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SUMMARY
Identification of the gene expression state of a cancer patient from routine pathology imaging and character-
ization of its phenotypic effects have significant clinical and therapeutic implications. However, prediction of
expression of individual genes from whole slide images (WSIs) is challenging due to co-dependent or corre-
lated expression of multiple genes. Here, we use a purely data-driven approach to first identify groups of
genes with co-dependent expression and then predict their status from WSIs using a bespoke graph neural
network. These gene groups allow us to capture the gene expression state of a patient with a small number of
binary variables that are biologically meaningful and carry histopathological insights for clinical and thera-
peutic use cases. Prediction of gene expression state based on these gene groups allows associating histo-
logical phenotypes (cellular composition, mitotic counts, grading, etc.) with underlying gene expression pat-
terns and opens avenues for gaining biological insights from routine pathology imaging directly.
INTRODUCTION

Cancer is a clonal disease in which genetic alterations directly

or indirectly alter gene expression, biological pathways, and

proteins activity leading to phenotypic changes in the spatial or-

ganization of the tumormicroenvironment.1 Consequently, asso-

ciating histological and molecular patterns is crucial for under-

standing disease mechanisms and clinical decision-making.2

During histopathology examination, a tumor section stained

with hematoxylin and eosin (H&E) is visually examined for fea-

tures such as mitotic counts, nuclear pleomorphism, epithelial

tubule formation, necrosis, and tumor-infiltrating lymphocytes

to develop a spatially informed histological profile of the disease.

Similarly, gene expression analysis based on molecular tests

such as PAM50,3,4 Oncotype-Dx,5 and Mammaprint6 can also

be used for patient subtyping. Gene expression profiling based

on such limited gene assays or from bulk RNA sequencing

(RNA-seq)7 and single-cell RNA-seq8,9 plays a key role in under-

standing the genetic basis of cancer and discovery of new ther-

apeutic targets. However, such technologies are unable to cap-

ture spatial heterogeneity in the expression profile of genes

across a tumor section. Spatial profiling of a tumor transcriptome

is typically achieved using spatially resolved transcriptomics

technologies.10 However, such technologies are generally costly
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and offer low resolution in terms of spatial details or genes.11,12

Consequently, there is a need for cross-linking gene expression

and spatial histological imaging profiles to gain a more in-depth

understanding of latent factors associated with the disease.

In an attempt to achieve this goal, recent advancements in

deep learning for computational pathology have demonstrated

that prediction of expression profiles of genes is possible from

whole slide images (WSIs) of H&E-stained tissue sections.13–15

For example, Schmauch et al.15 proposed a deep learning

method called HE2RNA for predicting gene expression profiles

from WSIs. Similarly, Wang et al.16 proposed a deep learning

method for predicting the expression profile of 17,695 genes

from WSIs. For each of the 17,695 genes, the authors have tiled

the WSIs into patches and then trained and optimized an Incep-

tion V3 for predicting tile-level and WSI-level expression. Most

recently, an attention-based method called tRNAsformer has

been proposed for predicting the expression level of individual

gene from WSIs in kidney cancer.17

The vast majority of image-based RNA-seq expression pre-

diction methods focus on associating tissue morphology with

the expression level of individual genes.15–17 This is typically

done by designing a machine learning pipeline in which the input

is a WSI and the output is the expression level of a single gene.

However, due to the nature of the biological mechanisms
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underlying gene expression, genes usually show co-dependent

or correlated expression. Consequently, it is, in general, not

possible to associate the predicted expression of a single gene

from the input WSI to that gene alone. Furthermore, an observed

phenotypic effect cannot solely be pinpointed to the known func-

tion of a single gene as, typically, it will be a collective effect ex-

hibited by the expression of functionally inter-related genes and

a single gene may be associated with multiple functions.18

Therefore, instead of predicting the phenotypic effect of a single

gene from WSIs, it is more meaningful to predict the expression

of groups of genes that act concomitantly and exhibit coherent

patterns of expression across samples.

In contrast with existing research in this domain that focuses

on prediction of expression level of individual genes from

WSIs, in this work we first characterize the gene expression state

of a patient in terms of a small number of binary latent factors or

gene groups that are discovered in a purely data-driven manner.

These can be viewed as overlapping groups of related genes

whose expression shows significant inter-dependence across

samples. The motivation behind such gene grouping is that,

though co-expression is not causation, genes with co-depen-

dent expression show coordinated responses across a signifi-

cant subgroup of patients, hinting that these genes may be

part of an underlying biological pathway, protein complex, or dis-

ease subtype.19 We have shown that the discovered gene

groups are clinically and pathologically relevant in terms of their

association with survival, breast cancer receptor status, histo-

pathological phenotypes, cancer driver genesmutations, biolog-

ical pathways enrichment and underlying protein-protein inter-

actions, and therapeutic decision-making. We then propose a

bespoke multi-output graph neural network-based computa-

tional pathology pipeline to predict the expression state of a pa-

tient in terms of these latent factors from their WSIs. This enables

the identification of spatial histological patterns associated with

individual latent factors, as well as the overall gene expression

profile of a patient. Finally, we have shown that image-based

predicted gene group statuses can be used as a latent represen-

tation for the prediction of several other downstream clinical

tasks, such as patient subtyping and driver gene and pathway

alteration status.

RESULTS

Analytic workflow
As shown in Figure 1, we performed gene expression analysis of

the TCGA breast cancer (TCGA-BRCA) cohort (n = 1082) to iden-

tify 200 groups of genes such that the expression of genes in the

same group is maximally co-dependent. This allows us to cap-

ture the inter-dependence between expression profiles of

different genes and represent the gene expression state of a

given patient in the form of 200 binary variables each corre-

sponding with a single group. To underscore the clinical, thera-

peutic, and biological significance of each gene group, we

computed the association of patient gene group status with sur-

vival, enrichment for biological pathways and cancer hallmark

processes, and protein-protein and drug-protein interactions.

We then used our bespoke graph neural network-based pipe-

line that takes a WSI as input and predicts the binary status of
2 Cell Reports Medicine 4, 101313, December 19, 2023
200 gene groups simultaneously in an end-to-end manner.

This allows us to model the complete gene expression profile

of a patient and identify histological imaging patterns associated

with each gene group. Furthermore, the proposed approach al-

lows spatially resolved cross-linking of discovered gene groups

with visual information contained in theWSI. The interactive visu-

alization portal for the proposed approach (called Histology

Gene Groups Xplorer [HiGGsXplore]) is available at: (http://

tiademos.dcs.warwick.ac.uk/bokeh_app?demo=HiGGsXplore).

Finally, we assessed the generalization performance of the pro-

posed approach on three independent validation cohorts

(METABRIC, CPTAC-BRCA, and ABCTB) and compared our

prediction results with other existing pipelines.

Data-driven discovery of gene groups based on co-
dependent expression
To capture multivariate nonlinear relationships in gene expres-

sion patterns across patient samples, we employed Correlation

Explanation (CorEx) on RNA-seq data of the TCGA-BRCA

cohort. CorEx can be used to model the underlying dependency

structure of a dataset by identifying groups of random variables

that in the context of this application can intuitively be viewed as

a manifestation of underlying covarying patterns of gene expres-

sion profiles of different genes across patients. The input to

CorEx is a 1; 08235;676 matrix where each row is the normal-

ized gene expression score of 5,676 genes with high expression

variance or mutation frequency for each of the 1,082 patients.

