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Abstract

Face image synthesis detection is considerably gaining attention because of the potential negative impact on society that this type of synthetic
data brings. In this paper, we propose a data-agnostic solution to detect the face image synthesis process. Specifically, our solution is based on an
anomaly detection framework that requires only real data to learn the inference process. It is therefore data-agnostic in the sense that it requires
no synthetic face images. The solution uses the posterior probability with respect to the reference data to determine if new samples are synthetic
or not. Our evaluation results using different synthesizers show that our solution is very competitive against the state-of-the-art, which requires

synthetic data for training.

© 2011 Published by Elsevier Ltd.
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1. Introduction

Face image-based technology is fast growing for many user
authentication purposes [1] making it an essential component
of several authentication systems. In this context, face image
synthesis poses a problem for many user profile-based systems
that rely on face images, e.g., the use of fake social media ac-
counts to spread misinformation [2, 3] or the use of synthetic
biometrics to commit identity fraud. State-of-the-art methods
can generate high-quality face images with outstanding levels
of featuring [4, 5]. Hence, it is important to accurately detect
synthesized face images to reduce their negative impact on so-
ciety.

Existing solutions to detect the face image synthesis process
require, unfortunately, synthetic data at some point in the train-
ing process to learn to differentiate between real and synthetic
face images. This is an important drawback because some mod-
els with undisclosed architectures can easily trick the detector
by generating never-seen-before data that looks very realistic.
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In this paper, we present a solution based on the anomaly de-
tection framework, which requires training a model only with
real data to learn to identify one class. This solution is then
data-agnostic in the sense that does not require any synthetic
face images. Our contributions are as follows:

1. We use an anomaly detection framework to detect syn-
thetic data, which departs from the trend to use 2-class
classifiers.

2. Our proposed solution requires only real data to detect the
synthesis process using a probabilistic approach.

3. Our solution achieves very competitive performance, out-
performing several state-of-the-art solutions.

The rest of this paper is organized as follows. In Section 2,
we review the most related work. In Section 3, we present the
proposed solution. Section 4 provides experimental results and
Section 5 concludes this paper.

2. Related Work

The majority of the work related to the detection of the face
image synthesis process is also related to deepfake detection.
Such detection methods require detecting the faces at some
point in the process, as synthetic images usually depict arti-
facts in the depicted faces [6, 7]. For example, Afchar et al.
[8] propose a Convolutional Neural Network (CNN) based on
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the InceptionV3 model [9] to detect synthetic face images in
videos. Their method uses the Viola-Jones face detector fol-
lowed by registration, alignment, and scaling. It detects the syn-
thesis process frame-by-frame by giving a score to each frame
depicting a face. Hsu et al. [10] propose a Generative Ad-
versarial Network (GAN)-based solution that requires measur-
ing the contrastive loss given by the GAN discriminator. Be-
cause their solution requires measuring the reconstruction er-
ror of the GAN, a secondary Support Vector Machine (SVM)
is used to detect the synthesis process using the discriminator
loss. Marra et al. [11] inspect a set of well-established generic
models for image-related tasks, e.g. IV3, DenseNet, Xception,
[9, 12, 13], to detect synthetic face images. Their work reveals
that standard architectures are inherently structured to detect
the synthesis process. Nataraj et al. [14] propose detecting
synthetic face images by using a set of co-occurrence matrices
prior to a CNN. The authors suggest that a more descriptive in-
put space can be generated by a set of cascade filters to detect
the synthesis process. Maiano et al. [15] train several exist-
ing CNN backbones to detect the synthesis process in several
color spaces. Their results show that architectures are very sen-
sitive to the color space used for detection. Rossler et al. [16]
propose to perform a series of manipulations to obtain more
synthetic face images to train models. These manipulations in-
clude blending, 3D distortion, texturization, and 2D wrapping.
Zhang et al. [17] propose learning to detect the face image syn-
thesis process by solving an image-to-image translation prob-
lem simulating artifacts. Their work, which uses a GAN, shows
that synthetic samples comprise low-level features visible in the
Fourier domain. A further analysis of several patches is used to
find distinctive patterns, thus the detection is based on spot-
ting several artifacts. Similar spectral analyses are proposed
by Frank ef al. [18] by analyzing the Discreet Cosine Trans-
form (DCT). The idea is that some types of synthesis can be
easily detected under a more descriptive spatial and frequency
transformation. Tolosana et al. propose to detect the face im-
age synthesis process by means of facial landmarks [19]. Their
work suggests that separate fused models can detect the syn-
thesis by separately analyzing several face components, e.g.,
the nose and eyes. This methodology is also supported by the
fact that some synthesizers can only replace part of the face in-
stead of generating a whole new face [20]. Local and global
matching is also explored by Favorskaya ef al. [21]; however,
their method heavily relies on additional features, e.g., those
extracted from the background and areas surrounding the face.
Fusing models to detect the synthesis process in videos is ex-
plored by Coccomini er al. Their method requires analyzing
the faces frame by frame. It combines a CNN and the recently
proposed Vision Transformer [22]. Wang et al. [23] propose
a CNN to detect synthetic images in general. However, their
work can also be used to detect synthetic face images. Other
recent work [24] suggests adding artificially generated artifacts
and then proceeding to detect the synthetic faces.

