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A Low-Cost Multi-Band Waveform Security
Framework in Resource-Constrained

Communications
Tongyang Xu, Member, IEEE, Zhongxiang Wei, Member, IEEE, Tianhua Xu, Member, IEEE and

Gan Zheng, Fellow, IEEE

Abstract—Traditional physical layer secure beamforming is
achieved via precoding before signal transmission using channel
state information (CSI). However, imperfect CSI will compromise
the performance with imperfect beamforming and potential infor-
mation leakage. In addition, multiple RF chains and antennas are
needed to support the narrow beam generation, which compli-
cates hardware implementation and is not suitable for resource-
constrained Internet-of-Things (IoT) devices. Moreover, with the
advancement of hardware and artificial intelligence (AI), low-
cost and intelligent eavesdropping to wireless communications is
becoming increasingly detrimental. In this paper, we propose a
multi-carrier based multi-band waveform-defined security (WDS)
framework, independent from CSI and RF chains, to defend
against AI eavesdropping. Ideally, the continuous variations of
sub-band structures lead to an infinite number of spectral fea-
tures, which can potentially prevent brute-force eavesdropping.
Sub-band spectral pattern information is efficiently constructed
at legitimate users via a proposed chaotic sequence generator.
A novel security metric, termed signal classification accuracy
(SCA), is used to evaluate the security robustness under AI
eavesdropping. Communication error probability and complexity
are also investigated to show the reliability and practical capabil-
ity of the proposed framework. Finally, compared to traditional
secure beamforming techniques, the proposed multi-band WDS
framework reduces power consumption by up to six times.

Index Terms—Waveform, secure communication, power effi-
ciency, signal classification, deep learning, non-orthogonal, phys-
ical layer security, Internet of things.

I. INTRODUCTION

COMMUNICATION security is an increasingly impor-
tant research topic with the commercialization of 5G

and the rapid development of its beyond. In typical radio
frequency (RF) based communications, due to the broadcast
nature of wireless channels, legitimate user communications
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are vulnerable to eavesdropping. In traditional eavesdropping
scenarios, physical layer secure beamforming [1], [2], [3] is a
commonly used physical layer security (PLS) technique, which
can prevent eavesdroppers from intercepting confidential data
via optimizing spatial signal beams according to channel
conditions. However, the secure beamforming techniques are
showing limitations [4], [5], [6]. Firstly, confidential data is
vulnerable in the presence of multi-antenna eavesdroppers or
distributed eavesdroppers and extra processing complexity is
required to mitigate the challenges [7], [8]. Experiments in
[9] even revealed that an eavesdropper can capture confiden-
tial data from directional millimeter waves via using small-
scale reflection objects. Moreover, existing security techniques
require additional hardware complexity in utilizing multiple
antennas and multiple RF chains, which are energy inefficient
and against net zero sustainable development objectives [10].
Therefore, the high energy consumption from extra hardware
utilization prevents the use of secure beamforming in low-
cost Internet of things (IoT) applications [11], [12], [13], [14].
More importantly, traditional secure beamforming techniques
require the knowledge of channel state information (CSI).
However, CSI could be inaccurate [15] due to pilot spoofing
attacks, pilot contamination, and pilot jamming. Therefore,
extra processing complexity is required to mitigate the chal-
lenges [16], [17]. However, the acquisition of CSI is becoming
more costly [18] especially for resource and power limited IoT
applications.

Due to the advancement of artificial intelligence (AI), a
passive eavesdropper could become an active attacker result-
ing in AI based threats to communication security. As an
attacker, adversarial machine learning [19], [20], [21] can
intelligently eavesdrop and further manipulate legitimate user
signal characteristics over the air, which could cause signal
processing failure at a legitimate user. The adversarial attack
challenges end-to-end autoencoder deep learning systems in
[22], orthogonal frequency division multiplexing (OFDM)
channel estimation and signal detection in [23], multiple input
multiple output (MIMO) channel estimation in [24], deep
learning MIMO power allocation in [25] and cooperative
spectrum sensing in [26]. A more detrimental type of attack is
termed generative adversarial network (GAN) [27], which can
simultaneously learn legitimate user signal patterns and chan-
nel/hardware impairment models to starve scarce over-the-air
resources [28] via spoofing attacks. Existing countermeasures
for adversarial machine learning attacks is either sending fake
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data and labels to fool adversaries [29] or proactively applying
adversarial attacks to intruders to prevent signal detections
[30]. However, the above methods would reduce spectral
efficiency and increase system complexity.

The motivation of this work is to prevent AI based eaves-
dropping and subsequent AI attacks, especially for resource-
constrained secure communication scenarios, from a waveform
design perspective. Typical 4G/5G systems employ the OFDM
waveform [31], [32], which is simple for signal generation
and detection but at the cost of security vulnerability. Further
investigations on waveform security lead to the study of new
waveform design. There are some existing research works
on designing waveforms in physical layer security. Masked-
OFDM [33] combines two OFDM signals with overlapping
to produce a composite non-orthogonal signal and therefore
complicates eavesdropping signal detections. However, this
approach also results in high complexity at legitimate user side
signal detection. Work in [34] employs variable time interval
patterns to complicate eavesdropping. However, with the ad-
vancement of AI, eavesdroppers could easily identify different
patterns using intelligent algorithms. The recent work in [35]
proposed a waveform-defined security (WDS) framework, but
the framework is still vulnerable to AI based eavesdropping.

This work focuses on optimizing WDS, which is the initial
waveform candidate proposed to defend against AI based
eavesdropping. To enhance the traditional WDS scheme’s
robustness to AI eavesdropping, this work proposes an adap-
tive multi-band WDS framework aiming to further improve
communication security. Multi-band waveform architectures
can separate a single-band signal into multiple sub-bands. In
this case, more spectral ambiguity will be introduced since
each sub-band can have independent and unique spectral fea-
tures. The enhanced spectral ambiguity will prevent AI based
eavesdropping and therefore avoid adversarial attacks. It is
noted that this work aims for single user scenarios where a user
occupies all sub-bands. The use of multi-band architectures
is to simplify signal detection and enhance ambiguity rather
than supporting multiple users using a multiple access scheme.
The fundamental principle behind WDS is the utilization
of non-orthogonal waveform spectrally efficient frequency
division multiplexing (SEFDM) [36], which introduces feature
ambiguity via intentionally tuning sub-carrier packing patterns.
As indicated by [37], [38], increased number of antennas or
RF chains are the main energy consumption source. Therefore,
the proposed multi-band WDS framework, although requiring
extra signal processing, can prevent AI based interception
for resource-constrained IoT scenarios while available PLS
techniques are too costly to implement.

The main contributions of this work are as follows:
• A multi-band WDS secure communication framework

is proposed for over-the-air PLS scenarios aiming to
defend against AI eavesdropping. Typically, coding can
encrypt signals but it cannot prevent AI eavesdropping
and the variations of coding rates will complicate sig-
nal frame design and hardware implementation. Unlike
traditional beamforming PLS approaches that require
multiple antennas, the proposed framework is able to
enhance PLS security for single-antenna transceivers,

which is particular suitable to resource-constrained IoT
applications. Sub-carriers are packed non-orthogonally
and the packing schemes are adaptively adjustable in each
sub-band, thus significantly complicating eavesdropping
signal detection. Ideally, the continuous variations of
sub-band spectral compression features further enhance
the PLS by introducing an infinite number of signal
patterns, which prevents accurate signal identifications at
the eavesdropper and is robust to exhaustive brute-force
eavesdropping. Therefore, the proposed multi-band WDS
has further enhanced security than single-band WDS by
jointly complicating eavesdropping signal detection and
preventing accurate signal pattern identification.