For these data, CorEx identified 200 gene groups that can

explain the co-dependence between gene expression patterns

observed in the data with minimal loss of information. This allows

us to represent the gene expression state of each patient in

terms of these 200 binary variables, rather than the expression

of all individual genes. As these binary gene expression group

statuses are identified in a purely empirical manner directly

from gene expression data, the expected impact of any human

observation biases on the definition of these gene groups is min-

imal. Furthermore, a single gene can be associated with multiple

gene groups, which is desirable from a biological point of view,

as gene products often perform multiple roles within a cell and

can be part of multiple interaction networks.20

The gene composition of a selected number of gene groups is

shown as word clouds in Figure 2A. For example, the binary sta-

tus of gene group (G0) is defined primarily based on the expres-

sion patterns of a set of genes (MLPH, GATA3, XBP1, FOXA1,

TFF3, ESR1, etc.). The exhaustive list of genes grouped in all

200 groups is provided in the Supplementary data. Figure 2B il-

lustrates the underlying co-dependent expression of genes

grouped in a selected gene group along with their group status.

The heatmaps show that the expression level of genes in G3 and

G25 are significantly co-dependent across patients. For

instance, for patients with G3 = 1, the expression level of ITK,

IL2, PDCD1 or PD1, ITGAL, PDCD1LG2 or PD-L2, and several

other genes are high, whereas, for patients with G3 = 0, these

genes show under-expression, as shown in Figure 2. For G25,

a consistent trend in gene expression can be seen between sta-

tus = 0 and 1 patients, with more extreme expression (high or

low) for patients with G25 = 0 in comparison with patients

with G25 = 1. We validated the CorEx model trained on

http://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=HiGGsXplore
http://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=HiGGsXplore


Figure 1. Analytic workflow for patient gene expression state prediction from WSIs

(A) Workflow of data-driven discovery of gene groups and their pathological significance is shown. We first identified 200 binary latent factor or gene groups from

the gene expression data in a data-drivenmanner. A gene group can be viewed as overlapping group of genes that exhibit coherent patterns of expression across

sample. Word clouds demonstrate the gene composition of different gene groups. The color of the gene indicates whether its median expression across patients

is high (red) or low (blue) when gene group status = 1. Afterward, we assessed the biological significance of the genes grouped in different gene groups through

GSEA.

(B) The proposed SlideGraphN pipeline for prediction of gene groups status from WSIs. We first construct graph representation of a WSI and then feed it into a

graph neural network (GNN) for predicting WSI-level and spatially resolved expression status of these 200 gene groups.

(C) Identification of clinically relevant gene groups in terms of association with survival and their associated histological motifs. Histology image-based inference

of personalized medication by analyzing PPIs and PDIs of gene groups.
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TCGA-BRCA cohort on two independent cohorts (METABRIC

and CPTAC-BRCA) and found a consistent association between

gene groups status and the expression pattern of set of genes in

that group in the independent cohorts as well (see Figures 2B

and S1). Additionally, to eliminate the possibility of potential

batch effects we ensured that the gene groups obtained from

CorEx do not show high degree of predictability of tissue source

site (see Table S1).

This key result lends support to themotivation of this work, i.e.,

the expression level of multiple genes is significantly and consis-

tently inter-dependent and the overall gene expression state of a

patient can be characterized by a small number of latent factors.

It also highlights the fact that it is not possible to disentangle the

expression status of individual genes and consequently asso-
ciate an observed phenotype, say in a WSI, with the status of a

single gene. We next investigated the pathological significance

of these gene groups and analyze their predictability from WSIs.

Pathological significance of gene groups
Here, we discuss the clinicopathological significance of gene

groups to understand the implications of these latent factors

for clinical decision-making before analyzing their predictability

from imaging.

Association of gene groups with cancer hallmarks and

biological pathways

Through gene set enrichment analysis (GSEA), we found genes

from several gene groups associated with known cancer hall-

mark processes and biological pathways. In Figure 2C, we
Cell Reports Medicine 4, 101313, December 19, 2023 3



Figure 2. Data-driven discovery of gene groups, their biological and therapeutic significance

(A) Word clouds demonstrating the gene composition of different gene groups. The color of the gene indicates whether its median expression across patients is

high (red) or low (blue) when gene group status = 1. The font size of a gene within a group is proportional to the amount of information that the gene status provides

about a particular gene.

(B) Gene expression profile and group status of genes (one per row) for all patients (one per column) in G3 and G25 are shown.

(C) Enriched terms for hallmark processes in similar gene groups (note color in A) are shown, with font sizes proportional to the number of gene groups that show

enrichment for a certain process.

(D) PPI and PDI of selected genes in G3 (left plot) and G25 (right plot) are shown. Nodes shown in circles represent proteins, while the rounded rectangle shapes

represent drugs. The edges between nodes show different types of interaction and potential therapeutic targeting.
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show the enriched terms for cancer hallmark processes in

selected gene groups. For example, genes in G0, G10, and

G25 show enrichment for Estrogen early and late response,
4 Cell Reports Medicine 4, 101313, December 19, 2023
KRAS and mTORC1 signaling, unfolded protein response, p53

pathway, and several other hallmark processes. Similarly, we

found genes from G3, G15, and G30 associated with an
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inflammatory response, interferon alpha and gamma response,

and several other cancer hallmark processes. Apart from cancer

hallmark processes, we found genes from a number of gene

groups enriched for several biological processes (e.g., T cell re-

ceptor signaling for G16 and G20, mitogen-activated protein ki-

nase cascade for G8 and G148, negative regulation of pro-

grammed cell death [PD] for G2 and G19, etc.) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways (e.g.,

PD-L1 expression and PD-1 checkpoint pathway for G3, G16,

and G71, JAK-STAT, and PI3K-Akt signaling pathway for G7

and G72, Th2 and Th17 cell differentiation for G16, G20, and

G27, etc.). A comprehensive list of the associations between

all gene groups and cancer hallmark processes, biological pro-

cesses, and KEGG pathways is provided in the Supplemen-

tary data.

Gene groups capture clinically important protein-

protein and protein-drug interactions

We analyzed the protein-protein interaction (PPI) and protein-

drug interaction (PDI) of genes in several gene groups with the

end goal of identifying which groups involve proteins that show

interaction with known anticancer agents. Figure 2D shows the

PPI and PDI of a selected number of genes from G3 and G25.

Regarding G3, interaction between IL2, IL2RB, and IL2RG can

be seen (Figure 2D, left), which is expected as IL2 regulates im-

munity by teaming up with IL2RB and IL2RG.21,22 Similarly, inter-

action of tacrolimus, an immunosuppressive and anti-inflamma-

torymacrolide that targets theCD4+ cells can be seenwith IL2. In

reference to G25 (Figure 2D, right), TRIM8 a member of the

tripartite motif-containing (TRIM) binding with TP53 can be

seen, which has been shown to play a role in regulating TP53/

p53-mediated pathway.23 Similarly, interaction of YES1, a

targetable oncogene can be seen with drugs such as dasatinib,

ponatinib, nintedanib, and imatinib. Since our analysis indicates

significant alignment between gene groups status and the

expression level of proteins (see Figure S2), gene group status

can provide some insights into these interactions.

