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Abstract. Face image synthesis is gaining more attention in computer
security due to concerns about its potential negative impacts, including
those related to fake biometrics. Hence, building models that can de-
tect the synthesized face images is an important challenge to tackle. In
this paper, we propose a fusion-based strategy to detect face image syn-
thesis while providing resiliency to several attacks. The proposed strat-
egy uses a late fusion of the outputs computed by several undisclosed
models by relying on random polynomial coefficients and exponents to
conceal a new feature space. Unlike existing concealing solutions, our
strategy requires no quantization, which helps to preserve the feature
space. Our experiments reveal that our strategy achieves state-of-the-art
performance while providing protection against poisoning, perturbation,
backdoor, and reverse model attacks.
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1 Introduction

Face image-based identification is widely used in many applications, making it
an essential component of authentication systems [6]. Face image synthesis poses
a problem for many profile-based systems linked to the users’ face images, e.g.,
fake social media accounts and identity fraud. Moreover, existing presentation
attacks, e.g., morphological attacks, can be upgraded with the advances of face
image synthesis providing the attacker with concealing and extending capabilities
as conducting these attacks initially requires real face images.

Face image synthesis has recently evolved drastically in terms of image qual-
ity [18]. Hence, it is not only important to detect synthesized face images but
also to provide detection models with resiliency to common attacks. To that end,
we present an effective strategy to protect a model for fake face image detection
while providing competitive performance. Our contributions are as follows:

1. We present a conceal-features fusion strategy to detect fake face images.
2. Our fusion strategy provides resiliency against poisoning, perturbations,
backdoor, and reverse model attacks.

* This work was partly supported by The Alan Turing Institute via Bill & Gates
Foundation (INV-001309), Roberto Leyva is also with ITESM, email rleyv@tec.mx
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The rest of this paper is organized as follows. In Section 2, we review the
most related works. In Section 3, we present the proposed strategy. Section 4
provides experimental results and Section 5 concludes this paper.

2 Related Work

Detection of synthesized imaging data: these methods usually rely on de-
tecting imperfections in any depicted face [14]. Afchar et al. [1] propose a Convo-
lutional Neural Network (CNN) based on the InceptionV3 model to detect syn-
thesized videos. Their method requires detecting the location of faces followed by
registration, alignment, and scaling. Hsu et al. [6] propose a Generative Adversar-
ial Network (GAN)-based detector that requires measuring the contrastive loss
given by the GAN discriminator. Marra et al. [19] inspect a set of well-established
generic models for image tasks, e.g. IV3, DenseNet, Xception, to detect synthe-
sized imaging data. Their work reveals that standard architectures are natively
structured for this task. Nataraj et al. [20] propose detecting synthesized face
images via a set of co-occurrence matrices prior to using a CNN, as such ma-
trices provide a more descriptive input space. Maiabno et al. [18] train several
existing CNN backbones to detect the synthesis in several color spaces. Their
results show that those architectures are very sensitive to color space. Rossler et
al. [22] propose to perform a series of manipulations to obtain more synthesized
faces to train a CNN. Zhang et al. [28], by using a GAN-based model, propose
learning the synthesis process by solving an image-to-image translation problem.
Guarnera et al. [5] propose an anspectral analysis of different transformations
and intensity domains, which increases the input descriptiveness. Analyzing fa-
cial landmarks to detect synthesized face images is proposed by Tolosana et al.
[26]. Their work suggests that separate models that are fused can detect the
synthesis process by separately analyzing the face components, e.g., nose and
eyes. This methodology is also supported by the fact that some synthesizing
methods can only replace parts of a face instead of generating a whole new face.
Local and global matching is explored by Favorskaya [4], however, their method
heavily relies on additional features, e.g., those extracted from the background
and any artifacts surrounding the face. Fusing models to detect the synthesized
videos are explored by Coccomini et al. Their method requires analyzing the
faces frame-by-frame by using a CNN and a Vision Transformer [3].
Protection of models: Prior work by Jin et al. [§] protects a model by quan-
tizing the input samples using the Wavelet transform and random templates. Tal-
reja et al. [25] encode face and iris features by using the Reed-Solomon encoder.
A separate CNN is used on each source to produce the features to be hashed.
Kaur and Khanna [12] propose to randomly project the input features and per-
form the detection in an alternative feature space following the random slope
method. This idea is further investigated in [11] by performing a fusion between
random numbers and local features with dimensionality reduction. Early fusion
by hashing the product of random templates with biometric features computed
by Gabor filters is proposed by [13]. Maneet et al. [24] present several strategies
to protect models via multi-biometric sources. The authors provide the basis for
processing face, finger, hand, and iris information at the sensor, feature, score,
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Fig. 1: Our strategy uses a bank of K models. It projects and encrypts the outputs
of the decision layer of each individual model to a new feature space. The encrypted
projection is used to train a Bayesian model to classify the samples as real or fake.

rank, and decision levels. The authors suggest that strongly protected models
should be able to provide encryption at the template level with low distortion
of the latent feature space.

