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ract

image synthesis detection is considerably gaining attention because of the potential negative impact on society that this type of synthetic
rings. In this paper, we propose a data-agnostic solution to detect the face image synthesis process. Specifically, our solution is based on an
aly detection framework that requires only real data to learn the inference process. It is therefore data-agnostic in the sense that it requires
nthetic face images. The solution uses the posterior probability with respect to the reference data to determine if new samples are synthetic
t. Our evaluation results using different synthesizers show that our solution is very competitive against the state-of-the-art, which requires
etic data for training.

11 Published by Elsevier Ltd.

ords: Face synthesis, Deep Fakes, Agnostic Models, Anomaly Detection, Computer Security

troduction

ce image-based technology is fast growing for many user
ntication purposes [1] making it an essential component
veral authentication systems. In this context, face image
esis poses a problem for many user profile-based systems

rely on face images, e.g., the use of fake social media ac-
ts to spread misinformation [2, 3] or the use of synthetic
etrics to commit identity fraud. State-of-the-art methods
enerate high-quality face images with outstanding levels

aturing [4, 5]. Hence, it is important to accurately detect
esized face images to reduce their negative impact on so-

.
isting solutions to detect the face image synthesis process

ire, unfortunately, synthetic data at some point in the train-
rocess to learn to differentiate between real and synthetic
images. This is an important drawback because some mod-
ith undisclosed architectures can easily trick the detector

enerating never-seen-before data that looks very realistic.
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In this paper, we present a solution based on the anomaly de-
tection framework, which requires training a model only with
real data to learn to identify one class. This solution is then
data-agnostic in the sense that does not require any synthetic
face images. Our contributions are as follows:

1. We use an anomaly detection framework to detect syn-
thetic data, which departs from the trend to use 2-class
classifiers.

2. Our proposed solution requires only real data to detect the
synthesis process using a probabilistic approach.

3. Our solution achieves very competitive performance, out-
performing several state-of-the-art solutions.

The rest of this paper is organized as follows. In Section 2,
we review the most related work. In Section 3, we present the
proposed solution. Section 4 provides experimental results and
Section 5 concludes this paper.

2. Related Work

The majority of the work related to the detection of the face
image synthesis process is also related to deepfake detection.
Such detection methods require detecting the faces at some
point in the process, as synthetic images usually depict arti-
facts in the depicted faces [6, 7]. For example, Afchar et al.
[8] propose a Convolutional Neural Network (CNN) based on

1
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nceptionV3 model [9] to detect synthetic face images in
s. Their method uses the Viola-Jones face detector fol-

d by registration, alignment, and scaling. It detects the syn-
s process frame-by-frame by giving a score to each frame
ting a face. Hsu et al. [10] propose a Generative Ad-
rial Network (GAN)-based solution that requires measur-
he contrastive loss given by the GAN discriminator. Be-
e their solution requires measuring the reconstruction er-
f the GAN, a secondary Support Vector Machine (SVM)
ed to detect the synthesis process using the discriminator
Marra et al. [11] inspect a set of well-established generic

els for image-related tasks, e.g. IV3, DenseNet, Xception,
2, 13], to detect synthetic face images. Their work reveals
standard architectures are inherently structured to detect
ynthesis process. Nataraj et al. [14] propose detecting
etic face images by using a set of co-occurrence matrices
to a CNN. The authors suggest that a more descriptive in-
pace can be generated by a set of cascade filters to detect
ynthesis process. Maiano et al. [15] train several exist-
NN backbones to detect the synthesis process in several
spaces. Their results show that architectures are very sen-
to the color space used for detection. Rossler et al. [16]

ose to perform a series of manipulations to obtain more
etic face images to train models. These manipulations in-
blending, 3D distortion, texturization, and 2D wrapping.

g et al. [17] propose learning to detect the face image syn-
s process by solving an image-to-image translation prob-
imulating artifacts. Their work, which uses a GAN, shows
ynthetic samples comprise low-level features visible in the
ier domain. A further analysis of several patches is used to
distinctive patterns, thus the detection is based on spot-
several artifacts. Similar spectral analyses are proposed
rank et al. [18] by analyzing the Discreet Cosine Trans-
(DCT). The idea is that some types of synthesis can be

y detected under a more descriptive spatial and frequency
formation. Tolosana et al. propose to detect the face im-
ynthesis process by means of facial landmarks [19]. Their
suggests that separate fused models can detect the syn-

s by separately analyzing several face components, e.g.,
ose and eyes. This methodology is also supported by the
hat some synthesizers can only replace part of the face in-
of generating a whole new face [20]. Local and global

hing is also explored by Favorskaya et al. [21]; however,
method heavily relies on additional features, e.g., those
cted from the background and areas surrounding the face.
g models to detect the synthesis process in videos is ex-
d by Coccomini et al. Their method requires analyzing
aces frame by frame. It combines a CNN and the recently
osed Vision Transformer [22]. Wang et al. [23] propose
N to detect synthetic images in general. However, their
can also be used to detect synthetic face images. Other
t work [24] suggests adding artificially generated artifacts
hen proceeding to detect the synthetic faces.