• AI security metric, termed signal classification accuracy
(SCA), is proposed to replace the traditional non-AI
security metric signal-to-noise ratio (SNR). The eaves-
dropping classification accuracy approximation model is
derived for the adaptive multi-band WDS framework.
It shows a perfect match between the analytical model
and actual results. It also reveals that the classification
accuracy will further degrade by increasing the number
of signal patterns and sub-bands.

• A paired-key generator is designed to ensure fast and
reliable pattern information generation at both legitimate
users. Prior to the key generation, the same bifurca-
tion parameter, initial state, chaotic mapping and pat-
tern threshold should be pre-shared and stored at both
legitimate users. Using identical parameter initializations,
two identical pattern generators will continuously output
identical chaotic sequences, which will be used as pattern
keys to produce a correlation matrix. The key generation
scheme is practical since only four parameters are needed
and stored in memory in advance.

• Lower implementation complexity is achieved by the
multi-band waveform security framework such that
the framework is suitable for low-cost and resource-
constrained communication scenarios where RF chains,
antennas and carrier frequency are limited. This work also
reveals that the waveform security framework can reduce
power consumption by up to six times compared to
traditional secure beamforming techniques indicating the
suitability of the framework in net-zero communications.

Notations: Unless otherwise specified, matrices are denoted
by bold uppercase letters (i.e., F), vectors are represented by
bold lowercase letters (i.e., x, s), and scalars are denoted by
normal font (i.e., ρ). Subscripts indicate the location of the
entry in the matrices or vectors (i.e., ci,j and sn are the (i, j)-
th and the n-th element in C and s, respectively)

II. THE PRINCIPLE OF WDS FRAMEWORK

The principle of the waveform-defined security communi-
cation framework is demonstrated in Fig. 1. Traditional PLS
techniques aim to weaken the wiretap link while enhancing
the legitimate link using beamforming. However, they require
channel state information at the transmitter (CSIT) from both
eavesdroppers and legitimate users, which are commonly
unavailable in most cases. The proposed WDS framework
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Fig. 1. The waveform based secure communication model for legiti-
mate user and eavesdropper.

avoids CSIT and therefore simplifies the entire system design.
Unlike traditional multi-antenna based beamforming defence
techniques, a WDS communication system will employ an
omni-directional communication format using a single an-
tenna. In this case, the WDS framework saves antennas and
RF chains leading to reduced hardware complexity. It is noted
that the WDS framework is also applicable in multi-antenna
systems, in which it can enhance the over-the-air encryption
of beamforming. The eavesdropper is assumed to be passive
in this work, therefore it will firstly learn to identify signal
patterns and then detect signals. In this case, the aim of WDS
is to design signal patterns that will prevent accurate signal
classification and complicate signal detection at eavesdroppers.

A. Signal Pattern Principle

The traditional OFDM is a multi-carrier signal with sub-
carrier spacing of ∆f = 1/T where T is the time duration of
one OFDM symbol. The principle of SEFDM is to pack sub-
carriers closer in a non-orthogonal format while maintaining
the bandwidth for each sub-carrier. Therefore, the sub-carrier
spacing becomes ∆f = α/T where α <1 is the bandwidth
compression factor (BCF), which determines the bandwidth
compression ratio. The spectral bandwidth compression prin-
ciple for SEFDM is illustrated in Fig. 2 (reused from [35])
where the spectral efficiency improvement of SEFDM over
OFDM is given by

η = (
1

α
− 1)× 100. (1)

The mathematical expression of an SEFDM signal is ob-
tained by adding α in a typical OFDM signal as

xk =
1√
Q

N−1∑
n=0

sn exp

(
j2πnkα

Q

)
, (2)

where 1√
Q

is the power scaling factor, Q = ρN is the number
of time samples where ρ is an oversampling factor and N is
the number of sub-carriers. xk is the kth time sample with the
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Fig. 2. Principle of non-orthogonal SEFDM signal waveform. (a)
OFDM sub-carrier packing. (b) SEFDM sub-carrier packing.

Fig. 3. Signal generation block diagram. (a) OFDM. (b) SEFDM.

index k = 0, 1, ..., Q− 1. sn is the nth single-carrier symbol
modulated on the nth sub-carrier.

Commonly, a signal requires protection guard bands on both
sides. Therefore, in Fig. 3, the original input symbol vector
[s0, s1, ..., sN−1] is expanded to a Q-dimensional vector as

[ς0, ς1, ..., ςQ−1] = [ 0, ..., 0︸ ︷︷ ︸
(Q−N)/2

, s0, s1, ..., sN−1, 0, ..., 0︸ ︷︷ ︸
(Q−N)/2

]. (3)

Then a Q-point inverse fast Fourier transform (IFFT) is
applied in Fig. 3(a) to modulate the vector [ς0, ς1, ..., ςQ−1]
leading to a Q-point OFDM symbol. For SEFDM signal
generation, equation (2) will be transformed into

xk =
1√
Q

Q−1∑
n=0

ςn exp

(
j2πnkα

Q

)
. (4)

It is clear that the direct operation of (4) will result in
high computational complexity due to the existence of α. To
remove the effect of α and directly use IFFT for SEFDM
signal generation, the vector [ς0, ς1, ..., ςQ−1] has to be further
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expanded to a longer vector as shown in Fig. 3(b) with the
following operation

[s
′

0, s
′

1, ..., s
′

M−1] = [ 0, ..., 0︸ ︷︷ ︸
(M−Q)/2

, ς0, ς1, ..., ςQ−1, 0, ..., 0︸ ︷︷ ︸
(M−Q)/2

], (5)

where a new parameter M = Q/α is defined. M should be
rounded to its closest integer. A vector of (M − Q)/2 zeros
are padded on both sides of ς . Therefore, the original signal
generation expression will be transformed into an M-point
IFFT operation demonstrated in Fig. 3(b) as

x
′
k =

1√
M

M−1∑
n=0

s
′
n exp

(
j2πnk

M

)
, (6)

where n, k = [0, 1, ...,M − 1]. The output will be truncated
with only Q samples reserved while the rest of the samples
are discarded.

To simplify the expression, a matrix format of the signal
generation in (2) is defined as

x = Fs, (7)

where s is the N-dimensional signal vector, F is the Q × N
sub-carrier matrix, in which each element is represented by
exp

(
j2πnkα
Q

)
.

After going through a wireless channel denoted by a Q×Q
channel matrix H and additive white Gaussian noise (AWGN)
w, the received signal is expressed as

y = Hx + w. (8)

It is noted that before any further signal processing after
(8), the channel effect of H has to be equalized by multiplying
with the inverse of the channel matrix as

ŷ = H−1Hx + H−1w = x + z. (9)

By multiplying the signal using the complex conjugate
demodulation matrix F∗ = exp

(
−j2πnkα

Q

)
, the demodulated

signal is expressed

r = F∗x + F∗z = F∗Fs + F∗z = Cs + zF∗ , (10)

where C is the N ×N correlation matrix, which includes the
self-created ICI information as

cm,n =

sinc[πα(m− n)]

sinc[πα(m− n)/Q]
× exp

(
jπα(Q− 1)(m− n)

Q

)
.

