return Z,(x)

REN module

The REN module reconstructs a feature map into a visual
scene. The module (shown in Fig. 5) consists of two main
blocks: convolutional restore block (CRB) and transposed
convolution reconstruction block (TRB).

The CRB restores the input feature map Z, (x) to a feature
map Ocgp through a convolutional layer and two residual
blocks. It enhances the expression ability of feature maps.
The steps involved can be mathematically expressed as

OcRB(256,8,8) = Res2s6,64)(Res256,64)
(Z4(x) © K(3x3,256,1,1)))- (6)

The TRB is the last component of our proposed VQ-
FCDnet, which employs two transposed convolutions to
reconstruct the visual scene. It plays a vital role in the overall
architecture, as it is responsible for mapping the feature map
to its corresponding target values. By doing so, it is able to
provide a high-quality visual representation of the scene, thus
enhancing the overall performance of the network. The atten-
tion to detail in this module ensures that the spatial location
of each feature map is precisely aligned, resulting in a more
accurate and realistic reconstruction of the visual scene. The
role of TRB is expressed as

Oimage(1,32,32) = OTRB(1,32,32) = ®(OCRB(256.8.8)
@ T(4x4,128,2,1)) @ T(ax4,1,2.1), @)

where @ is transposed convolution, and T(4x4,128,2,1) and
T4x4,1,2,1), respectivley, represent convolutional kernels
with size of 4 x 4 and 4 x 4, depths of 128 and 1, stride
of 2 and 2, and padding of 1 and 1.
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Loss function

Similar to VQVAE, the total loss of VQ-FCDnet is due to
reconstruction loss, codebook loss, and commitment loss.
Reconstruction loss is used to optimize the FECN and REN
modules. Due to the non-differentiability of the argmin
operation, the gradient of reconstruction error cannot be
transmitted to the FECN. We use a straight-through estimator
to solve this problem. We directly use the gradient of Z,(x)
as the gradient of Z, (x) and the reconstruction loss is given
by

Lye =log p(x|Z4(x)). ®)

Although the gradient of the reconstruction error is transmit-
ted to the encoder by the straight-through estimation method
[31], the embedding vector e; cannot receive the gradient
of the reconstruction error band, which also means that the
embedding codebook cannot participate in learning.

The codebook loss is determined using a simple dictio-
nary learning method [32], which calculates the L2 error
[33] of the output Z,(x) of the FECN and the correspond-
ing quantized embedding vector e;. However, to stabilize the
training, improve the performance and generalization ability
of the model, and prevent the occurrence of problems such
as gradient explosion or disappearance during the training
process, we use exponential moving average (EMA) [34] to
update the codebook independently.

As the training is based on mini-batch, the updated mathe-
matical expression for embedding the codebook is presented
as
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where ¢; is a vector in codebook, () and (# — 1), respectively,
denote the current and previous time instances, m; is the
sum of z; 1, 2; 2, ..., Zi,n;» Ni is the corresponding number
of z; 1, 2i,2, ---» Zi,n; €lements for each embedding vector ¢;,
and A is the decay value that takes a value of 0.99 in this
experiment.

Commitment loss [35] is mainly used to constrain the con-
sistency of the FECN output and the embedded codebook to
avoid significant changes in the FECN output. Commitment
loss directly computes the L2 error of the FECN output Z, (x)
and the corresponding quantized embedding vector e, i.e.,

Leom = |1 Ze(x) — sglell]3, (10)

where sg refers to a stop-gradient operation that blocks gra-
dients from flowing through e.
Therefore, the overall training objective is

L =1log p(x|Z4(x)) + Bl Zc(x) — sglel| . 1)

The reconstruction loss is applied to FECN and REN, and the
commitment loss is used to constrain FECN. Here, f is the
weighting coefficient, which is set as 0.25. EMA updates the
codebook independently regardless of the type of optimizer
and update rules.

Training model

The training model uses Adam optimizer and L as the loss
function. The learning rate is 0.0001, and the training is ter-
minated after 50 consecutive iterations when val-loss (L) is

no longer reduced, i.e., it is inferred that the model has been
trained to the optimal level.

Experimental results and comparative
analysis

This section presents the dataset, retinal spike generation
software, and the experiments conducted for performance
analysis.

Retinal spike dataset

The dataset consists of salamander retinal ganglion cell
responses to natural images. The dataset was built from
Liu et al. [36] collection and contains multi-electrode array
recordings of retinal ganglion cell spike activity measured in
isolated salamander retinas. The stimuli were the sequences
of 300 natural images plus 1 black screen (— 100% contrast),
1 grey screen (0% contrast), and 1 white screen (+ 100%
contrast). The dataset contains a 156 x 303 x 13 x 300
four-dimensional binary matrix of Os and 1's corresponding
to “spikes” (“1”) or “no spikes” (“0”). The dimensions of the
matrix correspond to 156 cells, 303 images, 13 trials, and
300 time boxes. In this paper, we select 20 spike trains from
different images in one of the 13 experiments as the test set,
and the remaining sequences as the training set.