discussed in this section, existing CNN architectures
well-suited to detect the face image synthesis process
1, 23, 14]. However, they should be designed to capture
ne details of the face, which usually depict imperfections

and artifacts associated with the synthesis process [19–21]. To
this end, we design our solution using such standard CNN ar-
chitectures while making sure to preserve the fine details of face
images. However, differently from most common solutions, we
use an anomaly detection framework.

3. The Proposed Solution

Although strictly speaking the face image synthesis detec-
tion task is a binary classification problem aimed to determine
whether a face image is real or synthetic, we assume that we
have no information about the synthesizer. This is particularly
useful when the attacker, who aims at synthesizing face im-
ages with malicious intentions, does not publicly disclose their
model. Our proposed solution then aims at detecting synthetic
face images without requiring any synthetic samples from any
synthesizer at any stage. To this end, we use an anomaly de-
tection framework. Although the anomaly detection framework
is a well-known method, it has not been fully exploited for the
detection of the face image synthesis process. Although the
work in [24] also uses a one-class classifier within the context
of anomaly detection, it relies on a set of local image pertur-
bations added to real images to detect synthetic images using
anomaly scores. Our work differs from that approach as it re-
lies on a model that uses only one class with no perturbations
to maximize the Maximum A posterior Probability (MAP), i.e.,
the probability of observing the samples. In this context, sam-
ples that do not fit the positive class (normal) are deemed to be
part of the negative class (abnormal) [25]. To this end, we train
a model exclusively with real face images and without the need
to add any perturbations to the real data. We then use the trained
model with never-seen-before samples from both classes, i.e.,
real and synthetic images. Our solution uses a fine-to-coarse
Bayesian CNN, i.e., a set of convolutional layers followed by
a Bayesian model implemented by Fully Connected (FC) lay-
ers. Bayesian models have recently been shown to be robust
to overfitting and can effectively solve problems related to sub-
parametrization [26]. Because we are only modeling one class,
Bayesian models are then very convenient for this task.

Formally, let us define a set of images organized as the design
matrix X = {x1, x2, . . . xN}. Let us use define a neural network
with L FC layers and output y as follows:

y = f L(wL, . . . f (wL−1, . . . ( f 1(w1, z)))), (1)

where f l(wl, z) denotes the mapping function at layer l with pa-
rameters wl, and z ∈ Rd represents the latent feature space gen-
erated by a set of convolutional layers. The objective is then
to train the Bayesian model that approximates wl for each FC
layer l by using the set of probabilistic parameters, θ = {α, β},
representing the mean and variance, respectively. The output
y can then be modeled as the conditional Gaussian distribution
p(y|z) with inverse variance β−1:

p(y|z,w, β) = N
(
y| f (z,w), β−1

)
(2)

2
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. Sample artifacts in synthetic face images (left to right). Woman with ripples close to the chin, woman with unpaired nostril, man with scar
his left eye, and man with uneven ears.

Table 1: Architecture of the proposed fine-to-coarse Bayesian CNN.

Layer Type Number of Filters Feature Map Size Kernel Size Stride

Input 2562 × 3
Center-Crop 2242 × 3
RGB-normalization 2242 × 3

Convolution Layer 1st 16 2242 × 16 5 × 5 1 × 1
Mean Pooling Layer 1st 4 × 4 2 × 2
Sigmoid activation

Convolution Layer 2nd 24 1062 × 24 5 × 5 1 × 1
Mean Pooling Layer 1nd 4 × 4 2 × 2
Sigmoid activation

Convolution Layer 3th 32 502 × 32 5 × 5 1 × 1
Mean Pooling Layer 1th 4 × 4 2 × 2
Sigmoid activation

Batch Normalization 222 × 32→ 222 × 32

Fully Connected Layer 1st 222 × 32→ 512
Dropout

Fully Connected Layer 2nd 512→ 1

e p(w, α) = N(w|0, α−1I), with I as the identity matrix.
observations in X with target values D = {y1, y2, . . . yN},

ikelihood function is:

p(D|w, β) =
N∏

n=1

N(yn| f (zn,w), β−1). (3)

e desired posterior distribution is then:

p(w|D, α, β) ≈ p(w|α) p(D|w, β). (4)

can be proved [27] that the parameter set given by the MAP
follows:

p(y|z,D,w, β) = N
(
y| f (z,wMAP), σ2(z)