(11)

When m = n, all the auto-correlation diagonal elements
cm,n equal one. When m6=n, all the cross-correlation non-
diagonal elements are not zero indicating the self-created inter
carrier interference (ICI). It is apparent that the ICI term is
related to the value of α, which is the principle for the WDS
communication security.

B. Security Metric

The principle of this work is to design waveform patterns
that can confuse eavesdroppers. Therefore, to evaluate the
robustness, instead of using non-AI security metric SNR, we
use AI security metric SCA to indicate the capability of
eavesdroppers to correctly identify a signal.

SCA =
1

λ

λ∑
ν=1

NC(ν)

NT (ν)
, (12)

where the number of signal classes is defined by λ. The larger
value of λ, the more difficult for an eavesdropper to suc-
cessfully identify a signal pattern. To have solid evaluations,
in each signal class with the index of ν, a total number of
NT symbols are tested. Among NT symbols, NC symbols
can be correctly identified by an eavesdropper. The ratio of
NC and NT indicates classification accuracy for one signal
class. The final accuracy is obtained by averaging the results
from λ signal classes. A small value of SCA indicates a low
classification accuracy at Eve, which leads to the failure of
signal detection and prevents accurate adversarial AI attacks.

C. Signal Classification Principle

Signal classification is to identify different signal formats
associated with the value of α. A perfect signal classification
will determine the accurate demodulation matrix F∗ in (10)
and further determine the characteristics of C. An imperfect
signal classification will mistakenly use a wrong demodulation
matrix as

r̃ = F̃∗x + F̃∗z = F̃∗Fs + F̃∗z = C̃s + zF̃∗ , (13)

where F̃∗ is the incorrect demodulation sub-carrier matrix
caused by misclassification. Compared to the ideal matrix F∗

in (10), a BCF offset ∆α will exist in the imperfect F̃∗ with the
new expression as F̃∗ = exp

(
−j2πnk(α+∆α)

Q

)
. The mismatch

between F̃∗ and F will cause an imperfect estimate of C̃ as

c̃m,n =

sinc[π(αTm− αRn)]

sinc[π(αTm− αRn)/Q]
× exp

(
jπ(Q− 1)(αTm− αRn)

Q

)
,

(14)

where αT is the BCF at the transmitter and αR = αT + ∆α
is the incorrect BCF at the receiver.

The traditional and optimal classification method is maxi-
mum likelihood, which has been investigated for modulation
classification in [39], [40]. The likelihood function, with
perfect knowledge of all parameters except modulation format,
is expressed as

Lf (r|M, σ) =
1

P

N−1∏
n=0

P−1∑
p=0

1

2πσ2
exp

(
−|rn −M(i, p)|2

2σ2

)
, (15)

where M represents the modulation class, M(i, p) indicates
the pth constellation symbol in the ith modulation scheme.
There are P constellation points for each modulation. σ2 is
noise variance when AWGN is considered and rn is the nth

single-carrier complex symbol.
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Table I: Hardware Complexity Analysis (uplink channel from
Alice to Bob)

Framework Hardware
Traditional PLS RF Chain(multiple)

(digital beamforming) Antenna(multiple)
Traditional PLS RF Chain(multiple)

(hybrid analog-digital beamforming) Antenna(multiple)
Traditional PLS RF Chain(single)

(analog beamforming) Antenna(multiple)
WDS(Alice): RF Chain(single)

User Antenna(single)
WDS(Bob): RF Chain(single)
Base Station Antenna(single)
WDS(Eve): RF Chain(single/multiple)

Eavesdropper Antenna(single/multiple)
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Fig. 4. Power consumption comparison for full-digital secure beam-
forming, hybrid analog-digital secure beamforming, analog secure
beamforming and WDS frameworks.

The optimal solution is obtained via maximizing the likeli-
hood function (15) by attempting all the potential modulation
candidates as

M̂ = arg max
M(i)∈Θ

Lf (r|M, σ), (16)

where Θ indicates all the potential candidates for the ith

modulation format.
The traditional maximum likelihood method is not realistic

for non-orthogonal signal classification. Therefore, intelligent
classification using artificial intelligence would be a potential
solution. Deep learning based convolutional neural network
(CNN) has been investigated for single-carrier modulation
classification in [41] with competitive accuracy relative to the
maximum likelihood method. The automatic learning CNN
classifier has also been tested for non-orthogonal multi-carrier
signal classification in [42]. Therefore, the CNN model will
be used for eavesdropping signal classification in this work.

D. Power Consumption Comparison

The WDS framework aims for low-cost and resource-
constrained communications where IoT is a matched appli-
cation scenario. Most IoT traffic occurs at uplink channels
where each IoT unit sends information back to base stations.
Therefore, we consider power consumption for uplink channel

communications with the complexity comparison in Table I
where hardware utilization for each scenario is compared. In
the column of ‘Hardware’, detailed hardware utilization is pre-
sented. In the bracket, ‘single’ indicates one such component
is needed while ‘multiple’ indicates several such components
have to be used. There is no specific data associated with Table
I where this table only shows general hardware utilization for
different scenarios. The proposed multi-band WDS framework
utilizes single-RF chain while traditional PLS has to employ
multiple RF chains for digital beamforming, where the tradi-
tional solution consume more power [37], [38].

Based on the studies in [43], [44], the power consumption
for digital beamforming Pbf−d, hybrid analog-digital beam-
forming Pbf−h, analog beamforming Pbf−a and WDS Pwds
could be computed in the following

Pbf−d = Plo +Nrf−f (Pdac + Pmixer + Pf +
Pt

ξ
), (17)

Pbf−h = Plo+Nrf−h(Pdac+Pmixer+Pf )+Nps(Pps+
Pt

ξ
), (18)

Pbf−a = Plo + Pdac + Pmixer + Pf +Nps(Pps +
Pt

ξ
), (19)

Pwds = Plo + Pdac + Pmixer + Pf +
Pt

ξ
, (20)

where Plo, Pdac, Pmixer, Pf , Pt and Pps indicate the power
consumption for the local oscillator, digital-to-analogue con-
verter (DAC), mixer, filter, transmit signal and phase shifter.
Nrf−d is the number of RF chains for digital beamforming,
Nrf−h is the number of RF chains for hybrid beamforming
and Nps is the number of phase shifters. ξ indicates the
efficiency of a power amplifier. Based on [43], [44], we
set Plo=22 mW, Pdac=170 mW, Pmixer=5 mW, Pf=14 mW,
Pt=200 mW, Pps=10 mW, ξ=50%. Based on [45], [46], we set
Nrf−f=6, Nrf−h=2, Nps=6. The power consumption for each
system design is compared in Fig. 4, in which our proposed
WDS framework can reduce power consumption by up to
six times compared to traditional multi-antenna based secure
beamforming techniques.

III. SIGNAL DETECTION

In the framework in Fig. 1, the legitimate user Bob has cor-
rect signal detection because the signal pattern information is
pre-known between Alice and Bob. However, signal detection
at Eve would fail due to signal misclassification.