Retinal simulation software: PRANAS

PRANAS [37] is a powerful retinal simulation software that
provides pre-set retinal profiles to configure the correspond-
ing retinal parameters. Once the visual scene is input into the
software, the corresponding spike trains are generated from
the simulated retina. In this paper, we choose the default set-
ting. The stimulus duration for each image is 100 ms and the
response of 100 neurons in 1 ms is considered.

@ Springer
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Multiple datasets were used for experiments, each with
30,000 images corresponding to spike trains of 100 neuronal
cells within 100 ms, i.e., (30000,100,100). 28,000 images
and their spike trains were used as training set and 2000
were used for testing. The datasets include simple MNIST
and slightly complex Fashion-MNIST, as well as complex
Cifar-10, coco and Celeba-HQ.

Configuration for experiments

We implemented the VQ-FCDnet model on PyTorch version
1.8.1 and executed Python 3.7 in the background. Experi-
ments were performed on a workstation configured with an
Intel Xeon Gold 5118 CPU and 128 G RAM. The batch size
was set to 256 and the model was trained using an NVIDIA
Quadro P5000 GPU.

In this study, three metrics were used to evaluate the qual-
ity of the reconstructed images: SSIM [38], MSE [39], and
PSNR [40]. SSIM is a comprehensive reference metric that
measures the similarity between two images based on the ini-
tial uncompressed or undistorted image (i.e., the reference in
this study is the original visual scene stimulus). It is a per-
ceptual model that views image degradation as a perceptual
change in structural information, while also incorporating
important perceptual phenomena such as brightness mask-
ing and contrast masking. The SSIM value ranges between
0 and 1, with a higher value indicating a higher similarity
between the two images. On the other hand, MSE measures
the mean square deviation between the reconstructed scene
and the original visual scene. A smaller MSE value indicates
a smaller mean square deviation between the two images.
Finally, PSNR, which is defined through MSE, is commonly
used to quantify the reconstruction quality of distorted and
lossy compressed images and videos. A higher PSNR value
indicates a higher reconstruction quality of the image.

Experiments
Ablation study of VQ

Since VQ-FCDnet is based on vector quantization, it is
essential to verify whether vector quantization performs an
optimization role in this experiment. In this paper, t-SNE [41]
is used to visualize the two feature vectors of Z,(x) before
vector quantization and Z, (x) after vector quantization on
MNIST and Fashion MNIST datasets. The visualization
of the feature diagrams are shown in Fig. 6. The figure
demonstrates the effects of vector quantization on the fea-
ture points of the images. Prior to vector quantization, the
feature points of similar images, such as Image 1 and Image
4 in MNIST, and Image 2 and Image 3 in Fashion-MNIST,
exhibit less coincidence, while the feature points of dissimilar
images, namely Image2 and Image3, exhibit more coinci-
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dence. Following vector quantization, the feature points of
these originally similar images show more consistency, while
the feature points of dissimilar images show less consistency.
Additionally, discernible differences were observed between
different categories.

To sum up, the feature segmentation of different types of
images before vector quantization is not obviously incom-
plete, and the features after vector quantization show obvious
boundaries. Similar images overlap and are close to each
other after quantization. The overlapping features of images
with large differences are smaller. It could be observed that
vector quantization separates different features and aggre-
gates similar features.

Experiment on noise immunity of vector quantization

In the process of acquiring pulse signals, the presence of
noise poses a significant challenge to data analysis. However,
by employing vector quantization, we are able to overcome
this limitation and improve the anti-noise ability of our neu-
ral network. Specifically, the creation of a codebook during
training enables our network to capture the essential charac-
teristics of the spike trains. By utilizing this codebook, our
network decodes features that match the characteristics of
the spike trains, thereby avoiding the direct decoding of the
spike trains. Through this indirect approach, our network is
able to filter out noise in the signal, ultimately leading to
improved performance.

To evaluate the noise immunity of our proposed model,
we conducted experiments by introducing varying levels of
random noise to the pulse signal. The pulse signal with noise
was then fed into two networks: one with vector quantiza-
tion and the other without. The results are presented in Fig. 7.
The figure illustrates the proposed model exhibits robustness
against random noise. As the noise ratio increases, the model
with vector quantization retains the majority of the signal
characteristics, whereas the model without vector quantiza-
tion fails to capture the original pulse signal information in
the presence of noise. These results demonstrate that vec-
tor quantization plays a crucial role in enhancing the noise
immunity of our proposed model.