As discussed in this section, existing CNN architectures
are well-suited to detect the face image synthesis process
[8, 11, 23, 14]. However, they should be designed to capture
the fine details of the face, which usually depict imperfections

and artifacts associated with the synthesis process [19-21]. To
this end, we design our solution using such standard CNN ar-
chitectures while making sure to preserve the fine details of face
images. However, differently from most common solutions, we
use an anomaly detection framework.

3. The Proposed Solution

Although strictly speaking the face image synthesis detec-
tion task is a binary classification problem aimed to determine
whether a face image is real or synthetic, we assume that we
have no information about the synthesizer. This is particularly
useful when the attacker, who aims at synthesizing face im-
ages with malicious intentions, does not publicly disclose their
model. Our proposed solution then aims at detecting synthetic
face images without requiring any synthetic samples from any
synthesizer at any stage. To this end, we use an anomaly de-
tection framework. Although the anomaly detection framework
is a well-known method, it has not been fully exploited for the
detection of the face image synthesis process. Although the
work in [24] also uses a one-class classifier within the context
of anomaly detection, it relies on a set of local image pertur-
bations added to real images to detect synthetic images using
anomaly scores. Our work differs from that approach as it re-
lies on a model that uses only one class with no perturbations
to maximize the Maximum A posterior Probability (MAP), i.e.,
the probability of observing the samples. In this context, sam-
ples that do not fit the positive class (normal) are deemed to be
part of the negative class (abnormal) [25]. To this end, we train
a model exclusively with real face images and without the need
to add any perturbations to the real data. We then use the trained
model with never-seen-before samples from both classes, i.e.,
real and synthetic images. Our solution uses a fine-to-coarse
Bayesian CNN, i.e., a set of convolutional layers followed by
a Bayesian model implemented by Fully Connected (FC) lay-
ers. Bayesian models have recently been shown to be robust
to overfitting and can effectively solve problems related to sub-
parametrization [26]. Because we are only modeling one class,
Bayesian models are then very convenient for this task.

Formally, let us define a set of images organized as the design
matrix X = {x,x,...xy}. Let us use define a neural network
with L FC layers and output y as follows:

y=frot et ), ¢))

where f!(w/, z) denotes the mapping function at layer [ with pa-
rameters w!, and z € RY represents the latent feature space gen-
erated by a set of convolutional layers. The objective is then
to train the Bayesian model that approximates w' for each FC
layer [ by using the set of probabilistic parameters, 6 = {a, 5},
representing the mean and variance, respectively. The output
y can then be modeled as the conditional Gaussian distribution
p(ylz) with inverse variance 87!

POtz w.B) = N (yfzw).8") @
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Fig. 1. Sample artifacts in synthetic face images (left to right). Woman with ripples close to the chin, woman with unpaired nostril, man with scar

below his left eye, and man with uneven ears.

Table 1: Architecture of the proposed fine-to-coarse Bayesian CNN.

Layer Type Number of Filters Feature Map Size Kernel Size  Stride
Input 256% %3

Center-Crop 224% x 3

RGB-normalization 224% x 3

Convolution Layer 1% 16 224% x 16 5x5 I1x1
Mean Pooling Layer 1% 4x4 2%x2
Sigmoid activation

Convolution Layer 2" 24 106% x 24 5x5 Ix1
Mean Pooling Layer 1" 4x4 2x2
Sigmoid activation

Convolution Layer 3" 32 50% % 32 5x5 I1x1
Mean Pooling Layer 1™ 4x4 2x2

Sigmoid activation

Batch Normalization

222 %32 — 222 x32

Fully Connected Layer 1%
Dropout

222 %32 — 512

Fully Connected Layer 2"

512—-1

where p(w,@) = N(w|0,a"'T), with I as the identity matrix.
For N observations in X with target values D = {y;,y2,...yn},
the likelihood function is:

N
p@Ow.B) = [ | Noulfn w).p7. 3)
n=1

The desired posterior distribution is then:

pWID, a,B) = p(wla) p(Diw, B). “

It can be proved [27] that the parameter set given by the MAP
is as follows:

POz D w.B) = N (M@ waar), °(2)) )

where the input-dependent variance o is given by:
@) =p"+g (@l +pH) g, (62)
8=Vl _, .- (6b)

where H is the Hessian matrix comprising the second deriva-
tives of the sum of square errors with respect to the components

of w. The distribution p(y |z, D) is Gaussian whose means are
given by the network mapping function f(wmap,z) and maxi-
mizes the posterior likelihood. To classify a sample x as syn-
thetic we can then use a threshold y on the posterior :

Y < fw, ). )

under the assumption that the posterior for real images is greater
than that for synthetic images:

®)

where x rgar is a real face image sample and x pakg a synthetic
one. Note that Eq. 8 is the foundation of the anomaly detec-
tion framework. In this work, we select the threshold y by in-
specting the posteriors of real samples after training, which may
cause the threshold to vary based on the model’s initial set of
learnable parameters.

S(w, x ReAL) > f(W, X FAKE)-

3.1. Fine-to-coarse Bayesian CNN

As suggested in [17], detecting synthetic face images can be
effectively performed by detecting small visual imperfections
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(d) SGAN2 samples

Fig. 2. Example of the synthetic face images generated by the synthesizers.

and artifacts, e.g., unexpected wrinkles, scars, and small de-
formations. Fig. 1 shows several synthetic face images with
visible artifacts. One can see that the synthesis process can in-
deed produce visible imperfections in the form of distortions
or unusual human trait formations. Because we are interested
in expanding the spatial information extracted from the images,
our fine-to-coarse Bayesian CNN progressively increases the
number of filters along the convolutions layers before feeding
the extracted features to the FC layers. Furthermore, to min-
imize the information loss in the pooling stages, we employ
mean pooling operations to reduce the loss of important visual
details, especially the artifacts in synthetic face images, which
tend to be quite small. Table 1 summarizes the architecture of
the proposed fine-to-coarse Bayesian CNN. Note that the two
FC layers form a Multi-Layer Perceptron (MLP) structure as

the decision layers and constitute the Bayesian model. To pro-
duce large positive output values, we employ the Sigmoid ac-
tivation function for all feature maps. Thus, the MLP receives
only positive values.

4. Experiments

We perform experiments using the face image datasets
Flick Faces High Quality (FFHQ) ? and CelebFaces Attributes
Dataset (CELEBA)  [28, 29], which comprise 70K and 30K
real face image samples, respectively. Let us recall that our
solution only requires real samples for training. However, to

*https://github.com/NVlabs/ffhq-dataset
https://github.com/tkarras/progressive_growing_of_gans
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evaluate performance in detecting synthetic face images, we
use four synthesizers to generate several synthetic face im-
ages. Specifically, we use the pre-trained models provided by
the authors of these four synthesizers: SGAN2 [30], XL-GAN
[31], InsGen [32], and Denoising Diftfusion Probabilistic Mod-
els (DDPM) [33] . Fig. 2 shows several samples generated by
these four synthesizers. To have synthetic samples for evalua-
tion along with the real samples in the FFHQ dataset, we gener-
ate 224K synthetic images, 56K generated by each of the four
synthesizers. All 224K synthetic images are the same size as
the real images in the FFHQ dataset and are in an uncompressed
format. For the case of the CELEBA dataset, we generate 72K
synthetic images to be used for evaluation along with the real
samples, 24K synthetic images generated by each of the four
synthesizers. All 72K synthetic images are the same size as the
real images in the CELEBA dataset and are in an uncompressed
format.

Our fine-to-course Bayesian CNN is implemented in pyro >
using two GTX 1080 TI GPUs. We use an exponential learning
rate scheduler having Stochastic Gradient Descent (SGD) as the
backbone starting at 10~ with a decay factor of 0.1. We use a
TraceGraph Evidence LOwer BOund (ELBO) loss function as
a back-propagator and monitor the loss plateau on the valida-
tion and training sets. Initially, we use 50 epochs and when the
model achieves a 1% improvement in accuracy with respect to
the previous validation iteration, we use it as the best model
and continue iterating. Thus at the end of the training process,
the best model is the one that achieves the best accuracy on the
validation set. To prevent overfitting, we have an early stop cri-
terion of 6% between the accuracy achieved on the test set and
the accuracy achieved on the validation set. The convolution
banks are preset with Xavier initialization. We use batches of
5122 samples.