A. WDS Signal Detection

Once the correlation matrix C is determined via either
paired-key information at Bob or signal classification at Eve,
signal detection has to be operated to recover original signals
from ICI. The optimal signal detection method is maximum
likelihood (ML) while its computational complexity is expo-
nentially increased when the number of sub-carriers increases.
Its simplified version is sphere decoding (SD) [47], which
searches for the optimal solution within a pre-defined space.

The SD search for the optimal estimate s
SD

is defined as

s
SD

= arg min
s∈ON

‖r−Cs‖2 ≤ g, (21)
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where O is the constellation cardinality and ON covers all
possible solutions. g is the pre-defined search radius and
it equals the distance between the demodulated r and the
hard-decision s

ZF
. It is noted that the hard-decision s

ZF
is

computed based on the zero forcing (ZF) criterion using a
rounding function b.e as s

ZF
= bC−1re. Therefore, the search

radius is defined as

g = ‖r−Cs
ZF
‖2 . (22)

The norm calculation in (21) can be re-formatted in (23) by
substituting p = C−1r where p is the soft-decision estimate
of s.

s
SD

= arg min
s∈ON

{(p− s)∗C∗C(p− s)} ≤ g. (23)

The expression can be further simplified using Cholesky
decomposition [48] via chol{C∗C} = L∗L, where L is an
N × N upper triangular matrix. Therefore, (23) can be re-
written as

s
SD

= arg min
s∈ON

‖L(p− s)‖2 ≤ g. (24)

The triangular structure of L can simplify (24) into N steps
with the following expression

g≥(l
N−1,N−1

(p
N−1
− s

N−1
))2 + (l

N−2,N−2
(p

N−2
−

s
N−2

) + l
N−2,N−1

(p
N−1
− s

N−1
))2 + ...,

(25)

where li,j , pi and si are the elements of L, p and s in (24),
respectively. To study each term in (25), the N-dimensional
expression is divided into N independent one-dimensional
terms. The (N − 1)th inequality term is thus represented as

l2
N−1,N−1

(p
N−1
− s

N−1
)2 ≤ g

N−1
= g. (26)

Therefore, the search range for the (N − 1)th dimension is
derived as

d−
√
g
N−1

l
N−1,N−1

+ p
N−1
e ≤ s

N−1
≤ b
√
g
N−1

l
N−1,N−1

+ p
N−1
c, (27)

where d· e b· c denote rounding operations to the nearest larger
and smaller integers, respectively.

Therefore, the left term of (27) indicates a hard lower bound
(H-LB) while the right term indicates a hard upper bound (H-
UB). It is clearly seen that an accurate estimate of s

N−1
is

related to g
N−1

, l
N−1,N−1

and p
N−1

, which are all determined
by the accurate estimate of C.

After the search at the (N − 1)th dimension, the search
radius g

N−2
for the next dimension is updated as

g
N−2

= g
N−1
− l2

N−1,N−1
(p

N−1
− s

N−1
)2. (28)

The search principle in (27) and the radius update in (28)
will be repeated until the last dimension. The final solution
s
SD

is obtained as an N-dimensional vector that meets the
condition in (21). Each element estimation in s

SD
is dependent

on the elements from its previous dimensions. The perfect
knowledge of C plays an important role since an imperfect
estimate of C will give a wrong decision interval in (27) and
might cause no solution at the end. Therefore, the first step
signal classification is crucial to an eavesdropper who aims to
decode signals.

Fig. 5. Spectral illustration for (a) OFDM, (b) SB-SEFDM, (c) MB-
SEFDM, (d) AMB-SEFDM, (e) MAMB-SEFDM. Each impulse in
each sub-figure indicates one sub-carrier and each coloured rectan-
gular block indicates a signal band or a sub-band.

B. Impact of Imperfect Classification

An imperfect signal classification will mislead the estimate
of C, which further gives inaccurate calculation of L in
Cholesky decomposition. Therefore, the element li,j in L
will become li,j + ∆l, where ∆l is the offset caused by
imperfect signal classification. Meanwhile, since the soft-
decision estimation follows p = C−1r, the new estimate
of each element will become pi + ∆p where ∆p is the
offset caused by imperfect signal classification. It should
be noted that signal misclassification will cause inaccurate
ŝ
ZF

= b(C + ∆C)−1re as well. Therefore, the search space
gi in (22) will become gi+ ∆g where ∆g is the offset caused
by imperfect signal classification.

The above imperfect estimates will jointly cause inaccurate
estimate of s. The lower bound and upper bound in (27) will
be improperly biased to

LB = d−
√
g
N−1

+ ∆g

l
N−1,N−1

+ ∆l
+ p

N−1
+ ∆pe. (29)

UB = b
√
g
N−1

+ ∆g

l
N−1,N−1

+ ∆l
+ p

N−1
+ ∆pc. (30)

Therefore, the variations of ∆g, ∆l and ∆p, due to imper-
fect signal classification, will cause signal detection failure.

IV. SECURE MULTI-BAND FRAMEWORK

To ensure a joint secure and detectable communication
system, the signal waveform has to be modified. This section
will investigate four WDS signal waveform architectures in
Fig. 5, namely single-band SEFDM (SB-SEFDM), multi-
band SEFDM (MB-SEFDM), adaptive multi-band SEFDM
(AMB-SEFDM) and mixed adaptive multi-band SEFDM
(MAMB-SEFDM).

A. Single-Band

The WDS framework was initially designed for single-band
signals. In this case, sub-carriers are packed consecutively
without empty guard bands. The traditional SB-SEFDM signal
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architecture is presented in Fig. 5(b). To simplify the illus-
tration, each impulse represents a sub-carrier. For a better
demonstration, only a partial number of sub-carriers and sub-
bands are presented. It should be noted that all the designs in
Fig. 5 have the same sub-carrier bandwidth. The only differ-
ence is the sub-carrier spacing. In order to achieve bandwidth
compression, the sub-carrier spacing for SB-SEFDM should
satisfy ∆f2 < ∆f1, where ∆f1 and ∆f2 indicate the sub-
carrier spacing of OFDM and SB-SEFDM, respectively.

According to 4G [49] and 5G [50] standards, a multi-carrier
signal bandwidth is defined by the multiplication of sub-carrier
spacing ∆f and the number of sub-carriers N . Therefore, the
spectral bandwidths for the cases in Fig. 5(a) and Fig. 5(b)
are defined by B

OFDM
= N∆f and B

SB−SEFDM
= αN∆f

respectively.
The single-band SB-SEFDM signal architecture might chal-

lenges signal detection since the sophisticated SD detector
has to be applied resulting in exponentially increased com-
putational complexity especially when the size of a signal is
scaled up. Thus, communication security is ensured such that
eavesdroppers cannot decode signals easily but at the cost of
complicating legitimate user signal recovery as well.

B. Multi-Band

The principle of the multi-band signal architecture, shown
in Fig. 5(c), is to partition the single-band signal into multiple
sub-bands with an empty sub-carrier between two adjacent
sub-bands. The purpose of the protection gap is to mitigate
inter-band interference. In this case, each sub-band signal
can be recovered separately using the SD detector leading to
reduced computational complexity.