)
, (5)

e the input-dependent variance σ is given by:

σ2(z) = β−1 + g⊤(α I + β H)−1g, (6a)

g = ∇wy(z | w)
∣∣∣
w=wMAP

, (6b)

e H is the Hessian matrix comprising the second deriva-
of the sum of square errors with respect to the components

of w. The distribution p(y |z,D) is Gaussian whose means are
given by the network mapping function f (wMAP, z) and maxi-
mizes the posterior likelihood. To classify a sample x as syn-
thetic we can then use a threshold γ on the posterior :

γ < f (w, x). (7)

under the assumption that the posterior for real images is greater
than that for synthetic images:

f (w, x REAL) > f (w, x FAKE). (8)

where x REAL is a real face image sample and x FAKE a synthetic
one. Note that Eq. 8 is the foundation of the anomaly detec-
tion framework. In this work, we select the threshold γ by in-
specting the posteriors of real samples after training, which may
cause the threshold to vary based on the model’s initial set of
learnable parameters.

3.1. Fine-to-coarse Bayesian CNN

As suggested in [17], detecting synthetic face images can be
effectively performed by detecting small visual imperfections

3
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(a) XL-GAN samples

(b) DDPM samples

(c) InsGen samples

(d) SGAN2 samples

Fig. 2. Example of the synthetic face images generated by the synthesizers.

artifacts, e.g., unexpected wrinkles, scars, and small de-
ations. Fig. 1 shows several synthetic face images with
le artifacts. One can see that the synthesis process can in-
produce visible imperfections in the form of distortions
usual human trait formations. Because we are interested
panding the spatial information extracted from the images,
ne-to-coarse Bayesian CNN progressively increases the

ber of filters along the convolutions layers before feeding
xtracted features to the FC layers. Furthermore, to min-
e the information loss in the pooling stages, we employ

pooling operations to reduce the loss of important visual
ls, especially the artifacts in synthetic face images, which
to be quite small. Table 1 summarizes the architecture of
roposed fine-to-coarse Bayesian CNN. Note that the two
ayers form a Multi-Layer Perceptron (MLP) structure as

the decision layers and constitute the Bayesian model. To pro-
duce large positive output values, we employ the Sigmoid ac-
tivation function for all feature maps. Thus, the MLP receives
only positive values.

4. Experiments

We perform experiments using the face image datasets
Flick Faces High Quality (FFHQ) 2 and CelebFaces Attributes
Dataset (CELEBA) 3 [28, 29], which comprise 70K and 30K
real face image samples, respectively. Let us recall that our
solution only requires real samples for training. However, to

2https://github.com/NVlabs/ffhq-dataset
3https://github.com/tkarras/progressive_growing_of_gans
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ate performance in detecting synthetic face images, we
four synthesizers to generate several synthetic face im-
. Specifically, we use the pre-trained models provided by
uthors of these four synthesizers: SGAN2 [30], XL-GAN
InsGen [32], and Denoising Diffusion Probabilistic Mod-
DPM) [33] 4. Fig. 2 shows several samples generated by
four synthesizers. To have synthetic samples for evalua-

along with the real samples in the FFHQ dataset, we gener-
24K synthetic images, 56K generated by each of the four
esizers. All 224K synthetic images are the same size as

eal images in the FFHQ dataset and are in an uncompressed
at. For the case of the CELEBA dataset, we generate 72K
etic images to be used for evaluation along with the real
les, 24K synthetic images generated by each of the four
esizers. All 72K synthetic images are the same size as the
mages in the CELEBA dataset and are in an uncompressed
at.
r fine-to-course Bayesian CNN is implemented in pyro 5

two GTX 1080 TI GPUs. We use an exponential learning
cheduler having Stochastic Gradient Descent (SGD) as the
bone starting at 10−3 with a decay factor of 0.1. We use a
eGraph Evidence LOwer BOund (ELBO) loss function as
k-propagator and monitor the loss plateau on the valida-

and training sets. Initially, we use 50 epochs and when the
el achieves a 1% improvement in accuracy with respect to
revious validation iteration, we use it as the best model
ontinue iterating. Thus at the end of the training process,
est model is the one that achieves the best accuracy on the
ation set. To prevent overfitting, we have an early stop cri-
n of 6% between the accuracy achieved on the test set and
ccuracy achieved on the validation set. The convolution
s are preset with Xavier initialization. We use batches of
samples.
make comparisons with existing methods, we use a

ar strategy as that suggested by Gragnaniello et al.
which is a strategy for synthetic images in general, not
sively face images. Their strategy requires training on a

ence dataset targeting one class out of ten and testing on
rent image scales. Their strategy uses seven synthesizers
nerate around 39K synthetic samples in an imbalanced
on; i.e., more samples from some synthesizers than others.
is work, we are interested only in evaluating the capacity
tect synthetic face images regardless of the image scale.
hen focus on evaluating the detection of unseen samples at
cale with balanced data generated by four synthesizers.