Patient stratification into high and low risk using gene

groups status

We found the binary status of several gene groups associated

with overall survival (OS), disease-specific survival (DSS), pro-

gression-free survival (PFI), and relapse-free survival (DFI) of pa-

tients. Figure 3A shows the Kaplan-Meier (KM) survival curves

(DSS, PFI, DFI, and OS) illustrating stratification of patients

based on their gene group status across the discovery cohort

(TCGA) and independent validation set (METABRIC). The KM

curves show that patients can be stratified into high- and low-

risk groups based on the binary status of a number of gene

groups with statistical significance (log rank test false discovery

rate-corrected p value <0.05), even though they have been ob-

tainedwithout any direct use of survival information For example,

patients with G72 = 1 have a higher survival probability

comparedwith G72 = 0 patients. Overall, in the discovery cohort,

there are 25, 3, and 2 gene groups showing significant risk strat-

ification for DSS, OS, and PFI, respectively. Similarly, in the inde-

pendent validation set, there are 124 and 136 gene groups with

significant risk stratification for DFI and OS, respectively. An

exhaustive list of all gene groups with significant risk stratifica-

tion is provided in the Supplemental information.
Association between gene groups and breast cancer

receptor status

We found the status of several gene groups associatedwith estro-

gen receptor (ER), progesterone receptor (PR), and Her2 status,

as can be seen in Figure 3B. For example, from the figure a strong

positive association of G25 statuswith ER (Kendall-tau correlation

coefficient rt = 0.68 and p< 0.01) and PR (rt = 0.58 and p< 0.01)

status can be seen. Similarly, we found G35 and G118 status

strongly positively associated with her2 status, as shown in Fig-

ure 3. Apart from discovery cohort, we found consistent associa-

tion pattern between patients’ gene groups status and receptor

status in the independent validation cohorts can also be seen in

Figure S1.

Association with PAM50 molecular subtypes and

immune subtypes

We found the status of several gene groups associated with

PAM50 molecular subtypes, as can be seen in Figure 3B. For

example, from the figure, strong positive and negative associa-

tions of G25 status can be seen with Luminal A and basal-like

subtypes, respectively. Since G25 status has also shown strong

association with ER and PR status its correlation with Luminal A

(ER positive, PR positive, and Her2 negative) and basal-like (tri-

ple negative) subtype is not surprising, but highlights the versa-

tility of gene group definitions. Similarly, similar associations

between patients’ G25 status and these molecular subtypes

can also be seen in the independent validation cohorts (see

Figure S3).

Apart from PAM50 subtypes, we found the status of several

gene groups associated with immune subtypes (C1, C2, C3,

and C4) defined by Thorsson et al.24 as shown in Figure 3B.

For example, from Figure 3B, a strong association of G15

can be seen with C2 (rt = 0.72, p< 0.01) and C1 (rt = �0.48,

p< 0.01) and C3 (rt = �0.31, p< 0.01). This association is ex-

pected as majority of G15 genes (IFIT3, OAS3, IFI44L, etc.) are

interferon-regulated genes that play a role in the innate immune

response and antiviral defense.25

Association with mutations in cancer genes

We found the status of several gene groups associated with gene

point mutation (MUT) status and copy number alteration (CNA)

status as shown in Figure 3B. For example, from Figure 3B, a

strong negative correlation of G25 status with TP53 MUT

status (rt = �0.59, p< 0.01) and MYC CNA status (rt = �0.26,

p< 0.01) can be seen. Similarly, the status of several other gene

groups can be seen as positively or negatively associated with

MUT status (e.g., CDH1, GATA3, and PIK3A) and CNA status

(e.g., ERBB2, PK2, HEY1, FGFR, and F2F2) of genes. Further-

more, we found consistent association pattern between patients’

gene groups status and gene alteration status in CPTAC-BRCA

and METABRIC cohorts, as shown in Figure S3.

Association of gene groups with pathologist-assigned

histological phenotypes

We found gene group status to be associated with routine clin-

ical features such as histological types (invasive lobular and

ductal carcinoma), histological grade (mitotic count, nuclear

pleomorphism, and epithelial tubule formation)26 and the spatial

fraction of tumor regions with tumor-infiltrating lymphocyte (TIL

regional fraction)27 as shown in Figure 3B. For example, from

the figure, a positive correlation between G3 status and TIL
Cell Reports Medicine 4, 101313, December 19, 2023 5



Figure 3. Clinical and pathological significance of gene groups binary status

(A) KM curves showing stratification of patients into high- and low-risk groups based on gene group binary status across the discovery cohort and the inde-

pendent test set. The plots shows that the binary status of several gene groups is associated (log-rank test false discovery rate-corrected p value <0.05) with

10-year censored OS, PFI, DSS, and DFI. As baseline, we also show the survival curve of all patients in the cohort without stratification.

(B) Association of gene groups with histological phenotypes, receptor status, genes point MUT status and CNA status, and also immune and PAM50 molecular

subtypes. Gene groups are shown along the x axis, and histological phenotypes and other clinical markers are shown along y axis. Red and blue colors indicate

the degree of association between gene groups status and a specific histopathological phenotype or clinical marker. Dark red color shows strong positive

correlation while strong negative correlation is shown using a dark blue color. CNV, copy number variations.

6 Cell Reports Medicine 4, 101313, December 19, 2023
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Figure 4. Quantitative result of SlideGraphN

and its performance benchmark with CLAM

and Attention-MIL

(A) Boxplots showing AUROC distribution of

SlideGraphN and other benchmarked methods

over the cross-validation and independent valida-

tion cohorts. Each box shows the AUROC distri-

bution at which the status of different gene groups

is predicted from WSIs. SlideGraphN outperform

(paired-sample t test, p < 0.05) CLAM and

Attention-MIL on the cross-validation cohort,

whereas on the external validation cohort its per-

formance is not non-inferior to CLAM and better

than Attention-MIL (p < 0.05).

(B) Boxplot showing AUROC distribution of

SlideGraphN, CLAM and Attention-MIL for a

selected number of gene groups across 1,000

bootstrap runs.

(C) Plots showing alignment between patients true

and predicted gene expression state in terms of

cosine similarity for SlideGraphN and other

benchmarked methods over the cross-validation

and independent validation cohorts. Each box

shows the distribution of cosine similarity between

the true and predicted gene expression state of

patients in the cross-validation cohort and inde-

pendent validation set. SlideGraphN outperform

(paired-sample t test, p < 0.05) CLAM and

Attention-MIL on the cross-validation cohort,

whereas on the external validation cohort its per-

formance is not non-inferior to CLAM and better

than Attention-MIL (p < 0.05).
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regional fraction can be seen. Similarly, the status of G25 can be

seen negatively associated with mitosis, necrosis, nuclear pleo-

morphism, inflammation, and tumor grade, whereas it can be

seen positively associated with invasive lobular carcinoma.

This analysis shows that gene group status can be associated

with pathologist-assigned histological phenotypes.

Prediction of gene groups from histological imaging
To explore the association between phenotypic information con-

tained in the WSI and the expression status of a set of genes in a

certain gene group we have developed a deep learning-based

multi-task graph neural network pipeline (SlideGraphN) that takes

a WSI as input and predicts the status of 200 gene groups simul-

taneously. The workflow of the proposed approach is shown in

Figure 1B. It builds on our previous work that can model a WSI

as a graph to capture histological context, but has been signifi-

cantly expanded and improved.28 Additionally, we also compared

SlideGraphN predictive performance with two other weakly su-

pervised algorithms, namely, clustering-constrained attention

multiple instance learning (CLAM)29 and Attention-MIL.30

Quantitative results of gene groups status prediction

Our predictive analysis shows that the binary status of a signifi-

cant number of gene groups can be predicted from histology im-

ages with a high area under the receiver operating characteristic

curve (AUROC) in both cross-validation and independent valida-

tion cohorts, as shown in Figure 4A. Furthermore, the proposed

approach performs significantly better (paired-sample t test,

p < 0.05) than both CLAM and Attention-MIL over the cross-vali-

dation cohort (TCGA-BRCA), whereas, for the external validation
cohort (CPTAC-BRCA) the performance of the proposed

approach is non-inferior to CLAM and significantly better than

Attention-MIL. For a selected number of gene groups, we

showed the AUROC distribution of SlideGraphN, CLAM and

Attention-MIL across 1,000 bootstrap runs in Figure 4B. From

the boxplots, it can be seen that SlideGraphN predicts the status

of these gene groups with a high median AUROC compared with

CLAM and Attention-MIL.