Figure 8 presents the experimental results of the pro-
posed method and the method without vector quantization
under various levels of noise (noise rate) on popular datasets
such as MNIST, Fashion-MNIST, Celeba-HQ, Cifar-10 and
Coco. The comparison curves have been drawn using reli-
able evaluation indicators PSNR, SSIM and MSE to assess
the effectiveness of the proposed method. Our findings
reveal that while the two methods exhibit similar results in
low-noise scenarios, the proposed method with vector quan-
tization outperforms the non-vector quantization methods as
the noise rate increases. Specifically, we observed that the
results of the non-vector quantization method exhibited a



Complex & Intelligent Systems

more significant reduction in reconstruction quality across
all datasets.

The outcomes of this experiment demonstrate the superior
noise immunity characteristics of the proposed model and
highlight the significance of vector quantization in mitigating
the impact of noise. These findings are of great significance
for improving the robustness of retinal visual scene recon-
struction in practical applications, especially in environments
where noise interference is common.

Performance comparison with other methods

We compared the performance of the proposed network with
five other methods for retinal reconstruction of visual scenes.
Method I and Method II are by Zhang et al. [22] and Li et
al. [24], respectively, which are considered state-of-the-art
methods in the field. In addition, since the inputs are spike
trains, we designed a fully connected spiking neural net-
work based on IF neurons to evaluate the difference between
the SNN [42] and the proposed network, named Method

III. Furthermore, we designed a method similar to the pro-
posed VQ-FCDnet by combining the fully connected neural
network with VQVAE [25], named Method IV, to evaluate
the performance of the proposed VQ-FCDnet compared to
FCN+VQVAE. Finally, to evaluate the effectiveness of VQ-
FCDnet, we also removed the CECB from the model, named
Method V, and performed ablation experiments. We eval-
uated the performance of the above five methods and the
proposed method on five datasets. The reconstruction visual
scene effects are illustrated in Fig. 9.

Figure 9 shows that all methods perform well in recon-
structing the simple MNIST dataset. However, on more
complex datasets (e.g., Fashion-MNIST and Celeba-HQ),
Method I reconstructs poorly, while Method III and Method
IV reconstruct blurry images, and Method II and Method
V fail to capture the details in the results of the proposed
methods. For the complex datasets Cifar10 and COCO, all
methods produce blurred reconstruction results compared to
the original images. However, in terms of contour details,
the proposed method outperforms the other five methods.

Fashion_MNIST

image1 image2

image3

image4

AlIRIRT

image1 image2 image3 image4

Fig.6 Features of the MNIST and Fashion MNIST datasets before and after vector quantization
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0.926 0.809 0.566 0.652 0.477
Method-IV 0.003 0.008 0.031 0.011 0.028
25.27 21.00 | 15.08 19.45 15.56
0.958 0.802 . 0.611 0.671 0.540
Method-V 0.002 0.007 0.029 4y 0.012 0.026
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0.968 0.831 0.669 0.676 0.526
Proposed 0.002 0.007 0.023 - 0.010 0.024
28.20 21.71 16.39 Ny 20.17 16.12

Fig.9 Comparison of the images generated by the five methods and the proposed method with the source image, respectively, showing the SSIM,

MSE, and PSNR scores of the reconstructed image with source image

In addition, we evaluated the reconstruction results of these
methods using metrics such as PSNR, SSIM and MSE. The
evaluation results are shown in Table 1, where the best results
are shown in red. It is observed that the performance of the
proposed method is much better than the other methods.

On five different datasets, the proposed method improves
PSNR and SSIM by an average of 2.016 and 0.1226, respec-
tively, and reduces MSE by an average of 0.0109 compared to
Method I proposed by Zhang et al. [22]. Compared to Method
II proposed by Li et al. [24], the proposed method improves

@ Springer

PSNR and SSIM by an average of 1.176 and 0.05, respec-
tively, and reduces MSE by an average of 0.0055. Thus, the
proposed method outperforms the latest research methods
in terms of visual reconstruction performance. Compared
with Method III (i.e., SNN), the proposed method has an
average improvement of 1.0596 and 0.089 in PSNR and
SSIM, respectively, and an average reduction of 0.011 in
MSE, which proves that the proposed method outperforms
SNN in visual reconstruction. Compared with Method IV
(i.e., FCN+VQVAE), which has a similar network structure
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Table 1 Performance comparison with other methods