e compare our solution against the methods proposed in
17, 15]. These methods are trained to detect real samples
e class 1 and the synthetic samples as the class 0. Specifi-
, we train these methods with a proportion of the real sam-
defined by the split used plus the same number of synthetic
les generated by one of the four synthesizers. We then
nseen data for testing, which includes the same proportion

ttps://github.com/hojonathanho/diffusion

ttps://pyro.ai/

of unseen real samples and unseen synthetic samples. We re-
peat this process with both datasets and the other synthesizers.
To compare against the method in [15], we only use the RGB
color space.

For the method in [17] 6, we keep all the default settings
from the implementation and only append the tree structure of
the real/synthetic faces. No threshold is set to detect synthetic
face images but only the output of the discriminator. For the
method in [15], we train from zero a model using the reported
parameters and set the classification threshold at 0.7 from the
last decision layer as it is not specified by the authors. We also
add Sigmoid activations as the authors report the use of a binary
cross entropy loss. For the method in [18], we employ a grid
search to find the best parameters as the authors report for the
described CNN. We set a classification threshold at 0.9 that em-
pirically provides good results. For our solution, we maximize
the MAP until a plateau is observed. We set the threshold γ in
Eq. 7 after inspecting a few samples from the posterior distri-
bution. In this case, the test samples are deemed real/synthetic
after manually inspecting the validation set. Because the means
and variances of the model are randomly initialized, we observe
that the threshold should change for every run. The reported re-
sults in Tables 2 and 3 then use a different threshold for each
split.

Table 2 and 3 tabulate results for the real images of the FFHQ
dataset and the CELEBA dataset, respectively, in terms of the
mean Average precision (mAp) values for different proportions
(splits) of training data. In both tables, the tabulated splits indi-
cate the proportion of real samples from each dataset used for
training our solution. For the case of the other evaluated meth-
ods, the tabulated splits indicate the proportion of real samples
from each dataset used for training plus the same amount of
training synthetic samples generated by the synthesizer tabu-
lated in each row. From Table 2, we can see that the pro-
posed solution (BayesianCNN) achieves very competitive per-
formance when trained on the real images of the FFHQ dataset.
Particularly, using 80% of the available training data gives the
best mAp values for two of the synthesizers. One can also see
in Table 3 that the proposed solution also achieves very com-
petitive performance when trained on the real images of the
CELEBA dataset. Namely, our solution gives the best perfor-
mance for the detection of synthetic images generated by the
XL-GAN and SGAN2 synthesizers.

We also examine the posteriors of the data generated by each
synthesizer and plot them along with the posteriors of the real
data in Fig. 3. This plot shows that it is indeed possible to
distinguish the synthetic samples from the real ones by thresh-
olding the posterior linearly. Hence, the threshold selection in
Eq. 7 is appropriate as this establishes a linear margin. As we
can see from this figure, the synthetic data is concentrated in a
region where low posterior values exist. This further confirms
that using an anomaly detection framework is an effective solu-
tion to detect synthetic face images. Moreover, such posterior
values are intrinsic to our Bayesian CNN, which is expected to

6https://github.com/ColumbiaDVMM/AutoGAN
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2: mAp values (↑) of several solutions for different synthesizers and split values for the FFHQ dataset. The best (second best) results are
ighted in bold (underlined).

Method Synthesizer Split (% of data used for training )
20% 40% 60% 80%

DCT-Ridge [18]

SGAN2 [30] 0.492 0.533 0.654 0.761
InsGen [32] 0.501 0.534 0.583 0.741
DDPM [33] 0.505 0.512 0.559 0.721
XL-GAN [31] 0.511 0.522 0.544 0.698

DF [15]

SGAN2 0.503 0.575 0.701 0.816
InsGen 0.551 0.584 0.731 0.802
XL-GAN 0.565 0.566 0.624 0.732
DDPM 0.518 0.563 0.691 0.791

AutoGAN [17]

SGAN2 0.513 0.544 0.603 0.729
InsGen 0.544 0.576 0.623 0.787
DDPM 0.512 0.525 0.557 0.653
XL-GAN 0.504 0.518 0.544 0.642

BayesianCNN

SGAN2 0.629 0.683 0.754 0.843
InsGen 0.552 0.593 0.643 0.771
DDPM 0.562 0.595 0.667 0.783
XL-GAN 0.573 0.597 0.643 0.793

3: mAp values (↑) of several solutions for different synthesizers and split values for the CELEBA dataset. The best (second best) results are
ighted in bold (underlined).