The total occupied spectral bandwidth of the multi-band
signal is equivalent to that of a typical single-band signal. Due
to one empty sub-carrier as the protection gap ∆fG = 2∆f3

between two adjacent sub-bands in Fig. 5(c), the sub-carrier
spacing in each sub-band has to be further squeezed leading
to the spacing ∆f3 < ∆f2 < ∆f1. The effective spectral
bandwidth of MB-SEFDM is defined as

BMB−SEFDM = β(N +
N

NB
− 1)∆f, (31)

where NB is the number of sub-carriers in each sub-band and
β indicates the sub-band bandwidth compression factor. To
ensure the same occupied spectral bandwidth B

MB−SEFDM
=

B
SB−SEFDM

, the sub-band β is calculated as

β =
αN

N + N
NB
− 1

. (32)

The mathematical expression of the multi-band SEFDM
signal is given by

xk =

1√
Q

N
NB
−1∑

lB=0

NB−1∑
i=0

si+lBNB
exp

(
j2πkβ(i+ lB(NB + 1))

Q

)
,

(33)

where s
i+lBNB

is the ith single-carrier symbol modulated in
the lBth sub-band.

To directly use IFFT for the multi-band SEFDM signal
generation, the raw symbol mathematical expression in (33)
has to be updated to

s
′′
m = s

′′

n+b n
NB
c =

{
sn 0 ≤ n < N
0 otherwise

, (34)

where related parameters are defined below
n = i+ lBNB

m = i+ lB(NB + 1) = n+ lB
lB = b n

NB
c

. (35)

Therefore, the original multi-band signal expression in (33)
is converted to a new expression as

xk =
1√
Q

N+ N
NB
−2∑

m=0

s
′′
m exp

(
j2πmkβ

Q

)
. (36)

Following the same zero padding method in (5), a new input
symbol vector is generated as

s
′′′
m =


0 0≤m < (M −Q

′
)/2

s
′′
m (M −Q

′
)/2≤m < (M +Q

′
)/2

0 (M +Q
′
)/2≤m < M

, (37)

where Q
′

= N + N
NB
− 1, M = Q/β is rounded to its closest

integer. The expression in (36) is therefore adjusted to a new
form as

x
′′
k =

1√
M

M−1∑
m=0

s
′′′
m exp

(
j2πmk

M

)
, (38)

where m, k = [0, 1, ...,M − 1]. The output is truncated with
only Q samples reserved while the rest of the samples are
discarded.

C. Adaptive Multi-Band

The multi-band signal architecture simplifies signal detec-
tion. However, the challenge of the multi-band signal archi-
tecture is that eavesdroppers can filter and extract each sub-
band and operate signal classification for each one. To enhance
multi-band communication security, an adaptive multi-band
signal architecture is proposed in Fig. 5(d).

Modifying spectral features of a signal would effectively
prevent unauthorized signal feature learning and format identi-
fication. It is observed from Fig. 5(d) that the overall occupied
spectral bandwidth is similar to the traditional MB-SEFDM
but with further reduced bandwidth compression factor leading
to ∆f4 < ∆f3 < ∆f2 < ∆f1. The scheme in Fig. 5(d) would
mislead eavesdroppers to classify an AMB signal of β0 into an
MB signal of β1 due to their similar spectral characteristics.
Meanwhile, the AMB signal architecture in Fig. 5(d) achieves
a higher data rate than the MB signal in Fig. 5(c).

Considering an example comparison including three types
of signals where the bandwidth compression factors for the
signals in each sub-band satisfy β2 < β1 < β0. To make three
signals similar, more sub-carriers will be packed in β1, β2

relative to β0. The sub-carrier packing strategy is

Bsub = β0NB∆f = β1(NB + ∆N1)∆f = β2(NB + ∆N2)∆f,
(39)

where B
sub

is the bandwidth for one sub-band, ∆N1 is the
number of additional sub-carriers per sub-band that have to
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be packed for β1 relative to β0 and ∆N2 is the number of
additional sub-carriers per sub-band that have to be packed
for β2 relative to β0. In this case, the spectral bandwidth per
sub-band for the three SEFDM signals would be similar and
can easily cause eavesdropping misclassification.

Due to additional sub-carrier packing, the original multi-
band signal in (33) is modified to a new format as

xk =
1√
Q

N+∆N
NB+∆NB

−1∑
lB=0

NB+∆NB−1∑
i=0

s
i+lB(NB+∆NB)

× exp

(
j2πkβ(i+ lB(NB + ∆NB + 1))

Q

)
,

(40)

where the number of sub-carriers in each sub-band is increased
to NB+∆NB and the total number of sub-carriers is increased
to N +∆N . However, the number of sub-bands maintains the
same with the following relationship

N + ∆N

NB + ∆NB
=

N

NB
. (41)

Signal generation for the AMB signal in (40) is straightfor-
ward via IFFT following the similar operations from (34) to
(38) except that more data sub-carriers are required by (40).

D. Mixed Adaptive Multi-Band

To enhance further communication security, a mixed adap-
tive multi-band (MAMB) signal waveform design is consid-
ered to flexibly tune BCF in each sub-band, where each sub-
band has different BCF configurations but the overall effective
BCF maintains the same. In Fig. 5(e), each independent sub-
band has different number of sub-carriers, by adjusting sub-
carrier spacing, the spectral bandwidth for each sub-band
and the total occupied spectral bandwidth maintain the same
leading to more confusions to eavesdroppers.

To confuse eavesdroppers, the sub-band BCF can be inten-
tionally tuned with various patterns. Since each sub-band has
a unique BCF, signal generation using a single-IFFT might
be unrealistic. Therefore, multiple IFFTs have to be used
and the number of IFFTs depends on the number of sub-
bands. The composite MAMB signal, including all sub-bands,
is represented as the following

xk =
1√
Q

NB+∆N0−1∑
i=0

s0i × exp

(
j2πkβ0i

Q

)

+
1√
Q

NB+∆N1−1∑
i=0

s1i × exp

(
j2πkβ1(i+ ε0))

Q

)
+ ...

+
1√
Q

NB+∆NΘ−1∑
i=0

sΘi × exp

(
j2πkβΘ(i+ εΘ))

Q

)
,

(42)

where Θ = N/NB − 1 is the maximum number of sub-band
index, s0i indicates the ith symbol in the first sub-band and
sΘi indicates the ith symbol in the Θth sub-band. β0 is the
sub-band BCF in the first sub-band and βΘ is the sub-band
BCF in the Θth sub-band.

Since each sub-band has to be perfectly aligned without
causing any spectral feature difference, each sub-band has to
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Fig. 6. Chaotic sequence illustration for two configurations with the
minor difference in initial state φ0.

uniquely pack extra sub-carriers (i.e. ∆N0,∆N1, ...,∆NΘ)
and has to be adaptively offset in frequency domain (i.e.
ε0, ε1, ..., εΘ). It should be noted that the frequency off-
set for each sub-band alignment can be easily implemented
by adaptively adding zeros to input symbol vectors (i.e.
s0i, s1i, ..., sΘi) similar to the operations in (3) and (5). Then
similar operations will be followed from (34) to (38) before
the direct use of IFFT for signal generation.

V. PATTERN KEY GENERATION

To ensure the communication reliability between legitimate
users, the signal pattern key, has to be known between Alice
and Bob. However, it is impractical to exchange a large
number of pattern information between legitimate users in
each communication session. Therefore, an efficient way to
generate pattern keys at both sides is of great importance.