To analyze the degree to which the complete gene expression

profile of a patient can be predicted from imaging alone, Fig-

ure 4C displays distribution of patient-wise cosine similarity be-

tween histology image-based inferred gene expression state

and true gene expression state. The similarity score showsmod-

erate alignment between the true and predicted gene expression

states of each patient (median cosine similarity 0.46 and 0.42)

across both cross-validation and independent validation co-

horts. Of particular interest are patients whose alignment score

is either very high or very low. Some example WSI thumbnails

of patients whose expression state is best or poorly predicted

from histological imaging are shown in Table S2. These results

point to the fact that, although the status of certain groups can

be predicted with high accuracy, it is not possible to fully charac-

terize the overall gene expression state of most patients from

histological imaging alone. This result is expected due to both

technical and underlying biological reasons. For example, histo-

logical imaging and gene expression analysis are carried out on

different tissue sections and the latter uses ‘‘bulk’’ tissue.

Furthermore, not all gene expression changes will have a pheno-

typic effect that can be observed in a WSI, which in turn allows
Cell Reports Medicine 4, 101313, December 19, 2023 7



Figure 5. Spatial profiling of gene groups status
Spatial profiling of G3 and G25 is displayed through example WSIs and

heatmaps. The heatmaps use pseudo colors (bluish to red) to highlight the

spatially resolved contribution of patches to the predicted expression state,

with bluish and redder color indicating highly contributing status = 0 and

status = 1 regions, respectively. FromWSIs we extracted magnified version of

highly contributing status = 0 and status = 1 regions (ROIs) outlined by red and

blue, respectively. The black circles highlight regions of WSIs from which ROIs

were extracted. For an interactive visualization, please see tiade-

mos.dcs.warwick.ac.uk/bokeh_app?demo = HiGGsXplore.
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predictive modeling as illustrated in Figure S4. Moreover, gene

expression changes are not the sole determinants of phenotypic

changes as other factors, such as protein expression and post-

translational modifications, also play a key part. This result also

shows that both whole slide imaging and gene expression anal-

ysis carry complementary value in understanding disease

mechanisms.

Spatial profiling and histological phenotypes of gene

groups

The proposed graph neural network can map WSI-level predic-

tions of a gene group to spatially localized regions or nodes in

the input image. This enables the profiling of local histological

patterns linked to gene groups based on their node-level predic-

tions. Figure 5 shows the spatial profiling of gene groups (G3 and

G25 as examples) by visualizing node-level prediction scores

from SlideGraphN. For both gene groups, an example WSI

with its corresponding heatmap highlighting node level predic-

tion score is shown against binary status 0 and 1. The heatmap

highlights the spatially resolved contribution of different regions

of the WSI toward the expression status of a certain gene group

being 0 or 1. More specifically, regions highlighted in a deeper

red color are indicative of an association with status = 1, whereas

regions highlighted in a bluish color are indicative of an associa-

tion with status = 0 of a particular gene group. It is interesting to

note that a given gene group exhibits significant variation in pre-

diction scores across different regions of the image, which can
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be linked to the spatial diversity of localized gene expression pat-

terns throughout the tissue. The localized predictions for other

gene groups can be viewed in the HiGGsXplore portal online.

Using node-level prediction scores as a guide, we extracted

some regions of interest (ROIs) associated with G3 and G25 sta-

tus = 0 and 1 from their correspondingWSI, as shown in Figure 5.

ROIs representative of G3 = 1 have a relatively high proportion of

inflammatory cells compared with G3 = 0 ROIs, where tumor

cells seem to be more pleomorphic. Additionally, for the patient

with G3 (status = 1), the invasivemargin of the tumor, which has a

higher density of inflammatory cells, is shown to be correlated

with G3 status = 1. Given that G3 status is associated with TIL

regional fraction (see Figure 3) and immune response-related

processes and pathways (see the Supplementary file on biolog-

ical significance), TIL is the likely histological phenotype associ-

ated with G3 (status = 1).

Regarding G25, tubule formation and normal lobule can be

seen in ROIs representative of G25 (status = 1), whereas, in

ROIs indicative of G25 (status = 0) the obvious features are ne-

crosis and more pleomorphic tumor cells. For the patient with

G25 (status = 1), regions of the WSI with tubule formation are

highlighted as illustrated in the ROI. However, for patients with

G25 (status = 0) tissue regionswith normal lobule received higher

score since there was no tissue area with tubule formation. The

highlighted spatially resolved histological patterns are concor-

dant with their corresponding enriched cancer hallmark pro-

cesses (estrogen response, immune response, and p53

signaling) and biological pathways.

Mining differential histological patterns associated with

each gene group

To explore the association between visual patterns contained in

WSIs and gene groups status, we identified 25 exemplar patches

for each status (0 and 1) of a certain gene group. For these

patches, we also computed the cellular composition (counts of

neoplastic, inflammatory, connective, and epithelial cells), over-

all cellularity, andmitotic counts. Figure 6A shows 10 of 25 repre-

sentative patches for each of G3 and G25 status = 0 and status =

1. The main difference between G3 = 0 and G3 = 1 patches, as

seen in Figure 6, is the presence of lymphoid infiltrate and tumor

cellularity. More specifically, G3 = 1 patches have more inflam-

matory cells and fewer neoplastic cells, whereas the opposite

is true for G3 = 0 patches. Additionally, G3 = 0 patches have a

relatively higher number of mitotic counts compared with

G3 = 1. Regarding G25, the striking difference between

G25 = 0 and G25 = 1 patches is the presence of tubule formation

(row 2 patches 2 and 3, row 2 images 2 and 3) in the tumor area.

As G25 status correlates positively with ER and PR status (see

Figure 3B) and previous study has also found ER- and PR-posi-

tive cancers enriched in tubule formation,31 tubule formation

could be the histological phenotype associated with G25 = 1.

In contrast, G25 = 0 patches have more pleomorphic sheets of

cells and areas of necrosis (row 1 images 1 and 3, row 2 images

1 and 2). This pattern agrees with the histopathological pheno-

types we observed in Figures 3B and 5. Finally, G25 = 1 patches

show higher mitotic and inflammatory cell counts compared with

G25 = 0 patches. Though we are not using any histopathological

annotations in training, the predictive model has identified rele-

vant morphometric patterns in an automated manner.



Figure 6. Histological patterns associated

with gene groups

(A) Representative patches of G25 and G3 statuses

1 and 0 are shown. The bar below the patches

shows patch level cellular composition, mitotic

counts, and cellularity.

(B) Gene groups status (0 and 1) association with

patch-level Inflammatory cell counts is shown.

(C) Gene groups status (0 and 1) association with

patch-level mitotic cell counts is shown.
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Apart from G25 and G3, we found patch-level inflammatory

cell counts andmitotic counts significantly associated (Wilcoxon

test p< 0:01) with the binary status of several other gene groups,

as shown in Figures 6B and 6C.

Image-based predicted gene group statuses provide
latent space representation for downstream predictive
modeling
Gene expression groups allow us to capture the gene expres-

sion profile of a given patient in terms of 200 gene status vari-

ables and their prediction through a machine learning model

allows us to map histological patterns to these gene groups.