3 Proposed Strategy

Existing strategies to protect models [25,11] usually quantize the input space,
which inevitably leads to losing important information. The small details are
the cornerstone of the state-of-the-art methods in face image synthesis detection
[14]. Fusion strategies previously proposed to this end, e.g., [5,26], do not ad-
just the prediction according to the model posteriors. Such an adjustment can
increase the model’s security and detection performance simultaneously. How-
ever, knowing a priori which parts of the fusion process can boost the detection
capabilities is challenging. We consider these aspects to develop our strategy.
Specifically, as depicted in Fig. 1, our strategy requires a bank of models to per-
form late fusion. We protect the posteriors of all models before using a Bayesian
model. This model gives the final score to decide if the face is synthetic or not.
We explain the constituent components of our strategy next.

Model bank: Following [26], we process the input samples using several
models. However, different from [26], we perform no region-based analysis. To
this end, we pre-train separately K = 6 models and protect the outputs given by
their last layer. Let us denote the output of model k by ¥ for the input image «
of size ng x ny. The k" model then produces the mapping RN *7exmy _y RN*2,
for a set of N images and two classes, i.e., real and synthetic. A model bank
comprising K models produces the posterior matrix X e RVx2K , which we
aim to protect. Note that our model bank can comprise any model, including
proprietary ones, whose architecture may remain undisclosed [19].

Late fusion: Following the random slope method [12], we propose to protect
the decisions of the K models in the bank with random-degree polynomials. Be-
cause we can generate polynomials with coeflicients and exponents, {«;, 5;} € Z,
respectively, we have a fully discrete domain. The proposed fusion is then per-
formed in a discrete rather than a continuous domain, which avoids quantiza-
tion. Formally, the n'* sample &, of the matrix produced by the model bank,
e, X = {#1,%2,...,2n}, is mapped by the function p(-):

pE,QY) = Y ol (@,)" (1a)

i=1...Qk
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Qk:{alf...agk75f~-~ﬁgk}, (1b>

where Q* € Z is the set of randomly generated integers used for protection
which constitute the key. The design matrix X is protected by a vector of size:

P=K)» Q. (2)
k
The mapping of the projected matrix X = Xp is then as:

X, = [p(X,QY),p(X,Q%)....p(X,QF) (3)

For instance, if we map X with 3-degree polynomials using a bank of K =
6 models, we have P as a 36-integer set, where each («;, ;) requires 8 bits,
making the key’s length equal to 8 x P bits. Breaking such a long key is highly
unfeasible using standard computing. Our strategy then fuses and conceals the
posteriors of all models in the bank without quantization. This aspect adds an
authentication-level capability to the inference model. Even if the attacker knows
the architecture of the fused models, the key is still required to make predictions
and inspect the outputs given by the final decision model.

Bayesian model: Bayesian models have been recently shown to be less prone
to overfitting and capable of solving sub-parametrization problems [17]. We then
use this model as a binary classifier to predict whether a face image is real or
fake. The input to this classifier is the matrix X » produced by the late fusion
encoding and encryption, thus each input p(Z) = &, has a dimension of 2K. We
use two fully connected (FC) layers to calculate the final score. The Bayesian
model requires estimating the set of probabilistic parameters 8 = {u, X'}, i.e.,
means {p} and variances {X'}, at each FC layer. Let us consider the target
variable ¢ from the vector #,, whose conditional distribution p(t|#) is Gaussian®.
For a neural network model mapping function f(&,w), with parameters w, and
inverse variance X!, we have:

p(t|f%,w, Z) =N (t‘f(.f,w)72_l) ) (4)

where p(w, ) = N(w|0,x~'I). For N observations of X with target values
D = {t1,ta,...tn}, the likelihood function is:

p(Dlw, 2) = [[ N (talf (@, w), 571 (5)
Vn
The desired posterior distribution is:
p(w|D, p, X) =~ p(w|p) p(Dlw, X). (6)
It can be proved that the parameter set given by the MAP estimation is [2]:
p(t|2, D, w, X) = N (t|f(&, wmap), 0> (), (7)

where the input-dependent variance o is given by:

3 For notation simplicity, we use & = p(&).
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Fig.2: (left) mAp values for several data splits using the 140K sGAN2 images — the
horizontal axis shows the percentage of training data. (right) mAp values on the 140K
images of each of the three synthesizers using an 80:20 data split.

o* (@) =X+ g (I + X H) g, (8a)

9 =V f(@w)|

where H is the Hessian matrix comprising the second derivatives of the sum of
square errors with respect to the components of w. The distribution p(¢|#, D)
is a Gaussian distribution whose mean is given by the neural network function
f(&,wyap) and maximizes the posterior likelihood. We can then calculate the
model posterior confidence as follows:

(8b)

wW=wMAP’

max f(&, wvap) = te, 9)

where ¢ denotes the two classes, i.e., real or fake. Since for each %, t. > t+., we
can then use this result to set the model confidence and make predictions.

4 Experiments

We use the FFHQ [9] dataset, which comprises 70K real samples, to produce 70K
fake samples using three different synthesizers: sGAN2 [10]*, XL-GAN [23]°, and
anyCost-GAN [15]%. Hence, we have 70K+70K=140K samples for each synthe-
sizer. The Bayesian model fuses models that are pre-trained separately on each
set of 140K images. We train the Bayesian model using a scheduler to detect
error plateaus and scale the learning rate accordingly by a power of ten.
Detection accuracy: We first evaluate several detection models separately,
i.e., with no fusion, in terms of the mean Average precision (mAp) for several
data splits, where the training and test datasets contain equal proportions of
fake and real images. This first experiment allows us to select the K = 6 models
to be used in the model bank of our strategy. Note that one of the evaluated
models is a CNN-Multi-Layer Perceptron (MLP) model we propose with pooling
and only expanding convolutional filters to capture small artifacts commonly
present in synthesized face images, hereinafter called the MLP c¢3n1f3 model
(see Appendix A). Fig. 2(a) shows mAp values for several detection models and
data splits on the 140K sGAN2 images. Note that most of the evaluated models

4 https://github.com/NVlabs/stylegan
5 https://github.com/autonomousvision/stylegan-x1
S https://github.com/mit-han-lab/anycost-gan
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Table 1: mAp values (1) of several detection models on the 140K images of each of
the three synthesizers using several data splits.

Data split (proportion of training data)

Model Synthesizer 01 02 03 04 05 06 07 08 09
SGAN2 [10] 0.903 0.922 0.941 0.954 0.968 0.952 0.953 0.962 0.961
VGG-197 XL-GAN [23] 0.771 0.810 0.856 0.889 0.915 0.917 0.921 0.928 0.918
anyCost-GAN [15] 0.851 0.874 0.912 0.914 0.917 0.927 0.923 0.932 0.935
SGAN2 0.875 0.895 0.913 0.931 0.935 0.942 0.946 0.945 0.949
DF [18]* XL-GAN 0.802 0.856 0.899 0.901 0.908 0.912 0.917 0.916 0.915
anyCost-GAN 0.833 0.854 0.911 0.912 0.917 0.931 0.945 0.948 0.944
SGAN2 0.901 0.934 0.956 0.954 0.964 0.968 0.958 0.969 0.978
CoMat [20] XL-GAN 0.834 0.876 0.915 0.926 0.924 0.938 0.941 0.948 0.952
anyCost-GAN 0.831 0.884 0.932 0.955 0.945 0.954 0.958 0.952 0.962
SGAN2 0.913 0.940 0.964 0.954 0.951 0.972 0.987 0.988 0.982
Bayesian fusion (ours) XL-GAN 0.832 0.878 0.925 0.952 0.945 0.947 0.967 0.965 0.968

anyCost-GAN 0.871 0.910 0.951 0.961 0.944 0.957 0.968 0.974 0.988
TBest performing model based on the first experiment. iOnly compared in the RGB space.

require about 30% of the training data to achieve competitive accuracy on these
images. Fig. 2(b) shows mAp values for several detection models on the 140K
images of each of the three synthesizers using an 80:20 data split. We can see that
VGG-19 achieves the best performance. For the case of the 140K anyCost-GAN
images, our MLP _ ¢3n1f3 model outperforms VGG-19.

Next, we fuse the six best-performing models from the previous experi-
ment using our proposed strategy. Table 1 tabulates mAp values of our strat-
egy (Bayesian fusion) and other state-of-the-art methods, including the best-
performing model in the previous experiment. i.e., VGG-19. The tabulated re-
sults are for several data splits and the 140K images of each of the three synthe-
sizers. The proposed strategy attains competitive accuracy even for small data
split values. Hence, it requires fewer training samples to perform very well.