A paired-key generator is proposed in this work. The idea
is to design a signal pattern generator that will be deployed
at both the transmitter and the receiver. A chaotic dynamic
system [51] can generate a random-like but reproducible
chaotic sequence, which will be a simple solution for the WDS
signal pattern generator. A discrete-time dynamical system is
defined with the following state equation

φk+1 = f(φk), (43)

where 0 < φk < 1 indicates the value at the kth state and
0 < φk+1 < 1 indicates the value at the (k + 1)th state. f(· )
represents a chaotic map, which is used to produce sequence
bits at different states. It is noted that the value of next state
is highly dependent on its previous state. There are various
chaotic maps and the commonly used one is logistic map,
which is defined in [51] as

φk+1 = γ·φk(1− φk), (44)

where γ is the bifurcation parameter with values 1 < γ < 4
defined by [52]. The value of γ determines the feature of a
generated sequence. With a larger value of γ, the generated
sequence is non-periodic and non-converging. The studies in
[52] have proved that a minor change of the three factors will
produce a completely different sequence.
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Fig. 7. CNN signal classifier architecture.

To show the pattern sequence generation mechanism, we
compare two systems in Fig. 6. The first one is configured with
γ=3.9, initial state φ0=0.85 and the logistic map following
(44). The second system has the same configurations except
that the initial state is slightly increased to φ0=0.86. With
such a minor difference, two systems will produce different
sequences in Fig. 6, which can effectively prevent eavesdrop-
pers from using exhaustive methods to guess the sequence.

The random-like sequence, as shown in Fig. 6, helps to
generate pattern key α. To implement the generation algo-
rithm, a threshold 0 < η < 1 is introduced to decide which
pattern key should be generated. For example, to generate a
pattern key sequence with α=(0.9, 0.85, 0.8) using Fig. 6, a
threshold η=0.75 could be used where only the values beyond
the threshold η is considered. For any values between 0.75 and
0.8, the key is α=0.8; for any values between 0.8 and 0.85,
the key is α=0.85; for any values between 0.85 and 0.9, the
key is α=0.9. In this case, a pattern key sequence including
α=(0.9, 0.85, 0.8), is obtained.

The cooperation of the bifurcation parameter γ, chaotic
map f(· ), initial state φ0 and pattern threshold η will enable
an efficient and secure pattern index generation scheme. An
eavesdropper will not easily obtain an accurate pattern index
sequence since a minor change of each parameter will produce
a completely different sequence.

VI. CLASSIFIER TRAINING AND SYSTEM PERFORMANCE

A. Classifier Training

The trained CNN architecture is presented in Fig. 7 where
seven convolutional layers are stacked for automatic fea-
ture extraction. The dimension of each layer is presented
above each neural network sub-block. Each training symbol
is configured to have 2048 complex time samples. To have a
robust classifier, 1024 training samples is randomly captured
out of the 2048 time samples. Therefore, the input training
symbol size is 2×1024 since a complex symbol has real and
imaginary parts. To avoid overfitting in the neural network
training, a 50% dropout ratio is configured. To have a universal
classifier that can generally identify signals at different noise
conditions, the training signals will go through a wide range
of noise impacts with Es/N0 ranging from -20 dB to 50
dB with a 10 dB increment step. To extract rich features,
the CNN classifier applies 64 feature filters and therefore
the first neural network (NN) sub-block outputs a three-
dimensional 2×1024×64 feature matrix. To reduce the size
of a feature matrix, downsampling functions such as MaxPool
and AveragePool are applied. The full connection layer will

resize the 2×1×64 input feature matrix to a 1×1×λ output
feature vector with λ indicating the number of signal classes.
In the end, the SoftMax layer computes the probability of each
predicted signal class using the SoftMax function as

Pr(ψi) =
eψi∑λ
j=1 e

ψj

, (45)

where Ψ = (ψ1, ψ2, ..., ψλ) ∈ Rλ indicates the input feature
vector to the SoftMax function and it includes λ real numbers
with the element index i = 1, 2, ..., λ. The computation in (45)
ensures each output from the SoftMax is within the interval
[0, 1] and the sum of each output equals one.

To find a classifier that works well for all the signal classes,
cross entropy is computed as an indicator for the total loss as

Loss = −
λ∑
i=1

PTr (ψi)· ln(Pr(ψi)), (46)

where PTr (ψi) is the true probability that the ith input signal
belongs to the ith signal class while Pr(ψi) is the predicted
probability that the ith input signal belongs to the ith signal
class. With the cross entropy calculation, the neural network
can optimize its architecture via backward propagation using
the Adam optimizer. The maximum number of epochs is
limited to 30 and the mini-batch size is 128. To fully extract
features from a dataset, a learning rate of 0.01 is configured
through the training.

The signal pattern for each framework should be designed
according to the pattern keys generated by the proposed
chaotic sequence generator in section V. Ideally, the key, in
other words the bandwidth compression factor α, is contin-
uous and therefore has an infinite number of values. This
will advantageously show the robustness of our proposed
framework in practice but the infinite number of values also
complicate the evaluations of the proposed framework in
simulations. Therefore, in this work, we use discrete values of
α instead of using continuous values. The effect of a relatively
small change of α has been studied in [35] where the work
showed that the narrower gap between adjacent values of α,
the lower classification accuracy is achieved. It is therefore
expected that continuous values of α will lead to an infinite
number of signal patterns, which will significantly decrease
eavesdropping signal classification accuracy.

The single-band WDS framework might be designed with
the following SB signal pattern.{

SB −OFDM
SB − SEFDM (α=0.95, 0.9, 0.85, 0.8, 0.75, 0.7) ,

(47)
where the values in the bracket indicate the value of α for
each signal class. The SB signal pattern has λ=7 signal classes
and the BCF gap between adjacent classes is ∆α=0.05. Each
signal class has 2,000 OFDM/SEFDM symbols and there
are overall 14,000 symbols for the SB signal pattern neural
network training.

In terms of multi-band signals, this work will select sub-
band BCF β=0.9, 0.85, 0.8, which are a subset of the SB-
SEFDM α pattern in (47). The bandwidth compression factor
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Fig. 8. Spectral packing characteristics for MB-SEFDM signal pat-
terns. (a) MB-1. (b) MB-2. (c) MB-3.

Fig. 9. Spectral packing characteristics for AMB-SEFDM signal
patterns. (a) AMB-1. (b) AMB-2. (c) AMB-3.