To make comparisons with existing methods, we use a
similar strategy as that suggested by Gragnaniello er al
[34], which is a strategy for synthetic images in general, not
exclusively face images. Their strategy requires training on a
reference dataset targeting one class out of ten and testing on
different image scales. Their strategy uses seven synthesizers
to generate around 39K synthetic samples in an imbalanced
fashion; i.e., more samples from some synthesizers than others.
In this work, we are interested only in evaluating the capacity
to detect synthetic face images regardless of the image scale.
‘We then focus on evaluating the detection of unseen samples at
one scale with balanced data generated by four synthesizers.

We compare our solution against the methods proposed in
[18, 17, 15]. These methods are trained to detect real samples
as the class 1 and the synthetic samples as the class 0. Specifi-
cally, we train these methods with a proportion of the real sam-
ples defined by the split used plus the same number of synthetic
samples generated by one of the four synthesizers. We then
use unseen data for testing, which includes the same proportion

“https://github.com/hojonathanho/diffusion
https://pyro.ai/

of unseen real samples and unseen synthetic samples. We re-
peat this process with both datasets and the other synthesizers.
To compare against the method in [15], we only use the RGB
color space.

For the method in [17] ©, we keep all the default settings
from the implementation and only append the tree structure of
the real/synthetic faces. No threshold is set to detect synthetic
face images but only the output of the discriminator. For the
method in [15], we train from zero a model using the reported
parameters and set the classification threshold at 0.7 from the
last decision layer as it is not specified by the authors. We also
add Sigmoid activations as the authors report the use of a binary
cross entropy loss. For the method in [18], we employ a grid
search to find the best parameters as the authors report for the
described CNN. We set a classification threshold at 0.9 that em-
pirically provides good results. For our solution, we maximize
the MAP until a plateau is observed. We set the threshold y in
Eq. 7 after inspecting a few samples from the posterior distri-
bution. In this case, the test samples are deemed real/synthetic
after manually inspecting the validation set. Because the means
and variances of the model are randomly initialized, we observe
that the threshold should change for every run. The reported re-
sults in Tables 2 and 3 then use a different threshold for each
split.

Table 2 and 3 tabulate results for the real images of the FFHQ
dataset and the CELEBA dataset, respectively, in terms of the
mean Average precision (mAp) values for different proportions
(splits) of training data. In both tables, the tabulated splits indi-
cate the proportion of real samples from each dataset used for
training our solution. For the case of the other evaluated meth-
ods, the tabulated splits indicate the proportion of real samples
from each dataset used for training plus the same amount of
training synthetic samples generated by the synthesizer tabu-
lated in each row. From Table 2, we can see that the pro-
posed solution (BayesianCNN) achieves very competitive per-
formance when trained on the real images of the FFHQ dataset.
Particularly, using 80% of the available training data gives the
best mAp values for two of the synthesizers. One can also see
in Table 3 that the proposed solution also achieves very com-
petitive performance when trained on the real images of the
CELEBA dataset. Namely, our solution gives the best perfor-
mance for the detection of synthetic images generated by the
XL-GAN and SGAN2 synthesizers.

We also examine the posteriors of the data generated by each
synthesizer and plot them along with the posteriors of the real
data in Fig. 3. This plot shows that it is indeed possible to
distinguish the synthetic samples from the real ones by thresh-
olding the posterior linearly. Hence, the threshold selection in
Eq. 7 is appropriate as this establishes a linear margin. As we
can see from this figure, the synthetic data is concentrated in a
region where low posterior values exist. This further confirms
that using an anomaly detection framework is an effective solu-
tion to detect synthetic face images. Moreover, such posterior
values are intrinsic to our Bayesian CNN, which is expected to

Shttps://github. com/ColumbiaDVMM/AutoGAN



R. Leyva et al. / Pattern Recognition Letters 00 (2024) 1-8 6

Table 2: mAp values (T) of several solutions for different synthesizers and split values for the FFHQ dataset. The best (second best) results are

highlighted in bold (underlined).