Ablation studies: We analyze the posterior confidence as the loss value
declines during the training of the Bayesian model used by our strategy (see Fig.
3 (left)). In general, the strategy makes fewer errors when it is more confident.
Since we perform a non-linear mapping, the new feature space may not be as
descriptive as the original one. We then evaluate our strategy’s accuracy (mAp)
for several key lengths, especially because we observe that the strategy may not
converge to a high mAp value when using long keys. Fig. 3 (right) shows the
effect of using long keys in terms of the number of training attempts needed for
our strategy to converge as the key length increases. We observe that a key of
length 36 easily makes the model converge in the first attempt.

Model attacks: We measure the success rate of the poisoning, perturbation,
reverse, and backdoor attacks as performed on our strategy using the sGAN2
images. In other words, we measure the success of miss-detecting samples that
are correctly detected before the attack.

Poisoning: We swap the labels in the training dataset to generate wrong de-
tections by using several infection proportions, i.e., the ratio of swapped labels
and the total number of samples [16]. Fig. 4a shows that as the infection propor-
tion increases, the success rate increases but the accuracy during the training
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Fig. 4: Success rate of several attacks against the proposed Bayesian fusion strategy.

decreases. We observe that the attack is most dangerous when 20%~30% of the
labels are poisoned. In such a case, the training accuracy and confidence are high
and the model is cheated in ~2% of the testing samples.

Perturbation: We corrupt samples by adding noise and blurring them [21].
Fig. 4b shows the results as the number of fused models increases. Despite a
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very high success rate, the confidence is low compared to the training confidence.
Therefore, this attack can be easily detected by inspecting the model’s posterior.

Reverse Model: This attack is via manipulating the decision layers to make
the model fail with specific samples, for example, by feature vector angle defor-
mation or weight surgery without retraining [27]. We assume the attacker knows
some of the fused models. Fig. 4c shows that the attacker requires knowledge
of the majority of the fused models to succeed, i.e., when the Training confi-
dence curve, represented as the dotted red line, is reached. The attack have high
success confidence even when only one of the fused models is known.

Backdoor: We mark samples using a black patch following [7], to maliciously
change the classification result. Fig. 4d shows how the success confidence in-
creases as more fused models are attacked. Although the success rate remains
almost constant, as the number of attacked models increases, it is likely that
the strategy miss-classifies the marked samples as intended by the attacker be-
cause the success confidence increases. About 5% of the marked samples are
miss-classified as intended when all fused models are attacked, see the Success
Confidence curve reaching the Training confidence curve (red dotted line).

Note that although our strategy is robust by design to poisoning, backdoor,
and perturbation attacks, reverse model attacks pose an important threat, which
can be mitigated by not disclosing the architecture.

5 Conclusion

We have proposed a strategy based on fusion to provide concealment of a model
trained to detect synthesized face images while simultaneously increasing accu-
racy when fewer training samples are available. The proposed strategy projects
and encrypts the output of the decision layers of several models into a new fea-
ture space. Our proposed strategy is simple yet effective and achieves very com-
petitive accuracy. Our findings have the potential to help protect models used
for face validation while providing resiliency to common attacks. Future work
focuses on cross-dataset evaluations and robustness against more sophisticated
attacks, e.g., backdoor injection, adversarial patches, and weight surgery.
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Proposed MLP Detector

We propose a vanilla-style model (see Table 2) to detect small artifacts found in syn-
thetic face images (see Fig. 5). To this end, our model uses progressively larger filter
banks, performs a unitary stride with the convolutional operations, and does not per-
form pooling operations in the feature extraction stage as these operations discard
important information.

Fig.5: Artifacts in synthetic face images (left to right): a large scar below the eye, a
scar below the nose, a dented forehead, and uneven ears.

Table 2: Architecture of the proposed MLP detector.
Layer Type Number of Filters Feature Map Size Kernel Size Stride Activation
Input 256° x 3
Center-Crop 2242 x 3
Convolution Layer 1 16 2242 x 16 5X%X5H 1x1 ReLu
Convolution Layer 2°¢ 24 2202 x 24 5%x5 1x1 ReLu
Convolution Layer 3t® 32 2162 x 32 5X%X5 1x1 ReLu

Batch Normalization

Fully Connected Layer 1%

2122 x 32 — 120

Fully Connected Layer 2°¢

120 — 84

Fully Connected Layer 3"

84 — 2
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