Fig. 10. Spectral packing characteristics for MAMB-SEFDM signal
patterns. (a) MAMB-1. (b) MAMB-2. (c) MAMB-3.

and the number of sub-carriers for each multi-band signal
architecture is configured as the following. MB − 1 (β=0.9, NB=16)

MB − 2 (β=0.85, NB=16)
MB − 3 (β=0.8, NB=16)

. (48)

The MB-SEFDM signal pattern with λ=3 signal classes is
designed in (48) and illustrated in Fig. 8, in which β=0.9,
0.85, 0.8 are allocated to Fig. 8(a), Fig. 8(b) and Fig. 8(c),
respectively. Each sub-band has the same number of sub-
carriers NB=16 but the variations of β result in different
spectral bandwidth. Each signal class has 2,000 symbols and
there are overall 6,000 symbols for neural network training. AMB − 1 (β=0.9, NB=16)

AMB − 2 (β=0.85, NB=17)
AMB − 3 (β=0.8, NB=18)

. (49)

The AMB-SEFDM signal pattern with λ=3 signal classes
is designed in (49) and illustrated in Fig. 9. In order to have
approximately similar occupied spectral bandwidth for each
AMB signal, each sub-band in Fig. 9(a) with β=0.9 packs 16
sub-carriers, Fig. 9(b) and Fig. 9(c) should pack 17 and 18 sub-
carriers, respectively. Each signal class has 2,000 symbols and
there are overall 6,000 symbols for neural network training. MAMB − 1 (β=0.9, 0.85, 0.8, NB=16, 17, 18)

MAMB − 2 (β=0.9, 0.85, 0.8, NB=16, 17, 18)
MAMB − 3 (β=0.9, 0.85, 0.8, NB=16, 17, 18)

. (50)
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Fig. 11. Classification accuracy for SB based signal patterns and their
average accuracy.
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Fig. 12. Classification accuracy for MB based signal patterns and
their average accuracy.

The MAMB-SEFDM signal pattern with λ=3 signal classes
is designed in (50) and illustrated in Fig. 10. Similar to the
AMB signal pattern, three different values of β are employed.
However, different β would be mixed together in each signal
class. Therefore, MAMB waveforms are similar to AMB
waveforms in terms of occupied bandwidth but with different
sub-band spectral features. The sub-band spectral ambiguity
will cause misclassification at eavesdroppers. Each signal class
has 2,000 symbols and there are overall 6,000 symbols for
neural network training.

B. Performance and Processing Complexity

Due to the black-box learning mechanism of CNN, there
is no analytical theory to justify the generality of the partic-
ular neural network in all security scenarios. To justify the
feasibility of our trained CNN model in security analysis, we
choose a benchmark for the reference. We firstly train a CNN
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Fig. 13. Classification accuracy for AMB based signal patterns and
their average accuracy.

model that can correctly classify the existing signal patterns.
Then the CNN architecture will be re-trained for the newly
proposed waveform scheme. In this case, we can have a fair
justification that this particular CNN network is appropriate for
the security analysis since the eavesdropping CNN model can
eavesdrop conventional signals but it cannot identify the newly
proposed signal patterns. Although an analytical justification
is not available, the intensive training process for a CNN
model results in time delay and will prevent eavesdropping in
time-critical communications, which is a suitable application
scenario that justifies the utility of our proposed framework.

The classification accuracy of single-band signal patterns is
shown as a benchmark in Fig. 11, in which all the signals can
be identified at nearly 100% accuracy rates with the increase
of Es/N0. The classification accuracy results for multi-band
signals are presented in Fig. 12. Since there is no need for
OFDM signals using a multi-band signal architecture, OFDM
is not considered in the MB scenario. As expected from Fig.
12, all the MB structured signals with perfect classification
can converge to nearly 100% accuracy at high Es/N0 regime.
The imperfect classification for the target signal β=0.9 is
also evaluated. The notation, β = (β0 → β1), indicates an
imperfect classification from a signal class of β0 to another
signal class of β1. The imperfect classification accuracy shows
a complementary trend relative to its perfect accuracy.

So far, both single-band and multi-band signal patterns are
able to be identified by properly trained CNN classifiers.
Compared to the single-band signal format, the multi-band
signal architecture is a hardware-friendly signal format and
its signal detection is implementable in hardware. However,
they are both vulnerable to eavesdropping since eavesdroppers
can apply deep learning to identify signals and employ proper
algorithms to recover signals.

The classification accuracy for the AMB signal pattern is
investigated in Fig. 13. As usual, both perfect and imperfect
classification results are presented. Unlike the complementary
results observed from Fig. 12, both perfect and imperfect
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Fig. 14. Classification accuracy for MAMB based signal patterns and
their average accuracy. The sub-band signal configuration follows the
example in Table II.

Table II: MAMB-WDS sub-band architecture (an example
used in this work)

Sub-band MAMB-1 MAMB-2 MAMB-3
Index β β β

0 0.90 0.80 0.85
1 0.80 0.90 0.85
2 0.85 0.80 0.90
3 0.90 0.90 0.80
4 0.90 0.85 0.90
5 0.80 0.90 0.85
6 0.85 0.80 0.90
7 0.80 0.80 0.90
8 0.90 0.85 0.80
9 0.85 0.85 0.85
10 0.90 0.80 0.80
11 0.85 0.90 0.85
12 0.90 0.85 0.85
13 0.80 0.90 0.80
14 0.85 0.80 0.90
15 0.80 0.85 0.80

classification accuracy rates are distributed around a static
accuracy rate, 1/3. It is due to the fact that the three signal
classes have strong feature similarity and each signal class
would be equally classified into three signal classes resulting
in the static 1/3 accuracy rate.

To enhance further the ambiguity of classifying AMB
signal patterns, the mixed signal pattern MAMB from (50) is
evaluated with classification accuracy presented in Fig. 14, in
which three mixed signal patterns are designed with the BCF
characteristics in Table II. The 256 sub-carrier MAMB signal
is divided into 16 sub-bands and each sub-band is allocated
with a specific sub-band BCF β and an associated number
of sub-carriers. In this case, three MAMB signal patterns
effectively have the similar occupied spectral bandwidth. It
should be noted that the combination pattern of sub-bands is
flexible and Table II only shows an example. It is clearly seen
from Fig. 14 that due to the randomness of each sub-band
features, the enhanced ambiguity complicates MAMB signal
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Fig. 15. Approximate accuracy and measured accuracy for MAMB
signal patterns.

classification resulting in the 1/3 accuracy rate at all Es/N0.
The results observed in Fig. 14 come with an assumption

that the accuracy rate would be reduced further when more
MAMB signal patterns are considered. The approximate ac-
curacy rate to classify an arbitrary MAMB pattern is expressed
in a mathematical model as

ψ =
1

$
, $ ∈ [1, 2, 3, ..., bN/NB ], (51)

where $ indicates the number of MAMB signal classes, b
represents the number of BCF candidates and N/NB indicates
the number of sub-bands. Considering the example from Table
II, it is clear that the example has b=3 due to β=0.9, 0.85, 0.8
and N/NB=16 sub-bands. Therefore, the maximum number
of MAMB signal classes is $ = 316. In practice, the value of
$ would be infinite since the value of b could be infinite due
to continuous combinations of BCF. In addition, the number
of sub-bands N/NB is also flexible and the increase of the
value will exponentially cut the classification accuracy rate.

Fig. 15 compares the approximate accuracy and measured
accuracy for MAMB signal patterns with different number
of signal classes. Each signal pattern is evaluated ranging
from Es/N0=-20 dB to Es/N0=50 dB with a 10 dB increment
step. Therefore, each signal pattern will show eight evaluation
points in Fig. 15, in which it shows the reduction of classifi-
cation accuracy with the increase number of signal classes. In
addition, the measured accuracy reduction trajectory follows
the accuracy approximation in (51) where the accuracy rate
drops by 57% from three signal classes to seven signal classes.