However, the predicted statuses of gene groups can also be

used as a compressed latent space representation (LSR) for

predictive modeling of other histologically important clinical

variables. Figures 7A–7F show the predictability of clinical var-

iables based on the predicted gene group statuses as latent

variables using a simple linear classifier. From the boxplots,

the LSR can predict patient PAM50 subtype (basal, luminal

A, luminal B, and Her2), and receptor status (ER, PR, and

Her2), with high AUROC across all datasets. For example,
Cell Reports
the (ER, PR, and Her2 status) of patients

in the TCGA-BRCA and ABCTB cohort

can be predicted with a median

AUROC values of (0.88, 0.78, and 0.60)

and (0.85, 0.77, and 0.70), respectively.

Similarly, we found the LSR predictive

of signaling pathways alteration status

(e.g., AUROC of 0.75 for the TP53

pathway),32 immune subtype, and gene

MUT status and CNA status. For

example, the LSR can predict the TP53

point MUT status of patients in TCGA-

BRCA and CPTAC-BRCA cohort with

median AUROC values of 0.82 and

0.76, respectively. Similarly, LSR can

also predict ERRB2 CNA status of pa-

tients in both cohorts with AUROC

values of 0.71 and 0.62, respectively.

Last, we have presented some example

heatmaps (Figure 7G) illustrating the

spatial profiling of some of these clinical

variables (i.e., ER and PR status, PAM50

and basal subtypes, and TP53 MUT and

pathway alteration status). From the

heatmaps, similar regions can be seen
highlighted for the status of ER and PR, while opposite re-

gions for basal subtypes (ER, PR, and Her2 negative).

Clinical and therapeutic significance of best-predicted
gene groups
We found that gene groups predicted with high accuracy

(AUROC R 0.75) from imaging are significantly associated with

DSS, biological pathways and hallmark processes. All gene

groups associated with DSS are predicted with high accuracy

from imaging. Besides this, some interesting biological path-

ways (see Figure 8) and cancer hallmark processes (see Fig-

ure S5) can also be inferred from images based predicted gene

groups that can be useful in histology image-based therapeutic

decision-making (e.g., drugs targeting the PI3K-Akt pathway in

breast cancer).33

DISCUSSION

We performed histological and molecular characterization of

breast cancer patients using a purely data-driven approach.

Highlighting the limitations of previous methods that predict
Medicine 4, 101313, December 19, 2023 9



Figure 7. Implication of image-based predicted gene group statuses for downstream predictive modeling

(A–F) Prediction of (A) receptor status, (B) PAM50 molecular subtypes, (C) Immune subtypes, (D) pathways alteration status, (E) driver genes CNA status, and

(F) point MUT status from image-based predicted gene groups status. Each box in the figure shows the AUROC distribution at which a clinical variable is

predicted from image-based predicted gene group status across 1,000 bootstrap runs. Boxes shown in dark blue displays cross-validation AUROC, while the

ones shown in light red and yellow show model AUROCs over independent validation cohorts, CPTAC and ABCTB, respectively.

(G) Spatial profiling of some routine clinical variables is shown using example heatmaps. The heatmaps use pseudo colors (bluish to red) to highlight the spatially

resolved contribution of patches to status = 0 and 1 of a certain clinical variable, with bluish color indicating highly contributing status = 0 regions and red color

indicating highly contributing status = 1 regions.
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the expression level of individual genes from histology image,

we have shown that significant co-dependencies of different

genes across samples (see Figure 2B) compromises the ability

of deep learning models to identify individual gene-level geno-

type to phenotype mapping. To tackle this, we first grouped

genes whose expression patterns are significantly dependent

and covarying across samples and then proposed a multi-

output graph-based deep learning pipeline (SlideGraphN) that

predicts both WSI-level and spatially resolved expression sta-

tus of these gene groups in an end-to-end manner. Using the
10 Cell Reports Medicine 4, 101313, December 19, 2023
proposed computational pathology workflow, we demon-

strated that the status of a significant number of gene groups

can be predicted with high accuracy from imaging. This not

only overcomes the limitations of existing image-based gene

expression prediction models, but provides opportunities to

gain biological insights from imaging directly. Finally, we

showed that histopathological patterns associated with several

gene groups in terms of cellular composition, mitotic counts,

and exemplar patches can be identified using the proposed

computational pathology pipeline.



Figure 8. Clinical and therapeutic signifi-

cance of best predicted gene group

The scatterplot shows association of gene groups

with biological pathways with gene group shown

along x axis (one per column) and corresponding

enriched pathways on y axis (one per row). The size

of scatter dot shows the number of genes from a

particular gene group that has shown significant

association (false discovery rate-adjusted p value

<0.01) with a certain biological pathway. In the plot

the p value is represented by the color of scatter

dots. The top bar plot shows the prediction accu-

racy (AUROC) at which the status of these gene

groups are predicted from histology images. Gene

groups that show significant association with DSS

are annotated with an * next to the gene group

name.
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A potential advantage of the employed gene grouping

approach is the interpretability of gene groups. The method al-

lows a compact representation of a patient’s gene expression

state (200 binary latent variables) without losing interpretability,

which is crucial in this context, as it provides insight into biolog-

ical processes and underlying PPIs and PDIs that can motivate

new therapies. Through GSEA, we found genes from several

gene groups associated with cancer hallmark processes (e.g.,

epithelial-mesenchymal transition, inflammatory response, es-

trogen early and late response, mTORC1 signaling, Myc targets,

p53 signaling, KRAS up- and down-signaling) and biological

pathways (e.g., inflammatory response, PD-L1 expression and

PD-1 checkpoint, cancer immunotherapy by PD-blockade and

epidermal growth factor/epidermal growth factor receptor

signaling). Additionally, we have shown that genes in a certain

gene group are enriched for PPI (see Figure 2D), which can pro-

vide some insights and possibility new ideas for agents that,

event if they have traditionally not been shown to work, might

be worth reconsidering.34 This could render gene groups and

their status a useful guide in analyzing group of patients who

have traditionally exhibited limited or no response to therapy,

thereby generating ideas for new approaches.

Another important observation regarding gene grouping is

that, although the gene groups are defined in a completely

data-driven manner without any intelligent selection, still they

carry significant clinical meaning in terms of association with sur-

vival (OS, DSS, and PFS), routine clinical biomarkers (ER, PR,

and Her2 status), driver genes MUT status, and previously

definedPAM50 and immune subtypes. For example, themajority

of genes that has been previously found associated with immune

response24 are grouped together (e.g., G3 and G15). This high-

lights the versatility of gene groups to be used as markers for im-

mune activity, as well as existing molecular subtyping. Apart
Cell Reports M
from this, we found the binary status of

several gene groups associated with his-

topathological annotations, which enable

direct genotypic-to-phenotype mapping.

Additionally, this genotype to phenotype

link can further be validated using GSEA

and specialized immunohistochemical
(IHC) staining. These results not only validate the clinicopatho-

logical significance of these gene groups, but also provide a

broader picture of an individual tumor by illuminating the inter-

play between patient gene expression state and several other

clinical variables of interest.

An important feature of the proposed approach for mapping

patient gene expression status with morphometric patterns con-

tained in the WSIs is its reliability and explainability. Localized

histological patterns identified by SlideGraphN can be explained

in terms of enriched hallmark process, biological pathways, and

underlying PPI, as well as through specialized IHC staining and

genome sequencing. For example, we found genes from G3 en-

riched for several immune-related biological processes and

pathways, including PD-L1 expression and PD-1 checkpoint

pathway, which in histological images we found to be associated

with a high proportion of TILs. As G3 status is defined by the

expression level of several immune-related genes (e.g., IL2,

CD27, CCL5, PD-1, and PD-L2),24,35 a high proportion of TILs

might be the histological phenotypes associated with G3 = 1.