Dataset Evaluation Method I Method IT Method 11T Method IV Method V Proposed

MNIST PSNR 18.74 20.0 19.61 20.374 20.891 21.323

SSIM 0.824 0.871 0.806 0.866 0.893 0.903

MSE 0.015 0.0113 0.0121 0.0103 0.0093 0.0084

Fashion_ MNIST PSNR 18.38 19.14 19.63 19.392 20.392 20.608

SSIM 0.723 0.774 0.731 0.759 0.801 0.808

MSE 0.0168 0.0143 0.0126 0.0129 0.0105 0.01

CifAR10 PSNR 15.61 16.09 16.13 16.61 17.195 17.31

SSIM 0.498 0.552 0.506 0.543 0.625 0.628

MSE 0.0326 0.0289 0.0276 0.0249 0.0219 0.0214

Celeba-HQ PSNR 14.97 15.83 16.06 16.416 16.683 16.857

SSIM 0.528 0.624 0.612 0.632 0.661 0.668

MSE 0.035 0.0291 0.0269 0.0248 0.0233 0.0224

COCO PSNR 14.25 15.09 15.3 15.313 15.842 15.93

SSIM 0.346 0.461 0.433 0.484 0.524 0.525

MSE 0.012 0.0351 0.0327 0.033 0.0293 0.0289
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Fig. 10 Comparison of reconstructed images with original images from other datasets

to the proposed method, there is an average increase of 0.785
and 0.049 on PSNR and SSIM, respectively, and an aver-
age reduction of 0.003 on MSE. The metrics prove that the
structural improvement of the proposed method improves
the visual reconstruction. Compared with Method V of the
ablation experiment, the proposed method has an average
increase of 0.205 and 0.005 on PSNR and SSIM, respectively,
and an average decrease of 0.0006 on MSE, demonstrating
that CECB improves the visual reconstruction.

Other experiments

To verify the effectiveness of our proposed method on a
broader range of image datasets, we conducted experiments
on nature image datasets as well as colour image datasets
such as Celeba-HQ and CifAR10. The results are presented
in Fig. 10 and the corresponding evaluation metrics are pre-
sented in Table 2.

Based on the restored images and evaluation metrics, it is
evident that the proposed method is capable of reconstruct-
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Table 2 Evaluation of other datasets

Dataset Evaluation method Proposed
Nature image PSNR 13.809
SSIM 0.349
MSE 0.046
Celeba-HQ(rgb) PSNR 15.828
SSIM 0.634
MSE 0.029
CifAR10(rgb) PSNR 15.515
SSIM 0.559
MSE 0.032

ing visual scenes with strong contrast even in the presence
of a small amount of data, while also effectively reconstruct-
ing complex visual scenes in the colour image dataset. The
experimental results highlight the efficacy of applying our
method to a wide range of applications, such as image and
video compression, image restoration and scene reconstruc-
tion. Furthermore, the performance of the proposed method
on diverse datasets suggests its robustness and generalizabil-
ity, paving the way for its potential integration into various
real-world scenarios.

Future scope

Although our method has achieved good results at its current
stage of development, the process of reconstructing visual
scene stimuli from RGC spike trains is still a challenge. In
future work, we will further improve the network model in
the following aspects to make it closer to the function of the
human eye:

e Improve the quality of the reconstructed visual scene and
ensure that the reconstructed image is similar to the nature
scene in terms of clarity and colour recovery.

e Improve the reconstruction ability of the model for small
datasets.

e Propose a model for a dynamic video to realize real-
time reconstruction and restore the visual scene more
realistically.

Finally, we hope that our work can inspire other researchers
and jointly promote the development of retinal visual scene
reconstruction.

@ Springer

Conclusion

In this paper, we have proposed a deep network VQ-FCDnet
for retinal spike signal reconstruction of visual scenes based
on vector quantization. We first built a FECN module com-
posed of multi-layer fully connected neural networks and
convolutional neural networks to extract and compress the
feature information of pulse signals. The nearest neighbour
search method is then used to distribute the feature infor-
mation into multiple vectors of potential codebooks. These
vectors are recombined into new feature maps and sent to
the REN module composed of convolutional neural networks
and transposed convolutional neural networks to reconstruct
the visual scene. In structural analysis experiments, it has
been shown that vector quantization has a significant impact
on the aggregation of similar features and the dispersion
of different features of retinal pulse signals. By comparing
the impact of networks with or without vector quantization
under different levels of noise, it has been verified that vector
quantization has a significant impact on the immunity of the
network to noise, providing a new method for reconstructing
retinal visual scenes. The proposed method was evaluated on
multiple datasets and the reconstruction results were evalu-
ated using five evaluation parameters. Experimental results
show that the proposed method is superior to other methods,
with higher clarity, richer details, and more accurate spatial
structure relationships.
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