Method Synthesizer

Split (% of data used for training )

SGAN2 [30]
InsGen [32]
DDPM [33]
XL-GAN [31]
SGAN2
InsGen
XL-GAN
DDPM
SGAN2
InsGen
DDPM
XL-GAN

DCT-Ridge [18]

DF [15]

AutoGAN [17]

SGAN2
InsGen
DDPM
XL-GAN

BayesianCNN

20% 40% 60%  80%
0492 0533 0654  0.761
0501 0534 0583 0741
0505 0512 0559 0721
0511 0522 0544  0.698
0503 0575 0701 0816
0551 0584 0.731  0.802
0565 0566 0.624  0.732
0518 0563 0691  0.791
0513 0544 0603 0729
0544 0576 0623  0.787
0512 0525 0557  0.653
0504 0518 0544 0642
0.629 0.683 0754  0.843
0552 0.593 0643 0771
0562 0595 0667 0783
0573 0597 0.643  0.793

Table 3: mAp values (T) of several solutions for different synthesizers and split values for the CELEBA dataset. The best (second best) results are

highlighted in bold (underlined).

Method Synthesizer

Split (% of data used for training )

SGAN2 [30]
DDPM [33]
XL-GAN [31]
SGAN2
DDPM
XL-GAN
SGAN2
DDPM
XL-GAN

DCT-Ridge [18]

DF [15]

AutoGAN [17]

SGAN2
DDPM
XL-GAN

BayesianCNN

20% 40%  60% 80%
0.562  0.593 0.681 0.813
0.578 0.594 0.615 0.794
0.566 0.573 0.602 0.778
0.552  0.642  0.770 0.833
0.575 0.654 0.723 0.805
0.602 0.614 0.693 0.791
0.562 0.612 0.669 0.802
0.570  0.593 0.653 0.733
0.562  0.587 0.644 0.702
0.664 0.743 0.773 0.843
0.602 0.655 0.694 0.796
0.632  0.667 0.730 0.812

produce high posterior values for data that is very similar to the
one used during training (i.e., real face images) and low values
for never-seen data (i.e., synthetic face images). It is impor-
tant to recall that the location of the region where the synthetic
samples lie varies depending on the initialization of the model’s
parameters.

We also evaluate performance after applying common post-
processing on the test images: (1) Blurring by varying the size
of the filter scale o; (2) JPEG compression at different qual-
ities; and (3) resizing by a factor of 1/2 and 1/4 using bilin-
ear interpolation. Fig. 4 shows the results of this experiment.
Fig. 4a shows that blurring has a very negative effect on per-
formance, to the point of almost random classification for large
values of o. Fig. 4b shows that very aggressive compression
hinders performance, yet the effect is not as severe as the one
introduced by blurring the images. Finally, Fig. 4c has also
a drastic effect, similar to blurring, as losing spatial informa-
tion hinders the model’s performance in detecting the synthetic

samples. This experiment reveals that the proposed solution
is very sensitive to losing the fine details of the images as our
Bayesian CNN relies on detecting such small artifacts and im-
perfections. Therefore, blurring is the most important aspect to
address. More extensive experimentations can be preformed by
augmenting the reference set with adversarial controlled sam-
ples. However, this is a challenging strategy because the pro-
posed method relies on the fine details of the images. However,
such data augmentation techniques are part of our future work.

Finally, we also discuss several architectural decisions that
led to the final architecture of our fine-to-coarse Bayesian CNN.
We observe that small kernel sizes for the convolutional lay-
ers significantly improve the performance, e.g. 3 — 4% on the
large splits, while more than three filter banks have little effect
on the performance but a severe impact on processing times.
Compared to using filter banks of the same size, the proposed
fine-to-coarse filter bank provides 5% improvement on the large
splits. We observe that more than two FC layers provide no
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Fig. 4. Performance or the proposed solution when post-processing is used on the test images.

significant improvement. Adding batch normalization provides
faster convergence and less sensitivity to initialization. Finally,
we observe that using dropouts, high posteriors can be achieved
with significantly fewer parameters. Because our ultimate goal
is to maximize the posterior for the real data with the fewest pa-
rameters possible, dropout is used. The proposed architecture
in Table 1 then fairly trades performance for complexity.

5. Conclusion

In this paper, we have proposed a solution based on anomaly
detection to detect synthetic face images, which implies train-
ing using only one class. Our solution is then data-agnostic
as it requires no synthetic samples during training. This is
a powerful advantage as we may not have information about
the synthesizer or any of the synthetic face images. For de-
tection, the solution uses a Bayesian CNN that extracts spatial
features from the face images while preserving the small de-
tails associated with common artifacts and imperfections found

in synthetic face images. Our performance evaluation results
show that the proposed solution can achieve very competitive
accuracy, outperforming several state-of-the-art methods that
require training on real and synthetic face images. Our future
focuses on making the proposed strategy more robust against
post-processing operations that result in the loss of fine details
in the images, in particular blurring-like distortions. Addition-
ally, our future work focuses on defining an automatic margin
selection process to set thresholds and conducting cross-data
validations on more real/synthetic datasets.
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