Although the observation is interesting, further validation is

needed using IHC data. After validation, this could be useful in

therapeutic decision-making coupled with other information.

Regarding G25, we found tubule formation in the majority of

G25 = 1 representative patches, which was consistent with

IHC ER and PR status and also the associated cancer hallmark

process (estrogen signaling). In contrast, G25 = 0 patches

have more pleomorphic sheets of cells several with area of ne-

crosis, which is again concordant with their association with

pathologist-assigned phenotypes (necrosis and nuclear pleo-

morphism), TP53 MUT status, and the p53 signaling pathway.

This shows that the proposed deep learning pipeline has identi-

fied relevant spatially resolved histological patterns associated

with the status of gene groups in an automated manner.
edicine 4, 101313, December 19, 2023 11
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Image-based prediction of gene expression state will open

doors of gaining biological insights from imaging directly and is

expected to be advantageous in both cancer research and clin-

ical setup. In cancer research, the proposed approach can be

used for studying the interplay between gene expression and

histopathological phenotypes. Additionally, it can also be used

by pharmaceutical industries in their drug discovery pipeline

when they study the response of lead compounds in early phase

trials. In clinical setup, it will allow cost-effective precision diag-

nostic from imaging data alone. The proposed computational

pathology pipeline not only predicts patient gene expression

but also provides a detailed insight in terms of patient survival

(OS, DFS, and PFS), possible up or downregulated biological

processes and their underlying PPI, possibly mutated or copy-

altered genes, and information about ER, PR, and HER2 status,

PAM50, and immune subtypes. These types of analysis will pro-

vide a more detailed insight into an individual tumor in a cost-

effective way. Although by using the proposed approach we

managed to predict the expression status of several gene groups

with high accuracy and we extensively validated the results on

multiple independent validation cohorts, further extensive vali-

dation on a large multi-centric dataset is needed before entering

clinical practice.

Limitations of the study
While we validated the association between localized histologi-

cal patterns and gene groups status, there is still a need for

large-scale validation of localized prediction using spatially

resolved mRNA expression data. Second, we inferred protein-

protein, protein-drug, and pathway activation states using

gene groups definition; however, we have not validated these

findings at the functional protein level. Furthermore, most protein

pathways can be regulated by post-translational modifications

like phosphorylation, which cannot be readily predicted from

mRNA or protein expression data. Therefore, we assert that

extensive validation is needed, not only to validate the PPIs

and PDIs at the functional protein level, but also the activation

signatures of protein pathways.
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aro, J., Kamoun, A., Sefta, M., Toldo, S., Zaslavskiy, M., et al. (2020). A

deep learning model to predict RNA-Seq expression of tumours from

whole slide images. Nat. Commun. 11, 3877.

16. Wang, Y., Kartasalo, K., Weitz, P., Ács, B., Valkonen,M., Larsson, C., Ruu-
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Whole Slide Images (TCGA) The Cancer Genome Atlas RRID:SCR_003193

Whole Slide Images (CPTAC) The Cancer Imaging Archive https://www.cancerimagingarchive.net/collections

Molecular Data (TCGA) National Cancer Institute RRID:SCR_003193

CPTAC Proteogenomic Data cBioPortal https://www.cell.com/cancer-cell/

fulltext/S1535-6108(23)00219-2

Whole Slide Images and

Receptor Status (ABCTB)

Australian Breast Cancer Tissue Bank https://doi.org/10.1089/bio.2014.0055

Software and algorithms

CorEx https://github.com/gregversteeg/bio_corex N/A

tiatoolbox https://github.com/TissueImageAnalytics/

tiatoolbox/

v1.4

ALBRT https://github.com/engrodawood/ALBRT v1.4

STITCH http://stitch.embl.de/ STITCH 5

torch geometric https://pytorch-geometric.readthedocs.io/

en/latest/install/installation.html

v2.2

lifelines https://lifelines.readthedocs.io/en/latest/ v0.3.0

PyTorch (2.0) https://pytorch.org/ RRID:SCR_018536

Scipy (1.6.2) http://www.scipy.org/ RRID:SCR_008058

NumPy (1.23.5) http://www.numpy.org/ RRID:SCR_008633

Pandas (1.5.3) https://pandas.pydata.org/ RRID:SCR_018214

Matplotlib (3.3.4) https://matplotlib.org/ RRID:SCR_008624

HiGGsXplore This paper https://doi.org/10.5281/zenodo.10053647.
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Lead contact
Further information and requests regarding this manuscript and experimental code should be directed to and fulfilled by the lead con-

tact, Fayyaz ul Amir Afsar Minhas (Fayyaz.Minhas@warwick.ac.uk).

Materials availability
This study did not generate new materials.

Data and code availability
d Whole slides images (WSIs) of all TCGA-BRCApatients used in the study can be downloaded fromNIHGenomic DataCommon

Portal at this link: https://portal.gdc.cancer.gov/ with the manifest details included in the supplemental information.

d The genomic data and clinical data of TCGA-BRCA,METABRIC andCPTAC-BRCA cohort can be downloaded from cBioPortal

https://www.cbioportal.org/. Patient ids and field details are included in the supplemental information.

d ABCTB data and images were obtained from the Australian Breast Cancer Tissue Bank. The lead author can be contacted to

facilitate access to the images and receptor status of these patients.

d The deep learning model was developed using PyTorch Geometric library and TIAToolbox.36 Code and documentation of all

python scripts used in the study can be found at: https://doi.org/10.5281/zenodo.10053647.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient cohorts
Biomedical and Scientific Research Ethics Committee (BSREC) University of Warwick Approved the study under application ID

BSREC 16/21–22. All samples used in the study were obtained with research consent and ethics approvals as indicated in the con-

sent and ethics statements for TCGA (The Cancer Genome Atlas),37,38 CPTAC (Clinical Proteomic Analysis Consortium),39

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium)40,41 and ABCTB (Australian Breast Cancer Tissue

Bank)36 given in the references provided herewith.

In this study we used data from four breast cancer cohorts namely TCGA-BRCA (TCGA breast cancer cohort),37,38 CPTAC-BRCA

(CPTAC breast cancer cohort),40,41 METABRIC40,41 and ABCTB.36 For TCGA-BRCA (n = 1082), CPTAC-BRCA (n = 122), and

METABRIC (n = 1980) cohorts we collected mRNA expression, gene mutation status (MUT status), copy number alterations status

(CNA status), and available clinical data from cBioportal.42,43 For TCGA-BRCA cohort we collected 1,133Whole Slide Images (WSIs)

of Formalin-Fixed Paraffin-Embedded (FFPE) Hematoxylin and Eosin (H&E) stained tissue section of 1,062 patients from the Cancer

Genome Atlas (TCGA).37,38 For patients with multiple slides, we selected the one with best visual quality. Additionally for robust anal-

ysis, we ignored WSIs with missing baseline resolution information. The survival data for TCGA-BRCA cohort were used from Pan-

Cancer Clinical Data Resource (TCGA-CDR).44 For the CPTAC cohort we downloaded 653 WSIs of 122 patients from The Cancer

Imaging Archive (TCIA).45 Finally, within ABCTB cohort, we have access to WSIs and receptor status (ER, PR and Her2 status) infor-

mation, for a total of 2,303 patients.

METHOD DETAILS

mRNA expression data preprocessing
We first converted the gene expression data into log2 normalized Z score values. Afterward, using expression data of TCGA-BRCA

cohort we selected a set of 5,596 genes having high variance in expression across patient samples along with known oncogenes.

After gene selection we end up with a matrix of size N35;676 for TCGA-BRCA, CPTAC-BRCA and METABRIC cohort where N rep-

resents the number of patients in the cohort.