In addition to the robustness evaluations of the WDS frame-
work to prevent eavesdropping, Fig. 16 shows communication
reliability at legitimate users as well. The MAMB signal
pattern, with three signal classes, is selected for BER testing.
The legitimate user will use pre-known pattern information to
detect signals. It reveals that without a proper signal detector,
where matched filter (MF) is applied, all the MAMB signal
classes cannot be decoded resulting in high BER results. On
the other hand, with the help of a uniquely designed detector,
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Fig. 16. BER performance for legitimate user MAMB signals with
and without the uniquely designed SD detector.

3 4 5 6 7

Number of MAMB signal classes

10-4

10-3

10-2

10-1

100

B
E

R

Eavesdropper: w/ detector

Legitimate user

Ideal

Fig. 17. BER performance for eavesdroppers with knowledge of the
uniquely designed SD detector.

where the SD architecture from section III-A is applied for
each signal sub-band, all the signal classes are detectable with
similar performance to QPSK-OFDM. Based on the results in
Fig. 16, it is inferred that even signals are correctly identified
by eavesdroppers, they cannot decode signals properly when
the uniquely designed SD detector is not known in advance.

To explore the eavesdropping capability on MAMB signals,
Fig. 17 shows that the eavesdropping performance approaches
a flat BER curve even the multiband SD detector is employed
indicating a failure of eavesdropping. Based on the results in
Fig. 17, it is inferred that even when the uniquely designed SD
detector is known by eavesdroppers in advance, they cannot
decode signals properly because signals are not correctly iden-
tified by eavesdroppers, which further enhances the physical
layer communication security.

The signal processing complexity for WDS and multi-
band WDS frameworks is compared in Table III. The pattern
key generation is one-time processing and is not taken into
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Table III: Signal Processing Complexity Analysis (uplink channel from Alice to Bob)

Processing WDS(Alice) WDS(Bob) multi-band WDS(Alice) multi-band WDS(Bob) WDS/multi-band WDS(Eve)
User Base Station User Base Station Eavesdropper

Tx IFFT(single) - IFFT(multiple) - -
FFT(single) FFT(multiple) FFT(single/multiple)

Rx - Signal Detection - Signal Detection Signal Classification
Signal Detection
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Fig. 18. The upper-bound of signal detection complexity in the
number of real-valued multiplication operations.

account. At the transmitter (Tx), the traditional WDS requires
single IFFT while the proposed multi-band WDS requires mul-
tiple IFFTs. In terms of receiver side (Rx), both frameworks
are for uplink channel communications where complex signal
processing is at energy consumption insensitive base stations.
Therefore, signal detection complexity is not the limitation to
our proposed security framework. In summary, our proposed
framework significantly reduces power consumption in Fig. 4
due to the reduced hardware utilization analysed in Table I.

Compared to traditional OFDM, our proposed waveform
framework has increased spectral efficiency and higher data
rate in a given bandwidth. It is because our proposed wave-
form framework can compress occupied spectral bandwidth
and generate non-orthogonal waveforms. As a result, in a
given spectral bandwidth, we can pack more sub-carriers
for carrying data, leading to an increased data rate. The
obvious limitation of our proposed approach, compared to
OFDM, is the increased signal processing complexity at the
receiver side, because the system requires complex signal
detection algorithms to decode signals at legitimate users. We
have implemented a similar signal detector in our previous
work [53], which verifies that the data rate can be enhanced
using optimized digital circuit design. To evaluate signal
detection complexity, real-valued multiplication operations are
considered. Since SD has variable computational complexity
related to the level of noise power, this work will evaluate
the upper-bound complexity. For traditional OFDM based sys-
tems, signal detection relies on MF, which is the fast Fourier
transform (FFT) operation with the computational complexity
of (N/2)log2(N) multiplications. For the traditional single-
band WDS framework, a single SD detector is required with
the upper bound complexity of

∑2N
n=1 2n[2n + 1]. For our
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Fig. 19. BER performance and classification accuracy evaluations in
multipath fading channels.

newly proposed multi-band WDS framework, its signal de-
tection has upper bound complexity of N

NB

∑2NB

n=1 2n[2n+ 1].
Fig. 18 clearly shows the complexity difference for the three
waveform schemes. It is obvious that the newly proposed
multi-band WDS framework has higher detection complexity
compared to the traditional OFDM scheme but our proposal
has significant complexity reduction compared to the single-
band WDS framework.

It is noted that this work obtains the security enhancement
capability using non-orthogonal signal waveform ambiguity
rather than relying on channel variations. Our previous work
[35] has verified that channels have minimal effects on clas-
sification since eavesdroppers fail to distinguish signals in
both AWGN and wireless channels. For further information
on the effect of channels, previous studies in [36], [54]
have verified the feasibility of the non-orthogonal signals in
practical experiment. To provide a comprehensive evaluation,
we test our proposed signal scheme under the multipath fading
channel model [36], [55], [56] where each path is configured
to experience Rayleigh fading. In Fig. 19, our proposed multi-
band WDS signal exhibits close BER performance to OFDM
in multipath fading scenarios, suggesting that the proposed
non-orthogonal signal can provide good BER performance in
fading channels. Fig. 19 also demonstrates the classification
accuracy at eavesdropper under multipath fading channels.
It is evident that the accuracy is not obviously affected
by channels, because the classification relies on waveform
spectral ambiguity rather than channel variations.

We include the Masked-OFDM technique [33], the FTN-
based technique [34], and the single-band SEFDM-based
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Fig. 20. Comparison with other waveform schemes in terms of
classification accuracy, BER at legitimate users and eavesdroppers.

technique [35] for the comparison in this paper. All of these
waveforms are incorporated into multicarrier formats similar
to the multi-band WDS framework, and they all exhibit higher
spectral efficiency compared to OFDM. The classification
accuracy results reveal that the eavesdropper achieves the
lowest accuracy (therefore better security performance) by
our proposed multi-band WDS signal, while the eavesdropper
attains the highest accuracy by the single-band WDS signal.
For the other two signals, their accuracy is similar to that of the
multi-band WDS signal. Concerning BER performance, the
aim is to develop a framework that increases the eavesdrop-
per’s BER while simultaneously reducing the legitimate user’s
BER. Based on the results presented in Fig. 20, it is evident
that our proposed multi-band WDS framework can meet both
requirements while all other waveform candidates degrade
both legitimate user and eavesdropper BER performance.

VII. CONCLUSION

This work investigated a multi-band waveform-defined se-
curity (WDS) framework, which avoids CSI at transmitters
and can be jointly used with traditional PLS techniques.
An adaptive multi-band WDS scheme is able to confuse
eavesdropping signal identification since the designed signals
occupy the same spectral bandwidth while their sub-band spec-
tral characteristics are variable and unknown by eavesdroppers.
With adaptive adjustment of each sub-band spectral feature,
the eavesdropping accuracy drops to 33% when only three
sub-band signal classes are taken into account. It is noted that
spectral features for each sub-band are determined by sub-
carrier packing patterns, which theoretically have an infinite
number of combinations due to the continuous variations of
the packing schemes. Therefore, the potentially infinite com-
binations of WDS patterns can efficiently prevent brute-force
eavesdropping. An accuracy approximation model is derived to
reveal that the eavesdropping accuracy will drop further when
the number of feature combinations increases. Results show a

nearly 57% accuracy drop when the number of combinations
goes from three to seven. Signal BER performance is also
evaluated and results show nearly perfect signal recovery with
lower complexity relative to traditional PLS approaches.
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