Method Synthesizer Split (% of data used for training )
20% 40% 60% 80%

DCT-Ridge [18]
SGAN2 [30] 0.562 0.593 0.681 0.813
DDPM [33] 0.578 0.594 0.615 0.794
XL-GAN [31] 0.566 0.573 0.602 0.778

DF [15]
SGAN2 0.552 0.642 0.770 0.833
DDPM 0.575 0.654 0.723 0.805
XL-GAN 0.602 0.614 0.693 0.791

AutoGAN [17]
SGAN2 0.562 0.612 0.669 0.802
DDPM 0.570 0.593 0.653 0.733
XL-GAN 0.562 0.587 0.644 0.702

BayesianCNN
SGAN2 0.664 0.743 0.773 0.843
DDPM 0.602 0.655 0.694 0.796
XL-GAN 0.632 0.667 0.730 0.812

uce high posterior values for data that is very similar to the
sed during training (i.e., real face images) and low values
ever-seen data (i.e., synthetic face images). It is impor-

to recall that the location of the region where the synthetic
les lie varies depending on the initialization of the model’s
eters.

e also evaluate performance after applying common post-
essing on the test images: (1) Blurring by varying the size
e filter scale σ; (2) JPEG compression at different qual-
and (3) resizing by a factor of 1/2 and 1/4 using bilin-

nterpolation. Fig. 4 shows the results of this experiment.
4a shows that blurring has a very negative effect on per-
ance, to the point of almost random classification for large
s of σ. Fig. 4b shows that very aggressive compression

ers performance, yet the effect is not as severe as the one
duced by blurring the images. Finally, Fig. 4c has also
stic effect, similar to blurring, as losing spatial informa-

hinders the model’s performance in detecting the synthetic

samples. This experiment reveals that the proposed solution
is very sensitive to losing the fine details of the images as our
Bayesian CNN relies on detecting such small artifacts and im-
perfections. Therefore, blurring is the most important aspect to
address. More extensive experimentations can be preformed by
augmenting the reference set with adversarial controlled sam-
ples. However, this is a challenging strategy because the pro-
posed method relies on the fine details of the images. However,
such data augmentation techniques are part of our future work.

Finally, we also discuss several architectural decisions that
led to the final architecture of our fine-to-coarse Bayesian CNN.
We observe that small kernel sizes for the convolutional lay-
ers significantly improve the performance, e.g. 3 − 4% on the
large splits, while more than three filter banks have little effect
on the performance but a severe impact on processing times.
Compared to using filter banks of the same size, the proposed
fine-to-coarse filter bank provides 5% improvement on the large
splits. We observe that more than two FC layers provide no

6
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. Posterior values produced by the proposed Bayesian CNN. The real and synthetic samples form two distinct regions. Thus, we can set the
rior threshold accordingly.

(a) Blurring. (b) JPEG compression. (c) Resizing.

Fig. 4. Performance or the proposed solution when post-processing is used on the test images.

ficant improvement. Adding batch normalization provides
r convergence and less sensitivity to initialization. Finally,
bserve that using dropouts, high posteriors can be achieved
significantly fewer parameters. Because our ultimate goal
maximize the posterior for the real data with the fewest pa-
ters possible, dropout is used. The proposed architecture
ble 1 then fairly trades performance for complexity.

onclusion

this paper, we have proposed a solution based on anomaly
tion to detect synthetic face images, which implies train-
sing only one class. Our solution is then data-agnostic
requires no synthetic samples during training. This is

werful advantage as we may not have information about
ynthesizer or any of the synthetic face images. For de-
n, the solution uses a Bayesian CNN that extracts spatial
res from the face images while preserving the small de-
associated with common artifacts and imperfections found

in synthetic face images. Our performance evaluation results
show that the proposed solution can achieve very competitive
accuracy, outperforming several state-of-the-art methods that
require training on real and synthetic face images. Our future
focuses on making the proposed strategy more robust against
post-processing operations that result in the loss of fine details
in the images, in particular blurring-like distortions. Addition-
ally, our future work focuses on defining an automatic margin
selection process to set thresholds and conducting cross-data
validations on more real/synthetic datasets.
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