Data Driven Discovery of gene groups with CorEx
To model associations between expression profile of different genes we used Total Correlation Explanation (CorEx) on the gene

expression matrix M of size m3n where m and n are the number of patient samples, and genes, respectively.46 As the expression

of different genes is significantly inter-dependent and correlated, CorEx allows us to represent the gene expression state of a patient

in terms of a small number of binary variables or gene groups that can capture information contained in the expression of all genes of a

given patient with minimal loss. CorEx initiates the processes by discovering groups of genes whose expression are significantly in-

ter-dependent. CorEx then assigns binary labels to each gene group directly without any binarization of continuous values by

ensuring that the gene group status shows significant mutual information with the expression level of genes in the group. Thus, these

binary group statuses ‘‘explain away’’ co-dependence of expression across genes for a given patient without the need of any binar-

ization resulting in a more easily interpretable expression sate. The binary status of each gene group indicates the existence of spe-

cific patterns of co-dependent expression across genes. As the outputs are binary, there is no need for any arbitrary threshold se-

lection for binarization or the use of regression. A potential advantage of employing binary status is that it simplifies the learning

problem (histology image-based prediction of gene expression state) by reducing the possible patient gene expression profiles

from thousands of genes to 200 binary statuses for each patient. For a detailedmathematical formulation underlying CorEx, the inter-

ested reader is referred to the CorEx paper.46 GivenMm3n as input, the output of CorEx is a matrix Gm3d with each column of G cor-

responds to a binary latent factor Gk (k = 1.d with d � n) so that the mutual information between the expression level of genes is

minimized after conditioning on G1;.;Gd. Akin to ‘‘loadings’’ in principle component analysis (PCA), the definition of each binary

latent factor Gk is based on mutual information between the expression score of a certain gene and the binary status of Gk across

patient samples. This allows us to model each of the latent factors as a ranked (by mutual information) collection or group of genes.

However, unlike PCA (or other linear or kernelized dimensionality reduction techniques based on covariance), CorEx can capture

non-linear statistical relationships and dependencies between input variables (genes) directly due to its use of mutual information

(see comparative analysis in46). We run the algorithm for 100 iterations on the Z score expression of TCGA-BRCA patients for discov-

ering 200 binary latent factors. The number of latent factors were decided based on the TC distribution shown in Figure S6. The dis-

tribution demonstrates that the overall TC (sum of TCs of all latent factor) plateaus and approaches zero after selecting 200 latent

factors. Therefore, we selected 200 latent factors. The binary statuses of these 200 latent variables define the expression state of

a patient, where the binary value of each latent variable is defined by the group of genes whose gene expression patterns are sub-

stantially co-dependent across samples as shown in Figure 2B.

Analysis of biological and therapeutic significance of gene groups

Hallmark processes and KEGG pathways enrichment for genes in different gene groups were obtained using Enrichr.47 In line with

previous work,20 we selected amaximumof top 400 genes from each gene groupwhosemutual information is greater than 0.002.We

passed the gene set to Enrichr which returns the enriched terms across a selected library (in our case KEGG pathway and MSigDB
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hallmarks) coupled with their statistical significance (FDR-adjusted p value using Benjamini-Hochberg methods). We used a cutoff

value of p< 0:01 on the adjusted p value for statistical significance of an enriched term across the selected library. The protein-protein

and drug-protein interactions are analyzed using STITCH.48

Independent validation of the gene group discovery approach

We validated the results of the employed gene group discovery algorithm (CorEx) on two independent validation cohorts (CPTAC-

BRCA andMETABRIC). More specifically, we inferred the gene groups status of patients in these cohorts using CorEx model trained

on mRNA expression data of TCGA-BRCA cohort. We visualized the consistency between patient’s gene group status for a certain

gene group and expression levels of set of genes in that group by generating some example heatmaps (see Figure 2). Additionally, we

also analyzed the consistency of association between gene group status and histological phenotypes, receptor status, molecular

subtypes, gene point mutation and copy number alteration status.

Analysis of batch effects and other confounders

In our previous work49 we showed that site-specific signatures are manifest in TCGA samples. To ensure that the gene groups ob-

tained fromCorEx are not biased toward source sites, we analyzed the degree of predictability of tissue source site of a given sample

based on the gene groups assigned to it. The hypothesis is that if the source site of a sample can be predicted with high accuracy or

AUROC using its gene group signature then there is a substantial bias in the assignment of groups or the possibility of site-specific

batch effects. For this purpose, we trained both linear (SVM) and non-linear (XGBoost) models to predict the site of origin of a sample

from its gene group. We evaluated the performance of both SVM and XGBoost using 5-fold cross validation and reported the mean

and standard-deviation of these models. If the source sites are predictable with high mean AUROC values, then it signifies that the

gene groups might suffer from potential batch effect. However, if the sites are predictable with low AUROC then the gene groups do

not suffer from any marked biased or batch effect.

WSI analysis pipeline with SlideGraphN

Preprocessing of whole slide images

We segment the tissue regions of WSIs using a tissue segmentation model and ignore regions with tissue artifacts (pen-marking,

tissue folding, etc.). Each WSI is then tiled into patches of size 5123512 pixels at a spatial resolution of 0.50 microns-per-pixel

(MPP). Patches capturing less than 40% of informative tissue area (pixels with intensity higher than 200) are discarded, and the re-

maining patches (both tumor and non-tumor) are used.

WSI-graph construction

A graph = ðV ;EÞ is defined by a vertex set V, and an edge set E. The set V = fviji = 1;.Ng defines nodes in a graph (in our case is the

set of patches in a WSI) while connectivity between nodes is defined by the edges E. Each node vi = ðgi;hiÞ captures the spatial

location (gi ), and feature representation (hi ) of a patch in the WSI. We obtain the feature representation hi ˛R1024 of a patch xi by

extracting latent representation from ShuffleNet44 pretrained on ImageNet.50 The edge set E is obtained by connecting nodes to

the neighboring nodes (distance less than 4000 pixels) using Delaunay triangulation. If two nodes vi and vj are connected, then there

will be an edge eij˛E.

Gene expression state prediction using graph neural network

We pass the graph representation of a WSI through a Graph Neural Network (GNN) for predicting the node-level and WSI-level

expression status of all gene groups simultaneously. In this work, we have developed a custom multi-output GNN that predicts

the patch-level and WSI-level expression statuses of different gene groups in an end-to-end manner. Node level representation is

passed through EdgeConv layers L = f1; 2; 3g. Each EdgeConv layer51 updates the representation of each node in the graph by

aggregating the information from their neighboring node and generates embedding for successive layers. For a node in layer l at index

m the output embedding of EdgeConv layer can mathematically be written as follows:

hl
m =

X

k˛ ℵðmÞ
Hl

�
hl� 1
m k hl� 1

k � hl� 1
m

�

In the above equation h0
m = hm, ℵðmÞ represents the neighboring nodes of m, and Hl denote a neural network. EdgeConv oper-

ation is trying to combine information of a node hl
m and neighboring nodes ℵðmÞ. Since we are using three EdgeConv layers, each

node is expected to capture information from the neighboring nodes that are less than 5-hops apart in the WSI-graph.

For spatial profiling for gene expression groups, the feature representation hl
m of a node vm = ðgj;hjÞ˛V is passed as input to a

multilayer perceptron flðvmÞ= fðhl
mÞ for generating node level prediction score which is then aggregated across all layers for getting

patch level prediction score for all gene groups.

fðvmÞ =
XL

l = 0

fl
�
hl
m

�

The WSI-level score for the expression status of all gene groups is obtained by pooling and aggregating node-level prediction

scores as follows:

FðGÞ =
X

c m˛V

fðvmÞ
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The trainable parameters of the EdgeConv layers and node-level classifiers are learned in an end-to-end manner using backpro-

pagation. In a training batch of sizeN, themodel predicted score for k = f1. Kg binary latent factors are compared with their ground

truth value using pairwise ranking loss,28 mathematically formulated as follows:

L =
X

k

X

ða;bÞ˛Pk

max
�
0; 1 � �

fkðXaÞ � fkðXbÞ
��

Here Pk = fða;bÞ��yka > ykb;a;b= 1.:Ng is the set of all pair of patients (a, b) where the expression status of patient a is greater than

patient b for latent factor k. Minimization of the loss function LðqÞ will enforce the model to rank status = 1 patients higher than sta-

tus = 0 for all latent factors.

Training and internal validation of SlideGraphN

We trained and evaluated the performance of SlideGraphN using 5-fold cross-validation, in which the dataset is subsampled into five

80/20 non-overlapping splits. The model is trained on 80% of the data and 20% data is held out for testing. From the training data we

randomly select 10%of the data for parameter tuning and optimization.We trainSlideGraphN on the training set for 300 epochs using

the Adam optimizer with an initial learning rate and weight decay of 0:001 and 0.0001, respectively. In each epoch, the training set is

sampled into mini-batches of size 8, and the learnable parameters of SlideGraphN are updated using adaptive momentum-based

optimizer. To avoid overfitting, we stop the model training early, if performance over the validation set does not improve for 20

consecutive epochs. During training, we maintain a queue of size 10 for tracking the best models based on their performance

over the validation set. More specifically, we insert the model into the queue if the validation loss at epoch n is less than the loss

at epoch n� 1. For test set inference, we ensemble the prediction score of all the models in the queue by averaging the prediction

score and using that as the final prediction. For quantitative performance assessment, we report area under the receiver operating

characteristic curve (AUROC) over the test set.

Spatial profiling of gene groups and visualization

For a given WSI, the spatially resolved contribution of different tissue regions toward the expression status of a certain gene groups

can visualized. We developed an online portal (http://tiademos.dcs.warwick.ac.uk/bokeh_app?demo=HiGGsXplore) which can

assist user in spatially resolved cross-linking of genotype-phenotype mapping in terms of these gene groups. More specifically,

the portal uses WSI coupled with node level prediction of different gene group and then show the node level prediction in the

form of an interactive heatmap. Additionally, the tool can also show different histological features when the user hover over a

node in the graph.

Identification of histological motifs

To uncover cellular and morphometric patterns associated with the expression status (0, or 1) of a particular gene group we divided

patients into two groups (status = 0 and status = 1). For each group, we select 50 patients whose expression statuses are accurately

predicted from their WSIs. From each of theseWSIs, for patients with status = 1, we extract the highest scoring (based on node-level

score) 1% patches, while for status = 0, we extract the lowest scoring patches and then cluster the patches within each group for

getting representative patterns. Within each group (status = 0, and 1) we cluster the patches using 25-medoid clustering. After clus-

tering, we get 25 visual patterns (histological motifs) representative of expression status = 0 and status = 1 of a certain gene group.

Independent validation of SlideGraphN predicted gene groups status

We assessed the accuracy of SlideGraphN predicted gene group statuses on unseen WSIs of patients from CPTAC-BRCA cohort.

For patients in the CPTAC-BRCA cohort we first constructed graph representation of their WSIs and then predicted their gene groups

status using SlideGraphN model trained on TCGA-BRCA cohort. For patients with multiple whole slide images in the CPTAC-BRCA

cohort we created a bag of graphs and then inferred the gene groups status using the bag of graphs as input to the five models from

the cross-validation runs. The final prediction is generated by averaging the prediction of ensemble models. For performance eval-

uation we reported AUROC values between SlideGraphN predicted gene groups status and gene expression based inferred gene

groups status from CorEx model (trained on TCGA-BRCA cohort) as performance metric. Additionally, we also reported the model

accuracy in predicting the overall gene expression state of patients in terms of cosine similarity between image-based predicted sta-

tus of 200 gene group and gene expression based inferred ground truth.

Training and evaluation of downstream predictors

We train separate multi-output perceptron for predicting the receptor status, PAM50 molecular subtypes, Immune subtypes, path-

ways alteration status, genes point mutation status and copy number alteration status using SlideGraphN predicted gene groups

status as features. The classifier for each downstream task is trained and evaluated using same loss function and training and vali-

dation protocol employed for SlideGraphN training and evaluation. After cross-validation, we get the downstream classifier predic-

tion score for a particular clinical variable of interest for all patients. For performance we subsample 67% of the patients 1,000 times

with replacement and compute the AUROC between ground truth and model predicted score.

Independent validation of downstream predictors

We assessed the performance of predictors developed on top of SlideGraphN latent representation for various downstream tasks

(PAM50 subtypes, receptor status, gene mutation and copy number alteration status) on two independent validation cohorts

(CPTAC-BRCA and ABCTB). For each task we assessed the independent validation performance of the corresponding downstream
e4 Cell Reports Medicine 4, 101313, December 19, 2023
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predictor trained on SlideGraphN predicted gene groups status and ground truth labels of TCGA-BRCA cohort. The final prediction

for each patient is obtained by averaging the prediction of five ensemble downstream predictors.

SlideGraphN comparison with other methods

We compared the predictive performance of SlideGraphN with CLAM and Attention MIL. As CLAM and Attention MIL support multi-

output by design, therefore for predicting the status of each of the 200 gene group we trained a separate model using the same

training and validation splits used for SlideGraphN. For reporting quantitative results on internal validation and external validation co-

horts we used the experimental setup used for SlideGraphN.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cellular composition estimations
We estimated the counts of neoplastic, inflammatory, connective, and normal epithelial cells present in a patch using our in-house

cellular composition predictor ALBRT.52 ALBRT takes a patch of size 2563256 at a spatial resolution of 0.25 MPP and predicts the

counts of the types of cells present in it. We extracted patches of size 2563256 at 0.25MPP using (x, y) of coordinates of 5123 512 at

0.50 MPP. For each 5123512 patch, we obtained the cellular composition estimates by aggregating ALBRT-predicted cellular es-

timates of around 16 2563256 patches. The cellularity was computed by summing the counts of neoplastic, inflammatory, connec-

tive, and epithelial cells present in a 5123512 patch.

Estimation of mitotic counts
Mitosis detection has been done using the state-of-the-art ‘‘mitosis detection: fast and slow’’ (MDFS)method.53MDFS is a two-stage

methodwheremitotic candidates are first detected using a fully convolutional neural network and then refined by a deeper CNN clas-

sifier. Several techniques have been incorporated during the training of the MDFS to make it robust against domain shift problems

seen in histology images and generalize better to unseen images. After detecting mitotic figures, we estimate the patch-level mitotic

counts by counting all the detected mitoses in the patch.

Statistical analysis
For testing statistical significance in Kaplan-Meier analysis, we used log-rank test to measure the difference between the two distri-

butions (i.e., status = 0 and status = 0). As we are iteratively, testing the association of all 200 gene groups with survival, so we cor-

rected the p-value using Benjamini/Hochberg method, and then use a threshold of p � 0:05 for statistical significance. To analyze

the difference (in mitotic and inflammatory cell counts) between highly attended patches of status = 0 and 1 of a certain gene group,

we used two-sidedWilcoxon rank-sum test between the two distribution and used a threshold of p � 0:05 for statistical significance.
Cell Reports Medicine 4, 101313, December 19, 2023 e5
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